xref: /linux/kernel/rcu/update.c (revision a776c270a0b2fad6715cb714187e4290cadb9237)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *
10  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
11  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
12  * Papers:
13  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
14  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
15  *
16  * For detailed explanation of Read-Copy Update mechanism see -
17  *		http://lse.sourceforge.net/locking/rcupdate.html
18  *
19  */
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/interrupt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/debug.h>
28 #include <linux/atomic.h>
29 #include <linux/bitops.h>
30 #include <linux/percpu.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/mutex.h>
34 #include <linux/export.h>
35 #include <linux/hardirq.h>
36 #include <linux/delay.h>
37 #include <linux/moduleparam.h>
38 #include <linux/kthread.h>
39 #include <linux/tick.h>
40 #include <linux/rcupdate_wait.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/kprobes.h>
43 #include <linux/slab.h>
44 
45 #define CREATE_TRACE_POINTS
46 
47 #include "rcu.h"
48 
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
51 #endif
52 #define MODULE_PARAM_PREFIX "rcupdate."
53 
54 #ifndef CONFIG_TINY_RCU
55 module_param(rcu_expedited, int, 0);
56 module_param(rcu_normal, int, 0);
57 static int rcu_normal_after_boot;
58 module_param(rcu_normal_after_boot, int, 0);
59 #endif /* #ifndef CONFIG_TINY_RCU */
60 
61 #ifdef CONFIG_DEBUG_LOCK_ALLOC
62 /**
63  * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section?
64  * @ret:	Best guess answer if lockdep cannot be relied on
65  *
66  * Returns true if lockdep must be ignored, in which case *ret contains
67  * the best guess described below.  Otherwise returns false, in which
68  * case *ret tells the caller nothing and the caller should instead
69  * consult lockdep.
70  *
71  * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an
72  * RCU-sched read-side critical section.  In absence of
73  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
74  * critical section unless it can prove otherwise.  Note that disabling
75  * of preemption (including disabling irqs) counts as an RCU-sched
76  * read-side critical section.  This is useful for debug checks in functions
77  * that required that they be called within an RCU-sched read-side
78  * critical section.
79  *
80  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
81  * and while lockdep is disabled.
82  *
83  * Note that if the CPU is in the idle loop from an RCU point of view (ie:
84  * that we are in the section between rcu_idle_enter() and rcu_idle_exit())
85  * then rcu_read_lock_held() sets *ret to false even if the CPU did an
86  * rcu_read_lock().  The reason for this is that RCU ignores CPUs that are
87  * in such a section, considering these as in extended quiescent state,
88  * so such a CPU is effectively never in an RCU read-side critical section
89  * regardless of what RCU primitives it invokes.  This state of affairs is
90  * required --- we need to keep an RCU-free window in idle where the CPU may
91  * possibly enter into low power mode. This way we can notice an extended
92  * quiescent state to other CPUs that started a grace period. Otherwise
93  * we would delay any grace period as long as we run in the idle task.
94  *
95  * Similarly, we avoid claiming an RCU read lock held if the current
96  * CPU is offline.
97  */
98 static bool rcu_read_lock_held_common(bool *ret)
99 {
100 	if (!debug_lockdep_rcu_enabled()) {
101 		*ret = 1;
102 		return true;
103 	}
104 	if (!rcu_is_watching()) {
105 		*ret = 0;
106 		return true;
107 	}
108 	if (!rcu_lockdep_current_cpu_online()) {
109 		*ret = 0;
110 		return true;
111 	}
112 	return false;
113 }
114 
115 int rcu_read_lock_sched_held(void)
116 {
117 	bool ret;
118 
119 	if (rcu_read_lock_held_common(&ret))
120 		return ret;
121 	return lock_is_held(&rcu_sched_lock_map) || !preemptible();
122 }
123 EXPORT_SYMBOL(rcu_read_lock_sched_held);
124 #endif
125 
126 #ifndef CONFIG_TINY_RCU
127 
128 /*
129  * Should expedited grace-period primitives always fall back to their
130  * non-expedited counterparts?  Intended for use within RCU.  Note
131  * that if the user specifies both rcu_expedited and rcu_normal, then
132  * rcu_normal wins.  (Except during the time period during boot from
133  * when the first task is spawned until the rcu_set_runtime_mode()
134  * core_initcall() is invoked, at which point everything is expedited.)
