1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.rst for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * fault() vm_op implementation for relay file mapping. 32 */ 33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf) 34 { 35 struct page *page; 36 struct rchan_buf *buf = vmf->vma->vm_private_data; 37 pgoff_t pgoff = vmf->pgoff; 38 39 if (!buf) 40 return VM_FAULT_OOM; 41 42 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 43 if (!page) 44 return VM_FAULT_SIGBUS; 45 get_page(page); 46 vmf->page = page; 47 48 return 0; 49 } 50 51 /* 52 * vm_ops for relay file mappings. 53 */ 54 static const struct vm_operations_struct relay_file_mmap_ops = { 55 .fault = relay_buf_fault, 56 }; 57 58 /* 59 * allocate an array of pointers of struct page 60 */ 61 static struct page **relay_alloc_page_array(unsigned int n_pages) 62 { 63 return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); 64 } 65 66 /* 67 * free an array of pointers of struct page 68 */ 69 static void relay_free_page_array(struct page **array) 70 { 71 kvfree(array); 72 } 73 74 /** 75 * relay_mmap_buf: - mmap channel buffer to process address space 76 * @buf: relay channel buffer 77 * @vma: vm_area_struct describing memory to be mapped 78 * 79 * Returns 0 if ok, negative on error 80 * 81 * Caller should already have grabbed mmap_lock. 82 */ 83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 84 { 85 unsigned long length = vma->vm_end - vma->vm_start; 86 87 if (!buf) 88 return -EBADF; 89 90 if (length != (unsigned long)buf->chan->alloc_size) 91 return -EINVAL; 92 93 vma->vm_ops = &relay_file_mmap_ops; 94 vm_flags_set(vma, VM_DONTEXPAND); 95 vma->vm_private_data = buf; 96 97 return 0; 98 } 99 100 /** 101 * relay_alloc_buf - allocate a channel buffer 102 * @buf: the buffer struct 103 * @size: total size of the buffer 104 * 105 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 106 * passed in size will get page aligned, if it isn't already. 107 */ 108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 109 { 110 void *mem; 111 unsigned int i, j, n_pages; 112 113 *size = PAGE_ALIGN(*size); 114 n_pages = *size >> PAGE_SHIFT; 115 116 buf->page_array = relay_alloc_page_array(n_pages); 117 if (!buf->page_array) 118 return NULL; 119 120 for (i = 0; i < n_pages; i++) { 121 buf->page_array[i] = alloc_page(GFP_KERNEL | __GFP_ZERO); 122 if (unlikely(!buf->page_array[i])) 123 goto depopulate; 124 set_page_private(buf->page_array[i], (unsigned long)buf); 125 } 126 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 127 if (!mem) 128 goto depopulate; 129 130 buf->page_count = n_pages; 131 return mem; 132 133 depopulate: 134 for (j = 0; j < i; j++) 135 __free_page(buf->page_array[j]); 136 relay_free_page_array(buf->page_array); 137 return NULL; 138 } 139 140 /** 141 * relay_create_buf - allocate and initialize a channel buffer 142 * @chan: the relay channel 143 * 144 * Returns channel buffer if successful, %NULL otherwise. 145 */ 146 static struct rchan_buf *relay_create_buf(struct rchan *chan) 147 { 148 struct rchan_buf *buf; 149 150 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t)) 151 return NULL; 152 153 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 154 if (!buf) 155 return NULL; 156 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t), 157 GFP_KERNEL); 158 if (!buf->padding) 159 goto free_buf; 160 161 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 162 if (!buf->start) 163 goto free_buf; 164 165 buf->chan = chan; 166 kref_get(&buf->chan->kref); 167 return buf; 168 169 free_buf: 170 kfree(buf->padding); 171 kfree(buf); 172 return NULL; 173 } 174 175 /** 176 * relay_destroy_channel - free the channel struct 177 * @kref: target kernel reference that contains the relay channel 178 * 179 * Should only be called from kref_put(). 