xref: /linux/kernel/rcu/update.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *
23  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25  * Papers:
26  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28  *
29  * For detailed explanation of Read-Copy Update mechanism see -
30  *		http://lse.sourceforge.net/locking/rcupdate.html
31  *
32  */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
52 
53 #define CREATE_TRACE_POINTS
54 
55 #include "rcu.h"
56 
57 MODULE_ALIAS("rcupdate");
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcupdate."
62 
63 #ifndef CONFIG_TINY_RCU
64 module_param(rcu_expedited, int, 0);
65 module_param(rcu_normal, int, 0);
66 static int rcu_normal_after_boot;
67 module_param(rcu_normal_after_boot, int, 0);
68 #endif /* #ifndef CONFIG_TINY_RCU */
69 
70 #if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT)
71 /**
72  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
73  *
74  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
75  * RCU-sched read-side critical section.  In absence of
76  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
77  * critical section unless it can prove otherwise.  Note that disabling
78  * of preemption (including disabling irqs) counts as an RCU-sched
79  * read-side critical section.  This is useful for debug checks in functions
80  * that required that they be called within an RCU-sched read-side
81  * critical section.
82  *
83  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
84  * and while lockdep is disabled.
85  *
86  * Note that if the CPU is in the idle loop from an RCU point of
87  * view (ie: that we are in the section between rcu_idle_enter() and
88  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
89  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
90  * that are in such a section, considering these as in extended quiescent
91  * state, so such a CPU is effectively never in an RCU read-side critical
92  * section regardless of what RCU primitives it invokes.  This state of
93  * affairs is required --- we need to keep an RCU-free window in idle
94  * where the CPU may possibly enter into low power mode. This way we can
95  * notice an extended quiescent state to other CPUs that started a grace
96  * period. Otherwise we would delay any grace period as long as we run in
97  * the idle task.
98  *
99  * Similarly, we avoid claiming an SRCU read lock held if the current
100  * CPU is offline.
101  */
102 int rcu_read_lock_sched_held(void)
103 {
104 	int lockdep_opinion = 0;
105 
106 	if (!debug_lockdep_rcu_enabled())
107 		return 1;
108 	if (!rcu_is_watching())
109 		return 0;
110 	if (!rcu_lockdep_current_cpu_online())
111 		return 0;
112 	if (debug_locks)
113 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
114 	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
115 }
116 EXPORT_SYMBOL(rcu_read_lock_sched_held);
117 #endif
118 
119 #ifndef CONFIG_TINY_RCU
120 
121 /*
122  * Should expedited grace-period primitives always fall back to their
123  * non-expedited counterparts?  Intended for use within RCU.  Note
124  * that if the user specifies both rcu_expedited and rcu_normal, then
125  * rcu_normal wins.
126  */
127 bool rcu_gp_is_normal(void)
128 {
129 	return READ_ONCE(rcu_normal);
130 }
131 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
132 
133 static atomic_t rcu_expedited_nesting =
134 	ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
135 
136 /*
137  * Should normal grace-period primitives be expedited?  Intended for
138  * use within RCU.  Note that this function takes the rcu_expedited
139  * sysfs/boot variable into account as well as the rcu_expedite_gp()
140  * nesting.  So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
141  * returns false is a -really- bad idea.
142  */
143 bool rcu_gp_is_expedited(void)
144 {
145 	return rcu_expedited || atomic_read(&rcu_expedited_nesting);
146 }
147 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
148 
149 /**
150  * rcu_expedite_gp - Expedite future RCU grace periods
151  *
152  * After a call to this function, future calls to synchronize_rcu() and
153  * friends act as the corresponding synchronize_rcu_expedited() function
154  * had instead been called.
155  */
156 void rcu_expedite_gp(void)
157 {
158 	atomic_inc(&rcu_expedited_nesting);
159 }
160 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
161 
162 /**
163  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
164  *
165  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
166  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
167  * and if the rcu_expedited sysfs/boot parameter is not set, then all
168  * subsequent calls to synchronize_rcu() and friends will return to
169  * their normal non-expedited behavior.
