xref: /linux/kernel/rcu/tree_plugin.h (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
35 
36 #ifdef CONFIG_RCU_BOOST
37 
38 #include "../locking/rtmutex_common.h"
39 
40 /*
41  * Control variables for per-CPU and per-rcu_node kthreads.  These
42  * handle all flavors of RCU.
43  */
44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work);
48 
49 #else /* #ifdef CONFIG_RCU_BOOST */
50 
51 /*
52  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53  * all uses are in dead code.  Provide a definition to keep the compiler
54  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55  * This probably needs to be excluded from -rt builds.
56  */
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59 
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61 
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
65 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
66 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
67 
68 /*
69  * Check the RCU kernel configuration parameters and print informative
70  * messages about anything out of the ordinary.
71  */
72 static void __init rcu_bootup_announce_oddness(void)
73 {
74 	if (IS_ENABLED(CONFIG_RCU_TRACE))
75 		pr_info("\tRCU event tracing is enabled.\n");
76 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
77 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
78 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
79 		       RCU_FANOUT);
80 	if (rcu_fanout_exact)
81 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
82 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
83 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
84 	if (IS_ENABLED(CONFIG_PROVE_RCU))
85 		pr_info("\tRCU lockdep checking is enabled.\n");
86 	if (RCU_NUM_LVLS >= 4)
87 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
88 	if (RCU_FANOUT_LEAF != 16)
89 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
90 			RCU_FANOUT_LEAF);
91 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
92 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
93 	if (nr_cpu_ids != NR_CPUS)
94 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
95 #ifdef CONFIG_RCU_BOOST
96 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
97 #endif
98 	if (blimit != DEFAULT_RCU_BLIMIT)
99 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
100 	if (qhimark != DEFAULT_RCU_QHIMARK)
101 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
102 	if (qlowmark != DEFAULT_RCU_QLOMARK)
103 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
104 	if (jiffies_till_first_fqs != ULONG_MAX)
105 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
106 	if (jiffies_till_next_fqs != ULONG_MAX)
107 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
108 	if (rcu_kick_kthreads)
109 		pr_info("\tKick kthreads if too-long grace period.\n");
110 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
111 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
112 	if (gp_preinit_delay)
113 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
114 	if (gp_init_delay)
115 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
116 	if (gp_cleanup_delay)
117 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
118 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
119 		pr_info("\tRCU debug extended QS entry/exit.\n");
120 	rcupdate_announce_bootup_oddness();
121 }
122 
123 #ifdef CONFIG_PREEMPT_RCU
124 
125 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
126 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
127 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
128 
129 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
130 			       bool wake);
131 
132 /*
133  * Tell them what RCU they are running.
134  */
135 static void __init rcu_bootup_announce(void)
136 {
137 	pr_info("Preemptible hierarchical RCU implementation.\n");
138 	rcu_bootup_announce_oddness();
139 }
140 
141 /* Flags for rcu_preempt_ctxt_queue() decision table. */
142 #define RCU_GP_TASKS	0x8
143 #define RCU_EXP_TASKS	0x4
144 #define RCU_GP_BLKD	0x2
145 #define RCU_EXP_BLKD	0x1
146 
147 /*
148  * Queues a task preempted within an RCU-preempt read-side critical
149  * section into the appropriate location within the ->blkd_tasks list,
150  * depending on the states of any ongoing normal and expedited grace
151  * periods.  The ->gp_tasks pointer indicates which element the normal
152  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
153  * indicates which element the expedited grace period is waiting on (again,
154  * NULL if none).  If a grace period is waiting on a given element in the
155  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
156  * adding a task to the tail of the list blocks any grace period that is
157  * already waiting on one of the elements.  In contrast, adding a task
158  * to the head of the list won't block any grace period that is already
159  * waiting on one of the elements.
160  *
161  * This queuing is imprecise, and can sometimes make an ongoing grace
162  * period wait for a task that is not strictly speaking blocking it.
163  * Given the choice, we needlessly block a normal grace period rather than
164  * blocking an expedited grace period.
165  *
166  * Note that an endless sequence of expedited grace periods still cannot
167  * indefinitely postpone a normal grace period.  Eventually, all of the
168  * fixed number of preempted tasks blocking the normal grace period that are
169  * not also blocking the expedited grace period will resume and complete
170  * their RCU read-side critical sections.  At that point, the ->gp_tasks
171  * pointer will equal the ->exp_tasks pointer, at which point the end of
172  * the corresponding expedited grace period will also be the end of the
173  * normal grace period.
174  */
175 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
176 	__releases(rnp->lock) /* But leaves rrupts disabled. */
177 {
178 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
179 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
180 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
181 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
182 	struct task_struct *t = current;
183 
184 	lockdep_assert_held(&rnp->lock);
185 	WARN_ON_ONCE(rdp->mynode != rnp);
186 	WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
187 
188 	/*
189 	 * Decide where to queue the newly blocked task.  In theory,
190 	 * this could be an if-statement.  In practice, when I tried
191 	 * that, it was quite messy.
192 	 */
193 	switch (blkd_state) {
194 	case 0:
195 	case                RCU_EXP_TASKS:
196 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
197 	case RCU_GP_TASKS:
198 	case RCU_GP_TASKS + RCU_EXP_TASKS:
199 
200 		/*
201 		 * Blocking neither GP, or first task blocking the normal
202 		 * GP but not blocking the already-waiting expedited GP.
203 		 * Queue at the head of the list to avoid unnecessarily
204 		 * blocking the already-waiting GPs.
205 		 */
206 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
207 		break;
208 
209 	case                                              RCU_EXP_BLKD:
210 	case                                RCU_GP_BLKD:
211 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
212 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
213 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
214 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
215 
216 		/*
217 		 * First task arriving that blocks either GP, or first task
218 		 * arriving that blocks the expedited GP (with the normal
219 		 * GP already waiting), or a task arriving that blocks
220 		 * both GPs with both GPs already waiting.  Queue at the
221 		 * tail of the list to avoid any GP waiting on any of the
222 		 * already queued tasks that are not blocking it.
223 		 */
224 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
225 		break;
226 
227 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
228 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
229 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
230 
231 		/*
232 		 * Second or subsequent task blocking the expedited GP.
233 		 * The task either does not block the normal GP, or is the
234 		 * first task blocking the normal GP.  Queue just after
235 		 * the first task blocking the expedited GP.
236 		 */
237 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
238 		break;
239 
240 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
241 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
242 
243 		/*
244 		 * Second or subsequent task blocking the normal GP.
245 		 * The task does not block the expedited GP. Queue just
246 		 * after the first task blocking the normal GP.
247 		 */
248 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
249 		break;
250 
251 	default:
252 
253 		/* Yet another exercise in excessive paranoia. */
254 		WARN_ON_ONCE(1);
255 		break;
256 	}
257 
258 	/*
259 	 * We have now queued the task.  If it was the first one to
260 	 * block either grace period, update the ->gp_tasks and/or
261 	 * ->exp_tasks pointers, respectively, to reference the newly
262 	 * blocked tasks.
263 	 */
264 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
265 		rnp->gp_tasks = &t->rcu_node_entry;
266 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
267 		rnp->exp_tasks = &t->rcu_node_entry;
268 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
269 		     !(rnp->qsmask & rdp->grpmask));
270 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
271 		     !(rnp->expmask & rdp->grpmask));
272 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
273 
274 	/*
275 	 * Report the quiescent state for the expedited GP.  This expedited
276 	 * GP should not be able to end until we report, so there should be
277 	 * no need to check for a subsequent expedited GP.  (Though we are
278 	 * still in a quiescent state in any case.)
279 	 */
280 	if (blkd_state & RCU_EXP_BLKD &&
281 	    t->rcu_read_unlock_special.b.exp_need_qs) {
282 		t->rcu_read_unlock_special.b.exp_need_qs = false;
283 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
284 	} else {
285 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
286 	}
287 }
288 
289 /*
290  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
291  * that this just means that the task currently running on the CPU is
292  * not in a quiescent state.  There might be any number of tasks blocked
293  * while in an RCU read-side critical section.
294  *
295  * As with the other rcu_*_qs() functions, callers to this function
296  * must disable preemption.
297  */
298 static void rcu_preempt_qs(void)
299 {
300 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
301 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
302 		trace_rcu_grace_period(TPS("rcu_preempt"),
303 				       __this_cpu_read(rcu_data_p->gpnum),
304 				       TPS("cpuqs"));
305 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
306 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
307 		current->rcu_read_unlock_special.b.need_qs = false;
308 	}
309 }
310 
311 /*
312  * We have entered the scheduler, and the current task might soon be
313  * context-switched away from.  If this task is in an RCU read-side
314  * critical section, we will no longer be able to rely on the CPU to
315  * record that fact, so we enqueue the task on the blkd_tasks list.
316  * The task will dequeue itself when it exits the outermost enclosing
317  * RCU read-side critical section.  Therefore, the current grace period
318  * cannot be permitted to complete until the blkd_tasks list entries
319  * predating the current grace period drain, in other words, until
320  * rnp->gp_tasks becomes NULL.
321  *
322  * Caller must disable interrupts.
323  */
324 static void rcu_preempt_note_context_switch(bool preempt)
325 {
326 	struct task_struct *t = current;
327 	struct rcu_data *rdp;
328 	struct rcu_node *rnp;
329 
330 	lockdep_assert_irqs_disabled();
331 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
332 	if (t->rcu_read_lock_nesting > 0 &&
333 	    !t->rcu_read_unlock_special.b.blocked) {
334 
335 		/* Possibly blocking in an RCU read-side critical section. */
336 		rdp = this_cpu_ptr(rcu_state_p->rda);
337 		rnp = rdp->mynode;
338 		raw_spin_lock_rcu_node(rnp);
339 		t->rcu_read_unlock_special.b.blocked = true;
340 		t->rcu_blocked_node = rnp;
341 
342 		/*
343 		 * Verify the CPU's sanity, trace the preemption, and
344 		 * then queue the task as required based on the states
345 		 * of any ongoing and expedited grace periods.