135  */
136 bool rcu_gp_is_normal(void)
137 {
138 	return READ_ONCE(rcu_normal) &&
139 	       rcu_scheduler_active != RCU_SCHEDULER_INIT;
140 }
141 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
142 
143 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
144 
145 /*
146  * Should normal grace-period primitives be expedited?  Intended for
147  * use within RCU.  Note that this function takes the rcu_expedited
148  * sysfs/boot variable and rcu_scheduler_active into account as well
149  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
150  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
151  */
152 bool rcu_gp_is_expedited(void)
153 {
154 	return rcu_expedited || atomic_read(&rcu_expedited_nesting);
155 }
156 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
157 
158 /**
159  * rcu_expedite_gp - Expedite future RCU grace periods
160  *
161  * After a call to this function, future calls to synchronize_rcu() and
162  * friends act as the corresponding synchronize_rcu_expedited() function
163  * had instead been called.
164  */
165 void rcu_expedite_gp(void)
166 {
167 	atomic_inc(&rcu_expedited_nesting);
168 }
169 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
170 
171 /**
172  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
173  *
174  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
175  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
176  * and if the rcu_expedited sysfs/boot parameter is not set, then all
177  * subsequent calls to synchronize_rcu() and friends will return to
178  * their normal non-expedited behavior.
179  */
180 void rcu_unexpedite_gp(void)
181 {
182 	atomic_dec(&rcu_expedited_nesting);
183 }
184 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
185 
186 static bool rcu_boot_ended __read_mostly;
187 
188 /*
189  * Inform RCU of the end of the in-kernel boot sequence.
190  */
191 void rcu_end_inkernel_boot(void)
192 {
193 	rcu_unexpedite_gp();
194 	if (rcu_normal_after_boot)
195 		WRITE_ONCE(rcu_normal, 1);
196 	rcu_boot_ended = 1;
197 }
198 
199 /*
200  * Let rcutorture know when it is OK to turn it up to eleven.
201  */
202 bool rcu_inkernel_boot_has_ended(void)
203 {
204 	return rcu_boot_ended;
205 }
206 EXPORT_SYMBOL_GPL(rcu_inkernel_boot_has_ended);
207 
208 #endif /* #ifndef CONFIG_TINY_RCU */
209 
210 /*
211  * Test each non-SRCU synchronous grace-period wait API.  This is
212  * useful just after a change in mode for these primitives, and
213  * during early boot.
214  */
215 void rcu_test_sync_prims(void)
216 {
217 	if (!IS_ENABLED(CONFIG_PROVE_RCU))
218 		return;
219 	synchronize_rcu();
220 	synchronize_rcu_expedited();
221 }
222 
223 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
224 
225 /*
226  * Switch to run-time mode once RCU has fully initialized.
227  */
228 static int __init rcu_set_runtime_mode(void)
229 {
230 	rcu_test_sync_prims();
231 	rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
232 	kfree_rcu_scheduler_running();
233 	rcu_test_sync_prims();
234 	return 0;
235 }
236 core_initcall(rcu_set_runtime_mode);
237 
238 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
239 
240 #ifdef CONFIG_DEBUG_LOCK_ALLOC
241 static struct lock_class_key rcu_lock_key;
242 struct lockdep_map rcu_lock_map =
243 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
244 EXPORT_SYMBOL_GPL(rcu_lock_map);
245 
246 static struct lock_class_key rcu_bh_lock_key;
247 struct lockdep_map rcu_bh_lock_map =
248 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
249 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
250 
251 static struct lock_class_key rcu_sched_lock_key;
252 struct lockdep_map rcu_sched_lock_map =
253 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
254 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
255 
256 static struct lock_class_key rcu_callback_key;
257 struct lockdep_map rcu_callback_map =
258 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
259 EXPORT_SYMBOL_GPL(rcu_callback_map);
260 
261 int notrace debug_lockdep_rcu_enabled(void)
262 {
263 	return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
264 	       current->lockdep_recursion == 0;
265 }
266 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
267 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
268 
269 /**
270  * rcu_read_lock_held() - might we be in RCU read-side critical section?
271  *
272  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
273  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
274  * this assumes we are in an RCU read-side critical section unless it can
275  * prove otherwise.  This is useful for debug checks in functions that
276  * require that they be called within an RCU read-side critical section.
