1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) 17 { 18 /* 19 * In order to read the offloaded state of an rdp is a safe 20 * and stable way and prevent from its value to be changed 21 * under us, we must either hold the barrier mutex, the cpu 22 * hotplug lock (read or write) or the nocb lock. Local 23 * non-preemptible reads are also safe. NOCB kthreads and 24 * timers have their own means of synchronization against the 25 * offloaded state updaters. 26 */ 27 RCU_LOCKDEP_WARN( 28 !(lockdep_is_held(&rcu_state.barrier_mutex) || 29 (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || 30 rcu_lockdep_is_held_nocb(rdp) || 31 (rdp == this_cpu_ptr(&rcu_data) && 32 !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || 33 rcu_current_is_nocb_kthread(rdp)), 34 "Unsafe read of RCU_NOCB offloaded state" 35 ); 36 37 return rcu_segcblist_is_offloaded(&rdp->cblist); 38 } 39 40 /* 41 * Check the RCU kernel configuration parameters and print informative 42 * messages about anything out of the ordinary. 43 */ 44 static void __init rcu_bootup_announce_oddness(void) 45 { 46 if (IS_ENABLED(CONFIG_RCU_TRACE)) 47 pr_info("\tRCU event tracing is enabled.\n"); 48 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 49 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 50 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 51 RCU_FANOUT); 52 if (rcu_fanout_exact) 53 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 54 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 55 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 56 if (IS_ENABLED(CONFIG_PROVE_RCU)) 57 pr_info("\tRCU lockdep checking is enabled.\n"); 58 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 59 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n"); 60 if (RCU_NUM_LVLS >= 4) 61 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 62 if (RCU_FANOUT_LEAF != 16) 63 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 64 RCU_FANOUT_LEAF); 65 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 66 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 67 rcu_fanout_leaf); 68 if (nr_cpu_ids != NR_CPUS) 69 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 70 #ifdef CONFIG_RCU_BOOST 71 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 72 kthread_prio, CONFIG_RCU_BOOST_DELAY); 73 #endif 74 if (blimit != DEFAULT_RCU_BLIMIT) 75 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 76 if (qhimark != DEFAULT_RCU_QHIMARK) 77 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 78 if (qlowmark != DEFAULT_RCU_QLOMARK) 79 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 80 if (qovld != DEFAULT_RCU_QOVLD) 81 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 82 if (jiffies_till_first_fqs != ULONG_MAX) 83 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 84 if (jiffies_till_next_fqs != ULONG_MAX) 85 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 86 if (jiffies_till_sched_qs != ULONG_MAX) 87 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 88 if (rcu_kick_kthreads) 89 pr_info("\tKick kthreads if too-long grace period.\n"); 90 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 91 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 92 if (gp_preinit_delay) 93 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 94 if (gp_init_delay) 95 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 96 if (gp_cleanup_delay) 97 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 98 if (!use_softirq) 99 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 100 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 101 pr_info("\tRCU debug extended QS entry/exit.\n"); 102 rcupdate_announce_bootup_oddness(); 103 } 104 105 #ifdef CONFIG_PREEMPT_RCU 106 107 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 108 static void rcu_read_unlock_special(struct task_struct *t); 109 110 /* 111 * Tell them what RCU they are running. 112 */ 113 static void __init rcu_bootup_announce(void) 114 { 115 pr_info("Preemptible hierarchical RCU implementation.\n"); 116 rcu_bootup_announce_oddness(); 117 } 118 119 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 120 #define RCU_GP_TASKS 0x8 121 #define RCU_EXP_TASKS 0x4 122 #define RCU_GP_BLKD 0x2 123 #define RCU_EXP_BLKD 0x1 124 125 /* 126 * Queues a task preempted within an RCU-preempt read-side critical 127 * section into the appropriate location within the ->blkd_tasks list, 128 * depending on the states of any ongoing normal and expedited grace 129 * periods. The ->gp_tasks pointer indicates which element the normal 130 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 131 * indicates which element the expedited grace period is waiting on (again, 132 * NULL if none). If a grace period is waiting on a given element in the 133 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 134 * adding a task to the tail of the list blocks any grace period that is 135 * already waiting on one of the elements. In contrast, adding a task 136 * to the head of the list won't block any grace period that is already 137 * waiting on one of the elements. 138 * 139 * This queuing is imprecise, and can sometimes make an ongoing grace 140 * period wait for a task that is not strictly speaking blocking it. 141 * Given the choice, we needlessly block a normal grace period rather than 142 * blocking an expedited grace period. 143 * 144 * Note that an endless sequence of expedited grace periods still cannot 145 * indefinitely postpone a normal grace period. Eventually, all of the 146 * fixed number of preempted tasks blocking the normal grace period that are 147 * not also blocking the expedited grace period will resume and complete 148 * their RCU read-side critical sections. At that point, the ->gp_tasks 149 * pointer will equal the ->exp_tasks pointer, at which point the end of 150 * the corresponding expedited grace period will also be the end of the 151 * normal grace period. 152 */ 153 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 154 __releases(rnp->lock) /* But leaves rrupts disabled. */ 155 { 156 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 157 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 158 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 159 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 160 struct task_struct *t = current; 161 162 raw_lockdep_assert_held_rcu_node(rnp); 163 WARN_ON_ONCE(rdp->mynode != rnp); 164 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 165 /* RCU better not be waiting on newly onlined CPUs! */ 166 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 167 rdp->grpmask); 168 169 /* 170 * Decide where to queue the newly blocked task. In theory, 171 * this could be an if-statement. In practice, when I tried 172 * that, it was quite messy. 