1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #ifdef CONFIG_RCU_BOOST 34 35 #include "../locking/rtmutex_common.h" 36 37 /* 38 * Control variables for per-CPU and per-rcu_node kthreads. These 39 * handle all flavors of RCU. 40 */ 41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 44 DEFINE_PER_CPU(char, rcu_cpu_has_work); 45 46 #else /* #ifdef CONFIG_RCU_BOOST */ 47 48 /* 49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 50 * all uses are in dead code. Provide a definition to keep the compiler 51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 52 * This probably needs to be excluded from -rt builds. 53 */ 54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 55 56 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 57 58 #ifdef CONFIG_RCU_NOCB_CPU 59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 63 64 /* 65 * Check the RCU kernel configuration parameters and print informative 66 * messages about anything out of the ordinary. 67 */ 68 static void __init rcu_bootup_announce_oddness(void) 69 { 70 if (IS_ENABLED(CONFIG_RCU_TRACE)) 71 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 72 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 73 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 74 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 75 RCU_FANOUT); 76 if (rcu_fanout_exact) 77 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 78 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 79 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 80 if (IS_ENABLED(CONFIG_PROVE_RCU)) 81 pr_info("\tRCU lockdep checking is enabled.\n"); 82 if (RCU_NUM_LVLS >= 4) 83 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 84 if (RCU_FANOUT_LEAF != 16) 85 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 86 RCU_FANOUT_LEAF); 87 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 88 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 89 if (nr_cpu_ids != NR_CPUS) 90 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 91 if (IS_ENABLED(CONFIG_RCU_BOOST)) 92 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 93 } 94 95 #ifdef CONFIG_PREEMPT_RCU 96 97 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 98 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 99 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 100 101 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 102 bool wake); 103 104 /* 105 * Tell them what RCU they are running. 106 */ 107 static void __init rcu_bootup_announce(void) 108 { 109 pr_info("Preemptible hierarchical RCU implementation.\n"); 110 rcu_bootup_announce_oddness(); 111 } 112 113 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 114 #define RCU_GP_TASKS 0x8 115 #define RCU_EXP_TASKS 0x4 116 #define RCU_GP_BLKD 0x2 117 #define RCU_EXP_BLKD 0x1 118 119 /* 120 * Queues a task preempted within an RCU-preempt read-side critical 121 * section into the appropriate location within the ->blkd_tasks list, 122 * depending on the states of any ongoing normal and expedited grace 123 * periods. The ->gp_tasks pointer indicates which element the normal 124 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 125 * indicates which element the expedited grace period is waiting on (again, 126 * NULL if none). If a grace period is waiting on a given element in the 127 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 128 * adding a task to the tail of the list blocks any grace period that is 129 * already waiting on one of the elements. In contrast, adding a task 130 * to the head of the list won't block any grace period that is already 131 * waiting on one of the elements. 132 * 133 * This queuing is imprecise, and can sometimes make an ongoing grace 134 * period wait for a task that is not strictly speaking blocking it. 135 * Given the choice, we needlessly block a normal grace period rather than 136 * blocking an expedited grace period. 137 * 138 * Note that an endless sequence of expedited grace periods still cannot 139 * indefinitely postpone a normal grace period. Eventually, all of the 140 * fixed number of preempted tasks blocking the normal grace period that are 141 * not also blocking the expedited grace period will resume and complete 142 * their RCU read-side critical sections. At that point, the ->gp_tasks 143 * pointer will equal the ->exp_tasks pointer, at which point the end of 144 * the corresponding expedited grace period will also be the end of the 145 * normal grace period. 146 */ 147 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 148 __releases(rnp->lock) /* But leaves rrupts disabled. */ 149 { 150 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 151 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 152 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 153 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 154 struct task_struct *t = current; 155 156 /* 157 * Decide where to queue the newly blocked task. In theory, 158 * this could be an if-statement. In practice, when I tried 159 * that, it was quite messy. 160 */ 161 switch (blkd_state) { 162 case 0: 163 case RCU_EXP_TASKS: 164 case RCU_EXP_TASKS + RCU_GP_BLKD: 165 case RCU_GP_TASKS: 166 case RCU_GP_TASKS + RCU_EXP_TASKS: 167 168 /* 169 * Blocking neither GP, or first task blocking the normal 170 * GP but not blocking the already-waiting expedited GP. 171 * Queue at the head of the list to avoid unnecessarily 172 * blocking the already-waiting GPs. 173 */ 174 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 175 break; 176 177 case RCU_EXP_BLKD: 178 case RCU_GP_BLKD: 179 case RCU_GP_BLKD + RCU_EXP_BLKD: 180 case RCU_GP_TASKS + RCU_EXP_BLKD: 181 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 182 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 183 184 /* 185 * First task arriving that blocks either GP, or first task 186 * arriving that blocks the expedited GP (with the normal 187 * GP already waiting), or a task arriving that blocks 188 * both GPs with both GPs already waiting. Queue at the 189 * tail of the list to avoid any GP waiting on any of the 190 * already queued tasks that are not blocking it. 191 */ 192 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 193 break; 194 195 case RCU_EXP_TASKS + RCU_EXP_BLKD: 196 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 197 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 198 199 /* 200 * Second or subsequent task blocking the expedited GP. 201 * The task either does not block the normal GP, or is the 202 * first task blocking the normal GP. Queue just after 203 * the first task blocking the expedited GP. 204 */ 205 list_add(&t->rcu_node_entry, rnp->exp_tasks); 206 break; 207 208 case RCU_GP_TASKS + RCU_GP_BLKD: 209 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 210 211 /* 212 * Second or subsequent task blocking the normal GP. 213 * The task does not block the expedited GP. Queue just 214 * after the first task blocking the normal GP. 215 */ 216 list_add(&t->rcu_node_entry, rnp->gp_tasks); 217 break; 218 219 default: 220 221 /* Yet another exercise in excessive paranoia. */ 222 WARN_ON_ONCE(1); 223 break; 224 } 225 226 /* 227 * We have now queued the task. If it was the first one to 228 * block either grace period, update the ->gp_tasks and/or 229 * ->exp_tasks pointers, respectively, to reference the newly 230 * blocked tasks. 