1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.rst for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * fault() vm_op implementation for relay file mapping. 32 */ 33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf) 34 { 35 struct page *page; 36 struct rchan_buf *buf = vmf->vma->vm_private_data; 37 pgoff_t pgoff = vmf->pgoff; 38 39 if (!buf) 40 return VM_FAULT_OOM; 41 42 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 43 if (!page) 44 return VM_FAULT_SIGBUS; 45 get_page(page); 46 vmf->page = page; 47 48 return 0; 49 } 50 51 /* 52 * vm_ops for relay file mappings. 53 */ 54 static const struct vm_operations_struct relay_file_mmap_ops = { 55 .fault = relay_buf_fault, 56 }; 57 58 /* 59 * allocate an array of pointers of struct page 60 */ 61 static struct page **relay_alloc_page_array(unsigned int n_pages) 62 { 63 return kvcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); 64 } 65 66 /* 67 * free an array of pointers of struct page 68 */ 69 static void relay_free_page_array(struct page **array) 70 { 71 kvfree(array); 72 } 73 74 /** 75 * relay_mmap_buf: - mmap channel buffer to process address space 76 * @buf: relay channel buffer 77 * @vma: vm_area_struct describing memory to be mapped 78 * 79 * Returns 0 if ok, negative on error 80 * 81 * Caller should already have grabbed mmap_lock. 82 */ 83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 84 { 85 unsigned long length = vma->vm_end - vma->vm_start; 86 87 if (!buf) 88 return -EBADF; 89 90 if (length != (unsigned long)buf->chan->alloc_size) 91 return -EINVAL; 92 93 vma->vm_ops = &relay_file_mmap_ops; 94 vm_flags_set(vma, VM_DONTEXPAND); 95 vma->vm_private_data = buf; 96 97 return 0; 98 } 99 100 /** 101 * relay_alloc_buf - allocate a channel buffer 102 * @buf: the buffer struct 103 * @size: total size of the buffer 104 * 105 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 106 * passed in size will get page aligned, if it isn't already. 107 */ 108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 109 { 110 void *mem; 111 unsigned int i, j, n_pages; 112 113 *size = PAGE_ALIGN(*size); 114 n_pages = *size >> PAGE_SHIFT; 115 116 buf->page_array = relay_alloc_page_array(n_pages); 117 if (!buf->page_array) 118 return NULL; 119 120 for (i = 0; i < n_pages; i++) { 121 buf->page_array[i] = alloc_page(GFP_KERNEL); 122 if (unlikely(!buf->page_array[i])) 123 goto depopulate; 124 set_page_private(buf->page_array[i], (unsigned long)buf); 125 } 126 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 127 if (!mem) 128 goto depopulate; 129 130 memset(mem, 0, *size); 131 buf->page_count = n_pages; 132 return mem; 133 134 depopulate: 135 for (j = 0; j < i; j++) 136 __free_page(buf->page_array[j]); 137 relay_free_page_array(buf->page_array); 138 return NULL; 139 } 140 141 /** 142 * relay_create_buf - allocate and initialize a channel buffer 143 * @chan: the relay channel 144 * 145 * Returns channel buffer if successful, %NULL otherwise. 146 */ 147 static struct rchan_buf *relay_create_buf(struct rchan *chan) 148 { 149 struct rchan_buf *buf; 150 151 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t)) 152 return NULL; 153 154 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 155 if (!buf) 156 return NULL; 157 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t), 158 GFP_KERNEL); 159 if (!buf->padding) 160 goto free_buf; 161 162 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 163 if (!buf->start) 164 goto free_buf; 165 166 buf->chan = chan; 167 kref_get(&buf->chan->kref); 168 return buf; 169 170 free_buf: 171 kfree(buf->padding); 172 kfree(buf); 173 return NULL; 174 } 175 176 /** 177 * relay_destroy_channel - free the channel struct 178 * @kref: target kernel reference that contains the relay channel 179 * 180 * Should only be called from kref_put(). 