277  *
278  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
279  * and while lockdep is disabled.
280  *
281  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
282  * occur in the same context, for example, it is illegal to invoke
283  * rcu_read_unlock() in process context if the matching rcu_read_lock()
284  * was invoked from within an irq handler.
285  *
286  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
287  * offline from an RCU perspective, so check for those as well.
288  */
289 int rcu_read_lock_held(void)
290 {
291 	bool ret;
292 
293 	if (rcu_read_lock_held_common(&ret))
294 		return ret;
295 	return lock_is_held(&rcu_lock_map);
296 }
297 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
298 
299 /**
300  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
301  *
302  * Check for bottom half being disabled, which covers both the
303  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
304  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
305  * will show the situation.  This is useful for debug checks in functions
306  * that require that they be called within an RCU read-side critical
307  * section.
308  *
309  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
310  *
311  * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
312  * offline from an RCU perspective, so check for those as well.
313  */
314 int rcu_read_lock_bh_held(void)
315 {
316 	bool ret;
317 
318 	if (rcu_read_lock_held_common(&ret))
319 		return ret;
320 	return in_softirq() || irqs_disabled();
321 }
322 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
323 
324 int rcu_read_lock_any_held(void)
325 {
326 	bool ret;
327 
328 	if (rcu_read_lock_held_common(&ret))
329 		return ret;
330 	if (lock_is_held(&rcu_lock_map) ||
331 	    lock_is_held(&rcu_bh_lock_map) ||
332 	    lock_is_held(&rcu_sched_lock_map))
333 		return 1;
334 	return !preemptible();
335 }
336 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held);
337 
338 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
339 
340 /**
341  * wakeme_after_rcu() - Callback function to awaken a task after grace period
342  * @head: Pointer to rcu_head member within rcu_synchronize structure
343  *
344  * Awaken the corresponding task now that a grace period has elapsed.
345  */
346 void wakeme_after_rcu(struct rcu_head *head)
347 {
348 	struct rcu_synchronize *rcu;
349 
350 	rcu = container_of(head, struct rcu_synchronize, head);
351 	complete(&rcu->completion);
352 }
353 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
354 
355 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
356 		   struct rcu_synchronize *rs_array)
357 {
358 	int i;
359 	int j;
360 
361 	/* Initialize and register callbacks for each crcu_array element. */
362 	for (i = 0; i < n; i++) {
363 		if (checktiny &&
364 		    (crcu_array[i] == call_rcu)) {
365 			might_sleep();
366 			continue;
367 		}
368 		init_rcu_head_on_stack(&rs_array[i].head);
369 		init_completion(&rs_array[i].completion);
370 		for (j = 0; j < i; j++)
371 			if (crcu_array[j] == crcu_array[i])
372 				break;
373 		if (j == i)
374 			(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
375 	}
376 
377 	/* Wait for all callbacks to be invoked. */
378 	for (i = 0; i < n; i++) {
379 		if (checktiny &&
380 		    (crcu_array[i] == call_rcu))
381 			continue;
382 		for (j = 0; j < i; j++)
383 			if (crcu_array[j] == crcu_array[i])
384 				break;
385 		if (j == i)
386 			wait_for_completion(&rs_array[i].completion);
387 		destroy_rcu_head_on_stack(&rs_array[i].head);
388 	}
389 }
390 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
391 
392 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
393 void init_rcu_head(struct rcu_head *head)
394 {
395 	debug_object_init(head, &rcuhead_debug_descr);
396 }
397 EXPORT_SYMBOL_GPL(init_rcu_head);
398 
399 void destroy_rcu_head(struct rcu_head *head)
400 {
401 	debug_object_free(head, &rcuhead_debug_descr);
402 }
403 EXPORT_SYMBOL_GPL(destroy_rcu_head);
404 
405 static bool rcuhead_is_static_object(void *addr)
406 {
407 	return true;
408 }
409 
410 /**
411  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
412  * @head: pointer to rcu_head structure to be initialized
413  *
414  * This function informs debugobjects of a new rcu_head structure that
415  * has been allocated as an auto variable on the stack.  This function
416  * is not required for rcu_head structures that are statically defined or
417  * that are dynamically allocated on the heap.  This function has no
418  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
419  */
420 void init_rcu_head_on_stack(struct rcu_head *head)
421 {
422 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
423 }
424 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
425 
426 /**
427  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
428  * @head: pointer to rcu_head structure to be initialized
429  *