231 */ 232 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 233 rnp->gp_tasks = &t->rcu_node_entry; 234 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 235 rnp->exp_tasks = &t->rcu_node_entry; 236 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 237 238 /* 239 * Report the quiescent state for the expedited GP. This expedited 240 * GP should not be able to end until we report, so there should be 241 * no need to check for a subsequent expedited GP. (Though we are 242 * still in a quiescent state in any case.) 243 */ 244 if (blkd_state & RCU_EXP_BLKD && 245 t->rcu_read_unlock_special.b.exp_need_qs) { 246 t->rcu_read_unlock_special.b.exp_need_qs = false; 247 rcu_report_exp_rdp(rdp->rsp, rdp, true); 248 } else { 249 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 250 } 251 } 252 253 /* 254 * Record a preemptible-RCU quiescent state for the specified CPU. Note 255 * that this just means that the task currently running on the CPU is 256 * not in a quiescent state. There might be any number of tasks blocked 257 * while in an RCU read-side critical section. 258 * 259 * As with the other rcu_*_qs() functions, callers to this function 260 * must disable preemption. 261 */ 262 static void rcu_preempt_qs(void) 263 { 264 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 265 trace_rcu_grace_period(TPS("rcu_preempt"), 266 __this_cpu_read(rcu_data_p->gpnum), 267 TPS("cpuqs")); 268 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 269 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 270 current->rcu_read_unlock_special.b.need_qs = false; 271 } 272 } 273 274 /* 275 * We have entered the scheduler, and the current task might soon be 276 * context-switched away from. If this task is in an RCU read-side 277 * critical section, we will no longer be able to rely on the CPU to 278 * record that fact, so we enqueue the task on the blkd_tasks list. 279 * The task will dequeue itself when it exits the outermost enclosing 280 * RCU read-side critical section. Therefore, the current grace period 281 * cannot be permitted to complete until the blkd_tasks list entries 282 * predating the current grace period drain, in other words, until 283 * rnp->gp_tasks becomes NULL. 284 * 285 * Caller must disable interrupts. 286 */ 287 static void rcu_preempt_note_context_switch(void) 288 { 289 struct task_struct *t = current; 290 struct rcu_data *rdp; 291 struct rcu_node *rnp; 292 293 if (t->rcu_read_lock_nesting > 0 && 294 !t->rcu_read_unlock_special.b.blocked) { 295 296 /* Possibly blocking in an RCU read-side critical section. */ 297 rdp = this_cpu_ptr(rcu_state_p->rda); 298 rnp = rdp->mynode; 299 raw_spin_lock_rcu_node(rnp); 300 t->rcu_read_unlock_special.b.blocked = true; 301 t->rcu_blocked_node = rnp; 302 303 /* 304 * Verify the CPU's sanity, trace the preemption, and 305 * then queue the task as required based on the states 306 * of any ongoing and expedited grace periods. 307 */ 308 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 309 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 310 trace_rcu_preempt_task(rdp->rsp->name, 311 t->pid, 312 (rnp->qsmask & rdp->grpmask) 313 ? rnp->gpnum 314 : rnp->gpnum + 1); 315 rcu_preempt_ctxt_queue(rnp, rdp); 316 } else if (t->rcu_read_lock_nesting < 0 && 317 t->rcu_read_unlock_special.s) { 318 319 /* 320 * Complete exit from RCU read-side critical section on 321 * behalf of preempted instance of __rcu_read_unlock(). 322 */ 323 rcu_read_unlock_special(t); 324 } 325 326 /* 327 * Either we were not in an RCU read-side critical section to 328 * begin with, or we have now recorded that critical section 329 * globally. Either way, we can now note a quiescent state 330 * for this CPU. Again, if we were in an RCU read-side critical 331 * section, and if that critical section was blocking the current 332 * grace period, then the fact that the task has been enqueued 333 * means that we continue to block the current grace period. 334 */ 335 rcu_preempt_qs(); 336 } 337 338 /* 339 * Check for preempted RCU readers blocking the current grace period 340 * for the specified rcu_node structure. If the caller needs a reliable 341 * answer, it must hold the rcu_node's ->lock. 342 */ 343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 344 { 345 return rnp->gp_tasks != NULL; 346 } 347 348 /* 349 * Advance a ->blkd_tasks-list pointer to the next entry, instead 350 * returning NULL if at the end of the list. 351 */ 352 static struct list_head *rcu_next_node_entry(struct task_struct *t, 353 struct rcu_node *rnp) 354 { 355 struct list_head *np; 356 357 np = t->rcu_node_entry.next; 358 if (np == &rnp->blkd_tasks) 359 np = NULL; 360 return np; 361 } 362 363 /* 364 * Return true if the specified rcu_node structure has tasks that were 365 * preempted within an RCU read-side critical section. 366 */ 367 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 368 { 369 return !list_empty(&rnp->blkd_tasks); 370 } 371 372 /* 373 * Handle special cases during rcu_read_unlock(), such as needing to 374 * notify RCU core processing or task having blocked during the RCU 375 * read-side critical section. 376 */ 377 void rcu_read_unlock_special(struct task_struct *t) 378 { 379 bool empty_exp; 380 bool empty_norm; 381 bool empty_exp_now; 382 unsigned long flags; 383 struct list_head *np; 384 bool drop_boost_mutex = false; 385 struct rcu_data *rdp; 386 struct rcu_node *rnp; 387 union rcu_special special; 388 389 /* NMI handlers cannot block and cannot safely manipulate state. */ 390 if (in_nmi()) 391 return; 392 393 local_irq_save(flags); 394 395 /* 396 * If RCU core is waiting for this CPU to exit its critical section, 397 * report the fact that it has exited. Because irqs are disabled, 398 * t->rcu_read_unlock_special cannot change. 