181 */ 182 static void relay_destroy_channel(struct kref *kref) 183 { 184 struct rchan *chan = container_of(kref, struct rchan, kref); 185 free_percpu(chan->buf); 186 kfree(chan); 187 } 188 189 /** 190 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 191 * @buf: the buffer struct 192 */ 193 static void relay_destroy_buf(struct rchan_buf *buf) 194 { 195 struct rchan *chan = buf->chan; 196 unsigned int i; 197 198 if (likely(buf->start)) { 199 vunmap(buf->start); 200 for (i = 0; i < buf->page_count; i++) 201 __free_page(buf->page_array[i]); 202 relay_free_page_array(buf->page_array); 203 } 204 *per_cpu_ptr(chan->buf, buf->cpu) = NULL; 205 kfree(buf->padding); 206 kfree(buf); 207 kref_put(&chan->kref, relay_destroy_channel); 208 } 209 210 /** 211 * relay_remove_buf - remove a channel buffer 212 * @kref: target kernel reference that contains the relay buffer 213 * 214 * Removes the file from the filesystem, which also frees the 215 * rchan_buf_struct and the channel buffer. Should only be called from 216 * kref_put(). 217 */ 218 static void relay_remove_buf(struct kref *kref) 219 { 220 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 221 relay_destroy_buf(buf); 222 } 223 224 /** 225 * relay_buf_empty - boolean, is the channel buffer empty? 226 * @buf: channel buffer 227 * 228 * Returns 1 if the buffer is empty, 0 otherwise. 229 */ 230 static int relay_buf_empty(struct rchan_buf *buf) 231 { 232 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 233 } 234 235 /** 236 * relay_buf_full - boolean, is the channel buffer full? 237 * @buf: channel buffer 238 * 239 * Returns 1 if the buffer is full, 0 otherwise. 240 */ 241 int relay_buf_full(struct rchan_buf *buf) 242 { 243 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 244 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 245 } 246 EXPORT_SYMBOL_GPL(relay_buf_full); 247 248 /* 249 * High-level relay kernel API and associated functions. 250 */ 251 252 static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf, 253 void *prev_subbuf, size_t prev_padding) 254 { 255 if (!buf->chan->cb->subbuf_start) 256 return !relay_buf_full(buf); 257 258 return buf->chan->cb->subbuf_start(buf, subbuf, 259 prev_subbuf, prev_padding); 260 } 261 262 /** 263 * wakeup_readers - wake up readers waiting on a channel 264 * @work: contains the channel buffer 265 * 266 * This is the function used to defer reader waking 267 */ 268 static void wakeup_readers(struct irq_work *work) 269 { 270 struct rchan_buf *buf; 271 272 buf = container_of(work, struct rchan_buf, wakeup_work); 273 wake_up_interruptible(&buf->read_wait); 274 } 275 276 /** 277 * __relay_reset - reset a channel buffer 278 * @buf: the channel buffer 279 * @init: 1 if this is a first-time initialization 280 * 281 * See relay_reset() for description of effect. 282 */ 283 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 284 { 285 size_t i; 286 287 if (init) { 288 init_waitqueue_head(&buf->read_wait); 289 kref_init(&buf->kref); 290 init_irq_work(&buf->wakeup_work, wakeup_readers); 291 } else { 292 irq_work_sync(&buf->wakeup_work); 293 } 294 295 buf->subbufs_produced = 0; 296 buf->subbufs_consumed = 0; 297 buf->bytes_consumed = 0; 298 buf->finalized = 0; 299 buf->data = buf->start; 300 buf->offset = 0; 301 302 for (i = 0; i < buf->chan->n_subbufs; i++) 303 buf->padding[i] = 0; 304 305 relay_subbuf_start(buf, buf->data, NULL, 0); 306 } 307 308 /** 309 * relay_reset - reset the channel 310 * @chan: the channel 311 * 312 * This has the effect of erasing all data from all channel buffers 313 * and restarting the channel in its initial state. The buffers 314 * are not freed, so any mappings are still in effect. 315 * 316 * NOTE. Care should be taken that the channel isn't actually 317 * being used by anything when this call is made. 318 */ 319 void relay_reset(struct rchan *chan) 320 { 321 struct rchan_buf *buf; 322 unsigned int i; 323 324 if (!chan) 325 return; 326 327 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 328 __relay_reset(buf, 0); 329 return; 330 } 331 332 mutex_lock(&relay_channels_mutex); 333 for_each_possible_cpu(i) 334 if ((buf = *per_cpu_ptr(chan->buf, i))) 335 __relay_reset(buf, 0); 336 mutex_unlock(&relay_channels_mutex); 337 } 338 EXPORT_SYMBOL_GPL(relay_reset); 339 340 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 341 struct dentry *dentry) 342 { 343 buf->dentry = dentry; 344 d_inode(buf->dentry)->i_size = buf->early_bytes; 345 } 346 347 static struct dentry *relay_create_buf_file(struct rchan *chan, 348 struct rchan_buf *buf, 349 unsigned int cpu) 350 { 351 struct dentry *dentry; 352 char *tmpname; 353 354 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 355 if (!tmpname) 356 return NULL; 357 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 358 359 /* Create file in fs */ 360 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 361 S_IRUSR, buf, 362 &chan->is_global); 363 if (IS_ERR(dentry)) 364 dentry = NULL; 365 366 kfree(tmpname); 367 368 return dentry; 369 } 370 371 /* 372 * relay_open_buf - create a new relay channel buffer 373 * 374 * used by relay_open() and CPU hotplug. 375 */ 376 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 377 { 378 struct rchan_buf *buf = NULL; 379 struct dentry *dentry; 380 381 if (chan->is_global) 382 return *per_cpu_ptr(chan->buf, 0); 383 384 buf = relay_create_buf(chan); 385 if (!buf) 386 return NULL; 387 388 if (chan->has_base_filename) { 389 dentry = relay_create_buf_file(chan, buf, cpu); 390 if (!dentry) 391 goto free_buf; 392 relay_set_buf_dentry(buf, dentry); 393 } else { 394 /* Only retrieve global info, nothing more, nothing less */ 395 dentry = chan->cb->create_buf_file(NULL, NULL, 396 S_IRUSR, buf, 397 &chan->is_global); 398 if (IS_ERR_OR_NULL(dentry)) 399 goto free_buf; 400 } 401 402 buf->cpu = cpu; 403 __relay_reset(buf, 1); 404 405 if(chan->is_global) { 406 *per_cpu_ptr(chan->buf, 0) = buf; 407 buf->cpu = 0; 408 } 409 410 return buf; 411 412 free_buf: 413 relay_destroy_buf(buf); 414 return NULL; 415 } 416 417 /** 418 * relay_close_buf - close a channel buffer 419 * @buf: channel buffer 420 * 421 * Marks the buffer finalized and restores the default callbacks. 422 * The channel buffer and channel buffer data structure are then freed 423 * automatically when the last reference is given up. 424 */ 425 static void relay_close_buf(struct rchan_buf *buf) 426 { 427 buf->finalized = 1; 428 irq_work_sync(&buf->wakeup_work); 429 buf->chan->cb->remove_buf_file(buf->dentry); 430 kref_put(&buf->kref, relay_remove_buf); 431 } 432 433 int relay_prepare_cpu(unsigned int cpu) 434 { 435 struct rchan *chan; 436 struct rchan_buf *buf; 437 438 mutex_lock(&relay_channels_mutex); 439 list_for_each_entry(chan, &relay_channels, list) { 440 if (*per_cpu_ptr(chan->buf, cpu)) 441 continue; 442 buf = relay_open_buf(chan, cpu); 443 if (!buf) { 444 pr_err("relay: cpu %d buffer creation failed\n", cpu); 445 mutex_unlock(&relay_channels_mutex); 446 return -ENOMEM; 447 } 448 *per_cpu_ptr(chan->buf, cpu) = buf; 449 } 450 mutex_unlock(&relay_channels_mutex); 451 return 0; 452 } 453 454 /** 455 * relay_open - create a new relay channel 456 * @base_filename: base name of files to create, %NULL for buffering only 457 * @parent: dentry of parent directory, %NULL for root directory or buffer 458 * @subbuf_size: size of sub-buffers 459 * @n_subbufs: number of sub-buffers 460 * @cb: client callback functions 461 * @private_data: user-defined data 462 * 463 * Returns channel pointer if successful, %NULL otherwise. 464 * 465 * Creates a channel buffer for each cpu using the sizes and 466 * attributes specified. The created channel buffer files 467 * will be named base_filename0...base_filenameN-1. File 468 * permissions will be %S_IRUSR. 469 * 470 * If opening a buffer (@parent = NULL) that you later wish to register 471 * in a filesystem, call relay_late_setup_files() once the @parent dentry 472 * is available. 473 */ 474 struct rchan *relay_open(const char *base_filename, 475 struct dentry *parent, 476 size_t subbuf_size, 477 size_t n_subbufs, 478 const struct rchan_callbacks *cb, 479 void *private_data) 480 { 481 unsigned int i; 482 struct rchan *chan; 483 struct rchan_buf *buf; 484 485 if (!