xref: /linux/kernel/reboot.c (revision 4164e1525d37d463bbd0a808709fd75abcfc89a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/reboot.c
4  *
5  *  Copyright (C) 2013  Linus Torvalds
6  */
7 
8 #define pr_fmt(fmt)	"reboot: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21 
22 /*
23  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24  */
25 
26 static int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29 
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE		= REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38 
39 static enum hw_protection_action hw_protection_action = HWPROT_ACT_SHUTDOWN;
40 
41 /*
42  * This variable is used privately to keep track of whether or not
43  * reboot_type is still set to its default value (i.e., reboot= hasn't
44  * been set on the command line).  This is needed so that we can
45  * suppress DMI scanning for reboot quirks.  Without it, it's
46  * impossible to override a faulty reboot quirk without recompiling.
47  */
48 int reboot_default = 1;
49 int reboot_cpu;
50 enum reboot_type reboot_type = BOOT_ACPI;
51 int reboot_force;
52 
53 struct sys_off_handler {
54 	struct notifier_block nb;
55 	int (*sys_off_cb)(struct sys_off_data *data);
56 	void *cb_data;
57 	enum sys_off_mode mode;
58 	bool blocking;
59 	void *list;
60 	struct device *dev;
61 };
62 
63 /*
64  * This variable is used to indicate if a halt was initiated instead of a
65  * reboot when the reboot call was invoked with LINUX_REBOOT_CMD_POWER_OFF, but
66  * the system cannot be powered off. This allowes kernel_halt() to notify users
67  * of that.
68  */
69 static bool poweroff_fallback_to_halt;
70 
71 /*
72  * Temporary stub that prevents linkage failure while we're in process
73  * of removing all uses of legacy pm_power_off() around the kernel.
74  */
75 void __weak (*pm_power_off)(void);
76 
77 /*
78  *	Notifier list for kernel code which wants to be called
79  *	at shutdown. This is used to stop any idling DMA operations
80  *	and the like.
81  */
82 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
83 
84 /**
85  *	emergency_restart - reboot the system
86  *
87  *	Without shutting down any hardware or taking any locks
88  *	reboot the system.  This is called when we know we are in
89  *	trouble so this is our best effort to reboot.  This is
90  *	safe to call in interrupt context.
91  */
92 void emergency_restart(void)
93 {
94 	kmsg_dump(KMSG_DUMP_EMERG);
95 	system_state = SYSTEM_RESTART;
96 	machine_emergency_restart();
97 }
98 EXPORT_SYMBOL_GPL(emergency_restart);
99 
100 void kernel_restart_prepare(char *cmd)
101 {
102 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
103 	system_state = SYSTEM_RESTART;
104 	usermodehelper_disable();
105 	device_shutdown();
106 }
107 
108 /**
109  *	register_reboot_notifier - Register function to be called at reboot time
110  *	@nb: Info about notifier function to be called
111  *
112  *	Registers a function with the list of functions
113  *	to be called at reboot time.
114  *
115  *	Currently always returns zero, as blocking_notifier_chain_register()
116  *	always returns zero.
117  */
118 int register_reboot_notifier(struct notifier_block *nb)
119 {
120 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
121 }
122 EXPORT_SYMBOL(register_reboot_notifier);
123 
124 /**
125  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
126  *	@nb: Hook to be unregistered
127  *
128  *	Unregisters a previously registered reboot
129  *	notifier function.
130  *
131  *	Returns zero on success, or %-ENOENT on failure.
132  */
133 int unregister_reboot_notifier(struct notifier_block *nb)
134 {
135 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
136 }
137 EXPORT_SYMBOL(unregister_reboot_notifier);
138 
139 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
140 {
141 	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
142 }
143 
144 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
145 {
146 	struct notifier_block **rcnb;
147 	int ret;
148 
149 	rcnb = devres_alloc(devm_unregister_reboot_notifier,
150 			    sizeof(*rcnb), GFP_KERNEL);
151 	if (!rcnb)
152 		return -ENOMEM;
153 
154 	ret = register_reboot_notifier(nb);
155 	if (!ret) {
156 		*rcnb = nb;
157 		devres_add(dev, rcnb);
158 	} else {
159 		devres_free(rcnb);
160 	}
161 
162 	return ret;
163 }
164 EXPORT_SYMBOL(devm_register_reboot_notifier);
165 
166 /*
167  *	Notifier list for kernel code which wants to be called
168  *	to restart the system.
169  */
170 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
171 
172 /**
173  *	register_restart_handler - Register function to be called to reset
174  *				   the system
175  *	@nb: Info about handler function to be called
176  *	@nb->priority:	Handler priority. Handlers should follow the
177  *			following guidelines for setting priorities.
178  *			0:	Restart handler of last resort,
179  *				with limited restart capabilities
180  *			128:	Default restart handler; use if no other
181  *				restart handler is expected to be available,
182  *				and/or if restart functionality is
183  *				sufficient to restart the entire system
184  *			255:	Highest priority restart handler, will
185  *				preempt all other restart handlers
186  *
187  *	Registers a function with code to be called to restart the
188  *	system.
189  *
190  *	Registered functions will be called from machine_restart as last
191  *	step of the restart sequence (if the architecture specific
192  *	machine_restart function calls do_kernel_restart - see below
193  *	for details).
194  *	Registered functions are expected to restart the system immediately.
195  *	If more than one function is registered, the restart handler priority
196  *	selects which function will be called first.