399 */ 400 special = t->rcu_read_unlock_special; 401 if (special.b.need_qs) { 402 rcu_preempt_qs(); 403 t->rcu_read_unlock_special.b.need_qs = false; 404 if (!t->rcu_read_unlock_special.s) { 405 local_irq_restore(flags); 406 return; 407 } 408 } 409 410 /* 411 * Respond to a request for an expedited grace period, but only if 412 * we were not preempted, meaning that we were running on the same 413 * CPU throughout. If we were preempted, the exp_need_qs flag 414 * would have been cleared at the time of the first preemption, 415 * and the quiescent state would be reported when we were dequeued. 416 */ 417 if (special.b.exp_need_qs) { 418 WARN_ON_ONCE(special.b.blocked); 419 t->rcu_read_unlock_special.b.exp_need_qs = false; 420 rdp = this_cpu_ptr(rcu_state_p->rda); 421 rcu_report_exp_rdp(rcu_state_p, rdp, true); 422 if (!t->rcu_read_unlock_special.s) { 423 local_irq_restore(flags); 424 return; 425 } 426 } 427 428 /* Hardware IRQ handlers cannot block, complain if they get here. */ 429 if (in_irq() || in_serving_softirq()) { 430 lockdep_rcu_suspicious(__FILE__, __LINE__, 431 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 432 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 433 t->rcu_read_unlock_special.s, 434 t->rcu_read_unlock_special.b.blocked, 435 t->rcu_read_unlock_special.b.exp_need_qs, 436 t->rcu_read_unlock_special.b.need_qs); 437 local_irq_restore(flags); 438 return; 439 } 440 441 /* Clean up if blocked during RCU read-side critical section. */ 442 if (special.b.blocked) { 443 t->rcu_read_unlock_special.b.blocked = false; 444 445 /* 446 * Remove this task from the list it blocked on. The task 447 * now remains queued on the rcu_node corresponding to the 448 * CPU it first blocked on, so there is no longer any need 449 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 450 */ 451 rnp = t->rcu_blocked_node; 452 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 453 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 454 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 455 empty_exp = sync_rcu_preempt_exp_done(rnp); 456 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 457 np = rcu_next_node_entry(t, rnp); 458 list_del_init(&t->rcu_node_entry); 459 t->rcu_blocked_node = NULL; 460 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 461 rnp->gpnum, t->pid); 462 if (&t->rcu_node_entry == rnp->gp_tasks) 463 rnp->gp_tasks = np; 464 if (&t->rcu_node_entry == rnp->exp_tasks) 465 rnp->exp_tasks = np; 466 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 467 if (&t->rcu_node_entry == rnp->boost_tasks) 468 rnp->boost_tasks = np; 469 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 470 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 471 } 472 473 /* 474 * If this was the last task on the current list, and if 475 * we aren't waiting on any CPUs, report the quiescent state. 476 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 477 * so we must take a snapshot of the expedited state. 478 */ 479 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 480 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 481 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 482 rnp->gpnum, 483 0, rnp->qsmask, 484 rnp->level, 485 rnp->grplo, 486 rnp->grphi, 487 !!rnp->gp_tasks); 488 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 489 } else { 490 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 491 } 492 493 /* Unboost if we were boosted. */ 494 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 495 rt_mutex_unlock(&rnp->boost_mtx); 496 497 /* 498 * If this was the last task on the expedited lists, 499 * then we need to report up the rcu_node hierarchy. 500 */ 501 if (!empty_exp && empty_exp_now) 502 rcu_report_exp_rnp(rcu_state_p, rnp, true); 503 } else { 504 local_irq_restore(flags); 505 } 506 } 507 508 /* 509 * Dump detailed information for all tasks blocking the current RCU 510 * grace period on the specified rcu_node structure. 511 */ 512 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 513 { 514 unsigned long flags; 515 struct task_struct *t; 516 517 raw_spin_lock_irqsave_rcu_node(rnp, flags); 518 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 519 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 520 return; 521 } 522 t = list_entry(rnp->gp_tasks->prev, 523 struct task_struct, rcu_node_entry); 524 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 525 sched_show_task(t); 526 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 527 } 528 529 /* 530 * Dump detailed information for all tasks blocking the current RCU 531 * grace period. 532 */ 533 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 534 { 535 struct rcu_node *rnp = rcu_get_root(rsp); 536 537 rcu_print_detail_task_stall_rnp(rnp); 538 rcu_for_each_leaf_node(rsp, rnp) 539 rcu_print_detail_task_stall_rnp(rnp); 540 } 541 542 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 543 { 544 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 545 rnp->level, rnp->grplo, rnp->grphi); 546 } 547 548 static void rcu_print_task_stall_end(void) 549 { 550 pr_cont("\n"); 551 } 552 553 /* 554 * Scan the current list of tasks blocked within RCU read-side critical 555 * sections, printing out the tid of each. 556 */ 557 static int rcu_print_task_stall(struct rcu_node *rnp) 558 { 559 struct task_struct *t; 560 int ndetected = 0; 561 562 if (!rcu_preempt_blocked_readers_cgp(rnp)) 563 return 0; 564 rcu_print_task_stall_begin(rnp); 565 t = list_entry(rnp->gp_tasks->prev, 566 struct task_struct, rcu_node_entry); 567 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 568 pr_cont(" P%d", t->pid); 569 ndetected++; 570 } 571 rcu_print_task_stall_end(); 572 return ndetected; 573 } 574 575 /* 576 * Scan the current list of tasks blocked within RCU read-side critical 577 * sections, printing out the tid of each that is blocking the current 578 * expedited grace period. 579 */ 580 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 581 { 582 struct task_struct *t; 583 int ndetected = 0; 584 585 if (!rnp->exp_tasks) 586 return 0; 587 t = list_entry(rnp->exp_tasks->prev, 588 struct task_struct, rcu_node_entry); 589 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 590 pr_cont(" P%d", t->pid); 591 ndetected++; 592 } 593 return ndetected; 594 } 595 596 /* 597 * Check that the list of blocked tasks for the newly completed grace 598 * period is in fact empty. It is a serious bug to complete a grace 599 * period that still has RCU readers blocked! This function must be 600 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 601 * must be held by the caller. 