346 		 */
347 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
348 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
349 		trace_rcu_preempt_task(rdp->rsp->name,
350 				       t->pid,
351 				       (rnp->qsmask & rdp->grpmask)
352 				       ? rnp->gpnum
353 				       : rnp->gpnum + 1);
354 		rcu_preempt_ctxt_queue(rnp, rdp);
355 	} else if (t->rcu_read_lock_nesting < 0 &&
356 		   t->rcu_read_unlock_special.s) {
357 
358 		/*
359 		 * Complete exit from RCU read-side critical section on
360 		 * behalf of preempted instance of __rcu_read_unlock().
361 		 */
362 		rcu_read_unlock_special(t);
363 	}
364 
365 	/*
366 	 * Either we were not in an RCU read-side critical section to
367 	 * begin with, or we have now recorded that critical section
368 	 * globally.  Either way, we can now note a quiescent state
369 	 * for this CPU.  Again, if we were in an RCU read-side critical
370 	 * section, and if that critical section was blocking the current
371 	 * grace period, then the fact that the task has been enqueued
372 	 * means that we continue to block the current grace period.
373 	 */
374 	rcu_preempt_qs();
375 }
376 
377 /*
378  * Check for preempted RCU readers blocking the current grace period
379  * for the specified rcu_node structure.  If the caller needs a reliable
380  * answer, it must hold the rcu_node's ->lock.
381  */
382 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
383 {
384 	return rnp->gp_tasks != NULL;
385 }
386 
387 /*
388  * Advance a ->blkd_tasks-list pointer to the next entry, instead
389  * returning NULL if at the end of the list.
390  */
391 static struct list_head *rcu_next_node_entry(struct task_struct *t,
392 					     struct rcu_node *rnp)
393 {
394 	struct list_head *np;
395 
396 	np = t->rcu_node_entry.next;
397 	if (np == &rnp->blkd_tasks)
398 		np = NULL;
399 	return np;
400 }
401 
402 /*
403  * Return true if the specified rcu_node structure has tasks that were
404  * preempted within an RCU read-side critical section.
405  */
406 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
407 {
408 	return !list_empty(&rnp->blkd_tasks);
409 }
410 
411 /*
412  * Handle special cases during rcu_read_unlock(), such as needing to
413  * notify RCU core processing or task having blocked during the RCU
414  * read-side critical section.
415  */
416 void rcu_read_unlock_special(struct task_struct *t)
417 {
418 	bool empty_exp;
419 	bool empty_norm;
420 	bool empty_exp_now;
421 	unsigned long flags;
422 	struct list_head *np;
423 	bool drop_boost_mutex = false;
424 	struct rcu_data *rdp;
425 	struct rcu_node *rnp;
426 	union rcu_special special;
427 
428 	/* NMI handlers cannot block and cannot safely manipulate state. */
429 	if (in_nmi())
430 		return;
431 
432 	local_irq_save(flags);
433 
434 	/*
435 	 * If RCU core is waiting for this CPU to exit its critical section,
436 	 * report the fact that it has exited.  Because irqs are disabled,
437 	 * t->rcu_read_unlock_special cannot change.
438 	 */
439 	special = t->rcu_read_unlock_special;
440 	if (special.b.need_qs) {
441 		rcu_preempt_qs();
442 		t->rcu_read_unlock_special.b.need_qs = false;
443 		if (!t->rcu_read_unlock_special.s) {
444 			local_irq_restore(flags);
445 			return;
446 		}
447 	}
448 
449 	/*
450 	 * Respond to a request for an expedited grace period, but only if
451 	 * we were not preempted, meaning that we were running on the same
452 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
453 	 * would have been cleared at the time of the first preemption,
454 	 * and the quiescent state would be reported when we were dequeued.
455 	 */
456 	if (special.b.exp_need_qs) {
457 		WARN_ON_ONCE(special.b.blocked);
458 		t->rcu_read_unlock_special.b.exp_need_qs = false;
459 		rdp = this_cpu_ptr(rcu_state_p->rda);
460 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
461 		if (!t->rcu_read_unlock_special.s) {
462 			local_irq_restore(flags);
463 			return;
464 		}
465 	}
466 
467 	/* Hardware IRQ handlers cannot block, complain if they get here. */
468 	if (in_irq() || in_serving_softirq()) {
469 		lockdep_rcu_suspicious(__FILE__, __LINE__,
470 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
471 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
472 			 t->rcu_read_unlock_special.s,
473 			 t->rcu_read_unlock_special.b.blocked,
474 			 t->rcu_read_unlock_special.b.exp_need_qs,
475 			 t->rcu_read_unlock_special.b.need_qs);
476 		local_irq_restore(flags);
477 		return;
478 	}
479 
480 	/* Clean up if blocked during RCU read-side critical section. */
481 	if (special.b.blocked) {
482 		t->rcu_read_unlock_special.b.blocked = false;
483 
484 		/*
485 		 * Remove this task from the list it blocked on.  The task
486 		 * now remains queued on the rcu_node corresponding to the
487 		 * CPU it first blocked on, so there is no longer any need
488 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
489 		 */
490 		rnp = t->rcu_blocked_node;
491 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
492 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
493 		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
494 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
495 		empty_exp = sync_rcu_preempt_exp_done(rnp);
496 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
497 		np = rcu_next_node_entry(t, rnp);
498 		list_del_init(&t->rcu_node_entry);
499 		t->rcu_blocked_node = NULL;
500 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
501 						rnp->gpnum, t->pid);
502 		if (&t->rcu_node_entry == rnp->gp_tasks)
503 			rnp->gp_tasks = np;
504 		if (&t->rcu_node_entry == rnp->exp_tasks)
505 			rnp->exp_tasks = np;
506 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
507 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
508 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
509 			if (&t->rcu_node_entry == rnp->boost_tasks)
510 				rnp->boost_tasks = np;
511 		}
512 
513 		/*
514 		 * If this was the last task on the current list, and if
515 		 * we aren't waiting on any CPUs, report the quiescent state.
516 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
517 		 * so we must take a snapshot of the expedited state.
518 		 */
519 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
520 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
521 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
522 							 rnp->gpnum,
523 							 0, rnp->qsmask,
524 							 rnp->level,
525 							 rnp->grplo,
526 							 rnp->grphi,
527 							 !!rnp->gp_tasks);
528 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
529 		} else {
530 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
531 		}
532 
533 		/* Unboost if we were boosted. */
534 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
535 			rt_mutex_futex_unlock(&rnp->boost_mtx);
536 
537 		/*
538 		 * If this was the last task on the expedited lists,
539 		 * then we need to report up the rcu_node hierarchy.
540 		 */
541 		if (!empty_exp && empty_exp_now)
542 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
543 	} else {
544 		local_irq_restore(flags);
545 	}
546 }
547 
548 /*
549  * Dump detailed information for all tasks blocking the current RCU
550  * grace period on the specified rcu_node structure.
551  */
552 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
553 {
554 	unsigned long flags;
555 	struct task_struct *t;
556 
557 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
558 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
559 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
560 		return;
561 	}
562 	t = list_entry(rnp->gp_tasks->prev,
563 		       struct task_struct, rcu_node_entry);
564 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
565 		sched_show_task(t);
566 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
567 }
568 
569 /*
570  * Dump detailed information for all tasks blocking the current RCU
571  * grace period.
572  */
573 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
574 {
575 	struct rcu_node *rnp = rcu_get_root(rsp);
576 
577 	rcu_print_detail_task_stall_rnp(rnp);
578 	rcu_for_each_leaf_node(rsp, rnp)
579 		rcu_print_detail_task_stall_rnp(rnp);
580 }
581 
582 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
583 {
584 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
585 	       rnp->level, rnp->grplo, rnp->grphi);
586 }
587 
588 static void rcu_print_task_stall_end(void)
589 {
590 	pr_cont("\n");
591 }
592 
593 /*
594  * Scan the current list of tasks blocked within RCU read-side critical
595  * sections, printing out the tid of each.
596  */
597 static int rcu_print_task_stall(struct rcu_node *rnp)
598 {
599 	struct task_struct *t;
600 	int ndetected = 0;
601 
602 	if (!rcu_preempt_blocked_readers_cgp(rnp))
603 		return 0;
604 	rcu_print_task_stall_begin(rnp);
605 	t = list_entry(rnp->gp_tasks->prev,
606 		       struct task_struct, rcu_node_entry);
607 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
608 		pr_cont(" P%d", t->pid);
609 		ndetected++;
610 	}
611 	rcu_print_task_stall_end();
612 	return ndetected;
613 }
614 
615 /*
616  * Scan the current list of tasks blocked within RCU read-side critical
617  * sections, printing out the tid of each that is blocking the current
618  * expedited grace period.
619  */
620 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
621 {
622 	struct task_struct *t;
623 	int ndetected = 0;
624 
625 	if (!rnp->exp_tasks)
626 		return 0;
627 	t = list_entry(rnp->exp_tasks->prev,
628 		       struct task_struct, rcu_node_entry);
629 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
630 		pr_cont(" P%d", t->pid);
631 		ndetected++;
632 	}
633 	return ndetected;
634 }
635 
636 /*
637  * Check that the list of blocked tasks for the newly completed grace
638  * period is in fact empty.  It is a serious bug to complete a grace
639  * period that still has RCU readers blocked!  This function must be
640  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
641  * must be held by the caller.
642  *
643  * Also, if there are blocked tasks on the list, they automatically
644  * block the newly created grace period, so set up ->gp_tasks accordingly.
