1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.rst for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * fault() vm_op implementation for relay file mapping. 32 */ 33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf) 34 { 35 struct page *page; 36 struct rchan_buf *buf = vmf->vma->vm_private_data; 37 pgoff_t pgoff = vmf->pgoff; 38 39 if (!buf) 40 return VM_FAULT_OOM; 41 42 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 43 if (!page) 44 return VM_FAULT_SIGBUS; 45 get_page(page); 46 vmf->page = page; 47 48 return 0; 49 } 50 51 /* 52 * vm_ops for relay file mappings. 53 */ 54 static const struct vm_operations_struct relay_file_mmap_ops = { 55 .fault = relay_buf_fault, 56 }; 57 58 /* 59 * allocate an array of pointers of struct page 60 */ 61 static struct page **relay_alloc_page_array(unsigned int n_pages) 62 { 63 return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); 64 } 65 66 /* 67 * free an array of pointers of struct page 68 */ 69 static void relay_free_page_array(struct page **array) 70 { 71 kvfree(array); 72 } 73 74 /** 75 * relay_mmap_prepare_buf: - mmap channel buffer to process address space 76 * @buf: the relay channel buffer 77 * @desc: describing what to map 78 * 79 * Returns 0 if ok, negative on error 80 * 81 * Caller should already have grabbed mmap_lock. 82 */ 83 static int relay_mmap_prepare_buf(struct rchan_buf *buf, 84 struct vm_area_desc *desc) 85 { 86 unsigned long length = vma_desc_size(desc); 87 88 if (!buf) 89 return -EBADF; 90 91 if (length != (unsigned long)buf->chan->alloc_size) 92 return -EINVAL; 93 94 desc->vm_ops = &relay_file_mmap_ops; 95 desc->vm_flags |= VM_DONTEXPAND; 96 desc->private_data = buf; 97 98 return 0; 99 } 100 101 /** 102 * relay_alloc_buf - allocate a channel buffer 103 * @buf: the buffer struct 104 * @size: total size of the buffer 105 * 106 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 107 * passed in size will get page aligned, if it isn't already. 108 */ 109 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 110 { 111 void *mem; 112 unsigned int i, j, n_pages; 113 114 *size = PAGE_ALIGN(*size); 115 n_pages = *size >> PAGE_SHIFT; 116 117 buf->page_array = relay_alloc_page_array(n_pages); 118 if (!buf->page_array) 119 return NULL; 120 121 for (i = 0; i < n_pages; i++) { 122 buf->page_array[i] = alloc_page(GFP_KERNEL | __GFP_ZERO); 123 if (unlikely(!buf->page_array[i])) 124 goto depopulate; 125 set_page_private(buf->page_array[i], (unsigned long)buf); 126 } 127 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 128 if (!mem) 129 goto depopulate; 130 131 buf->page_count = n_pages; 132 return mem; 133 134 depopulate: 135 for (j = 0; j < i; j++) 136 __free_page(buf->page_array[j]); 137 relay_free_page_array(buf->page_array); 138 return NULL; 139 } 140 141 /** 142 * relay_create_buf - allocate and initialize a channel buffer 143 * @chan: the relay channel 144 * 145 * Returns channel buffer if successful, %NULL otherwise. 146 */ 147 static struct rchan_buf *relay_create_buf(struct rchan *chan) 148 { 149 struct rchan_buf *buf; 150 151 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t)) 152 return NULL; 153 154 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 155 if (!buf) 156 return NULL; 157 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t), 158 GFP_KERNEL); 159 if (!buf->padding) 160 goto free_buf; 161 162 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 163 if (!buf->start) 164 goto free_buf; 165 166 buf->chan = chan; 167 kref_get(&buf->chan->kref); 168 return buf; 169 170 free_buf: 171 kfree(buf->padding); 172 kfree(buf); 173 return NULL; 174 } 175 176 /** 177 * relay_destroy_channel - free the channel struct 178 * @kref: target kernel reference that contains the relay channel 179 * 180 * Should only be called from kref_put(). 