430  * This function informs debugobjects that an on-stack rcu_head structure
431  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
432  * function is not required for rcu_head structures that are statically
433  * defined or that are dynamically allocated on the heap.  Also as with
434  * init_rcu_head_on_stack(), this function has no effect for
435  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
436  */
437 void destroy_rcu_head_on_stack(struct rcu_head *head)
438 {
439 	debug_object_free(head, &rcuhead_debug_descr);
440 }
441 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
442 
443 struct debug_obj_descr rcuhead_debug_descr = {
444 	.name = "rcu_head",
445 	.is_static_object = rcuhead_is_static_object,
446 };
447 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
448 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
449 
450 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_RCU_TRACE)
451 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
452 			       unsigned long secs,
453 			       unsigned long c_old, unsigned long c)
454 {
455 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
456 }
457 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
458 #else
459 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
460 	do { } while (0)
461 #endif
462 
463 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
464 /* Get rcutorture access to sched_setaffinity(). */
465 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
466 {
467 	int ret;
468 
469 	ret = sched_setaffinity(pid, in_mask);
470 	WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
471 	return ret;
472 }
473 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
474 #endif
475 
476 #ifdef CONFIG_RCU_STALL_COMMON
477 int rcu_cpu_stall_ftrace_dump __read_mostly;
478 module_param(rcu_cpu_stall_ftrace_dump, int, 0644);
479 int rcu_cpu_stall_suppress __read_mostly; // !0 = suppress stall warnings.
480 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
481 module_param(rcu_cpu_stall_suppress, int, 0644);
482 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
483 module_param(rcu_cpu_stall_timeout, int, 0644);
484 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
485 
486 // Suppress boot-time RCU CPU stall warnings and rcutorture writer stall
487 // warnings.  Also used by rcutorture even if stall warnings are excluded.
488 int rcu_cpu_stall_suppress_at_boot __read_mostly; // !0 = suppress boot stalls.
489 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot);
490 module_param(rcu_cpu_stall_suppress_at_boot, int, 0444);
491 
492 #ifdef CONFIG_TASKS_RCU
493 
494 /*
495  * Simple variant of RCU whose quiescent states are voluntary context
496  * switch, cond_resched_rcu_qs(), user-space execution, and idle.
497  * As such, grace periods can take one good long time.  There are no
498  * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
499  * because this implementation is intended to get the system into a safe
500  * state for some of the manipulations involved in tracing and the like.
501  * Finally, this implementation does not support high call_rcu_tasks()
502  * rates from multiple CPUs.  If this is required, per-CPU callback lists
503  * will be needed.
504  */
505 
506 /* Global list of callbacks and associated lock. */
507 static struct rcu_head *rcu_tasks_cbs_head;
508 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
509 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
510 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
511 
512 /* Track exiting tasks in order to allow them to be waited for. */
513 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
514 
515 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
516 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
517 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
518 module_param(rcu_task_stall_timeout, int, 0644);
519 
520 static struct task_struct *rcu_tasks_kthread_ptr;
521 
522 /**
523  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
524  * @rhp: structure to be used for queueing the RCU updates.
525  * @func: actual callback function to be invoked after the grace period
526  *
527  * The callback function will be invoked some time after a full grace
528  * period elapses, in other words after all currently executing RCU
529  * read-side critical sections have completed. call_rcu_tasks() assumes
530  * that the read-side critical sections end at a voluntary context
531  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
532  * or transition to usermode execution.  As such, there are no read-side
533  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
534  * this primitive is intended to determine that all tasks have passed
535  * through a safe state, not so much for data-strcuture synchronization.
536  *
537  * See the description of call_rcu() for more detailed information on
538  * memory ordering guarantees.