180 */ 181 static void relay_destroy_channel(struct kref *kref) 182 { 183 struct rchan *chan = container_of(kref, struct rchan, kref); 184 free_percpu(chan->buf); 185 kfree(chan); 186 } 187 188 /** 189 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 190 * @buf: the buffer struct 191 */ 192 static void relay_destroy_buf(struct rchan_buf *buf) 193 { 194 struct rchan *chan = buf->chan; 195 unsigned int i; 196 197 if (likely(buf->start)) { 198 vunmap(buf->start); 199 for (i = 0; i < buf->page_count; i++) 200 __free_page(buf->page_array[i]); 201 relay_free_page_array(buf->page_array); 202 } 203 *per_cpu_ptr(chan->buf, buf->cpu) = NULL; 204 kfree(buf->padding); 205 kfree(buf); 206 kref_put(&chan->kref, relay_destroy_channel); 207 } 208 209 /** 210 * relay_remove_buf - remove a channel buffer 211 * @kref: target kernel reference that contains the relay buffer 212 * 213 * Removes the file from the filesystem, which also frees the 214 * rchan_buf_struct and the channel buffer. Should only be called from 215 * kref_put(). 216 */ 217 static void relay_remove_buf(struct kref *kref) 218 { 219 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 220 relay_destroy_buf(buf); 221 } 222 223 /** 224 * relay_buf_empty - boolean, is the channel buffer empty? 225 * @buf: channel buffer 226 * 227 * Returns 1 if the buffer is empty, 0 otherwise. 228 */ 229 static int relay_buf_empty(struct rchan_buf *buf) 230 { 231 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 232 } 233 234 /** 235 * relay_buf_full - boolean, is the channel buffer full? 236 * @buf: channel buffer 237 * 238 * Returns 1 if the buffer is full, 0 otherwise. 239 */ 240 int relay_buf_full(struct rchan_buf *buf) 241 { 242 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 243 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 244 } 245 EXPORT_SYMBOL_GPL(relay_buf_full); 246 247 /* 248 * High-level relay kernel API and associated functions. 249 */ 250 251 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf, 252 void *prev_subbuf) 253 { 254 if (!buf->chan->cb->subbuf_start) 255 return !relay_buf_full(buf); 256 257 return buf->chan->cb->subbuf_start(buf, subbuf, 258 prev_subbuf); 259 } 260 261 /** 262 * wakeup_readers - wake up readers waiting on a channel 263 * @work: contains the channel buffer 264 * 265 * This is the function used to defer reader waking 266 */ 267 static void wakeup_readers(struct irq_work *work) 268 { 269 struct rchan_buf *buf; 270 271 buf = container_of(work, struct rchan_buf, wakeup_work); 272 wake_up_interruptible(&buf->read_wait); 273 } 274 275 /** 276 * __relay_reset - reset a channel buffer 277 * @buf: the channel buffer 278 * @init: 1 if this is a first-time initialization 279 * 280 * See relay_reset() for description of effect. 281 */ 282 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 283 { 284 size_t i; 285 286 if (init) { 287 init_waitqueue_head(&buf->read_wait); 288 kref_init(&buf->kref); 289 init_irq_work(&buf->wakeup_work, wakeup_readers); 290 } else { 291 irq_work_sync(&buf->wakeup_work); 292 } 293 294 buf->subbufs_produced = 0; 295 buf->subbufs_consumed = 0; 296 buf->bytes_consumed = 0; 297 buf->finalized = 0; 298 buf->data = buf->start; 299 buf->offset = 0; 300 301 for (i = 0; i < buf->chan->n_subbufs; i++) 302 buf->padding[i] = 0; 303 304 relay_subbuf_start(buf, buf->data, NULL); 305 } 306 307 /** 308 * relay_reset - reset the channel 309 * @chan: the channel 310 * 311 * This has the effect of erasing all data from all channel buffers 312 * and restarting the channel in its initial state. The buffers 313 * are not freed, so any mappings are still in effect. 