xref: /linux/kernel/relay.c (revision 109d59b900e78834c66657dd4748fcedb9a1fe8d)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vmf->vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	const size_t pa_size = n_pages * sizeof(struct page *);
74 	if (pa_size > PAGE_SIZE)
75 		return vzalloc(pa_size);
76 	return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84 	kvfree(array);
85 }
86 
87 /**
88  *	relay_mmap_buf: - mmap channel buffer to process address space
89  *	@buf: relay channel buffer
90  *	@vma: vm_area_struct describing memory to be mapped
91  *
92  *	Returns 0 if ok, negative on error
93  *
94  *	Caller should already have grabbed mmap_sem.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 	unsigned long length = vma->vm_end - vma->vm_start;
99 	struct file *filp = vma->vm_file;
100 
101 	if (!buf)
102 		return -EBADF;
103 
104 	if (length != (unsigned long)buf->chan->alloc_size)
105 		return -EINVAL;
106 
107 	vma->vm_ops = &relay_file_mmap_ops;
108 	vma->vm_flags |= VM_DONTEXPAND;
109 	vma->vm_private_data = buf;
110 	buf->chan->cb->buf_mapped(buf, filp);
111 
112 	return 0;
113 }
114 
115 /**
116  *	relay_alloc_buf - allocate a channel buffer
117  *	@buf: the buffer struct
118  *	@size: total size of the buffer
119  *
120  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *	passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 	void *mem;
126 	unsigned int i, j, n_pages;
127 
128 	*size = PAGE_ALIGN(*size);
129 	n_pages = *size >> PAGE_SHIFT;
130 
131 	buf->page_array = relay_alloc_page_array(n_pages);
132 	if (!buf->page_array)
133 		return NULL;
134 
135 	for (i = 0; i < n_pages; i++) {
136 		buf->page_array[i] = alloc_page(GFP_KERNEL);
137 		if (unlikely(!buf->page_array[i]))
138 			goto depopulate;
139 		set_page_private(buf->page_array[i], (unsigned long)buf);
140 	}
141 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 	if (!mem)
143 		goto depopulate;
144 
145 	memset(mem, 0, *size);
146 	buf->page_count = n_pages;
147 	return mem;
148 
149 depopulate:
150 	for (j = 0; j < i; j++)
151 		__free_page(buf->page_array[j]);
152 	relay_free_page_array(buf->page_array);
153 	return NULL;
154 }
155 
156 /**
157  *	relay_create_buf - allocate and initialize a channel buffer
158  *	@chan: the relay channel
159  *
160  *	Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 	struct rchan_buf *buf;
165 
166 	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167 		return NULL;
168 
169 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 	if (!buf)
171 		return NULL;
172 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 	if (!buf->padding)
174 		goto free_buf;
175 
176 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 	if (!buf->start)
178 		goto free_buf;
179 
180 	buf->chan = chan;
181 	kref_get(&buf->chan->kref);
182 	return buf;
183 
184 free_buf:
185 	kfree(buf->padding);
186 	kfree(buf);
187 	return NULL;
188 }
189 
190 /**
191  *	relay_destroy_channel - free the channel struct
192  *	@kref: target kernel reference that contains the relay channel
193  *
194  *	Should only be called from kref_put().
195  */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198 	struct rchan *chan = container_of(kref, struct rchan, kref);
199 	kfree(chan);
200 }
201 
202 /**
203  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204  *	@buf: the buffer struct
205  */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208 	struct rchan *chan = buf->chan;
209 	unsigned int i;
210 
211 	if (likely(buf->start)) {
212 		vunmap(buf->start);
213 		for (i = 0; i < buf->page_count; i++)
214 			__free_page(buf->page_array[i]);
215 		relay_free_page_array(buf->page_array);
216 	}
217 	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
218 	kfree(buf->padding);
219 	kfree(buf);
220 	kref_put(&chan->kref, relay_destroy_channel);
221 }
222 
223 /**
224  *	relay_remove_buf - remove a channel buffer
225  *	@kref: target kernel reference that contains the relay buffer
226  *
227  *	Removes the file from the filesystem, which also frees the
228  *	rchan_buf_struct and the channel buffer.  Should only be called from
229  *	kref_put().
230  */
231 static void relay_remove_buf(struct kref *kref)
232 {
233 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234 	relay_destroy_buf(buf);
235 }
236 
237 /**
238  *	relay_buf_empty - boolean, is the channel buffer empty?
239  *	@buf: channel buffer
240  *
241  *	Returns 1 if the buffer is empty, 0 otherwise.
242  */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247 
248 /**
249  *	relay_buf_full - boolean, is the channel buffer full?
250  *	@buf: channel buffer
251  *
252  *	Returns 1 if the buffer is full, 0 otherwise.