645  */
646 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
647 {
648 	struct task_struct *t;
649 
650 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
651 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
652 	if (rcu_preempt_has_tasks(rnp)) {
653 		rnp->gp_tasks = rnp->blkd_tasks.next;
654 		t = container_of(rnp->gp_tasks, struct task_struct,
655 				 rcu_node_entry);
656 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
657 						rnp->gpnum, t->pid);
658 	}
659 	WARN_ON_ONCE(rnp->qsmask);
660 }
661 
662 /*
663  * Check for a quiescent state from the current CPU.  When a task blocks,
664  * the task is recorded in the corresponding CPU's rcu_node structure,
665  * which is checked elsewhere.
666  *
667  * Caller must disable hard irqs.
668  */
669 static void rcu_preempt_check_callbacks(void)
670 {
671 	struct task_struct *t = current;
672 
673 	if (t->rcu_read_lock_nesting == 0) {
674 		rcu_preempt_qs();
675 		return;
676 	}
677 	if (t->rcu_read_lock_nesting > 0 &&
678 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
679 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
680 		t->rcu_read_unlock_special.b.need_qs = true;
681 }
682 
683 #ifdef CONFIG_RCU_BOOST
684 
685 static void rcu_preempt_do_callbacks(void)
686 {
687 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
688 }
689 
690 #endif /* #ifdef CONFIG_RCU_BOOST */
691 
692 /**
693  * call_rcu() - Queue an RCU callback for invocation after a grace period.
694  * @head: structure to be used for queueing the RCU updates.
695  * @func: actual callback function to be invoked after the grace period
696  *
697  * The callback function will be invoked some time after a full grace
698  * period elapses, in other words after all pre-existing RCU read-side
699  * critical sections have completed.  However, the callback function
700  * might well execute concurrently with RCU read-side critical sections
701  * that started after call_rcu() was invoked.  RCU read-side critical
702  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
703  * and may be nested.
704  *
705  * Note that all CPUs must agree that the grace period extended beyond
706  * all pre-existing RCU read-side critical section.  On systems with more
707  * than one CPU, this means that when "func()" is invoked, each CPU is
708  * guaranteed to have executed a full memory barrier since the end of its
709  * last RCU read-side critical section whose beginning preceded the call
710  * to call_rcu().  It also means that each CPU executing an RCU read-side
711  * critical section that continues beyond the start of "func()" must have
712  * executed a memory barrier after the call_rcu() but before the beginning
713  * of that RCU read-side critical section.  Note that these guarantees
714  * include CPUs that are offline, idle, or executing in user mode, as
715  * well as CPUs that are executing in the kernel.
716  *
717  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
718  * resulting RCU callback function "func()", then both CPU A and CPU B are
719  * guaranteed to execute a full memory barrier during the time interval
720  * between the call to call_rcu() and the invocation of "func()" -- even
721  * if CPU A and CPU B are the same CPU (but again only if the system has
722  * more than one CPU).
723  */
724 void call_rcu(struct rcu_head *head, rcu_callback_t func)
725 {
726 	__call_rcu(head, func, rcu_state_p, -1, 0);
727 }
728 EXPORT_SYMBOL_GPL(call_rcu);
729 
730 /**
731  * synchronize_rcu - wait until a grace period has elapsed.
732  *
733  * Control will return to the caller some time after a full grace
734  * period has elapsed, in other words after all currently executing RCU
735  * read-side critical sections have completed.  Note, however, that
736  * upon return from synchronize_rcu(), the caller might well be executing
737  * concurrently with new RCU read-side critical sections that began while
738  * synchronize_rcu() was waiting.  RCU read-side critical sections are
739  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
740  *
741  * See the description of synchronize_sched() for more detailed
742  * information on memory-ordering guarantees.  However, please note
743  * that -only- the memory-ordering guarantees apply.  For example,
744  * synchronize_rcu() is -not- guaranteed to wait on things like code
745  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
746  * guaranteed to wait on RCU read-side critical sections, that is, sections
747  * of code protected by rcu_read_lock().
748  */
749 void synchronize_rcu(void)
750 {
751 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
752 			 lock_is_held(&rcu_lock_map) ||
753 			 lock_is_held(&rcu_sched_lock_map),
754 			 "Illegal synchronize_rcu() in RCU read-side critical section");
755 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
756 		return;
757 	if (rcu_gp_is_expedited())
758 		synchronize_rcu_expedited();
759 	else
760 		wait_rcu_gp(call_rcu);
761 }
762 EXPORT_SYMBOL_GPL(synchronize_rcu);
763 
764 /**
765  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
766  *
767  * Note that this primitive does not necessarily wait for an RCU grace period
768  * to complete.  For example, if there are no RCU callbacks queued anywhere
769  * in the system, then rcu_barrier() is within its rights to return
770  * immediately, without waiting for anything, much less an RCU grace period.
771  */
772 void rcu_barrier(void)
773 {
774 	_rcu_barrier(rcu_state_p);
775 }
776 EXPORT_SYMBOL_GPL(rcu_barrier);
777 
778 /*
779  * Initialize preemptible RCU's state structures.
780  */
781 static void __init __rcu_init_preempt(void)
782 {
783 	rcu_init_one(rcu_state_p);
784 }
785 
786 /*
787  * Check for a task exiting while in a preemptible-RCU read-side
788  * critical section, clean up if so.  No need to issue warnings,
789  * as debug_check_no_locks_held() already does this if lockdep
790  * is enabled.
791  */
792 void exit_rcu(void)
793 {
794 	struct task_struct *t = current;
795 
796 	if (likely(list_empty(&current->rcu_node_entry)))
797 		return;
798 	t->rcu_read_lock_nesting = 1;
799 	barrier();
800 	t->rcu_read_unlock_special.b.blocked = true;
801 	__rcu_read_unlock();
802 }
803 
804 #else /* #ifdef CONFIG_PREEMPT_RCU */
805 
806 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
807 
808 /*
809  * Tell them what RCU they are running.
810  */
811 static void __init rcu_bootup_announce(void)
812 {
813 	pr_info("Hierarchical RCU implementation.\n");
814 	rcu_bootup_announce_oddness();
815 }
816 
817 /*
818  * Because preemptible RCU does not exist, we never have to check for
819  * CPUs being in quiescent states.
820  */
821 static void rcu_preempt_note_context_switch(bool preempt)
822 {
823 }
824 
825 /*
826  * Because preemptible RCU does not exist, there are never any preempted
827  * RCU readers.
828  */
829 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
830 {
831 	return 0;
832 }
833 
834 /*
835  * Because there is no preemptible RCU, there can be no readers blocked.
836  */
837 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
838 {
839 	return false;
840 }
841 
842 /*
843  * Because preemptible RCU does not exist, we never have to check for
844  * tasks blocked within RCU read-side critical sections.
845  */
846 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
847 {
848 }
849 
850 /*
851  * Because preemptible RCU does not exist, we never have to check for
852  * tasks blocked within RCU read-side critical sections.
853  */
854 static int rcu_print_task_stall(struct rcu_node *rnp)
855 {
856 	return 0;
857 }
858 
859 /*
860  * Because preemptible RCU does not exist, we never have to check for
861  * tasks blocked within RCU read-side critical sections that are
862  * blocking the current expedited grace period.
863  */
864 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
865 {
866 	return 0;
867 }
868 
869 /*
870  * Because there is no preemptible RCU, there can be no readers blocked,
871  * so there is no need to check for blocked tasks.  So check only for
872  * bogus qsmask values.
873  */
874 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
875 {
876 	WARN_ON_ONCE(rnp->qsmask);
877 }
878 
879 /*
880  * Because preemptible RCU does not exist, it never has any callbacks
881  * to check.
882  */
883 static void rcu_preempt_check_callbacks(void)
884 {
885 }
886 
887 /*
888  * Because preemptible RCU does not exist, rcu_barrier() is just
889  * another name for rcu_barrier_sched().
890  */
891 void rcu_barrier(void)
892 {
893 	rcu_barrier_sched();
894 }
895 EXPORT_SYMBOL_GPL(rcu_barrier);
896 
897 /*
898  * Because preemptible RCU does not exist, it need not be initialized.
899  */
900 static void __init __rcu_init_preempt(void)
901 {
902 }
903 
904 /*
905  * Because preemptible RCU does not exist, tasks cannot possibly exit
906  * while in preemptible RCU read-side critical sections.
907  */
908 void exit_rcu(void)
909 {
910 }
911 
912 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
913 
914 #ifdef CONFIG_RCU_BOOST
915 
916 static void rcu_wake_cond(struct task_struct *t, int status)
917 {
918 	/*
919 	 * If the thread is yielding, only wake it when this
920 	 * is invoked from idle
921 	 */
922 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
923 		wake_up_process(t);
924 }
925 
926 /*
927  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
928  * or ->boost_tasks, advancing the pointer to the next task in the
929  * ->blkd_tasks list.
930  *
931  * Note that irqs must be enabled: boosting the task can block.
932  * Returns 1 if there are more tasks needing to be boosted.
933  */
934 static int rcu_boost(struct rcu_node *rnp)
935 {
936 	unsigned long flags;
937 	struct task_struct *t;
938 	struct list_head *tb;
939 
940 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
941 	    READ_ONCE(rnp->boost_tasks) == NULL)
942 		return 0;  /* Nothing left to boost. */
943 
944 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
945 
946 	/*
947 	 * Recheck under the lock: all tasks in need of boosting
948 	 * might exit their RCU read-side critical sections on their own.
949 	 */
950 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
951 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
952 		return 0;
953 	}
954 
955 	/*
956 	 * Preferentially boost tasks blocking expedited grace periods.
957 	 * This cannot starve the normal grace periods because a second
958 	 * expedited grace period must boost all blocked tasks, including
959 	 * those blocking the pre-existing normal grace period.