181 */ 182 static void relay_destroy_channel(struct kref *kref) 183 { 184 struct rchan *chan = container_of(kref, struct rchan, kref); 185 free_percpu(chan->buf); 186 kfree(chan); 187 } 188 189 /** 190 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 191 * @buf: the buffer struct 192 */ 193 static void relay_destroy_buf(struct rchan_buf *buf) 194 { 195 struct rchan *chan = buf->chan; 196 unsigned int i; 197 198 if (likely(buf->start)) { 199 vunmap(buf->start); 200 for (i = 0; i < buf->page_count; i++) 201 __free_page(buf->page_array[i]); 202 relay_free_page_array(buf->page_array); 203 } 204 *per_cpu_ptr(chan->buf, buf->cpu) = NULL; 205 kfree(buf->padding); 206 kfree(buf); 207 kref_put(&chan->kref, relay_destroy_channel); 208 } 209 210 /** 211 * relay_remove_buf - remove a channel buffer 212 * @kref: target kernel reference that contains the relay buffer 213 * 214 * Removes the file from the filesystem, which also frees the 215 * rchan_buf_struct and the channel buffer. Should only be called from 216 * kref_put(). 217 */ 218 static void relay_remove_buf(struct kref *kref) 219 { 220 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 221 relay_destroy_buf(buf); 222 } 223 224 /** 225 * relay_buf_empty - boolean, is the channel buffer empty? 226 * @buf: channel buffer 227 * 228 * Returns 1 if the buffer is empty, 0 otherwise. 229 */ 230 static int relay_buf_empty(struct rchan_buf *buf) 231 { 232 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 233 } 234 235 /** 236 * relay_buf_full - boolean, is the channel buffer full? 237 * @buf: channel buffer 238 * 239 * Returns 1 if the buffer is full, 0 otherwise. 240 */ 241 int relay_buf_full(struct rchan_buf *buf) 242 { 243 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 244 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 245 } 246 EXPORT_SYMBOL_GPL(relay_buf_full); 247 248 /* 249 * High-level relay kernel API and associated functions. 250 */ 251 252 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf, 253 void *prev_subbuf) 254 { 255 int full = relay_buf_full(buf); 256 257 if (full) 258 buf->stats.full_count++; 259 260 if (!buf->chan->cb->subbuf_start) 261 return !full; 262 263 return buf->chan->cb->subbuf_start(buf, subbuf, 264 prev_subbuf); 265 } 266 267 /** 268 * wakeup_readers - wake up readers waiting on a channel 269 * @work: contains the channel buffer 270 * 271 * This is the function used to defer reader waking 272 */ 273 static void wakeup_readers(struct irq_work *work) 274 { 275 struct rchan_buf *buf; 276 277 buf = container_of(work, struct rchan_buf, wakeup_work); 278 wake_up_interruptible(&buf->read_wait); 279 } 280 281 /** 282 * __relay_reset - reset a channel buffer 283 * @buf: the channel buffer 284 * @init: 1 if this is a first-time initialization 285 * 286 * See relay_reset() for description of effect. 287 */ 288 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 289 { 290 size_t i; 291 292 if (init) { 293 init_waitqueue_head(&buf->read_wait); 294 kref_init(&buf->kref); 295 init_irq_work(&buf->wakeup_work, wakeup_readers); 296 } else { 297 irq_work_sync(&buf->wakeup_work); 298 } 299 300 buf->subbufs_produced = 0; 301 buf->subbufs_consumed = 0; 302 buf->bytes_consumed = 0; 303 buf->finalized = 0; 304 buf->data = buf->start; 305 buf->offset = 0; 306 buf->stats.full_count = 0; 307 buf->stats.big_count = 0; 308 309 for (i = 0; i < buf->chan->n_subbufs; i++) 310 buf->padding[i] = 0; 311 312 relay_subbuf_start(buf, buf->data, NULL); 313 } 314 315 /** 316 * relay_reset - reset the channel 317 * @chan: the channel 318 * 319 * This has the effect of erasing all data from all channel buffers 320 * and restarting the channel in its initial state. The buffers 321 * are not freed, so any mappings are still in effect. 