1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * 10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 12 * Papers: 13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 15 * 16 * For detailed explanation of Read-Copy Update mechanism see - 17 * http://lse.sourceforge.net/locking/rcupdate.html 18 * 19 */ 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/interrupt.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/debug.h> 28 #include <linux/atomic.h> 29 #include <linux/bitops.h> 30 #include <linux/percpu.h> 31 #include <linux/notifier.h> 32 #include <linux/cpu.h> 33 #include <linux/mutex.h> 34 #include <linux/export.h> 35 #include <linux/hardirq.h> 36 #include <linux/delay.h> 37 #include <linux/moduleparam.h> 38 #include <linux/kthread.h> 39 #include <linux/tick.h> 40 #include <linux/rcupdate_wait.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/kprobes.h> 43 #include <linux/slab.h> 44 45 #define CREATE_TRACE_POINTS 46 47 #include "rcu.h" 48 49 #ifdef MODULE_PARAM_PREFIX 50 #undef MODULE_PARAM_PREFIX 51 #endif 52 #define MODULE_PARAM_PREFIX "rcupdate." 53 54 #ifndef CONFIG_TINY_RCU 55 module_param(rcu_expedited, int, 0); 56 module_param(rcu_normal, int, 0); 57 static int rcu_normal_after_boot; 58 module_param(rcu_normal_after_boot, int, 0); 59 #endif /* #ifndef CONFIG_TINY_RCU */ 60 61 #ifdef CONFIG_DEBUG_LOCK_ALLOC 62 /** 63 * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section? 64 * @ret: Best guess answer if lockdep cannot be relied on 65 * 66 * Returns true if lockdep must be ignored, in which case *ret contains 67 * the best guess described below. Otherwise returns false, in which 68 * case *ret tells the caller nothing and the caller should instead 69 * consult lockdep. 70 * 71 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an 72 * RCU-sched read-side critical section. In absence of 73 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 74 * critical section unless it can prove otherwise. Note that disabling 75 * of preemption (including disabling irqs) counts as an RCU-sched 76 * read-side critical section. This is useful for debug checks in functions 77 * that required that they be called within an RCU-sched read-side 78 * critical section. 79 * 80 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 81 * and while lockdep is disabled. 82 * 83 * Note that if the CPU is in the idle loop from an RCU point of view (ie: 84 * that we are in the section between rcu_idle_enter() and rcu_idle_exit()) 85 * then rcu_read_lock_held() sets *ret to false even if the CPU did an 86 * rcu_read_lock(). The reason for this is that RCU ignores CPUs that are 87 * in such a section, considering these as in extended quiescent state, 88 * so such a CPU is effectively never in an RCU read-side critical section 89 * regardless of what RCU primitives it invokes. This state of affairs is 90 * required --- we need to keep an RCU-free window in idle where the CPU may 91 * possibly enter into low power mode. This way we can notice an extended 92 * quiescent state to other CPUs that started a grace period. Otherwise 93 * we would delay any grace period as long as we run in the idle task. 94 * 95 * Similarly, we avoid claiming an RCU read lock held if the current 96 * CPU is offline. 97 */ 98 static bool rcu_read_lock_held_common(bool *ret) 99 { 100 if (!debug_lockdep_rcu_enabled()) { 101 *ret = 1; 102 return true; 103 } 104 if (!rcu_is_watching()) { 105 *ret = 0; 106 return true; 107 } 108 if (!rcu_lockdep_current_cpu_online()) { 109 *ret = 0; 110 return true; 111 } 112 return false; 113 } 114 115 int rcu_read_lock_sched_held(void) 116 { 117 bool ret; 118 119 if (rcu_read_lock_held_common(&ret)) 120 return ret; 121 return lock_is_held(&rcu_sched_lock_map) || !preemptible(); 122 } 123 EXPORT_SYMBOL(rcu_read_lock_sched_held); 124 #endif 125 126 #ifndef CONFIG_TINY_RCU 127 128 /* 129 * Should expedited grace-period primitives always fall back to their 130 * non-expedited counterparts? Intended for use within RCU. Note 131 * that if the user specifies both rcu_expedited and rcu_normal, then 132 * rcu_normal wins. (Except during the time period during boot from 133 * when the first task is spawned until the rcu_set_runtime_mode() 134 * core_initcall() is invoked, at which point everything is expedited.) 