197  *
198  *	Restart handlers are expected to be registered from non-architecture
199  *	code, typically from drivers. A typical use case would be a system
200  *	where restart functionality is provided through a watchdog. Multiple
201  *	restart handlers may exist; for example, one restart handler might
202  *	restart the entire system, while another only restarts the CPU.
203  *	In such cases, the restart handler which only restarts part of the
204  *	hardware is expected to register with low priority to ensure that
205  *	it only runs if no other means to restart the system is available.
206  *
207  *	Currently always returns zero, as atomic_notifier_chain_register()
208  *	always returns zero.
209  */
210 int register_restart_handler(struct notifier_block *nb)
211 {
212 	return atomic_notifier_chain_register(&restart_handler_list, nb);
213 }
214 EXPORT_SYMBOL(register_restart_handler);
215 
216 /**
217  *	unregister_restart_handler - Unregister previously registered
218  *				     restart handler
219  *	@nb: Hook to be unregistered
220  *
221  *	Unregisters a previously registered restart handler function.
222  *
223  *	Returns zero on success, or %-ENOENT on failure.
224  */
225 int unregister_restart_handler(struct notifier_block *nb)
226 {
227 	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
228 }
229 EXPORT_SYMBOL(unregister_restart_handler);
230 
231 /**
232  *	do_kernel_restart - Execute kernel restart handler call chain
233  *
234  *	@cmd: pointer to buffer containing command to execute for restart
235  *		or %NULL
236  *
237  *	Calls functions registered with register_restart_handler.
238  *
239  *	Expected to be called from machine_restart as last step of the restart
240  *	sequence.
241  *
242  *	Restarts the system immediately if a restart handler function has been
243  *	registered. Otherwise does nothing.
244  */
245 void do_kernel_restart(char *cmd)
246 {
247 	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
248 }
249 
250 void migrate_to_reboot_cpu(void)
251 {
252 	/* The boot cpu is always logical cpu 0 */
253 	int cpu = reboot_cpu;
254 
255 	cpu_hotplug_disable();
256 
257 	/* Make certain the cpu I'm about to reboot on is online */
258 	if (!cpu_online(cpu))
259 		cpu = cpumask_first(cpu_online_mask);
260 
261 	/* Prevent races with other tasks migrating this task */
262 	current->flags |= PF_NO_SETAFFINITY;
263 
264 	/* Make certain I only run on the appropriate processor */
265 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
266 }
267 
268 /*
269  *	Notifier list for kernel code which wants to be called
270  *	to prepare system for restart.
271  */
272 static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
273 
274 static void do_kernel_restart_prepare(void)
275 {
276 	blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
277 }
278 
279 /**
280  *	kernel_restart - reboot the system
281  *	@cmd: pointer to buffer containing command to execute for restart
282  *		or %NULL
283  *
284  *	Shutdown everything and perform a clean reboot.
285  *	This is not safe to call in interrupt context.
286  */
287 void kernel_restart(char *cmd)
288 {
289 	kernel_restart_prepare(cmd);
290 	do_kernel_restart_prepare();
291 	migrate_to_reboot_cpu();
292 	syscore_shutdown();
293 	if (!cmd)
294 		pr_emerg("Restarting system\n");
295 	else
296 		pr_emerg("Restarting system with command '%s'\n", cmd);
297 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
298 	machine_restart(cmd);
299 }
300 EXPORT_SYMBOL_GPL(kernel_restart);
301 
302 static void kernel_shutdown_prepare(enum system_states state)
303 {
304 	blocking_notifier_call_chain(&reboot_notifier_list,
305 		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
306 	system_state = state;
307 	usermodehelper_disable();
308 	device_shutdown();
309 }
310 /**
311  *	kernel_halt - halt the system
312  *
313  *	Shutdown everything and perform a clean system halt.
314  */
315 void kernel_halt(void)
316 {
317 	kernel_shutdown_prepare(SYSTEM_HALT);
318 	migrate_to_reboot_cpu();
319 	syscore_shutdown();
320 	if (poweroff_fallback_to_halt)
321 		pr_emerg("Power off not available: System halted instead\n");
322 	else
323 		pr_emerg("System halted\n");
324 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
325 	machine_halt();
326 }
327 EXPORT_SYMBOL_GPL(kernel_halt);
328 
329 /*
330  *	Notifier list for kernel code which wants to be called
331  *	to prepare system for power off.
332  */
333 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
334 
335 /*
336  *	Notifier list for kernel code which wants to be called
337  *	to power off system.
338  */
339 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
340 
341 static int sys_off_notify(struct notifier_block *nb,
342 			  unsigned long mode, void *cmd)
343 {
344 	struct sys_off_handler *handler;
345 	struct sys_off_data data = {};
346 
347 	handler = container_of(nb, struct sys_off_handler, nb);
348 	data.cb_data = handler->cb_data;
349 	data.mode = mode;
350 	data.cmd = cmd;
351 	data.dev = handler->dev;
352 
353 	return handler->sys_off_cb(&data);
354 }
355 
356 static struct sys_off_handler platform_sys_off_handler;
357 
358 static struct sys_off_handler *alloc_sys_off_handler(int priority)
359 {
360 	struct sys_off_handler *handler;
361 	gfp_t flags;
362 
363 	/*
364 	 * Platforms like m68k can't allocate sys_off handler dynamically
365 	 * at the early boot time because memory allocator isn't available yet.