602 * 603 * Also, if there are blocked tasks on the list, they automatically 604 * block the newly created grace period, so set up ->gp_tasks accordingly. 605 */ 606 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 607 { 608 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 609 if (rcu_preempt_has_tasks(rnp)) 610 rnp->gp_tasks = rnp->blkd_tasks.next; 611 WARN_ON_ONCE(rnp->qsmask); 612 } 613 614 /* 615 * Check for a quiescent state from the current CPU. When a task blocks, 616 * the task is recorded in the corresponding CPU's rcu_node structure, 617 * which is checked elsewhere. 618 * 619 * Caller must disable hard irqs. 620 */ 621 static void rcu_preempt_check_callbacks(void) 622 { 623 struct task_struct *t = current; 624 625 if (t->rcu_read_lock_nesting == 0) { 626 rcu_preempt_qs(); 627 return; 628 } 629 if (t->rcu_read_lock_nesting > 0 && 630 __this_cpu_read(rcu_data_p->core_needs_qs) && 631 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 632 t->rcu_read_unlock_special.b.need_qs = true; 633 } 634 635 #ifdef CONFIG_RCU_BOOST 636 637 static void rcu_preempt_do_callbacks(void) 638 { 639 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 640 } 641 642 #endif /* #ifdef CONFIG_RCU_BOOST */ 643 644 /* 645 * Queue a preemptible-RCU callback for invocation after a grace period. 646 */ 647 void call_rcu(struct rcu_head *head, rcu_callback_t func) 648 { 649 __call_rcu(head, func, rcu_state_p, -1, 0); 650 } 651 EXPORT_SYMBOL_GPL(call_rcu); 652 653 /** 654 * synchronize_rcu - wait until a grace period has elapsed. 655 * 656 * Control will return to the caller some time after a full grace 657 * period has elapsed, in other words after all currently executing RCU 658 * read-side critical sections have completed. Note, however, that 659 * upon return from synchronize_rcu(), the caller might well be executing 660 * concurrently with new RCU read-side critical sections that began while 661 * synchronize_rcu() was waiting. RCU read-side critical sections are 662 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 663 * 664 * See the description of synchronize_sched() for more detailed information 665 * on memory ordering guarantees. 666 */ 667 void synchronize_rcu(void) 668 { 669 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 670 lock_is_held(&rcu_lock_map) || 671 lock_is_held(&rcu_sched_lock_map), 672 "Illegal synchronize_rcu() in RCU read-side critical section"); 673 if (!rcu_scheduler_active) 674 return; 675 if (rcu_gp_is_expedited()) 676 synchronize_rcu_expedited(); 677 else 678 wait_rcu_gp(call_rcu); 679 } 680 EXPORT_SYMBOL_GPL(synchronize_rcu); 681 682 /** 683 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 684 * 685 * Note that this primitive does not necessarily wait for an RCU grace period 686 * to complete. For example, if there are no RCU callbacks queued anywhere 687 * in the system, then rcu_barrier() is within its rights to return 688 * immediately, without waiting for anything, much less an RCU grace period. 689 */ 690 void rcu_barrier(void) 691 { 692 _rcu_barrier(rcu_state_p); 693 } 694 EXPORT_SYMBOL_GPL(rcu_barrier); 695 696 /* 697 * Initialize preemptible RCU's state structures. 698 */ 699 static void __init __rcu_init_preempt(void) 700 { 701 rcu_init_one(rcu_state_p); 702 } 703 704 /* 705 * Check for a task exiting while in a preemptible-RCU read-side 706 * critical section, clean up if so. No need to issue warnings, 707 * as debug_check_no_locks_held() already does this if lockdep 708 * is enabled. 709 */ 710 void exit_rcu(void) 711 { 712 struct task_struct *t = current; 713 714 if (likely(list_empty(¤t->rcu_node_entry))) 715 return; 716 t->rcu_read_lock_nesting = 1; 717 barrier(); 718 t->rcu_read_unlock_special.b.blocked = true; 719 __rcu_read_unlock(); 720 } 721 722 #else /* #ifdef CONFIG_PREEMPT_RCU */ 723 724 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 725 726 /* 727 * Tell them what RCU they are running. 728 */ 729 static void __init rcu_bootup_announce(void) 730 { 731 pr_info("Hierarchical RCU implementation.\n"); 732 rcu_bootup_announce_oddness(); 733 } 734 735 /* 736 * Because preemptible RCU does not exist, we never have to check for 737 * CPUs being in quiescent states. 738 */ 739 static void rcu_preempt_note_context_switch(void) 740 { 741 } 742 743 /* 744 * Because preemptible RCU does not exist, there are never any preempted 745 * RCU readers. 746 */ 747 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 748 { 749 return 0; 750 } 751 752 /* 753 * Because there is no preemptible RCU, there can be no readers blocked. 754 */ 755 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 756 { 757 return false; 758 } 759 760 /* 761 * Because preemptible RCU does not exist, we never have to check for 762 * tasks blocked within RCU read-side critical sections. 763 */ 764 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 765 { 766 } 767 768 /* 769 * Because preemptible RCU does not exist, we never have to check for 770 * tasks blocked within RCU read-side critical sections. 771 */ 772 static int rcu_print_task_stall(struct rcu_node *rnp) 773 { 774 return 0; 775 } 776 777 /* 778 * Because preemptible RCU does not exist, we never have to check for 779 * tasks blocked within RCU read-side critical sections that are 780 * blocking the current expedited grace period. 781 */ 782 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 783 { 784 return 0; 785 } 786 787 /* 788 * Because there is no preemptible RCU, there can be no readers blocked, 789 * so there is no need to check for blocked tasks. So check only for 790 * bogus qsmask values. 791 */ 792 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 793 { 794 WARN_ON_ONCE(rnp->qsmask); 795 } 796 797 /* 798 * Because preemptible RCU does not exist, it never has any callbacks 799 * to check. 800 */ 801 static void rcu_preempt_check_callbacks(void) 802 { 803 } 804 805 /* 806 * Because preemptible RCU does not exist, rcu_barrier() is just 807 * another name for rcu_barrier_sched(). 808 */ 809 void rcu_barrier(void) 810 { 811 rcu_barrier_sched(); 812 } 813 EXPORT_SYMBOL_GPL(rcu_barrier); 814 815 /* 816 * Because preemptible RCU does not exist, it need not be initialized. 817 */ 818 static void __init __rcu_init_preempt(void) 819 { 820 } 821 822 /* 823 * Because preemptible RCU does not exist, tasks cannot possibly exit 824 * while in preemptible RCU read-side critical sections. 