135 */ 136 bool rcu_gp_is_normal(void) 137 { 138 return READ_ONCE(rcu_normal) && 139 rcu_scheduler_active != RCU_SCHEDULER_INIT; 140 } 141 EXPORT_SYMBOL_GPL(rcu_gp_is_normal); 142 143 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); 144 145 /* 146 * Should normal grace-period primitives be expedited? Intended for 147 * use within RCU. Note that this function takes the rcu_expedited 148 * sysfs/boot variable and rcu_scheduler_active into account as well 149 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp() 150 * until rcu_gp_is_expedited() returns false is a -really- bad idea. 151 */ 152 bool rcu_gp_is_expedited(void) 153 { 154 return rcu_expedited || atomic_read(&rcu_expedited_nesting); 155 } 156 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); 157 158 /** 159 * rcu_expedite_gp - Expedite future RCU grace periods 160 * 161 * After a call to this function, future calls to synchronize_rcu() and 162 * friends act as the corresponding synchronize_rcu_expedited() function 163 * had instead been called. 164 */ 165 void rcu_expedite_gp(void) 166 { 167 atomic_inc(&rcu_expedited_nesting); 168 } 169 EXPORT_SYMBOL_GPL(rcu_expedite_gp); 170 171 /** 172 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation 173 * 174 * Undo a prior call to rcu_expedite_gp(). If all prior calls to 175 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), 176 * and if the rcu_expedited sysfs/boot parameter is not set, then all 177 * subsequent calls to synchronize_rcu() and friends will return to 178 * their normal non-expedited behavior. 179 */ 180 void rcu_unexpedite_gp(void) 181 { 182 atomic_dec(&rcu_expedited_nesting); 183 } 184 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); 185 186 static bool rcu_boot_ended __read_mostly; 187 188 /* 189 * Inform RCU of the end of the in-kernel boot sequence. 190 */ 191 void rcu_end_inkernel_boot(void) 192 { 193 rcu_unexpedite_gp(); 194 if (rcu_normal_after_boot) 195 WRITE_ONCE(rcu_normal, 1); 196 rcu_boot_ended = 1; 197 } 198 199 /* 200 * Let rcutorture know when it is OK to turn it up to eleven. 201 */ 202 bool rcu_inkernel_boot_has_ended(void) 203 { 204 return rcu_boot_ended; 205 } 206 EXPORT_SYMBOL_GPL(rcu_inkernel_boot_has_ended); 207 208 #endif /* #ifndef CONFIG_TINY_RCU */ 209 210 /* 211 * Test each non-SRCU synchronous grace-period wait API. This is 212 * useful just after a change in mode for these primitives, and 213 * during early boot. 214 */ 215 void rcu_test_sync_prims(void) 216 { 217 if (!IS_ENABLED(CONFIG_PROVE_RCU)) 218 return; 219 synchronize_rcu(); 220 synchronize_rcu_expedited(); 221 } 222 223 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) 224 225 /* 226 * Switch to run-time mode once RCU has fully initialized. 227 */ 228 static int __init rcu_set_runtime_mode(void) 229 { 230 rcu_test_sync_prims(); 231 rcu_scheduler_active = RCU_SCHEDULER_RUNNING; 232 kfree_rcu_scheduler_running(); 233 rcu_test_sync_prims(); 234 return 0; 235 } 236 core_initcall(rcu_set_runtime_mode); 237 238 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */ 239 240 #ifdef CONFIG_DEBUG_LOCK_ALLOC 241 static struct lock_class_key rcu_lock_key; 242 struct lockdep_map rcu_lock_map = { 243 .name = "rcu_read_lock", 244 .key = &rcu_lock_key, 245 .wait_type_outer = LD_WAIT_FREE, 246 .wait_type_inner = LD_WAIT_CONFIG, /* XXX PREEMPT_RCU ? */ 247 }; 248 EXPORT_SYMBOL_GPL(rcu_lock_map); 249 250 static struct lock_class_key rcu_bh_lock_key; 251 struct lockdep_map rcu_bh_lock_map = { 252 .name = "rcu_read_lock_bh", 253 .key = &rcu_bh_lock_key, 254 .wait_type_outer = LD_WAIT_FREE, 255 .wait_type_inner = LD_WAIT_CONFIG, /* PREEMPT_LOCK also makes BH preemptible */ 256 }; 257 EXPORT_SYMBOL_GPL(rcu_bh_lock_map); 