253  */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260 
261 /*
262  * High-level relay kernel API and associated functions.
263  */
264 
265 /*
266  * rchan_callback implementations defining default channel behavior.  Used
267  * in place of corresponding NULL values in client callback struct.
268  */
269 
270 /*
271  * subbuf_start() default callback.  Does nothing.
272  */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 					  void *subbuf,
275 					  void *prev_subbuf,
276 					  size_t prev_padding)
277 {
278 	if (relay_buf_full(buf))
279 		return 0;
280 
281 	return 1;
282 }
283 
284 /*
285  * buf_mapped() default callback.  Does nothing.
286  */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 					struct file *filp)
289 {
290 }
291 
292 /*
293  * buf_unmapped() default callback.  Does nothing.
294  */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 					  struct file *filp)
297 {
298 }
299 
300 /*
301  * create_buf_file_create() default callback.  Does nothing.
302  */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 						       struct dentry *parent,
305 						       umode_t mode,
306 						       struct rchan_buf *buf,
307 						       int *is_global)
308 {
309 	return NULL;
310 }
311 
312 /*
313  * remove_buf_file() default callback.  Does nothing.
314  */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 	return -EINVAL;
318 }
319 
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 	.subbuf_start = subbuf_start_default_callback,
323 	.buf_mapped = buf_mapped_default_callback,
324 	.buf_unmapped = buf_unmapped_default_callback,
325 	.create_buf_file = create_buf_file_default_callback,
326 	.remove_buf_file = remove_buf_file_default_callback,
327 };
328 
329 /**
330  *	wakeup_readers - wake up readers waiting on a channel
331  *	@work: contains the channel buffer
332  *
333  *	This is the function used to defer reader waking
334  */
335 static void wakeup_readers(struct irq_work *work)
336 {
337 	struct rchan_buf *buf;
338 
339 	buf = container_of(work, struct rchan_buf, wakeup_work);
340 	wake_up_interruptible(&buf->read_wait);
341 }
342 
343 /**
344  *	__relay_reset - reset a channel buffer
345  *	@buf: the channel buffer
346  *	@init: 1 if this is a first-time initialization
347  *
348  *	See relay_reset() for description of effect.
349  */
350 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
351 {
352 	size_t i;
353 
354 	if (init) {
355 		init_waitqueue_head(&buf->read_wait);
356 		kref_init(&buf->kref);
357 		init_irq_work(&buf->wakeup_work, wakeup_readers);
358 	} else {
359 		irq_work_sync(&buf->wakeup_work);
360 	}
361 
362 	buf->subbufs_produced = 0;
363 	buf->subbufs_consumed = 0;
364 	buf->bytes_consumed = 0;
365 	buf->finalized = 0;
366 	buf->data = buf->start;
367 	buf->offset = 0;
368 
369 	for (i = 0; i < buf->chan->n_subbufs; i++)
370 		buf->padding[i] = 0;
371 
372 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
373 }
374 
375 /**
376  *	relay_reset - reset the channel
377  *	@chan: the channel
378  *
379  *	This has the effect of erasing all data from all channel buffers
380  *	and restarting the channel in its initial state.  The buffers
381  *	are not freed, so any mappings are still in effect.
382  *
383  *	NOTE. Care should be taken that the channel isn't actually
384  *	being used by anything when this call is made.
385  */
386 void relay_reset(struct rchan *chan)
387 {
388 	struct rchan_buf *buf;
389 	unsigned int i;
390 
391 	if (!chan)
392 		return;
393 
394 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
395 		__relay_reset(buf, 0);
396 		return;
397 	}
398 
399 	mutex_lock(&relay_channels_mutex);
400 	for_each_possible_cpu(i)
401 		if ((buf = *per_cpu_ptr(chan->buf, i)))
402 			__relay_reset(buf, 0);
403 	mutex_unlock(&relay_channels_mutex);
404 }
405 EXPORT_SYMBOL_GPL(relay_reset);
406 
407 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
408 					struct dentry *dentry)
409 {
410 	buf->dentry = dentry;
411 	d_inode(buf->dentry)->i_size = buf->early_bytes;
412 }
413 
414 static struct dentry *relay_create_buf_file(struct rchan *chan,
415 					    struct rchan_buf *buf,
416 					    unsigned int cpu)
417 {
418 	struct dentry *dentry;
419 	char *tmpname;
420 
421 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
422 	if (!tmpname)
423 		return NULL;
424 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
425 
426 	/* Create file in fs */
427 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
428 					   S_IRUSR, buf,
429 					   &chan->is_global);
430 
431 	kfree(tmpname);
432 
433 	return dentry;
434 }
435 
436 /*
437  *	relay_open_buf - create a new relay channel buffer
438  *
439  *	used by relay_open() and CPU hotplug.
