1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 struct page **array; 74 size_t pa_size = n_pages * sizeof(struct page *); 75 76 if (pa_size > PAGE_SIZE) { 77 array = vmalloc(pa_size); 78 if (array) 79 memset(array, 0, pa_size); 80 } else { 81 array = kzalloc(pa_size, GFP_KERNEL); 82 } 83 return array; 84 } 85 86 /* 87 * free an array of pointers of struct page 88 */ 89 static void relay_free_page_array(struct page **array) 90 { 91 if (is_vmalloc_addr(array)) 92 vfree(array); 93 else 94 kfree(array); 95 } 96 97 /** 98 * relay_mmap_buf: - mmap channel buffer to process address space 99 * @buf: relay channel buffer 100 * @vma: vm_area_struct describing memory to be mapped 101 * 102 * Returns 0 if ok, negative on error 103 * 104 * Caller should already have grabbed mmap_sem. 105 */ 106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 107 { 108 unsigned long length = vma->vm_end - vma->vm_start; 109 struct file *filp = vma->vm_file; 110 111 if (!buf) 112 return -EBADF; 113 114 if (length != (unsigned long)buf->chan->alloc_size) 115 return -EINVAL; 116 117 vma->vm_ops = &relay_file_mmap_ops; 118 vma->vm_flags |= VM_DONTEXPAND; 119 vma->vm_private_data = buf; 120 buf->chan->cb->buf_mapped(buf, filp); 121 122 return 0; 123 } 124 125 /** 126 * relay_alloc_buf - allocate a channel buffer 127 * @buf: the buffer struct 128 * @size: total size of the buffer 129 * 130 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 131 * passed in size will get page aligned, if it isn't already. 132 */ 133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 134 { 135 void *mem; 136 unsigned int i, j, n_pages; 137 138 *size = PAGE_ALIGN(*size); 139 n_pages = *size >> PAGE_SHIFT; 140 141 buf->page_array = relay_alloc_page_array(n_pages); 142 if (!buf->page_array) 143 return NULL; 144 145 for (i = 0; i < n_pages; i++) { 146 buf->page_array[i] = alloc_page(GFP_KERNEL); 147 if (unlikely(!buf->page_array[i])) 148 goto depopulate; 149 set_page_private(buf->page_array[i], (unsigned long)buf); 150 } 151 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 152 if (!mem) 153 goto depopulate; 154 155 memset(mem, 0, *size); 156 buf->page_count = n_pages; 157 return mem; 158 159 depopulate: 160 for (j = 0; j < i; j++) 161 __free_page(buf->page_array[j]); 162 relay_free_page_array(buf->page_array); 163 return NULL; 164 } 165 166 /** 167 * relay_create_buf - allocate and initialize a channel buffer 168 * @chan: the relay channel 169 * 170 * Returns channel buffer if successful, %NULL otherwise. 171 */ 172 static struct rchan_buf *relay_create_buf(struct rchan *chan) 173 { 174 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 175 if (!buf) 176 return NULL; 177 178 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 179 if (!buf->padding) 180 goto free_buf; 181 182 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 183 if (!buf->start) 184 goto free_buf; 185 186 buf->chan = chan; 187 kref_get(&buf->chan->kref); 188 return buf; 189 190 free_buf: 191 kfree(buf->padding); 192 kfree(buf); 193 return NULL; 194 } 195 196 /** 197 * relay_destroy_channel - free the channel struct 198 * @kref: target kernel reference that contains the relay channel 199 * 200 * Should only be called from kref_put(). 201 */ 202 static void relay_destroy_channel(struct kref *kref) 203 { 204 struct rchan *chan = container_of(kref, struct rchan, kref); 205 kfree(chan); 206 } 207 208 /** 209 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 210 * @buf: the buffer struct 211 */ 212 static void relay_destroy_buf(struct rchan_buf *buf) 213 { 214 struct rchan *chan = buf->chan; 215 unsigned int i; 216 217 if (likely(buf->start)) { 218 vunmap(buf->start); 219 for (i = 0; i < buf->page_count; i++) 220 __free_page(buf->page_array[i]); 221 relay_free_page_array(buf->page_array); 222 } 223 chan->buf[buf->cpu] = NULL; 224 kfree(buf->padding); 225 kfree(buf); 226 kref_put(&chan->kref, relay_destroy_channel); 227 } 228 229 /** 230 * relay_remove_buf - remove a channel buffer 231 * @kref: target kernel reference that contains the relay buffer 232 * 233 * Removes the file from the fileystem, which also frees the 234 * rchan_buf_struct and the channel buffer. Should only be called from 235 * kref_put(). 