(subbuf_size && n_subbufs)) 486 return NULL; 487 if (subbuf_size > UINT_MAX / n_subbufs) 488 return NULL; 489 if (!cb || !cb->create_buf_file || !cb->remove_buf_file) 490 return NULL; 491 492 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 493 if (!chan) 494 return NULL; 495 496 chan->buf = alloc_percpu(struct rchan_buf *); 497 if (!chan->buf) { 498 kfree(chan); 499 return NULL; 500 } 501 502 chan->version = RELAYFS_CHANNEL_VERSION; 503 chan->n_subbufs = n_subbufs; 504 chan->subbuf_size = subbuf_size; 505 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 506 chan->parent = parent; 507 chan->private_data = private_data; 508 if (base_filename) { 509 chan->has_base_filename = 1; 510 strscpy(chan->base_filename, base_filename, NAME_MAX); 511 } 512 chan->cb = cb; 513 kref_init(&chan->kref); 514 515 mutex_lock(&relay_channels_mutex); 516 for_each_online_cpu(i) { 517 buf = relay_open_buf(chan, i); 518 if (!buf) 519 goto free_bufs; 520 *per_cpu_ptr(chan->buf, i) = buf; 521 } 522 list_add(&chan->list, &relay_channels); 523 mutex_unlock(&relay_channels_mutex); 524 525 return chan; 526 527 free_bufs: 528 for_each_possible_cpu(i) { 529 if ((buf = *per_cpu_ptr(chan->buf, i))) 530 relay_close_buf(buf); 531 } 532 533 kref_put(&chan->kref, relay_destroy_channel); 534 mutex_unlock(&relay_channels_mutex); 535 return NULL; 536 } 537 EXPORT_SYMBOL_GPL(relay_open); 538 539 struct rchan_percpu_buf_dispatcher { 540 struct rchan_buf *buf; 541 struct dentry *dentry; 542 }; 543 544 /* Called in atomic context. */ 545 static void __relay_set_buf_dentry(void *info) 546 { 547 struct rchan_percpu_buf_dispatcher *p = info; 548 549 relay_set_buf_dentry(p->buf, p->dentry); 550 } 551 552 /** 553 * relay_late_setup_files - triggers file creation 554 * @chan: channel to operate on 555 * @base_filename: base name of files to create 556 * @parent: dentry of parent directory, %NULL for root directory 557 * 558 * Returns 0 if successful, non-zero otherwise. 559 * 560 * Use to setup files for a previously buffer-only channel created 561 * by relay_open() with a NULL parent dentry. 562 * 563 * For example, this is useful for perfomring early tracing in kernel, 564 * before VFS is up and then exposing the early results once the dentry 565 * is available. 566 */ 567 int relay_late_setup_files(struct rchan *chan, 568 const char *base_filename, 569 struct dentry *parent) 570 { 571 int err = 0; 572 unsigned int i, curr_cpu; 573 unsigned long flags; 574 struct dentry *dentry; 575 struct rchan_buf *buf; 576 struct rchan_percpu_buf_dispatcher disp; 577 578 if (!chan || !base_filename) 579 return -EINVAL; 580 581 strscpy(chan->base_filename, base_filename, NAME_MAX); 582 583 mutex_lock(&relay_channels_mutex); 584 /* Is chan already set up? */ 585 if (unlikely(chan->has_base_filename)) { 586 mutex_unlock(&relay_channels_mutex); 587 return -EEXIST; 588 } 589 chan->has_base_filename = 1; 590 chan->parent = parent; 591 592 if (chan->is_global) { 593 err = -EINVAL; 594 buf = *per_cpu_ptr(chan->buf, 0); 595 if (!WARN_ON_ONCE(!buf)) { 596 dentry = relay_create_buf_file(chan, buf, 0); 597 if (dentry && !WARN_ON_ONCE(!chan->is_global)) { 598 relay_set_buf_dentry(buf, dentry); 599 err = 0; 600 } 601 } 602 mutex_unlock(&relay_channels_mutex); 603 return err; 604 } 605 606 curr_cpu = get_cpu(); 607 /* 608 * The CPU hotplug notifier ran before us and created buffers with 609 * no files associated. So it's safe to call relay_setup_buf_file() 610 * on all currently online CPUs. 611 */ 612 for_each_online_cpu(i) { 613 buf = *per_cpu_ptr(chan->buf, i); 614 if (unlikely(!buf)) { 615 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 616 err = -EINVAL; 617 break; 618 } 619 620 dentry = relay_create_buf_file(chan, buf, i); 621 if (unlikely(!dentry)) { 622 err = -EINVAL; 623 break; 624 } 625 626 if (curr_cpu == i) { 627 local_irq_save(flags); 628 relay_set_buf_dentry(buf, dentry); 629 local_irq_restore(flags); 630 } else { 631 disp.buf = buf; 632 disp.dentry = dentry; 633 smp_mb(); 634 /* relay_channels_mutex must be held, so wait. */ 635 err = smp_call_function_single(i, 636 __relay_set_buf_dentry, 637 &disp, 1); 638 } 639 if (unlikely(err)) 640 break; 641 } 642 put_cpu(); 643 mutex_unlock(&relay_channels_mutex); 644 645 return err; 646 } 647 EXPORT_SYMBOL_GPL(relay_late_setup_files); 648 649 /** 650 * relay_switch_subbuf - switch to a new sub-buffer 651 * @buf: channel buffer 652 * @length: size of current event 653 * 654 * Returns either the length passed in or 0 if full. 655 * 656 * Performs sub-buffer-switch tasks such as invoking callbacks, 657 * updating padding counts, waking up readers, etc. 658 */ 659 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 660 { 661 void *old, *new; 662 size_t old_subbuf, new_subbuf; 663 664 if (unlikely(length > buf->chan->subbuf_size)) 665 goto toobig; 666 667 if (buf->offset != buf->chan->subbuf_size + 1) { 668 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 669 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 670 buf->padding[old_subbuf] = buf->prev_padding; 671 buf->subbufs_produced++; 672 if (buf->dentry) 673 d_inode(buf->dentry)->i_size += 674 buf->chan->subbuf_size - 675 buf->padding[old_subbuf]; 676 else 677 buf->early_bytes += buf->chan->subbuf_size - 678 buf->padding[old_subbuf]; 679 smp_mb(); 680 if (waitqueue_active(&buf->read_wait)) { 681 /* 682 * Calling wake_up_interruptible() from here 683 * will deadlock if we happen to be logging 684 * from the scheduler (trying to re-grab 685 * rq->lock), so defer it. 686 */ 687 irq_work_queue(&buf->wakeup_work); 688 } 689 } 690 691 old = buf->data; 692 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 693 new = buf->start + new_subbuf * buf->chan->subbuf_size; 694 buf->offset = 0; 695 if (!relay_subbuf_start(buf, new, old, buf->prev_padding)) { 696 buf->offset = buf->chan->subbuf_size + 1; 697 return 0; 698 } 699 buf->data = new; 700 buf->padding[new_subbuf] = 0; 701 702 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 703 goto toobig; 704 705 return length; 706 707 toobig: 708 buf->chan->last_toobig = length; 709 return 0; 710 } 711 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 712 713 /** 714 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 715 * @chan: the channel 716 * @cpu: the cpu associated with the channel buffer to update 717 * @subbufs_consumed: number of sub-buffers to add to current buf's count 718 * 719 * Adds to the channel buffer's consumed sub-buffer count. 720 * subbufs_consumed should be the number of sub-buffers newly consumed, 721 * not the total consumed. 722 * 723 * NOTE. Kernel clients don't need to call this function if the channel 724 * mode is 'overwrite'. 725 */ 726 void relay_subbufs_consumed(struct rchan *chan, 727 unsigned int cpu, 728 size_t subbufs_consumed) 729 { 730 struct rchan_buf *buf; 731 732 if (!chan || cpu >= NR_CPUS) 733 return; 734 735 buf = *per_cpu_ptr(chan->buf, cpu); 736 if (!buf || subbufs_consumed > chan->n_subbufs) 737 return; 738 739 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 740 buf->subbufs_consumed = buf->subbufs_produced; 741 else 742 buf->subbufs_consumed += subbufs_consumed; 743 } 744 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 745 746 /** 747 * relay_close - close the channel 748 * @chan: the channel 749 * 750 * Closes all channel buffers and frees the channel. 751 */ 752 void relay_close(struct rchan *chan) 753 { 754 struct rchan_buf *buf; 755 unsigned int i; 756 757 if (!chan) 758 return; 759 760 mutex_lock(&relay_channels_mutex); 761 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) 762 relay_close_buf(buf); 763 else 764 for_each_possible_cpu(i) 765 if ((buf = *per_cpu_ptr(chan->buf, i))) 766 relay_close_buf(buf); 767 768 if (chan->last_toobig) 769 printk(KERN_WARNING "relay: one or more items not logged " 770 "[item size (%zd) > sub-buffer size (%zd)]\n", 771 chan->last_toobig, chan->subbuf_size); 772 773 list_del(&chan->list); 774 kref_put(&chan->kref, relay_destroy_channel); 775 mutex_unlock(&relay_channels_mutex); 776 } 777 EXPORT_SYMBOL_GPL(relay_close); 778 779 /** 780 * relay_flush - close the channel 781 * @chan: the channel 782 * 783 * Flushes all channel buffers, i.e. forces buffer switch. 