258 259 static struct lock_class_key rcu_sched_lock_key; 260 struct lockdep_map rcu_sched_lock_map = { 261 .name = "rcu_read_lock_sched", 262 .key = &rcu_sched_lock_key, 263 .wait_type_outer = LD_WAIT_FREE, 264 .wait_type_inner = LD_WAIT_SPIN, 265 }; 266 EXPORT_SYMBOL_GPL(rcu_sched_lock_map); 267 268 static struct lock_class_key rcu_callback_key; 269 struct lockdep_map rcu_callback_map = 270 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); 271 EXPORT_SYMBOL_GPL(rcu_callback_map); 272 273 int notrace debug_lockdep_rcu_enabled(void) 274 { 275 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks && 276 current->lockdep_recursion == 0; 277 } 278 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); 279 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled); 280 281 /** 282 * rcu_read_lock_held() - might we be in RCU read-side critical section? 283 * 284 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 285 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 286 * this assumes we are in an RCU read-side critical section unless it can 287 * prove otherwise. This is useful for debug checks in functions that 288 * require that they be called within an RCU read-side critical section. 289 * 290 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 291 * and while lockdep is disabled. 292 * 293 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 294 * occur in the same context, for example, it is illegal to invoke 295 * rcu_read_unlock() in process context if the matching rcu_read_lock() 296 * was invoked from within an irq handler. 297 * 298 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 299 * offline from an RCU perspective, so check for those as well. 300 */ 301 int rcu_read_lock_held(void) 302 { 303 bool ret; 304 305 if (rcu_read_lock_held_common(&ret)) 306 return ret; 307 return lock_is_held(&rcu_lock_map); 308 } 309 EXPORT_SYMBOL_GPL(rcu_read_lock_held); 310 311 /** 312 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? 313 * 314 * Check for bottom half being disabled, which covers both the 315 * CONFIG_PROVE_RCU and not cases. Note that if someone uses 316 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) 317 * will show the situation. This is useful for debug checks in functions 318 * that require that they be called within an RCU read-side critical 319 * section. 320 * 321 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. 322 * 323 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or 324 * offline from an RCU perspective, so check for those as well. 325 */ 326 int rcu_read_lock_bh_held(void) 327 { 328 bool ret; 329 330 if (rcu_read_lock_held_common(&ret)) 331 return ret; 332 return in_softirq() || irqs_disabled(); 333 } 334 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); 335 336 int rcu_read_lock_any_held(void) 337 { 338 bool ret; 339 340 if (rcu_read_lock_held_common(&ret)) 341 return ret; 342 if (lock_is_held(&rcu_lock_map) || 343 lock_is_held(&rcu_bh_lock_map) || 344 lock_is_held(&rcu_sched_lock_map)) 345 return 1; 346 return !preemptible(); 347 } 348 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held); 349 350 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 351 352 /** 353 * wakeme_after_rcu() - Callback function to awaken a task after grace period 354 * @head: Pointer to rcu_head member within rcu_synchronize structure 355 * 356 * Awaken the corresponding task now that a grace period has elapsed. 