xref: /linux/kernel/reboot.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/reboot.c
4  *
5  *  Copyright (C) 2013  Linus Torvalds
6  */
7 
8 #define pr_fmt(fmt)	"reboot: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21 
22 /*
23  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24  */
25 
26 static int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29 
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE		= REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38 
39 /*
40  * This variable is used privately to keep track of whether or not
41  * reboot_type is still set to its default value (i.e., reboot= hasn't
42  * been set on the command line).  This is needed so that we can
43  * suppress DMI scanning for reboot quirks.  Without it, it's
44  * impossible to override a faulty reboot quirk without recompiling.
45  */
46 int reboot_default = 1;
47 int reboot_cpu;
48 enum reboot_type reboot_type = BOOT_ACPI;
49 int reboot_force;
50 
51 struct sys_off_handler {
52 	struct notifier_block nb;
53 	int (*sys_off_cb)(struct sys_off_data *data);
54 	void *cb_data;
55 	enum sys_off_mode mode;
56 	bool blocking;
57 	void *list;
58 	struct device *dev;
59 };
60 
61 /*
62  * This variable is used to indicate if a halt was initiated instead of a
63  * reboot when the reboot call was invoked with LINUX_REBOOT_CMD_POWER_OFF, but
64  * the system cannot be powered off. This allowes kernel_halt() to notify users
65  * of that.
66  */
67 static bool poweroff_fallback_to_halt;
68 
69 /*
70  * Temporary stub that prevents linkage failure while we're in process
71  * of removing all uses of legacy pm_power_off() around the kernel.
72  */
73 void __weak (*pm_power_off)(void);
74 
75 /**
76  *	emergency_restart - reboot the system
77  *
78  *	Without shutting down any hardware or taking any locks
79  *	reboot the system.  This is called when we know we are in
80  *	trouble so this is our best effort to reboot.  This is
81  *	safe to call in interrupt context.
82  */
83 void emergency_restart(void)
84 {
85 	kmsg_dump(KMSG_DUMP_EMERG);
86 	system_state = SYSTEM_RESTART;
87 	machine_emergency_restart();
88 }
89 EXPORT_SYMBOL_GPL(emergency_restart);
90 
91 void kernel_restart_prepare(char *cmd)
92 {
93 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
94 	system_state = SYSTEM_RESTART;
95 	usermodehelper_disable();
96 	device_shutdown();
97 }
98 
99 /**
100  *	register_reboot_notifier - Register function to be called at reboot time
101  *	@nb: Info about notifier function to be called
102  *
103  *	Registers a function with the list of functions
104  *	to be called at reboot time.
105  *
106  *	Currently always returns zero, as blocking_notifier_chain_register()
107  *	always returns zero.
108  */
109 int register_reboot_notifier(struct notifier_block *nb)
110 {
111 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
112 }
113 EXPORT_SYMBOL(register_reboot_notifier);
114 
115 /**
116  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
117  *	@nb: Hook to be unregistered
118  *
119  *	Unregisters a previously registered reboot
120  *	notifier function.
121  *
122  *	Returns zero on success, or %-ENOENT on failure.
123  */
124 int unregister_reboot_notifier(struct notifier_block *nb)
125 {
126 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
127 }
128 EXPORT_SYMBOL(unregister_reboot_notifier);
129 
130 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
131 {
132 	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
133 }
134 
135 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
136 {
137 	struct notifier_block **rcnb;
138 	int ret;
139 
140 	rcnb = devres_alloc(devm_unregister_reboot_notifier,
141 			    sizeof(*rcnb), GFP_KERNEL);
142 	if (!rcnb)
143 		return -ENOMEM;
144 
145 	ret = register_reboot_notifier(nb);
146 	if (!ret) {
147 		*rcnb = nb;
148 		devres_add(dev, rcnb);
149 	} else {
150 		devres_free(rcnb);
151 	}
152 
153 	return ret;
154 }
155 EXPORT_SYMBOL(devm_register_reboot_notifier);
156 
157 /*
158  *	Notifier list for kernel code which wants to be called
159  *	to restart the system.
160  */
161 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
162 
163 /**
164  *	register_restart_handler - Register function to be called to reset
165  *				   the system
166  *	@nb: Info about handler function to be called
167  *	@nb->priority:	Handler priority. Handlers should follow the
168  *			following guidelines for setting priorities.
169  *			0:	Restart handler of last resort,
170  *				with limited restart capabilities
171  *			128:	Default restart handler; use if no other
172  *				restart handler is expected to be available,
173  *				and/or if restart functionality is
174  *				sufficient to restart the entire system
175  *			255:	Highest priority restart handler, will
176  *				preempt all other restart handlers
177  *
178  *	Registers a function with code to be called to restart the
179  *	system.
180  *
181  *	Registered functions will be called from machine_restart as last
182  *	step of the restart sequence (if the architecture specific
183  *	machine_restart function calls do_kernel_restart - see below
184  *	for details).
185  *	Registered functions are expected to restart the system immediately.
186  *	If more than one function is registered, the restart handler priority
187  *	selects which function will be called first.
