1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 if (is_vmalloc_addr(array)) 85 vfree(array); 86 else 87 kfree(array); 88 } 89 90 /** 91 * relay_mmap_buf: - mmap channel buffer to process address space 92 * @buf: relay channel buffer 93 * @vma: vm_area_struct describing memory to be mapped 94 * 95 * Returns 0 if ok, negative on error 96 * 97 * Caller should already have grabbed mmap_sem. 98 */ 99 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 100 { 101 unsigned long length = vma->vm_end - vma->vm_start; 102 struct file *filp = vma->vm_file; 103 104 if (!buf) 105 return -EBADF; 106 107 if (length != (unsigned long)buf->chan->alloc_size) 108 return -EINVAL; 109 110 vma->vm_ops = &relay_file_mmap_ops; 111 vma->vm_flags |= VM_DONTEXPAND; 112 vma->vm_private_data = buf; 113 buf->chan->cb->buf_mapped(buf, filp); 114 115 return 0; 116 } 117 118 /** 119 * relay_alloc_buf - allocate a channel buffer 120 * @buf: the buffer struct 121 * @size: total size of the buffer 122 * 123 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 124 * passed in size will get page aligned, if it isn't already. 125 */ 126 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 127 { 128 void *mem; 129 unsigned int i, j, n_pages; 130 131 *size = PAGE_ALIGN(*size); 132 n_pages = *size >> PAGE_SHIFT; 133 134 buf->page_array = relay_alloc_page_array(n_pages); 135 if (!buf->page_array) 136 return NULL; 137 138 for (i = 0; i < n_pages; i++) { 139 buf->page_array[i] = alloc_page(GFP_KERNEL); 140 if (unlikely(!buf->page_array[i])) 141 goto depopulate; 142 set_page_private(buf->page_array[i], (unsigned long)buf); 143 } 144 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 145 if (!mem) 146 goto depopulate; 147 148 memset(mem, 0, *size); 149 buf->page_count = n_pages; 150 return mem; 151 152 depopulate: 153 for (j = 0; j < i; j++) 154 __free_page(buf->page_array[j]); 155 relay_free_page_array(buf->page_array); 156 return NULL; 157 } 158 159 /** 160 * relay_create_buf - allocate and initialize a channel buffer 161 * @chan: the relay channel 162 * 163 * Returns channel buffer if successful, %NULL otherwise. 164 */ 165 static struct rchan_buf *relay_create_buf(struct rchan *chan) 166 { 167 struct rchan_buf *buf; 168 169 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *)) 170 return NULL; 171 172 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 173 if (!buf) 174 return NULL; 175 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 176 if (!buf->padding) 177 goto free_buf; 178 179 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 180 if (!buf->start) 181 goto free_buf; 182 183 buf->chan = chan; 184 kref_get(&buf->chan->kref); 185 return buf; 186 187 free_buf: 188 kfree(buf->padding); 189 kfree(buf); 190 return NULL; 191 } 192 193 /** 194 * relay_destroy_channel - free the channel struct 195 * @kref: target kernel reference that contains the relay channel 196 * 197 * Should only be called from kref_put(). 198 */ 199 static void relay_destroy_channel(struct kref *kref) 200 { 201 struct rchan *chan = container_of(kref, struct rchan, kref); 202 kfree(chan); 203 } 204 205 /** 206 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 207 * @buf: the buffer struct 208 */ 209 static void relay_destroy_buf(struct rchan_buf *buf) 210 { 211 struct rchan *chan = buf->chan; 212 unsigned int i; 213 214 if (likely(buf->start)) { 215 vunmap(buf->start); 216 for (i = 0; i < buf->page_count; i++) 217 __free_page(buf->page_array[i]); 218 relay_free_page_array(buf->page_array); 219 } 220 chan->buf[buf->cpu] = NULL; 221 kfree(buf->padding); 222 kfree(buf); 223 kref_put(&chan->kref, relay_destroy_channel); 224 } 225 226 /** 227 * relay_remove_buf - remove a channel buffer 228 * @kref: target kernel reference that contains the relay buffer 229 * 230 * Removes the file from the filesystem, which also frees the 231 * rchan_buf_struct and the channel buffer. Should only be called from 232 * kref_put(). 233 */ 234 static void relay_remove_buf(struct kref *kref) 235 { 236 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 237 relay_destroy_buf(buf); 238 } 239 240 /** 241 * relay_buf_empty - boolean, is the channel buffer empty? 242 * @buf: channel buffer 243 * 244 * Returns 1 if the buffer is empty, 0 otherwise. 