173 */ 174 switch (blkd_state) { 175 case 0: 176 case RCU_EXP_TASKS: 177 case RCU_EXP_TASKS + RCU_GP_BLKD: 178 case RCU_GP_TASKS: 179 case RCU_GP_TASKS + RCU_EXP_TASKS: 180 181 /* 182 * Blocking neither GP, or first task blocking the normal 183 * GP but not blocking the already-waiting expedited GP. 184 * Queue at the head of the list to avoid unnecessarily 185 * blocking the already-waiting GPs. 186 */ 187 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 188 break; 189 190 case RCU_EXP_BLKD: 191 case RCU_GP_BLKD: 192 case RCU_GP_BLKD + RCU_EXP_BLKD: 193 case RCU_GP_TASKS + RCU_EXP_BLKD: 194 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 195 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 196 197 /* 198 * First task arriving that blocks either GP, or first task 199 * arriving that blocks the expedited GP (with the normal 200 * GP already waiting), or a task arriving that blocks 201 * both GPs with both GPs already waiting. Queue at the 202 * tail of the list to avoid any GP waiting on any of the 203 * already queued tasks that are not blocking it. 204 */ 205 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 206 break; 207 208 case RCU_EXP_TASKS + RCU_EXP_BLKD: 209 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 210 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 211 212 /* 213 * Second or subsequent task blocking the expedited GP. 214 * The task either does not block the normal GP, or is the 215 * first task blocking the normal GP. Queue just after 216 * the first task blocking the expedited GP. 217 */ 218 list_add(&t->rcu_node_entry, rnp->exp_tasks); 219 break; 220 221 case RCU_GP_TASKS + RCU_GP_BLKD: 222 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 223 224 /* 225 * Second or subsequent task blocking the normal GP. 226 * The task does not block the expedited GP. Queue just 227 * after the first task blocking the normal GP. 228 */ 229 list_add(&t->rcu_node_entry, rnp->gp_tasks); 230 break; 231 232 default: 233 234 /* Yet another exercise in excessive paranoia. */ 235 WARN_ON_ONCE(1); 236 break; 237 } 238 239 /* 240 * We have now queued the task. If it was the first one to 241 * block either grace period, update the ->gp_tasks and/or 242 * ->exp_tasks pointers, respectively, to reference the newly 243 * blocked tasks. 244 */ 245 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 246 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 247 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 248 } 249 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 250 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 251 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 252 !(rnp->qsmask & rdp->grpmask)); 253 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 254 !(rnp->expmask & rdp->grpmask)); 255 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 256 257 /* 258 * Report the quiescent state for the expedited GP. This expedited 259 * GP should not be able to end until we report, so there should be 260 * no need to check for a subsequent expedited GP. (Though we are 261 * still in a quiescent state in any case.) 262 */ 263 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) 264 rcu_report_exp_rdp(rdp); 265 else 266 WARN_ON_ONCE(rdp->exp_deferred_qs); 267 } 268 269 /* 270 * Record a preemptible-RCU quiescent state for the specified CPU. 271 * Note that this does not necessarily mean that the task currently running 272 * on the CPU is in a quiescent state: Instead, it means that the current 273 * grace period need not wait on any RCU read-side critical section that 274 * starts later on this CPU. It also means that if the current task is 275 * in an RCU read-side critical section, it has already added itself to 276 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 277 * current task, there might be any number of other tasks blocked while 278 * in an RCU read-side critical section. 279 * 280 * Callers to this function must disable preemption. 281 */ 282 static void rcu_qs(void) 283 { 284 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 285 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { 286 trace_rcu_grace_period(TPS("rcu_preempt"), 287 __this_cpu_read(rcu_data.gp_seq), 288 TPS("cpuqs")); 289 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 290 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 291 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 292 } 293 } 294 295 /* 296 * We have entered the scheduler, and the current task might soon be 297 * context-switched away from. If this task is in an RCU read-side 298 * critical section, we will no longer be able to rely on the CPU to 299 * record that fact, so we enqueue the task on the blkd_tasks list. 300 * The task will dequeue itself when it exits the outermost enclosing 301 * RCU read-side critical section. Therefore, the current grace period 302 * cannot be permitted to complete until the blkd_tasks list entries 303 * predating the current grace period drain, in other words, until 304 * rnp->gp_tasks becomes NULL. 305 * 306 * Caller must disable interrupts. 307 */ 308 void rcu_note_context_switch(bool preempt) 309 { 310 struct task_struct *t = current; 311 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 312 struct rcu_node *rnp; 313 314 trace_rcu_utilization(TPS("Start context switch")); 315 lockdep_assert_irqs_disabled(); 316 WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); 317 if (rcu_preempt_depth() > 0 && 318 !t->rcu_read_unlock_special.b.blocked) { 319 320 /* Possibly blocking in an RCU read-side critical section. */ 321 rnp = rdp->mynode; 322 raw_spin_lock_rcu_node(rnp); 323 t->rcu_read_unlock_special.b.blocked = true; 324 t->rcu_blocked_node = rnp; 325 326 /* 327 * Verify the CPU's sanity, trace the preemption, and 328 * then queue the task as required based on the states 329 * of any ongoing and expedited grace periods. 