236 */ 237 static void relay_remove_buf(struct kref *kref) 238 { 239 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 240 buf->chan->cb->remove_buf_file(buf->dentry); 241 relay_destroy_buf(buf); 242 } 243 244 /** 245 * relay_buf_empty - boolean, is the channel buffer empty? 246 * @buf: channel buffer 247 * 248 * Returns 1 if the buffer is empty, 0 otherwise. 249 */ 250 static int relay_buf_empty(struct rchan_buf *buf) 251 { 252 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 253 } 254 255 /** 256 * relay_buf_full - boolean, is the channel buffer full? 257 * @buf: channel buffer 258 * 259 * Returns 1 if the buffer is full, 0 otherwise. 260 */ 261 int relay_buf_full(struct rchan_buf *buf) 262 { 263 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 264 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 265 } 266 EXPORT_SYMBOL_GPL(relay_buf_full); 267 268 /* 269 * High-level relay kernel API and associated functions. 270 */ 271 272 /* 273 * rchan_callback implementations defining default channel behavior. Used 274 * in place of corresponding NULL values in client callback struct. 275 */ 276 277 /* 278 * subbuf_start() default callback. Does nothing. 279 */ 280 static int subbuf_start_default_callback (struct rchan_buf *buf, 281 void *subbuf, 282 void *prev_subbuf, 283 size_t prev_padding) 284 { 285 if (relay_buf_full(buf)) 286 return 0; 287 288 return 1; 289 } 290 291 /* 292 * buf_mapped() default callback. Does nothing. 293 */ 294 static void buf_mapped_default_callback(struct rchan_buf *buf, 295 struct file *filp) 296 { 297 } 298 299 /* 300 * buf_unmapped() default callback. Does nothing. 301 */ 302 static void buf_unmapped_default_callback(struct rchan_buf *buf, 303 struct file *filp) 304 { 305 } 306 307 /* 308 * create_buf_file_create() default callback. Does nothing. 309 */ 310 static struct dentry *create_buf_file_default_callback(const char *filename, 311 struct dentry *parent, 312 int mode, 313 struct rchan_buf *buf, 314 int *is_global) 315 { 316 return NULL; 317 } 318 319 /* 320 * remove_buf_file() default callback. Does nothing. 321 */ 322 static int remove_buf_file_default_callback(struct dentry *dentry) 323 { 324 return -EINVAL; 325 } 326 327 /* relay channel default callbacks */ 328 static struct rchan_callbacks default_channel_callbacks = { 329 .subbuf_start = subbuf_start_default_callback, 330 .buf_mapped = buf_mapped_default_callback, 331 .buf_unmapped = buf_unmapped_default_callback, 332 .create_buf_file = create_buf_file_default_callback, 333 .remove_buf_file = remove_buf_file_default_callback, 334 }; 335 336 /** 337 * wakeup_readers - wake up readers waiting on a channel 338 * @data: contains the channel buffer 339 * 340 * This is the timer function used to defer reader waking. 341 */ 342 static void wakeup_readers(unsigned long data) 343 { 344 struct rchan_buf *buf = (struct rchan_buf *)data; 345 wake_up_interruptible(&buf->read_wait); 346 } 347 348 /** 349 * __relay_reset - reset a channel buffer 350 * @buf: the channel buffer 351 * @init: 1 if this is a first-time initialization 352 * 353 * See relay_reset() for description of effect. 354 */ 355 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 356 { 357 size_t i; 358 359 if (init) { 360 init_waitqueue_head(&buf->read_wait); 361 kref_init(&buf->kref); 362 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 363 } else 364 del_timer_sync(&buf->timer); 365 366 buf->subbufs_produced = 0; 367 buf->subbufs_consumed = 0; 368 buf->bytes_consumed = 0; 369 buf->finalized = 0; 370 buf->data = buf->start; 371 buf->offset = 0; 372 373 for (i = 0; i < buf->chan->n_subbufs; i++) 374 buf->padding[i] = 0; 375 376 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 377 } 378 379 /** 380 * relay_reset - reset the channel 381 * @chan: the channel 382 * 383 * This has the effect of erasing all data from all channel buffers 384 * and restarting the channel in its initial state. The buffers 385 * are not freed, so any mappings are still in effect. 