440  */
441 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
442 {
443  	struct rchan_buf *buf = NULL;
444 	struct dentry *dentry;
445 
446  	if (chan->is_global)
447 		return *per_cpu_ptr(chan->buf, 0);
448 
449 	buf = relay_create_buf(chan);
450 	if (!buf)
451 		return NULL;
452 
453 	if (chan->has_base_filename) {
454 		dentry = relay_create_buf_file(chan, buf, cpu);
455 		if (!dentry)
456 			goto free_buf;
457 		relay_set_buf_dentry(buf, dentry);
458 	} else {
459 		/* Only retrieve global info, nothing more, nothing less */
460 		dentry = chan->cb->create_buf_file(NULL, NULL,
461 						   S_IRUSR, buf,
462 						   &chan->is_global);
463 		if (WARN_ON(dentry))
464 			goto free_buf;
465 	}
466 
467  	buf->cpu = cpu;
468  	__relay_reset(buf, 1);
469 
470  	if(chan->is_global) {
471 		*per_cpu_ptr(chan->buf, 0) = buf;
472  		buf->cpu = 0;
473   	}
474 
475 	return buf;
476 
477 free_buf:
478  	relay_destroy_buf(buf);
479 	return NULL;
480 }
481 
482 /**
483  *	relay_close_buf - close a channel buffer
484  *	@buf: channel buffer
485  *
486  *	Marks the buffer finalized and restores the default callbacks.
487  *	The channel buffer and channel buffer data structure are then freed
488  *	automatically when the last reference is given up.
489  */
490 static void relay_close_buf(struct rchan_buf *buf)
491 {
492 	buf->finalized = 1;
493 	irq_work_sync(&buf->wakeup_work);
494 	buf->chan->cb->remove_buf_file(buf->dentry);
495 	kref_put(&buf->kref, relay_remove_buf);
496 }
497 
498 static void setup_callbacks(struct rchan *chan,
499 				   struct rchan_callbacks *cb)
500 {
501 	if (!cb) {
502 		chan->cb = &default_channel_callbacks;
503 		return;
504 	}
505 
506 	if (!cb->subbuf_start)
507 		cb->subbuf_start = subbuf_start_default_callback;
508 	if (!cb->buf_mapped)
509 		cb->buf_mapped = buf_mapped_default_callback;
510 	if (!cb->buf_unmapped)
511 		cb->buf_unmapped = buf_unmapped_default_callback;
512 	if (!cb->create_buf_file)
513 		cb->create_buf_file = create_buf_file_default_callback;
514 	if (!cb->remove_buf_file)
515 		cb->remove_buf_file = remove_buf_file_default_callback;
516 	chan->cb = cb;
517 }
518 
519 int relay_prepare_cpu(unsigned int cpu)
520 {
521 	struct rchan *chan;
522 	struct rchan_buf *buf;
523 
524 	mutex_lock(&relay_channels_mutex);
525 	list_for_each_entry(chan, &relay_channels, list) {
526 		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
527 			continue;
528 		buf = relay_open_buf(chan, cpu);
529 		if (!buf) {
530 			pr_err("relay: cpu %d buffer creation failed\n", cpu);
531 			mutex_unlock(&relay_channels_mutex);
532 			return -ENOMEM;
533 		}
534 		*per_cpu_ptr(chan->buf, cpu) = buf;
535 	}
536 	mutex_unlock(&relay_channels_mutex);
537 	return 0;
538 }
539 
540 /**
541  *	relay_open - create a new relay channel
542  *	@base_filename: base name of files to create, %NULL for buffering only
543  *	@parent: dentry of parent directory, %NULL for root directory or buffer
544  *	@subbuf_size: size of sub-buffers
545  *	@n_subbufs: number of sub-buffers
546  *	@cb: client callback functions
547  *	@private_data: user-defined data
548  *
549  *	Returns channel pointer if successful, %NULL otherwise.
550  *
551  *	Creates a channel buffer for each cpu using the sizes and
552  *	attributes specified.  The created channel buffer files
553  *	will be named base_filename0...base_filenameN-1.  File
554  *	permissions will be %S_IRUSR.
555  *
556  *	If opening a buffer (@parent = NULL) that you later wish to register
557  *	in a filesystem, call relay_late_setup_files() once the @parent dentry
558  *	is available.