188  *
189  *	Restart handlers are expected to be registered from non-architecture
190  *	code, typically from drivers. A typical use case would be a system
191  *	where restart functionality is provided through a watchdog. Multiple
192  *	restart handlers may exist; for example, one restart handler might
193  *	restart the entire system, while another only restarts the CPU.
194  *	In such cases, the restart handler which only restarts part of the
195  *	hardware is expected to register with low priority to ensure that
196  *	it only runs if no other means to restart the system is available.
197  *
198  *	Currently always returns zero, as atomic_notifier_chain_register()
199  *	always returns zero.
200  */
201 int register_restart_handler(struct notifier_block *nb)
202 {
203 	return atomic_notifier_chain_register(&restart_handler_list, nb);
204 }
205 EXPORT_SYMBOL(register_restart_handler);
206 
207 /**
208  *	unregister_restart_handler - Unregister previously registered
209  *				     restart handler
210  *	@nb: Hook to be unregistered
211  *
212  *	Unregisters a previously registered restart handler function.
213  *
214  *	Returns zero on success, or %-ENOENT on failure.
215  */
216 int unregister_restart_handler(struct notifier_block *nb)
217 {
218 	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
219 }
220 EXPORT_SYMBOL(unregister_restart_handler);
221 
222 /**
223  *	do_kernel_restart - Execute kernel restart handler call chain
224  *
225  *	Calls functions registered with register_restart_handler.
226  *
227  *	Expected to be called from machine_restart as last step of the restart
228  *	sequence.
229  *
230  *	Restarts the system immediately if a restart handler function has been
231  *	registered. Otherwise does nothing.
232  */
233 void do_kernel_restart(char *cmd)
234 {
235 	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
236 }
237 
238 void migrate_to_reboot_cpu(void)
239 {
240 	/* The boot cpu is always logical cpu 0 */
241 	int cpu = reboot_cpu;
242 
243 	cpu_hotplug_disable();
244 
245 	/* Make certain the cpu I'm about to reboot on is online */
246 	if (!cpu_online(cpu))
247 		cpu = cpumask_first(cpu_online_mask);
248 
249 	/* Prevent races with other tasks migrating this task */
250 	current->flags |= PF_NO_SETAFFINITY;
251 
252 	/* Make certain I only run on the appropriate processor */
253 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
254 }
255 
256 /*
257  *	Notifier list for kernel code which wants to be called
258  *	to prepare system for restart.
259  */
260 static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
261 
262 static void do_kernel_restart_prepare(void)
263 {
264 	blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
265 }
266 
267 /**
268  *	kernel_restart - reboot the system
269  *	@cmd: pointer to buffer containing command to execute for restart
270  *		or %NULL
271  *
272  *	Shutdown everything and perform a clean reboot.
273  *	This is not safe to call in interrupt context.
274  */
275 void kernel_restart(char *cmd)
276 {
277 	kernel_restart_prepare(cmd);
278 	do_kernel_restart_prepare();
279 	migrate_to_reboot_cpu();
280 	syscore_shutdown();
281 	if (!cmd)
282 		pr_emerg("Restarting system\n");
283 	else
284 		pr_emerg("Restarting system with command '%s'\n", cmd);
285 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
286 	machine_restart(cmd);
287 }
288 EXPORT_SYMBOL_GPL(kernel_restart);
289 
290 static void kernel_shutdown_prepare(enum system_states state)
291 {
292 	blocking_notifier_call_chain(&reboot_notifier_list,
293 		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
294 	system_state = state;
295 	usermodehelper_disable();
296 	device_shutdown();
297 }
298 /**
299  *	kernel_halt - halt the system
300  *
301  *	Shutdown everything and perform a clean system halt.
302  */
303 void kernel_halt(void)
304 {
305 	kernel_shutdown_prepare(SYSTEM_HALT);
306 	migrate_to_reboot_cpu();
307 	syscore_shutdown();
308 	if (poweroff_fallback_to_halt)
309 		pr_emerg("Power off not available: System halted instead\n");
310 	else
311 		pr_emerg("System halted\n");
312 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
313 	machine_halt();
314 }
315 EXPORT_SYMBOL_GPL(kernel_halt);
316 
317 /*
318  *	Notifier list for kernel code which wants to be called
319  *	to prepare system for power off.
320  */
321 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
322 
323 /*
324  *	Notifier list for kernel code which wants to be called
325  *	to power off system.
326  */
327 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
328 
329 static int sys_off_notify(struct notifier_block *nb,
330 			  unsigned long mode, void *cmd)
331 {
332 	struct sys_off_handler *handler;
333 	struct sys_off_data data = {};
334 
335 	handler = container_of(nb, struct sys_off_handler, nb);
336 	data.cb_data = handler->cb_data;
337 	data.mode = mode;
338 	data.cmd = cmd;
339 	data.dev = handler->dev;
340 
341 	return handler->sys_off_cb(&data);
342 }
343 
344 static struct sys_off_handler platform_sys_off_handler;
345 
346 static struct sys_off_handler *alloc_sys_off_handler(int priority)
347 {
348 	struct sys_off_handler *handler;
349 	gfp_t flags;
350 
351 	/*
352 	 * Platforms like m68k can't allocate sys_off handler dynamically
353 	 * at the early boot time because memory allocator isn't available yet.