784 */ 785 void relay_flush(struct rchan *chan) 786 { 787 struct rchan_buf *buf; 788 unsigned int i; 789 790 if (!chan) 791 return; 792 793 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 794 relay_switch_subbuf(buf, 0); 795 return; 796 } 797 798 mutex_lock(&relay_channels_mutex); 799 for_each_possible_cpu(i) 800 if ((buf = *per_cpu_ptr(chan->buf, i))) 801 relay_switch_subbuf(buf, 0); 802 mutex_unlock(&relay_channels_mutex); 803 } 804 EXPORT_SYMBOL_GPL(relay_flush); 805 806 /** 807 * relay_file_open - open file op for relay files 808 * @inode: the inode 809 * @filp: the file 810 * 811 * Increments the channel buffer refcount. 812 */ 813 static int relay_file_open(struct inode *inode, struct file *filp) 814 { 815 struct rchan_buf *buf = inode->i_private; 816 kref_get(&buf->kref); 817 filp->private_data = buf; 818 819 return nonseekable_open(inode, filp); 820 } 821 822 /** 823 * relay_file_mmap - mmap file op for relay files 824 * @filp: the file 825 * @vma: the vma describing what to map 826 * 827 * Calls upon relay_mmap_buf() to map the file into user space. 828 */ 829 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 830 { 831 struct rchan_buf *buf = filp->private_data; 832 return relay_mmap_buf(buf, vma); 833 } 834 835 /** 836 * relay_file_poll - poll file op for relay files 837 * @filp: the file 838 * @wait: poll table 839 * 840 * Poll implemention. 841 */ 842 static __poll_t relay_file_poll(struct file *filp, poll_table *wait) 843 { 844 __poll_t mask = 0; 845 struct rchan_buf *buf = filp->private_data; 846 847 if (buf->finalized) 848 return EPOLLERR; 849 850 if (filp->f_mode & FMODE_READ) { 851 poll_wait(filp, &buf->read_wait, wait); 852 if (!relay_buf_empty(buf)) 853 mask |= EPOLLIN | EPOLLRDNORM; 854 } 855 856 return mask; 857 } 858 859 /** 860 * relay_file_release - release file op for relay files 861 * @inode: the inode 862 * @filp: the file 863 * 864 * Decrements the channel refcount, as the filesystem is 865 * no longer using it. 866 */ 867 static int relay_file_release(struct inode *inode, struct file *filp) 868 { 869 struct rchan_buf *buf = filp->private_data; 870 kref_put(&buf->kref, relay_remove_buf); 871 872 return 0; 873 } 874 875 /* 876 * relay_file_read_consume - update the consumed count for the buffer 877 */ 878 static void relay_file_read_consume(struct rchan_buf *buf, 879 size_t read_pos, 880 size_t bytes_consumed) 881 { 882 size_t subbuf_size = buf->chan->subbuf_size; 883 size_t n_subbufs = buf->chan->n_subbufs; 884 size_t read_subbuf; 885 886 if (buf->subbufs_produced == buf->subbufs_consumed && 887 buf->offset == buf->bytes_consumed) 888 return; 889 890 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 891 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 892 buf->bytes_consumed = 0; 893 } 894 895 buf->bytes_consumed += bytes_consumed; 896 if (!read_pos) 897 read_subbuf = buf->subbufs_consumed % n_subbufs; 898 else 899 read_subbuf = read_pos / buf->chan->subbuf_size; 900 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 901 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 902 (buf->offset == subbuf_size)) 903 return; 904 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 905 buf->bytes_consumed = 0; 906 } 907 } 908 909 /* 910 * relay_file_read_avail - boolean, are there unconsumed bytes available? 911 */ 912 static int relay_file_read_avail(struct rchan_buf *buf) 913 { 914 size_t subbuf_size = buf->chan->subbuf_size; 915 size_t n_subbufs = buf->chan->n_subbufs; 916 size_t produced = buf->subbufs_produced; 917 size_t consumed; 918 919 relay_file_read_consume(buf, 0, 0); 920 921 consumed = buf->subbufs_consumed; 922 923 if (unlikely(buf->offset > subbuf_size)) { 924 if (produced == consumed) 925 return 0; 926 return 1; 927 } 928 929 if (unlikely(produced - consumed >= n_subbufs)) { 930 consumed = produced - n_subbufs + 1; 931 buf->subbufs_consumed = consumed; 932 buf->bytes_consumed = 0; 933 } 934 935 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 936 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 937 938 if (consumed > produced) 939 produced += n_subbufs * subbuf_size; 940 941 if (consumed == produced) { 942 if (buf->offset == subbuf_size && 943 buf->subbufs_produced > buf->subbufs_consumed) 944 return 1; 945 return 0; 946 } 947 948 return 1; 949 } 950 951 /** 952 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 953 * @read_pos: file read position 