559  */
560 struct rchan *relay_open(const char *base_filename,
561 			 struct dentry *parent,
562 			 size_t subbuf_size,
563 			 size_t n_subbufs,
564 			 struct rchan_callbacks *cb,
565 			 void *private_data)
566 {
567 	unsigned int i;
568 	struct rchan *chan;
569 	struct rchan_buf *buf;
570 
571 	if (!(subbuf_size && n_subbufs))
572 		return NULL;
573 	if (subbuf_size > UINT_MAX / n_subbufs)
574 		return NULL;
575 
576 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
577 	if (!chan)
578 		return NULL;
579 
580 	chan->buf = alloc_percpu(struct rchan_buf *);
581 	chan->version = RELAYFS_CHANNEL_VERSION;
582 	chan->n_subbufs = n_subbufs;
583 	chan->subbuf_size = subbuf_size;
584 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
585 	chan->parent = parent;
586 	chan->private_data = private_data;
587 	if (base_filename) {
588 		chan->has_base_filename = 1;
589 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
590 	}
591 	setup_callbacks(chan, cb);
592 	kref_init(&chan->kref);
593 
594 	mutex_lock(&relay_channels_mutex);
595 	for_each_online_cpu(i) {
596 		buf = relay_open_buf(chan, i);
597 		if (!buf)
598 			goto free_bufs;
599 		*per_cpu_ptr(chan->buf, i) = buf;
600 	}
601 	list_add(&chan->list, &relay_channels);
602 	mutex_unlock(&relay_channels_mutex);
603 
604 	return chan;
605 
606 free_bufs:
607 	for_each_possible_cpu(i) {
608 		if ((buf = *per_cpu_ptr(chan->buf, i)))
609 			relay_close_buf(buf);
610 	}
611 
612 	kref_put(&chan->kref, relay_destroy_channel);
613 	mutex_unlock(&relay_channels_mutex);
614 	return NULL;
615 }
616 EXPORT_SYMBOL_GPL(relay_open);
617 
618 struct rchan_percpu_buf_dispatcher {
619 	struct rchan_buf *buf;
620 	struct dentry *dentry;
621 };
622 
623 /* Called in atomic context. */
624 static void __relay_set_buf_dentry(void *info)
625 {
626 	struct rchan_percpu_buf_dispatcher *p = info;
627 
628 	relay_set_buf_dentry(p->buf, p->dentry);
629 }
630 
631 /**
632  *	relay_late_setup_files - triggers file creation
633  *	@chan: channel to operate on
634  *	@base_filename: base name of files to create
635  *	@parent: dentry of parent directory, %NULL for root directory
636  *
637  *	Returns 0 if successful, non-zero otherwise.
638  *
639  *	Use to setup files for a previously buffer-only channel created
640  *	by relay_open() with a NULL parent dentry.
641  *
642  *	For example, this is useful for perfomring early tracing in kernel,
643  *	before VFS is up and then exposing the early results once the dentry
644  *	is available.
645  */
646 int relay_late_setup_files(struct rchan *chan,
647 			   const char *base_filename,
648 			   struct dentry *parent)
649 {
650 	int err = 0;
651 	unsigned int i, curr_cpu;
652 	unsigned long flags;
653 	struct dentry *dentry;
654 	struct rchan_buf *buf;
655 	struct rchan_percpu_buf_dispatcher disp;
656 
657 	if (!chan || !base_filename)
658 		return -EINVAL;
659 
660 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
661 
662 	mutex_lock(&relay_channels_mutex);
663 	/* Is chan already set up? */
664 	if (unlikely(chan->has_base_filename)) {
665 		mutex_unlock(&relay_channels_mutex);
666 		return -EEXIST;
667 	}
668 	chan->has_base_filename = 1;
669 	chan->parent = parent;
670 
671 	if (chan->is_global) {
672 		err = -EINVAL;
673 		buf = *per_cpu_ptr(chan->buf, 0);
674 		if (!WARN_ON_ONCE(!buf)) {
675 			dentry = relay_create_buf_file(chan, buf, 0);
676 			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
677 				relay_set_buf_dentry(buf, dentry);
678 				err = 0;
679 			}
680 		}
681 		mutex_unlock(&relay_channels_mutex);
682 		return err;
683 	}
684 
685 	curr_cpu = get_cpu();
686 	/*
687 	 * The CPU hotplug notifier ran before us and created buffers with
688 	 * no files associated. So it's safe to call relay_setup_buf_file()
689 	 * on all currently online CPUs.
690 	 */
691 	for_each_online_cpu(i) {
692 		buf = *per_cpu_ptr(chan->buf, i);
693 		if (unlikely(!buf)) {
694 			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
695 			err = -EINVAL;
696 			break;
697 		}
698 
699 		dentry = relay_create_buf_file(chan, buf, i);
700 		if (unlikely(!dentry)) {
701 			err = -EINVAL;
702 			break;
703 		}
704 
705 		if (curr_cpu == i) {
706 			local_irq_save(flags);
707 			relay_set_buf_dentry(buf, dentry);
708 			local_irq_restore(flags);
709 		} else {
710 			disp.buf = buf;
711 			disp.dentry = dentry;
712 			smp_mb();
713 			/* relay_channels_mutex must be held, so wait. */
714 			err = smp_call_function_single(i,
715 						       __relay_set_buf_dentry,
716 						       &disp, 1);
717 		}
718 		if (unlikely(err))
719 			break;
720 	}
721 	put_cpu();
722 	mutex_unlock(&relay_channels_mutex);
723 
724 	return err;
725 }
726 EXPORT_SYMBOL_GPL(relay_late_setup_files);
727 
728 /**
729  *	relay_switch_subbuf - switch to a new sub-buffer
730  *	@buf: channel buffer
731  *	@length: size of current event
732  *
733  *	Returns either the length passed in or 0 if full.
