1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 struct page **array; 74 size_t pa_size = n_pages * sizeof(struct page *); 75 76 if (pa_size > PAGE_SIZE) { 77 array = vmalloc(pa_size); 78 if (array) 79 memset(array, 0, pa_size); 80 } else { 81 array = kzalloc(pa_size, GFP_KERNEL); 82 } 83 return array; 84 } 85 86 /* 87 * free an array of pointers of struct page 88 */ 89 static void relay_free_page_array(struct page **array) 90 { 91 if (is_vmalloc_addr(array)) 92 vfree(array); 93 else 94 kfree(array); 95 } 96 97 /** 98 * relay_mmap_buf: - mmap channel buffer to process address space 99 * @buf: relay channel buffer 100 * @vma: vm_area_struct describing memory to be mapped 101 * 102 * Returns 0 if ok, negative on error 103 * 104 * Caller should already have grabbed mmap_sem. 105 */ 106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 107 { 108 unsigned long length = vma->vm_end - vma->vm_start; 109 struct file *filp = vma->vm_file; 110 111 if (!buf) 112 return -EBADF; 113 114 if (length != (unsigned long)buf->chan->alloc_size) 115 return -EINVAL; 116 117 vma->vm_ops = &relay_file_mmap_ops; 118 vma->vm_flags |= VM_DONTEXPAND; 119 vma->vm_private_data = buf; 120 buf->chan->cb->buf_mapped(buf, filp); 121 122 return 0; 123 } 124 125 /** 126 * relay_alloc_buf - allocate a channel buffer 127 * @buf: the buffer struct 128 * @size: total size of the buffer 129 * 130 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 131 * passed in size will get page aligned, if it isn't already. 132 */ 133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 134 { 135 void *mem; 136 unsigned int i, j, n_pages; 137 138 *size = PAGE_ALIGN(*size); 139 n_pages = *size >> PAGE_SHIFT; 140 141 buf->page_array = relay_alloc_page_array(n_pages); 142 if (!buf->page_array) 143 return NULL; 144 145 for (i = 0; i < n_pages; i++) { 146 buf->page_array[i] = alloc_page(GFP_KERNEL); 147 if (unlikely(!buf->page_array[i])) 148 goto depopulate; 149 set_page_private(buf->page_array[i], (unsigned long)buf); 150 } 151 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 152 if (!mem) 153 goto depopulate; 154 155 memset(mem, 0, *size); 156 buf->page_count = n_pages; 157 return mem; 158 159 depopulate: 160 for (j = 0; j < i; j++) 161 __free_page(buf->page_array[j]); 162 relay_free_page_array(buf->page_array); 163 return NULL; 164 } 165 166 /** 167 * relay_create_buf - allocate and initialize a channel buffer 168 * @chan: the relay channel 169 * 170 * Returns channel buffer if successful, %NULL otherwise. 171 */ 172 static struct rchan_buf *relay_create_buf(struct rchan *chan) 173 { 174 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 175 if (!buf) 176 return NULL; 177 178 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 179 if (!buf->padding) 180 goto free_buf; 181 182 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 183 if (!buf->start) 184 goto free_buf; 185 186 buf->chan = chan; 187 kref_get(&buf->chan->kref); 188 return buf; 189 190 free_buf: 191 kfree(buf->padding); 192 kfree(buf); 193 return NULL; 194 } 195 196 /** 197 * relay_destroy_channel - free the channel struct 198 * @kref: target kernel reference that contains the relay channel 199 * 200 * Should only be called from kref_put(). 201 */ 202 static void relay_destroy_channel(struct kref *kref) 203 { 204 struct rchan *chan = container_of(kref, struct rchan, kref); 205 kfree(chan); 206 } 207 208 /** 209 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 210 * @buf: the buffer struct 211 */ 212 static void relay_destroy_buf(struct rchan_buf *buf) 213 { 214 struct rchan *chan = buf->chan; 215 unsigned int i; 216 217 if (likely(buf->start)) { 218 vunmap(buf->start); 219 for (i = 0; i < buf->page_count; i++) 220 __free_page(buf->page_array[i]); 221 relay_free_page_array(buf->page_array); 222 } 223 chan->buf[buf->cpu] = NULL; 224 kfree(buf->padding); 225 kfree(buf); 226 kref_put(&chan->kref, relay_destroy_channel); 227 } 228 229 /** 230 * relay_remove_buf - remove a channel buffer 231 * @kref: target kernel reference that contains the relay buffer 232 * 233 * Removes the file from the fileystem, which also frees the 234 * rchan_buf_struct and the channel buffer. Should only be called from 235 * kref_put(). 