960 	 */
961 	if (rnp->exp_tasks != NULL) {
962 		tb = rnp->exp_tasks;
963 		rnp->n_exp_boosts++;
964 	} else {
965 		tb = rnp->boost_tasks;
966 		rnp->n_normal_boosts++;
967 	}
968 	rnp->n_tasks_boosted++;
969 
970 	/*
971 	 * We boost task t by manufacturing an rt_mutex that appears to
972 	 * be held by task t.  We leave a pointer to that rt_mutex where
973 	 * task t can find it, and task t will release the mutex when it
974 	 * exits its outermost RCU read-side critical section.  Then
975 	 * simply acquiring this artificial rt_mutex will boost task
976 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
977 	 *
978 	 * Note that task t must acquire rnp->lock to remove itself from
979 	 * the ->blkd_tasks list, which it will do from exit() if from
980 	 * nowhere else.  We therefore are guaranteed that task t will
981 	 * stay around at least until we drop rnp->lock.  Note that
982 	 * rnp->lock also resolves races between our priority boosting
983 	 * and task t's exiting its outermost RCU read-side critical
984 	 * section.
985 	 */
986 	t = container_of(tb, struct task_struct, rcu_node_entry);
987 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
988 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
989 	/* Lock only for side effect: boosts task t's priority. */
990 	rt_mutex_lock(&rnp->boost_mtx);
991 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
992 
993 	return READ_ONCE(rnp->exp_tasks) != NULL ||
994 	       READ_ONCE(rnp->boost_tasks) != NULL;
995 }
996 
997 /*
998  * Priority-boosting kthread, one per leaf rcu_node.
999  */
1000 static int rcu_boost_kthread(void *arg)
1001 {
1002 	struct rcu_node *rnp = (struct rcu_node *)arg;
1003 	int spincnt = 0;
1004 	int more2boost;
1005 
1006 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1007 	for (;;) {
1008 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1009 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1010 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1011 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1012 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1013 		more2boost = rcu_boost(rnp);
1014 		if (more2boost)
1015 			spincnt++;
1016 		else
1017 			spincnt = 0;
1018 		if (spincnt > 10) {
1019 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1020 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1021 			schedule_timeout_interruptible(2);
1022 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1023 			spincnt = 0;
1024 		}
1025 	}
1026 	/* NOTREACHED */
1027 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1028 	return 0;
1029 }
1030 
1031 /*
1032  * Check to see if it is time to start boosting RCU readers that are
1033  * blocking the current grace period, and, if so, tell the per-rcu_node
1034  * kthread to start boosting them.  If there is an expedited grace
1035  * period in progress, it is always time to boost.
1036  *
1037  * The caller must hold rnp->lock, which this function releases.
1038  * The ->boost_kthread_task is immortal, so we don't need to worry
1039  * about it going away.
1040  */
1041 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1042 	__releases(rnp->lock)
1043 {
1044 	struct task_struct *t;
1045 
1046 	lockdep_assert_held(&rnp->lock);
1047 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1048 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1049 		return;
1050 	}
1051 	if (rnp->exp_tasks != NULL ||
1052 	    (rnp->gp_tasks != NULL &&
1053 	     rnp->boost_tasks == NULL &&
1054 	     rnp->qsmask == 0 &&
1055 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1056 		if (rnp->exp_tasks == NULL)
1057 			rnp->boost_tasks = rnp->gp_tasks;
1058 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1059 		t = rnp->boost_kthread_task;
1060 		if (t)
1061 			rcu_wake_cond(t, rnp->boost_kthread_status);
1062 	} else {
1063 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1064 	}
1065 }
1066 
1067 /*
1068  * Wake up the per-CPU kthread to invoke RCU callbacks.
1069  */
1070 static void invoke_rcu_callbacks_kthread(void)
1071 {
1072 	unsigned long flags;
1073 
1074 	local_irq_save(flags);
1075 	__this_cpu_write(rcu_cpu_has_work, 1);
1076 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1077 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1078 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1079 			      __this_cpu_read(rcu_cpu_kthread_status));
1080 	}
1081 	local_irq_restore(flags);
1082 }
1083 
1084 /*
1085  * Is the current CPU running the RCU-callbacks kthread?
1086  * Caller must have preemption disabled.
1087  */
1088 static bool rcu_is_callbacks_kthread(void)
1089 {
1090 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1091 }
1092 
1093 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1094 
1095 /*
1096  * Do priority-boost accounting for the start of a new grace period.
1097  */
1098 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1099 {
1100 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1101 }
1102 
1103 /*
1104  * Create an RCU-boost kthread for the specified node if one does not
1105  * already exist.  We only create this kthread for preemptible RCU.
1106  * Returns zero if all is well, a negated errno otherwise.
1107  */
1108 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1109 				       struct rcu_node *rnp)
1110 {
1111 	int rnp_index = rnp - &rsp->node[0];
1112 	unsigned long flags;
1113 	struct sched_param sp;
1114 	struct task_struct *t;
1115 
1116 	if (rcu_state_p != rsp)
1117 		return 0;
1118 
1119 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1120 		return 0;
1121 
1122 	rsp->boost = 1;
1123 	if (rnp->boost_kthread_task != NULL)
1124 		return 0;
1125 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1126 			   "rcub/%d", rnp_index);
1127 	if (IS_ERR(t))
1128 		return PTR_ERR(t);
1129 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1130 	rnp->boost_kthread_task = t;
1131 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1132 	sp.sched_priority = kthread_prio;
1133 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1134 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1135 	return 0;
1136 }
1137 
1138 static void rcu_kthread_do_work(void)
1139 {
1140 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1141 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1142 	rcu_preempt_do_callbacks();
1143 }
1144 
1145 static void rcu_cpu_kthread_setup(unsigned int cpu)
1146 {
1147 	struct sched_param sp;
1148 
1149 	sp.sched_priority = kthread_prio;
1150 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1151 }
1152 
1153 static void rcu_cpu_kthread_park(unsigned int cpu)
1154 {
1155 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1156 }
1157 
1158 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1159 {
1160 	return __this_cpu_read(rcu_cpu_has_work);
1161 }
1162 
1163 /*
1164  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1165  * RCU softirq used in flavors and configurations of RCU that do not
1166  * support RCU priority boosting.
1167  */
1168 static void rcu_cpu_kthread(unsigned int cpu)
1169 {
1170 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1171 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1172 	int spincnt;
1173 
1174 	for (spincnt = 0; spincnt < 10; spincnt++) {
1175 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1176 		local_bh_disable();
1177 		*statusp = RCU_KTHREAD_RUNNING;
1178 		this_cpu_inc(rcu_cpu_kthread_loops);
1179 		local_irq_disable();
1180 		work = *workp;
1181 		*workp = 0;
1182 		local_irq_enable();
1183 		if (work)
1184 			rcu_kthread_do_work();
1185 		local_bh_enable();
1186 		if (*workp == 0) {
1187 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1188 			*statusp = RCU_KTHREAD_WAITING;
1189 			return;
1190 		}
1191 	}
1192 	*statusp = RCU_KTHREAD_YIELDING;
1193 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1194 	schedule_timeout_interruptible(2);
1195 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1196 	*statusp = RCU_KTHREAD_WAITING;
1197 }
1198 
1199 /*
1200  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1201  * served by the rcu_node in question.  The CPU hotplug lock is still
1202  * held, so the value of rnp->qsmaskinit will be stable.
1203  *
1204  * We don't include outgoingcpu in the affinity set, use -1 if there is
1205  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1206  * this function allows the kthread to execute on any CPU.
1207  */
1208 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1209 {
1210 	struct task_struct *t = rnp->boost_kthread_task;
1211 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1212 	cpumask_var_t cm;
1213 	int cpu;
1214 
1215 	if (!t)
1216 		return;
1217 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1218 		return;
1219 	for_each_leaf_node_possible_cpu(rnp, cpu)
1220 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1221 		    cpu != outgoingcpu)
1222 			cpumask_set_cpu(cpu, cm);
1223 	if (cpumask_weight(cm) == 0)
1224 		cpumask_setall(cm);
1225 	set_cpus_allowed_ptr(t, cm);
1226 	free_cpumask_var(cm);
1227 }
1228 
1229 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1230 	.store			= &rcu_cpu_kthread_task,
1231 	.thread_should_run	= rcu_cpu_kthread_should_run,
1232 	.thread_fn		= rcu_cpu_kthread,
1233 	.thread_comm		= "rcuc/%u",
1234 	.setup			= rcu_cpu_kthread_setup,
1235 	.park			= rcu_cpu_kthread_park,
1236 };
1237 
1238 /*
1239  * Spawn boost kthreads -- called as soon as the scheduler is running.
1240  */
1241 static void __init rcu_spawn_boost_kthreads(void)
1242 {
1243 	struct rcu_node *rnp;
1244 	int cpu;
1245 
1246 	for_each_possible_cpu(cpu)
1247 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1248 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1249 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1250 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1251 }
1252 
1253 static void rcu_prepare_kthreads(int cpu)
1254 {
1255 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1256 	struct rcu_node *rnp = rdp->mynode;
1257 
1258 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1259 	if (rcu_scheduler_fully_active)
1260 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1261 }
1262 
1263 #else /* #ifdef CONFIG_RCU_BOOST */
1264 
1265 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1266 	__releases(rnp->lock)
1267 {
1268 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1269 }
1270 
1271 static void invoke_rcu_callbacks_kthread(void)
1272 {
1273 	WARN_ON_ONCE(1);
1274 }
1275 
1276 static bool rcu_is_callbacks_kthread(void)
1277 {
1278 	return false;
1279 }
1280 
1281 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1282 {
1283 }
1284 
1285 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1286 {
1287 }
1288 
1289 static void __init rcu_spawn_boost_kthreads(void)
1290 {
1291 }
1292 
1293 static void rcu_prepare_kthreads(int cpu)
1294 {
1295 }
1296 
1297 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1298 
1299 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1300 
1301 /*
1302  * Check to see if any future RCU-related work will need to be done
1303  * by the current CPU, even if none need be done immediately, returning
1304  * 1 if so.  This function is part of the RCU implementation; it is -not-
1305  * an exported member of the RCU API.