734  *
735  *	Performs sub-buffer-switch tasks such as invoking callbacks,
736  *	updating padding counts, waking up readers, etc.
737  */
738 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
739 {
740 	void *old, *new;
741 	size_t old_subbuf, new_subbuf;
742 
743 	if (unlikely(length > buf->chan->subbuf_size))
744 		goto toobig;
745 
746 	if (buf->offset != buf->chan->subbuf_size + 1) {
747 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
748 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
749 		buf->padding[old_subbuf] = buf->prev_padding;
750 		buf->subbufs_produced++;
751 		if (buf->dentry)
752 			d_inode(buf->dentry)->i_size +=
753 				buf->chan->subbuf_size -
754 				buf->padding[old_subbuf];
755 		else
756 			buf->early_bytes += buf->chan->subbuf_size -
757 					    buf->padding[old_subbuf];
758 		smp_mb();
759 		if (waitqueue_active(&buf->read_wait)) {
760 			/*
761 			 * Calling wake_up_interruptible() from here
762 			 * will deadlock if we happen to be logging
763 			 * from the scheduler (trying to re-grab
764 			 * rq->lock), so defer it.
765 			 */
766 			irq_work_queue(&buf->wakeup_work);
767 		}
768 	}
769 
770 	old = buf->data;
771 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
772 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
773 	buf->offset = 0;
774 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
775 		buf->offset = buf->chan->subbuf_size + 1;
776 		return 0;
777 	}
778 	buf->data = new;
779 	buf->padding[new_subbuf] = 0;
780 
781 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
782 		goto toobig;
783 
784 	return length;
785 
786 toobig:
787 	buf->chan->last_toobig = length;
788 	return 0;
789 }
790 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
791 
792 /**
793  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
794  *	@chan: the channel
795  *	@cpu: the cpu associated with the channel buffer to update
796  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
797  *
798  *	Adds to the channel buffer's consumed sub-buffer count.
799  *	subbufs_consumed should be the number of sub-buffers newly consumed,
800  *	not the total consumed.
801  *
802  *	NOTE. Kernel clients don't need to call this function if the channel
803  *	mode is 'overwrite'.
804  */
805 void relay_subbufs_consumed(struct rchan *chan,
806 			    unsigned int cpu,
807 			    size_t subbufs_consumed)
808 {
809 	struct rchan_buf *buf;
810 
811 	if (!chan || cpu >= NR_CPUS)
812 		return;
813 
814 	buf = *per_cpu_ptr(chan->buf, cpu);
815 	if (!buf || subbufs_consumed > chan->n_subbufs)
816 		return;
817 
818 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
819 		buf->subbufs_consumed = buf->subbufs_produced;
820 	else
821 		buf->subbufs_consumed += subbufs_consumed;
822 }
823 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
824 
825 /**
826  *	relay_close - close the channel
827  *	@chan: the channel
828  *
829  *	Closes all channel buffers and frees the channel.
830  */
831 void relay_close(struct rchan *chan)
832 {
833 	struct rchan_buf *buf;
834 	unsigned int i;
835 
836 	if (!chan)
837 		return;
838 
839 	mutex_lock(&relay_channels_mutex);
840 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
841 		relay_close_buf(buf);
842 	else
843 		for_each_possible_cpu(i)
844 			if ((buf = *per_cpu_ptr(chan->buf, i)))
845 				relay_close_buf(buf);
846 
847 	if (chan->last_toobig)
848 		printk(KERN_WARNING "relay: one or more items not logged "
849 		       "[item size (%zd) > sub-buffer size (%zd)]\n",
850 		       chan->last_toobig, chan->subbuf_size);
851 
852 	list_del(&chan->list);
853 	kref_put(&chan->kref, relay_destroy_channel);
854 	mutex_unlock(&relay_channels_mutex);
855 }
856 EXPORT_SYMBOL_GPL(relay_close);
857 
858 /**
859  *	relay_flush - close the channel
860  *	@chan: the channel
861  *
862  *	Flushes all channel buffers, i.e. forces buffer switch.