245 */ 246 static int relay_buf_empty(struct rchan_buf *buf) 247 { 248 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 249 } 250 251 /** 252 * relay_buf_full - boolean, is the channel buffer full? 253 * @buf: channel buffer 254 * 255 * Returns 1 if the buffer is full, 0 otherwise. 256 */ 257 int relay_buf_full(struct rchan_buf *buf) 258 { 259 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 260 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 261 } 262 EXPORT_SYMBOL_GPL(relay_buf_full); 263 264 /* 265 * High-level relay kernel API and associated functions. 266 */ 267 268 /* 269 * rchan_callback implementations defining default channel behavior. Used 270 * in place of corresponding NULL values in client callback struct. 271 */ 272 273 /* 274 * subbuf_start() default callback. Does nothing. 275 */ 276 static int subbuf_start_default_callback (struct rchan_buf *buf, 277 void *subbuf, 278 void *prev_subbuf, 279 size_t prev_padding) 280 { 281 if (relay_buf_full(buf)) 282 return 0; 283 284 return 1; 285 } 286 287 /* 288 * buf_mapped() default callback. Does nothing. 289 */ 290 static void buf_mapped_default_callback(struct rchan_buf *buf, 291 struct file *filp) 292 { 293 } 294 295 /* 296 * buf_unmapped() default callback. Does nothing. 297 */ 298 static void buf_unmapped_default_callback(struct rchan_buf *buf, 299 struct file *filp) 300 { 301 } 302 303 /* 304 * create_buf_file_create() default callback. Does nothing. 305 */ 306 static struct dentry *create_buf_file_default_callback(const char *filename, 307 struct dentry *parent, 308 umode_t mode, 309 struct rchan_buf *buf, 310 int *is_global) 311 { 312 return NULL; 313 } 314 315 /* 316 * remove_buf_file() default callback. Does nothing. 317 */ 318 static int remove_buf_file_default_callback(struct dentry *dentry) 319 { 320 return -EINVAL; 321 } 322 323 /* relay channel default callbacks */ 324 static struct rchan_callbacks default_channel_callbacks = { 325 .subbuf_start = subbuf_start_default_callback, 326 .buf_mapped = buf_mapped_default_callback, 327 .buf_unmapped = buf_unmapped_default_callback, 328 .create_buf_file = create_buf_file_default_callback, 329 .remove_buf_file = remove_buf_file_default_callback, 330 }; 331 332 /** 333 * wakeup_readers - wake up readers waiting on a channel 334 * @data: contains the channel buffer 335 * 336 * This is the timer function used to defer reader waking. 337 */ 338 static void wakeup_readers(unsigned long data) 339 { 340 struct rchan_buf *buf = (struct rchan_buf *)data; 341 wake_up_interruptible(&buf->read_wait); 342 } 343 344 /** 345 * __relay_reset - reset a channel buffer 346 * @buf: the channel buffer 347 * @init: 1 if this is a first-time initialization 348 * 349 * See relay_reset() for description of effect. 350 */ 351 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 352 { 353 size_t i; 354 355 if (init) { 356 init_waitqueue_head(&buf->read_wait); 357 kref_init(&buf->kref); 358 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 359 } else 360 del_timer_sync(&buf->timer); 361 362 buf->subbufs_produced = 0; 363 buf->subbufs_consumed = 0; 364 buf->bytes_consumed = 0; 365 buf->finalized = 0; 366 buf->data = buf->start; 367 buf->offset = 0; 368 369 for (i = 0; i < buf->chan->n_subbufs; i++) 370 buf->padding[i] = 0; 371 372 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 373 } 374 375 /** 376 * relay_reset - reset the channel 377 * @chan: the channel 378 * 379 * This has the effect of erasing all data from all channel buffers 380 * and restarting the channel in its initial state. The buffers 381 * are not freed, so any mappings are still in effect. 382 * 383 * NOTE. Care should be taken that the channel isn't actually 384 * being used by anything when this call is made. 385 */ 386 void relay_reset(struct rchan *chan) 387 { 388 unsigned int i; 389 390 if (!chan) 391 return; 392 393 if (chan->is_global && chan->buf[0]) { 394 __relay_reset(chan->buf[0], 0); 395 return; 396 } 397 398 mutex_lock(&relay_channels_mutex); 399 for_each_possible_cpu(i) 400 if (chan->buf[i]) 401 __relay_reset(chan->buf[i], 0); 402 mutex_unlock(&relay_channels_mutex); 403 } 404 EXPORT_SYMBOL_GPL(relay_reset); 405 406 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 407 struct dentry *dentry) 408 { 409 buf->dentry = dentry; 410 buf->dentry->d_inode->i_size = buf->early_bytes; 411 } 412 413 static struct dentry *relay_create_buf_file(struct rchan *chan, 414 struct rchan_buf *buf, 415 unsigned int cpu) 416 { 417 struct dentry *dentry; 418 char *tmpname; 419 420 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 421 if (!tmpname) 422 return NULL; 423 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 424 425 /* Create file in fs */ 426 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 427 S_IRUSR, buf, 428 &chan->is_global); 429 430 kfree(tmpname); 431 432 return dentry; 433 } 434 435 /* 436 * relay_open_buf - create a new relay channel buffer 437 * 438 * used by relay_open() and CPU hotplug. 