330 */ 331 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 332 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 333 trace_rcu_preempt_task(rcu_state.name, 334 t->pid, 335 (rnp->qsmask & rdp->grpmask) 336 ? rnp->gp_seq 337 : rcu_seq_snap(&rnp->gp_seq)); 338 rcu_preempt_ctxt_queue(rnp, rdp); 339 } else { 340 rcu_preempt_deferred_qs(t); 341 } 342 343 /* 344 * Either we were not in an RCU read-side critical section to 345 * begin with, or we have now recorded that critical section 346 * globally. Either way, we can now note a quiescent state 347 * for this CPU. Again, if we were in an RCU read-side critical 348 * section, and if that critical section was blocking the current 349 * grace period, then the fact that the task has been enqueued 350 * means that we continue to block the current grace period. 351 */ 352 rcu_qs(); 353 if (rdp->exp_deferred_qs) 354 rcu_report_exp_rdp(rdp); 355 rcu_tasks_qs(current, preempt); 356 trace_rcu_utilization(TPS("End context switch")); 357 } 358 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 359 360 /* 361 * Check for preempted RCU readers blocking the current grace period 362 * for the specified rcu_node structure. If the caller needs a reliable 363 * answer, it must hold the rcu_node's ->lock. 364 */ 365 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 366 { 367 return READ_ONCE(rnp->gp_tasks) != NULL; 368 } 369 370 /* limit value for ->rcu_read_lock_nesting. */ 371 #define RCU_NEST_PMAX (INT_MAX / 2) 372 373 static void rcu_preempt_read_enter(void) 374 { 375 WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); 376 } 377 378 static int rcu_preempt_read_exit(void) 379 { 380 int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; 381 382 WRITE_ONCE(current->rcu_read_lock_nesting, ret); 383 return ret; 384 } 385 386 static void rcu_preempt_depth_set(int val) 387 { 388 WRITE_ONCE(current->rcu_read_lock_nesting, val); 389 } 390 391 /* 392 * Preemptible RCU implementation for rcu_read_lock(). 393 * Just increment ->rcu_read_lock_nesting, shared state will be updated 394 * if we block. 395 */ 396 void __rcu_read_lock(void) 397 { 398 rcu_preempt_read_enter(); 399 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 400 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 401 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) 402 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); 403 barrier(); /* critical section after entry code. */ 404 } 405 EXPORT_SYMBOL_GPL(__rcu_read_lock); 406 407 /* 408 * Preemptible RCU implementation for rcu_read_unlock(). 409 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 410 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 411 * invoke rcu_read_unlock_special() to clean up after a context switch 412 * in an RCU read-side critical section and other special cases. 413 */ 414 void __rcu_read_unlock(void) 415 { 416 struct task_struct *t = current; 417 418 barrier(); // critical section before exit code. 419 if (rcu_preempt_read_exit() == 0) { 420 barrier(); // critical-section exit before .s check. 421 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 422 rcu_read_unlock_special(t); 423 } 424 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 425 int rrln = rcu_preempt_depth(); 426 427 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 428 } 429 } 430 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 431 432 /* 433 * Advance a ->blkd_tasks-list pointer to the next entry, instead 434 * returning NULL if at the end of the list. 435 */ 436 static struct list_head *rcu_next_node_entry(struct task_struct *t, 437 struct rcu_node *rnp) 438 { 439 struct list_head *np; 440 441 np = t->rcu_node_entry.next; 442 if (np == &rnp->blkd_tasks) 443 np = NULL; 444 return np; 445 } 446 447 /* 448 * Return true if the specified rcu_node structure has tasks that were 449 * preempted within an RCU read-side critical section. 450 */ 451 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 452 { 453 return !list_empty(&rnp->blkd_tasks); 454 } 455 456 /* 457 * Report deferred quiescent states. The deferral time can 458 * be quite short, for example, in the case of the call from 459 * rcu_read_unlock_special(). 460 */ 461 static void 462 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 463 { 464 bool empty_exp; 465 bool empty_norm; 466 bool empty_exp_now; 467 struct list_head *np; 468 bool drop_boost_mutex = false; 469 struct rcu_data *rdp; 470 struct rcu_node *rnp; 471 union rcu_special special; 472 473 /* 474 * If RCU core is waiting for this CPU to exit its critical section, 475 * report the fact that it has exited. Because irqs are disabled, 476 * t->rcu_read_unlock_special cannot change. 477 */ 478 special = t->rcu_read_unlock_special; 479 rdp = this_cpu_ptr(&rcu_data); 480 if (!special.s && !rdp->exp_deferred_qs) { 481 local_irq_restore(flags); 482 return; 483 } 484 t->rcu_read_unlock_special.s = 0; 485 if (special.b.need_qs) { 486 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 487 rcu_report_qs_rdp(rdp); 488 udelay(rcu_unlock_delay); 489 } else { 490 rcu_qs(); 491 } 492 } 493 494 /* 495 * Respond to a request by an expedited grace period for a 496 * quiescent state from this CPU. Note that requests from 497 * tasks are handled when removing the task from the 498 * blocked-tasks list below. 499 */ 500 if (rdp->exp_deferred_qs) 501 rcu_report_exp_rdp(rdp); 502 503 /* Clean up if blocked during RCU read-side critical section. */ 504 if (special.b.blocked) { 505 506 /* 507 * Remove this task from the list it blocked on. The task 508 * now remains queued on the rcu_node corresponding to the 509 * CPU it first blocked on, so there is no longer any need 510 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 511 */ 512 rnp = t->rcu_blocked_node; 513 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 514 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 515 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 516 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 517 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 518 (!empty_norm || rnp->qsmask)); 519 empty_exp = sync_rcu_exp_done(rnp); 520 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 521 np = rcu_next_node_entry(t, rnp); 522 list_del_init(&t->rcu_node_entry); 523 t->rcu_blocked_node = NULL; 524 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 525 rnp->gp_seq, t->pid); 526 if (&t->rcu_node_entry == rnp->gp_tasks) 527 WRITE_ONCE(rnp->gp_tasks, np); 528 if (&t->rcu_node_entry == rnp->exp_tasks) 529 WRITE_ONCE(rnp->exp_tasks, np); 530 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 531 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 532 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t; 533 if (&t->rcu_node_entry == rnp->boost_tasks) 534 WRITE_ONCE(rnp->boost_tasks, np); 535 } 536 537 /* 538 * If this was the last task on the current list, and if 539 * we aren't waiting on any CPUs, report the quiescent state. 