825 */ 826 void exit_rcu(void) 827 { 828 } 829 830 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 831 832 #ifdef CONFIG_RCU_BOOST 833 834 #include "../locking/rtmutex_common.h" 835 836 #ifdef CONFIG_RCU_TRACE 837 838 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 839 { 840 if (!rcu_preempt_has_tasks(rnp)) 841 rnp->n_balk_blkd_tasks++; 842 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 843 rnp->n_balk_exp_gp_tasks++; 844 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 845 rnp->n_balk_boost_tasks++; 846 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 847 rnp->n_balk_notblocked++; 848 else if (rnp->gp_tasks != NULL && 849 ULONG_CMP_LT(jiffies, rnp->boost_time)) 850 rnp->n_balk_notyet++; 851 else 852 rnp->n_balk_nos++; 853 } 854 855 #else /* #ifdef CONFIG_RCU_TRACE */ 856 857 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 858 { 859 } 860 861 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 862 863 static void rcu_wake_cond(struct task_struct *t, int status) 864 { 865 /* 866 * If the thread is yielding, only wake it when this 867 * is invoked from idle 868 */ 869 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 870 wake_up_process(t); 871 } 872 873 /* 874 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 875 * or ->boost_tasks, advancing the pointer to the next task in the 876 * ->blkd_tasks list. 877 * 878 * Note that irqs must be enabled: boosting the task can block. 879 * Returns 1 if there are more tasks needing to be boosted. 880 */ 881 static int rcu_boost(struct rcu_node *rnp) 882 { 883 unsigned long flags; 884 struct task_struct *t; 885 struct list_head *tb; 886 887 if (READ_ONCE(rnp->exp_tasks) == NULL && 888 READ_ONCE(rnp->boost_tasks) == NULL) 889 return 0; /* Nothing left to boost. */ 890 891 raw_spin_lock_irqsave_rcu_node(rnp, flags); 892 893 /* 894 * Recheck under the lock: all tasks in need of boosting 895 * might exit their RCU read-side critical sections on their own. 896 */ 897 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 898 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 899 return 0; 900 } 901 902 /* 903 * Preferentially boost tasks blocking expedited grace periods. 904 * This cannot starve the normal grace periods because a second 905 * expedited grace period must boost all blocked tasks, including 906 * those blocking the pre-existing normal grace period. 907 */ 908 if (rnp->exp_tasks != NULL) { 909 tb = rnp->exp_tasks; 910 rnp->n_exp_boosts++; 911 } else { 912 tb = rnp->boost_tasks; 913 rnp->n_normal_boosts++; 914 } 915 rnp->n_tasks_boosted++; 916 917 /* 918 * We boost task t by manufacturing an rt_mutex that appears to 919 * be held by task t. We leave a pointer to that rt_mutex where 920 * task t can find it, and task t will release the mutex when it 921 * exits its outermost RCU read-side critical section. Then 922 * simply acquiring this artificial rt_mutex will boost task 923 * t's priority. (Thanks to tglx for suggesting this approach!) 924 * 925 * Note that task t must acquire rnp->lock to remove itself from 926 * the ->blkd_tasks list, which it will do from exit() if from 927 * nowhere else. We therefore are guaranteed that task t will 928 * stay around at least until we drop rnp->lock. Note that 929 * rnp->lock also resolves races between our priority boosting 930 * and task t's exiting its outermost RCU read-side critical 931 * section. 932 */ 933 t = container_of(tb, struct task_struct, rcu_node_entry); 934 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 935 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 936 /* Lock only for side effect: boosts task t's priority. */ 937 rt_mutex_lock(&rnp->boost_mtx); 938 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 939 940 return READ_ONCE(rnp->exp_tasks) != NULL || 941 READ_ONCE(rnp->boost_tasks) != NULL; 942 } 943 944 /* 945 * Priority-boosting kthread, one per leaf rcu_node. 946 */ 947 static int rcu_boost_kthread(void *arg) 948 { 949 struct rcu_node *rnp = (struct rcu_node *)arg; 950 int spincnt = 0; 951 int more2boost; 952 953 trace_rcu_utilization(TPS("Start boost kthread@init")); 954 for (;;) { 955 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 956 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 957 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 958 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 959 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 960 more2boost = rcu_boost(rnp); 961 if (more2boost) 962 spincnt++; 963 else 964 spincnt = 0; 965 if (spincnt > 10) { 966 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 967 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 968 schedule_timeout_interruptible(2); 969 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 970 spincnt = 0; 971 } 972 } 973 /* NOTREACHED */ 974 trace_rcu_utilization(TPS("End boost kthread@notreached")); 975 return 0; 976 } 977 978 /* 979 * Check to see if it is time to start boosting RCU readers that are 980 * blocking the current grace period, and, if so, tell the per-rcu_node 981 * kthread to start boosting them. If there is an expedited grace 982 * period in progress, it is always time to boost. 983 * 984 * The caller must hold rnp->lock, which this function releases. 985 * The ->boost_kthread_task is immortal, so we don't need to worry 986 * about it going away. 987 */ 988 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 989 __releases(rnp->lock) 990 { 991 struct task_struct *t; 992 993 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 994 rnp->n_balk_exp_gp_tasks++; 995 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 996 return; 997 } 998 if (rnp->exp_tasks != NULL || 999 (rnp->gp_tasks != NULL && 1000 rnp->boost_tasks == NULL && 1001 rnp->qsmask == 0 && 1002 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1003 if (rnp->exp_tasks == NULL) 1004 rnp->boost_tasks = rnp->gp_tasks; 1005 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1006 t = rnp->boost_kthread_task; 1007 if (t) 1008 rcu_wake_cond(t, rnp->boost_kthread_status); 1009 } else { 1010 rcu_initiate_boost_trace(rnp); 1011 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1012 } 1013 } 1014 1015 /* 1016 * Wake up the per-CPU kthread to invoke RCU callbacks. 