1306  *
1307  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1308  * any flavor of RCU.
1309  */
1310 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1311 {
1312 	*nextevt = KTIME_MAX;
1313 	return rcu_cpu_has_callbacks(NULL);
1314 }
1315 
1316 /*
1317  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1318  * after it.
1319  */
1320 static void rcu_cleanup_after_idle(void)
1321 {
1322 }
1323 
1324 /*
1325  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1326  * is nothing.
1327  */
1328 static void rcu_prepare_for_idle(void)
1329 {
1330 }
1331 
1332 /*
1333  * Don't bother keeping a running count of the number of RCU callbacks
1334  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1335  */
1336 static void rcu_idle_count_callbacks_posted(void)
1337 {
1338 }
1339 
1340 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1341 
1342 /*
1343  * This code is invoked when a CPU goes idle, at which point we want
1344  * to have the CPU do everything required for RCU so that it can enter
1345  * the energy-efficient dyntick-idle mode.  This is handled by a
1346  * state machine implemented by rcu_prepare_for_idle() below.
1347  *
1348  * The following three proprocessor symbols control this state machine:
1349  *
1350  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1351  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1352  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1353  *	benchmarkers who might otherwise be tempted to set this to a large
1354  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1355  *	system.  And if you are -that- concerned about energy efficiency,
1356  *	just power the system down and be done with it!
1357  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1358  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1359  *	callbacks pending.  Setting this too high can OOM your system.
1360  *
1361  * The values below work well in practice.  If future workloads require
1362  * adjustment, they can be converted into kernel config parameters, though
1363  * making the state machine smarter might be a better option.
1364  */
1365 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1366 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1367 
1368 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1369 module_param(rcu_idle_gp_delay, int, 0644);
1370 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1371 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1372 
1373 /*
1374  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1375  * only if it has been awhile since the last time we did so.  Afterwards,
1376  * if there are any callbacks ready for immediate invocation, return true.
1377  */
1378 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1379 {
1380 	bool cbs_ready = false;
1381 	struct rcu_data *rdp;
1382 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1383 	struct rcu_node *rnp;
1384 	struct rcu_state *rsp;
1385 
1386 	/* Exit early if we advanced recently. */
1387 	if (jiffies == rdtp->last_advance_all)
1388 		return false;
1389 	rdtp->last_advance_all = jiffies;
1390 
1391 	for_each_rcu_flavor(rsp) {
1392 		rdp = this_cpu_ptr(rsp->rda);
1393 		rnp = rdp->mynode;
1394 
1395 		/*
1396 		 * Don't bother checking unless a grace period has
1397 		 * completed since we last checked and there are
1398 		 * callbacks not yet ready to invoke.
1399 		 */
1400 		if ((rdp->completed != rnp->completed ||
1401 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1402 		    rcu_segcblist_pend_cbs(&rdp->cblist))
1403 			note_gp_changes(rsp, rdp);
1404 
1405 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1406 			cbs_ready = true;
1407 	}
1408 	return cbs_ready;
1409 }
1410 
1411 /*
1412  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1413  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1414  * caller to set the timeout based on whether or not there are non-lazy
1415  * callbacks.
1416  *
1417  * The caller must have disabled interrupts.
1418  */
1419 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1420 {
1421 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1422 	unsigned long dj;
1423 
1424 	lockdep_assert_irqs_disabled();
1425 
1426 	/* Snapshot to detect later posting of non-lazy callback. */
1427 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1428 
1429 	/* If no callbacks, RCU doesn't need the CPU. */
1430 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1431 		*nextevt = KTIME_MAX;
1432 		return 0;
1433 	}
1434 
1435 	/* Attempt to advance callbacks. */
1436 	if (rcu_try_advance_all_cbs()) {
1437 		/* Some ready to invoke, so initiate later invocation. */
1438 		invoke_rcu_core();
1439 		return 1;
1440 	}
1441 	rdtp->last_accelerate = jiffies;
1442 
1443 	/* Request timer delay depending on laziness, and round. */
1444 	if (!rdtp->all_lazy) {
1445 		dj = round_up(rcu_idle_gp_delay + jiffies,
1446 			       rcu_idle_gp_delay) - jiffies;
1447 	} else {
1448 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1449 	}
1450 	*nextevt = basemono + dj * TICK_NSEC;
1451 	return 0;
1452 }
1453 
1454 /*
1455  * Prepare a CPU for idle from an RCU perspective.  The first major task
1456  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1457  * The second major task is to check to see if a non-lazy callback has
1458  * arrived at a CPU that previously had only lazy callbacks.  The third
1459  * major task is to accelerate (that is, assign grace-period numbers to)
1460  * any recently arrived callbacks.
1461  *
1462  * The caller must have disabled interrupts.
1463  */
1464 static void rcu_prepare_for_idle(void)
1465 {
1466 	bool needwake;
1467 	struct rcu_data *rdp;
1468 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1469 	struct rcu_node *rnp;
1470 	struct rcu_state *rsp;
1471 	int tne;
1472 
1473 	lockdep_assert_irqs_disabled();
1474 	if (rcu_is_nocb_cpu(smp_processor_id()))
1475 		return;
1476 
1477 	/* Handle nohz enablement switches conservatively. */
1478 	tne = READ_ONCE(tick_nohz_active);
1479 	if (tne != rdtp->tick_nohz_enabled_snap) {
1480 		if (rcu_cpu_has_callbacks(NULL))
1481 			invoke_rcu_core(); /* force nohz to see update. */
1482 		rdtp->tick_nohz_enabled_snap = tne;
1483 		return;
1484 	}
1485 	if (!tne)
1486 		return;
1487 
1488 	/*
1489 	 * If a non-lazy callback arrived at a CPU having only lazy
1490 	 * callbacks, invoke RCU core for the side-effect of recalculating
1491 	 * idle duration on re-entry to idle.
1492 	 */
1493 	if (rdtp->all_lazy &&
1494 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1495 		rdtp->all_lazy = false;
1496 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1497 		invoke_rcu_core();
1498 		return;
1499 	}
1500 
1501 	/*
1502 	 * If we have not yet accelerated this jiffy, accelerate all
1503 	 * callbacks on this CPU.
1504 	 */
1505 	if (rdtp->last_accelerate == jiffies)
1506 		return;
1507 	rdtp->last_accelerate = jiffies;
1508 	for_each_rcu_flavor(rsp) {
1509 		rdp = this_cpu_ptr(rsp->rda);
1510 		if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1511 			continue;
1512 		rnp = rdp->mynode;
1513 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1514 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1515 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1516 		if (needwake)
1517 			rcu_gp_kthread_wake(rsp);
1518 	}
1519 }
1520 
1521 /*
1522  * Clean up for exit from idle.  Attempt to advance callbacks based on
1523  * any grace periods that elapsed while the CPU was idle, and if any
1524  * callbacks are now ready to invoke, initiate invocation.
1525  */
1526 static void rcu_cleanup_after_idle(void)
1527 {
1528 	lockdep_assert_irqs_disabled();
1529 	if (rcu_is_nocb_cpu(smp_processor_id()))
1530 		return;
1531 	if (rcu_try_advance_all_cbs())
1532 		invoke_rcu_core();
1533 }
1534 
1535 /*
1536  * Keep a running count of the number of non-lazy callbacks posted
1537  * on this CPU.  This running counter (which is never decremented) allows
1538  * rcu_prepare_for_idle() to detect when something out of the idle loop
1539  * posts a callback, even if an equal number of callbacks are invoked.
1540  * Of course, callbacks should only be posted from within a trace event
1541  * designed to be called from idle or from within RCU_NONIDLE().
1542  */
1543 static void rcu_idle_count_callbacks_posted(void)
1544 {
1545 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1546 }
1547 
1548 /*
1549  * Data for flushing lazy RCU callbacks at OOM time.
1550  */
1551 static atomic_t oom_callback_count;
1552 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1553 
1554 /*
1555  * RCU OOM callback -- decrement the outstanding count and deliver the
1556  * wake-up if we are the last one.
1557  */
1558 static void rcu_oom_callback(struct rcu_head *rhp)
1559 {
1560 	if (atomic_dec_and_test(&oom_callback_count))
1561 		wake_up(&oom_callback_wq);
1562 }
1563 
1564 /*
1565  * Post an rcu_oom_notify callback on the current CPU if it has at
1566  * least one lazy callback.  This will unnecessarily post callbacks
1567  * to CPUs that already have a non-lazy callback at the end of their
1568  * callback list, but this is an infrequent operation, so accept some
1569  * extra overhead to keep things simple.
1570  */
1571 static void rcu_oom_notify_cpu(void *unused)
1572 {
1573 	struct rcu_state *rsp;
1574 	struct rcu_data *rdp;
1575 
1576 	for_each_rcu_flavor(rsp) {
1577 		rdp = raw_cpu_ptr(rsp->rda);
1578 		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1579 			atomic_inc(&oom_callback_count);
1580 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1581 		}
1582 	}
1583 }
1584 
1585 /*
1586  * If low on memory, ensure that each CPU has a non-lazy callback.
1587  * This will wake up CPUs that have only lazy callbacks, in turn
1588  * ensuring that they free up the corresponding memory in a timely manner.
1589  * Because an uncertain amount of memory will be freed in some uncertain
1590  * timeframe, we do not claim to have freed anything.
1591  */
1592 static int rcu_oom_notify(struct notifier_block *self,
1593 			  unsigned long notused, void *nfreed)
1594 {
1595 	int cpu;
1596 
1597 	/* Wait for callbacks from earlier instance to complete. */
1598 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1599 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1600 
1601 	/*
1602 	 * Prevent premature wakeup: ensure that all increments happen
1603 	 * before there is a chance of the counter reaching zero.