540 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 541 * so we must take a snapshot of the expedited state. 542 */ 543 empty_exp_now = sync_rcu_exp_done(rnp); 544 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 545 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 546 rnp->gp_seq, 547 0, rnp->qsmask, 548 rnp->level, 549 rnp->grplo, 550 rnp->grphi, 551 !!rnp->gp_tasks); 552 rcu_report_unblock_qs_rnp(rnp, flags); 553 } else { 554 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 555 } 556 557 /* Unboost if we were boosted. */ 558 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 559 rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex); 560 561 /* 562 * If this was the last task on the expedited lists, 563 * then we need to report up the rcu_node hierarchy. 564 */ 565 if (!empty_exp && empty_exp_now) 566 rcu_report_exp_rnp(rnp, true); 567 } else { 568 local_irq_restore(flags); 569 } 570 } 571 572 /* 573 * Is a deferred quiescent-state pending, and are we also not in 574 * an RCU read-side critical section? It is the caller's responsibility 575 * to ensure it is otherwise safe to report any deferred quiescent 576 * states. The reason for this is that it is safe to report a 577 * quiescent state during context switch even though preemption 578 * is disabled. This function cannot be expected to understand these 579 * nuances, so the caller must handle them. 580 */ 581 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 582 { 583 return (__this_cpu_read(rcu_data.exp_deferred_qs) || 584 READ_ONCE(t->rcu_read_unlock_special.s)) && 585 rcu_preempt_depth() == 0; 586 } 587 588 /* 589 * Report a deferred quiescent state if needed and safe to do so. 590 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 591 * not being in an RCU read-side critical section. The caller must 592 * evaluate safety in terms of interrupt, softirq, and preemption 593 * disabling. 594 */ 595 static void rcu_preempt_deferred_qs(struct task_struct *t) 596 { 597 unsigned long flags; 598 599 if (!rcu_preempt_need_deferred_qs(t)) 600 return; 601 local_irq_save(flags); 602 rcu_preempt_deferred_qs_irqrestore(t, flags); 603 } 604 605 /* 606 * Minimal handler to give the scheduler a chance to re-evaluate. 607 */ 608 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 609 { 610 struct rcu_data *rdp; 611 612 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 613 rdp->defer_qs_iw_pending = false; 614 } 615 616 /* 617 * Handle special cases during rcu_read_unlock(), such as needing to 618 * notify RCU core processing or task having blocked during the RCU 619 * read-side critical section. 620 */ 621 static void rcu_read_unlock_special(struct task_struct *t) 622 { 623 unsigned long flags; 624 bool irqs_were_disabled; 625 bool preempt_bh_were_disabled = 626 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 627 628 /* NMI handlers cannot block and cannot safely manipulate state. */ 629 if (in_nmi()) 630 return; 631 632 local_irq_save(flags); 633 irqs_were_disabled = irqs_disabled_flags(flags); 634 if (preempt_bh_were_disabled || irqs_were_disabled) { 635 bool expboost; // Expedited GP in flight or possible boosting. 636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 637 struct rcu_node *rnp = rdp->mynode; 638 639 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 640 (rdp->grpmask & READ_ONCE(rnp->expmask)) || 641 IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || 642 (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && 643 t->rcu_blocked_node); 644 // Need to defer quiescent state until everything is enabled. 645 if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) { 646 // Using softirq, safe to awaken, and either the 647 // wakeup is free or there is either an expedited 648 // GP in flight or a potential need to deboost. 649 raise_softirq_irqoff(RCU_SOFTIRQ); 650 } else { 651 // Enabling BH or preempt does reschedule, so... 652 // Also if no expediting and no possible deboosting, 653 // slow is OK. Plus nohz_full CPUs eventually get 654 // tick enabled. 655 set_tsk_need_resched(current); 656 set_preempt_need_resched(); 657 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 658 expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { 659 // Get scheduler to re-evaluate and call hooks. 660 // If !IRQ_WORK, FQS scan will eventually IPI. 661 init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler); 662 rdp->defer_qs_iw_pending = true; 663 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 664 } 665 } 666 local_irq_restore(flags); 667 return; 668 } 669 rcu_preempt_deferred_qs_irqrestore(t, flags); 670 } 671 672 /* 673 * Check that the list of blocked tasks for the newly completed grace 674 * period is in fact empty. It is a serious bug to complete a grace 675 * period that still has RCU readers blocked! This function must be 676 * invoked -before- updating this rnp's ->gp_seq. 677 * 678 * Also, if there are blocked tasks on the list, they automatically 679 * block the newly created grace period, so set up ->gp_tasks accordingly. 680 */ 681 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 682 { 683 struct task_struct *t; 684 685 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 686 raw_lockdep_assert_held_rcu_node(rnp); 687 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 688 dump_blkd_tasks(rnp, 10); 689 if (rcu_preempt_has_tasks(rnp) && 690 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 691 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 692 t = container_of(rnp->gp_tasks, struct task_struct, 693 rcu_node_entry); 694 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 695 rnp->gp_seq, t->pid); 696 } 697 WARN_ON_ONCE(rnp->qsmask); 698 } 699 700 /* 701 * Check for a quiescent state from the current CPU, including voluntary 702 * context switches for Tasks RCU. When a task blocks, the task is 703 * recorded in the corresponding CPU's rcu_node structure, which is checked 704 * elsewhere, hence this function need only check for quiescent states 705 * related to the current CPU, not to those related to tasks. 