439 */ 440 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 441 { 442 struct rchan_buf *buf = NULL; 443 struct dentry *dentry; 444 445 if (chan->is_global) 446 return chan->buf[0]; 447 448 buf = relay_create_buf(chan); 449 if (!buf) 450 return NULL; 451 452 if (chan->has_base_filename) { 453 dentry = relay_create_buf_file(chan, buf, cpu); 454 if (!dentry) 455 goto free_buf; 456 relay_set_buf_dentry(buf, dentry); 457 } 458 459 buf->cpu = cpu; 460 __relay_reset(buf, 1); 461 462 if(chan->is_global) { 463 chan->buf[0] = buf; 464 buf->cpu = 0; 465 } 466 467 return buf; 468 469 free_buf: 470 relay_destroy_buf(buf); 471 return NULL; 472 } 473 474 /** 475 * relay_close_buf - close a channel buffer 476 * @buf: channel buffer 477 * 478 * Marks the buffer finalized and restores the default callbacks. 479 * The channel buffer and channel buffer data structure are then freed 480 * automatically when the last reference is given up. 481 */ 482 static void relay_close_buf(struct rchan_buf *buf) 483 { 484 buf->finalized = 1; 485 del_timer_sync(&buf->timer); 486 buf->chan->cb->remove_buf_file(buf->dentry); 487 kref_put(&buf->kref, relay_remove_buf); 488 } 489 490 static void setup_callbacks(struct rchan *chan, 491 struct rchan_callbacks *cb) 492 { 493 if (!cb) { 494 chan->cb = &default_channel_callbacks; 495 return; 496 } 497 498 if (!cb->subbuf_start) 499 cb->subbuf_start = subbuf_start_default_callback; 500 if (!cb->buf_mapped) 501 cb->buf_mapped = buf_mapped_default_callback; 502 if (!cb->buf_unmapped) 503 cb->buf_unmapped = buf_unmapped_default_callback; 504 if (!cb->create_buf_file) 505 cb->create_buf_file = create_buf_file_default_callback; 506 if (!cb->remove_buf_file) 507 cb->remove_buf_file = remove_buf_file_default_callback; 508 chan->cb = cb; 509 } 510 511 /** 512 * relay_hotcpu_callback - CPU hotplug callback 513 * @nb: notifier block 514 * @action: hotplug action to take 515 * @hcpu: CPU number 516 * 517 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 518 */ 519 static int relay_hotcpu_callback(struct notifier_block *nb, 520 unsigned long action, 521 void *hcpu) 522 { 523 unsigned int hotcpu = (unsigned long)hcpu; 524 struct rchan *chan; 525 526 switch(action) { 527 case CPU_UP_PREPARE: 528 case CPU_UP_PREPARE_FROZEN: 529 mutex_lock(&relay_channels_mutex); 530 list_for_each_entry(chan, &relay_channels, list) { 531 if (chan->buf[hotcpu]) 532 continue; 533 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 534 if(!chan->buf[hotcpu]) { 535 printk(KERN_ERR 536 "relay_hotcpu_callback: cpu %d buffer " 537 "creation failed\n", hotcpu); 538 mutex_unlock(&relay_channels_mutex); 539 return notifier_from_errno(-ENOMEM); 540 } 541 } 542 mutex_unlock(&relay_channels_mutex); 543 break; 544 case CPU_DEAD: 545 case CPU_DEAD_FROZEN: 546 /* No need to flush the cpu : will be flushed upon 547 * final relay_flush() call. */ 548 break; 549 } 550 return NOTIFY_OK; 551 } 552 553 /** 554 * relay_open - create a new relay channel 555 * @base_filename: base name of files to create, %NULL for buffering only 556 * @parent: dentry of parent directory, %NULL for root directory or buffer 557 * @subbuf_size: size of sub-buffers 558 * @n_subbufs: number of sub-buffers 559 * @cb: client callback functions 560 * @private_data: user-defined data 561 * 562 * Returns channel pointer if successful, %NULL otherwise. 563 * 564 * Creates a channel buffer for each cpu using the sizes and 565 * attributes specified. The created channel buffer files 566 * will be named base_filename0...base_filenameN-1. File 567 * permissions will be %S_IRUSR. 