954 * @buf: relay channel buffer 955 */ 956 static size_t relay_file_read_subbuf_avail(size_t read_pos, 957 struct rchan_buf *buf) 958 { 959 size_t padding, avail = 0; 960 size_t read_subbuf, read_offset, write_subbuf, write_offset; 961 size_t subbuf_size = buf->chan->subbuf_size; 962 963 write_subbuf = (buf->data - buf->start) / subbuf_size; 964 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 965 read_subbuf = read_pos / subbuf_size; 966 read_offset = read_pos % subbuf_size; 967 padding = buf->padding[read_subbuf]; 968 969 if (read_subbuf == write_subbuf) { 970 if (read_offset + padding < write_offset) 971 avail = write_offset - (read_offset + padding); 972 } else 973 avail = (subbuf_size - padding) - read_offset; 974 975 return avail; 976 } 977 978 /** 979 * relay_file_read_start_pos - find the first available byte to read 980 * @buf: relay channel buffer 981 * 982 * If the read_pos is in the middle of padding, return the 983 * position of the first actually available byte, otherwise 984 * return the original value. 985 */ 986 static size_t relay_file_read_start_pos(struct rchan_buf *buf) 987 { 988 size_t read_subbuf, padding, padding_start, padding_end; 989 size_t subbuf_size = buf->chan->subbuf_size; 990 size_t n_subbufs = buf->chan->n_subbufs; 991 size_t consumed = buf->subbufs_consumed % n_subbufs; 992 size_t read_pos = consumed * subbuf_size + buf->bytes_consumed; 993 994 read_subbuf = read_pos / subbuf_size; 995 padding = buf->padding[read_subbuf]; 996 padding_start = (read_subbuf + 1) * subbuf_size - padding; 997 padding_end = (read_subbuf + 1) * subbuf_size; 998 if (read_pos >= padding_start && read_pos < padding_end) { 999 read_subbuf = (read_subbuf + 1) % n_subbufs; 1000 read_pos = read_subbuf * subbuf_size; 1001 } 1002 1003 return read_pos; 1004 } 1005 1006 /** 1007 * relay_file_read_end_pos - return the new read position 1008 * @read_pos: file read position 1009 * @buf: relay channel buffer 1010 * @count: number of bytes to be read 1011 */ 1012 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1013 size_t read_pos, 1014 size_t count) 1015 { 1016 size_t read_subbuf, padding, end_pos; 1017 size_t subbuf_size = buf->chan->subbuf_size; 1018 size_t n_subbufs = buf->chan->n_subbufs; 1019 1020 read_subbuf = read_pos / subbuf_size; 1021 padding = buf->padding[read_subbuf]; 1022 if (read_pos % subbuf_size + count + padding == subbuf_size) 1023 end_pos = (read_subbuf + 1) * subbuf_size; 1024 else 1025 end_pos = read_pos + count; 1026 if (end_pos >= subbuf_size * n_subbufs) 1027 end_pos = 0; 1028 1029 return end_pos; 1030 } 1031 1032 static ssize_t relay_file_read(struct file *filp, 1033 char __user *buffer, 1034 size_t count, 1035 loff_t *ppos) 1036 { 1037 struct rchan_buf *buf = filp->private_data; 1038 size_t read_start, avail; 1039 size_t written = 0; 1040 int ret; 1041 1042 if (!count) 1043 return 0; 1044 1045 inode_lock(file_inode(filp)); 1046 do { 1047 void *from; 1048 1049 if (!relay_file_read_avail(buf)) 1050 break; 1051 1052 read_start = relay_file_read_start_pos(buf); 1053 avail = relay_file_read_subbuf_avail(read_start, buf); 1054 if (!avail) 1055 break; 1056 1057 avail = min(count, avail); 1058 from = buf->start + read_start; 1059 ret = avail; 1060 if (copy_to_user(buffer, from, avail)) 1061 break; 1062 1063 buffer += ret; 1064 written += ret; 1065 count -= ret; 1066 1067 relay_file_read_consume(buf, read_start, ret); 1068 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1069 } while (count); 1070 inode_unlock(file_inode(filp)); 1071 1072 return written; 1073 } 1074 1075 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1076 { 1077 rbuf->bytes_consumed += bytes_consumed; 1078 1079 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1080 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1081 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1082 } 1083 } 1084 1085 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1086 struct pipe_buffer *buf) 1087 { 1088 struct rchan_buf *rbuf; 1089 1090 rbuf = (struct rchan_buf *)page_private(buf->page); 1091 relay_consume_bytes(rbuf, buf->private); 