354 	 */
355 	if (priority == SYS_OFF_PRIO_PLATFORM) {
356 		handler = &platform_sys_off_handler;
357 		if (handler->cb_data)
358 			return ERR_PTR(-EBUSY);
359 	} else {
360 		if (system_state > SYSTEM_RUNNING)
361 			flags = GFP_ATOMIC;
362 		else
363 			flags = GFP_KERNEL;
364 
365 		handler = kzalloc(sizeof(*handler), flags);
366 		if (!handler)
367 			return ERR_PTR(-ENOMEM);
368 	}
369 
370 	return handler;
371 }
372 
373 static void free_sys_off_handler(struct sys_off_handler *handler)
374 {
375 	if (handler == &platform_sys_off_handler)
376 		memset(handler, 0, sizeof(*handler));
377 	else
378 		kfree(handler);
379 }
380 
381 /**
382  *	register_sys_off_handler - Register sys-off handler
383  *	@mode: Sys-off mode
384  *	@priority: Handler priority
385  *	@callback: Callback function
386  *	@cb_data: Callback argument
387  *
388  *	Registers system power-off or restart handler that will be invoked
389  *	at the step corresponding to the given sys-off mode. Handler's callback
390  *	should return NOTIFY_DONE to permit execution of the next handler in
391  *	the call chain or NOTIFY_STOP to break the chain (in error case for
392  *	example).
393  *
394  *	Multiple handlers can be registered at the default priority level.
395  *
396  *	Only one handler can be registered at the non-default priority level,
397  *	otherwise ERR_PTR(-EBUSY) is returned.
398  *
399  *	Returns a new instance of struct sys_off_handler on success, or
400  *	an ERR_PTR()-encoded error code otherwise.
401  */
402 struct sys_off_handler *
403 register_sys_off_handler(enum sys_off_mode mode,
404 			 int priority,
405 			 int (*callback)(struct sys_off_data *data),
406 			 void *cb_data)
407 {
408 	struct sys_off_handler *handler;
409 	int err;
410 
411 	handler = alloc_sys_off_handler(priority);
412 	if (IS_ERR(handler))
413 		return handler;
414 
415 	switch (mode) {
416 	case SYS_OFF_MODE_POWER_OFF_PREPARE:
417 		handler->list = &power_off_prep_handler_list;
418 		handler->blocking = true;
419 		break;
420 
421 	case SYS_OFF_MODE_POWER_OFF:
422 		handler->list = &power_off_handler_list;
423 		break;
424 
425 	case SYS_OFF_MODE_RESTART_PREPARE:
426 		handler->list = &restart_prep_handler_list;
427 		handler->blocking = true;
428 		break;
429 
430 	case SYS_OFF_MODE_RESTART:
431 		handler->list = &restart_handler_list;
432 		break;
433 
434 	default:
435 		free_sys_off_handler(handler);
436 		return ERR_PTR(-EINVAL);
437 	}
438 
439 	handler->nb.notifier_call = sys_off_notify;
440 	handler->nb.priority = priority;
441 	handler->sys_off_cb = callback;
442 	handler->cb_data = cb_data;
443 	handler->mode = mode;
444 
445 	if (handler->blocking) {
446 		if (priority == SYS_OFF_PRIO_DEFAULT)
447 			err = blocking_notifier_chain_register(handler->list,
448 							       &handler->nb);
449 		else
450 			err = blocking_notifier_chain_register_unique_prio(handler->list,
451 									   &handler->nb);
452 	} else {
453 		if (priority == SYS_OFF_PRIO_DEFAULT)
454 			err = atomic_notifier_chain_register(handler->list,
455 							     &handler->nb);
456 		else
457 			err = atomic_notifier_chain_register_unique_prio(handler->list,
458 									 &handler->nb);
459 	}
460 
461 	if (err) {
462 		free_sys_off_handler(handler);
463 		return ERR_PTR(err);
464 	}
465 
466 	return handler;
467 }
468 EXPORT_SYMBOL_GPL(register_sys_off_handler);
469 
470 /**
471  *	unregister_sys_off_handler - Unregister sys-off handler
472  *	@handler: Sys-off handler
473  *
474  *	Unregisters given sys-off handler.
475  */
476 void unregister_sys_off_handler(struct sys_off_handler *handler)
477 {
478 	int err;
479 
480 	if (IS_ERR_OR_NULL(handler))
481 		return;
482 
483 	if (handler->blocking)
484 		err = blocking_notifier_chain_unregister(handler->list,
485 							 &handler->nb);
486 	else
487 		err = atomic_notifier_chain_unregister(handler->list,
488 						       &handler->nb);
489 
490 	/* sanity check, shall never happen */
491 	WARN_ON(err);
492 
493 	free_sys_off_handler(handler);
494 }
495 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
496 
497 static void devm_unregister_sys_off_handler(void *data)
498 {
499 	struct sys_off_handler *handler = data;
500 
501 	unregister_sys_off_handler(handler);
502 }
503 
504 /**
505  *	devm_register_sys_off_handler - Register sys-off handler
506  *	@dev: Device that registers handler
507  *	@mode: Sys-off mode
508  *	@priority: Handler priority
509  *	@callback: Callback function
510  *	@cb_data: Callback argument
511  *
512  *	Registers resource-managed sys-off handler.