568 */ 569 struct rchan *relay_open(const char *base_filename, 570 struct dentry *parent, 571 size_t subbuf_size, 572 size_t n_subbufs, 573 struct rchan_callbacks *cb, 574 void *private_data) 575 { 576 unsigned int i; 577 struct rchan *chan; 578 579 if (!(subbuf_size && n_subbufs)) 580 return NULL; 581 if (subbuf_size > UINT_MAX / n_subbufs) 582 return NULL; 583 584 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 585 if (!chan) 586 return NULL; 587 588 chan->version = RELAYFS_CHANNEL_VERSION; 589 chan->n_subbufs = n_subbufs; 590 chan->subbuf_size = subbuf_size; 591 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 592 chan->parent = parent; 593 chan->private_data = private_data; 594 if (base_filename) { 595 chan->has_base_filename = 1; 596 strlcpy(chan->base_filename, base_filename, NAME_MAX); 597 } 598 setup_callbacks(chan, cb); 599 kref_init(&chan->kref); 600 601 mutex_lock(&relay_channels_mutex); 602 for_each_online_cpu(i) { 603 chan->buf[i] = relay_open_buf(chan, i); 604 if (!chan->buf[i]) 605 goto free_bufs; 606 } 607 list_add(&chan->list, &relay_channels); 608 mutex_unlock(&relay_channels_mutex); 609 610 return chan; 611 612 free_bufs: 613 for_each_possible_cpu(i) { 614 if (chan->buf[i]) 615 relay_close_buf(chan->buf[i]); 616 } 617 618 kref_put(&chan->kref, relay_destroy_channel); 619 mutex_unlock(&relay_channels_mutex); 620 return NULL; 621 } 622 EXPORT_SYMBOL_GPL(relay_open); 623 624 struct rchan_percpu_buf_dispatcher { 625 struct rchan_buf *buf; 626 struct dentry *dentry; 627 }; 628 629 /* Called in atomic context. */ 630 static void __relay_set_buf_dentry(void *info) 631 { 632 struct rchan_percpu_buf_dispatcher *p = info; 633 634 relay_set_buf_dentry(p->buf, p->dentry); 635 } 636 637 /** 638 * relay_late_setup_files - triggers file creation 639 * @chan: channel to operate on 640 * @base_filename: base name of files to create 641 * @parent: dentry of parent directory, %NULL for root directory 642 * 643 * Returns 0 if successful, non-zero otherwise. 644 * 645 * Use to setup files for a previously buffer-only channel. 646 * Useful to do early tracing in kernel, before VFS is up, for example. 647 */ 648 int relay_late_setup_files(struct rchan *chan, 649 const char *base_filename, 650 struct dentry *parent) 651 { 652 int err = 0; 653 unsigned int i, curr_cpu; 654 unsigned long flags; 655 struct dentry *dentry; 656 struct rchan_percpu_buf_dispatcher disp; 657 658 if (!chan || !base_filename) 659 return -EINVAL; 660 661 strlcpy(chan->base_filename, base_filename, NAME_MAX); 662 663 mutex_lock(&relay_channels_mutex); 664 /* Is chan already set up? */ 665 if (unlikely(chan->has_base_filename)) { 666 mutex_unlock(&relay_channels_mutex); 667 return -EEXIST; 668 } 669 chan->has_base_filename = 1; 670 chan->parent = parent; 671 curr_cpu = get_cpu(); 672 /* 673 * The CPU hotplug notifier ran before us and created buffers with 674 * no files associated. So it's safe to call relay_setup_buf_file() 675 * on all currently online CPUs. 676 */ 677 for_each_online_cpu(i) { 678 if (unlikely(!chan->buf[i])) { 679 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 680 err = -EINVAL; 681 break; 682 } 683 684 dentry = relay_create_buf_file(chan, chan->buf[i], i); 685 if (unlikely(!dentry)) { 686 err = -EINVAL; 687 break; 688 } 689 690 if (curr_cpu == i) { 691 local_irq_save(flags); 692 relay_set_buf_dentry(chan->buf[i], dentry); 693 local_irq_restore(flags); 694 } else { 695 disp.buf = chan->buf[i]; 696 disp.dentry = dentry; 697 smp_mb(); 698 /* relay_channels_mutex must be held, so wait. */ 699 err = smp_call_function_single(i, 700 __relay_set_buf_dentry, 701 &disp, 1); 702 } 703 if (unlikely(err)) 704 break; 705 } 706 put_cpu(); 707 mutex_unlock(&relay_channels_mutex); 708 709 return err; 710 } 711 712 /** 713 * relay_switch_subbuf - switch to a new sub-buffer 714 * @buf: channel buffer 715 * @length: size of current event 716 * 717 * Returns either the length passed in or 0 if full. 718 * 719 * Performs sub-buffer-switch tasks such as invoking callbacks, 720 * updating padding counts, waking up readers, etc. 721 */ 722 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 723 { 724 void *old, *new; 725 size_t old_subbuf, new_subbuf; 726 727 if (unlikely(length > buf->chan->subbuf_size)) 728 goto toobig; 729 730 if (buf->offset != buf->chan->subbuf_size + 1) { 731 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 