1017 */ 1018 static void invoke_rcu_callbacks_kthread(void) 1019 { 1020 unsigned long flags; 1021 1022 local_irq_save(flags); 1023 __this_cpu_write(rcu_cpu_has_work, 1); 1024 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1025 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1026 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1027 __this_cpu_read(rcu_cpu_kthread_status)); 1028 } 1029 local_irq_restore(flags); 1030 } 1031 1032 /* 1033 * Is the current CPU running the RCU-callbacks kthread? 1034 * Caller must have preemption disabled. 1035 */ 1036 static bool rcu_is_callbacks_kthread(void) 1037 { 1038 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1039 } 1040 1041 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1042 1043 /* 1044 * Do priority-boost accounting for the start of a new grace period. 1045 */ 1046 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1047 { 1048 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1049 } 1050 1051 /* 1052 * Create an RCU-boost kthread for the specified node if one does not 1053 * already exist. We only create this kthread for preemptible RCU. 1054 * Returns zero if all is well, a negated errno otherwise. 1055 */ 1056 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1057 struct rcu_node *rnp) 1058 { 1059 int rnp_index = rnp - &rsp->node[0]; 1060 unsigned long flags; 1061 struct sched_param sp; 1062 struct task_struct *t; 1063 1064 if (rcu_state_p != rsp) 1065 return 0; 1066 1067 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1068 return 0; 1069 1070 rsp->boost = 1; 1071 if (rnp->boost_kthread_task != NULL) 1072 return 0; 1073 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1074 "rcub/%d", rnp_index); 1075 if (IS_ERR(t)) 1076 return PTR_ERR(t); 1077 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1078 rnp->boost_kthread_task = t; 1079 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1080 sp.sched_priority = kthread_prio; 1081 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1082 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1083 return 0; 1084 } 1085 1086 static void rcu_kthread_do_work(void) 1087 { 1088 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1089 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1090 rcu_preempt_do_callbacks(); 1091 } 1092 1093 static void rcu_cpu_kthread_setup(unsigned int cpu) 1094 { 1095 struct sched_param sp; 1096 1097 sp.sched_priority = kthread_prio; 1098 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1099 } 1100 1101 static void rcu_cpu_kthread_park(unsigned int cpu) 1102 { 1103 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1104 } 1105 1106 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1107 { 1108 return __this_cpu_read(rcu_cpu_has_work); 1109 } 1110 1111 /* 1112 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1113 * RCU softirq used in flavors and configurations of RCU that do not 1114 * support RCU priority boosting. 1115 */ 1116 static void rcu_cpu_kthread(unsigned int cpu) 1117 { 1118 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1119 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1120 int spincnt; 1121 1122 for (spincnt = 0; spincnt < 10; spincnt++) { 1123 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1124 local_bh_disable(); 1125 *statusp = RCU_KTHREAD_RUNNING; 1126 this_cpu_inc(rcu_cpu_kthread_loops); 1127 local_irq_disable(); 1128 work = *workp; 1129 *workp = 0; 1130 local_irq_enable(); 1131 if (work) 1132 rcu_kthread_do_work(); 1133 local_bh_enable(); 1134 if (*workp == 0) { 1135 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1136 *statusp = RCU_KTHREAD_WAITING; 1137 return; 1138 } 1139 } 1140 *statusp = RCU_KTHREAD_YIELDING; 1141 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1142 schedule_timeout_interruptible(2); 1143 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1144 *statusp = RCU_KTHREAD_WAITING; 1145 } 1146 1147 /* 1148 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1149 * served by the rcu_node in question. The CPU hotplug lock is still 1150 * held, so the value of rnp->qsmaskinit will be stable. 1151 * 1152 * We don't include outgoingcpu in the affinity set, use -1 if there is 1153 * no outgoing CPU. If there are no CPUs left in the affinity set, 1154 * this function allows the kthread to execute on any CPU. 1155 */ 1156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1157 { 1158 struct task_struct *t = rnp->boost_kthread_task; 1159 unsigned long mask = rcu_rnp_online_cpus(rnp); 1160 cpumask_var_t cm; 1161 int cpu; 1162 1163 if (!t) 1164 return; 1165 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1166 return; 1167 for_each_leaf_node_possible_cpu(rnp, cpu) 1168 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1169 cpu != outgoingcpu) 1170 cpumask_set_cpu(cpu, cm); 1171 if (cpumask_weight(cm) == 0) 1172 cpumask_setall(cm); 1173 set_cpus_allowed_ptr(t, cm); 1174 free_cpumask_var(cm); 1175 } 1176 1177 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1178 .store = &rcu_cpu_kthread_task, 1179 .thread_should_run = rcu_cpu_kthread_should_run, 1180 .thread_fn = rcu_cpu_kthread, 1181 .thread_comm = "rcuc/%u", 1182 .setup = rcu_cpu_kthread_setup, 1183 .park = rcu_cpu_kthread_park, 1184 }; 1185 1186 /* 1187 * Spawn boost kthreads -- called as soon as the scheduler is running. 1188 */ 1189 static void __init rcu_spawn_boost_kthreads(void) 1190 { 1191 struct rcu_node *rnp; 1192 int cpu; 1193 1194 for_each_possible_cpu(cpu) 1195 per_cpu(rcu_cpu_has_work, cpu) = 0; 1196 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1197 rcu_for_each_leaf_node(rcu_state_p, rnp) 1198 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1199 } 1200 1201 static void rcu_prepare_kthreads(int cpu) 1202 { 1203 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1204 struct rcu_node *rnp = rdp->mynode; 1205 1206 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1207 if (rcu_scheduler_fully_active) 1208 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1209 } 1210 1211 #else /* #ifdef CONFIG_RCU_BOOST */ 1212 1213 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1214 __releases(rnp->lock) 1215 { 1216 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1217 } 1218 1219 static void invoke_rcu_callbacks_kthread(void) 1220 { 1221 WARN_ON_ONCE(1); 1222 } 1223 1224 static bool rcu_is_callbacks_kthread(void) 1225 { 1226 return false; 1227 } 1228 1229 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1230 { 1231 } 1232 1233 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1234 { 1235 } 1236 1237 static void __init rcu_spawn_boost_kthreads(void) 1238 { 1239 } 1240 1241 static void rcu_prepare_kthreads(int cpu) 1242 { 1243 } 1244 1245 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1246 1247 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1248 1249 /* 1250 * Check to see if any future RCU-related work will need to be done 1251 * by the current CPU, even if none need be done immediately, returning 1252 * 1 if so. This function is part of the RCU implementation; it is -not- 1253 * an exported member of the RCU API. 1254 * 1255 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1256 * any flavor of RCU. 1257 */ 1258 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1259 { 1260 *nextevt = KTIME_MAX; 1261 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) 1262 ? 