863  */
864 void relay_flush(struct rchan *chan)
865 {
866 	struct rchan_buf *buf;
867 	unsigned int i;
868 
869 	if (!chan)
870 		return;
871 
872 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
873 		relay_switch_subbuf(buf, 0);
874 		return;
875 	}
876 
877 	mutex_lock(&relay_channels_mutex);
878 	for_each_possible_cpu(i)
879 		if ((buf = *per_cpu_ptr(chan->buf, i)))
880 			relay_switch_subbuf(buf, 0);
881 	mutex_unlock(&relay_channels_mutex);
882 }
883 EXPORT_SYMBOL_GPL(relay_flush);
884 
885 /**
886  *	relay_file_open - open file op for relay files
887  *	@inode: the inode
888  *	@filp: the file
889  *
890  *	Increments the channel buffer refcount.
891  */
892 static int relay_file_open(struct inode *inode, struct file *filp)
893 {
894 	struct rchan_buf *buf = inode->i_private;
895 	kref_get(&buf->kref);
896 	filp->private_data = buf;
897 
898 	return nonseekable_open(inode, filp);
899 }
900 
901 /**
902  *	relay_file_mmap - mmap file op for relay files
903  *	@filp: the file
904  *	@vma: the vma describing what to map
905  *
906  *	Calls upon relay_mmap_buf() to map the file into user space.
907  */
908 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
909 {
910 	struct rchan_buf *buf = filp->private_data;
911 	return relay_mmap_buf(buf, vma);
912 }
913 
914 /**
915  *	relay_file_poll - poll file op for relay files
916  *	@filp: the file
917  *	@wait: poll table
918  *
919  *	Poll implemention.
920  */
921 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
922 {
923 	__poll_t mask = 0;
924 	struct rchan_buf *buf = filp->private_data;
925 
926 	if (buf->finalized)
927 		return EPOLLERR;
928 
929 	if (filp->f_mode & FMODE_READ) {
930 		poll_wait(filp, &buf->read_wait, wait);
931 		if (!relay_buf_empty(buf))
932 			mask |= EPOLLIN | EPOLLRDNORM;
933 	}
934 
935 	return mask;
936 }
937 
938 /**
939  *	relay_file_release - release file op for relay files
940  *	@inode: the inode
941  *	@filp: the file
942  *
943  *	Decrements the channel refcount, as the filesystem is
944  *	no longer using it.
945  */
946 static int relay_file_release(struct inode *inode, struct file *filp)
947 {
948 	struct rchan_buf *buf = filp->private_data;
949 	kref_put(&buf->kref, relay_remove_buf);
950 
951 	return 0;
952 }
953 
954 /*
955  *	relay_file_read_consume - update the consumed count for the buffer
956  */
957 static void relay_file_read_consume(struct rchan_buf *buf,
958 				    size_t read_pos,
959 				    size_t bytes_consumed)
960 {
961 	size_t subbuf_size = buf->chan->subbuf_size;
962 	size_t n_subbufs = buf->chan->n_subbufs;
963 	size_t read_subbuf;
964 
965 	if (buf->subbufs_produced == buf->subbufs_consumed &&
966 	    buf->offset == buf->bytes_consumed)
967 		return;
968 
969 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
970 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
971 		buf->bytes_consumed = 0;
972 	}
973 
974 	buf->bytes_consumed += bytes_consumed;
975 	if (!read_pos)
976 		read_subbuf = buf->subbufs_consumed % n_subbufs;
977 	else
978 		read_subbuf = read_pos / buf->chan->subbuf_size;
979 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
980 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
981 		    (buf->offset == subbuf_size))
982 			return;
983 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
984 		buf->bytes_consumed = 0;
985 	}
986 }
987 
988 /*
989  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
990  */
991 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
992 {
993 	size_t subbuf_size = buf->chan->subbuf_size;
994 	size_t n_subbufs = buf->chan->n_subbufs;
995 	size_t produced = buf->subbufs_produced;
996 	size_t consumed = buf->subbufs_consumed;
997 
998 	relay_file_read_consume(buf, read_pos, 0);
999 
1000 	consumed = buf->subbufs_consumed;
1001 
1002 	if (unlikely(buf->offset > subbuf_size)) {
1003 		if (produced == consumed)
1004 			return 0;
1005 		return 1;
1006 	}
1007 
1008 	if (unlikely(produced - consumed >= n_subbufs)) {
1009 		consumed = produced - n_subbufs + 1;
1010 		buf->subbufs_consumed = consumed;
1011 		buf->bytes_consumed = 0;
1012 	}
1013 
1014 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1015 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1016 
1017 	if (consumed > produced)
1018 		produced += n_subbufs * subbuf_size;
1019 
1020 	if (consumed == produced) {
1021 		if (buf->offset == subbuf_size &&
1022 		    buf->subbufs_produced > buf->subbufs_consumed)
1023 			return 1;
1024 		return 0;
1025 	}
1026 
1027 	return 1;
1028 }
1029 
1030 /**
1031  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1032  *	@read_pos: file read position
1033  *	@buf: relay channel buffer
1034  */
1035 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1036 					   struct rchan_buf *buf)
1037 {
1038 	size_t padding, avail = 0;
1039 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1040 	size_t subbuf_size = buf->chan->subbuf_size;
1041 
1042 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1043 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1044 	read_subbuf = read_pos / subbuf_size;
1045 	read_offset = read_pos % subbuf_size;
1046 	padding = buf->padding[read_subbuf];
1047 
1048 	if (read_subbuf == write_subbuf) {
1049 		if (read_offset + padding < write_offset)
1050 			avail = write_offset - (read_offset + padding);
1051 	} else
1052 		avail = (subbuf_size - padding) - read_offset;
1053 
1054 	return avail;
1055 }
1056 
1057 /**
1058  *	relay_file_read_start_pos - find the first available byte to read
1059  *	@read_pos: file read position
1060  *	@buf: relay channel buffer
1061  *
1062  *	If the @read_pos is in the middle of padding, return the
1063  *	position of the first actually available byte, otherwise
1064  *	return the original value.