732 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 733 buf->padding[old_subbuf] = buf->prev_padding; 734 buf->subbufs_produced++; 735 if (buf->dentry) 736 buf->dentry->d_inode->i_size += 737 buf->chan->subbuf_size - 738 buf->padding[old_subbuf]; 739 else 740 buf->early_bytes += buf->chan->subbuf_size - 741 buf->padding[old_subbuf]; 742 smp_mb(); 743 if (waitqueue_active(&buf->read_wait)) 744 /* 745 * Calling wake_up_interruptible() from here 746 * will deadlock if we happen to be logging 747 * from the scheduler (trying to re-grab 748 * rq->lock), so defer it. 749 */ 750 mod_timer(&buf->timer, jiffies + 1); 751 } 752 753 old = buf->data; 754 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 755 new = buf->start + new_subbuf * buf->chan->subbuf_size; 756 buf->offset = 0; 757 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 758 buf->offset = buf->chan->subbuf_size + 1; 759 return 0; 760 } 761 buf->data = new; 762 buf->padding[new_subbuf] = 0; 763 764 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 765 goto toobig; 766 767 return length; 768 769 toobig: 770 buf->chan->last_toobig = length; 771 return 0; 772 } 773 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 774 775 /** 776 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 777 * @chan: the channel 778 * @cpu: the cpu associated with the channel buffer to update 779 * @subbufs_consumed: number of sub-buffers to add to current buf's count 780 * 781 * Adds to the channel buffer's consumed sub-buffer count. 782 * subbufs_consumed should be the number of sub-buffers newly consumed, 783 * not the total consumed. 784 * 785 * NOTE. Kernel clients don't need to call this function if the channel 786 * mode is 'overwrite'. 787 */ 788 void relay_subbufs_consumed(struct rchan *chan, 789 unsigned int cpu, 790 size_t subbufs_consumed) 791 { 792 struct rchan_buf *buf; 793 794 if (!chan) 795 return; 796 797 if (cpu >= NR_CPUS || !chan->buf[cpu] || 798 subbufs_consumed > chan->n_subbufs) 799 return; 800 801 buf = chan->buf[cpu]; 802 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 803 buf->subbufs_consumed = buf->subbufs_produced; 804 else 805 buf->subbufs_consumed += subbufs_consumed; 806 } 807 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 808 809 /** 810 * relay_close - close the channel 811 * @chan: the channel 812 * 813 * Closes all channel buffers and frees the channel. 814 */ 815 void relay_close(struct rchan *chan) 816 { 817 unsigned int i; 818 819 if (!chan) 820 return; 821 822 mutex_lock(&relay_channels_mutex); 823 if (chan->is_global && chan->buf[0]) 824 relay_close_buf(chan->buf[0]); 825 else 826 for_each_possible_cpu(i) 827 if (chan->buf[i]) 828 relay_close_buf(chan->buf[i]); 829 830 if (chan->last_toobig) 831 printk(KERN_WARNING "relay: one or more items not logged " 832 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 833 chan->last_toobig, chan->subbuf_size); 834 835 list_del(&chan->list); 836 kref_put(&chan->kref, relay_destroy_channel); 837 mutex_unlock(&relay_channels_mutex); 838 } 839 EXPORT_SYMBOL_GPL(relay_close); 840 841 /** 842 * relay_flush - close the channel 843 * @chan: the channel 844 * 845 * Flushes all channel buffers, i.e. forces buffer switch. 846 */ 847 void relay_flush(struct rchan *chan) 848 { 849 unsigned int i; 850 851 if (!chan) 852 return; 853 854 if (chan->is_global && chan->buf[0]) { 855 relay_switch_subbuf(chan->buf[0], 0); 856 return; 857 } 858 859 mutex_lock(&relay_channels_mutex); 860 for_each_possible_cpu(i) 861 if (chan->buf[i]) 862 relay_switch_subbuf(chan->buf[i], 0); 863 mutex_unlock(&relay_channels_mutex); 864 } 865 EXPORT_SYMBOL_GPL(relay_flush); 866 867 /** 868 * relay_file_open - open file op for relay files 869 * @inode: the inode 870 * @filp: the file 871 * 872 * Increments the channel buffer refcount. 873 */ 874 static int relay_file_open(struct inode *inode, struct file *filp) 875 { 876 struct rchan_buf *buf = inode->i_private; 877 kref_get(&buf->kref); 878 filp->private_data = buf; 879 880 return nonseekable_open(inode, filp); 881 } 882 883 /** 884 * relay_file_mmap - mmap file op for relay files 885 * @filp: the file 886 * @vma: the vma describing what to map 887 * 888 * Calls upon relay_mmap_buf() to map the file into user space. 