170  */
171 void rcu_unexpedite_gp(void)
172 {
173 	atomic_dec(&rcu_expedited_nesting);
174 }
175 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
176 
177 /*
178  * Inform RCU of the end of the in-kernel boot sequence.
179  */
180 void rcu_end_inkernel_boot(void)
181 {
182 	if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
183 		rcu_unexpedite_gp();
184 	if (rcu_normal_after_boot)
185 		WRITE_ONCE(rcu_normal, 1);
186 }
187 
188 #endif /* #ifndef CONFIG_TINY_RCU */
189 
190 #ifdef CONFIG_PREEMPT_RCU
191 
192 /*
193  * Preemptible RCU implementation for rcu_read_lock().
194  * Just increment ->rcu_read_lock_nesting, shared state will be updated
195  * if we block.
196  */
197 void __rcu_read_lock(void)
198 {
199 	current->rcu_read_lock_nesting++;
200 	barrier();  /* critical section after entry code. */
201 }
202 EXPORT_SYMBOL_GPL(__rcu_read_lock);
203 
204 /*
205  * Preemptible RCU implementation for rcu_read_unlock().
206  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
207  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
208  * invoke rcu_read_unlock_special() to clean up after a context switch
209  * in an RCU read-side critical section and other special cases.
210  */
211 void __rcu_read_unlock(void)
212 {
213 	struct task_struct *t = current;
214 
215 	if (t->rcu_read_lock_nesting != 1) {
216 		--t->rcu_read_lock_nesting;
217 	} else {
218 		barrier();  /* critical section before exit code. */
219 		t->rcu_read_lock_nesting = INT_MIN;
220 		barrier();  /* assign before ->rcu_read_unlock_special load */
221 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
222 			rcu_read_unlock_special(t);
223 		barrier();  /* ->rcu_read_unlock_special load before assign */
224 		t->rcu_read_lock_nesting = 0;
225 	}
226 #ifdef CONFIG_PROVE_LOCKING
227 	{
228 		int rrln = READ_ONCE(t->rcu_read_lock_nesting);
229 
230 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
231 	}
232 #endif /* #ifdef CONFIG_PROVE_LOCKING */
233 }
234 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
235 
236 #endif /* #ifdef CONFIG_PREEMPT_RCU */
237 
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 static struct lock_class_key rcu_lock_key;
240 struct lockdep_map rcu_lock_map =
241 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
242 EXPORT_SYMBOL_GPL(rcu_lock_map);
243 
244 static struct lock_class_key rcu_bh_lock_key;
245 struct lockdep_map rcu_bh_lock_map =
246 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
247 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
248 
249 static struct lock_class_key rcu_sched_lock_key;
250 struct lockdep_map rcu_sched_lock_map =
251 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
252 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
253 
254 static struct lock_class_key rcu_callback_key;
255 struct lockdep_map rcu_callback_map =
256 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
257 EXPORT_SYMBOL_GPL(rcu_callback_map);
258 
259 int notrace debug_lockdep_rcu_enabled(void)
260 {
261 	return rcu_scheduler_active && debug_locks &&
262 	       current->lockdep_recursion == 0;
263 }
264 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
265 
266 /**
267  * rcu_read_lock_held() - might we be in RCU read-side critical section?
268  *
269  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
270  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
271  * this assumes we are in an RCU read-side critical section unless it can
272  * prove otherwise.  This is useful for debug checks in functions that
273  * require that they be called within an RCU read-side critical section.
274  *
275  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
276  * and while lockdep is disabled.
277  *
278  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
279  * occur in the same context, for example, it is illegal to invoke
280  * rcu_read_unlock() in process context if the matching rcu_read_lock()
281  * was invoked from within an irq handler.
282  *
283  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
284  * offline from an RCU perspective, so check for those as well.