357 */ 358 void wakeme_after_rcu(struct rcu_head *head) 359 { 360 struct rcu_synchronize *rcu; 361 362 rcu = container_of(head, struct rcu_synchronize, head); 363 complete(&rcu->completion); 364 } 365 EXPORT_SYMBOL_GPL(wakeme_after_rcu); 366 367 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, 368 struct rcu_synchronize *rs_array) 369 { 370 int i; 371 int j; 372 373 /* Initialize and register callbacks for each crcu_array element. */ 374 for (i = 0; i < n; i++) { 375 if (checktiny && 376 (crcu_array[i] == call_rcu)) { 377 might_sleep(); 378 continue; 379 } 380 init_rcu_head_on_stack(&rs_array[i].head); 381 init_completion(&rs_array[i].completion); 382 for (j = 0; j < i; j++) 383 if (crcu_array[j] == crcu_array[i]) 384 break; 385 if (j == i) 386 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu); 387 } 388 389 /* Wait for all callbacks to be invoked. */ 390 for (i = 0; i < n; i++) { 391 if (checktiny && 392 (crcu_array[i] == call_rcu)) 393 continue; 394 for (j = 0; j < i; j++) 395 if (crcu_array[j] == crcu_array[i]) 396 break; 397 if (j == i) 398 wait_for_completion(&rs_array[i].completion); 399 destroy_rcu_head_on_stack(&rs_array[i].head); 400 } 401 } 402 EXPORT_SYMBOL_GPL(__wait_rcu_gp); 403 404 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 405 void init_rcu_head(struct rcu_head *head) 406 { 407 debug_object_init(head, &rcuhead_debug_descr); 408 } 409 EXPORT_SYMBOL_GPL(init_rcu_head); 410 411 void destroy_rcu_head(struct rcu_head *head) 412 { 413 debug_object_free(head, &rcuhead_debug_descr); 414 } 415 EXPORT_SYMBOL_GPL(destroy_rcu_head); 416 417 static bool rcuhead_is_static_object(void *addr) 418 { 419 return true; 420 } 421 422 /** 423 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects 424 * @head: pointer to rcu_head structure to be initialized 425 * 426 * This function informs debugobjects of a new rcu_head structure that 427 * has been allocated as an auto variable on the stack. This function 428 * is not required for rcu_head structures that are statically defined or 429 * that are dynamically allocated on the heap. This function has no 430 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 431 */ 432 void init_rcu_head_on_stack(struct rcu_head *head) 433 { 434 debug_object_init_on_stack(head, &rcuhead_debug_descr); 435 } 436 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); 437 438 /** 439 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects 440 * @head: pointer to rcu_head structure to be initialized 441 * 442 * This function informs debugobjects that an on-stack rcu_head structure 443 * is about to go out of scope. As with init_rcu_head_on_stack(), this 444 * function is not required for rcu_head structures that are statically 445 * defined or that are dynamically allocated on the heap. Also as with 446 * init_rcu_head_on_stack(), this function has no effect for 447 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. 448 */ 449 void destroy_rcu_head_on_stack(struct rcu_head *head) 450 { 451 debug_object_free(head, &rcuhead_debug_descr); 452 } 453 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); 454 455 struct debug_obj_descr rcuhead_debug_descr = { 456 .name = "rcu_head", 457 .is_static_object = rcuhead_is_static_object, 458 }; 459 EXPORT_SYMBOL_GPL(rcuhead_debug_descr); 460 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 461 462 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_RCU_TRACE) 463 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, 464 unsigned long secs, 465 unsigned long c_old, unsigned long c) 466 { 467 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); 468 } 469 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); 470 #else 471 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 472 do { } while (0) 473 #endif 474 475 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST) 476 /* Get rcutorture access to sched_setaffinity(). */ 477 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 478 { 479 int ret; 480 481 ret = sched_setaffinity(pid, in_mask); 482 WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret); 483 return ret; 484 } 485 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity); 486 #endif 487 488 #ifdef CONFIG_RCU_STALL_COMMON 489 int rcu_cpu_stall_ftrace_dump __read_mostly; 490 module_param(rcu_cpu_stall_ftrace_dump, int, 0644); 491 int rcu_cpu_stall_suppress __read_mostly; // !0 = suppress stall warnings. 