889 */ 890 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 891 { 892 struct rchan_buf *buf = filp->private_data; 893 return relay_mmap_buf(buf, vma); 894 } 895 896 /** 897 * relay_file_poll - poll file op for relay files 898 * @filp: the file 899 * @wait: poll table 900 * 901 * Poll implemention. 902 */ 903 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 904 { 905 unsigned int mask = 0; 906 struct rchan_buf *buf = filp->private_data; 907 908 if (buf->finalized) 909 return POLLERR; 910 911 if (filp->f_mode & FMODE_READ) { 912 poll_wait(filp, &buf->read_wait, wait); 913 if (!relay_buf_empty(buf)) 914 mask |= POLLIN | POLLRDNORM; 915 } 916 917 return mask; 918 } 919 920 /** 921 * relay_file_release - release file op for relay files 922 * @inode: the inode 923 * @filp: the file 924 * 925 * Decrements the channel refcount, as the filesystem is 926 * no longer using it. 927 */ 928 static int relay_file_release(struct inode *inode, struct file *filp) 929 { 930 struct rchan_buf *buf = filp->private_data; 931 kref_put(&buf->kref, relay_remove_buf); 932 933 return 0; 934 } 935 936 /* 937 * relay_file_read_consume - update the consumed count for the buffer 938 */ 939 static void relay_file_read_consume(struct rchan_buf *buf, 940 size_t read_pos, 941 size_t bytes_consumed) 942 { 943 size_t subbuf_size = buf->chan->subbuf_size; 944 size_t n_subbufs = buf->chan->n_subbufs; 945 size_t read_subbuf; 946 947 if (buf->subbufs_produced == buf->subbufs_consumed && 948 buf->offset == buf->bytes_consumed) 949 return; 950 951 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 952 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 953 buf->bytes_consumed = 0; 954 } 955 956 buf->bytes_consumed += bytes_consumed; 957 if (!read_pos) 958 read_subbuf = buf->subbufs_consumed % n_subbufs; 959 else 960 read_subbuf = read_pos / buf->chan->subbuf_size; 961 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 962 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 963 (buf->offset == subbuf_size)) 964 return; 965 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 966 buf->bytes_consumed = 0; 967 } 968 } 969 970 /* 971 * relay_file_read_avail - boolean, are there unconsumed bytes available? 972 */ 973 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 974 { 975 size_t subbuf_size = buf->chan->subbuf_size; 976 size_t n_subbufs = buf->chan->n_subbufs; 977 size_t produced = buf->subbufs_produced; 978 size_t consumed = buf->subbufs_consumed; 979 980 relay_file_read_consume(buf, read_pos, 0); 981 982 consumed = buf->subbufs_consumed; 983 984 if (unlikely(buf->offset > subbuf_size)) { 985 if (produced == consumed) 986 return 0; 987 return 1; 988 } 989 990 if (unlikely(produced - consumed >= n_subbufs)) { 991 consumed = produced - n_subbufs + 1; 992 buf->subbufs_consumed = consumed; 993 buf->bytes_consumed = 0; 994 } 995 996 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 997 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 998 999 if (consumed > produced) 1000 produced += n_subbufs * subbuf_size; 1001 1002 if (consumed == produced) { 1003 if (buf->offset == subbuf_size && 1004 buf->subbufs_produced > buf->subbufs_consumed) 1005 return 1; 1006 return 0; 1007 } 1008 1009 return 1; 1010 } 1011 1012 /** 1013 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1014 * @read_pos: file read position 1015 * @buf: relay channel buffer 1016 */ 1017 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1018 struct rchan_buf *buf) 1019 { 1020 size_t padding, avail = 0; 1021 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1022 size_t subbuf_size = buf->chan->subbuf_size; 1023 1024 write_subbuf = (buf->data - buf->start) / subbuf_size; 1025 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1026 read_subbuf = read_pos / subbuf_size; 1027 read_offset = read_pos % subbuf_size; 1028 padding = buf->padding[read_subbuf]; 1029 1030 if (read_subbuf == write_subbuf) { 1031 if (read_offset + padding < write_offset) 1032 avail = write_offset - (read_offset + padding); 1033 } else 1034 avail = (subbuf_size - padding) - read_offset; 1035 1036 return avail; 1037 } 1038 1039 /** 1040 * relay_file_read_start_pos - find the first available byte to read 1041 * @read_pos: file read position 1042 * @buf: relay channel buffer 1043 * 1044 * If the @read_pos is in the middle of padding, return the 1045 * position of the first actually available byte, otherwise 1046 * return the original value. 