285  */
286 int rcu_read_lock_held(void)
287 {
288 	if (!debug_lockdep_rcu_enabled())
289 		return 1;
290 	if (!rcu_is_watching())
291 		return 0;
292 	if (!rcu_lockdep_current_cpu_online())
293 		return 0;
294 	return lock_is_held(&rcu_lock_map);
295 }
296 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
297 
298 /**
299  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
300  *
301  * Check for bottom half being disabled, which covers both the
302  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
303  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
304  * will show the situation.  This is useful for debug checks in functions
305  * that require that they be called within an RCU read-side critical
306  * section.
307  *
308  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
309  *
310  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
311  * offline from an RCU perspective, so check for those as well.
312  */
313 int rcu_read_lock_bh_held(void)
314 {
315 	if (!debug_lockdep_rcu_enabled())
316 		return 1;
317 	if (!rcu_is_watching())
318 		return 0;
319 	if (!rcu_lockdep_current_cpu_online())
320 		return 0;
321 	return in_softirq() || irqs_disabled();
322 }
323 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
324 
325 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
326 
327 /**
328  * wakeme_after_rcu() - Callback function to awaken a task after grace period
329  * @head: Pointer to rcu_head member within rcu_synchronize structure
330  *
331  * Awaken the corresponding task now that a grace period has elapsed.
332  */
333 void wakeme_after_rcu(struct rcu_head *head)
334 {
335 	struct rcu_synchronize *rcu;
336 
337 	rcu = container_of(head, struct rcu_synchronize, head);
338 	complete(&rcu->completion);
339 }
340 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
341 
342 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
343 		   struct rcu_synchronize *rs_array)
344 {
345 	int i;
346 
347 	/* Initialize and register callbacks for each flavor specified. */
348 	for (i = 0; i < n; i++) {
349 		if (checktiny &&
350 		    (crcu_array[i] == call_rcu ||
351 		     crcu_array[i] == call_rcu_bh)) {
352 			might_sleep();
353 			continue;
354 		}
355 		init_rcu_head_on_stack(&rs_array[i].head);
356 		init_completion(&rs_array[i].completion);
357 		(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
358 	}
359 
360 	/* Wait for all callbacks to be invoked. */
361 	for (i = 0; i < n; i++) {
362 		if (checktiny &&
363 		    (crcu_array[i] == call_rcu ||
364 		     crcu_array[i] == call_rcu_bh))
365 			continue;
366 		wait_for_completion(&rs_array[i].completion);
367 		destroy_rcu_head_on_stack(&rs_array[i].head);
368 	}
369 }
370 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
371 
372 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
373 void init_rcu_head(struct rcu_head *head)
374 {
375 	debug_object_init(head, &rcuhead_debug_descr);
376 }
377 
378 void destroy_rcu_head(struct rcu_head *head)
379 {
380 	debug_object_free(head, &rcuhead_debug_descr);
381 }
382 
383 /*
384  * fixup_activate is called when:
385  * - an active object is activated
386  * - an unknown object is activated (might be a statically initialized object)
387  * Activation is performed internally by call_rcu().
388  */
389 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
390 {
391 	struct rcu_head *head = addr;
392 
393 	switch (state) {
394 
395 	case ODEBUG_STATE_NOTAVAILABLE:
396 		/*
397 		 * This is not really a fixup. We just make sure that it is
398 		 * tracked in the object tracker.