539  */
540 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
541 {
542 	unsigned long flags;
543 	bool needwake;
544 
545 	rhp->next = NULL;
546 	rhp->func = func;
547 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
548 	needwake = !rcu_tasks_cbs_head;
549 	WRITE_ONCE(*rcu_tasks_cbs_tail, rhp);
550 	rcu_tasks_cbs_tail = &rhp->next;
551 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
552 	/* We can't create the thread unless interrupts are enabled. */
553 	if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
554 		wake_up(&rcu_tasks_cbs_wq);
555 }
556 EXPORT_SYMBOL_GPL(call_rcu_tasks);
557 
558 /**
559  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
560  *
561  * Control will return to the caller some time after a full rcu-tasks
562  * grace period has elapsed, in other words after all currently
563  * executing rcu-tasks read-side critical sections have elapsed.  These
564  * read-side critical sections are delimited by calls to schedule(),
565  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
566  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
567  *
568  * This is a very specialized primitive, intended only for a few uses in
569  * tracing and other situations requiring manipulation of function
570  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
571  * is not (yet) intended for heavy use from multiple CPUs.
572  *
573  * Note that this guarantee implies further memory-ordering guarantees.
574  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
575  * each CPU is guaranteed to have executed a full memory barrier since the
576  * end of its last RCU-tasks read-side critical section whose beginning
577  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
578  * having an RCU-tasks read-side critical section that extends beyond
579  * the return from synchronize_rcu_tasks() is guaranteed to have executed
580  * a full memory barrier after the beginning of synchronize_rcu_tasks()
581  * and before the beginning of that RCU-tasks read-side critical section.
582  * Note that these guarantees include CPUs that are offline, idle, or
583  * executing in user mode, as well as CPUs that are executing in the kernel.
584  *
585  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
586  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
587  * to have executed a full memory barrier during the execution of
588  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
589  * (but again only if the system has more than one CPU).
590  */
591 void synchronize_rcu_tasks(void)
592 {
593 	/* Complain if the scheduler has not started.  */
594 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
595 			 "synchronize_rcu_tasks called too soon");
596 
597 	/* Wait for the grace period. */
598 	wait_rcu_gp(call_rcu_tasks);
599 }
600 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
601 
602 /**
603  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
604  *
605  * Although the current implementation is guaranteed to wait, it is not
606  * obligated to, for example, if there are no pending callbacks.
607  */
608 void rcu_barrier_tasks(void)
609 {
610 	/* There is only one callback queue, so this is easy.  ;-) */
611 	synchronize_rcu_tasks();
612 }
613 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
614 
615 /* See if tasks are still holding out, complain if so. */
616 static void check_holdout_task(struct task_struct *t,
617 			       bool needreport, bool *firstreport)
618 {
619 	int cpu;
620 
621 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
622 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
623 	    !READ_ONCE(t->on_rq) ||
624 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
625 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
626 		WRITE_ONCE(t->rcu_tasks_holdout, false);
627 		list_del_init(&t->rcu_tasks_holdout_list);
628 		put_task_struct(t);
629 		return;
630 	}
631 	rcu_request_urgent_qs_task(t);
632 	if (!needreport)
633 		return;
634 	if (*firstreport) {
635 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
636 		*firstreport = false;
637 	}
638 	cpu = task_cpu(t);
639 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
640 		 t, ".I"[is_idle_task(t)],
641 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
642 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
643 		 t->rcu_tasks_idle_cpu, cpu);
644 	sched_show_task(t);
645 }
646 
647 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
648 static int __noreturn rcu_tasks_kthread(void *arg)
649 {
650 	unsigned long flags;
651 	struct task_struct *g, *t;
652 	unsigned long lastreport;
653 	struct rcu_head *list;
654 	struct rcu_head *next;
655 	LIST_HEAD(rcu_tasks_holdouts);
656 	int fract;
657 
658 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
659 	housekeeping_affine(current, HK_FLAG_RCU);
660 
661 	/*
662 	 * Each pass through the following loop makes one check for
663 	 * newly arrived callbacks, and, if there are some, waits for
664 	 * one RCU-tasks grace period and then invokes the callbacks.