386 * 387 * NOTE. Care should be taken that the channel isn't actually 388 * being used by anything when this call is made. 389 */ 390 void relay_reset(struct rchan *chan) 391 { 392 unsigned int i; 393 394 if (!chan) 395 return; 396 397 if (chan->is_global && chan->buf[0]) { 398 __relay_reset(chan->buf[0], 0); 399 return; 400 } 401 402 mutex_lock(&relay_channels_mutex); 403 for_each_online_cpu(i) 404 if (chan->buf[i]) 405 __relay_reset(chan->buf[i], 0); 406 mutex_unlock(&relay_channels_mutex); 407 } 408 EXPORT_SYMBOL_GPL(relay_reset); 409 410 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 411 struct dentry *dentry) 412 { 413 buf->dentry = dentry; 414 buf->dentry->d_inode->i_size = buf->early_bytes; 415 } 416 417 static struct dentry *relay_create_buf_file(struct rchan *chan, 418 struct rchan_buf *buf, 419 unsigned int cpu) 420 { 421 struct dentry *dentry; 422 char *tmpname; 423 424 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 425 if (!tmpname) 426 return NULL; 427 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 428 429 /* Create file in fs */ 430 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 431 S_IRUSR, buf, 432 &chan->is_global); 433 434 kfree(tmpname); 435 436 return dentry; 437 } 438 439 /* 440 * relay_open_buf - create a new relay channel buffer 441 * 442 * used by relay_open() and CPU hotplug. 443 */ 444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 445 { 446 struct rchan_buf *buf = NULL; 447 struct dentry *dentry; 448 449 if (chan->is_global) 450 return chan->buf[0]; 451 452 buf = relay_create_buf(chan); 453 if (!buf) 454 return NULL; 455 456 if (chan->has_base_filename) { 457 dentry = relay_create_buf_file(chan, buf, cpu); 458 if (!dentry) 459 goto free_buf; 460 relay_set_buf_dentry(buf, dentry); 461 } 462 463 buf->cpu = cpu; 464 __relay_reset(buf, 1); 465 466 if(chan->is_global) { 467 chan->buf[0] = buf; 468 buf->cpu = 0; 469 } 470 471 return buf; 472 473 free_buf: 474 relay_destroy_buf(buf); 475 return NULL; 476 } 477 478 /** 479 * relay_close_buf - close a channel buffer 480 * @buf: channel buffer 481 * 482 * Marks the buffer finalized and restores the default callbacks. 483 * The channel buffer and channel buffer data structure are then freed 484 * automatically when the last reference is given up. 485 */ 486 static void relay_close_buf(struct rchan_buf *buf) 487 { 488 buf->finalized = 1; 489 del_timer_sync(&buf->timer); 490 kref_put(&buf->kref, relay_remove_buf); 491 } 492 493 static void setup_callbacks(struct rchan *chan, 494 struct rchan_callbacks *cb) 495 { 496 if (!cb) { 497 chan->cb = &default_channel_callbacks; 498 return; 499 } 500 501 if (!cb->subbuf_start) 502 cb->subbuf_start = subbuf_start_default_callback; 503 if (!cb->buf_mapped) 504 cb->buf_mapped = buf_mapped_default_callback; 505 if (!cb->buf_unmapped) 506 cb->buf_unmapped = buf_unmapped_default_callback; 507 if (!cb->create_buf_file) 508 cb->create_buf_file = create_buf_file_default_callback; 509 if (!cb->remove_buf_file) 510 cb->remove_buf_file = remove_buf_file_default_callback; 511 chan->cb = cb; 512 } 513 514 /** 515 * relay_hotcpu_callback - CPU hotplug callback 516 * @nb: notifier block 517 * @action: hotplug action to take 518 * @hcpu: CPU number 519 * 520 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 521 */ 522 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb, 523 unsigned long action, 524 void *hcpu) 525 { 526 unsigned int hotcpu = (unsigned long)hcpu; 527 struct rchan *chan; 528 529 switch(action) { 530 case CPU_UP_PREPARE: 531 case CPU_UP_PREPARE_FROZEN: 532 mutex_lock(&relay_channels_mutex); 533 list_for_each_entry(chan, &relay_channels, list) { 534 if (chan->buf[hotcpu]) 535 continue; 536 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 537 if(!chan->buf[hotcpu]) { 538 printk(KERN_ERR 539 "relay_hotcpu_callback: cpu %d buffer " 540 "creation failed\n", hotcpu); 541 mutex_unlock(&relay_channels_mutex); 542 return NOTIFY_BAD; 543 } 544 } 545 mutex_unlock(&relay_channels_mutex); 546 break; 547 case CPU_DEAD: 548 case CPU_DEAD_FROZEN: 549 /* No need to flush the cpu : will be flushed upon 550 * final relay_flush() call. */ 551 break; 552 } 553 return NOTIFY_OK; 554 } 555 556 /** 557 * relay_open - create a new relay channel 558 * @base_filename: base name of files to create, %NULL for buffering only 559 * @parent: dentry of parent directory, %NULL for root directory or buffer 560 * @subbuf_size: size of sub-buffers 561 * @n_subbufs: number of sub-buffers 562 * @cb: client callback functions 563 * @private_data: user-defined data 564 * 565 * Returns channel pointer if successful, %NULL otherwise. 566 * 567 * Creates a channel buffer for each cpu using the sizes and 568 * attributes specified. The created channel buffer files 569 * will be named base_filename0...base_filenameN-1. File 570 * permissions will be %S_IRUSR. 