322 * 323 * NOTE. Care should be taken that the channel isn't actually 324 * being used by anything when this call is made. 325 */ 326 void relay_reset(struct rchan *chan) 327 { 328 struct rchan_buf *buf; 329 unsigned int i; 330 331 if (!chan) 332 return; 333 334 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 335 __relay_reset(buf, 0); 336 return; 337 } 338 339 mutex_lock(&relay_channels_mutex); 340 for_each_possible_cpu(i) 341 if ((buf = *per_cpu_ptr(chan->buf, i))) 342 __relay_reset(buf, 0); 343 mutex_unlock(&relay_channels_mutex); 344 } 345 EXPORT_SYMBOL_GPL(relay_reset); 346 347 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 348 struct dentry *dentry) 349 { 350 buf->dentry = dentry; 351 d_inode(buf->dentry)->i_size = buf->early_bytes; 352 } 353 354 static struct dentry *relay_create_buf_file(struct rchan *chan, 355 struct rchan_buf *buf, 356 unsigned int cpu) 357 { 358 struct dentry *dentry; 359 char *tmpname; 360 361 tmpname = kasprintf(GFP_KERNEL, "%s%d", chan->base_filename, cpu); 362 if (!tmpname) 363 return NULL; 364 365 /* Create file in fs */ 366 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 367 S_IRUSR, buf, 368 &chan->is_global); 369 if (IS_ERR(dentry)) 370 dentry = NULL; 371 372 kfree(tmpname); 373 374 return dentry; 375 } 376 377 /* 378 * relay_open_buf - create a new relay channel buffer 379 * 380 * used by relay_open() and CPU hotplug. 381 */ 382 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 383 { 384 struct rchan_buf *buf; 385 struct dentry *dentry; 386 387 if (chan->is_global) 388 return *per_cpu_ptr(chan->buf, 0); 389 390 buf = relay_create_buf(chan); 391 if (!buf) 392 return NULL; 393 394 if (chan->has_base_filename) { 395 dentry = relay_create_buf_file(chan, buf, cpu); 396 if (!dentry) 397 goto free_buf; 398 relay_set_buf_dentry(buf, dentry); 399 } else { 400 /* Only retrieve global info, nothing more, nothing less */ 401 dentry = chan->cb->create_buf_file(NULL, NULL, 402 S_IRUSR, buf, 403 &chan->is_global); 404 if (IS_ERR_OR_NULL(dentry)) 405 goto free_buf; 406 } 407 408 buf->cpu = cpu; 409 __relay_reset(buf, 1); 410 411 if(chan->is_global) { 412 *per_cpu_ptr(chan->buf, 0) = buf; 413 buf->cpu = 0; 414 } 415 416 return buf; 417 418 free_buf: 419 relay_destroy_buf(buf); 420 return NULL; 421 } 422 423 /** 424 * relay_close_buf - close a channel buffer 425 * @buf: channel buffer 426 * 427 * Marks the buffer finalized and restores the default callbacks. 428 * The channel buffer and channel buffer data structure are then freed 429 * automatically when the last reference is given up. 430 */ 431 static void relay_close_buf(struct rchan_buf *buf) 432 { 433 buf->finalized = 1; 434 irq_work_sync(&buf->wakeup_work); 435 buf->chan->cb->remove_buf_file(buf->dentry); 436 kref_put(&buf->kref, relay_remove_buf); 437 } 438 439 int relay_prepare_cpu(unsigned int cpu) 440 { 441 struct rchan *chan; 442 struct rchan_buf *buf; 443 444 mutex_lock(&relay_channels_mutex); 445 list_for_each_entry(chan, &relay_channels, list) { 446 if (*per_cpu_ptr(chan->buf, cpu)) 447 continue; 448 buf = relay_open_buf(chan, cpu); 449 if (!buf) { 450 pr_err("relay: cpu %d buffer creation failed\n", cpu); 451 mutex_unlock(&relay_channels_mutex); 452 return -ENOMEM; 453 } 454 *per_cpu_ptr(chan->buf, cpu) = buf; 455 } 456 mutex_unlock(&relay_channels_mutex); 457 return 0; 458 } 459 460 /** 461 * relay_open - create a new relay channel 462 * @base_filename: base name of files to create 463 * @parent: dentry of parent directory, %NULL for root directory or buffer 464 * @subbuf_size: size of sub-buffers 465 * @n_subbufs: number of sub-buffers 466 * @cb: client callback functions 467 * @private_data: user-defined data 468 * 469 * Returns channel pointer if successful, %NULL otherwise. 