665 	 * This loop is terminated by the system going down.  ;-)
666 	 */
667 	for (;;) {
668 
669 		/* Pick up any new callbacks. */
670 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
671 		list = rcu_tasks_cbs_head;
672 		rcu_tasks_cbs_head = NULL;
673 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
674 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
675 
676 		/* If there were none, wait a bit and start over. */
677 		if (!list) {
678 			wait_event_interruptible(rcu_tasks_cbs_wq,
679 						 READ_ONCE(rcu_tasks_cbs_head));
680 			if (!rcu_tasks_cbs_head) {
681 				WARN_ON(signal_pending(current));
682 				schedule_timeout_interruptible(HZ/10);
683 			}
684 			continue;
685 		}
686 
687 		/*
688 		 * Wait for all pre-existing t->on_rq and t->nvcsw
689 		 * transitions to complete.  Invoking synchronize_rcu()
690 		 * suffices because all these transitions occur with
691 		 * interrupts disabled.  Without this synchronize_rcu(),
692 		 * a read-side critical section that started before the
693 		 * grace period might be incorrectly seen as having started
694 		 * after the grace period.
695 		 *
696 		 * This synchronize_rcu() also dispenses with the
697 		 * need for a memory barrier on the first store to
698 		 * ->rcu_tasks_holdout, as it forces the store to happen
699 		 * after the beginning of the grace period.
700 		 */
701 		synchronize_rcu();
702 
703 		/*
704 		 * There were callbacks, so we need to wait for an
705 		 * RCU-tasks grace period.  Start off by scanning
706 		 * the task list for tasks that are not already
707 		 * voluntarily blocked.  Mark these tasks and make
708 		 * a list of them in rcu_tasks_holdouts.
709 		 */
710 		rcu_read_lock();
711 		for_each_process_thread(g, t) {
712 			if (t != current && READ_ONCE(t->on_rq) &&
713 			    !is_idle_task(t)) {
714 				get_task_struct(t);
715 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
716 				WRITE_ONCE(t->rcu_tasks_holdout, true);
717 				list_add(&t->rcu_tasks_holdout_list,
718 					 &rcu_tasks_holdouts);
719 			}
720 		}
721 		rcu_read_unlock();
722 
723 		/*
724 		 * Wait for tasks that are in the process of exiting.
725 		 * This does only part of the job, ensuring that all
726 		 * tasks that were previously exiting reach the point
727 		 * where they have disabled preemption, allowing the
728 		 * later synchronize_rcu() to finish the job.
729 		 */
730 		synchronize_srcu(&tasks_rcu_exit_srcu);
731 
732 		/*
733 		 * Each pass through the following loop scans the list
734 		 * of holdout tasks, removing any that are no longer
735 		 * holdouts.  When the list is empty, we are done.
736 		 */
737 		lastreport = jiffies;
738 
739 		/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
740 		fract = 10;
741 
742 		for (;;) {
743 			bool firstreport;
744 			bool needreport;
745 			int rtst;
746 			struct task_struct *t1;
747 
748 			if (list_empty(&rcu_tasks_holdouts))
749 				break;
750 
751 			/* Slowly back off waiting for holdouts */
752 			schedule_timeout_interruptible(HZ/fract);
753 
754 			if (fract > 1)
755 				fract--;
756 
757 			rtst = READ_ONCE(rcu_task_stall_timeout);
758 			needreport = rtst > 0 &&
759 				     time_after(jiffies, lastreport + rtst);
760 			if (needreport)
761 				lastreport = jiffies;
762 			firstreport = true;
763 			WARN_ON(signal_pending(current));
764 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
765 						rcu_tasks_holdout_list) {
766 				check_holdout_task(t, needreport, &firstreport);
767 				cond_resched();
768 			}
769 		}
770 
771 		/*
772 		 * Because ->on_rq and ->nvcsw are not guaranteed
773 		 * to have a full memory barriers prior to them in the
774 		 * schedule() path, memory reordering on other CPUs could
775 		 * cause their RCU-tasks read-side critical sections to
776 		 * extend past the end of the grace period.  However,
777 		 * because these ->nvcsw updates are carried out with
778 		 * interrupts disabled, we can use synchronize_rcu()
779 		 * to force the needed ordering on all such CPUs.
780 		 *
781 		 * This synchronize_rcu() also confines all
782 		 * ->rcu_tasks_holdout accesses to be within the grace
783 		 * period, avoiding the need for memory barriers for
784 		 * ->rcu_tasks_holdout accesses.
785 		 *
786 		 * In addition, this synchronize_rcu() waits for exiting
787 		 * tasks to complete their final preempt_disable() region
788 		 * of execution, cleaning up after the synchronize_srcu()
789 		 * above.