571 */ 572 struct rchan *relay_open(const char *base_filename, 573 struct dentry *parent, 574 size_t subbuf_size, 575 size_t n_subbufs, 576 struct rchan_callbacks *cb, 577 void *private_data) 578 { 579 unsigned int i; 580 struct rchan *chan; 581 582 if (!(subbuf_size && n_subbufs)) 583 return NULL; 584 585 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 586 if (!chan) 587 return NULL; 588 589 chan->version = RELAYFS_CHANNEL_VERSION; 590 chan->n_subbufs = n_subbufs; 591 chan->subbuf_size = subbuf_size; 592 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); 593 chan->parent = parent; 594 chan->private_data = private_data; 595 if (base_filename) { 596 chan->has_base_filename = 1; 597 strlcpy(chan->base_filename, base_filename, NAME_MAX); 598 } 599 setup_callbacks(chan, cb); 600 kref_init(&chan->kref); 601 602 mutex_lock(&relay_channels_mutex); 603 for_each_online_cpu(i) { 604 chan->buf[i] = relay_open_buf(chan, i); 605 if (!chan->buf[i]) 606 goto free_bufs; 607 } 608 list_add(&chan->list, &relay_channels); 609 mutex_unlock(&relay_channels_mutex); 610 611 return chan; 612 613 free_bufs: 614 for_each_online_cpu(i) { 615 if (!chan->buf[i]) 616 break; 617 relay_close_buf(chan->buf[i]); 618 } 619 620 kref_put(&chan->kref, relay_destroy_channel); 621 mutex_unlock(&relay_channels_mutex); 622 return NULL; 623 } 624 EXPORT_SYMBOL_GPL(relay_open); 625 626 struct rchan_percpu_buf_dispatcher { 627 struct rchan_buf *buf; 628 struct dentry *dentry; 629 }; 630 631 /* Called in atomic context. */ 632 static void __relay_set_buf_dentry(void *info) 633 { 634 struct rchan_percpu_buf_dispatcher *p = info; 635 636 relay_set_buf_dentry(p->buf, p->dentry); 637 } 638 639 /** 640 * relay_late_setup_files - triggers file creation 641 * @chan: channel to operate on 642 * @base_filename: base name of files to create 643 * @parent: dentry of parent directory, %NULL for root directory 644 * 645 * Returns 0 if successful, non-zero otherwise. 646 * 647 * Use to setup files for a previously buffer-only channel. 648 * Useful to do early tracing in kernel, before VFS is up, for example. 649 */ 650 int relay_late_setup_files(struct rchan *chan, 651 const char *base_filename, 652 struct dentry *parent) 653 { 654 int err = 0; 655 unsigned int i, curr_cpu; 656 unsigned long flags; 657 struct dentry *dentry; 658 struct rchan_percpu_buf_dispatcher disp; 659 660 if (!chan || !base_filename) 661 return -EINVAL; 662 663 strlcpy(chan->base_filename, base_filename, NAME_MAX); 664 665 mutex_lock(&relay_channels_mutex); 666 /* Is chan already set up? */ 667 if (unlikely(chan->has_base_filename)) 668 return -EEXIST; 669 chan->has_base_filename = 1; 670 chan->parent = parent; 671 curr_cpu = get_cpu(); 672 /* 673 * The CPU hotplug notifier ran before us and created buffers with 674 * no files associated. So it's safe to call relay_setup_buf_file() 675 * on all currently online CPUs. 676 */ 677 for_each_online_cpu(i) { 678 if (unlikely(!chan->buf[i])) { 679 printk(KERN_ERR "relay_late_setup_files: CPU %u " 680 "has no buffer, it must have!\n", i); 681 BUG(); 682 err = -EINVAL; 683 break; 684 } 685 686 dentry = relay_create_buf_file(chan, chan->buf[i], i); 687 if (unlikely(!dentry)) { 688 err = -EINVAL; 689 break; 690 } 691 692 if (curr_cpu == i) { 693 local_irq_save(flags); 694 relay_set_buf_dentry(chan->buf[i], dentry); 695 local_irq_restore(flags); 696 } else { 697 disp.buf = chan->buf[i]; 698 disp.dentry = dentry; 699 smp_mb(); 700 /* relay_channels_mutex must be held, so wait. */ 701 err = smp_call_function_single(i, 702 __relay_set_buf_dentry, 703 &disp, 1); 704 } 705 if (unlikely(err)) 706 break; 707 } 708 put_cpu(); 709 mutex_unlock(&relay_channels_mutex); 710 711 return err; 712 } 713 714 /** 715 * relay_switch_subbuf - switch to a new sub-buffer 716 * @buf: channel buffer 717 * @length: size of current event 718 * 719 * Returns either the length passed in or 0 if full. 720 * 721 * Performs sub-buffer-switch tasks such as invoking callbacks, 722 * updating padding counts, waking up readers, etc. 723 */ 724 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 725 { 726 void *old, *new; 727 size_t old_subbuf, new_subbuf; 728 729 if (unlikely(length > buf->chan->subbuf_size)) 730 goto toobig; 