513  *
514  *	Returns zero on success, or error code on failure.
515  */
516 int devm_register_sys_off_handler(struct device *dev,
517 				  enum sys_off_mode mode,
518 				  int priority,
519 				  int (*callback)(struct sys_off_data *data),
520 				  void *cb_data)
521 {
522 	struct sys_off_handler *handler;
523 
524 	handler = register_sys_off_handler(mode, priority, callback, cb_data);
525 	if (IS_ERR(handler))
526 		return PTR_ERR(handler);
527 	handler->dev = dev;
528 
529 	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
530 					handler);
531 }
532 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
533 
534 /**
535  *	devm_register_power_off_handler - Register power-off handler
536  *	@dev: Device that registers callback
537  *	@callback: Callback function
538  *	@cb_data: Callback's argument
539  *
540  *	Registers resource-managed sys-off handler with a default priority
541  *	and using power-off mode.
542  *
543  *	Returns zero on success, or error code on failure.
544  */
545 int devm_register_power_off_handler(struct device *dev,
546 				    int (*callback)(struct sys_off_data *data),
547 				    void *cb_data)
548 {
549 	return devm_register_sys_off_handler(dev,
550 					     SYS_OFF_MODE_POWER_OFF,
551 					     SYS_OFF_PRIO_DEFAULT,
552 					     callback, cb_data);
553 }
554 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
555 
556 /**
557  *	devm_register_restart_handler - Register restart handler
558  *	@dev: Device that registers callback
559  *	@callback: Callback function
560  *	@cb_data: Callback's argument
561  *
562  *	Registers resource-managed sys-off handler with a default priority
563  *	and using restart mode.
564  *
565  *	Returns zero on success, or error code on failure.
566  */
567 int devm_register_restart_handler(struct device *dev,
568 				  int (*callback)(struct sys_off_data *data),
569 				  void *cb_data)
570 {
571 	return devm_register_sys_off_handler(dev,
572 					     SYS_OFF_MODE_RESTART,
573 					     SYS_OFF_PRIO_DEFAULT,
574 					     callback, cb_data);
575 }
576 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
577 
578 static struct sys_off_handler *platform_power_off_handler;
579 
580 static int platform_power_off_notify(struct sys_off_data *data)
581 {
582 	void (*platform_power_power_off_cb)(void) = data->cb_data;
583 
584 	platform_power_power_off_cb();
585 
586 	return NOTIFY_DONE;
587 }
588 
589 /**
590  *	register_platform_power_off - Register platform-level power-off callback
591  *	@power_off: Power-off callback
592  *
593  *	Registers power-off callback that will be called as last step
594  *	of the power-off sequence. This callback is expected to be invoked
595  *	for the last resort. Only one platform power-off callback is allowed
596  *	to be registered at a time.
597  *
598  *	Returns zero on success, or error code on failure.
599  */
600 int register_platform_power_off(void (*power_off)(void))
601 {
602 	struct sys_off_handler *handler;
603 
604 	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
605 					   SYS_OFF_PRIO_PLATFORM,
606 					   platform_power_off_notify,
607 					   power_off);
608 	if (IS_ERR(handler))
609 		return PTR_ERR(handler);
610 
611 	platform_power_off_handler = handler;
612 
613 	return 0;
614 }
615 EXPORT_SYMBOL_GPL(register_platform_power_off);
616 
617 /**
618  *	unregister_platform_power_off - Unregister platform-level power-off callback
619  *	@power_off: Power-off callback
620  *
621  *	Unregisters previously registered platform power-off callback.
622  */
623 void unregister_platform_power_off(void (*power_off)(void))
624 {
625 	if (platform_power_off_handler &&
626 	    platform_power_off_handler->cb_data == power_off) {
627 		unregister_sys_off_handler(platform_power_off_handler);
628 		platform_power_off_handler = NULL;
629 	}
630 }
631 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
632 
633 static int legacy_pm_power_off(struct sys_off_data *data)
634 {
635 	if (pm_power_off)
636 		pm_power_off();
637 
638 	return NOTIFY_DONE;
639 }
640 
641 static void do_kernel_power_off_prepare(void)
642 {
643 	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
644 }
645 
646 /**
647  *	do_kernel_power_off - Execute kernel power-off handler call chain
648  *
649  *	Expected to be called as last step of the power-off sequence.
650  *
651  *	Powers off the system immediately if a power-off handler function has
652  *	been registered. Otherwise does nothing.
653  */
654 void do_kernel_power_off(void)
655 {
656 	struct sys_off_handler *sys_off = NULL;
657 
658 	/*
659 	 * Register sys-off handlers for legacy PM callback. This allows
660 	 * legacy PM callbacks temporary co-exist with the new sys-off API.