790 		 */
791 		synchronize_rcu();
792 
793 		/* Invoke the callbacks. */
794 		while (list) {
795 			next = list->next;
796 			local_bh_disable();
797 			list->func(list);
798 			local_bh_enable();
799 			list = next;
800 			cond_resched();
801 		}
802 		/* Paranoid sleep to keep this from entering a tight loop */
803 		schedule_timeout_uninterruptible(HZ/10);
804 	}
805 }
806 
807 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
808 static int __init rcu_spawn_tasks_kthread(void)
809 {
810 	struct task_struct *t;
811 
812 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
813 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
814 		return 0;
815 	smp_mb(); /* Ensure others see full kthread. */
816 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
817 	return 0;
818 }
819 core_initcall(rcu_spawn_tasks_kthread);
820 
821 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
822 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
823 {
824 	preempt_disable();
825 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
826 	preempt_enable();
827 }
828 
829 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
830 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
831 {
832 	preempt_disable();
833 	__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
834 	preempt_enable();
835 }
836 
837 #endif /* #ifdef CONFIG_TASKS_RCU */
838 
839 #ifndef CONFIG_TINY_RCU
840 
841 /*
842  * Print any non-default Tasks RCU settings.
843  */
844 static void __init rcu_tasks_bootup_oddness(void)
845 {
846 #ifdef CONFIG_TASKS_RCU
847 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
848 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
849 	else
850 		pr_info("\tTasks RCU enabled.\n");
851 #endif /* #ifdef CONFIG_TASKS_RCU */
852 }
853 
854 #endif /* #ifndef CONFIG_TINY_RCU */
855 
856 #ifdef CONFIG_PROVE_RCU
857 
858 /*
859  * Early boot self test parameters.
860  */
861 static bool rcu_self_test;
862 module_param(rcu_self_test, bool, 0444);
863 
864 static int rcu_self_test_counter;
865 
866 static void test_callback(struct rcu_head *r)
867 {
868 	rcu_self_test_counter++;
869 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
870 }
871 
872 DEFINE_STATIC_SRCU(early_srcu);
873 
874 struct early_boot_kfree_rcu {
875 	struct rcu_head rh;
876 };
877 
878 static void early_boot_test_call_rcu(void)
879 {
880 	static struct rcu_head head;
881 	static struct rcu_head shead;
882 	struct early_boot_kfree_rcu *rhp;
883 
884 	call_rcu(&head, test_callback);
885 	if (IS_ENABLED(CONFIG_SRCU))
886 		call_srcu(&early_srcu, &shead, test_callback);
887 	rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
888 	if (!WARN_ON_ONCE(!rhp))
889 		kfree_rcu(rhp, rh);
890 }
891 
892 void rcu_early_boot_tests(void)
893 {
894 	pr_info("Running RCU self tests\n");
895 
896 	if (rcu_self_test)
897 		early_boot_test_call_rcu();
898 	rcu_test_sync_prims();
899 }
900 
901 static int rcu_verify_early_boot_tests(void)
902 {
903 	int ret = 0;
904 	int early_boot_test_counter = 0;
905 
906 	if (rcu_self_test) {
907 		early_boot_test_counter++;
908 		rcu_barrier();
909 		if (IS_ENABLED(CONFIG_SRCU)) {
910 			early_boot_test_counter++;
911 			srcu_barrier(&early_srcu);
912 		}
913 	}
914 	if (rcu_self_test_counter != early_boot_test_counter) {
915 		WARN_ON(1);
916 		ret = -1;
917 	}
918 
919 	return ret;
920 }
921 late_initcall(rcu_verify_early_boot_tests);
922 #else
923 void rcu_early_boot_tests(void) {}
924 #endif /* CONFIG_PROVE_RCU */
925 
926 #ifndef CONFIG_TINY_RCU
927 
928 /*
929  * Print any significant non-default boot-time settings.
930  */
931 void __init rcupdate_announce_bootup_oddness(void)
932 {
933 	if (rcu_normal)
934 		pr_info("\tNo expedited grace period (rcu_normal).\n");
935 	else if (rcu_normal_after_boot)
936 		pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
937 	else if (rcu_expedited)
938 		pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
939 	if (rcu_cpu_stall_suppress)
940 		pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
941 	if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
942 		pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
943 	rcu_tasks_bootup_oddness();
944 }
945 
946 #endif /* #ifndef CONFIG_TINY_RCU */
947