314 * 315 * NOTE. Care should be taken that the channel isn't actually 316 * being used by anything when this call is made. 317 */ 318 void relay_reset(struct rchan *chan) 319 { 320 struct rchan_buf *buf; 321 unsigned int i; 322 323 if (!chan) 324 return; 325 326 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 327 __relay_reset(buf, 0); 328 return; 329 } 330 331 mutex_lock(&relay_channels_mutex); 332 for_each_possible_cpu(i) 333 if ((buf = *per_cpu_ptr(chan->buf, i))) 334 __relay_reset(buf, 0); 335 mutex_unlock(&relay_channels_mutex); 336 } 337 EXPORT_SYMBOL_GPL(relay_reset); 338 339 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 340 struct dentry *dentry) 341 { 342 buf->dentry = dentry; 343 d_inode(buf->dentry)->i_size = buf->early_bytes; 344 } 345 346 static struct dentry *relay_create_buf_file(struct rchan *chan, 347 struct rchan_buf *buf, 348 unsigned int cpu) 349 { 350 struct dentry *dentry; 351 char *tmpname; 352 353 tmpname = kasprintf(GFP_KERNEL, "%s%d", chan->base_filename, cpu); 354 if (!tmpname) 355 return NULL; 356 357 /* Create file in fs */ 358 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 359 S_IRUSR, buf, 360 &chan->is_global); 361 if (IS_ERR(dentry)) 362 dentry = NULL; 363 364 kfree(tmpname); 365 366 return dentry; 367 } 368 369 /* 370 * relay_open_buf - create a new relay channel buffer 371 * 372 * used by relay_open() and CPU hotplug. 373 */ 374 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 375 { 376 struct rchan_buf *buf; 377 struct dentry *dentry; 378 379 if (chan->is_global) 380 return *per_cpu_ptr(chan->buf, 0); 381 382 buf = relay_create_buf(chan); 383 if (!buf) 384 return NULL; 385 386 if (chan->has_base_filename) { 387 dentry = relay_create_buf_file(chan, buf, cpu); 388 if (!dentry) 389 goto free_buf; 390 relay_set_buf_dentry(buf, dentry); 391 } else { 392 /* Only retrieve global info, nothing more, nothing less */ 393 dentry = chan->cb->create_buf_file(NULL, NULL, 394 S_IRUSR, buf, 395 &chan->is_global); 396 if (IS_ERR_OR_NULL(dentry)) 397 goto free_buf; 398 } 399 400 buf->cpu = cpu; 401 __relay_reset(buf, 1); 402 403 if(chan->is_global) { 404 *per_cpu_ptr(chan->buf, 0) = buf; 405 buf->cpu = 0; 406 } 407 408 return buf; 409 410 free_buf: 411 relay_destroy_buf(buf); 412 return NULL; 413 } 414 415 /** 416 * relay_close_buf - close a channel buffer 417 * @buf: channel buffer 418 * 419 * Marks the buffer finalized and restores the default callbacks. 420 * The channel buffer and channel buffer data structure are then freed 421 * automatically when the last reference is given up. 422 */ 423 static void relay_close_buf(struct rchan_buf *buf) 424 { 425 buf->finalized = 1; 426 irq_work_sync(&buf->wakeup_work); 427 buf->chan->cb->remove_buf_file(buf->dentry); 428 kref_put(&buf->kref, relay_remove_buf); 429 } 430 431 int relay_prepare_cpu(unsigned int cpu) 432 { 433 struct rchan *chan; 434 struct rchan_buf *buf; 435 436 mutex_lock(&relay_channels_mutex); 437 list_for_each_entry(chan, &relay_channels, list) { 438 if (*per_cpu_ptr(chan->buf, cpu)) 439 continue; 440 buf = relay_open_buf(chan, cpu); 441 if (!buf) { 442 pr_err("relay: cpu %d buffer creation failed\n", cpu); 443 mutex_unlock(&relay_channels_mutex); 444 return -ENOMEM; 445 } 446 *per_cpu_ptr(chan->buf, cpu) = buf; 447 } 448 mutex_unlock(&relay_channels_mutex); 449 return 0; 450 } 451 452 /** 453 * relay_open - create a new relay channel 454 * @base_filename: base name of files to create 455 * @parent: dentry of parent directory, %NULL for root directory or buffer 456 * @subbuf_size: size of sub-buffers 457 * @n_subbufs: number of sub-buffers 458 * @cb: client callback functions 459 * @private_data: user-defined data 460 * 461 * Returns channel pointer if successful, %NULL otherwise. 