706 */ 707 static void rcu_flavor_sched_clock_irq(int user) 708 { 709 struct task_struct *t = current; 710 711 lockdep_assert_irqs_disabled(); 712 if (user || rcu_is_cpu_rrupt_from_idle()) { 713 rcu_note_voluntary_context_switch(current); 714 } 715 if (rcu_preempt_depth() > 0 || 716 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 717 /* No QS, force context switch if deferred. */ 718 if (rcu_preempt_need_deferred_qs(t)) { 719 set_tsk_need_resched(t); 720 set_preempt_need_resched(); 721 } 722 } else if (rcu_preempt_need_deferred_qs(t)) { 723 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 724 return; 725 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 726 rcu_qs(); /* Report immediate QS. */ 727 return; 728 } 729 730 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 731 if (rcu_preempt_depth() > 0 && 732 __this_cpu_read(rcu_data.core_needs_qs) && 733 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 734 !t->rcu_read_unlock_special.b.need_qs && 735 time_after(jiffies, rcu_state.gp_start + HZ)) 736 t->rcu_read_unlock_special.b.need_qs = true; 737 } 738 739 /* 740 * Check for a task exiting while in a preemptible-RCU read-side 741 * critical section, clean up if so. No need to issue warnings, as 742 * debug_check_no_locks_held() already does this if lockdep is enabled. 743 * Besides, if this function does anything other than just immediately 744 * return, there was a bug of some sort. Spewing warnings from this 745 * function is like as not to simply obscure important prior warnings. 746 */ 747 void exit_rcu(void) 748 { 749 struct task_struct *t = current; 750 751 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 752 rcu_preempt_depth_set(1); 753 barrier(); 754 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 755 } else if (unlikely(rcu_preempt_depth())) { 756 rcu_preempt_depth_set(1); 757 } else { 758 return; 759 } 760 __rcu_read_unlock(); 761 rcu_preempt_deferred_qs(current); 762 } 763 764 /* 765 * Dump the blocked-tasks state, but limit the list dump to the 766 * specified number of elements. 767 */ 768 static void 769 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 770 { 771 int cpu; 772 int i; 773 struct list_head *lhp; 774 bool onl; 775 struct rcu_data *rdp; 776 struct rcu_node *rnp1; 777 778 raw_lockdep_assert_held_rcu_node(rnp); 779 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 780 __func__, rnp->grplo, rnp->grphi, rnp->level, 781 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 782 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 783 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 784 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 785 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 786 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 787 READ_ONCE(rnp->exp_tasks)); 788 pr_info("%s: ->blkd_tasks", __func__); 789 i = 0; 790 list_for_each(lhp, &rnp->blkd_tasks) { 791 pr_cont(" %p", lhp); 792 if (++i >= ncheck) 793 break; 794 } 795 pr_cont("\n"); 796 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 797 rdp = per_cpu_ptr(&rcu_data, cpu); 798 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 799 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 800 cpu, ".o"[onl], 801 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 802 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 803 } 804 } 805 806 #else /* #ifdef CONFIG_PREEMPT_RCU */ 807 808 /* 809 * If strict grace periods are enabled, and if the calling 810 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately 811 * report that quiescent state and, if requested, spin for a bit. 812 */ 813 void rcu_read_unlock_strict(void) 814 { 815 struct rcu_data *rdp; 816 817 if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || 818 irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) 819 return; 820 rdp = this_cpu_ptr(&rcu_data); 821 rcu_report_qs_rdp(rdp); 822 udelay(rcu_unlock_delay); 823 } 824 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); 825 826 /* 827 * Tell them what RCU they are running. 828 */ 829 static void __init rcu_bootup_announce(void) 830 { 831 pr_info("Hierarchical RCU implementation.\n"); 832 rcu_bootup_announce_oddness(); 833 } 834 835 /* 836 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 837 * how many quiescent states passed, just if there was at least one since 838 * the start of the grace period, this just sets a flag. The caller must 839 * have disabled preemption. 840 */ 841 static void rcu_qs(void) 842 { 843 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 844 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 845 return; 846 trace_rcu_grace_period(TPS("rcu_sched"), 847 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 848 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 849 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 850 return; 851 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); 852 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 853 } 854 855 /* 856 * Register an urgently needed quiescent state. If there is an 857 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 858 * dyntick-idle quiescent state visible to other CPUs, which will in 859 * some cases serve for expedited as well as normal grace periods. 860 * Either way, register a lightweight quiescent state. 861 */ 862 void rcu_all_qs(void) 863 { 864 unsigned long flags; 865 866 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 867 return; 868 preempt_disable(); 869 /* Load rcu_urgent_qs before other flags. */ 870 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 871 preempt_enable(); 872 return; 873 } 874 this_cpu_write(rcu_data.rcu_urgent_qs, false); 875 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 876 local_irq_save(flags); 877 rcu_momentary_dyntick_idle(); 878 local_irq_restore(flags); 879 } 880 rcu_qs(); 881 preempt_enable(); 882 } 883 EXPORT_SYMBOL_GPL(rcu_all_qs); 884 885 /* 886 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 887 */ 888 void rcu_note_context_switch(bool preempt) 889 { 890 trace_rcu_utilization(TPS("Start context switch")); 891 rcu_qs(); 892 /* Load rcu_urgent_qs before other flags. */ 893 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 894 goto out; 895 this_cpu_write(rcu_data.rcu_urgent_qs, false); 896 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 897 rcu_momentary_dyntick_idle(); 898 rcu_tasks_qs(current, preempt); 899 out: 900 trace_rcu_utilization(TPS("End context switch")); 901 } 902 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 903 904 /* 905 * Because preemptible RCU does not exist, there are never any preempted 906 * RCU readers. 