731 732 if (buf->offset != buf->chan->subbuf_size + 1) { 733 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 734 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 735 buf->padding[old_subbuf] = buf->prev_padding; 736 buf->subbufs_produced++; 737 if (buf->dentry) 738 buf->dentry->d_inode->i_size += 739 buf->chan->subbuf_size - 740 buf->padding[old_subbuf]; 741 else 742 buf->early_bytes += buf->chan->subbuf_size - 743 buf->padding[old_subbuf]; 744 smp_mb(); 745 if (waitqueue_active(&buf->read_wait)) 746 /* 747 * Calling wake_up_interruptible() from here 748 * will deadlock if we happen to be logging 749 * from the scheduler (trying to re-grab 750 * rq->lock), so defer it. 751 */ 752 __mod_timer(&buf->timer, jiffies + 1); 753 } 754 755 old = buf->data; 756 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 757 new = buf->start + new_subbuf * buf->chan->subbuf_size; 758 buf->offset = 0; 759 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 760 buf->offset = buf->chan->subbuf_size + 1; 761 return 0; 762 } 763 buf->data = new; 764 buf->padding[new_subbuf] = 0; 765 766 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 767 goto toobig; 768 769 return length; 770 771 toobig: 772 buf->chan->last_toobig = length; 773 return 0; 774 } 775 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 776 777 /** 778 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 779 * @chan: the channel 780 * @cpu: the cpu associated with the channel buffer to update 781 * @subbufs_consumed: number of sub-buffers to add to current buf's count 782 * 783 * Adds to the channel buffer's consumed sub-buffer count. 784 * subbufs_consumed should be the number of sub-buffers newly consumed, 785 * not the total consumed. 786 * 787 * NOTE. Kernel clients don't need to call this function if the channel 788 * mode is 'overwrite'. 789 */ 790 void relay_subbufs_consumed(struct rchan *chan, 791 unsigned int cpu, 792 size_t subbufs_consumed) 793 { 794 struct rchan_buf *buf; 795 796 if (!chan) 797 return; 798 799 if (cpu >= NR_CPUS || !chan->buf[cpu]) 800 return; 801 802 buf = chan->buf[cpu]; 803 buf->subbufs_consumed += subbufs_consumed; 804 if (buf->subbufs_consumed > buf->subbufs_produced) 805 buf->subbufs_consumed = buf->subbufs_produced; 806 } 807 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 808 809 /** 810 * relay_close - close the channel 811 * @chan: the channel 812 * 813 * Closes all channel buffers and frees the channel. 814 */ 815 void relay_close(struct rchan *chan) 816 { 817 unsigned int i; 818 819 if (!chan) 820 return; 821 822 mutex_lock(&relay_channels_mutex); 823 if (chan->is_global && chan->buf[0]) 824 relay_close_buf(chan->buf[0]); 825 else 826 for_each_possible_cpu(i) 827 if (chan->buf[i]) 828 relay_close_buf(chan->buf[i]); 829 830 if (chan->last_toobig) 831 printk(KERN_WARNING "relay: one or more items not logged " 832 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 833 chan->last_toobig, chan->subbuf_size); 834 835 list_del(&chan->list); 836 kref_put(&chan->kref, relay_destroy_channel); 837 mutex_unlock(&relay_channels_mutex); 838 } 839 EXPORT_SYMBOL_GPL(relay_close); 840 841 /** 842 * relay_flush - close the channel 843 * @chan: the channel 844 * 845 * Flushes all channel buffers, i.e. forces buffer switch. 846 */ 847 void relay_flush(struct rchan *chan) 848 { 849 unsigned int i; 850 851 if (!chan) 852 return; 853 854 if (chan->is_global && chan->buf[0]) { 855 relay_switch_subbuf(chan->buf[0], 0); 856 return; 857 } 858 859 mutex_lock(&relay_channels_mutex); 860 for_each_possible_cpu(i) 861 if (chan->buf[i]) 862 relay_switch_subbuf(chan->buf[i], 0); 863 mutex_unlock(&relay_channels_mutex); 864 } 865 EXPORT_SYMBOL_GPL(relay_flush); 866 867 /** 868 * relay_file_open - open file op for relay files 869 * @inode: the inode 870 * @filp: the file 871 * 872 * Increments the channel buffer refcount. 873 */ 874 static int relay_file_open(struct inode *inode, struct file *filp) 875 { 876 struct rchan_buf *buf = inode->i_private; 877 kref_get(&buf->kref); 878 filp->private_data = buf; 879 880 return nonseekable_open(inode, filp); 881 } 882 883 /** 884 * relay_file_mmap - mmap file op for relay files 885 * @filp: the file 886 * @vma: the vma describing what to map 887 * 888 * Calls upon relay_mmap_buf() to map the file into user space. 