0 : rcu_cpu_has_callbacks(NULL); 1263 } 1264 1265 /* 1266 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1267 * after it. 1268 */ 1269 static void rcu_cleanup_after_idle(void) 1270 { 1271 } 1272 1273 /* 1274 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1275 * is nothing. 1276 */ 1277 static void rcu_prepare_for_idle(void) 1278 { 1279 } 1280 1281 /* 1282 * Don't bother keeping a running count of the number of RCU callbacks 1283 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1284 */ 1285 static void rcu_idle_count_callbacks_posted(void) 1286 { 1287 } 1288 1289 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1290 1291 /* 1292 * This code is invoked when a CPU goes idle, at which point we want 1293 * to have the CPU do everything required for RCU so that it can enter 1294 * the energy-efficient dyntick-idle mode. This is handled by a 1295 * state machine implemented by rcu_prepare_for_idle() below. 1296 * 1297 * The following three proprocessor symbols control this state machine: 1298 * 1299 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1300 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1301 * is sized to be roughly one RCU grace period. Those energy-efficiency 1302 * benchmarkers who might otherwise be tempted to set this to a large 1303 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1304 * system. And if you are -that- concerned about energy efficiency, 1305 * just power the system down and be done with it! 1306 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1307 * permitted to sleep in dyntick-idle mode with only lazy RCU 1308 * callbacks pending. Setting this too high can OOM your system. 1309 * 1310 * The values below work well in practice. If future workloads require 1311 * adjustment, they can be converted into kernel config parameters, though 1312 * making the state machine smarter might be a better option. 1313 */ 1314 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1315 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1316 1317 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1318 module_param(rcu_idle_gp_delay, int, 0644); 1319 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1320 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1321 1322 /* 1323 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1324 * only if it has been awhile since the last time we did so. Afterwards, 1325 * if there are any callbacks ready for immediate invocation, return true. 1326 */ 1327 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1328 { 1329 bool cbs_ready = false; 1330 struct rcu_data *rdp; 1331 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1332 struct rcu_node *rnp; 1333 struct rcu_state *rsp; 1334 1335 /* Exit early if we advanced recently. */ 1336 if (jiffies == rdtp->last_advance_all) 1337 return false; 1338 rdtp->last_advance_all = jiffies; 1339 1340 for_each_rcu_flavor(rsp) { 1341 rdp = this_cpu_ptr(rsp->rda); 1342 rnp = rdp->mynode; 1343 1344 /* 1345 * Don't bother checking unless a grace period has 1346 * completed since we last checked and there are 1347 * callbacks not yet ready to invoke. 1348 */ 1349 if ((rdp->completed != rnp->completed || 1350 unlikely(READ_ONCE(rdp->gpwrap))) && 1351 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1352 note_gp_changes(rsp, rdp); 1353 1354 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1355 cbs_ready = true; 1356 } 1357 return cbs_ready; 1358 } 1359 1360 /* 1361 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1362 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1363 * caller to set the timeout based on whether or not there are non-lazy 1364 * callbacks. 1365 * 1366 * The caller must have disabled interrupts. 1367 */ 1368 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1369 { 1370 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1371 unsigned long dj; 1372 1373 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) { 1374 *nextevt = KTIME_MAX; 1375 return 0; 1376 } 1377 1378 /* Snapshot to detect later posting of non-lazy callback. */ 1379 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1380 1381 /* If no callbacks, RCU doesn't need the CPU. */ 1382 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1383 *nextevt = KTIME_MAX; 1384 return 0; 1385 } 1386 1387 /* Attempt to advance callbacks. */ 1388 if (rcu_try_advance_all_cbs()) { 1389 /* Some ready to invoke, so initiate later invocation. */ 1390 invoke_rcu_core(); 1391 return 1; 1392 } 1393 rdtp->last_accelerate = jiffies; 1394 1395 /* Request timer delay depending on laziness, and round. */ 1396 if (!rdtp->all_lazy) { 1397 dj = round_up(rcu_idle_gp_delay + jiffies, 1398 rcu_idle_gp_delay) - jiffies; 1399 } else { 1400 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1401 } 1402 *nextevt = basemono + dj * TICK_NSEC; 1403 return 0; 1404 } 1405 1406 /* 1407 * Prepare a CPU for idle from an RCU perspective. The first major task 1408 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1409 * The second major task is to check to see if a non-lazy callback has 1410 * arrived at a CPU that previously had only lazy callbacks. The third 1411 * major task is to accelerate (that is, assign grace-period numbers to) 1412 * any recently arrived callbacks. 1413 * 1414 * The caller must have disabled interrupts. 