366 	 */
367 	if (priority == SYS_OFF_PRIO_PLATFORM) {
368 		handler = &platform_sys_off_handler;
369 		if (handler->cb_data)
370 			return ERR_PTR(-EBUSY);
371 	} else {
372 		if (system_state > SYSTEM_RUNNING)
373 			flags = GFP_ATOMIC;
374 		else
375 			flags = GFP_KERNEL;
376 
377 		handler = kzalloc(sizeof(*handler), flags);
378 		if (!handler)
379 			return ERR_PTR(-ENOMEM);
380 	}
381 
382 	return handler;
383 }
384 
385 static void free_sys_off_handler(struct sys_off_handler *handler)
386 {
387 	if (handler == &platform_sys_off_handler)
388 		memset(handler, 0, sizeof(*handler));
389 	else
390 		kfree(handler);
391 }
392 
393 /**
394  *	register_sys_off_handler - Register sys-off handler
395  *	@mode: Sys-off mode
396  *	@priority: Handler priority
397  *	@callback: Callback function
398  *	@cb_data: Callback argument
399  *
400  *	Registers system power-off or restart handler that will be invoked
401  *	at the step corresponding to the given sys-off mode. Handler's callback
402  *	should return NOTIFY_DONE to permit execution of the next handler in
403  *	the call chain or NOTIFY_STOP to break the chain (in error case for
404  *	example).
405  *
406  *	Multiple handlers can be registered at the default priority level.
407  *
408  *	Only one handler can be registered at the non-default priority level,
409  *	otherwise ERR_PTR(-EBUSY) is returned.
410  *
411  *	Returns a new instance of struct sys_off_handler on success, or
412  *	an ERR_PTR()-encoded error code otherwise.
413  */
414 struct sys_off_handler *
415 register_sys_off_handler(enum sys_off_mode mode,
416 			 int priority,
417 			 int (*callback)(struct sys_off_data *data),
418 			 void *cb_data)
419 {
420 	struct sys_off_handler *handler;
421 	int err;
422 
423 	handler = alloc_sys_off_handler(priority);
424 	if (IS_ERR(handler))
425 		return handler;
426 
427 	switch (mode) {
428 	case SYS_OFF_MODE_POWER_OFF_PREPARE:
429 		handler->list = &power_off_prep_handler_list;
430 		handler->blocking = true;
431 		break;
432 
433 	case SYS_OFF_MODE_POWER_OFF:
434 		handler->list = &power_off_handler_list;
435 		break;
436 
437 	case SYS_OFF_MODE_RESTART_PREPARE:
438 		handler->list = &restart_prep_handler_list;
439 		handler->blocking = true;
440 		break;
441 
442 	case SYS_OFF_MODE_RESTART:
443 		handler->list = &restart_handler_list;
444 		break;
445 
446 	default:
447 		free_sys_off_handler(handler);
448 		return ERR_PTR(-EINVAL);
449 	}
450 
451 	handler->nb.notifier_call = sys_off_notify;
452 	handler->nb.priority = priority;
453 	handler->sys_off_cb = callback;
454 	handler->cb_data = cb_data;
455 	handler->mode = mode;
456 
457 	if (handler->blocking) {
458 		if (priority == SYS_OFF_PRIO_DEFAULT)
459 			err = blocking_notifier_chain_register(handler->list,
460 							       &handler->nb);
461 		else
462 			err = blocking_notifier_chain_register_unique_prio(handler->list,
463 									   &handler->nb);
464 	} else {
465 		if (priority == SYS_OFF_PRIO_DEFAULT)
466 			err = atomic_notifier_chain_register(handler->list,
467 							     &handler->nb);
468 		else
469 			err = atomic_notifier_chain_register_unique_prio(handler->list,
470 									 &handler->nb);
471 	}
472 
473 	if (err) {
474 		free_sys_off_handler(handler);
475 		return ERR_PTR(err);
476 	}
477 
478 	return handler;
479 }
480 EXPORT_SYMBOL_GPL(register_sys_off_handler);
481 
482 /**
483  *	unregister_sys_off_handler - Unregister sys-off handler
484  *	@handler: Sys-off handler
485  *
486  *	Unregisters given sys-off handler.
487  */
488 void unregister_sys_off_handler(struct sys_off_handler *handler)
489 {
490 	int err;
491 
492 	if (IS_ERR_OR_NULL(handler))
493 		return;
494 
495 	if (handler->blocking)
496 		err = blocking_notifier_chain_unregister(handler->list,
497 							 &handler->nb);
498 	else
499 		err = atomic_notifier_chain_unregister(handler->list,
500 						       &handler->nb);
501 
502 	/* sanity check, shall never happen */
503 	WARN_ON(err);
504 
505 	free_sys_off_handler(handler);
506 }
507 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
508 
509 static void devm_unregister_sys_off_handler(void *data)
510 {
511 	struct sys_off_handler *handler = data;
512 
513 	unregister_sys_off_handler(handler);
514 }
515 
516 /**
517  *	devm_register_sys_off_handler - Register sys-off handler
518  *	@dev: Device that registers handler
519  *	@mode: Sys-off mode
520  *	@priority: Handler priority
521  *	@callback: Callback function
522  *	@cb_data: Callback argument
523  *
524  *	Registers resource-managed sys-off handler.
525  *
526  *	Returns zero on success, or error code on failure.
527  */
528 int devm_register_sys_off_handler(struct device *dev,
529 				  enum sys_off_mode mode,
530 				  int priority,
531 				  int (*callback)(struct sys_off_data *data),
532 				  void *cb_data)
533 {
534 	struct sys_off_handler *handler;
535 
536 	handler = register_sys_off_handler(mode, priority, callback, cb_data);
537 	if (IS_ERR(handler))
538 		return PTR_ERR(handler);
539 	handler->dev = dev;
540 
541 	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
542 					handler);
543 }
544 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
545 
546 /**
547  *	devm_register_power_off_handler - Register power-off handler
548  *	@dev: Device that registers callback
549  *	@callback: Callback function
550  *	@cb_data: Callback's argument
551  *
552  *	Registers resource-managed sys-off handler with a default priority
553  *	and using power-off mode.