907 */ 908 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 909 { 910 return 0; 911 } 912 913 /* 914 * Because there is no preemptible RCU, there can be no readers blocked. 915 */ 916 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 917 { 918 return false; 919 } 920 921 /* 922 * Because there is no preemptible RCU, there can be no deferred quiescent 923 * states. 924 */ 925 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 926 { 927 return false; 928 } 929 static void rcu_preempt_deferred_qs(struct task_struct *t) { } 930 931 /* 932 * Because there is no preemptible RCU, there can be no readers blocked, 933 * so there is no need to check for blocked tasks. So check only for 934 * bogus qsmask values. 935 */ 936 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 937 { 938 WARN_ON_ONCE(rnp->qsmask); 939 } 940 941 /* 942 * Check to see if this CPU is in a non-context-switch quiescent state, 943 * namely user mode and idle loop. 944 */ 945 static void rcu_flavor_sched_clock_irq(int user) 946 { 947 if (user || rcu_is_cpu_rrupt_from_idle()) { 948 949 /* 950 * Get here if this CPU took its interrupt from user 951 * mode or from the idle loop, and if this is not a 952 * nested interrupt. In this case, the CPU is in 953 * a quiescent state, so note it. 954 * 955 * No memory barrier is required here because rcu_qs() 956 * references only CPU-local variables that other CPUs 957 * neither access nor modify, at least not while the 958 * corresponding CPU is online. 959 */ 960 961 rcu_qs(); 962 } 963 } 964 965 /* 966 * Because preemptible RCU does not exist, tasks cannot possibly exit 967 * while in preemptible RCU read-side critical sections. 968 */ 969 void exit_rcu(void) 970 { 971 } 972 973 /* 974 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 975 */ 976 static void 977 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 978 { 979 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 980 } 981 982 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 983 984 /* 985 * If boosting, set rcuc kthreads to realtime priority. 986 */ 987 static void rcu_cpu_kthread_setup(unsigned int cpu) 988 { 989 #ifdef CONFIG_RCU_BOOST 990 struct sched_param sp; 991 992 sp.sched_priority = kthread_prio; 993 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 994 #endif /* #ifdef CONFIG_RCU_BOOST */ 995 } 996 997 #ifdef CONFIG_RCU_BOOST 998 999 /* 1000 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1001 * or ->boost_tasks, advancing the pointer to the next task in the 1002 * ->blkd_tasks list. 1003 * 1004 * Note that irqs must be enabled: boosting the task can block. 1005 * Returns 1 if there are more tasks needing to be boosted. 1006 */ 1007 static int rcu_boost(struct rcu_node *rnp) 1008 { 1009 unsigned long flags; 1010 struct task_struct *t; 1011 struct list_head *tb; 1012 1013 if (READ_ONCE(rnp->exp_tasks) == NULL && 1014 READ_ONCE(rnp->boost_tasks) == NULL) 1015 return 0; /* Nothing left to boost. */ 1016 1017 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1018 1019 /* 1020 * Recheck under the lock: all tasks in need of boosting 1021 * might exit their RCU read-side critical sections on their own. 1022 */ 1023 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1024 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1025 return 0; 1026 } 1027 1028 /* 1029 * Preferentially boost tasks blocking expedited grace periods. 1030 * This cannot starve the normal grace periods because a second 1031 * expedited grace period must boost all blocked tasks, including 1032 * those blocking the pre-existing normal grace period. 1033 */ 1034 if (rnp->exp_tasks != NULL) 1035 tb = rnp->exp_tasks; 1036 else 1037 tb = rnp->boost_tasks; 1038 1039 /* 1040 * We boost task t by manufacturing an rt_mutex that appears to 1041 * be held by task t. We leave a pointer to that rt_mutex where 1042 * task t can find it, and task t will release the mutex when it 1043 * exits its outermost RCU read-side critical section. Then 1044 * simply acquiring this artificial rt_mutex will boost task 1045 * t's priority. (Thanks to tglx for suggesting this approach!) 1046 * 1047 * Note that task t must acquire rnp->lock to remove itself from 1048 * the ->blkd_tasks list, which it will do from exit() if from 1049 * nowhere else. We therefore are guaranteed that task t will 1050 * stay around at least until we drop rnp->lock. Note that 1051 * rnp->lock also resolves races between our priority boosting 1052 * and task t's exiting its outermost RCU read-side critical 1053 * section. 1054 */ 1055 t = container_of(tb, struct task_struct, rcu_node_entry); 1056 rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); 1057 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1058 /* Lock only for side effect: boosts task t's priority. */ 1059 rt_mutex_lock(&rnp->boost_mtx); 1060 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1061 rnp->n_boosts++; 1062 1063 return READ_ONCE(rnp->exp_tasks) != NULL || 1064 READ_ONCE(rnp->boost_tasks) != NULL; 1065 } 1066 1067 /* 1068 * Priority-boosting kthread, one per leaf rcu_node. 1069 */ 1070 static int rcu_boost_kthread(void *arg) 1071 { 1072 struct rcu_node *rnp = (struct rcu_node *)arg; 1073 int spincnt = 0; 1074 int more2boost; 1075 1076 trace_rcu_utilization(TPS("Start boost kthread@init")); 1077 for (;;) { 1078 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1079 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1080 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1081 READ_ONCE(rnp->exp_tasks)); 1082 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1083 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1084 more2boost = rcu_boost(rnp); 1085 if (more2boost) 1086 spincnt++; 1087 else 1088 spincnt = 0; 1089 if (spincnt > 10) { 1090 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1091 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1092 schedule_timeout_idle(2); 1093 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1094 spincnt = 0; 1095 } 1096 } 1097 /* NOTREACHED */ 1098 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1099 return 0; 1100 } 1101 1102 /* 1103 * Check to see if it is time to start boosting RCU readers that are 1104 * blocking the current grace period, and, if so, tell the per-rcu_node 1105 * kthread to start boosting them. If there is an expedited grace 1106 * period in progress, it is always time to boost. 1107 * 1108 * The caller must hold rnp->lock, which this function releases. 