462 * 463 * Creates a channel buffer for each cpu using the sizes and 464 * attributes specified. The created channel buffer files 465 * will be named base_filename0...base_filenameN-1. File 466 * permissions will be %S_IRUSR. 467 */ 468 struct rchan *relay_open(const char *base_filename, 469 struct dentry *parent, 470 size_t subbuf_size, 471 size_t n_subbufs, 472 const struct rchan_callbacks *cb, 473 void *private_data) 474 { 475 unsigned int i; 476 struct rchan *chan; 477 struct rchan_buf *buf; 478 479 if (!(subbuf_size && n_subbufs)) 480 return NULL; 481 if (subbuf_size > UINT_MAX / n_subbufs) 482 return NULL; 483 if (!cb || !cb->create_buf_file || !cb->remove_buf_file) 484 return NULL; 485 486 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 487 if (!chan) 488 return NULL; 489 490 chan->buf = alloc_percpu(struct rchan_buf *); 491 if (!chan->buf) { 492 kfree(chan); 493 return NULL; 494 } 495 496 chan->version = RELAYFS_CHANNEL_VERSION; 497 chan->n_subbufs = n_subbufs; 498 chan->subbuf_size = subbuf_size; 499 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 500 chan->parent = parent; 501 chan->private_data = private_data; 502 if (base_filename) { 503 chan->has_base_filename = 1; 504 strscpy(chan->base_filename, base_filename, NAME_MAX); 505 } 506 chan->cb = cb; 507 kref_init(&chan->kref); 508 509 mutex_lock(&relay_channels_mutex); 510 for_each_online_cpu(i) { 511 buf = relay_open_buf(chan, i); 512 if (!buf) 513 goto free_bufs; 514 *per_cpu_ptr(chan->buf, i) = buf; 515 } 516 list_add(&chan->list, &relay_channels); 517 mutex_unlock(&relay_channels_mutex); 518 519 return chan; 520 521 free_bufs: 522 for_each_possible_cpu(i) { 523 if ((buf = *per_cpu_ptr(chan->buf, i))) 524 relay_close_buf(buf); 525 } 526 527 kref_put(&chan->kref, relay_destroy_channel); 528 mutex_unlock(&relay_channels_mutex); 529 return NULL; 530 } 531 EXPORT_SYMBOL_GPL(relay_open); 532 533 struct rchan_percpu_buf_dispatcher { 534 struct rchan_buf *buf; 535 struct dentry *dentry; 536 }; 537 538 /** 539 * relay_switch_subbuf - switch to a new sub-buffer 540 * @buf: channel buffer 541 * @length: size of current event 542 * 543 * Returns either the length passed in or 0 if full. 544 * 545 * Performs sub-buffer-switch tasks such as invoking callbacks, 546 * updating padding counts, waking up readers, etc. 547 */ 548 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 549 { 550 void *old, *new; 551 size_t old_subbuf, new_subbuf; 552 553 if (unlikely(length > buf->chan->subbuf_size)) 554 goto toobig; 555 556 if (buf->offset != buf->chan->subbuf_size + 1) { 557 size_t prev_padding; 558 559 prev_padding = buf->chan->subbuf_size - buf->offset; 560 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 561 buf->padding[old_subbuf] = prev_padding; 562 buf->subbufs_produced++; 563 if (buf->dentry) 564 d_inode(buf->dentry)->i_size += 565 buf->chan->subbuf_size - 566 buf->padding[old_subbuf]; 567 else 568 buf->early_bytes += buf->chan->subbuf_size - 569 buf->padding[old_subbuf]; 570 smp_mb(); 571 if (waitqueue_active(&buf->read_wait)) { 572 /* 573 * Calling wake_up_interruptible() from here 574 * will deadlock if we happen to be logging 575 * from the scheduler (trying to re-grab 576 * rq->lock), so defer it. 577 */ 578 irq_work_queue(&buf->wakeup_work); 