492 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress); 493 module_param(rcu_cpu_stall_suppress, int, 0644); 494 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; 495 module_param(rcu_cpu_stall_timeout, int, 0644); 496 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ 497 498 // Suppress boot-time RCU CPU stall warnings and rcutorture writer stall 499 // warnings. Also used by rcutorture even if stall warnings are excluded. 500 int rcu_cpu_stall_suppress_at_boot __read_mostly; // !0 = suppress boot stalls. 501 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot); 502 module_param(rcu_cpu_stall_suppress_at_boot, int, 0444); 503 504 #ifdef CONFIG_TASKS_RCU 505 506 /* 507 * Simple variant of RCU whose quiescent states are voluntary context 508 * switch, cond_resched_rcu_qs(), user-space execution, and idle. 509 * As such, grace periods can take one good long time. There are no 510 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 511 * because this implementation is intended to get the system into a safe 512 * state for some of the manipulations involved in tracing and the like. 513 * Finally, this implementation does not support high call_rcu_tasks() 514 * rates from multiple CPUs. If this is required, per-CPU callback lists 515 * will be needed. 516 */ 517 518 /* Global list of callbacks and associated lock. */ 519 static struct rcu_head *rcu_tasks_cbs_head; 520 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 521 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); 522 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); 523 524 /* Track exiting tasks in order to allow them to be waited for. */ 525 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 526 527 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 528 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 529 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 530 module_param(rcu_task_stall_timeout, int, 0644); 531 532 static struct task_struct *rcu_tasks_kthread_ptr; 533 534 /** 535 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 536 * @rhp: structure to be used for queueing the RCU updates. 537 * @func: actual callback function to be invoked after the grace period 538 * 539 * The callback function will be invoked some time after a full grace 540 * period elapses, in other words after all currently executing RCU 541 * read-side critical sections have completed. call_rcu_tasks() assumes 542 * that the read-side critical sections end at a voluntary context 543 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 544 * or transition to usermode execution. As such, there are no read-side 545 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 546 * this primitive is intended to determine that all tasks have passed 547 * through a safe state, not so much for data-strcuture synchronization. 548 * 549 * See the description of call_rcu() for more detailed information on 550 * memory ordering guarantees. 551 */ 552 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 553 { 554 unsigned long flags; 555 bool needwake; 556 557 rhp->next = NULL; 558 rhp->func = func; 559 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 560 needwake = !rcu_tasks_cbs_head; 561 WRITE_ONCE(*rcu_tasks_cbs_tail, rhp); 562 rcu_tasks_cbs_tail = &rhp->next; 563 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 564 /* We can't create the thread unless interrupts are enabled. */ 565 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) 566 wake_up(&rcu_tasks_cbs_wq); 567 } 568 EXPORT_SYMBOL_GPL(call_rcu_tasks); 569 570 /** 571 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 572 * 573 * Control will return to the caller some time after a full rcu-tasks 574 * grace period has elapsed, in other words after all currently 575 * executing rcu-tasks read-side critical sections have elapsed. These 576 * read-side critical sections are delimited by calls to schedule(), 577 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 578 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 579 * 580 * This is a very specialized primitive, intended only for a few uses in 581 * tracing and other situations requiring manipulation of function 582 * preambles and profiling hooks. The synchronize_rcu_tasks() function 583 * is not (yet) intended for heavy use from multiple CPUs. 584 * 585 * Note that this guarantee implies further memory-ordering guarantees. 