1047 */ 1048 static size_t relay_file_read_start_pos(size_t read_pos, 1049 struct rchan_buf *buf) 1050 { 1051 size_t read_subbuf, padding, padding_start, padding_end; 1052 size_t subbuf_size = buf->chan->subbuf_size; 1053 size_t n_subbufs = buf->chan->n_subbufs; 1054 size_t consumed = buf->subbufs_consumed % n_subbufs; 1055 1056 if (!read_pos) 1057 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1058 read_subbuf = read_pos / subbuf_size; 1059 padding = buf->padding[read_subbuf]; 1060 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1061 padding_end = (read_subbuf + 1) * subbuf_size; 1062 if (read_pos >= padding_start && read_pos < padding_end) { 1063 read_subbuf = (read_subbuf + 1) % n_subbufs; 1064 read_pos = read_subbuf * subbuf_size; 1065 } 1066 1067 return read_pos; 1068 } 1069 1070 /** 1071 * relay_file_read_end_pos - return the new read position 1072 * @read_pos: file read position 1073 * @buf: relay channel buffer 1074 * @count: number of bytes to be read 1075 */ 1076 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1077 size_t read_pos, 1078 size_t count) 1079 { 1080 size_t read_subbuf, padding, end_pos; 1081 size_t subbuf_size = buf->chan->subbuf_size; 1082 size_t n_subbufs = buf->chan->n_subbufs; 1083 1084 read_subbuf = read_pos / subbuf_size; 1085 padding = buf->padding[read_subbuf]; 1086 if (read_pos % subbuf_size + count + padding == subbuf_size) 1087 end_pos = (read_subbuf + 1) * subbuf_size; 1088 else 1089 end_pos = read_pos + count; 1090 if (end_pos >= subbuf_size * n_subbufs) 1091 end_pos = 0; 1092 1093 return end_pos; 1094 } 1095 1096 /* 1097 * subbuf_read_actor - read up to one subbuf's worth of data 1098 */ 1099 static int subbuf_read_actor(size_t read_start, 1100 struct rchan_buf *buf, 1101 size_t avail, 1102 read_descriptor_t *desc) 1103 { 1104 void *from; 1105 int ret = 0; 1106 1107 from = buf->start + read_start; 1108 ret = avail; 1109 if (copy_to_user(desc->arg.buf, from, avail)) { 1110 desc->error = -EFAULT; 1111 ret = 0; 1112 } 1113 desc->arg.data += ret; 1114 desc->written += ret; 1115 desc->count -= ret; 1116 1117 return ret; 1118 } 1119 1120 typedef int (*subbuf_actor_t) (size_t read_start, 1121 struct rchan_buf *buf, 1122 size_t avail, 1123 read_descriptor_t *desc); 1124 1125 /* 1126 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 1127 */ 1128 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 1129 subbuf_actor_t subbuf_actor, 1130 read_descriptor_t *desc) 1131 { 1132 struct rchan_buf *buf = filp->private_data; 1133 size_t read_start, avail; 1134 int ret; 1135 1136 if (!desc->count) 1137 return 0; 1138 1139 mutex_lock(&file_inode(filp)->i_mutex); 1140 do { 1141 if (!relay_file_read_avail(buf, *ppos)) 1142 break; 1143 1144 read_start = relay_file_read_start_pos(*ppos, buf); 1145 avail = relay_file_read_subbuf_avail(read_start, buf); 1146 if (!avail) 1147 break; 1148 1149 avail = min(desc->count, avail); 1150 ret = subbuf_actor(read_start, buf, avail, desc); 1151 if (desc->error < 0) 1152 break; 1153 1154 if (ret) { 1155 relay_file_read_consume(buf, read_start, ret); 1156 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1157 } 1158 } while (desc->count && ret); 1159 mutex_unlock(&file_inode(filp)->i_mutex); 1160 1161 return desc->written; 1162 } 1163 1164 static ssize_t relay_file_read(struct file *filp, 1165 char __user *buffer, 1166 size_t count, 1167 loff_t *ppos) 1168 { 1169 read_descriptor_t desc; 1170 desc.written = 0; 1171 desc.count = count; 1172 desc.arg.buf = buffer; 1173 desc.error = 0; 1174 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc); 1175 } 1176 1177 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1178 { 1179 rbuf->bytes_consumed += bytes_consumed; 1180 1181 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1182 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1183 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1184 } 1185 } 1186 1187 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1188 struct pipe_buffer *buf) 1189 { 1190 struct rchan_buf *rbuf; 1191 1192 rbuf = (struct rchan_buf *)page_private(buf->page); 1193 relay_consume_bytes(rbuf, buf->private); 1194 } 1195 1196 