399 		 */
400 		debug_object_init(head, &rcuhead_debug_descr);
401 		debug_object_activate(head, &rcuhead_debug_descr);
402 		return 0;
403 	default:
404 		return 1;
405 	}
406 }
407 
408 /**
409  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
410  * @head: pointer to rcu_head structure to be initialized
411  *
412  * This function informs debugobjects of a new rcu_head structure that
413  * has been allocated as an auto variable on the stack.  This function
414  * is not required for rcu_head structures that are statically defined or
415  * that are dynamically allocated on the heap.  This function has no
416  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
417  */
418 void init_rcu_head_on_stack(struct rcu_head *head)
419 {
420 	debug_object_init_on_stack(head, &rcuhead_debug_descr);
421 }
422 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
423 
424 /**
425  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
426  * @head: pointer to rcu_head structure to be initialized
427  *
428  * This function informs debugobjects that an on-stack rcu_head structure
429  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
430  * function is not required for rcu_head structures that are statically
431  * defined or that are dynamically allocated on the heap.  Also as with
432  * init_rcu_head_on_stack(), this function has no effect for
433  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
434  */
435 void destroy_rcu_head_on_stack(struct rcu_head *head)
436 {
437 	debug_object_free(head, &rcuhead_debug_descr);
438 }
439 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
440 
441 struct debug_obj_descr rcuhead_debug_descr = {
442 	.name = "rcu_head",
443 	.fixup_activate = rcuhead_fixup_activate,
444 };
445 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
446 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
447 
448 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
449 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
450 			       unsigned long secs,
451 			       unsigned long c_old, unsigned long c)
452 {
453 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
454 }
455 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
456 #else
457 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
458 	do { } while (0)
459 #endif
460 
461 #ifdef CONFIG_RCU_STALL_COMMON
462 
463 #ifdef CONFIG_PROVE_RCU
464 #define RCU_STALL_DELAY_DELTA	       (5 * HZ)
465 #else
466 #define RCU_STALL_DELAY_DELTA	       0
467 #endif
468 
469 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
470 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
471 
472 module_param(rcu_cpu_stall_suppress, int, 0644);
473 module_param(rcu_cpu_stall_timeout, int, 0644);
474 
475 int rcu_jiffies_till_stall_check(void)
476 {
477 	int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
478 
479 	/*
480 	 * Limit check must be consistent with the Kconfig limits
481 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
482 	 */
483 	if (till_stall_check < 3) {
484 		WRITE_ONCE(rcu_cpu_stall_timeout, 3);
485 		till_stall_check = 3;
486 	} else if (till_stall_check > 300) {
487 		WRITE_ONCE(rcu_cpu_stall_timeout, 300);
488 		till_stall_check = 300;
489 	}
490 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
491 }
492 
493 void rcu_sysrq_start(void)
494 {
495 	if (!rcu_cpu_stall_suppress)
496 		rcu_cpu_stall_suppress = 2;
497 }
498 
499 void rcu_sysrq_end(void)
500 {
501 	if (rcu_cpu_stall_suppress == 2)
502 		rcu_cpu_stall_suppress = 0;
503 }
504 
505 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
506 {
507 	rcu_cpu_stall_suppress = 1;
508 	return NOTIFY_DONE;
509 }
510 
511 static struct notifier_block rcu_panic_block = {
512 	.notifier_call = rcu_panic,
513 };
514 
515 static int __init check_cpu_stall_init(void)
516 {
517 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
518 	return 0;
519 }
520 early_initcall(check_cpu_stall_init);
521 
522 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
523 
524 #ifdef CONFIG_TASKS_RCU
525 
526 /*
527  * Simple variant of RCU whose quiescent states are voluntary context switch,
528  * user-space execution, and idle.  As such, grace periods can take one good
529  * long time.  There are no read-side primitives similar to rcu_read_lock()
530  * and rcu_read_unlock() because this implementation is intended to get
531  * the system into a safe state for some of the manipulations involved in
532  * tracing and the like.  Finally, this implementation does not support
533  * high call_rcu_tasks() rates from multiple CPUs.  If this is required,
534  * per-CPU callback lists will be needed.
535  */
536 
537 /* Global list of callbacks and associated lock. */
538 static struct rcu_head *rcu_tasks_cbs_head;
539 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
540 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
541 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
542 
543 /* Track exiting tasks in order to allow them to be waited for. */
544 DEFINE_SRCU(tasks_rcu_exit_srcu);
545 
546 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
547 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
548 module_param(rcu_task_stall_timeout, int, 0644);
549 
550 static void rcu_spawn_tasks_kthread(void);
551 
552 /*
553  * Post an RCU-tasks callback.  First call must be from process context
554  * after the scheduler if fully operational.