1604 	 */
1605 	atomic_set(&oom_callback_count, 1);
1606 
1607 	for_each_online_cpu(cpu) {
1608 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1609 		cond_resched_rcu_qs();
1610 	}
1611 
1612 	/* Unconditionally decrement: no need to wake ourselves up. */
1613 	atomic_dec(&oom_callback_count);
1614 
1615 	return NOTIFY_OK;
1616 }
1617 
1618 static struct notifier_block rcu_oom_nb = {
1619 	.notifier_call = rcu_oom_notify
1620 };
1621 
1622 static int __init rcu_register_oom_notifier(void)
1623 {
1624 	register_oom_notifier(&rcu_oom_nb);
1625 	return 0;
1626 }
1627 early_initcall(rcu_register_oom_notifier);
1628 
1629 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1630 
1631 #ifdef CONFIG_RCU_FAST_NO_HZ
1632 
1633 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1634 {
1635 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1636 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1637 
1638 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1639 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1640 		ulong2long(nlpd),
1641 		rdtp->all_lazy ? 'L' : '.',
1642 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1643 }
1644 
1645 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1646 
1647 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1648 {
1649 	*cp = '\0';
1650 }
1651 
1652 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1653 
1654 /* Initiate the stall-info list. */
1655 static void print_cpu_stall_info_begin(void)
1656 {
1657 	pr_cont("\n");
1658 }
1659 
1660 /*
1661  * Print out diagnostic information for the specified stalled CPU.
1662  *
1663  * If the specified CPU is aware of the current RCU grace period
1664  * (flavor specified by rsp), then print the number of scheduling
1665  * clock interrupts the CPU has taken during the time that it has
1666  * been aware.  Otherwise, print the number of RCU grace periods
1667  * that this CPU is ignorant of, for example, "1" if the CPU was
1668  * aware of the previous grace period.
1669  *
1670  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1671  */
1672 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1673 {
1674 	unsigned long delta;
1675 	char fast_no_hz[72];
1676 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1677 	struct rcu_dynticks *rdtp = rdp->dynticks;
1678 	char *ticks_title;
1679 	unsigned long ticks_value;
1680 
1681 	if (rsp->gpnum == rdp->gpnum) {
1682 		ticks_title = "ticks this GP";
1683 		ticks_value = rdp->ticks_this_gp;
1684 	} else {
1685 		ticks_title = "GPs behind";
1686 		ticks_value = rsp->gpnum - rdp->gpnum;
1687 	}
1688 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1689 	delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1690 	pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1691 	       cpu,
1692 	       "O."[!!cpu_online(cpu)],
1693 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1694 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1695 	       !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1696 			rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1697 				"!."[!delta],
1698 	       ticks_value, ticks_title,
1699 	       rcu_dynticks_snap(rdtp) & 0xfff,
1700 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1701 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1702 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1703 	       fast_no_hz);
1704 }
1705 
1706 /* Terminate the stall-info list. */
1707 static void print_cpu_stall_info_end(void)
1708 {
1709 	pr_err("\t");
1710 }
1711 
1712 /* Zero ->ticks_this_gp for all flavors of RCU. */
1713 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1714 {
1715 	rdp->ticks_this_gp = 0;
1716 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1717 }
1718 
1719 /* Increment ->ticks_this_gp for all flavors of RCU. */
1720 static void increment_cpu_stall_ticks(void)
1721 {
1722 	struct rcu_state *rsp;
1723 
1724 	for_each_rcu_flavor(rsp)
1725 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1726 }
1727 
1728 #ifdef CONFIG_RCU_NOCB_CPU
1729 
1730 /*
1731  * Offload callback processing from the boot-time-specified set of CPUs
1732  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1733  * kthread created that pulls the callbacks from the corresponding CPU,
1734  * waits for a grace period to elapse, and invokes the callbacks.
1735  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1736  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1737  * has been specified, in which case each kthread actively polls its
1738  * CPU.  (Which isn't so great for energy efficiency, but which does
1739  * reduce RCU's overhead on that CPU.)
1740  *
1741  * This is intended to be used in conjunction with Frederic Weisbecker's
1742  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1743  * running CPU-bound user-mode computations.
1744  *
1745  * Offloading of callback processing could also in theory be used as
1746  * an energy-efficiency measure because CPUs with no RCU callbacks
1747  * queued are more aggressive about entering dyntick-idle mode.
1748  */
1749 
1750 
1751 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1752 static int __init rcu_nocb_setup(char *str)
1753 {
1754 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1755 	have_rcu_nocb_mask = true;
1756 	cpulist_parse(str, rcu_nocb_mask);
1757 	return 1;
1758 }
1759 __setup("rcu_nocbs=", rcu_nocb_setup);
1760 
1761 static int __init parse_rcu_nocb_poll(char *arg)
1762 {
1763 	rcu_nocb_poll = true;
1764 	return 0;
1765 }
1766 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1767 
1768 /*
1769  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1770  * grace period.
1771  */
1772 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1773 {
1774 	swake_up_all(sq);
1775 }
1776 
1777 /*
1778  * Set the root rcu_node structure's ->need_future_gp field
1779  * based on the sum of those of all rcu_node structures.  This does
1780  * double-count the root rcu_node structure's requests, but this
1781  * is necessary to handle the possibility of a rcu_nocb_kthread()
1782  * having awakened during the time that the rcu_node structures
1783  * were being updated for the end of the previous grace period.
1784  */
1785 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1786 {
1787 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1788 }
1789 
1790 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1791 {
1792 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1793 }
1794 
1795 static void rcu_init_one_nocb(struct rcu_node *rnp)
1796 {
1797 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1798 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1799 }
1800 
1801 /* Is the specified CPU a no-CBs CPU? */
1802 bool rcu_is_nocb_cpu(int cpu)
1803 {
1804 	if (have_rcu_nocb_mask)
1805 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1806 	return false;
1807 }
1808 
1809 /*
1810  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1811  * and this function releases it.
1812  */
1813 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1814 			       unsigned long flags)
1815 	__releases(rdp->nocb_lock)
1816 {
1817 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1818 
1819 	lockdep_assert_held(&rdp->nocb_lock);
1820 	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1821 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1822 		return;
1823 	}
1824 	if (rdp_leader->nocb_leader_sleep || force) {
1825 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1826 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1827 		del_timer(&rdp->nocb_timer);
1828 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1829 		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1830 		swake_up(&rdp_leader->nocb_wq);
1831 	} else {
1832 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1833 	}
1834 }
1835 
1836 /*
1837  * Kick the leader kthread for this NOCB group, but caller has not
1838  * acquired locks.
1839  */
1840 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1841 {
1842 	unsigned long flags;
1843 
1844 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1845 	__wake_nocb_leader(rdp, force, flags);
1846 }
1847 
1848 /*
1849  * Arrange to wake the leader kthread for this NOCB group at some
1850  * future time when it is safe to do so.
1851  */
1852 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1853 				   const char *reason)
1854 {
1855 	unsigned long flags;
1856 
1857 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1858 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1859 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1860 	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1861 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1862 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1863 }
1864 
1865 /*
1866  * Does the specified CPU need an RCU callback for the specified flavor
1867  * of rcu_barrier()?
1868  */
1869 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1870 {
1871 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1872 	unsigned long ret;
1873 #ifdef CONFIG_PROVE_RCU
1874 	struct rcu_head *rhp;
1875 #endif /* #ifdef CONFIG_PROVE_RCU */
1876 
1877 	/*
1878 	 * Check count of all no-CBs callbacks awaiting invocation.
1879 	 * There needs to be a barrier before this function is called,
1880 	 * but associated with a prior determination that no more
1881 	 * callbacks would be posted.  In the worst case, the first
1882 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1883 	 * necessarily rely on this, not a substitute for the caller
1884 	 * getting the concurrency design right!).  There must also be
1885 	 * a barrier between the following load an posting of a callback
1886 	 * (if a callback is in fact needed).  This is associated with an
1887 	 * atomic_inc() in the caller.
1888 	 */
1889 	ret = atomic_long_read(&rdp->nocb_q_count);
1890 
1891 #ifdef CONFIG_PROVE_RCU
1892 	rhp = READ_ONCE(rdp->nocb_head);
1893 	if (!rhp)
1894 		rhp = READ_ONCE(rdp->nocb_gp_head);
1895 	if (!rhp)
1896 		rhp = READ_ONCE(rdp->nocb_follower_head);
1897 
1898 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1899 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1900 	    rcu_scheduler_fully_active) {
1901 		/* RCU callback enqueued before CPU first came online??? */
1902 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1903 		       cpu, rhp->func);
1904 		WARN_ON_ONCE(1);
1905 	}
1906 #endif /* #ifdef CONFIG_PROVE_RCU */
1907 
1908 	return !!ret;
1909 }
1910 
1911 /*
1912  * Enqueue the specified string of rcu_head structures onto the specified
1913  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1914  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1915  * counts are supplied by rhcount and rhcount_lazy.
1916  *
1917  * If warranted, also wake up the kthread servicing this CPUs queues.