554  *
555  *	Returns zero on success, or error code on failure.
556  */
557 int devm_register_power_off_handler(struct device *dev,
558 				    int (*callback)(struct sys_off_data *data),
559 				    void *cb_data)
560 {
561 	return devm_register_sys_off_handler(dev,
562 					     SYS_OFF_MODE_POWER_OFF,
563 					     SYS_OFF_PRIO_DEFAULT,
564 					     callback, cb_data);
565 }
566 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
567 
568 /**
569  *	devm_register_restart_handler - Register restart handler
570  *	@dev: Device that registers callback
571  *	@callback: Callback function
572  *	@cb_data: Callback's argument
573  *
574  *	Registers resource-managed sys-off handler with a default priority
575  *	and using restart mode.
576  *
577  *	Returns zero on success, or error code on failure.
578  */
579 int devm_register_restart_handler(struct device *dev,
580 				  int (*callback)(struct sys_off_data *data),
581 				  void *cb_data)
582 {
583 	return devm_register_sys_off_handler(dev,
584 					     SYS_OFF_MODE_RESTART,
585 					     SYS_OFF_PRIO_DEFAULT,
586 					     callback, cb_data);
587 }
588 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
589 
590 static struct sys_off_handler *platform_power_off_handler;
591 
592 static int platform_power_off_notify(struct sys_off_data *data)
593 {
594 	void (*platform_power_power_off_cb)(void) = data->cb_data;
595 
596 	platform_power_power_off_cb();
597 
598 	return NOTIFY_DONE;
599 }
600 
601 /**
602  *	register_platform_power_off - Register platform-level power-off callback
603  *	@power_off: Power-off callback
604  *
605  *	Registers power-off callback that will be called as last step
606  *	of the power-off sequence. This callback is expected to be invoked
607  *	for the last resort. Only one platform power-off callback is allowed
608  *	to be registered at a time.
609  *
610  *	Returns zero on success, or error code on failure.
611  */
612 int register_platform_power_off(void (*power_off)(void))
613 {
614 	struct sys_off_handler *handler;
615 
616 	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
617 					   SYS_OFF_PRIO_PLATFORM,
618 					   platform_power_off_notify,
619 					   power_off);
620 	if (IS_ERR(handler))
621 		return PTR_ERR(handler);
622 
623 	platform_power_off_handler = handler;
624 
625 	return 0;
626 }
627 EXPORT_SYMBOL_GPL(register_platform_power_off);
628 
629 /**
630  *	unregister_platform_power_off - Unregister platform-level power-off callback
631  *	@power_off: Power-off callback
632  *
633  *	Unregisters previously registered platform power-off callback.
634  */
635 void unregister_platform_power_off(void (*power_off)(void))
636 {
637 	if (platform_power_off_handler &&
638 	    platform_power_off_handler->cb_data == power_off) {
639 		unregister_sys_off_handler(platform_power_off_handler);
640 		platform_power_off_handler = NULL;
641 	}
642 }
643 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
644 
645 static int legacy_pm_power_off(struct sys_off_data *data)
646 {
647 	if (pm_power_off)
648 		pm_power_off();
649 
650 	return NOTIFY_DONE;
651 }
652 
653 static void do_kernel_power_off_prepare(void)
654 {
655 	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
656 }
657 
658 /**
659  *	do_kernel_power_off - Execute kernel power-off handler call chain
660  *
661  *	Expected to be called as last step of the power-off sequence.
662  *
663  *	Powers off the system immediately if a power-off handler function has
664  *	been registered. Otherwise does nothing.
665  */
666 void do_kernel_power_off(void)
667 {
668 	struct sys_off_handler *sys_off = NULL;
669 
670 	/*
671 	 * Register sys-off handlers for legacy PM callback. This allows
672 	 * legacy PM callbacks temporary co-exist with the new sys-off API.
673 	 *
674 	 * TODO: Remove legacy handlers once all legacy PM users will be
675 	 *       switched to the sys-off based APIs.
676 	 */
677 	if (pm_power_off)
678 		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
679 						   SYS_OFF_PRIO_DEFAULT,
680 						   legacy_pm_power_off, NULL);
681 
682 	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
683 
684 	unregister_sys_off_handler(sys_off);
685 }
686 
687 /**
688  *	kernel_can_power_off - check whether system can be powered off
689  *
690  *	Returns true if power-off handler is registered and system can be
691  *	powered off, false otherwise.
692  */
693 bool kernel_can_power_off(void)
694 {
695 	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
696 		pm_power_off;
697 }
698 EXPORT_SYMBOL_GPL(kernel_can_power_off);
699 
700 /**
701  *	kernel_power_off - power_off the system
702  *
703  *	Shutdown everything and perform a clean system power_off.
704  */
705 void kernel_power_off(void)
706 {
707 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
708 	do_kernel_power_off_prepare();
709 	migrate_to_reboot_cpu();
710 	syscore_shutdown();
711 	pr_emerg("Power down\n");
712 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
713 	machine_power_off();
714 }
715 EXPORT_SYMBOL_GPL(kernel_power_off);
716 
717 DEFINE_MUTEX(system_transition_mutex);
718 
719 /*
720  * Reboot system call: for obvious reasons only root may call it,
721  * and even root needs to set up some magic numbers in the registers
722  * so that some mistake won't make this reboot the whole machine.