1065  */
1066 static size_t relay_file_read_start_pos(size_t read_pos,
1067 					struct rchan_buf *buf)
1068 {
1069 	size_t read_subbuf, padding, padding_start, padding_end;
1070 	size_t subbuf_size = buf->chan->subbuf_size;
1071 	size_t n_subbufs = buf->chan->n_subbufs;
1072 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1073 
1074 	if (!read_pos)
1075 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1076 	read_subbuf = read_pos / subbuf_size;
1077 	padding = buf->padding[read_subbuf];
1078 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1079 	padding_end = (read_subbuf + 1) * subbuf_size;
1080 	if (read_pos >= padding_start && read_pos < padding_end) {
1081 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1082 		read_pos = read_subbuf * subbuf_size;
1083 	}
1084 
1085 	return read_pos;
1086 }
1087 
1088 /**
1089  *	relay_file_read_end_pos - return the new read position
1090  *	@read_pos: file read position
1091  *	@buf: relay channel buffer
1092  *	@count: number of bytes to be read
1093  */
1094 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1095 				      size_t read_pos,
1096 				      size_t count)
1097 {
1098 	size_t read_subbuf, padding, end_pos;
1099 	size_t subbuf_size = buf->chan->subbuf_size;
1100 	size_t n_subbufs = buf->chan->n_subbufs;
1101 
1102 	read_subbuf = read_pos / subbuf_size;
1103 	padding = buf->padding[read_subbuf];
1104 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1105 		end_pos = (read_subbuf + 1) * subbuf_size;
1106 	else
1107 		end_pos = read_pos + count;
1108 	if (end_pos >= subbuf_size * n_subbufs)
1109 		end_pos = 0;
1110 
1111 	return end_pos;
1112 }
1113 
1114 static ssize_t relay_file_read(struct file *filp,
1115 			       char __user *buffer,
1116 			       size_t count,
1117 			       loff_t *ppos)
1118 {
1119 	struct rchan_buf *buf = filp->private_data;
1120 	size_t read_start, avail;
1121 	size_t written = 0;
1122 	int ret;
1123 
1124 	if (!count)
1125 		return 0;
1126 
1127 	inode_lock(file_inode(filp));
1128 	do {
1129 		void *from;
1130 
1131 		if (!relay_file_read_avail(buf, *ppos))
1132 			break;
1133 
1134 		read_start = relay_file_read_start_pos(*ppos, buf);
1135 		avail = relay_file_read_subbuf_avail(read_start, buf);
1136 		if (!avail)
1137 			break;
1138 
1139 		avail = min(count, avail);
1140 		from = buf->start + read_start;
1141 		ret = avail;
1142 		if (copy_to_user(buffer, from, avail))
1143 			break;
1144 
1145 		buffer += ret;
1146 		written += ret;
1147 		count -= ret;
1148 
1149 		relay_file_read_consume(buf, read_start, ret);
1150 		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1151 	} while (count);
1152 	inode_unlock(file_inode(filp));
1153 
1154 	return written;
1155 }
1156 
1157 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1158 {
1159 	rbuf->bytes_consumed += bytes_consumed;
1160 
1161 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1162 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1163 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1164 	}
1165 }
1166 
1167 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1168 				   struct pipe_buffer *buf)
1169 {
1170 	struct rchan_buf *rbuf;
1171 
1172 	rbuf = (struct rchan_buf *)page_private(buf->page);
1173 	relay_consume_bytes(rbuf, buf->private);
1174 }
1175 
1176 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1177 	.can_merge = 0,
1178 	.confirm = generic_pipe_buf_confirm,
1179 	.release = relay_pipe_buf_release,
1180 	.steal = generic_pipe_buf_steal,
1181 	.get = generic_pipe_buf_get,
1182 };
1183 
1184 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1185 {
1186 }
1187 
1188 /*
1189  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1190  */
1191 static ssize_t subbuf_splice_actor(struct file *in,
1192 			       loff_t *ppos,
1193 			       struct pipe_inode_info *pipe,
1194 			       size_t len,