470 * 471 * Creates a channel buffer for each cpu using the sizes and 472 * attributes specified. The created channel buffer files 473 * will be named base_filename0...base_filenameN-1. File 474 * permissions will be %S_IRUSR. 475 */ 476 struct rchan *relay_open(const char *base_filename, 477 struct dentry *parent, 478 size_t subbuf_size, 479 size_t n_subbufs, 480 const struct rchan_callbacks *cb, 481 void *private_data) 482 { 483 unsigned int i; 484 struct rchan *chan; 485 struct rchan_buf *buf; 486 487 if (!(subbuf_size && n_subbufs)) 488 return NULL; 489 if (subbuf_size > UINT_MAX / n_subbufs) 490 return NULL; 491 if (!cb || !cb->create_buf_file || !cb->remove_buf_file) 492 return NULL; 493 494 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 495 if (!chan) 496 return NULL; 497 498 chan->buf = alloc_percpu(struct rchan_buf *); 499 if (!chan->buf) { 500 kfree(chan); 501 return NULL; 502 } 503 504 chan->version = RELAYFS_CHANNEL_VERSION; 505 chan->n_subbufs = n_subbufs; 506 chan->subbuf_size = subbuf_size; 507 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 508 chan->parent = parent; 509 chan->private_data = private_data; 510 if (base_filename) { 511 chan->has_base_filename = 1; 512 strscpy(chan->base_filename, base_filename, NAME_MAX); 513 } 514 chan->cb = cb; 515 kref_init(&chan->kref); 516 517 mutex_lock(&relay_channels_mutex); 518 for_each_online_cpu(i) { 519 buf = relay_open_buf(chan, i); 520 if (!buf) 521 goto free_bufs; 522 *per_cpu_ptr(chan->buf, i) = buf; 523 } 524 list_add(&chan->list, &relay_channels); 525 mutex_unlock(&relay_channels_mutex); 526 527 return chan; 528 529 free_bufs: 530 for_each_possible_cpu(i) { 531 if ((buf = *per_cpu_ptr(chan->buf, i))) 532 relay_close_buf(buf); 533 } 534 535 kref_put(&chan->kref, relay_destroy_channel); 536 mutex_unlock(&relay_channels_mutex); 537 return NULL; 538 } 539 EXPORT_SYMBOL_GPL(relay_open); 540 541 struct rchan_percpu_buf_dispatcher { 542 struct rchan_buf *buf; 543 struct dentry *dentry; 544 }; 545 546 /** 547 * relay_switch_subbuf - switch to a new sub-buffer 548 * @buf: channel buffer 549 * @length: size of current event 550 * 551 * Returns either the length passed in or 0 if full. 552 * 553 * Performs sub-buffer-switch tasks such as invoking callbacks, 554 * updating padding counts, waking up readers, etc. 555 */ 556 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 557 { 558 void *old, *new; 559 size_t old_subbuf, new_subbuf; 560 561 if (unlikely(length > buf->chan->subbuf_size)) 562 goto toobig; 563 564 if (buf->offset != buf->chan->subbuf_size + 1) { 565 size_t prev_padding; 566 567 prev_padding = buf->chan->subbuf_size - buf->offset; 568 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 569 buf->padding[old_subbuf] = prev_padding; 570 buf->subbufs_produced++; 571 if (buf->dentry) 572 d_inode(buf->dentry)->i_size += 573 buf->chan->subbuf_size - 574 buf->padding[old_subbuf]; 575 else 576 buf->early_bytes += buf->chan->subbuf_size - 577 buf->padding[old_subbuf]; 578 smp_mb(); 579 if (waitqueue_active(&buf->read_wait)) { 580 /* 581 * Calling wake_up_interruptible() from here 582 * will deadlock if we happen to be logging 583 * from the scheduler (trying to re-grab 584 * rq->lock), so defer it. 585 */ 586 irq_work_queue(&buf->wakeup_work); 587 } 588 } 589 590 old = buf->data; 591 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 592 new = buf->start + new_subbuf * buf->chan->subbuf_size; 593 buf->offset = 0; 594 if (!relay_subbuf_start(buf, new, old)) { 595 buf->offset = buf->chan->subbuf_size + 1; 596 return 0; 597 } 598 buf->data = new; 599 buf->padding[new_subbuf] = 0; 600 601 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 602 goto toobig; 603 604 return length; 605 606 toobig: 607 buf->stats.big_count++; 608 return 0; 609 } 610 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 611 612 /** 613 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 614 * @chan: the channel 615 * @cpu: the cpu associated with the channel buffer to update 616 * @subbufs_consumed: number of sub-buffers to add to current buf's count 617 * 618 * Adds to the channel buffer's consumed sub-buffer count. 