236 */ 237 static void relay_remove_buf(struct kref *kref) 238 { 239 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 240 buf->chan->cb->remove_buf_file(buf->dentry); 241 relay_destroy_buf(buf); 242 } 243 244 /** 245 * relay_buf_empty - boolean, is the channel buffer empty? 246 * @buf: channel buffer 247 * 248 * Returns 1 if the buffer is empty, 0 otherwise. 249 */ 250 static int relay_buf_empty(struct rchan_buf *buf) 251 { 252 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 253 } 254 255 /** 256 * relay_buf_full - boolean, is the channel buffer full? 257 * @buf: channel buffer 258 * 259 * Returns 1 if the buffer is full, 0 otherwise. 260 */ 261 int relay_buf_full(struct rchan_buf *buf) 262 { 263 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 264 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 265 } 266 EXPORT_SYMBOL_GPL(relay_buf_full); 267 268 /* 269 * High-level relay kernel API and associated functions. 270 */ 271 272 /* 273 * rchan_callback implementations defining default channel behavior. Used 274 * in place of corresponding NULL values in client callback struct. 275 */ 276 277 /* 278 * subbuf_start() default callback. Does nothing. 279 */ 280 static int subbuf_start_default_callback (struct rchan_buf *buf, 281 void *subbuf, 282 void *prev_subbuf, 283 size_t prev_padding) 284 { 285 if (relay_buf_full(buf)) 286 return 0; 287 288 return 1; 289 } 290 291 /* 292 * buf_mapped() default callback. Does nothing. 293 */ 294 static void buf_mapped_default_callback(struct rchan_buf *buf, 295 struct file *filp) 296 { 297 } 298 299 /* 300 * buf_unmapped() default callback. Does nothing. 301 */ 302 static void buf_unmapped_default_callback(struct rchan_buf *buf, 303 struct file *filp) 304 { 305 } 306 307 /* 308 * create_buf_file_create() default callback. Does nothing. 309 */ 310 static struct dentry *create_buf_file_default_callback(const char *filename, 311 struct dentry *parent, 312 int mode, 313 struct rchan_buf *buf, 314 int *is_global) 315 { 316 return NULL; 317 } 318 319 /* 320 * remove_buf_file() default callback. Does nothing. 321 */ 322 static int remove_buf_file_default_callback(struct dentry *dentry) 323 { 324 return -EINVAL; 325 } 326 327 /* relay channel default callbacks */ 328 static struct rchan_callbacks default_channel_callbacks = { 329 .subbuf_start = subbuf_start_default_callback, 330 .buf_mapped = buf_mapped_default_callback, 331 .buf_unmapped = buf_unmapped_default_callback, 332 .create_buf_file = create_buf_file_default_callback, 333 .remove_buf_file = remove_buf_file_default_callback, 334 }; 335 336 /** 337 * wakeup_readers - wake up readers waiting on a channel 338 * @data: contains the channel buffer 339 * 340 * This is the timer function used to defer reader waking. 341 */ 342 static void wakeup_readers(unsigned long data) 343 { 344 struct rchan_buf *buf = (struct rchan_buf *)data; 345 wake_up_interruptible(&buf->read_wait); 346 } 347 348 /** 349 * __relay_reset - reset a channel buffer 350 * @buf: the channel buffer 351 * @init: 1 if this is a first-time initialization 352 * 353 * See relay_reset() for description of effect. 354 */ 355 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 356 { 357 size_t i; 358 359 if (init) { 360 init_waitqueue_head(&buf->read_wait); 361 kref_init(&buf->kref); 362 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 363 } else 364 del_timer_sync(&buf->timer); 365 366 buf->subbufs_produced = 0; 367 buf->subbufs_consumed = 0; 368 buf->bytes_consumed = 0; 369 buf->finalized = 0; 370 buf->data = buf->start; 371 buf->offset = 0; 372 373 for (i = 0; i < buf->chan->n_subbufs; i++) 374 buf->padding[i] = 0; 375 376 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 377 } 378 379 /** 380 * relay_reset - reset the channel 381 * @chan: the channel 382 * 383 * This has the effect of erasing all data from all channel buffers 384 * and restarting the channel in its initial state. The buffers 385 * are not freed, so any mappings are still in effect. 