579 } 580 } 581 582 old = buf->data; 583 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 584 new = buf->start + new_subbuf * buf->chan->subbuf_size; 585 buf->offset = 0; 586 if (!relay_subbuf_start(buf, new, old)) { 587 buf->offset = buf->chan->subbuf_size + 1; 588 return 0; 589 } 590 buf->data = new; 591 buf->padding[new_subbuf] = 0; 592 593 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 594 goto toobig; 595 596 return length; 597 598 toobig: 599 buf->chan->last_toobig = length; 600 return 0; 601 } 602 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 603 604 /** 605 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 606 * @chan: the channel 607 * @cpu: the cpu associated with the channel buffer to update 608 * @subbufs_consumed: number of sub-buffers to add to current buf's count 609 * 610 * Adds to the channel buffer's consumed sub-buffer count. 611 * subbufs_consumed should be the number of sub-buffers newly consumed, 612 * not the total consumed. 613 * 614 * NOTE. Kernel clients don't need to call this function if the channel 615 * mode is 'overwrite'. 616 */ 617 void relay_subbufs_consumed(struct rchan *chan, 618 unsigned int cpu, 619 size_t subbufs_consumed) 620 { 621 struct rchan_buf *buf; 622 623 if (!chan || cpu >= NR_CPUS) 624 return; 625 626 buf = *per_cpu_ptr(chan->buf, cpu); 627 if (!buf || subbufs_consumed > chan->n_subbufs) 628 return; 629 630 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 631 buf->subbufs_consumed = buf->subbufs_produced; 632 else 633 buf->subbufs_consumed += subbufs_consumed; 634 } 635 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 636 637 /** 638 * relay_close - close the channel 639 * @chan: the channel 640 * 641 * Closes all channel buffers and frees the channel. 642 */ 643 void relay_close(struct rchan *chan) 644 { 645 struct rchan_buf *buf; 646 unsigned int i; 647 648 if (!chan) 649 return; 650 651 mutex_lock(&relay_channels_mutex); 652 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) 653 relay_close_buf(buf); 654 else 655 for_each_possible_cpu(i) 656 if ((buf = *per_cpu_ptr(chan->buf, i))) 657 relay_close_buf(buf); 658 659 if (chan->last_toobig) 660 printk(KERN_WARNING "relay: one or more items not logged " 661 "[item size (%zd) > sub-buffer size (%zd)]\n", 662 chan->last_toobig, chan->subbuf_size); 663 664 list_del(&chan->list); 665 kref_put(&chan->kref, relay_destroy_channel); 666 mutex_unlock(&relay_channels_mutex); 667 } 668 EXPORT_SYMBOL_GPL(relay_close); 669 670 /** 671 * relay_flush - close the channel 672 * @chan: the channel 673 * 674 * Flushes all channel buffers, i.e. forces buffer switch. 675 */ 676 void relay_flush(struct rchan *chan) 677 { 678 struct rchan_buf *buf; 679 unsigned int i; 680 681 if (!chan) 682 return; 683 684 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 685 relay_switch_subbuf(buf, 0); 686 return; 687 } 688 689 mutex_lock(&relay_channels_mutex); 690 for_each_possible_cpu(i) 691 if ((buf = *per_cpu_ptr(chan->buf, i))) 692 relay_switch_subbuf(buf, 0); 693 mutex_unlock(&relay_channels_mutex); 694 } 695 EXPORT_SYMBOL_GPL(relay_flush); 696 697 /** 698 * relay_file_open - open file op for relay files 699 * @inode: the inode 700 * @filp: the file 701 * 702 * Increments the channel buffer refcount. 703 */ 704 static int relay_file_open(struct inode *inode, struct file *filp) 705 { 706 struct rchan_buf *buf = inode->i_private; 707 kref_get(&buf->kref); 708 filp->private_data = buf; 709 710 return nonseekable_open(inode, filp); 711 } 712 713 /** 714 * relay_file_mmap - mmap file op for relay files 715 * @filp: the file 716 * @vma: the vma describing what to map 717 * 718 * Calls upon relay_mmap_buf() to map the file into user space. 