723  * You can also set the meaning of the ctrl-alt-del-key here.
724  *
725  * reboot doesn't sync: do that yourself before calling this.
726  */
727 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
728 		void __user *, arg)
729 {
730 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
731 	char buffer[256];
732 	int ret = 0;
733 
734 	/* We only trust the superuser with rebooting the system. */
735 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
736 		return -EPERM;
737 
738 	/* For safety, we require "magic" arguments. */
739 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
740 			(magic2 != LINUX_REBOOT_MAGIC2 &&
741 			magic2 != LINUX_REBOOT_MAGIC2A &&
742 			magic2 != LINUX_REBOOT_MAGIC2B &&
743 			magic2 != LINUX_REBOOT_MAGIC2C))
744 		return -EINVAL;
745 
746 	/*
747 	 * If pid namespaces are enabled and the current task is in a child
748 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
749 	 * call do_exit().
750 	 */
751 	ret = reboot_pid_ns(pid_ns, cmd);
752 	if (ret)
753 		return ret;
754 
755 	/* Instead of trying to make the power_off code look like
756 	 * halt when pm_power_off is not set do it the easy way.
757 	 */
758 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off()) {
759 		poweroff_fallback_to_halt = true;
760 		cmd = LINUX_REBOOT_CMD_HALT;
761 	}
762 
763 	mutex_lock(&system_transition_mutex);
764 	switch (cmd) {
765 	case LINUX_REBOOT_CMD_RESTART:
766 		kernel_restart(NULL);
767 		break;
768 
769 	case LINUX_REBOOT_CMD_CAD_ON:
770 		C_A_D = 1;
771 		break;
772 
773 	case LINUX_REBOOT_CMD_CAD_OFF:
774 		C_A_D = 0;
775 		break;
776 
777 	case LINUX_REBOOT_CMD_HALT:
778 		kernel_halt();
779 		do_exit(0);
780 
781 	case LINUX_REBOOT_CMD_POWER_OFF:
782 		kernel_power_off();
783 		do_exit(0);
784 		break;
785 
786 	case LINUX_REBOOT_CMD_RESTART2:
787 		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
788 		if (ret < 0) {
789 			ret = -EFAULT;
790 			break;
791 		}
792 		buffer[sizeof(buffer) - 1] = '\0';
793 
794 		kernel_restart(buffer);
795 		break;
796 
797 #ifdef CONFIG_KEXEC_CORE
798 	case LINUX_REBOOT_CMD_KEXEC:
799 		ret = kernel_kexec();
800 		break;
801 #endif
802 
803 #ifdef CONFIG_HIBERNATION
804 	case LINUX_REBOOT_CMD_SW_SUSPEND:
805 		ret = hibernate();
806 		break;
807 #endif
808 
809 	default:
810 		ret = -EINVAL;
811 		break;
812 	}
813 	mutex_unlock(&system_transition_mutex);
814 	return ret;
815 }
816 
817 static void deferred_cad(struct work_struct *dummy)
818 {
819 	kernel_restart(NULL);
820 }
821 
822 /*
823  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
824  * As it's called within an interrupt, it may NOT sync: the only choice
825  * is whether to reboot at once, or just ignore the ctrl-alt-del.
826  */
827 void ctrl_alt_del(void)
828 {
829 	static DECLARE_WORK(cad_work, deferred_cad);
830 
831 	if (C_A_D)
832 		schedule_work(&cad_work);
833 	else
834 		kill_cad_pid(SIGINT, 1);
835 }
836 
837 #define POWEROFF_CMD_PATH_LEN  256
838 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
839 static const char reboot_cmd[] = "/sbin/reboot";
840 
841 static int run_cmd(const char *cmd)
842 {
843 	char **argv;
844 	static char *envp[] = {
845 		"HOME=/",
846 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
847 		NULL
848 	};
849 	int ret;
850 	argv = argv_split(GFP_KERNEL, cmd, NULL);
851 	if (argv) {
852 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
853 		argv_free(argv);
854 	} else {
855 		ret = -ENOMEM;
856 	}
857 
858 	return ret;
859 }
860 
861 static int __orderly_reboot(void)
862 {
863 	int ret;
864 
865 	ret = run_cmd(reboot_cmd);
866 
867 	if (ret) {
868 		pr_warn("Failed to start orderly reboot: forcing the issue\n");
869 		emergency_sync();
870 		kernel_restart(NULL);
871 	}
872 
873 	return ret;
874 }
875 
876 static int __orderly_poweroff(bool force)
877 {
878 	int ret;
879 
880 	ret = run_cmd(poweroff_cmd);
881 
882 	if (ret && force) {
883 		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
884 
885 		/*
886 		 * I guess this should try to kick off some daemon to sync and
887 		 * poweroff asap.  Or not even bother syncing if we're doing an
888 		 * emergency shutdown?
889 		 */
890 		emergency_sync();
891 		kernel_power_off();
892 	}
893 
894 	return ret;
895 }
896 
897 static bool poweroff_force;
898 
899 static void poweroff_work_func(struct work_struct *work)
900 {
901 	__orderly_poweroff(poweroff_force);
902 }
903 
904 static DECLARE_WORK(poweroff_work, poweroff_work_func);
905 
906 /**
907  * orderly_poweroff - Trigger an orderly system poweroff
908  * @force: force poweroff if command execution fails
909  *
910  * This may be called from any context to trigger a system shutdown.