386 * 387 * NOTE. Care should be taken that the channel isn't actually 388 * being used by anything when this call is made. 389 */ 390 void relay_reset(struct rchan *chan) 391 { 392 unsigned int i; 393 394 if (!chan) 395 return; 396 397 if (chan->is_global && chan->buf[0]) { 398 __relay_reset(chan->buf[0], 0); 399 return; 400 } 401 402 mutex_lock(&relay_channels_mutex); 403 for_each_possible_cpu(i) 404 if (chan->buf[i]) 405 __relay_reset(chan->buf[i], 0); 406 mutex_unlock(&relay_channels_mutex); 407 } 408 EXPORT_SYMBOL_GPL(relay_reset); 409 410 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 411 struct dentry *dentry) 412 { 413 buf->dentry = dentry; 414 buf->dentry->d_inode->i_size = buf->early_bytes; 415 } 416 417 static struct dentry *relay_create_buf_file(struct rchan *chan, 418 struct rchan_buf *buf, 419 unsigned int cpu) 420 { 421 struct dentry *dentry; 422 char *tmpname; 423 424 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 425 if (!tmpname) 426 return NULL; 427 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 428 429 /* Create file in fs */ 430 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 431 S_IRUSR, buf, 432 &chan->is_global); 433 434 kfree(tmpname); 435 436 return dentry; 437 } 438 439 /* 440 * relay_open_buf - create a new relay channel buffer 441 * 442 * used by relay_open() and CPU hotplug. 443 */ 444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 445 { 446 struct rchan_buf *buf = NULL; 447 struct dentry *dentry; 448 449 if (chan->is_global) 450 return chan->buf[0]; 451 452 buf = relay_create_buf(chan); 453 if (!buf) 454 return NULL; 455 456 if (chan->has_base_filename) { 457 dentry = relay_create_buf_file(chan, buf, cpu); 458 if (!dentry) 459 goto free_buf; 460 relay_set_buf_dentry(buf, dentry); 461 } 462 463 buf->cpu = cpu; 464 __relay_reset(buf, 1); 465 466 if(chan->is_global) { 467 chan->buf[0] = buf; 468 buf->cpu = 0; 469 } 470 471 return buf; 472 473 free_buf: 474 relay_destroy_buf(buf); 475 return NULL; 476 } 477 478 /** 479 * relay_close_buf - close a channel buffer 480 * @buf: channel buffer 481 * 482 * Marks the buffer finalized and restores the default callbacks. 483 * The channel buffer and channel buffer data structure are then freed 484 * automatically when the last reference is given up. 485 */ 486 static void relay_close_buf(struct rchan_buf *buf) 487 { 488 buf->finalized = 1; 489 del_timer_sync(&buf->timer); 490 kref_put(&buf->kref, relay_remove_buf); 491 } 492 493 static void setup_callbacks(struct rchan *chan, 494 struct rchan_callbacks *cb) 495 { 496 if (!cb) { 497 chan->cb = &default_channel_callbacks; 498 return; 499 } 500 501 if (!cb->subbuf_start) 502 cb->subbuf_start = subbuf_start_default_callback; 503 if (!cb->buf_mapped) 504 cb->buf_mapped = buf_mapped_default_callback; 505 if (!cb->buf_unmapped) 506 cb->buf_unmapped = buf_unmapped_default_callback; 507 if (!cb->create_buf_file) 508 cb->create_buf_file = create_buf_file_default_callback; 509 if (!cb->remove_buf_file) 510 cb->remove_buf_file = remove_buf_file_default_callback; 511 chan->cb = cb; 512 } 513 514 /** 515 * relay_hotcpu_callback - CPU hotplug callback 516 * @nb: notifier block 517 * @action: hotplug action to take 518 * @hcpu: CPU number 519 * 520 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 521 */ 522 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb, 523 unsigned long action, 524 void *hcpu) 525 { 526 unsigned int hotcpu = (unsigned long)hcpu; 527 struct rchan *chan; 528 529 switch(action) { 530 case CPU_UP_PREPARE: 531 case CPU_UP_PREPARE_FROZEN: 532 mutex_lock(&relay_channels_mutex); 533 list_for_each_entry(chan, &relay_channels, list) { 534 if (chan->buf[hotcpu]) 535 continue; 536 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 537 if(!chan->buf[hotcpu]) { 538 printk(KERN_ERR 539 "relay_hotcpu_callback: cpu %d buffer " 540 "creation failed\n", hotcpu); 541 mutex_unlock(&relay_channels_mutex); 542 return NOTIFY_BAD; 543 } 544 } 545 mutex_unlock(&relay_channels_mutex); 546 break; 547 case CPU_DEAD: 548 case CPU_DEAD_FROZEN: 549 /* No need to flush the cpu : will be flushed upon 550 * final relay_flush() call. */ 551 break; 552 } 553 return NOTIFY_OK; 554 } 555 556 /** 557 * relay_open - create a new relay channel 558 * @base_filename: base name of files to create, %NULL for buffering only 559 * @parent: dentry of parent directory, %NULL for root directory or buffer 560 * @subbuf_size: size of sub-buffers 561 * @n_subbufs: number of sub-buffers 562 * @cb: client callback functions 563 * @private_data: user-defined data 564 * 565 * Returns channel pointer if successful, %NULL otherwise. 566 * 567 * Creates a channel buffer for each cpu using the sizes and 568 * attributes specified. The created channel buffer files 569 * will be named base_filename0...base_filenameN-1. File 570 * permissions will be %S_IRUSR. 