1092 } 1093 1094 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1095 .release = relay_pipe_buf_release, 1096 .try_steal = generic_pipe_buf_try_steal, 1097 .get = generic_pipe_buf_get, 1098 }; 1099 1100 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1101 { 1102 } 1103 1104 /* 1105 * subbuf_splice_actor - splice up to one subbuf's worth of data 1106 */ 1107 static ssize_t subbuf_splice_actor(struct file *in, 1108 loff_t *ppos, 1109 struct pipe_inode_info *pipe, 1110 size_t len, 1111 unsigned int flags, 1112 int *nonpad_ret) 1113 { 1114 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1115 struct rchan_buf *rbuf = in->private_data; 1116 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1117 uint64_t pos = (uint64_t) *ppos; 1118 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1119 size_t read_start = (size_t) do_div(pos, alloc_size); 1120 size_t read_subbuf = read_start / subbuf_size; 1121 size_t padding = rbuf->padding[read_subbuf]; 1122 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1123 struct page *pages[PIPE_DEF_BUFFERS]; 1124 struct partial_page partial[PIPE_DEF_BUFFERS]; 1125 struct splice_pipe_desc spd = { 1126 .pages = pages, 1127 .nr_pages = 0, 1128 .nr_pages_max = PIPE_DEF_BUFFERS, 1129 .partial = partial, 1130 .ops = &relay_pipe_buf_ops, 1131 .spd_release = relay_page_release, 1132 }; 1133 ssize_t ret; 1134 1135 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1136 return 0; 1137 if (splice_grow_spd(pipe, &spd)) 1138 return -ENOMEM; 1139 1140 /* 1141 * Adjust read len, if longer than what is available 1142 */ 1143 if (len > (subbuf_size - read_start % subbuf_size)) 1144 len = subbuf_size - read_start % subbuf_size; 1145 1146 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1147 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1148 poff = read_start & ~PAGE_MASK; 1149 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1150 1151 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1152 unsigned int this_len, this_end, private; 1153 unsigned int cur_pos = read_start + total_len; 1154 1155 if (!len) 1156 break; 1157 1158 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1159 private = this_len; 1160 1161 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1162 spd.partial[spd.nr_pages].offset = poff; 1163 1164 this_end = cur_pos + this_len; 1165 if (this_end >= nonpad_end) { 1166 this_len = nonpad_end - cur_pos; 1167 private = this_len + padding; 1168 } 1169 spd.partial[spd.nr_pages].len = this_len; 1170 spd.partial[spd.nr_pages].private = private; 1171 1172 len -= this_len; 1173 total_len += this_len; 1174 poff = 0; 1175 pidx = (pidx + 1) % subbuf_pages; 1176 1177 if (this_end >= nonpad_end) { 1178 spd.nr_pages++; 1179 break; 1180 } 1181 } 1182 1183 ret = 0; 1184 if (!spd.nr_pages) 1185 goto out; 1186 1187 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1188 if (ret < 0 || ret < total_len) 1189 goto out; 1190 1191 if (read_start + ret == nonpad_end) 1192 ret += padding; 1193 1194 out: 1195 splice_shrink_spd(&spd); 1196 return ret; 1197 } 1198 1199 static ssize_t relay_file_splice_read(struct file *in, 1200 loff_t *ppos, 1201 struct pipe_inode_info *pipe, 1202 size_t len, 1203 unsigned int flags) 1204 { 1205 ssize_t spliced; 1206 int ret; 1207 int nonpad_ret = 0; 1208 1209 ret = 0; 1210 spliced = 0; 1211 1212 while (len && !spliced) { 1213 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1214 if (ret < 0) 1215 break; 1216 else if (!ret) { 1217 if (flags & SPLICE_F_NONBLOCK) 1218 ret = -EAGAIN; 1219 break; 1220 } 1221 1222 *ppos += ret; 1223 if (ret > len) 1224 len = 0; 1225 else 1226 len -= ret; 1227 spliced += nonpad_ret; 1228 nonpad_ret = 0; 1229 } 1230 1231 if (spliced) 1232 return spliced; 1233 1234 return ret; 1235 } 1236 1237 const struct file_operations relay_file_operations = { 1238 .open = relay_file_open, 1239 .poll = relay_file_poll, 1240 .mmap = relay_file_mmap, 1241 .read = relay_file_read, 1242 .llseek = no_llseek, 1243 .release = relay_file_release, 1244 .splice_read = relay_file_splice_read, 1245 }; 1246 EXPORT_SYMBOL_GPL(relay_file_operations); 1247