719 */ 720 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 721 { 722 struct rchan_buf *buf = filp->private_data; 723 return relay_mmap_buf(buf, vma); 724 } 725 726 /** 727 * relay_file_poll - poll file op for relay files 728 * @filp: the file 729 * @wait: poll table 730 * 731 * Poll implemention. 732 */ 733 static __poll_t relay_file_poll(struct file *filp, poll_table *wait) 734 { 735 __poll_t mask = 0; 736 struct rchan_buf *buf = filp->private_data; 737 738 if (buf->finalized) 739 return EPOLLERR; 740 741 if (filp->f_mode & FMODE_READ) { 742 poll_wait(filp, &buf->read_wait, wait); 743 if (!relay_buf_empty(buf)) 744 mask |= EPOLLIN | EPOLLRDNORM; 745 } 746 747 return mask; 748 } 749 750 /** 751 * relay_file_release - release file op for relay files 752 * @inode: the inode 753 * @filp: the file 754 * 755 * Decrements the channel refcount, as the filesystem is 756 * no longer using it. 757 */ 758 static int relay_file_release(struct inode *inode, struct file *filp) 759 { 760 struct rchan_buf *buf = filp->private_data; 761 kref_put(&buf->kref, relay_remove_buf); 762 763 return 0; 764 } 765 766 /* 767 * relay_file_read_consume - update the consumed count for the buffer 768 */ 769 static void relay_file_read_consume(struct rchan_buf *buf, 770 size_t read_pos, 771 size_t bytes_consumed) 772 { 773 size_t subbuf_size = buf->chan->subbuf_size; 774 size_t n_subbufs = buf->chan->n_subbufs; 775 size_t read_subbuf; 776 777 if (buf->subbufs_produced == buf->subbufs_consumed && 778 buf->offset == buf->bytes_consumed) 779 return; 780 781 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 782 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 783 buf->bytes_consumed = 0; 784 } 785 786 buf->bytes_consumed += bytes_consumed; 787 if (!read_pos) 788 read_subbuf = buf->subbufs_consumed % n_subbufs; 789 else 790 read_subbuf = read_pos / buf->chan->subbuf_size; 791 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 792 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 793 (buf->offset == subbuf_size)) 794 return; 795 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 796 buf->bytes_consumed = 0; 797 } 798 } 799 800 /* 801 * relay_file_read_avail - boolean, are there unconsumed bytes available? 802 */ 803 static int relay_file_read_avail(struct rchan_buf *buf) 804 { 805 size_t subbuf_size = buf->chan->subbuf_size; 806 size_t n_subbufs = buf->chan->n_subbufs; 807 size_t produced = buf->subbufs_produced; 808 size_t consumed; 809 810 relay_file_read_consume(buf, 0, 0); 811 812 consumed = buf->subbufs_consumed; 813 814 if (unlikely(buf->offset > subbuf_size)) { 815 if (produced == consumed) 816 return 0; 817 return 1; 818 } 819 820 if (unlikely(produced - consumed >= n_subbufs)) { 821 consumed = produced - n_subbufs + 1; 822 buf->subbufs_consumed = consumed; 823 buf->bytes_consumed = 0; 824 } 825 826 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 827 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 828 829 if (consumed > produced) 830 produced += n_subbufs * subbuf_size; 831 832 if (consumed == produced) { 833 if (buf->offset == subbuf_size && 834 buf->subbufs_produced > buf->subbufs_consumed) 835 return 1; 836 return 0; 837 } 838 839 return 1; 840 } 841 842 /** 843 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 844 * @read_pos: file read position 845 * @buf: relay channel buffer 846 */ 847 static size_t relay_file_read_subbuf_avail(size_t read_pos, 848 struct rchan_buf *buf) 849 { 850 size_t padding, avail = 0; 851 size_t