1109 * The ->boost_kthread_task is immortal, so we don't need to worry 1110 * about it going away. 1111 */ 1112 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1113 __releases(rnp->lock) 1114 { 1115 raw_lockdep_assert_held_rcu_node(rnp); 1116 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1117 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1118 return; 1119 } 1120 if (rnp->exp_tasks != NULL || 1121 (rnp->gp_tasks != NULL && 1122 rnp->boost_tasks == NULL && 1123 rnp->qsmask == 0 && 1124 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { 1125 if (rnp->exp_tasks == NULL) 1126 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1127 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1128 rcu_wake_cond(rnp->boost_kthread_task, 1129 READ_ONCE(rnp->boost_kthread_status)); 1130 } else { 1131 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1132 } 1133 } 1134 1135 /* 1136 * Is the current CPU running the RCU-callbacks kthread? 1137 * Caller must have preemption disabled. 1138 */ 1139 static bool rcu_is_callbacks_kthread(void) 1140 { 1141 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; 1142 } 1143 1144 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1145 1146 /* 1147 * Do priority-boost accounting for the start of a new grace period. 1148 */ 1149 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1150 { 1151 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1152 } 1153 1154 /* 1155 * Create an RCU-boost kthread for the specified node if one does not 1156 * already exist. We only create this kthread for preemptible RCU. 1157 * Returns zero if all is well, a negated errno otherwise. 1158 */ 1159 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1160 { 1161 unsigned long flags; 1162 int rnp_index = rnp - rcu_get_root(); 1163 struct sched_param sp; 1164 struct task_struct *t; 1165 1166 if (rnp->boost_kthread_task || !rcu_scheduler_fully_active) 1167 return; 1168 1169 rcu_state.boost = 1; 1170 1171 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1172 "rcub/%d", rnp_index); 1173 if (WARN_ON_ONCE(IS_ERR(t))) 1174 return; 1175 1176 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1177 rnp->boost_kthread_task = t; 1178 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1179 sp.sched_priority = kthread_prio; 1180 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1181 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1182 } 1183 1184 /* 1185 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1186 * served by the rcu_node in question. The CPU hotplug lock is still 1187 * held, so the value of rnp->qsmaskinit will be stable. 1188 * 1189 * We don't include outgoingcpu in the affinity set, use -1 if there is 1190 * no outgoing CPU. If there are no CPUs left in the affinity set, 1191 * this function allows the kthread to execute on any CPU. 1192 */ 1193 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1194 { 1195 struct task_struct *t = rnp->boost_kthread_task; 1196 unsigned long mask = rcu_rnp_online_cpus(rnp); 1197 cpumask_var_t cm; 1198 int cpu; 1199 1200 if (!t) 1201 return; 1202 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1203 return; 1204 for_each_leaf_node_possible_cpu(rnp, cpu) 1205 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1206 cpu != outgoingcpu) 1207 cpumask_set_cpu(cpu, cm); 1208 if (cpumask_weight(cm) == 0) 1209 cpumask_setall(cm); 1210 set_cpus_allowed_ptr(t, cm); 1211 free_cpumask_var(cm); 1212 } 1213 1214 /* 1215 * Spawn boost kthreads -- called as soon as the scheduler is running. 1216 */ 1217 static void __init rcu_spawn_boost_kthreads(void) 1218 { 1219 struct rcu_node *rnp; 1220 1221 rcu_for_each_leaf_node(rnp) 1222 if (rcu_rnp_online_cpus(rnp)) 1223 rcu_spawn_one_boost_kthread(rnp); 1224 } 1225 1226 #else /* #ifdef CONFIG_RCU_BOOST */ 1227 1228 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1229 __releases(rnp->lock) 1230 { 1231 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1232 } 1233 1234 static bool rcu_is_callbacks_kthread(void) 1235 { 1236 return false; 1237 } 1238 1239 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1240 { 1241 } 1242 1243 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1244 { 1245 } 1246 1247 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1248 { 1249 } 1250 1251 static void __init rcu_spawn_boost_kthreads(void) 1252 { 1253 } 1254 1255 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1256 1257 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1258 1259 /* 1260 * Check to see if any future non-offloaded RCU-related work will need 1261 * to be done by the current CPU, even if none need be done immediately, 1262 * returning 1 if so. This function is part of the RCU implementation; 1263 * it is -not- an exported member of the RCU API. 1264 * 1265 * Because we not have RCU_FAST_NO_HZ, just check whether or not this 1266 * CPU has RCU callbacks queued. 1267 */ 1268 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1269 { 1270 *nextevt = KTIME_MAX; 1271 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 1272 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 1273 } 1274 1275 /* 1276 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1277 * after it. 1278 */ 1279 static void rcu_cleanup_after_idle(void) 1280 { 1281 } 1282 1283 /* 1284 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1285 * is nothing. 1286 */ 1287 static void rcu_prepare_for_idle(void) 1288 { 1289 } 1290 1291 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1292 1293 /* 1294 * This code is invoked when a CPU goes idle, at which point we want 1295 * to have the CPU do everything required for RCU so that it can enter 1296 * the energy-efficient dyntick-idle mode. 1297 * 1298 * The following preprocessor symbol controls this: 1299 * 1300 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1301 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1302 * is sized to be roughly one RCU grace period. Those energy-efficiency 1303 * benchmarkers who might otherwise be tempted to set this to a large 1304 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1305 * system. And if you are -that- concerned about energy efficiency, 1306 * just power the system down and be done with it! 1307 * 1308 * The value below works well in practice. If future workloads require 1309 * adjustment, they can be converted into kernel config parameters, though 1310 * making the state machine smarter might be a better option. 