1918  */
1919 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1920 				    struct rcu_head *rhp,
1921 				    struct rcu_head **rhtp,
1922 				    int rhcount, int rhcount_lazy,
1923 				    unsigned long flags)
1924 {
1925 	int len;
1926 	struct rcu_head **old_rhpp;
1927 	struct task_struct *t;
1928 
1929 	/* Enqueue the callback on the nocb list and update counts. */
1930 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1931 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1932 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1933 	WRITE_ONCE(*old_rhpp, rhp);
1934 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1935 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1936 
1937 	/* If we are not being polled and there is a kthread, awaken it ... */
1938 	t = READ_ONCE(rdp->nocb_kthread);
1939 	if (rcu_nocb_poll || !t) {
1940 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1941 				    TPS("WakeNotPoll"));
1942 		return;
1943 	}
1944 	len = atomic_long_read(&rdp->nocb_q_count);
1945 	if (old_rhpp == &rdp->nocb_head) {
1946 		if (!irqs_disabled_flags(flags)) {
1947 			/* ... if queue was empty ... */
1948 			wake_nocb_leader(rdp, false);
1949 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1950 					    TPS("WakeEmpty"));
1951 		} else {
1952 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1953 					       TPS("WakeEmptyIsDeferred"));
1954 		}
1955 		rdp->qlen_last_fqs_check = 0;
1956 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1957 		/* ... or if many callbacks queued. */
1958 		if (!irqs_disabled_flags(flags)) {
1959 			wake_nocb_leader(rdp, true);
1960 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1961 					    TPS("WakeOvf"));
1962 		} else {
1963 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1964 					       TPS("WakeOvfIsDeferred"));
1965 		}
1966 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1967 	} else {
1968 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1969 	}
1970 	return;
1971 }
1972 
1973 /*
1974  * This is a helper for __call_rcu(), which invokes this when the normal
1975  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1976  * function returns failure back to __call_rcu(), which can complain
1977  * appropriately.
1978  *
1979  * Otherwise, this function queues the callback where the corresponding
1980  * "rcuo" kthread can find it.
1981  */
1982 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1983 			    bool lazy, unsigned long flags)
1984 {
1985 
1986 	if (!rcu_is_nocb_cpu(rdp->cpu))
1987 		return false;
1988 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1989 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1990 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1991 					 (unsigned long)rhp->func,
1992 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1993 					 -atomic_long_read(&rdp->nocb_q_count));
1994 	else
1995 		trace_rcu_callback(rdp->rsp->name, rhp,
1996 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1997 				   -atomic_long_read(&rdp->nocb_q_count));
1998 
1999 	/*
2000 	 * If called from an extended quiescent state with interrupts
2001 	 * disabled, invoke the RCU core in order to allow the idle-entry
2002 	 * deferred-wakeup check to function.
2003 	 */
2004 	if (irqs_disabled_flags(flags) &&
2005 	    !rcu_is_watching() &&
2006 	    cpu_online(smp_processor_id()))
2007 		invoke_rcu_core();
2008 
2009 	return true;
2010 }
2011 
2012 /*
2013  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2014  * not a no-CBs CPU.
2015  */
2016 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2017 						     struct rcu_data *rdp,
2018 						     unsigned long flags)
2019 {
2020 	lockdep_assert_irqs_disabled();
2021 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2022 		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2023 	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2024 				rcu_segcblist_tail(&rdp->cblist),
2025 				rcu_segcblist_n_cbs(&rdp->cblist),
2026 				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2027 	rcu_segcblist_init(&rdp->cblist);
2028 	rcu_segcblist_disable(&rdp->cblist);
2029 	return true;
2030 }
2031 
2032 /*
2033  * If necessary, kick off a new grace period, and either way wait
2034  * for a subsequent grace period to complete.
2035  */
2036 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2037 {
2038 	unsigned long c;
2039 	bool d;
2040 	unsigned long flags;
2041 	bool needwake;
2042 	struct rcu_node *rnp = rdp->mynode;
2043 
2044 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2045 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2046 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2047 	if (needwake)
2048 		rcu_gp_kthread_wake(rdp->rsp);
2049 
2050 	/*
2051 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2052 	 * up the load average.
2053 	 */
2054 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2055 	for (;;) {
2056 		swait_event_interruptible(
2057 			rnp->nocb_gp_wq[c & 0x1],
2058 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2059 		if (likely(d))
2060 			break;
2061 		WARN_ON(signal_pending(current));
2062 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2063 	}
2064 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2065 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2066 }
2067 
2068 /*
2069  * Leaders come here to wait for additional callbacks to show up.
2070  * This function does not return until callbacks appear.
2071  */
2072 static void nocb_leader_wait(struct rcu_data *my_rdp)
2073 {
2074 	bool firsttime = true;
2075 	unsigned long flags;
2076 	bool gotcbs;
2077 	struct rcu_data *rdp;
2078 	struct rcu_head **tail;
2079 
2080 wait_again:
2081 
2082 	/* Wait for callbacks to appear. */
2083 	if (!rcu_nocb_poll) {
2084 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2085 		swait_event_interruptible(my_rdp->nocb_wq,
2086 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2087 		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2088 		my_rdp->nocb_leader_sleep = true;
2089 		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2090 		del_timer(&my_rdp->nocb_timer);
2091 		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2092 	} else if (firsttime) {
2093 		firsttime = false; /* Don't drown trace log with "Poll"! */
2094 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2095 	}
2096 
2097 	/*
2098 	 * Each pass through the following loop checks a follower for CBs.
2099 	 * We are our own first follower.  Any CBs found are moved to
2100 	 * nocb_gp_head, where they await a grace period.
2101 	 */
2102 	gotcbs = false;
2103 	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2104 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2105 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2106 		if (!rdp->nocb_gp_head)
2107 			continue;  /* No CBs here, try next follower. */
2108 
2109 		/* Move callbacks to wait-for-GP list, which is empty. */
2110 		WRITE_ONCE(rdp->nocb_head, NULL);
2111 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2112 		gotcbs = true;
2113 	}
2114 
2115 	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2116 	if (unlikely(!gotcbs)) {
2117 		WARN_ON(signal_pending(current));
2118 		if (rcu_nocb_poll) {
2119 			schedule_timeout_interruptible(1);
2120 		} else {
2121 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2122 					    TPS("WokeEmpty"));
2123 		}
2124 		goto wait_again;
2125 	}
2126 
2127 	/* Wait for one grace period. */
2128 	rcu_nocb_wait_gp(my_rdp);
2129 
2130 	/* Each pass through the following loop wakes a follower, if needed. */
2131 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2132 		if (!rcu_nocb_poll &&
2133 		    READ_ONCE(rdp->nocb_head) &&
2134 		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2135 			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2136 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2137 			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2138 		}
2139 		if (!rdp->nocb_gp_head)
2140 			continue; /* No CBs, so no need to wake follower. */
2141 
2142 		/* Append callbacks to follower's "done" list. */
2143 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2144 		tail = rdp->nocb_follower_tail;
2145 		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2146 		*tail = rdp->nocb_gp_head;
2147 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2148 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2149 			/* List was empty, so wake up the follower.  */
2150 			swake_up(&rdp->nocb_wq);
2151 		}
2152 	}
2153 
2154 	/* If we (the leader) don't have CBs, go wait some more. */
2155 	if (!my_rdp->nocb_follower_head)
2156 		goto wait_again;
2157 }
2158 
2159 /*
2160  * Followers come here to wait for additional callbacks to show up.
2161  * This function does not return until callbacks appear.
2162  */
2163 static void nocb_follower_wait(struct rcu_data *rdp)
2164 {
2165 	for (;;) {
2166 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2167 		swait_event_interruptible(rdp->nocb_wq,
2168 					 READ_ONCE(rdp->nocb_follower_head));
2169 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2170 			/* ^^^ Ensure CB invocation follows _head test. */
2171 			return;
2172 		}
2173 		WARN_ON(signal_pending(current));
2174 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2175 	}
2176 }
2177 
2178 /*
2179  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2180  * callbacks queued by the corresponding no-CBs CPU, however, there is
2181  * an optional leader-follower relationship so that the grace-period
2182  * kthreads don't have to do quite so many wakeups.
2183  */
2184 static int rcu_nocb_kthread(void *arg)
2185 {
2186 	int c, cl;
2187 	unsigned long flags;
2188 	struct rcu_head *list;
2189 	struct rcu_head *next;
2190 	struct rcu_head **tail;
2191 	struct rcu_data *rdp = arg;
2192 
2193 	/* Each pass through this loop invokes one batch of callbacks */
2194 	for (;;) {
2195 		/* Wait for callbacks. */
2196 		if (rdp->nocb_leader == rdp)
2197 			nocb_leader_wait(rdp);
2198 		else
2199 			nocb_follower_wait(rdp);
2200 
2201 		/* Pull the ready-to-invoke callbacks onto local list. */
2202 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2203 		list = rdp->nocb_follower_head;
2204 		rdp->nocb_follower_head = NULL;
2205 		tail = rdp->nocb_follower_tail;
2206 		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2207 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2208 		BUG_ON(!list);
2209 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2210 
2211 		/* Each pass through the following loop invokes a callback. */
2212 		trace_rcu_batch_start(rdp->rsp->name,
2213 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2214 				      atomic_long_read(&rdp->nocb_q_count), -1);
2215 		c = cl = 0;
2216 		while (list) {
2217 			next = list->next;
2218 			/* Wait for enqueuing to complete, if needed. */
2219 			while (next == NULL && &list->next != tail) {
2220 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2221 						    TPS("WaitQueue"));
2222 				schedule_timeout_interruptible(1);
2223 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2224 						    TPS("WokeQueue"));
2225 				next = list->next;
2226 			}
2227 			debug_rcu_head_unqueue(list);
2228 			local_bh_disable();
2229 			if (__rcu_reclaim(rdp->rsp->name, list))
2230 				cl++;
2231 			c++;
2232 			local_bh_enable();
2233 			cond_resched_rcu_qs();
2234 			list = next;
2235 		}
2236 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2237 		smp_mb__before_atomic();  /* _add after CB invocation. */
2238 		atomic_long_add(-c, &rdp->nocb_q_count);
2239 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2240 		rdp->n_nocbs_invoked += c;
2241 	}
2242 	return 0;
2243 }
2244 
2245 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2246 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2247 {
2248 	return READ_ONCE(rdp->nocb_defer_wakeup);
2249 }
2250 
2251 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2252 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2253 {
2254 	unsigned long flags;
2255 	int ndw;
2256 
2257 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2258 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2259 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2260 		return;
2261 	}
2262 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2263 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2264 	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2265 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2266 }
2267 
2268 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2269 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2270 {
2271 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2272 
2273 	do_nocb_deferred_wakeup_common(rdp);
2274 }
2275 
2276 /*
2277  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2278  * This means we do an inexact common-case check.  Note that if
2279  * we miss, ->nocb_timer will eventually clean things up.