read_subbuf, read_offset, write_subbuf, write_offset; 852 size_t subbuf_size = buf->chan->subbuf_size; 853 854 write_subbuf = (buf->data - buf->start) / subbuf_size; 855 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 856 read_subbuf = read_pos / subbuf_size; 857 read_offset = read_pos % subbuf_size; 858 padding = buf->padding[read_subbuf]; 859 860 if (read_subbuf == write_subbuf) { 861 if (read_offset + padding < write_offset) 862 avail = write_offset - (read_offset + padding); 863 } else 864 avail = (subbuf_size - padding) - read_offset; 865 866 return avail; 867 } 868 869 /** 870 * relay_file_read_start_pos - find the first available byte to read 871 * @buf: relay channel buffer 872 * 873 * If the read_pos is in the middle of padding, return the 874 * position of the first actually available byte, otherwise 875 * return the original value. 876 */ 877 static size_t relay_file_read_start_pos(struct rchan_buf *buf) 878 { 879 size_t read_subbuf, padding, padding_start, padding_end; 880 size_t subbuf_size = buf->chan->subbuf_size; 881 size_t n_subbufs = buf->chan->n_subbufs; 882 size_t consumed = buf->subbufs_consumed % n_subbufs; 883 size_t read_pos = (consumed * subbuf_size + buf->bytes_consumed) 884 % (n_subbufs * subbuf_size); 885 886 read_subbuf = read_pos / subbuf_size; 887 padding = buf->padding[read_subbuf]; 888 padding_start = (read_subbuf + 1) * subbuf_size - padding; 889 padding_end = (read_subbuf + 1) * subbuf_size; 890 if (read_pos >= padding_start && read_pos < padding_end) { 891 read_subbuf = (read_subbuf + 1) % n_subbufs; 892 read_pos = read_subbuf * subbuf_size; 893 } 894 895 return read_pos; 896 } 897 898 /** 899 * relay_file_read_end_pos - return the new read position 900 * @read_pos: file read position 901 * @buf: relay channel buffer 902 * @count: number of bytes to be read 903 */ 904 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 905 size_t read_pos, 906 size_t count) 907 { 908 size_t read_subbuf, padding, end_pos; 909 size_t subbuf_size = buf->chan->subbuf_size; 910 size_t n_subbufs = buf->chan->n_subbufs; 911 912 read_subbuf = read_pos / subbuf_size; 913 padding = buf->padding[read_subbuf]; 914 if (read_pos % subbuf_size + count + padding == subbuf_size) 915 end_pos = (read_subbuf + 1) * subbuf_size; 916 else 917 end_pos = read_pos + count; 918 if (end_pos >= subbuf_size * n_subbufs) 919 end_pos = 0; 920 921 return end_pos; 922 } 923 924 static ssize_t relay_file_read(struct file *filp, 925 char __user *buffer, 926 size_t count, 927 loff_t *ppos) 928 { 929 struct rchan_buf *buf = filp->private_data; 930 size_t read_start, avail; 931 size_t written = 0; 932 int ret; 933 934 if (!count) 935 return 0; 936 937 inode_lock(file_inode(filp)); 938 do { 939 void *from; 940 941 if (!relay_file_read_avail(buf)) 942 break; 943 944 read_start = relay_file_read_start_pos(buf); 945 avail = relay_file_read_subbuf_avail(read_start, buf); 946 if (!avail) 947 break; 948 949 avail = min(count, avail); 950 from = buf->start + read_start; 951 ret = avail; 952 if (copy_to_user(buffer, from, avail)) 953 break; 954 955 buffer += ret; 956 written += ret; 957 count -= ret; 958 959 relay_file_read_consume(buf, read_start, ret); 960 *ppos = relay_file_read_end_pos(buf, read_start, ret); 961 } while (count); 962 inode_unlock(file_inode(filp)); 963 964 return written; 965 } 966 967 968 const struct file_operations relay_file_operations = { 969 .open = relay_file_open, 970 .poll = relay_file_poll, 971 .mmap = relay_file_mmap, 972 .read = relay_file_read, 973 .release = relay_file_release, 974 }; 975 EXPORT_SYMBOL_GPL(relay_file_operations); 976