911  * If the orderly shutdown fails, it will force an immediate shutdown.
912  */
913 void orderly_poweroff(bool force)
914 {
915 	if (force) /* do not override the pending "true" */
916 		poweroff_force = true;
917 	schedule_work(&poweroff_work);
918 }
919 EXPORT_SYMBOL_GPL(orderly_poweroff);
920 
921 static void reboot_work_func(struct work_struct *work)
922 {
923 	__orderly_reboot();
924 }
925 
926 static DECLARE_WORK(reboot_work, reboot_work_func);
927 
928 /**
929  * orderly_reboot - Trigger an orderly system reboot
930  *
931  * This may be called from any context to trigger a system reboot.
932  * If the orderly reboot fails, it will force an immediate reboot.
933  */
934 void orderly_reboot(void)
935 {
936 	schedule_work(&reboot_work);
937 }
938 EXPORT_SYMBOL_GPL(orderly_reboot);
939 
940 static const char *hw_protection_action_str(enum hw_protection_action action)
941 {
942 	switch (action) {
943 	case HWPROT_ACT_SHUTDOWN:
944 		return "shutdown";
945 	case HWPROT_ACT_REBOOT:
946 		return "reboot";
947 	default:
948 		return "undefined";
949 	}
950 }
951 
952 static enum hw_protection_action hw_failure_emergency_action;
953 
954 /**
955  * hw_failure_emergency_action_func - emergency action work after a known delay
956  * @work: work_struct associated with the emergency action function
957  *
958  * This function is called in very critical situations to force
959  * a kernel poweroff or reboot after a configurable timeout value.
960  */
961 static void hw_failure_emergency_action_func(struct work_struct *work)
962 {
963 	const char *action_str = hw_protection_action_str(hw_failure_emergency_action);
964 
965 	pr_emerg("Hardware protection timed-out. Trying forced %s\n",
966 		 action_str);
967 
968 	/*
969 	 * We have reached here after the emergency action waiting period has
970 	 * expired. This means orderly_poweroff/reboot has not been able to
971 	 * shut off the system for some reason.
972 	 *
973 	 * Try to shut off the system immediately if possible
974 	 */
975 
976 	if (hw_failure_emergency_action == HWPROT_ACT_REBOOT)
977 		kernel_restart(NULL);
978 	else
979 		kernel_power_off();
980 
981 	/*
982 	 * Worst of the worst case trigger emergency restart
983 	 */
984 	pr_emerg("Hardware protection %s failed. Trying emergency restart\n",
985 		 action_str);
986 	emergency_restart();
987 }
988 
989 static DECLARE_DELAYED_WORK(hw_failure_emergency_action_work,
990 			    hw_failure_emergency_action_func);
991 
992 /**
993  * hw_failure_emergency_schedule - Schedule an emergency system shutdown or reboot
994  *
995  * @action:		The hardware protection action to be taken
996  * @action_delay_ms:	Time in milliseconds to elapse before triggering action
997  *
998  * This may be called from any critical situation to trigger a system shutdown
999  * or reboot after a given period of time.
1000  * If time is negative this is not scheduled.
1001  */
1002 static void hw_failure_emergency_schedule(enum hw_protection_action action,
1003 					  int action_delay_ms)
1004 {
1005 	if (action_delay_ms <= 0)
1006 		return;
1007 	hw_failure_emergency_action = action;
1008 	schedule_delayed_work(&hw_failure_emergency_action_work,
1009 			      msecs_to_jiffies(action_delay_ms));
1010 }
1011 
1012 /**
1013  * __hw_protection_trigger - Trigger an emergency system shutdown or reboot
1014  *
1015  * @reason:		Reason of emergency shutdown or reboot to be printed.
1016  * @ms_until_forced:	Time to wait for orderly shutdown or reboot before
1017  *			triggering it. Negative value disables the forced
1018  *			shutdown or reboot.
1019  * @action:		The hardware protection action to be taken.
1020  *
1021  * Initiate an emergency system shutdown or reboot in order to protect
1022  * hardware from further damage. Usage examples include a thermal protection.
1023  * NOTE: The request is ignored if protection shutdown or reboot is already
1024  * pending even if the previous request has given a large timeout for forced
1025  * shutdown/reboot.