586 * On systems with more than one CPU, when synchronize_rcu_tasks() returns, 587 * each CPU is guaranteed to have executed a full memory barrier since the 588 * end of its last RCU-tasks read-side critical section whose beginning 589 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU 590 * having an RCU-tasks read-side critical section that extends beyond 591 * the return from synchronize_rcu_tasks() is guaranteed to have executed 592 * a full memory barrier after the beginning of synchronize_rcu_tasks() 593 * and before the beginning of that RCU-tasks read-side critical section. 594 * Note that these guarantees include CPUs that are offline, idle, or 595 * executing in user mode, as well as CPUs that are executing in the kernel. 596 * 597 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned 598 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 599 * to have executed a full memory barrier during the execution of 600 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU 601 * (but again only if the system has more than one CPU). 602 */ 603 void synchronize_rcu_tasks(void) 604 { 605 /* Complain if the scheduler has not started. */ 606 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 607 "synchronize_rcu_tasks called too soon"); 608 609 /* Wait for the grace period. */ 610 wait_rcu_gp(call_rcu_tasks); 611 } 612 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 613 614 /** 615 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 616 * 617 * Although the current implementation is guaranteed to wait, it is not 618 * obligated to, for example, if there are no pending callbacks. 619 */ 620 void rcu_barrier_tasks(void) 621 { 622 /* There is only one callback queue, so this is easy. ;-) */ 623 synchronize_rcu_tasks(); 624 } 625 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 626 627 /* See if tasks are still holding out, complain if so. */ 628 static void check_holdout_task(struct task_struct *t, 629 bool needreport, bool *firstreport) 630 { 631 int cpu; 632 633 if (!READ_ONCE(t->rcu_tasks_holdout) || 634 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 635 !READ_ONCE(t->on_rq) || 636 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 637 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 638 WRITE_ONCE(t->rcu_tasks_holdout, false); 639 list_del_init(&t->rcu_tasks_holdout_list); 640 put_task_struct(t); 641 return; 642 } 643 rcu_request_urgent_qs_task(t); 644 if (!needreport) 645 return; 646 if (*firstreport) { 647 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 648 *firstreport = false; 649 } 650 cpu = task_cpu(t); 651 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 652 t, ".I"[is_idle_task(t)], 653 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 654 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 655 t->rcu_tasks_idle_cpu, cpu); 656 sched_show_task(t); 657 } 658 659 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 660 static int __noreturn rcu_tasks_kthread(void *arg) 661 { 662 unsigned long flags; 663 struct task_struct *g, *t; 664 unsigned long lastreport; 665 struct rcu_head *list; 666 struct rcu_head *next; 667 LIST_HEAD(rcu_tasks_holdouts); 668 int fract; 669 670 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 671 housekeeping_affine(current, HK_FLAG_RCU); 672 673 /* 674 * Each pass through the following loop makes one check for 675 * newly arrived callbacks, and, if there are some, waits for 676 * one RCU-tasks grace period and then invokes the callbacks. 