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1197 .can_merge = 0, 1198 .confirm = generic_pipe_buf_confirm, 1199 .release = relay_pipe_buf_release, 1200 .steal = generic_pipe_buf_steal, 1201 .get = generic_pipe_buf_get, 1202 }; 1203 1204 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1205 { 1206 } 1207 1208 /* 1209 * subbuf_splice_actor - splice up to one subbuf's worth of data 1210 */ 1211 static ssize_t subbuf_splice_actor(struct file *in, 1212 loff_t *ppos, 1213 struct pipe_inode_info *pipe, 1214 size_t len, 1215 unsigned int flags, 1216 int *nonpad_ret) 1217 { 1218 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1219 struct rchan_buf *rbuf = in->private_data; 1220 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1221 uint64_t pos = (uint64_t) *ppos; 1222 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1223 size_t read_start = (size_t) do_div(pos, alloc_size); 1224 size_t read_subbuf = read_start / subbuf_size; 1225 size_t padding = rbuf->padding[read_subbuf]; 1226 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1227 struct page *pages[PIPE_DEF_BUFFERS]; 1228 struct partial_page partial[PIPE_DEF_BUFFERS]; 1229 struct splice_pipe_desc spd = { 1230 .pages = pages, 1231 .nr_pages = 0, 1232 .nr_pages_max = PIPE_DEF_BUFFERS, 1233 .partial = partial, 1234 .flags = flags, 1235 .ops = &relay_pipe_buf_ops, 1236 .spd_release = relay_page_release, 1237 }; 1238 ssize_t ret; 1239 1240 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1241 return 0; 1242 if (splice_grow_spd(pipe, &spd)) 1243 return -ENOMEM; 1244 1245 /* 1246 * Adjust read len, if longer than what is available 1247 */ 1248 if (len > (subbuf_size - read_start % subbuf_size)) 1249 len = subbuf_size - read_start % subbuf_size; 1250 1251 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1252 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1253 poff = read_start & ~PAGE_MASK; 1254 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1255 1256 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1257 unsigned int this_len, this_end, private; 1258 unsigned int cur_pos = read_start + total_len; 1259 1260 if (!len) 1261 break; 1262 1263 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1264 private = this_len; 1265 1266 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1267 spd.partial[spd.nr_pages].offset = poff; 1268 1269 this_end = cur_pos + this_len; 1270 if (this_end >= nonpad_end) { 1271 this_len = nonpad_end - cur_pos; 1272 private = this_len + padding; 1273 } 1274 spd.partial[spd.nr_pages].len = this_len; 1275 spd.partial[spd.nr_pages].private = private; 1276 1277 len -= this_len; 1278 total_len += this_len; 1279 poff = 0; 1280 pidx = (pidx + 1) % subbuf_pages; 1281 1282 if (this_end >= nonpad_end) { 1283 spd.nr_pages++; 1284 break; 1285 } 1286 } 1287 1288 ret = 0; 1289 if (!spd.nr_pages) 1290 goto out; 1291 1292 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1293 if (ret < 0 || ret < total_len) 1294 goto out; 1295 1296 if (read_start + ret == nonpad_end) 1297 ret += padding; 1298 1299 out: 1300 splice_shrink_spd(&spd); 1301 return ret; 1302 } 1303 1304 static ssize_t relay_file_splice_read(struct file *in, 1305 loff_t *ppos, 1306 struct pipe_inode_info *pipe, 1307 size_t len, 1308 unsigned int flags) 1309 { 1310 ssize_t spliced; 1311 int ret; 1312 int nonpad_ret = 0; 1313 1314 ret = 0; 1315 spliced = 0; 1316 1317 while (len && !spliced) { 1318 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1319 if (ret < 0) 1320 break; 1321 else if (!ret) { 1322 if (flags & SPLICE_F_NONBLOCK) 1323 ret = -EAGAIN; 1324 break; 1325 } 1326 1327 *ppos += ret; 1328 if (ret > len) 1329 len = 0; 1330 else 1331 len -= ret; 1332 spliced += nonpad_ret; 1333 nonpad_ret = 0; 1334 } 1335 1336 if (spliced) 1337 return spliced; 1338 1339 return ret; 1340 } 1341 1342 const struct file_operations relay_file_operations = { 1343 .open = relay_file_open, 1344 .poll = relay_file_poll, 1345 .mmap = relay_file_mmap, 1346 .read = relay_file_read, 1347 .llseek = no_llseek, 1348 .release = relay_file_release, 1349 .splice_read = relay_file_splice_read, 1350 }; 1351 EXPORT_SYMBOL_GPL(relay_file_operations); 1352 1353 static __init int relay_init(void) 1354 { 1355 1356 hotcpu_notifier(relay_hotcpu_callback, 0); 1357 return 0; 1358 } 1359 1360 early_initcall(relay_init); 1361