555  */
556 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
557 {
558 	unsigned long flags;
559 	bool needwake;
560 
561 	rhp->next = NULL;
562 	rhp->func = func;
563 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
564 	needwake = !rcu_tasks_cbs_head;
565 	*rcu_tasks_cbs_tail = rhp;
566 	rcu_tasks_cbs_tail = &rhp->next;
567 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
568 	if (needwake) {
569 		rcu_spawn_tasks_kthread();
570 		wake_up(&rcu_tasks_cbs_wq);
571 	}
572 }
573 EXPORT_SYMBOL_GPL(call_rcu_tasks);
574 
575 /**
576  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
577  *
578  * Control will return to the caller some time after a full rcu-tasks
579  * grace period has elapsed, in other words after all currently
580  * executing rcu-tasks read-side critical sections have elapsed.  These
581  * read-side critical sections are delimited by calls to schedule(),
582  * cond_resched_rcu_qs(), idle execution, userspace execution, calls
583  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
584  *
585  * This is a very specialized primitive, intended only for a few uses in
586  * tracing and other situations requiring manipulation of function
587  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
588  * is not (yet) intended for heavy use from multiple CPUs.
589  *
590  * Note that this guarantee implies further memory-ordering guarantees.
591  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
592  * each CPU is guaranteed to have executed a full memory barrier since the
593  * end of its last RCU-tasks read-side critical section whose beginning
594  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
595  * having an RCU-tasks read-side critical section that extends beyond
596  * the return from synchronize_rcu_tasks() is guaranteed to have executed
597  * a full memory barrier after the beginning of synchronize_rcu_tasks()
598  * and before the beginning of that RCU-tasks read-side critical section.
599  * Note that these guarantees include CPUs that are offline, idle, or
600  * executing in user mode, as well as CPUs that are executing in the kernel.
601  *
602  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
603  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
604  * to have executed a full memory barrier during the execution of
605  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
606  * (but again only if the system has more than one CPU).
607  */
608 void synchronize_rcu_tasks(void)
609 {
610 	/* Complain if the scheduler has not started.  */
611 	RCU_LOCKDEP_WARN(!rcu_scheduler_active,
612 			 "synchronize_rcu_tasks called too soon");
613 
614 	/* Wait for the grace period. */
615 	wait_rcu_gp(call_rcu_tasks);
616 }
617 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
618 
619 /**
620  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
621  *
622  * Although the current implementation is guaranteed to wait, it is not
623  * obligated to, for example, if there are no pending callbacks.
624  */
625 void rcu_barrier_tasks(void)
626 {
627 	/* There is only one callback queue, so this is easy.  ;-) */
628 	synchronize_rcu_tasks();
629 }
630 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
631 
632 /* See if tasks are still holding out, complain if so. */
633 static void check_holdout_task(struct task_struct *t,
634 			       bool needreport, bool *firstreport)
635 {
636 	int cpu;
637 
638 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
639 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
640 	    !READ_ONCE(t->on_rq) ||
641 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
642 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
643 		WRITE_ONCE(t->rcu_tasks_holdout, false);
644 		list_del_init(&t->rcu_tasks_holdout_list);
645 		put_task_struct(t);
646 		return;
647 	}
648 	if (!needreport)
649 		return;
650 	if (*firstreport) {
651 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
652 		*firstreport = false;
653 	}
654 	cpu = task_cpu(t);
655 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
656 		 t, ".I"[is_idle_task(t)],
657 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
658 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
659 		 t->rcu_tasks_idle_cpu, cpu);
660 	sched_show_task(t);
661 }
662 
663 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
664 static int __noreturn rcu_tasks_kthread(void *arg)
665 {
666 	unsigned long flags;
667 	struct task_struct *g, *t;
668 	unsigned long lastreport;
669 	struct rcu_head *list;
670 	struct rcu_head *next;
671 	LIST_HEAD(rcu_tasks_holdouts);
672 
673 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
674 	housekeeping_affine(current);
675 
676 	/*
677 	 * Each pass through the following loop makes one check for
678 	 * newly arrived callbacks, and, if there are some, waits for
679 	 * one RCU-tasks grace period and then invokes the callbacks.