661 	 *
662 	 * TODO: Remove legacy handlers once all legacy PM users will be
663 	 *       switched to the sys-off based APIs.
664 	 */
665 	if (pm_power_off)
666 		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
667 						   SYS_OFF_PRIO_DEFAULT,
668 						   legacy_pm_power_off, NULL);
669 
670 	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
671 
672 	unregister_sys_off_handler(sys_off);
673 }
674 
675 /**
676  *	kernel_can_power_off - check whether system can be powered off
677  *
678  *	Returns true if power-off handler is registered and system can be
679  *	powered off, false otherwise.
680  */
681 bool kernel_can_power_off(void)
682 {
683 	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
684 		pm_power_off;
685 }
686 EXPORT_SYMBOL_GPL(kernel_can_power_off);
687 
688 /**
689  *	kernel_power_off - power_off the system
690  *
691  *	Shutdown everything and perform a clean system power_off.
692  */
693 void kernel_power_off(void)
694 {
695 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
696 	do_kernel_power_off_prepare();
697 	migrate_to_reboot_cpu();
698 	syscore_shutdown();
699 	pr_emerg("Power down\n");
700 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
701 	machine_power_off();
702 }
703 EXPORT_SYMBOL_GPL(kernel_power_off);
704 
705 DEFINE_MUTEX(system_transition_mutex);
706 
707 /*
708  * Reboot system call: for obvious reasons only root may call it,
709  * and even root needs to set up some magic numbers in the registers
710  * so that some mistake won't make this reboot the whole machine.
711  * You can also set the meaning of the ctrl-alt-del-key here.
712  *
713  * reboot doesn't sync: do that yourself before calling this.
714  */
715 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
716 		void __user *, arg)
717 {
718 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
719 	char buffer[256];
720 	int ret = 0;
721 
722 	/* We only trust the superuser with rebooting the system. */
723 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
724 		return -EPERM;
725 
726 	/* For safety, we require "magic" arguments. */
727 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
728 			(magic2 != LINUX_REBOOT_MAGIC2 &&
729 			magic2 != LINUX_REBOOT_MAGIC2A &&
730 			magic2 != LINUX_REBOOT_MAGIC2B &&
731 			magic2 != LINUX_REBOOT_MAGIC2C))
732 		return -EINVAL;
733 
734 	/*
735 	 * If pid namespaces are enabled and the current task is in a child
736 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
737 	 * call do_exit().
738 	 */
739 	ret = reboot_pid_ns(pid_ns, cmd);
740 	if (ret)
741 		return ret;
742 
743 	/* Instead of trying to make the power_off code look like
744 	 * halt when pm_power_off is not set do it the easy way.
745 	 */
746 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off()) {
747 		poweroff_fallback_to_halt = true;
748 		cmd = LINUX_REBOOT_CMD_HALT;
749 	}
750 
751 	mutex_lock(&system_transition_mutex);
752 	switch (cmd) {
753 	case LINUX_REBOOT_CMD_RESTART:
754 		kernel_restart(NULL);
755 		break;
756 
757 	case LINUX_REBOOT_CMD_CAD_ON:
758 		C_A_D = 1;
759 		break;
760 
761 	case LINUX_REBOOT_CMD_CAD_OFF:
762 		C_A_D = 0;
763 		break;
764 
765 	case LINUX_REBOOT_CMD_HALT:
766 		kernel_halt();
767 		do_exit(0);
768 
769 	case LINUX_REBOOT_CMD_POWER_OFF:
770 		kernel_power_off();
771 		do_exit(0);
772 		break;
773 
774 	case LINUX_REBOOT_CMD_RESTART2:
775 		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
776 		if (ret < 0) {
777 			ret = -EFAULT;
778 			break;
779 		}
780 		buffer[sizeof(buffer) - 1] = '\0';
781 
782 		kernel_restart(buffer);
783 		break;
784 
785 #ifdef CONFIG_KEXEC_CORE
786 	case LINUX_REBOOT_CMD_KEXEC:
787 		ret = kernel_kexec();
788 		break;
789 #endif
790 
791 #ifdef CONFIG_HIBERNATION
792 	case LINUX_REBOOT_CMD_SW_SUSPEND:
793 		ret = hibernate();
794 		break;
795 #endif
796 
797 	default:
798 		ret = -EINVAL;
799 		break;
800 	}
801 	mutex_unlock(&system_transition_mutex);
802 	return ret;
803 }
804 
805 static void deferred_cad(struct work_struct *dummy)
806 {
807 	kernel_restart(NULL);
808 }
809 
810 /*
811  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
812  * As it's called within an interrupt, it may NOT sync: the only choice
813  * is whether to reboot at once, or just ignore the ctrl-alt-del.