1311 */ 1312 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1313 1314 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1315 module_param(rcu_idle_gp_delay, int, 0644); 1316 1317 /* 1318 * Try to advance callbacks on the current CPU, but only if it has been 1319 * awhile since the last time we did so. Afterwards, if there are any 1320 * callbacks ready for immediate invocation, return true. 1321 */ 1322 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1323 { 1324 bool cbs_ready = false; 1325 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1326 struct rcu_node *rnp; 1327 1328 /* Exit early if we advanced recently. */ 1329 if (jiffies == rdp->last_advance_all) 1330 return false; 1331 rdp->last_advance_all = jiffies; 1332 1333 rnp = rdp->mynode; 1334 1335 /* 1336 * Don't bother checking unless a grace period has 1337 * completed since we last checked and there are 1338 * callbacks not yet ready to invoke. 1339 */ 1340 if ((rcu_seq_completed_gp(rdp->gp_seq, 1341 rcu_seq_current(&rnp->gp_seq)) || 1342 unlikely(READ_ONCE(rdp->gpwrap))) && 1343 rcu_segcblist_pend_cbs(&rdp->cblist)) 1344 note_gp_changes(rdp); 1345 1346 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1347 cbs_ready = true; 1348 return cbs_ready; 1349 } 1350 1351 /* 1352 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1353 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1354 * caller about what to set the timeout. 1355 * 1356 * The caller must have disabled interrupts. 1357 */ 1358 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1359 { 1360 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1361 unsigned long dj; 1362 1363 lockdep_assert_irqs_disabled(); 1364 1365 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ 1366 if (rcu_segcblist_empty(&rdp->cblist) || 1367 rcu_rdp_is_offloaded(rdp)) { 1368 *nextevt = KTIME_MAX; 1369 return 0; 1370 } 1371 1372 /* Attempt to advance callbacks. */ 1373 if (rcu_try_advance_all_cbs()) { 1374 /* Some ready to invoke, so initiate later invocation. */ 1375 invoke_rcu_core(); 1376 return 1; 1377 } 1378 rdp->last_accelerate = jiffies; 1379 1380 /* Request timer and round. */ 1381 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; 1382 1383 *nextevt = basemono + dj * TICK_NSEC; 1384 return 0; 1385 } 1386 1387 /* 1388 * Prepare a CPU for idle from an RCU perspective. The first major task is to 1389 * sense whether nohz mode has been enabled or disabled via sysfs. The second 1390 * major task is to accelerate (that is, assign grace-period numbers to) any 1391 * recently arrived callbacks. 1392 * 1393 * The caller must have disabled interrupts. 1394 */ 1395 static void rcu_prepare_for_idle(void) 1396 { 1397 bool needwake; 1398 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1399 struct rcu_node *rnp; 1400 int tne; 1401 1402 lockdep_assert_irqs_disabled(); 1403 if (rcu_rdp_is_offloaded(rdp)) 1404 return; 1405 1406 /* Handle nohz enablement switches conservatively. */ 1407 tne = READ_ONCE(tick_nohz_active); 1408 if (tne != rdp->tick_nohz_enabled_snap) { 1409 if (!rcu_segcblist_empty(&rdp->cblist)) 1410 invoke_rcu_core(); /* force nohz to see update. */ 1411 rdp->tick_nohz_enabled_snap = tne; 1412 return; 1413 } 1414 if (!tne) 1415 return; 1416 1417 /* 1418 * If we have not yet accelerated this jiffy, accelerate all 1419 * callbacks on this CPU. 1420 */ 1421 if (rdp->last_accelerate == jiffies) 1422 return; 1423 rdp->last_accelerate = jiffies; 1424 if (rcu_segcblist_pend_cbs(&rdp->cblist)) { 1425 rnp = rdp->mynode; 1426 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1427 needwake = rcu_accelerate_cbs(rnp, rdp); 1428 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1429 if (needwake) 1430 rcu_gp_kthread_wake(); 1431 } 1432 } 1433 1434 /* 1435 * Clean up for exit from idle. Attempt to advance callbacks based on 1436 * any grace periods that elapsed while the CPU was idle, and if any 1437 * callbacks are now ready to invoke, initiate invocation. 1438 */ 1439 static void rcu_cleanup_after_idle(void) 1440 { 1441 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1442 1443 lockdep_assert_irqs_disabled(); 1444 if (rcu_rdp_is_offloaded(rdp)) 1445 return; 1446 if (rcu_try_advance_all_cbs()) 1447 invoke_rcu_core(); 1448 } 1449 1450 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1451 1452 /* 1453 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 1454 * grace-period kthread will do force_quiescent_state() processing? 1455 * The idea is to avoid waking up RCU core processing on such a 1456 * CPU unless the grace period has extended for too long. 1457 * 1458 * This code relies on the fact that all NO_HZ_FULL CPUs are also 1459 * CONFIG_RCU_NOCB_CPU CPUs. 1460 */ 1461 static bool rcu_nohz_full_cpu(void) 1462 { 1463 #ifdef CONFIG_NO_HZ_FULL 1464 if (tick_nohz_full_cpu(smp_processor_id()) && 1465 (!rcu_gp_in_progress() || 1466 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 1467 return true; 1468 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 1469 return false; 1470 } 1471 1472 /* 1473 * Bind the RCU grace-period kthreads to the housekeeping CPU. 1474 */ 1475 static void rcu_bind_gp_kthread(void) 1476 { 1477 if (!tick_nohz_full_enabled()) 1478 return; 1479 housekeeping_affine(current, HK_FLAG_RCU); 1480 } 1481 1482 /* Record the current task on dyntick-idle entry. */ 1483 static void noinstr rcu_dynticks_task_enter(void) 1484 { 1485 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 1486 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 1487 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 1488 } 1489 1490 /* Record no current task on dyntick-idle exit. */ 1491 static void noinstr rcu_dynticks_task_exit(void) 1492 { 1493 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 1494 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 1495 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 1496 } 1497 1498 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ 1499 static void rcu_dynticks_task_trace_enter(void) 1500 { 1501 #ifdef CONFIG_TASKS_TRACE_RCU 1502 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1503 current->trc_reader_special.b.need_mb = true; 1504 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1505 } 1506 1507 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ 1508 static void rcu_dynticks_task_trace_exit(void) 1509 { 1510 #ifdef CONFIG_TASKS_TRACE_RCU 1511 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1512 current->trc_reader_special.b.need_mb = false; 1513 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1514 } 1515