889 */ 890 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 891 { 892 struct rchan_buf *buf = filp->private_data; 893 return relay_mmap_buf(buf, vma); 894 } 895 896 /** 897 * relay_file_poll - poll file op for relay files 898 * @filp: the file 899 * @wait: poll table 900 * 901 * Poll implemention. 902 */ 903 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 904 { 905 unsigned int mask = 0; 906 struct rchan_buf *buf = filp->private_data; 907 908 if (buf->finalized) 909 return POLLERR; 910 911 if (filp->f_mode & FMODE_READ) { 912 poll_wait(filp, &buf->read_wait, wait); 913 if (!relay_buf_empty(buf)) 914 mask |= POLLIN | POLLRDNORM; 915 } 916 917 return mask; 918 } 919 920 /** 921 * relay_file_release - release file op for relay files 922 * @inode: the inode 923 * @filp: the file 924 * 925 * Decrements the channel refcount, as the filesystem is 926 * no longer using it. 927 */ 928 static int relay_file_release(struct inode *inode, struct file *filp) 929 { 930 struct rchan_buf *buf = filp->private_data; 931 kref_put(&buf->kref, relay_remove_buf); 932 933 return 0; 934 } 935 936 /* 937 * relay_file_read_consume - update the consumed count for the buffer 938 */ 939 static void relay_file_read_consume(struct rchan_buf *buf, 940 size_t read_pos, 941 size_t bytes_consumed) 942 { 943 size_t subbuf_size = buf->chan->subbuf_size; 944 size_t n_subbufs = buf->chan->n_subbufs; 945 size_t read_subbuf; 946 947 if (buf->subbufs_produced == buf->subbufs_consumed && 948 buf->offset == buf->bytes_consumed) 949 return; 950 951 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 952 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 953 buf->bytes_consumed = 0; 954 } 955 956 buf->bytes_consumed += bytes_consumed; 957 if (!read_pos) 958 read_subbuf = buf->subbufs_consumed % n_subbufs; 959 else 960 read_subbuf = read_pos / buf->chan->subbuf_size; 961 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 962 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 963 (buf->offset == subbuf_size)) 964 return; 965 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 966 buf->bytes_consumed = 0; 967 } 968 } 969 970 /* 971 * relay_file_read_avail - boolean, are there unconsumed bytes available? 972 */ 973 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 974 { 975 size_t subbuf_size = buf->chan->subbuf_size; 976 size_t n_subbufs = buf->chan->n_subbufs; 977 size_t produced = buf->subbufs_produced; 978 size_t consumed = buf->subbufs_consumed; 979 980 relay_file_read_consume(buf, read_pos, 0); 981 982 consumed = buf->subbufs_consumed; 983 984 if (unlikely(buf->offset > subbuf_size)) { 985 if (produced == consumed) 986 return 0; 987 return 1; 988 } 989 990 if (unlikely(produced - consumed >= n_subbufs)) { 991 consumed = produced - n_subbufs + 1; 992 buf->subbufs_consumed = consumed; 993 buf->bytes_consumed = 0; 994 } 995 996 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 997 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 998 999 if (consumed > produced) 1000 produced += n_subbufs * subbuf_size; 1001 1002 if (consumed == produced) { 1003 if (buf->offset == subbuf_size && 1004 buf->subbufs_produced > buf->subbufs_consumed) 1005 return 1; 1006 return 0; 1007 } 1008 1009 return 1; 1010 } 1011 1012 /** 1013 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1014 * @read_pos: file read position 1015 * @buf: relay channel buffer 1016 */ 1017 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1018 struct rchan_buf *buf) 1019 { 1020 size_t padding, avail = 0; 1021 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1022 size_t subbuf_size = buf->chan->subbuf_size; 1023 1024 write_subbuf = (buf->data - buf->start) / subbuf_size; 1025 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1026 read_subbuf = read_pos / subbuf_size; 1027 read_offset = read_pos % subbuf_size; 1028 padding = buf->padding[read_subbuf]; 1029 1030 if (read_subbuf == write_subbuf) { 1031 if (read_offset + padding < write_offset) 1032 avail = write_offset - (read_offset + padding); 1033 } else 1034 avail = (subbuf_size - padding) - read_offset; 1035 1036 return avail; 1037 } 1038 1039 /** 1040 * relay_file_read_start_pos - find the first available byte to read 1041 * @read_pos: file read position 1042 * @buf: relay channel buffer 1043 * 1044 * If the @read_pos is in the middle of padding, return the 1045 * position of the first actually available byte, otherwise 1046 * return the original value. 