571 */ 572 struct rchan *relay_open(const char *base_filename, 573 struct dentry *parent, 574 size_t subbuf_size, 575 size_t n_subbufs, 576 struct rchan_callbacks *cb, 577 void *private_data) 578 { 579 unsigned int i; 580 struct rchan *chan; 581 582 if (!(subbuf_size && n_subbufs)) 583 return NULL; 584 585 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 586 if (!chan) 587 return NULL; 588 589 chan->version = RELAYFS_CHANNEL_VERSION; 590 chan->n_subbufs = n_subbufs; 591 chan->subbuf_size = subbuf_size; 592 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); 593 chan->parent = parent; 594 chan->private_data = private_data; 595 if (base_filename) { 596 chan->has_base_filename = 1; 597 strlcpy(chan->base_filename, base_filename, NAME_MAX); 598 } 599 setup_callbacks(chan, cb); 600 kref_init(&chan->kref); 601 602 mutex_lock(&relay_channels_mutex); 603 for_each_online_cpu(i) { 604 chan->buf[i] = relay_open_buf(chan, i); 605 if (!chan->buf[i]) 606 goto free_bufs; 607 } 608 list_add(&chan->list, &relay_channels); 609 mutex_unlock(&relay_channels_mutex); 610 611 return chan; 612 613 free_bufs: 614 for_each_possible_cpu(i) { 615 if (chan->buf[i]) 616 relay_close_buf(chan->buf[i]); 617 } 618 619 kref_put(&chan->kref, relay_destroy_channel); 620 mutex_unlock(&relay_channels_mutex); 621 return NULL; 622 } 623 EXPORT_SYMBOL_GPL(relay_open); 624 625 struct rchan_percpu_buf_dispatcher { 626 struct rchan_buf *buf; 627 struct dentry *dentry; 628 }; 629 630 /* Called in atomic context. */ 631 static void __relay_set_buf_dentry(void *info) 632 { 633 struct rchan_percpu_buf_dispatcher *p = info; 634 635 relay_set_buf_dentry(p->buf, p->dentry); 636 } 637 638 /** 639 * relay_late_setup_files - triggers file creation 640 * @chan: channel to operate on 641 * @base_filename: base name of files to create 642 * @parent: dentry of parent directory, %NULL for root directory 643 * 644 * Returns 0 if successful, non-zero otherwise. 645 * 646 * Use to setup files for a previously buffer-only channel. 647 * Useful to do early tracing in kernel, before VFS is up, for example. 648 */ 649 int relay_late_setup_files(struct rchan *chan, 650 const char *base_filename, 651 struct dentry *parent) 652 { 653 int err = 0; 654 unsigned int i, curr_cpu; 655 unsigned long flags; 656 struct dentry *dentry; 657 struct rchan_percpu_buf_dispatcher disp; 658 659 if (!chan || !base_filename) 660 return -EINVAL; 661 662 strlcpy(chan->base_filename, base_filename, NAME_MAX); 663 664 mutex_lock(&relay_channels_mutex); 665 /* Is chan already set up? */ 666 if (unlikely(chan->has_base_filename)) 667 return -EEXIST; 668 chan->has_base_filename = 1; 669 chan->parent = parent; 670 curr_cpu = get_cpu(); 671 /* 672 * The CPU hotplug notifier ran before us and created buffers with 673 * no files associated. So it's safe to call relay_setup_buf_file() 674 * on all currently online CPUs. 675 */ 676 for_each_online_cpu(i) { 677 if (unlikely(!chan->buf[i])) { 678 printk(KERN_ERR "relay_late_setup_files: CPU %u " 679 "has no buffer, it must have!\n", i); 680 BUG(); 681 err = -EINVAL; 682 break; 683 } 684 685 dentry = relay_create_buf_file(chan, chan->buf[i], i); 686 if (unlikely(!dentry)) { 687 err = -EINVAL; 688 break; 689 } 690 691 if (curr_cpu == i) { 692 local_irq_save(flags); 693 relay_set_buf_dentry(chan->buf[i], dentry); 694 local_irq_restore(flags); 695 } else { 696 disp.buf = chan->buf[i]; 697 disp.dentry = dentry; 698 smp_mb(); 699 /* relay_channels_mutex must be held, so wait. */ 700 err = smp_call_function_single(i, 701 __relay_set_buf_dentry, 702 &disp, 1); 703 } 704 if (unlikely(err)) 705 break; 706 } 707 put_cpu(); 708 mutex_unlock(&relay_channels_mutex); 709 710 return err; 711 } 712 713 /** 714 * relay_switch_subbuf - switch to a new sub-buffer 715 * @buf: channel buffer 716 * @length: size of current event 717 * 718 * Returns either the length passed in or 0 if full. 719 * 720 * Performs sub-buffer-switch tasks such as invoking callbacks, 721 * updating padding counts, waking up readers, etc. 722 */ 723 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 724 { 725 void *old, *new; 726 size_t old_subbuf, new_subbuf; 727 728 if (unlikely(length > buf->chan->subbuf_size)) 