1195 			       unsigned int flags,
1196 			       int *nonpad_ret)
1197 {
1198 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1199 	struct rchan_buf *rbuf = in->private_data;
1200 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1201 	uint64_t pos = (uint64_t) *ppos;
1202 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1203 	size_t read_start = (size_t) do_div(pos, alloc_size);
1204 	size_t read_subbuf = read_start / subbuf_size;
1205 	size_t padding = rbuf->padding[read_subbuf];
1206 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1207 	struct page *pages[PIPE_DEF_BUFFERS];
1208 	struct partial_page partial[PIPE_DEF_BUFFERS];
1209 	struct splice_pipe_desc spd = {
1210 		.pages = pages,
1211 		.nr_pages = 0,
1212 		.nr_pages_max = PIPE_DEF_BUFFERS,
1213 		.partial = partial,
1214 		.ops = &relay_pipe_buf_ops,
1215 		.spd_release = relay_page_release,
1216 	};
1217 	ssize_t ret;
1218 
1219 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1220 		return 0;
1221 	if (splice_grow_spd(pipe, &spd))
1222 		return -ENOMEM;
1223 
1224 	/*
1225 	 * Adjust read len, if longer than what is available
1226 	 */
1227 	if (len > (subbuf_size - read_start % subbuf_size))
1228 		len = subbuf_size - read_start % subbuf_size;
1229 
1230 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1231 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1232 	poff = read_start & ~PAGE_MASK;
1233 	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1234 
1235 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1236 		unsigned int this_len, this_end, private;
1237 		unsigned int cur_pos = read_start + total_len;
1238 
1239 		if (!len)
1240 			break;
1241 
1242 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1243 		private = this_len;
1244 
1245 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1246 		spd.partial[spd.nr_pages].offset = poff;
1247 
1248 		this_end = cur_pos + this_len;
1249 		if (this_end >= nonpad_end) {
1250 			this_len = nonpad_end - cur_pos;
1251 			private = this_len + padding;
1252 		}
1253 		spd.partial[spd.nr_pages].len = this_len;
1254 		spd.partial[spd.nr_pages].private = private;
1255 
1256 		len -= this_len;
1257 		total_len += this_len;
1258 		poff = 0;
1259 		pidx = (pidx + 1) % subbuf_pages;
1260 
1261 		if (this_end >= nonpad_end) {
1262 			spd.nr_pages++;
1263 			break;
1264 		}
1265 	}
1266 
1267 	ret = 0;
1268 	if (!spd.nr_pages)
1269 		goto out;
1270 
1271 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1272 	if (ret < 0 || ret < total_len)
1273 		goto out;
1274 
1275         if (read_start + ret == nonpad_end)
1276                 ret += padding;
1277 
1278 out:
1279 	splice_shrink_spd(&spd);
1280 	return ret;
1281 }
1282 
1283 static ssize_t relay_file_splice_read(struct file *in,
1284 				      loff_t *ppos,
1285 				      struct pipe_inode_info *pipe,
1286 				      size_t len,
1287 				      unsigned int flags)
1288 {
1289 	ssize_t spliced;
1290 	int ret;
1291 	int nonpad_ret = 0;
1292 
1293 	ret = 0;
1294 	spliced = 0;
1295 
1296 	while (len && !spliced) {
1297 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1298 		if (ret < 0)
1299 			break;
1300 		else if (!ret) {
1301 			if (flags & SPLICE_F_NONBLOCK)
1302 				ret = -EAGAIN;
1303 			break;
1304 		}
1305 
1306 		*ppos += ret;
1307 		if (ret > len)
1308 			len = 0;
1309 		else
1310 			len -= ret;
1311 		spliced += nonpad_ret;
1312 		nonpad_ret = 0;
1313 	}
1314 
1315 	if (spliced)
1316 		return spliced;
1317 
1318 	return ret;
1319 }
1320 
1321 const struct file_operations relay_file_operations = {
1322 	.open		= relay_file_open,
1323 	.poll		= relay_file_poll,
1324 	.mmap		= relay_file_mmap,
1325 	.read		= relay_file_read,
1326 	.llseek		= no_llseek,
1327 	.release	= relay_file_release,
1328 	.splice_read	= relay_file_splice_read,
1329 };
1330 EXPORT_SYMBOL_GPL(relay_file_operations);
1331