1047 */ 1048 static size_t relay_file_read_start_pos(size_t read_pos, 1049 struct rchan_buf *buf) 1050 { 1051 size_t read_subbuf, padding, padding_start, padding_end; 1052 size_t subbuf_size = buf->chan->subbuf_size; 1053 size_t n_subbufs = buf->chan->n_subbufs; 1054 size_t consumed = buf->subbufs_consumed % n_subbufs; 1055 1056 if (!read_pos) 1057 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1058 read_subbuf = read_pos / subbuf_size; 1059 padding = buf->padding[read_subbuf]; 1060 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1061 padding_end = (read_subbuf + 1) * subbuf_size; 1062 if (read_pos >= padding_start && read_pos < padding_end) { 1063 read_subbuf = (read_subbuf + 1) % n_subbufs; 1064 read_pos = read_subbuf * subbuf_size; 1065 } 1066 1067 return read_pos; 1068 } 1069 1070 /** 1071 * relay_file_read_end_pos - return the new read position 1072 * @read_pos: file read position 1073 * @buf: relay channel buffer 1074 * @count: number of bytes to be read 1075 */ 1076 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1077 size_t read_pos, 1078 size_t count) 1079 { 1080 size_t read_subbuf, padding, end_pos; 1081 size_t subbuf_size = buf->chan->subbuf_size; 1082 size_t n_subbufs = buf->chan->n_subbufs; 1083 1084 read_subbuf = read_pos / subbuf_size; 1085 padding = buf->padding[read_subbuf]; 1086 if (read_pos % subbuf_size + count + padding == subbuf_size) 1087 end_pos = (read_subbuf + 1) * subbuf_size; 1088 else 1089 end_pos = read_pos + count; 1090 if (end_pos >= subbuf_size * n_subbufs) 1091 end_pos = 0; 1092 1093 return end_pos; 1094 } 1095 1096 /* 1097 * subbuf_read_actor - read up to one subbuf's worth of data 1098 */ 1099 static int subbuf_read_actor(size_t read_start, 1100 struct rchan_buf *buf, 1101 size_t avail, 1102 read_descriptor_t *desc, 1103 read_actor_t actor) 1104 { 1105 void *from; 1106 int ret = 0; 1107 1108 from = buf->start + read_start; 1109 ret = avail; 1110 if (copy_to_user(desc->arg.buf, from, avail)) { 1111 desc->error = -EFAULT; 1112 ret = 0; 1113 } 1114 desc->arg.data += ret; 1115 desc->written += ret; 1116 desc->count -= ret; 1117 1118 return ret; 1119 } 1120 1121 typedef int (*subbuf_actor_t) (size_t read_start, 1122 struct rchan_buf *buf, 1123 size_t avail, 1124 read_descriptor_t *desc, 1125 read_actor_t actor); 1126 1127 /* 1128 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 1129 */ 1130 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 1131 subbuf_actor_t subbuf_actor, 1132 read_actor_t actor, 1133 read_descriptor_t *desc) 1134 { 1135 struct rchan_buf *buf = filp->private_data; 1136 size_t read_start, avail; 1137 int ret; 1138 1139 if (!desc->count) 1140 return 0; 1141 1142 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 1143 do { 1144 if (!relay_file_read_avail(buf, *ppos)) 1145 break; 1146 1147 read_start = relay_file_read_start_pos(*ppos, buf); 1148 avail = relay_file_read_subbuf_avail(read_start, buf); 1149 if (!avail) 1150 break; 1151 1152 avail = min(desc->count, avail); 1153 ret = subbuf_actor(read_start, buf, avail, desc, actor); 1154 if (desc->error < 0) 1155 break; 1156 1157 if (ret) { 1158 relay_file_read_consume(buf, read_start, ret); 1159 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1160 } 1161 } while (desc->count && ret); 1162 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 1163 1164 return desc->written; 1165 } 1166 1167 static ssize_t relay_file_read(struct file *filp, 1168 char __user *buffer, 1169 size_t count, 1170 loff_t *ppos) 1171 { 1172 read_descriptor_t desc; 1173 desc.written = 0; 1174 desc.count = count; 1175 desc.arg.buf = buffer; 1176 desc.error = 0; 1177 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, 1178 NULL, &desc); 1179 } 1180 1181 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1182 { 1183 rbuf->bytes_consumed += bytes_consumed; 1184 1185 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1186 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1187 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1188 } 1189 } 1190 1191 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1192 struct pipe_buffer *buf) 1193 { 1194 struct rchan_buf *rbuf; 1195 1196 rbuf = (struct rchan_buf *)page_private(buf->page); 1197 