729 goto toobig; 730 731 if (buf->offset != buf->chan->subbuf_size + 1) { 732 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 733 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 734 buf->padding[old_subbuf] = buf->prev_padding; 735 buf->subbufs_produced++; 736 if (buf->dentry) 737 buf->dentry->d_inode->i_size += 738 buf->chan->subbuf_size - 739 buf->padding[old_subbuf]; 740 else 741 buf->early_bytes += buf->chan->subbuf_size - 742 buf->padding[old_subbuf]; 743 smp_mb(); 744 if (waitqueue_active(&buf->read_wait)) 745 /* 746 * Calling wake_up_interruptible() from here 747 * will deadlock if we happen to be logging 748 * from the scheduler (trying to re-grab 749 * rq->lock), so defer it. 750 */ 751 __mod_timer(&buf->timer, jiffies + 1); 752 } 753 754 old = buf->data; 755 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 756 new = buf->start + new_subbuf * buf->chan->subbuf_size; 757 buf->offset = 0; 758 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 759 buf->offset = buf->chan->subbuf_size + 1; 760 return 0; 761 } 762 buf->data = new; 763 buf->padding[new_subbuf] = 0; 764 765 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 766 goto toobig; 767 768 return length; 769 770 toobig: 771 buf->chan->last_toobig = length; 772 return 0; 773 } 774 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 775 776 /** 777 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 778 * @chan: the channel 779 * @cpu: the cpu associated with the channel buffer to update 780 * @subbufs_consumed: number of sub-buffers to add to current buf's count 781 * 782 * Adds to the channel buffer's consumed sub-buffer count. 783 * subbufs_consumed should be the number of sub-buffers newly consumed, 784 * not the total consumed. 785 * 786 * NOTE. Kernel clients don't need to call this function if the channel 787 * mode is 'overwrite'. 788 */ 789 void relay_subbufs_consumed(struct rchan *chan, 790 unsigned int cpu, 791 size_t subbufs_consumed) 792 { 793 struct rchan_buf *buf; 794 795 if (!chan) 796 return; 797 798 if (cpu >= NR_CPUS || !chan->buf[cpu]) 799 return; 800 801 buf = chan->buf[cpu]; 802 buf->subbufs_consumed += subbufs_consumed; 803 if (buf->subbufs_consumed > buf->subbufs_produced) 804 buf->subbufs_consumed = buf->subbufs_produced; 805 } 806 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 807 808 /** 809 * relay_close - close the channel 810 * @chan: the channel 811 * 812 * Closes all channel buffers and frees the channel. 813 */ 814 void relay_close(struct rchan *chan) 815 { 816 unsigned int i; 817 818 if (!chan) 819 return; 820 821 mutex_lock(&relay_channels_mutex); 822 if (chan->is_global && chan->buf[0]) 823 relay_close_buf(chan->buf[0]); 824 else 825 for_each_possible_cpu(i) 826 if (chan->buf[i]) 827 relay_close_buf(chan->buf[i]); 828 829 if (chan->last_toobig) 830 printk(KERN_WARNING "relay: one or more items not logged " 831 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 832 chan->last_toobig, chan->subbuf_size); 833 834 list_del(&chan->list); 835 kref_put(&chan->kref, relay_destroy_channel); 836 mutex_unlock(&relay_channels_mutex); 837 } 838 EXPORT_SYMBOL_GPL(relay_close); 839 840 /** 841 * relay_flush - close the channel 842 * @chan: the channel 843 * 844 * Flushes all channel buffers, i.e. forces buffer switch. 845 */ 846 void relay_flush(struct rchan *chan) 847 { 848 unsigned int i; 849 850 if (!chan) 851 return; 852 853 if (chan->is_global && chan->buf[0]) { 854 relay_switch_subbuf(chan->buf[0], 0); 855 return; 856 } 857 858 mutex_lock(&relay_channels_mutex); 859 for_each_possible_cpu(i) 860 if (chan->buf[i]) 861 relay_switch_subbuf(chan->buf[i], 0); 862 mutex_unlock(&relay_channels_mutex); 863 } 864 EXPORT_SYMBOL_GPL(relay_flush); 865 866 /** 867 * relay_file_open - open file op for relay files 868 * @inode: the inode 869 * @filp: the file 870 * 871 * Increments the channel buffer refcount. 872 */ 873 static int relay_file_open(struct inode *inode, struct file *filp) 874 { 875 struct rchan_buf *buf = inode->i_private; 876 kref_get(&buf->kref); 877 filp->private_data = buf; 878 879 return nonseekable_open(inode, filp); 880 } 881 882 /** 883 * relay_file_mmap - mmap file op for relay files 884 * @filp: the file 885 * @vma: the vma describing what to map 886 * 887 * Calls upon relay_mmap_buf() to map the file into user space. 