619 * subbufs_consumed should be the number of sub-buffers newly consumed, 620 * not the total consumed. 621 * 622 * NOTE. Kernel clients don't need to call this function if the channel 623 * mode is 'overwrite'. 624 */ 625 void relay_subbufs_consumed(struct rchan *chan, 626 unsigned int cpu, 627 size_t subbufs_consumed) 628 { 629 struct rchan_buf *buf; 630 631 if (!chan || cpu >= NR_CPUS) 632 return; 633 634 buf = *per_cpu_ptr(chan->buf, cpu); 635 if (!buf || subbufs_consumed > chan->n_subbufs) 636 return; 637 638 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 639 buf->subbufs_consumed = buf->subbufs_produced; 640 else 641 buf->subbufs_consumed += subbufs_consumed; 642 } 643 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 644 645 /** 646 * relay_close - close the channel 647 * @chan: the channel 648 * 649 * Closes all channel buffers and frees the channel. 650 */ 651 void relay_close(struct rchan *chan) 652 { 653 struct rchan_buf *buf; 654 unsigned int i; 655 656 if (!chan) 657 return; 658 659 mutex_lock(&relay_channels_mutex); 660 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) 661 relay_close_buf(buf); 662 else 663 for_each_possible_cpu(i) 664 if ((buf = *per_cpu_ptr(chan->buf, i))) 665 relay_close_buf(buf); 666 667 list_del(&chan->list); 668 kref_put(&chan->kref, relay_destroy_channel); 669 mutex_unlock(&relay_channels_mutex); 670 } 671 EXPORT_SYMBOL_GPL(relay_close); 672 673 /** 674 * relay_flush - close the channel 675 * @chan: the channel 676 * 677 * Flushes all channel buffers, i.e. forces buffer switch. 678 */ 679 void relay_flush(struct rchan *chan) 680 { 681 struct rchan_buf *buf; 682 unsigned int i; 683 684 if (!chan) 685 return; 686 687 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 688 relay_switch_subbuf(buf, 0); 689 return; 690 } 691 692 mutex_lock(&relay_channels_mutex); 693 for_each_possible_cpu(i) 694 if ((buf = *per_cpu_ptr(chan->buf, i))) 695 relay_switch_subbuf(buf, 0); 696 mutex_unlock(&relay_channels_mutex); 697 } 698 EXPORT_SYMBOL_GPL(relay_flush); 699 700 /** 701 * relay_stats - get channel buffer statistics 702 * @chan: the channel 703 * @flags: select particular information to get 704 * 705 * Returns the count of certain field that caller specifies. 706 */ 707 size_t relay_stats(struct rchan *chan, int flags) 708 { 709 unsigned int i, count = 0; 710 struct rchan_buf *rbuf; 711 712 if (!chan || flags > RELAY_STATS_LAST) 713 return 0; 714 715 if (chan->is_global) { 716 rbuf = *per_cpu_ptr(chan->buf, 0); 717 if (flags & RELAY_STATS_BUF_FULL) 718 count = rbuf->stats.full_count; 719 else if (flags & RELAY_STATS_WRT_BIG) 720 count = rbuf->stats.big_count; 721 } else { 722 for_each_online_cpu(i) { 723 rbuf = *per_cpu_ptr(chan->buf, i); 724 if (rbuf) { 725 if (flags & RELAY_STATS_BUF_FULL) 726 count += rbuf->stats.full_count; 727 else if (flags & RELAY_STATS_WRT_BIG) 728 count += rbuf->stats.big_count; 729 } 730 } 731 } 732 733 return count; 734 } 735 736 /** 737 * relay_file_open - open file op for relay files 738 * @inode: the inode 739 * @filp: the file 740 * 741 * Increments the channel buffer refcount. 