relay_consume_bytes(rbuf, buf->private); 1198 } 1199 1200 static struct pipe_buf_operations relay_pipe_buf_ops = { 1201 .can_merge = 0, 1202 .map = generic_pipe_buf_map, 1203 .unmap = generic_pipe_buf_unmap, 1204 .confirm = generic_pipe_buf_confirm, 1205 .release = relay_pipe_buf_release, 1206 .steal = generic_pipe_buf_steal, 1207 .get = generic_pipe_buf_get, 1208 }; 1209 1210 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1211 { 1212 } 1213 1214 /* 1215 * subbuf_splice_actor - splice up to one subbuf's worth of data 1216 */ 1217 static int subbuf_splice_actor(struct file *in, 1218 loff_t *ppos, 1219 struct pipe_inode_info *pipe, 1220 size_t len, 1221 unsigned int flags, 1222 int *nonpad_ret) 1223 { 1224 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret; 1225 struct rchan_buf *rbuf = in->private_data; 1226 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1227 uint64_t pos = (uint64_t) *ppos; 1228 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1229 size_t read_start = (size_t) do_div(pos, alloc_size); 1230 size_t read_subbuf = read_start / subbuf_size; 1231 size_t padding = rbuf->padding[read_subbuf]; 1232 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1233 struct page *pages[PIPE_BUFFERS]; 1234 struct partial_page partial[PIPE_BUFFERS]; 1235 struct splice_pipe_desc spd = { 1236 .pages = pages, 1237 .nr_pages = 0, 1238 .partial = partial, 1239 .flags = flags, 1240 .ops = &relay_pipe_buf_ops, 1241 .spd_release = relay_page_release, 1242 }; 1243 1244 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1245 return 0; 1246 1247 /* 1248 * Adjust read len, if longer than what is available 1249 */ 1250 if (len > (subbuf_size - read_start % subbuf_size)) 1251 len = subbuf_size - read_start % subbuf_size; 1252 1253 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1254 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1255 poff = read_start & ~PAGE_MASK; 1256 nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS); 1257 1258 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1259 unsigned int this_len, this_end, private; 1260 unsigned int cur_pos = read_start + total_len; 1261 1262 if (!len) 1263 break; 1264 1265 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1266 private = this_len; 1267 1268 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1269 spd.partial[spd.nr_pages].offset = poff; 1270 1271 this_end = cur_pos + this_len; 1272 if (this_end >= nonpad_end) { 1273 this_len = nonpad_end - cur_pos; 1274 private = this_len + padding; 1275 } 1276 spd.partial[spd.nr_pages].len = this_len; 1277 spd.partial[spd.nr_pages].private = private; 1278 1279 len -= this_len; 1280 total_len += this_len; 1281 poff = 0; 1282 pidx = (pidx + 1) % subbuf_pages; 1283 1284 if (this_end >= nonpad_end) { 1285 spd.nr_pages++; 1286 break; 1287 } 1288 } 1289 1290 if (!spd.nr_pages) 1291 return 0; 1292 1293 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1294 if (ret < 0 || ret < total_len) 1295 return ret; 1296 1297 if (read_start + ret == nonpad_end) 1298 ret += padding; 1299 1300 return ret; 1301 } 1302 1303 static ssize_t relay_file_splice_read(struct file *in, 1304 loff_t *ppos, 1305 struct pipe_inode_info *pipe, 1306 size_t len, 1307 unsigned int flags) 1308 { 1309 ssize_t spliced; 1310 int ret; 1311 int nonpad_ret = 0; 1312 1313 ret = 0; 1314 spliced = 0; 1315 1316 while (len && !spliced) { 1317 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1318 if (ret < 0) 1319 break; 1320 else if (!ret) { 1321 if (spliced) 1322 break; 1323 if (flags & SPLICE_F_NONBLOCK) { 1324 ret = -EAGAIN; 1325 break; 1326 } 1327 } 1328 1329 *ppos += ret; 1330 if (ret > len) 1331 len = 0; 1332 else 1333 len -= ret; 1334 spliced += nonpad_ret; 1335 nonpad_ret = 0; 1336 } 1337 1338 if (spliced) 1339 return spliced; 1340 1341 return ret; 1342 } 1343 1344 const struct file_operations relay_file_operations = { 1345 .open = relay_file_open, 1346 .poll = relay_file_poll, 1347 .mmap = relay_file_mmap, 1348 .read = relay_file_read, 1349 .llseek = no_llseek, 1350 .release = relay_file_release, 1351 .splice_read = relay_file_splice_read, 1352 }; 1353 EXPORT_SYMBOL_GPL(relay_file_operations); 1354 1355 static __init int relay_init(void) 1356 { 1357 1358 hotcpu_notifier(relay_hotcpu_callback, 0); 1359 return 0; 1360 } 1361 1362 early_initcall(relay_init); 1363