2280  */
2281 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2282 {
2283 	if (rcu_nocb_need_deferred_wakeup(rdp))
2284 		do_nocb_deferred_wakeup_common(rdp);
2285 }
2286 
2287 void __init rcu_init_nohz(void)
2288 {
2289 	int cpu;
2290 	bool need_rcu_nocb_mask = true;
2291 	struct rcu_state *rsp;
2292 
2293 #if defined(CONFIG_NO_HZ_FULL)
2294 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2295 		need_rcu_nocb_mask = true;
2296 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2297 
2298 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2299 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2300 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2301 			return;
2302 		}
2303 		have_rcu_nocb_mask = true;
2304 	}
2305 	if (!have_rcu_nocb_mask)
2306 		return;
2307 
2308 #if defined(CONFIG_NO_HZ_FULL)
2309 	if (tick_nohz_full_running)
2310 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2311 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2312 
2313 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2314 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2315 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2316 			    rcu_nocb_mask);
2317 	}
2318 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2319 		cpumask_pr_args(rcu_nocb_mask));
2320 	if (rcu_nocb_poll)
2321 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2322 
2323 	for_each_rcu_flavor(rsp) {
2324 		for_each_cpu(cpu, rcu_nocb_mask)
2325 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2326 		rcu_organize_nocb_kthreads(rsp);
2327 	}
2328 }
2329 
2330 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2331 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2332 {
2333 	rdp->nocb_tail = &rdp->nocb_head;
2334 	init_swait_queue_head(&rdp->nocb_wq);
2335 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2336 	raw_spin_lock_init(&rdp->nocb_lock);
2337 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2338 }
2339 
2340 /*
2341  * If the specified CPU is a no-CBs CPU that does not already have its
2342  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2343  * brought online out of order, this can require re-organizing the
2344  * leader-follower relationships.
2345  */
2346 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2347 {
2348 	struct rcu_data *rdp;
2349 	struct rcu_data *rdp_last;
2350 	struct rcu_data *rdp_old_leader;
2351 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2352 	struct task_struct *t;
2353 
2354 	/*
2355 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2356 	 * then nothing to do.
2357 	 */
2358 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2359 		return;
2360 
2361 	/* If we didn't spawn the leader first, reorganize! */
2362 	rdp_old_leader = rdp_spawn->nocb_leader;
2363 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2364 		rdp_last = NULL;
2365 		rdp = rdp_old_leader;
2366 		do {
2367 			rdp->nocb_leader = rdp_spawn;
2368 			if (rdp_last && rdp != rdp_spawn)
2369 				rdp_last->nocb_next_follower = rdp;
2370 			if (rdp == rdp_spawn) {
2371 				rdp = rdp->nocb_next_follower;
2372 			} else {
2373 				rdp_last = rdp;
2374 				rdp = rdp->nocb_next_follower;
2375 				rdp_last->nocb_next_follower = NULL;
2376 			}
2377 		} while (rdp);
2378 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2379 	}
2380 
2381 	/* Spawn the kthread for this CPU and RCU flavor. */
2382 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2383 			"rcuo%c/%d", rsp->abbr, cpu);
2384 	BUG_ON(IS_ERR(t));
2385 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2386 }
2387 
2388 /*
2389  * If the specified CPU is a no-CBs CPU that does not already have its
2390  * rcuo kthreads, spawn them.
2391  */
2392 static void rcu_spawn_all_nocb_kthreads(int cpu)
2393 {
2394 	struct rcu_state *rsp;
2395 
2396 	if (rcu_scheduler_fully_active)
2397 		for_each_rcu_flavor(rsp)
2398 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2399 }
2400 
2401 /*
2402  * Once the scheduler is running, spawn rcuo kthreads for all online
2403  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2404  * non-boot CPUs come online -- if this changes, we will need to add
2405  * some mutual exclusion.
2406  */
2407 static void __init rcu_spawn_nocb_kthreads(void)
2408 {
2409 	int cpu;
2410 
2411 	for_each_online_cpu(cpu)
2412 		rcu_spawn_all_nocb_kthreads(cpu);
2413 }
2414 
2415 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2416 static int rcu_nocb_leader_stride = -1;
2417 module_param(rcu_nocb_leader_stride, int, 0444);
2418 
2419 /*
2420  * Initialize leader-follower relationships for all no-CBs CPU.
2421  */
2422 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2423 {
2424 	int cpu;
2425 	int ls = rcu_nocb_leader_stride;
2426 	int nl = 0;  /* Next leader. */
2427 	struct rcu_data *rdp;
2428 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2429 	struct rcu_data *rdp_prev = NULL;
2430 
2431 	if (!have_rcu_nocb_mask)
2432 		return;
2433 	if (ls == -1) {
2434 		ls = int_sqrt(nr_cpu_ids);
2435 		rcu_nocb_leader_stride = ls;
2436 	}
2437 
2438 	/*
2439 	 * Each pass through this loop sets up one rcu_data structure.
2440 	 * Should the corresponding CPU come online in the future, then
2441 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2442 	 */
2443 	for_each_cpu(cpu, rcu_nocb_mask) {
2444 		rdp = per_cpu_ptr(rsp->rda, cpu);
2445 		if (rdp->cpu >= nl) {
2446 			/* New leader, set up for followers & next leader. */
2447 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2448 			rdp->nocb_leader = rdp;
2449 			rdp_leader = rdp;
2450 		} else {
2451 			/* Another follower, link to previous leader. */
2452 			rdp->nocb_leader = rdp_leader;
2453 			rdp_prev->nocb_next_follower = rdp;
2454 		}
2455 		rdp_prev = rdp;
2456 	}
2457 }
2458 
2459 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2460 static bool init_nocb_callback_list(struct rcu_data *rdp)
2461 {
2462 	if (!rcu_is_nocb_cpu(rdp->cpu))
2463 		return false;
2464 
2465 	/* If there are early-boot callbacks, move them to nocb lists. */
2466 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2467 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2468 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2469 		atomic_long_set(&rdp->nocb_q_count,
2470 				rcu_segcblist_n_cbs(&rdp->cblist));
2471 		atomic_long_set(&rdp->nocb_q_count_lazy,
2472 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2473 		rcu_segcblist_init(&rdp->cblist);
2474 	}
2475 	rcu_segcblist_disable(&rdp->cblist);
2476 	return true;
2477 }
2478 
2479 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2480 
2481 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2482 {
2483 	WARN_ON_ONCE(1); /* Should be dead code. */
2484 	return false;
2485 }
2486 
2487 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2488 {
2489 }
2490 
2491 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2492 {
2493 }
2494 
2495 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2496 {
2497 	return NULL;
2498 }
2499 
2500 static void rcu_init_one_nocb(struct rcu_node *rnp)
2501 {
2502 }
2503 
2504 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2505 			    bool lazy, unsigned long flags)
2506 {
2507 	return false;
2508 }
2509 
2510 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2511 						     struct rcu_data *rdp,
2512 						     unsigned long flags)
2513 {
2514 	return false;
2515 }
2516 
2517 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2518 {
2519 }
2520 
2521 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2522 {
2523 	return false;
2524 }
2525 
2526 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2527 {
2528 }
2529 
2530 static void rcu_spawn_all_nocb_kthreads(int cpu)
2531 {
2532 }
2533 
2534 static void __init rcu_spawn_nocb_kthreads(void)
2535 {
2536 }
2537 
2538 static bool init_nocb_callback_list(struct rcu_data *rdp)
2539 {
2540 	return false;
2541 }
2542 
2543 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2544 
2545 /*
2546  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2547  * arbitrarily long period of time with the scheduling-clock tick turned
2548  * off.  RCU will be paying attention to this CPU because it is in the
2549  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2550  * machine because the scheduling-clock tick has been disabled.  Therefore,
2551  * if an adaptive-ticks CPU is failing to respond to the current grace
2552  * period and has not be idle from an RCU perspective, kick it.
2553  */
2554 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2555 {
2556 #ifdef CONFIG_NO_HZ_FULL
2557 	if (tick_nohz_full_cpu(cpu))
2558 		smp_send_reschedule(cpu);
2559 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2560 }
2561 
2562 /*
2563  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2564  * grace-period kthread will do force_quiescent_state() processing?
2565  * The idea is to avoid waking up RCU core processing on such a
2566  * CPU unless the grace period has extended for too long.
2567  *
2568  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2569  * CONFIG_RCU_NOCB_CPU CPUs.
2570  */
2571 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2572 {
2573 #ifdef CONFIG_NO_HZ_FULL
2574 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2575 	    (!rcu_gp_in_progress(rsp) ||
2576 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2577 		return true;
2578 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2579 	return false;
2580 }
2581 
2582 /*
2583  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2584  * timekeeping CPU.
2585  */
2586 static void rcu_bind_gp_kthread(void)
2587 {
2588 	int __maybe_unused cpu;
2589 
2590 	if (!tick_nohz_full_enabled())
2591 		return;
2592 	housekeeping_affine(current, HK_FLAG_RCU);
2593 }
2594 
2595 /* Record the current task on dyntick-idle entry. */
2596 static void rcu_dynticks_task_enter(void)
2597 {
2598 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2599 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2600 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2601 }
2602 
2603 /* Record no current task on dyntick-idle exit. */
2604 static void rcu_dynticks_task_exit(void)
2605 {
2606 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2607 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2608 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2609 }
2610