742 */ 743 static int relay_file_open(struct inode *inode, struct file *filp) 744 { 745 struct rchan_buf *buf = inode->i_private; 746 kref_get(&buf->kref); 747 filp->private_data = buf; 748 749 return nonseekable_open(inode, filp); 750 } 751 752 /** 753 * relay_file_mmap_prepare - mmap file op for relay files 754 * @desc: describing what to map 755 * 756 * Calls upon relay_mmap_prepare_buf() to map the file into user space. 757 */ 758 static int relay_file_mmap_prepare(struct vm_area_desc *desc) 759 { 760 struct rchan_buf *buf = desc->file->private_data; 761 762 return relay_mmap_prepare_buf(buf, desc); 763 } 764 765 /** 766 * relay_file_poll - poll file op for relay files 767 * @filp: the file 768 * @wait: poll table 769 * 770 * Poll implemention. 771 */ 772 static __poll_t relay_file_poll(struct file *filp, poll_table *wait) 773 { 774 __poll_t mask = 0; 775 struct rchan_buf *buf = filp->private_data; 776 777 if (buf->finalized) 778 return EPOLLERR; 779 780 if (filp->f_mode & FMODE_READ) { 781 poll_wait(filp, &buf->read_wait, wait); 782 if (!relay_buf_empty(buf)) 783 mask |= EPOLLIN | EPOLLRDNORM; 784 } 785 786 return mask; 787 } 788 789 /** 790 * relay_file_release - release file op for relay files 791 * @inode: the inode 792 * @filp: the file 793 * 794 * Decrements the channel refcount, as the filesystem is 795 * no longer using it. 796 */ 797 static int relay_file_release(struct inode *inode, struct file *filp) 798 { 799 struct rchan_buf *buf = filp->private_data; 800 kref_put(&buf->kref, relay_remove_buf); 801 802 return 0; 803 } 804 805 /* 806 * relay_file_read_consume - update the consumed count for the buffer 807 */ 808 static void relay_file_read_consume(struct rchan_buf *buf, 809 size_t read_pos, 810 size_t bytes_consumed) 811 { 812 size_t subbuf_size = buf->chan->subbuf_size; 813 size_t n_subbufs = buf->chan->n_subbufs; 814 size_t read_subbuf; 815 816 if (buf->subbufs_produced == buf->subbufs_consumed && 817 buf->offset == buf->bytes_consumed) 818 return; 819 820 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 821 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 822 buf->bytes_consumed = 0; 823 } 824 825 buf->bytes_consumed += bytes_consumed; 826 if (!read_pos) 827 read_subbuf = buf->subbufs_consumed % n_subbufs; 828 else 829 read_subbuf = read_pos / buf->chan->subbuf_size; 830 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 831 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 832 (buf->offset == subbuf_size)) 833 return; 834 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 835 buf->bytes_consumed = 0; 836 } 837 } 838 839 /* 840 * relay_file_read_avail - boolean, are there unconsumed bytes available? 841 */ 842 static int relay_file_read_avail(struct rchan_buf *buf) 843 { 844 size_t subbuf_size = buf->chan->subbuf_size; 845 size_t n_subbufs = buf->chan->n_subbufs; 846 size_t produced = buf->subbufs_produced; 847 size_t consumed; 848 849 relay_file_read_consume(buf, 0, 0); 850 851 consumed = buf->subbufs_consumed; 852 853 if (unlikely(buf->offset > subbuf_size)) { 854 if (produced == consumed) 855 return 0; 856 return 1; 857 } 858 859 if (unlikely(produced - consumed >= n_subbufs)) { 860 consumed = produced - n_subbufs + 1; 861 buf->subbufs_consumed = consumed; 862 buf->bytes_consumed = 0; 863 } 864 865 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 866 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 867 868 if (consumed > produced) 869 produced += n_subbufs * subbuf_size; 870 871 if (consumed == produced) { 872 if (buf->offset == subbuf_size && 873 buf->subbufs_produced > buf->subbufs_consumed) 874 return 1; 875 return 0; 876 } 877 878 return 1; 879 } 880 881 /** 882 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 883 * @read_pos: file read position 884 * @buf: relay channel buffer 885 */ 886 static size_t relay_file_read_subbuf_avail(size_t