680 	 * This loop is terminated by the system going down.  ;-)
681 	 */
682 	for (;;) {
683 
684 		/* Pick up any new callbacks. */
685 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
686 		list = rcu_tasks_cbs_head;
687 		rcu_tasks_cbs_head = NULL;
688 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
689 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
690 
691 		/* If there were none, wait a bit and start over. */
692 		if (!list) {
693 			wait_event_interruptible(rcu_tasks_cbs_wq,
694 						 rcu_tasks_cbs_head);
695 			if (!rcu_tasks_cbs_head) {
696 				WARN_ON(signal_pending(current));
697 				schedule_timeout_interruptible(HZ/10);
698 			}
699 			continue;
700 		}
701 
702 		/*
703 		 * Wait for all pre-existing t->on_rq and t->nvcsw
704 		 * transitions to complete.  Invoking synchronize_sched()
705 		 * suffices because all these transitions occur with
706 		 * interrupts disabled.  Without this synchronize_sched(),
707 		 * a read-side critical section that started before the
708 		 * grace period might be incorrectly seen as having started
709 		 * after the grace period.
710 		 *
711 		 * This synchronize_sched() also dispenses with the
712 		 * need for a memory barrier on the first store to
713 		 * ->rcu_tasks_holdout, as it forces the store to happen
714 		 * after the beginning of the grace period.
715 		 */
716 		synchronize_sched();
717 
718 		/*
719 		 * There were callbacks, so we need to wait for an
720 		 * RCU-tasks grace period.  Start off by scanning
721 		 * the task list for tasks that are not already
722 		 * voluntarily blocked.  Mark these tasks and make
723 		 * a list of them in rcu_tasks_holdouts.
724 		 */
725 		rcu_read_lock();
726 		for_each_process_thread(g, t) {
727 			if (t != current && READ_ONCE(t->on_rq) &&
728 			    !is_idle_task(t)) {
729 				get_task_struct(t);
730 				t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
731 				WRITE_ONCE(t->rcu_tasks_holdout, true);
732 				list_add(&t->rcu_tasks_holdout_list,
733 					 &rcu_tasks_holdouts);
734 			}
735 		}
736 		rcu_read_unlock();
737 
738 		/*
739 		 * Wait for tasks that are in the process of exiting.
740 		 * This does only part of the job, ensuring that all
741 		 * tasks that were previously exiting reach the point
742 		 * where they have disabled preemption, allowing the
743 		 * later synchronize_sched() to finish the job.
744 		 */
745 		synchronize_srcu(&tasks_rcu_exit_srcu);
746 
747 		/*
748 		 * Each pass through the following loop scans the list
749 		 * of holdout tasks, removing any that are no longer
750 		 * holdouts.  When the list is empty, we are done.
751 		 */
752 		lastreport = jiffies;
753 		while (!list_empty(&rcu_tasks_holdouts)) {
754 			bool firstreport;
755 			bool needreport;
756 			int rtst;
757 			struct task_struct *t1;
758 
759 			schedule_timeout_interruptible(HZ);
760 			rtst = READ_ONCE(rcu_task_stall_timeout);
761 			needreport = rtst > 0 &&
762 				     time_after(jiffies, lastreport + rtst);
763 			if (needreport)
764 				lastreport = jiffies;
765 			firstreport = true;
766 			WARN_ON(signal_pending(current));
767 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
768 						rcu_tasks_holdout_list) {
769 				check_holdout_task(t, needreport, &firstreport);
770 				cond_resched();
771 			}
772 		}
773 
774 		/*
775 		 * Because ->on_rq and ->nvcsw are not guaranteed
776 		 * to have a full memory barriers prior to them in the
777 		 * schedule() path, memory reordering on other CPUs could
778 		 * cause their RCU-tasks read-side critical sections to
779 		 * extend past the end of the grace period.  However,
780 		 * because these ->nvcsw updates are carried out with
781 		 * interrupts disabled, we can use synchronize_sched()
782 		 * to force the needed ordering on all such CPUs.
783 		 *
784 		 * This synchronize_sched() also confines all
785 		 * ->rcu_tasks_holdout accesses to be within the grace
786 		 * period, avoiding the need for memory barriers for
787 		 * ->rcu_tasks_holdout accesses.