888 */ 889 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 890 { 891 struct rchan_buf *buf = filp->private_data; 892 return relay_mmap_buf(buf, vma); 893 } 894 895 /** 896 * relay_file_poll - poll file op for relay files 897 * @filp: the file 898 * @wait: poll table 899 * 900 * Poll implemention. 901 */ 902 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 903 { 904 unsigned int mask = 0; 905 struct rchan_buf *buf = filp->private_data; 906 907 if (buf->finalized) 908 return POLLERR; 909 910 if (filp->f_mode & FMODE_READ) { 911 poll_wait(filp, &buf->read_wait, wait); 912 if (!relay_buf_empty(buf)) 913 mask |= POLLIN | POLLRDNORM; 914 } 915 916 return mask; 917 } 918 919 /** 920 * relay_file_release - release file op for relay files 921 * @inode: the inode 922 * @filp: the file 923 * 924 * Decrements the channel refcount, as the filesystem is 925 * no longer using it. 926 */ 927 static int relay_file_release(struct inode *inode, struct file *filp) 928 { 929 struct rchan_buf *buf = filp->private_data; 930 kref_put(&buf->kref, relay_remove_buf); 931 932 return 0; 933 } 934 935 /* 936 * relay_file_read_consume - update the consumed count for the buffer 937 */ 938 static void relay_file_read_consume(struct rchan_buf *buf, 939 size_t read_pos, 940 size_t bytes_consumed) 941 { 942 size_t subbuf_size = buf->chan->subbuf_size; 943 size_t n_subbufs = buf->chan->n_subbufs; 944 size_t read_subbuf; 945 946 if (buf->subbufs_produced == buf->subbufs_consumed && 947 buf->offset == buf->bytes_consumed) 948 return; 949 950 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 951 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 952 buf->bytes_consumed = 0; 953 } 954 955 buf->bytes_consumed += bytes_consumed; 956 if (!read_pos) 957 read_subbuf = buf->subbufs_consumed % n_subbufs; 958 else 959 read_subbuf = read_pos / buf->chan->subbuf_size; 960 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 961 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 962 (buf->offset == subbuf_size)) 963 return; 964 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 965 buf->bytes_consumed = 0; 966 } 967 } 968 969 /* 970 * relay_file_read_avail - boolean, are there unconsumed bytes available? 971 */ 972 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 973 { 974 size_t subbuf_size = buf->chan->subbuf_size; 975 size_t n_subbufs = buf->chan->n_subbufs; 976 size_t produced = buf->subbufs_produced; 977 size_t consumed = buf->subbufs_consumed; 978 979 relay_file_read_consume(buf, read_pos, 0); 980 981 consumed = buf->subbufs_consumed; 982 983 if (unlikely(buf->offset > subbuf_size)) { 984 if (produced == consumed) 985 return 0; 986 return 1; 987 } 988 989 if (unlikely(produced - consumed >= n_subbufs)) { 990 consumed = produced - n_subbufs + 1; 991 buf->subbufs_consumed = consumed; 992 buf->bytes_consumed = 0; 993 } 994 995 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 996 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 997 998 if (consumed > produced) 999 produced += n_subbufs * subbuf_size; 1000 1001 if (consumed == produced) { 1002 if (buf->offset == subbuf_size && 1003 buf->subbufs_produced > buf->subbufs_consumed) 1004 return 1; 1005 return 0; 1006 } 1007 1008 return 1; 1009 } 1010 1011 /** 1012 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1013 * @read_pos: file read position 1014 * @buf: relay channel buffer 1015 */ 1016 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1017 struct rchan_buf *buf) 1018 { 1019 size_t padding, avail = 0; 1020 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1021 size_t subbuf_size = buf->chan->subbuf_size; 1022 1023 write_subbuf = (buf->data - buf->start) / subbuf_size; 1024 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1025 read_subbuf = read_pos / subbuf_size; 1026 read_offset = read_pos % subbuf_size; 1027 padding = buf->padding[read_subbuf]; 1028 1029 if (read_subbuf == write_subbuf) { 1030 if (read_offset + padding < write_offset) 1031 avail = write_offset - (read_offset + padding); 1032 } else 1033 avail = (subbuf_size - padding) - read_offset; 1034 1035 return avail; 1036 } 1037 1038 /** 1039 * relay_file_read_start_pos - find the first available byte to read 1040 * @read_pos: file read position 1041 * @buf: relay channel buffer 1042 * 1043 * If the @read_pos is in the middle of padding, return the 1044 * position of the first actually available byte, otherwise 1045 * return the original value. 