read_pos, 887 struct rchan_buf *buf) 888 { 889 size_t padding, avail = 0; 890 size_t read_subbuf, read_offset, write_subbuf, write_offset; 891 size_t subbuf_size = buf->chan->subbuf_size; 892 893 write_subbuf = (buf->data - buf->start) / subbuf_size; 894 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 895 read_subbuf = read_pos / subbuf_size; 896 read_offset = read_pos % subbuf_size; 897 padding = buf->padding[read_subbuf]; 898 899 if (read_subbuf == write_subbuf) { 900 if (read_offset + padding < write_offset) 901 avail = write_offset - (read_offset + padding); 902 } else 903 avail = (subbuf_size - padding) - read_offset; 904 905 return avail; 906 } 907 908 /** 909 * relay_file_read_start_pos - find the first available byte to read 910 * @buf: relay channel buffer 911 * 912 * If the read_pos is in the middle of padding, return the 913 * position of the first actually available byte, otherwise 914 * return the original value. 915 */ 916 static size_t relay_file_read_start_pos(struct rchan_buf *buf) 917 { 918 size_t read_subbuf, padding, padding_start, padding_end; 919 size_t subbuf_size = buf->chan->subbuf_size; 920 size_t n_subbufs = buf->chan->n_subbufs; 921 size_t consumed = buf->subbufs_consumed % n_subbufs; 922 size_t read_pos = (consumed * subbuf_size + buf->bytes_consumed) 923 % (n_subbufs * subbuf_size); 924 925 read_subbuf = read_pos / subbuf_size; 926 padding = buf->padding[read_subbuf]; 927 padding_start = (read_subbuf + 1) * subbuf_size - padding; 928 padding_end = (read_subbuf + 1) * subbuf_size; 929 if (read_pos >= padding_start && read_pos < padding_end) { 930 read_subbuf = (read_subbuf + 1) % n_subbufs; 931 read_pos = read_subbuf * subbuf_size; 932 } 933 934 return read_pos; 935 } 936 937 /** 938 * relay_file_read_end_pos - return the new read position 939 * @read_pos: file read position 940 * @buf: relay channel buffer 941 * @count: number of bytes to be read 942 */ 943 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 944 size_t read_pos, 945 size_t count) 946 { 947 size_t read_subbuf, padding, end_pos; 948 size_t subbuf_size = buf->chan->subbuf_size; 949 size_t n_subbufs = buf->chan->n_subbufs; 950 951 read_subbuf = read_pos / subbuf_size; 952 padding = buf->padding[read_subbuf]; 953 if (read_pos % subbuf_size + count + padding == subbuf_size) 954 end_pos = (read_subbuf + 1) * subbuf_size; 955 else 956 end_pos = read_pos + count; 957 if (end_pos >= subbuf_size * n_subbufs) 958 end_pos = 0; 959 960 return end_pos; 961 } 962 963 static ssize_t relay_file_read(struct file *filp, 964 char __user *buffer, 965 size_t count, 966 loff_t *ppos) 967 { 968 struct rchan_buf *buf = filp->private_data; 969 size_t read_start, avail; 970 size_t written = 0; 971 int ret; 972 973 if (!count) 974 return 0; 975 976 inode_lock(file_inode(filp)); 977 do { 978 void *from; 979 980 if (!relay_file_read_avail(buf)) 981 break; 982 983 read_start = relay_file_read_start_pos(buf); 984 avail = relay_file_read_subbuf_avail(read_start, buf); 985 if (!avail) 986 break; 987 988 avail = min(count, avail); 989 from = buf->start + read_start; 990 ret = avail; 991 if (copy_to_user(buffer, from, avail)) 992 break; 993 994 buffer += ret; 995 written += ret; 996 count -= ret; 997 998 relay_file_read_consume(buf, read_start, ret); 999 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1000 } while (count); 1001 inode_unlock(file_inode(filp)); 1002 1003 return written; 1004 } 1005 1006 1007 const struct file_operations relay_file_operations = { 1008 .open = relay_file_open, 1009 .poll = relay_file_poll, 1010 .mmap_prepare = relay_file_mmap_prepare, 1011 .read = relay_file_read, 1012 .release = relay_file_release, 1013 }; 1014 EXPORT_SYMBOL_GPL(relay_file_operations); 1015