814  */
815 void ctrl_alt_del(void)
816 {
817 	static DECLARE_WORK(cad_work, deferred_cad);
818 
819 	if (C_A_D)
820 		schedule_work(&cad_work);
821 	else
822 		kill_cad_pid(SIGINT, 1);
823 }
824 
825 #define POWEROFF_CMD_PATH_LEN  256
826 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
827 static const char reboot_cmd[] = "/sbin/reboot";
828 
829 static int run_cmd(const char *cmd)
830 {
831 	char **argv;
832 	static char *envp[] = {
833 		"HOME=/",
834 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
835 		NULL
836 	};
837 	int ret;
838 	argv = argv_split(GFP_KERNEL, cmd, NULL);
839 	if (argv) {
840 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
841 		argv_free(argv);
842 	} else {
843 		ret = -ENOMEM;
844 	}
845 
846 	return ret;
847 }
848 
849 static int __orderly_reboot(void)
850 {
851 	int ret;
852 
853 	ret = run_cmd(reboot_cmd);
854 
855 	if (ret) {
856 		pr_warn("Failed to start orderly reboot: forcing the issue\n");
857 		emergency_sync();
858 		kernel_restart(NULL);
859 	}
860 
861 	return ret;
862 }
863 
864 static int __orderly_poweroff(bool force)
865 {
866 	int ret;
867 
868 	ret = run_cmd(poweroff_cmd);
869 
870 	if (ret && force) {
871 		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
872 
873 		/*
874 		 * I guess this should try to kick off some daemon to sync and
875 		 * poweroff asap.  Or not even bother syncing if we're doing an
876 		 * emergency shutdown?
877 		 */
878 		emergency_sync();
879 		kernel_power_off();
880 	}
881 
882 	return ret;
883 }
884 
885 static bool poweroff_force;
886 
887 static void poweroff_work_func(struct work_struct *work)
888 {
889 	__orderly_poweroff(poweroff_force);
890 }
891 
892 static DECLARE_WORK(poweroff_work, poweroff_work_func);
893 
894 /**
895  * orderly_poweroff - Trigger an orderly system poweroff
896  * @force: force poweroff if command execution fails
897  *
898  * This may be called from any context to trigger a system shutdown.
899  * If the orderly shutdown fails, it will force an immediate shutdown.
900  */
901 void orderly_poweroff(bool force)
902 {
903 	if (force) /* do not override the pending "true" */
904 		poweroff_force = true;
905 	schedule_work(&poweroff_work);
906 }
907 EXPORT_SYMBOL_GPL(orderly_poweroff);
908 
909 static void reboot_work_func(struct work_struct *work)
910 {
911 	__orderly_reboot();
912 }
913 
914 static DECLARE_WORK(reboot_work, reboot_work_func);
915 
916 /**
917  * orderly_reboot - Trigger an orderly system reboot
918  *
919  * This may be called from any context to trigger a system reboot.
920  * If the orderly reboot fails, it will force an immediate reboot.
921  */
922 void orderly_reboot(void)
923 {
924 	schedule_work(&reboot_work);
925 }
926 EXPORT_SYMBOL_GPL(orderly_reboot);
927 
928 /**
929  * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
930  * @work: work_struct associated with the emergency poweroff function
931  *
932  * This function is called in very critical situations to force
933  * a kernel poweroff after a configurable timeout value.
934  */
935 static void hw_failure_emergency_poweroff_func(struct work_struct *work)
936 {
937 	/*
938 	 * We have reached here after the emergency shutdown waiting period has
939 	 * expired. This means orderly_poweroff has not been able to shut off
940 	 * the system for some reason.
941 	 *
942 	 * Try to shut down the system immediately using kernel_power_off
943 	 * if populated
944 	 */
945 	pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
946 	kernel_power_off();
947 
948 	/*
949 	 * Worst of the worst case trigger emergency restart
950 	 */
951 	pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
952 	emergency_restart();
953 }
954 
955 static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
956 			    hw_failure_emergency_poweroff_func);
957 
958 /**
959  * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
960  *
961  * This may be called from any critical situation to trigger a system shutdown
962  * after a given period of time. If time is negative this is not scheduled.
963  */
964 static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
965 {
966 	if (poweroff_delay_ms <= 0)
967 		return;
968 	schedule_delayed_work(&hw_failure_emergency_poweroff_work,
969 			      msecs_to_jiffies(poweroff_delay_ms));
970 }
971 
972 /**
973  * __hw_protection_shutdown - Trigger an emergency system shutdown or reboot
974  *
975  * @reason:		Reason of emergency shutdown or reboot to be printed.
976  * @ms_until_forced:	Time to wait for orderly shutdown or reboot before
977  *			triggering it. Negative value disables the forced
978  *			shutdown or reboot.
979  * @shutdown:		If true, indicates that a shutdown will happen
980  *			after the critical tempeature is reached.
981  *			If false, indicates that a reboot will happen
982  *			after the critical tempeature is reached.
983  *
984  * Initiate an emergency system shutdown or reboot in order to protect
985  * hardware from further damage. Usage examples include a thermal protection.
986  * NOTE: The request is ignored if protection shutdown or reboot is already
987  * pending even if the previous request has given a large timeout for forced
988  * shutdown/reboot.