1026  */
1027 void __hw_protection_trigger(const char *reason, int ms_until_forced,
1028 			     enum hw_protection_action action)
1029 {
1030 	static atomic_t allow_proceed = ATOMIC_INIT(1);
1031 
1032 	if (action == HWPROT_ACT_DEFAULT)
1033 		action = hw_protection_action;
1034 
1035 	pr_emerg("HARDWARE PROTECTION %s (%s)\n",
1036 		 hw_protection_action_str(action), reason);
1037 
1038 	/* Shutdown should be initiated only once. */
1039 	if (!atomic_dec_and_test(&allow_proceed))
1040 		return;
1041 
1042 	/*
1043 	 * Queue a backup emergency shutdown in the event of
1044 	 * orderly_poweroff failure
1045 	 */
1046 	hw_failure_emergency_schedule(action, ms_until_forced);
1047 	if (action == HWPROT_ACT_REBOOT)
1048 		orderly_reboot();
1049 	else
1050 		orderly_poweroff(true);
1051 }
1052 EXPORT_SYMBOL_GPL(__hw_protection_trigger);
1053 
1054 static bool hw_protection_action_parse(const char *str,
1055 				       enum hw_protection_action *action)
1056 {
1057 	if (sysfs_streq(str, "shutdown"))
1058 		*action = HWPROT_ACT_SHUTDOWN;
1059 	else if (sysfs_streq(str, "reboot"))
1060 		*action = HWPROT_ACT_REBOOT;
1061 	else
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 static int __init hw_protection_setup(char *str)
1068 {
1069 	hw_protection_action_parse(str, &hw_protection_action);
1070 	return 1;
1071 }
1072 __setup("hw_protection=", hw_protection_setup);
1073 
1074 #ifdef CONFIG_SYSFS
1075 static ssize_t hw_protection_show(struct kobject *kobj,
1076 				  struct kobj_attribute *attr, char *buf)
1077 {
1078 	return sysfs_emit(buf, "%s\n",
1079 			  hw_protection_action_str(hw_protection_action));
1080 }
1081 static ssize_t hw_protection_store(struct kobject *kobj,
1082 				   struct kobj_attribute *attr, const char *buf,
1083 				   size_t count)
1084 {
1085 	if (!capable(CAP_SYS_ADMIN))
1086 		return -EPERM;
1087 
1088 	if (!hw_protection_action_parse(buf, &hw_protection_action))
1089 		return -EINVAL;
1090 
1091 	return count;
1092 }
1093 static struct kobj_attribute hw_protection_attr = __ATTR_RW(hw_protection);
1094 #endif
1095 
1096 static int __init reboot_setup(char *str)
1097 {
1098 	for (;;) {
1099 		enum reboot_mode *mode;
1100 
1101 		/*
1102 		 * Having anything passed on the command line via
1103 		 * reboot= will cause us to disable DMI checking
1104 		 * below.
1105 		 */
1106 		reboot_default = 0;
1107 
1108 		if (!strncmp(str, "panic_", 6)) {
1109 			mode = &panic_reboot_mode;
1110 			str += 6;
1111 		} else {
1112 			mode = &reboot_mode;
1113 		}
1114 
1115 		switch (*str) {
1116 		case 'w':
1117 			*mode = REBOOT_WARM;
1118 			break;
1119 
1120 		case 'c':
1121 			*mode = REBOOT_COLD;
1122 			break;
1123 
1124 		case 'h':
1125 			*mode = REBOOT_HARD;
1126 			break;
1127 
1128 		case 's':
1129 			/*
1130 			 * reboot_cpu is s[mp]#### with #### being the processor
1131 			 * to be used for rebooting. Skip 's' or 'smp' prefix.
1132 			 */
1133 			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1134 
1135 			if (isdigit(str[0])) {
1136 				int cpu = simple_strtoul(str, NULL, 0);
1137 
1138 				if (cpu >= num_possible_cpus()) {
1139 					pr_err("Ignoring the CPU number in reboot= option. "
1140 					"CPU %d exceeds possible cpu number %d\n",
1141 					cpu, num_possible_cpus());
1142 					break;
1143 				}
1144 				reboot_cpu = cpu;
1145 			} else
1146 				*mode = REBOOT_SOFT;
1147 			break;
1148 
1149 		case 'g':
1150 			*mode = REBOOT_GPIO;
1151 			break;
1152 
1153 		case 'b':
1154 		case 'a':
1155 		case 'k':
1156 		case 't':
1157 		case 'e':
1158 		case 'p':
1159 			reboot_type = *str;
1160 			break;
1161 
1162 		case 'f':
1163 			reboot_force = 1;
1164 			break;
1165 		}
1166 
1167 		str = strchr(str, ',');
1168 		if (str)
1169 			str++;
1170 		else
1171 			break;
1172 	}
1173 	return 1;
1174 }
1175 __setup("reboot=", reboot_setup);
1176 
1177 #ifdef CONFIG_SYSFS
1178 
1179 #define REBOOT_COLD_STR		"cold"
1180 #define REBOOT_WARM_STR		"warm"
1181 #define REBOOT_HARD_STR		"hard"
1182 #define REBOOT_SOFT_STR		"soft"
1183 #define REBOOT_GPIO_STR		"gpio"
1184 #define REBOOT_UNDEFINED_STR	"undefined"
1185 
1186 #define BOOT_TRIPLE_STR		"triple"
1187 #define BOOT_KBD_STR		"kbd"
1188 #define BOOT_BIOS_STR		"bios"
1189 #define BOOT_ACPI_STR		"acpi"
1190 #define BOOT_EFI_STR		"efi"
1191 #define BOOT_PCI_STR		"pci"
1192 
1193 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1194 {
1195 	const char *val;
1196 
1197 	switch (reboot_mode) {
1198 	case REBOOT_COLD:
1199 		val = REBOOT_COLD_STR;
1200 		break;
1201 	case REBOOT_WARM:
1202 		val = REBOOT_WARM_STR;
1203 		break;
1204 	case REBOOT_HARD:
1205 		val = REBOOT_HARD_STR;
1206 		break;
1207 	case REBOOT_SOFT:
1208 		val = REBOOT_SOFT_STR;
1209 		break;
1210 	case REBOOT_GPIO:
1211 		val = REBOOT_GPIO_STR;
1212 		break;
1213 	default:
1214 		val = REBOOT_UNDEFINED_STR;
1215 	}
1216 
1217 	return sysfs_emit(buf, "%s\n", val);
1218 }
1219 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1220 			  const char *buf, size_t count)
1221 {
1222 	if (!capable(CAP_SYS_BOOT))