677 * This loop is terminated by the system going down. ;-) 678 */ 679 for (;;) { 680 681 /* Pick up any new callbacks. */ 682 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); 683 list = rcu_tasks_cbs_head; 684 rcu_tasks_cbs_head = NULL; 685 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; 686 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); 687 688 /* If there were none, wait a bit and start over. */ 689 if (!list) { 690 wait_event_interruptible(rcu_tasks_cbs_wq, 691 READ_ONCE(rcu_tasks_cbs_head)); 692 if (!rcu_tasks_cbs_head) { 693 WARN_ON(signal_pending(current)); 694 schedule_timeout_interruptible(HZ/10); 695 } 696 continue; 697 } 698 699 /* 700 * Wait for all pre-existing t->on_rq and t->nvcsw 701 * transitions to complete. Invoking synchronize_rcu() 702 * suffices because all these transitions occur with 703 * interrupts disabled. Without this synchronize_rcu(), 704 * a read-side critical section that started before the 705 * grace period might be incorrectly seen as having started 706 * after the grace period. 707 * 708 * This synchronize_rcu() also dispenses with the 709 * need for a memory barrier on the first store to 710 * ->rcu_tasks_holdout, as it forces the store to happen 711 * after the beginning of the grace period. 712 */ 713 synchronize_rcu(); 714 715 /* 716 * There were callbacks, so we need to wait for an 717 * RCU-tasks grace period. Start off by scanning 718 * the task list for tasks that are not already 719 * voluntarily blocked. Mark these tasks and make 720 * a list of them in rcu_tasks_holdouts. 721 */ 722 rcu_read_lock(); 723 for_each_process_thread(g, t) { 724 if (t != current && READ_ONCE(t->on_rq) && 725 !is_idle_task(t)) { 726 get_task_struct(t); 727 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 728 WRITE_ONCE(t->rcu_tasks_holdout, true); 729 list_add(&t->rcu_tasks_holdout_list, 730 &rcu_tasks_holdouts); 731 } 732 } 733 rcu_read_unlock(); 734 735 /* 736 * Wait for tasks that are in the process of exiting. 737 * This does only part of the job, ensuring that all 738 * tasks that were previously exiting reach the point 739 * where they have disabled preemption, allowing the 740 * later synchronize_rcu() to finish the job. 741 */ 742 synchronize_srcu(&tasks_rcu_exit_srcu); 743 744 /* 745 * Each pass through the following loop scans the list 746 * of holdout tasks, removing any that are no longer 747 * holdouts. When the list is empty, we are done. 748 */ 749 lastreport = jiffies; 750 751 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ 752 fract = 10; 753 754 for (;;) { 755 bool firstreport; 756 bool needreport; 757 int rtst; 758 struct task_struct *t1; 759 760 if (list_empty(&rcu_tasks_holdouts)) 761 break; 762 763 /* Slowly back off waiting for holdouts */ 764 schedule_timeout_interruptible(HZ/fract); 765 766 if (fract > 1) 767 fract--; 768 769 rtst = READ_ONCE(rcu_task_stall_timeout); 770 needreport = rtst > 0 && 771 time_after(jiffies, lastreport + rtst); 772 if (needreport) 773 lastreport = jiffies; 774 firstreport = true; 775 WARN_ON(signal_pending(current)); 776 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, 777 rcu_tasks_holdout_list) { 778 check_holdout_task(t, needreport, &firstreport); 779 cond_resched(); 780 } 781 } 782 783 /* 784 * Because ->on_rq and ->nvcsw are not guaranteed 785 * to have a full memory barriers prior to them in the 786 * schedule() path, memory reordering on other CPUs could 787 * cause their RCU-tasks read-side critical sections to 788 * extend past the end of the grace period. However, 789 * because these ->nvcsw updates are carried out with 790 * interrupts disabled, we can use synchronize_rcu() 791 * to force the needed ordering on all such CPUs. 792 * 793 * This synchronize_rcu() also confines all 794 * ->rcu_tasks_holdout accesses to be within the grace 795 * period, avoiding the need for memory barriers for 796 * ->rcu_tasks_holdout accesses. 797 * 798 * In addition, this synchronize_rcu() waits for exiting 799 * tasks to complete their final preempt_disable() region 800 * of execution, cleaning up after the synchronize_srcu() 801 * above. 