989  */
990 void __hw_protection_shutdown(const char *reason, int ms_until_forced, bool shutdown)
991 {
992 	static atomic_t allow_proceed = ATOMIC_INIT(1);
993 
994 	pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
995 
996 	/* Shutdown should be initiated only once. */
997 	if (!atomic_dec_and_test(&allow_proceed))
998 		return;
999 
1000 	/*
1001 	 * Queue a backup emergency shutdown in the event of
1002 	 * orderly_poweroff failure
1003 	 */
1004 	hw_failure_emergency_poweroff(ms_until_forced);
1005 	if (shutdown)
1006 		orderly_poweroff(true);
1007 	else
1008 		orderly_reboot();
1009 }
1010 EXPORT_SYMBOL_GPL(__hw_protection_shutdown);
1011 
1012 static int __init reboot_setup(char *str)
1013 {
1014 	for (;;) {
1015 		enum reboot_mode *mode;
1016 
1017 		/*
1018 		 * Having anything passed on the command line via
1019 		 * reboot= will cause us to disable DMI checking
1020 		 * below.
1021 		 */
1022 		reboot_default = 0;
1023 
1024 		if (!strncmp(str, "panic_", 6)) {
1025 			mode = &panic_reboot_mode;
1026 			str += 6;
1027 		} else {
1028 			mode = &reboot_mode;
1029 		}
1030 
1031 		switch (*str) {
1032 		case 'w':
1033 			*mode = REBOOT_WARM;
1034 			break;
1035 
1036 		case 'c':
1037 			*mode = REBOOT_COLD;
1038 			break;
1039 
1040 		case 'h':
1041 			*mode = REBOOT_HARD;
1042 			break;
1043 
1044 		case 's':
1045 			/*
1046 			 * reboot_cpu is s[mp]#### with #### being the processor
1047 			 * to be used for rebooting. Skip 's' or 'smp' prefix.
1048 			 */
1049 			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1050 
1051 			if (isdigit(str[0])) {
1052 				int cpu = simple_strtoul(str, NULL, 0);
1053 
1054 				if (cpu >= num_possible_cpus()) {
1055 					pr_err("Ignoring the CPU number in reboot= option. "
1056 					"CPU %d exceeds possible cpu number %d\n",
1057 					cpu, num_possible_cpus());
1058 					break;
1059 				}
1060 				reboot_cpu = cpu;
1061 			} else
1062 				*mode = REBOOT_SOFT;
1063 			break;
1064 
1065 		case 'g':
1066 			*mode = REBOOT_GPIO;
1067 			break;
1068 
1069 		case 'b':
1070 		case 'a':
1071 		case 'k':
1072 		case 't':
1073 		case 'e':
1074 		case 'p':
1075 			reboot_type = *str;
1076 			break;
1077 
1078 		case 'f':
1079 			reboot_force = 1;
1080 			break;
1081 		}
1082 
1083 		str = strchr(str, ',');
1084 		if (str)
1085 			str++;
1086 		else
1087 			break;
1088 	}
1089 	return 1;
1090 }
1091 __setup("reboot=", reboot_setup);
1092 
1093 #ifdef CONFIG_SYSFS
1094 
1095 #define REBOOT_COLD_STR		"cold"
1096 #define REBOOT_WARM_STR		"warm"
1097 #define REBOOT_HARD_STR		"hard"
1098 #define REBOOT_SOFT_STR		"soft"
1099 #define REBOOT_GPIO_STR		"gpio"
1100 #define REBOOT_UNDEFINED_STR	"undefined"
1101 
1102 #define BOOT_TRIPLE_STR		"triple"
1103 #define BOOT_KBD_STR		"kbd"
1104 #define BOOT_BIOS_STR		"bios"
1105 #define BOOT_ACPI_STR		"acpi"
1106 #define BOOT_EFI_STR		"efi"
1107 #define BOOT_PCI_STR		"pci"
1108 
1109 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1110 {
1111 	const char *val;
1112 
1113 	switch (reboot_mode) {
1114 	case REBOOT_COLD:
1115 		val = REBOOT_COLD_STR;
1116 		break;
1117 	case REBOOT_WARM:
1118 		val = REBOOT_WARM_STR;
1119 		break;
1120 	case REBOOT_HARD:
1121 		val = REBOOT_HARD_STR;
1122 		break;
1123 	case REBOOT_SOFT:
1124 		val = REBOOT_SOFT_STR;
1125 		break;
1126 	case REBOOT_GPIO:
1127 		val = REBOOT_GPIO_STR;
1128 		break;
1129 	default:
1130 		val = REBOOT_UNDEFINED_STR;
1131 	}
1132 
1133 	return sprintf(buf, "%s\n", val);
1134 }
1135 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1136 			  const char *buf, size_t count)
1137 {
1138 	if (!capable(CAP_SYS_BOOT))
1139 		return -EPERM;
1140 
1141 	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1142 		reboot_mode = REBOOT_COLD;
1143 	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1144 		reboot_mode = REBOOT_WARM;
1145 	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1146 		reboot_mode = REBOOT_HARD;
1147 	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1148 		reboot_mode = REBOOT_SOFT;
1149 	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1150 		reboot_mode = REBOOT_GPIO;
1151 	else
1152 		return -EINVAL;
1153 
1154 	reboot_default = 0;
1155 
1156 	return count;
1157 }
1158 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1159 
1160 #ifdef CONFIG_X86