1046 */ 1047 static size_t relay_file_read_start_pos(size_t read_pos, 1048 struct rchan_buf *buf) 1049 { 1050 size_t read_subbuf, padding, padding_start, padding_end; 1051 size_t subbuf_size = buf->chan->subbuf_size; 1052 size_t n_subbufs = buf->chan->n_subbufs; 1053 size_t consumed = buf->subbufs_consumed % n_subbufs; 1054 1055 if (!read_pos) 1056 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1057 read_subbuf = read_pos / subbuf_size; 1058 padding = buf->padding[read_subbuf]; 1059 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1060 padding_end = (read_subbuf + 1) * subbuf_size; 1061 if (read_pos >= padding_start && read_pos < padding_end) { 1062 read_subbuf = (read_subbuf + 1) % n_subbufs; 1063 read_pos = read_subbuf * subbuf_size; 1064 } 1065 1066 return read_pos; 1067 } 1068 1069 /** 1070 * relay_file_read_end_pos - return the new read position 1071 * @read_pos: file read position 1072 * @buf: relay channel buffer 1073 * @count: number of bytes to be read 1074 */ 1075 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1076 size_t read_pos, 1077 size_t count) 1078 { 1079 size_t read_subbuf, padding, end_pos; 1080 size_t subbuf_size = buf->chan->subbuf_size; 1081 size_t n_subbufs = buf->chan->n_subbufs; 1082 1083 read_subbuf = read_pos / subbuf_size; 1084 padding = buf->padding[read_subbuf]; 1085 if (read_pos % subbuf_size + count + padding == subbuf_size) 1086 end_pos = (read_subbuf + 1) * subbuf_size; 1087 else 1088 end_pos = read_pos + count; 1089 if (end_pos >= subbuf_size * n_subbufs) 1090 end_pos = 0; 1091 1092 return end_pos; 1093 } 1094 1095 /* 1096 * subbuf_read_actor - read up to one subbuf's worth of data 1097 */ 1098 static int subbuf_read_actor(size_t read_start, 1099 struct rchan_buf *buf, 1100 size_t avail, 1101 read_descriptor_t *desc, 1102 read_actor_t actor) 1103 { 1104 void *from; 1105 int ret = 0; 1106 1107 from = buf->start + read_start; 1108 ret = avail; 1109 if (copy_to_user(desc->arg.buf, from, avail)) { 1110 desc->error = -EFAULT; 1111 ret = 0; 1112 } 1113 desc->arg.data += ret; 1114 desc->written += ret; 1115 desc->count -= ret; 1116 1117 return ret; 1118 } 1119 1120 typedef int (*subbuf_actor_t) (size_t read_start, 1121 struct rchan_buf *buf, 1122 size_t avail, 1123 read_descriptor_t *desc, 1124 read_actor_t actor); 1125 1126 /* 1127 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 1128 */ 1129 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 1130 subbuf_actor_t subbuf_actor, 1131 read_actor_t actor, 1132 read_descriptor_t *desc) 1133 { 1134 struct rchan_buf *buf = filp->private_data; 1135 size_t read_start, avail; 1136 int ret; 1137 1138 if (!desc->count) 1139 return 0; 1140 1141 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 1142 do { 1143 if (!relay_file_read_avail(buf, *ppos)) 1144 break; 1145 1146 read_start = relay_file_read_start_pos(*ppos, buf); 1147 avail = relay_file_read_subbuf_avail(read_start, buf); 1148 if (!avail) 1149 break; 1150 1151 avail = min(desc->count, avail); 1152 ret = subbuf_actor(read_start, buf, avail, desc, actor); 1153 if (desc->error < 0) 1154 break; 1155 1156 if (ret) { 1157 relay_file_read_consume(buf, read_start, ret); 1158 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1159 } 1160 } while (desc->count && ret); 1161 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 1162 1163 return desc->written; 1164 } 1165 1166 static ssize_t relay_file_read(struct file *filp, 1167 char __user *buffer, 1168 size_t count, 1169 loff_t *ppos) 1170 { 1171 read_descriptor_t desc; 1172 desc.written = 0; 1173 desc.count = count; 1174 desc.arg.buf = buffer; 1175 desc.error = 0; 1176 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, 1177 NULL, &desc); 1178 } 1179 1180 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1181 { 1182 rbuf->bytes_consumed += bytes_consumed; 1183 1184 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1185 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1186 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1187 } 1188 } 1189 1190 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1191 struct pipe_buffer *buf) 1192 { 1193 struct rchan_buf *rbuf; 1194 1195 rbuf = (struct rchan_buf *)page_private(buf->page); 1196 relay_consume_bytes(rbuf, buf->private); 1197 } 1198 1199 static struct pipe_buf_operations relay_pipe_buf_ops = { 1200 .can_merge = 0, 1201 .map = generic_pipe_buf_map, 1202 .unmap = generic_pipe_buf_unmap, 1203 .confirm = generic_pipe_buf_confirm, 1204 .release = relay_pipe_buf_release, 1205 .steal = generic_pipe_buf_steal, 1206 .get = generic_pipe_buf_get, 1207 }; 1208 1209 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1210 { 1211 } 1212 1213 /* 1214 * subbuf_splice_actor - splice up to one subbuf's worth of data 1215 */ 1216 static int subbuf_splice_actor(struct file *in, 1217 loff_t *ppos, 1218 struct pipe_inode_info *pipe, 1219 size_t len, 1220 unsigned int flags, 1221 int *nonpad_ret) 1222 { 1223 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret; 1224 struct rchan_buf *rbuf = in->private_data; 1225 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1226 uint64_t pos = (uint64_t) *ppos; 1227 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1228 size_t read_start = (size_t) do_div(pos, alloc_size); 1229 size_t read_subbuf = read_start / subbuf_size; 1230 size_t padding = rbuf->padding[read_subbuf]; 1231 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1232 struct page *pages[PIPE_BUFFERS]; 1233 struct partial_page partial[PIPE_BUFFERS]; 1234 struct splice_pipe_desc spd = { 1235 .pages = pages, 1236 .nr_pages = 0, 1237 .partial = partial, 1238 .flags = flags, 1239 .ops = &relay_pipe_buf_ops, 1240 .spd_release = relay_page_release, 1241 }; 1242 1243 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1244 return 0; 1245 1246 /* 1247 * Adjust read len, if longer than what is available 1248 */ 1249 if (len > (subbuf_size - read_start % subbuf_size)) 1250 len = subbuf_size - read_start % subbuf_size; 1251 1252 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1253 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1254 poff = read_start & ~PAGE_MASK; 1255 nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS); 1256 1257 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1258 unsigned int this_len, this_end, private; 1259 unsigned int cur_pos = read_start + total_len; 1260 1261 if (!len) 1262 break; 1263 1264 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1265 private = this_len; 1266 1267 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1268 spd.partial[spd.nr_pages].offset = poff; 1269 1270 this_end = cur_pos + this_len; 1271 if (this_end >= nonpad_end) { 1272 this_len = nonpad_end - cur_pos; 1273 private = this_len + padding; 1274 } 1275 spd.partial[spd.nr_pages].len = this_len; 1276 spd.partial[spd.nr_pages].private = private; 1277 1278 len -= this_len; 1279 total_len += this_len; 1280 poff = 0; 1281 pidx = (pidx + 1) % subbuf_pages; 1282 1283 if (this_end >= nonpad_end) { 1284 spd.nr_pages++; 1285 break; 1286 } 1287 } 1288 1289 if (!spd.nr_pages) 1290 return 0; 1291 1292 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1293 if (ret < 0 || ret < total_len) 1294 return ret; 1295 1296 if (read_start + ret == nonpad_end) 1297 ret += padding; 1298 1299 return ret; 1300 } 1301 1302 static ssize_t relay_file_splice_read(struct file *in, 1303 loff_t *ppos, 1304 struct pipe_inode_info *pipe, 1305 size_t len, 1306 unsigned int flags) 1307 { 1308 ssize_t spliced; 1309 int ret; 1310 int nonpad_ret = 0; 1311 1312 ret = 0; 1313 spliced = 0; 1314 1315 while (len && !spliced) { 1316 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1317 if (ret < 0) 1318 break; 1319 else if (!ret) { 1320 if (flags & SPLICE_F_NONBLOCK) 1321 ret = -EAGAIN; 1322 break; 1323 } 1324 1325 *ppos += ret; 1326 if (ret > len) 1327 len = 0; 1328 else 1329 len -= ret; 1330 spliced += nonpad_ret; 1331 nonpad_ret = 0; 1332 } 1333 1334 if (spliced) 1335 return spliced; 1336 1337 return ret; 1338 } 1339 1340 const struct file_operations relay_file_operations = { 1341 .open = relay_file_open, 1342 .poll = relay_file_poll, 1343 .mmap = relay_file_mmap, 1344 .read = relay_file_read, 1345 .llseek = no_llseek, 1346 .release = relay_file_release, 1347 .splice_read = relay_file_splice_read, 1348 }; 1349 EXPORT_SYMBOL_GPL(relay_file_operations); 1350 1351 static __init int relay_init(void) 1352 { 1353 1354 hotcpu_notifier(relay_hotcpu_callback, 0); 1355 return 0; 1356 } 1357 1358 early_initcall(relay_init); 1359