1223 		return -EPERM;
1224 
1225 	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1226 		reboot_mode = REBOOT_COLD;
1227 	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1228 		reboot_mode = REBOOT_WARM;
1229 	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1230 		reboot_mode = REBOOT_HARD;
1231 	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1232 		reboot_mode = REBOOT_SOFT;
1233 	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1234 		reboot_mode = REBOOT_GPIO;
1235 	else
1236 		return -EINVAL;
1237 
1238 	reboot_default = 0;
1239 
1240 	return count;
1241 }
1242 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1243 
1244 #ifdef CONFIG_X86
1245 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1246 {
1247 	return sysfs_emit(buf, "%d\n", reboot_force);
1248 }
1249 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1250 			  const char *buf, size_t count)
1251 {
1252 	bool res;
1253 
1254 	if (!capable(CAP_SYS_BOOT))
1255 		return -EPERM;
1256 
1257 	if (kstrtobool(buf, &res))
1258 		return -EINVAL;
1259 
1260 	reboot_default = 0;
1261 	reboot_force = res;
1262 
1263 	return count;
1264 }
1265 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1266 
1267 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1268 {
1269 	const char *val;
1270 
1271 	switch (reboot_type) {
1272 	case BOOT_TRIPLE:
1273 		val = BOOT_TRIPLE_STR;
1274 		break;
1275 	case BOOT_KBD:
1276 		val = BOOT_KBD_STR;
1277 		break;
1278 	case BOOT_BIOS:
1279 		val = BOOT_BIOS_STR;
1280 		break;
1281 	case BOOT_ACPI:
1282 		val = BOOT_ACPI_STR;
1283 		break;
1284 	case BOOT_EFI:
1285 		val = BOOT_EFI_STR;
1286 		break;
1287 	case BOOT_CF9_FORCE:
1288 		val = BOOT_PCI_STR;
1289 		break;
1290 	default:
1291 		val = REBOOT_UNDEFINED_STR;
1292 	}
1293 
1294 	return sysfs_emit(buf, "%s\n", val);
1295 }
1296 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1297 			  const char *buf, size_t count)
1298 {
1299 	if (!capable(CAP_SYS_BOOT))
1300 		return -EPERM;
1301 
1302 	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1303 		reboot_type = BOOT_TRIPLE;
1304 	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1305 		reboot_type = BOOT_KBD;
1306 	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1307 		reboot_type = BOOT_BIOS;
1308 	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1309 		reboot_type = BOOT_ACPI;
1310 	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1311 		reboot_type = BOOT_EFI;
1312 	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1313 		reboot_type = BOOT_CF9_FORCE;
1314 	else
1315 		return -EINVAL;
1316 
1317 	reboot_default = 0;
1318 
1319 	return count;
1320 }
1321 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1322 #endif
1323 
1324 #ifdef CONFIG_SMP
1325 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1326 {
1327 	return sysfs_emit(buf, "%d\n", reboot_cpu);
1328 }
1329 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1330 			  const char *buf, size_t count)
1331 {
1332 	unsigned int cpunum;
1333 	int rc;
1334 
1335 	if (!capable(CAP_SYS_BOOT))
1336 		return -EPERM;
1337 
1338 	rc = kstrtouint(buf, 0, &cpunum);
1339 
1340 	if (rc)
1341 		return rc;
1342 
1343 	if (cpunum >= num_possible_cpus())
1344 		return -ERANGE;
1345 
1346 	reboot_default = 0;
1347 	reboot_cpu = cpunum;
1348 
1349 	return count;
1350 }
1351 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1352 #endif
1353 
1354 static struct attribute *reboot_attrs[] = {
1355 	&hw_protection_attr.attr,
1356 	&reboot_mode_attr.attr,
1357 #ifdef CONFIG_X86
1358 	&reboot_force_attr.attr,
1359 	&reboot_type_attr.attr,
1360 #endif
1361 #ifdef CONFIG_SMP
1362 	&reboot_cpu_attr.attr,
1363 #endif
1364 	NULL,
1365 };
1366 
1367 #ifdef CONFIG_SYSCTL
1368 static const struct ctl_table kern_reboot_table[] = {
1369 	{
1370 		.procname       = "poweroff_cmd",
1371 		.data           = &poweroff_cmd,
1372 		.maxlen         = POWEROFF_CMD_PATH_LEN,
1373 		.mode           = 0644,
1374 		.proc_handler   = proc_dostring,
1375 	},
1376 	{
1377 		.procname       = "ctrl-alt-del",
1378 		.data           = &C_A_D,
1379 		.maxlen         = sizeof(int),
1380 		.mode           = 0644,
1381 		.proc_handler   = proc_dointvec,
1382 	},
1383 };
1384 
1385 static void __init kernel_reboot_sysctls_init(void)
1386 {
1387 	register_sysctl_init("kernel", kern_reboot_table);
1388 }
1389 #else
1390 #define kernel_reboot_sysctls_init() do { } while (0)
1391 #endif /* CONFIG_SYSCTL */
1392 
1393 static const struct attribute_group reboot_attr_group = {
1394 	.attrs = reboot_attrs,
1395 };
1396 
1397 static int __init reboot_ksysfs_init(void)
1398 {
1399 	struct kobject *reboot_kobj;
1400 	int ret;
1401 
1402 	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1403 	if (!reboot_kobj)
1404 		return -ENOMEM;
1405 
1406 	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1407 	if (ret) {
1408 		kobject_put(reboot_kobj);
1409 		return ret;
1410 	}
1411 
1412 	kernel_reboot_sysctls_init();
1413 
1414 	return 0;
1415 }
1416 late_initcall(reboot_ksysfs_init);
1417 
1418 #endif
1419