788 		 *
789 		 * In addition, this synchronize_sched() waits for exiting
790 		 * tasks to complete their final preempt_disable() region
791 		 * of execution, cleaning up after the synchronize_srcu()
792 		 * above.
793 		 */
794 		synchronize_sched();
795 
796 		/* Invoke the callbacks. */
797 		while (list) {
798 			next = list->next;
799 			local_bh_disable();
800 			list->func(list);
801 			local_bh_enable();
802 			list = next;
803 			cond_resched();
804 		}
805 		schedule_timeout_uninterruptible(HZ/10);
806 	}
807 }
808 
809 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
810 static void rcu_spawn_tasks_kthread(void)
811 {
812 	static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
813 	static struct task_struct *rcu_tasks_kthread_ptr;
814 	struct task_struct *t;
815 
816 	if (READ_ONCE(rcu_tasks_kthread_ptr)) {
817 		smp_mb(); /* Ensure caller sees full kthread. */
818 		return;
819 	}
820 	mutex_lock(&rcu_tasks_kthread_mutex);
821 	if (rcu_tasks_kthread_ptr) {
822 		mutex_unlock(&rcu_tasks_kthread_mutex);
823 		return;
824 	}
825 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
826 	BUG_ON(IS_ERR(t));
827 	smp_mb(); /* Ensure others see full kthread. */
828 	WRITE_ONCE(rcu_tasks_kthread_ptr, t);
829 	mutex_unlock(&rcu_tasks_kthread_mutex);
830 }
831 
832 #endif /* #ifdef CONFIG_TASKS_RCU */
833 
834 #ifdef CONFIG_PROVE_RCU
835 
836 /*
837  * Early boot self test parameters, one for each flavor
838  */
839 static bool rcu_self_test;
840 static bool rcu_self_test_bh;
841 static bool rcu_self_test_sched;
842 
843 module_param(rcu_self_test, bool, 0444);
844 module_param(rcu_self_test_bh, bool, 0444);
845 module_param(rcu_self_test_sched, bool, 0444);
846 
847 static int rcu_self_test_counter;
848 
849 static void test_callback(struct rcu_head *r)
850 {
851 	rcu_self_test_counter++;
852 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
853 }
854 
855 static void early_boot_test_call_rcu(void)
856 {
857 	static struct rcu_head head;
858 
859 	call_rcu(&head, test_callback);
860 }
861 
862 static void early_boot_test_call_rcu_bh(void)
863 {
864 	static struct rcu_head head;
865 
866 	call_rcu_bh(&head, test_callback);
867 }
868 
869 static void early_boot_test_call_rcu_sched(void)
870 {
871 	static struct rcu_head head;
872 
873 	call_rcu_sched(&head, test_callback);
874 }
875 
876 void rcu_early_boot_tests(void)
877 {
878 	pr_info("Running RCU self tests\n");
879 
880 	if (rcu_self_test)
881 		early_boot_test_call_rcu();
882 	if (rcu_self_test_bh)
883 		early_boot_test_call_rcu_bh();
884 	if (rcu_self_test_sched)
885 		early_boot_test_call_rcu_sched();
886 }
887 
888 static int rcu_verify_early_boot_tests(void)
889 {
890 	int ret = 0;
891 	int early_boot_test_counter = 0;
892 
893 	if (rcu_self_test) {
894 		early_boot_test_counter++;
895 		rcu_barrier();
896 	}
897 	if (rcu_self_test_bh) {
898 		early_boot_test_counter++;
899 		rcu_barrier_bh();
900 	}
901 	if (rcu_self_test_sched) {
902 		early_boot_test_counter++;
903 		rcu_barrier_sched();
904 	}
905 
906 	if (rcu_self_test_counter != early_boot_test_counter) {
907 		WARN_ON(1);
908 		ret = -1;
909 	}
910 
911 	return ret;
912 }
913 late_initcall(rcu_verify_early_boot_tests);
914 #else
915 void rcu_early_boot_tests(void) {}
916 #endif /* CONFIG_PROVE_RCU */
917