802 */ 803 synchronize_rcu(); 804 805 /* Invoke the callbacks. */ 806 while (list) { 807 next = list->next; 808 local_bh_disable(); 809 list->func(list); 810 local_bh_enable(); 811 list = next; 812 cond_resched(); 813 } 814 /* Paranoid sleep to keep this from entering a tight loop */ 815 schedule_timeout_uninterruptible(HZ/10); 816 } 817 } 818 819 /* Spawn rcu_tasks_kthread() at core_initcall() time. */ 820 static int __init rcu_spawn_tasks_kthread(void) 821 { 822 struct task_struct *t; 823 824 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); 825 if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__)) 826 return 0; 827 smp_mb(); /* Ensure others see full kthread. */ 828 WRITE_ONCE(rcu_tasks_kthread_ptr, t); 829 return 0; 830 } 831 core_initcall(rcu_spawn_tasks_kthread); 832 833 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 834 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 835 { 836 preempt_disable(); 837 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 838 preempt_enable(); 839 } 840 841 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 842 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 843 { 844 preempt_disable(); 845 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); 846 preempt_enable(); 847 } 848 849 #endif /* #ifdef CONFIG_TASKS_RCU */ 850 851 #ifndef CONFIG_TINY_RCU 852 853 /* 854 * Print any non-default Tasks RCU settings. 855 */ 856 static void __init rcu_tasks_bootup_oddness(void) 857 { 858 #ifdef CONFIG_TASKS_RCU 859 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 860 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 861 else 862 pr_info("\tTasks RCU enabled.\n"); 863 #endif /* #ifdef CONFIG_TASKS_RCU */ 864 } 865 866 #endif /* #ifndef CONFIG_TINY_RCU */ 867 868 #ifdef CONFIG_PROVE_RCU 869 870 /* 871 * Early boot self test parameters. 872 */ 873 static bool rcu_self_test; 874 module_param(rcu_self_test, bool, 0444); 875 876 static int rcu_self_test_counter; 877 878 static void test_callback(struct rcu_head *r) 879 { 880 rcu_self_test_counter++; 881 pr_info("RCU test callback executed %d\n", rcu_self_test_counter); 882 } 883 884 DEFINE_STATIC_SRCU(early_srcu); 885 886 struct early_boot_kfree_rcu { 887 struct rcu_head rh; 888 }; 889 890 static void early_boot_test_call_rcu(void) 891 { 892 static struct rcu_head head; 893 static struct rcu_head shead; 894 struct early_boot_kfree_rcu *rhp; 895 896 call_rcu(&head, test_callback); 897 if (IS_ENABLED(CONFIG_SRCU)) 898 call_srcu(&early_srcu, &shead, test_callback); 899 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL); 900 if (!WARN_ON_ONCE(!rhp)) 901 kfree_rcu(rhp, rh); 902 } 903 904 void rcu_early_boot_tests(void) 905 { 906 pr_info("Running RCU self tests\n"); 907 908 if (rcu_self_test) 909 early_boot_test_call_rcu(); 910 rcu_test_sync_prims(); 911 } 912 913 static int rcu_verify_early_boot_tests(void) 914 { 915 int ret = 0; 916 int early_boot_test_counter = 0; 917 918 if (rcu_self_test) { 919 early_boot_test_counter++; 920 rcu_barrier(); 921 if (IS_ENABLED(CONFIG_SRCU)) { 922 early_boot_test_counter++; 923 srcu_barrier(&early_srcu); 924 } 925 } 926 if (rcu_self_test_counter != early_boot_test_counter) { 927 WARN_ON(1); 928 ret = -1; 929 } 930 931 return ret; 932 } 933 late_initcall(rcu_verify_early_boot_tests); 934 #else 935 void rcu_early_boot_tests(void) {} 936 #endif /* CONFIG_PROVE_RCU */ 937 938 #ifndef CONFIG_TINY_RCU 939 940 /* 941 * Print any significant non-default boot-time settings. 942 */ 943 void __init rcupdate_announce_bootup_oddness(void) 944 { 945 if (rcu_normal) 946 pr_info("\tNo expedited grace period (rcu_normal).\n"); 947 else if (rcu_normal_after_boot) 948 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n"); 949 else if (rcu_expedited) 950 pr_info("\tAll grace periods are expedited (rcu_expedited).\n"); 951 if (rcu_cpu_stall_suppress) 952 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n"); 953 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT) 954 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout); 955 rcu_tasks_bootup_oddness(); 956 } 957 958 #endif /* #ifndef CONFIG_TINY_RCU */ 959