1161 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1162 {
1163 	return sprintf(buf, "%d\n", reboot_force);
1164 }
1165 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1166 			  const char *buf, size_t count)
1167 {
1168 	bool res;
1169 
1170 	if (!capable(CAP_SYS_BOOT))
1171 		return -EPERM;
1172 
1173 	if (kstrtobool(buf, &res))
1174 		return -EINVAL;
1175 
1176 	reboot_default = 0;
1177 	reboot_force = res;
1178 
1179 	return count;
1180 }
1181 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1182 
1183 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1184 {
1185 	const char *val;
1186 
1187 	switch (reboot_type) {
1188 	case BOOT_TRIPLE:
1189 		val = BOOT_TRIPLE_STR;
1190 		break;
1191 	case BOOT_KBD:
1192 		val = BOOT_KBD_STR;
1193 		break;
1194 	case BOOT_BIOS:
1195 		val = BOOT_BIOS_STR;
1196 		break;
1197 	case BOOT_ACPI:
1198 		val = BOOT_ACPI_STR;
1199 		break;
1200 	case BOOT_EFI:
1201 		val = BOOT_EFI_STR;
1202 		break;
1203 	case BOOT_CF9_FORCE:
1204 		val = BOOT_PCI_STR;
1205 		break;
1206 	default:
1207 		val = REBOOT_UNDEFINED_STR;
1208 	}
1209 
1210 	return sprintf(buf, "%s\n", val);
1211 }
1212 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1213 			  const char *buf, size_t count)
1214 {
1215 	if (!capable(CAP_SYS_BOOT))
1216 		return -EPERM;
1217 
1218 	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1219 		reboot_type = BOOT_TRIPLE;
1220 	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1221 		reboot_type = BOOT_KBD;
1222 	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1223 		reboot_type = BOOT_BIOS;
1224 	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1225 		reboot_type = BOOT_ACPI;
1226 	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1227 		reboot_type = BOOT_EFI;
1228 	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1229 		reboot_type = BOOT_CF9_FORCE;
1230 	else
1231 		return -EINVAL;
1232 
1233 	reboot_default = 0;
1234 
1235 	return count;
1236 }
1237 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1238 #endif
1239 
1240 #ifdef CONFIG_SMP
1241 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1242 {
1243 	return sprintf(buf, "%d\n", reboot_cpu);
1244 }
1245 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1246 			  const char *buf, size_t count)
1247 {
1248 	unsigned int cpunum;
1249 	int rc;
1250 
1251 	if (!capable(CAP_SYS_BOOT))
1252 		return -EPERM;
1253 
1254 	rc = kstrtouint(buf, 0, &cpunum);
1255 
1256 	if (rc)
1257 		return rc;
1258 
1259 	if (cpunum >= num_possible_cpus())
1260 		return -ERANGE;
1261 
1262 	reboot_default = 0;
1263 	reboot_cpu = cpunum;
1264 
1265 	return count;
1266 }
1267 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1268 #endif
1269 
1270 static struct attribute *reboot_attrs[] = {
1271 	&reboot_mode_attr.attr,
1272 #ifdef CONFIG_X86
1273 	&reboot_force_attr.attr,
1274 	&reboot_type_attr.attr,
1275 #endif
1276 #ifdef CONFIG_SMP
1277 	&reboot_cpu_attr.attr,
1278 #endif
1279 	NULL,
1280 };
1281 
1282 #ifdef CONFIG_SYSCTL
1283 static struct ctl_table kern_reboot_table[] = {
1284 	{
1285 		.procname       = "poweroff_cmd",
1286 		.data           = &poweroff_cmd,
1287 		.maxlen         = POWEROFF_CMD_PATH_LEN,
1288 		.mode           = 0644,
1289 		.proc_handler   = proc_dostring,
1290 	},
1291 	{
1292 		.procname       = "ctrl-alt-del",
1293 		.data           = &C_A_D,
1294 		.maxlen         = sizeof(int),
1295 		.mode           = 0644,
1296 		.proc_handler   = proc_dointvec,
1297 	},
1298 	{ }
1299 };
1300 
1301 static void __init kernel_reboot_sysctls_init(void)
1302 {
1303 	register_sysctl_init("kernel", kern_reboot_table);
1304 }
1305 #else
1306 #define kernel_reboot_sysctls_init() do { } while (0)
1307 #endif /* CONFIG_SYSCTL */
1308 
1309 static const struct attribute_group reboot_attr_group = {
1310 	.attrs = reboot_attrs,
1311 };
1312 
1313 static int __init reboot_ksysfs_init(void)
1314 {
1315 	struct kobject *reboot_kobj;
1316 	int ret;
1317 
1318 	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1319 	if (!reboot_kobj)
1320 		return -ENOMEM;
1321 
1322 	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1323 	if (ret) {
1324 		kobject_put(reboot_kobj);
1325 		return ret;
1326 	}
1327 
1328 	kernel_reboot_sysctls_init();
1329 
1330 	return 0;
1331 }
1332 late_initcall(reboot_ksysfs_init);
1333 
1334 #endif
1335