1415 */ 1416 static void rcu_prepare_for_idle(void) 1417 { 1418 bool needwake; 1419 struct rcu_data *rdp; 1420 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1421 struct rcu_node *rnp; 1422 struct rcu_state *rsp; 1423 int tne; 1424 1425 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1426 rcu_is_nocb_cpu(smp_processor_id())) 1427 return; 1428 1429 /* Handle nohz enablement switches conservatively. */ 1430 tne = READ_ONCE(tick_nohz_active); 1431 if (tne != rdtp->tick_nohz_enabled_snap) { 1432 if (rcu_cpu_has_callbacks(NULL)) 1433 invoke_rcu_core(); /* force nohz to see update. */ 1434 rdtp->tick_nohz_enabled_snap = tne; 1435 return; 1436 } 1437 if (!tne) 1438 return; 1439 1440 /* 1441 * If a non-lazy callback arrived at a CPU having only lazy 1442 * callbacks, invoke RCU core for the side-effect of recalculating 1443 * idle duration on re-entry to idle. 1444 */ 1445 if (rdtp->all_lazy && 1446 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1447 rdtp->all_lazy = false; 1448 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1449 invoke_rcu_core(); 1450 return; 1451 } 1452 1453 /* 1454 * If we have not yet accelerated this jiffy, accelerate all 1455 * callbacks on this CPU. 1456 */ 1457 if (rdtp->last_accelerate == jiffies) 1458 return; 1459 rdtp->last_accelerate = jiffies; 1460 for_each_rcu_flavor(rsp) { 1461 rdp = this_cpu_ptr(rsp->rda); 1462 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1463 continue; 1464 rnp = rdp->mynode; 1465 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1466 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1467 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1468 if (needwake) 1469 rcu_gp_kthread_wake(rsp); 1470 } 1471 } 1472 1473 /* 1474 * Clean up for exit from idle. Attempt to advance callbacks based on 1475 * any grace periods that elapsed while the CPU was idle, and if any 1476 * callbacks are now ready to invoke, initiate invocation. 1477 */ 1478 static void rcu_cleanup_after_idle(void) 1479 { 1480 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1481 rcu_is_nocb_cpu(smp_processor_id())) 1482 return; 1483 if (rcu_try_advance_all_cbs()) 1484 invoke_rcu_core(); 1485 } 1486 1487 /* 1488 * Keep a running count of the number of non-lazy callbacks posted 1489 * on this CPU. This running counter (which is never decremented) allows 1490 * rcu_prepare_for_idle() to detect when something out of the idle loop 1491 * posts a callback, even if an equal number of callbacks are invoked. 1492 * Of course, callbacks should only be posted from within a trace event 1493 * designed to be called from idle or from within RCU_NONIDLE(). 1494 */ 1495 static void rcu_idle_count_callbacks_posted(void) 1496 { 1497 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1498 } 1499 1500 /* 1501 * Data for flushing lazy RCU callbacks at OOM time. 1502 */ 1503 static atomic_t oom_callback_count; 1504 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1505 1506 /* 1507 * RCU OOM callback -- decrement the outstanding count and deliver the 1508 * wake-up if we are the last one. 1509 */ 1510 static void rcu_oom_callback(struct rcu_head *rhp) 1511 { 1512 if (atomic_dec_and_test(&oom_callback_count)) 1513 wake_up(&oom_callback_wq); 1514 } 1515 1516 /* 1517 * Post an rcu_oom_notify callback on the current CPU if it has at 1518 * least one lazy callback. This will unnecessarily post callbacks 1519 * to CPUs that already have a non-lazy callback at the end of their 1520 * callback list, but this is an infrequent operation, so accept some 1521 * extra overhead to keep things simple. 1522 */ 1523 static void rcu_oom_notify_cpu(void *unused) 1524 { 1525 struct rcu_state *rsp; 1526 struct rcu_data *rdp; 1527 1528 for_each_rcu_flavor(rsp) { 1529 rdp = raw_cpu_ptr(rsp->rda); 1530 if (rdp->qlen_lazy != 0) { 1531 atomic_inc(&oom_callback_count); 1532 rsp->call(&rdp->oom_head, rcu_oom_callback); 1533 } 1534 } 1535 } 1536 1537 /* 1538 * If low on memory, ensure that each CPU has a non-lazy callback. 1539 * This will wake up CPUs that have only lazy callbacks, in turn 1540 * ensuring that they free up the corresponding memory in a timely manner. 1541 * Because an uncertain amount of memory will be freed in some uncertain 1542 * timeframe, we do not claim to have freed anything. 1543 */ 1544 static int rcu_oom_notify(struct notifier_block *self, 1545 unsigned long notused, void *nfreed) 1546 { 1547 int cpu; 1548 1549 /* Wait for callbacks from earlier instance to complete. */ 1550 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1551 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1552 1553 /* 1554 * Prevent premature wakeup: ensure that all increments happen 1555 * before there is a chance of the counter reaching zero. 1556 */ 1557 atomic_set(&oom_callback_count, 1); 1558 1559 for_each_online_cpu(cpu) { 1560 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1561 cond_resched_rcu_qs(); 1562 } 1563 1564 /* Unconditionally decrement: no need to wake ourselves up. */ 1565 atomic_dec(&oom_callback_count); 1566 1567 return NOTIFY_OK; 1568 } 1569 1570 static struct notifier_block rcu_oom_nb = { 1571 .notifier_call = rcu_oom_notify 1572 }; 1573 1574 static int __init rcu_register_oom_notifier(void) 1575 { 1576 register_oom_notifier(&rcu_oom_nb); 1577 return 0; 1578 } 1579 early_initcall(rcu_register_oom_notifier); 1580 1581 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1582 1583 #ifdef CONFIG_RCU_FAST_NO_HZ 1584 1585 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1586 { 1587 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1588 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1589 1590 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1591 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1592 ulong2long(nlpd), 1593 rdtp->all_lazy ? 'L' : '.', 1594 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1595 } 1596 1597 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1598 1599 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1600 { 1601 *cp = '\0'; 1602 } 1603 1604 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1605 1606 /* Initiate the stall-info list. */ 1607 static void print_cpu_stall_info_begin(void) 1608 { 1609 pr_cont("\n"); 1610 } 1611 1612 /* 1613 * Print out diagnostic information for the specified stalled CPU. 1614 * 1615 * If the specified CPU is aware of the current RCU grace period 1616 * (flavor specified by rsp), then print the number of scheduling 1617 * clock interrupts the CPU has taken during the time that it has 1618 * been aware. Otherwise, print the number of RCU grace periods 1619 * that this CPU is ignorant of, for example, "1" if the CPU was 1620 * aware of the previous grace period. 1621 * 1622 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1623 */ 1624 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1625 { 1626 char fast_no_hz[72]; 1627 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1628 struct rcu_dynticks *rdtp = rdp->dynticks; 1629 char *ticks_title; 1630 unsigned long ticks_value; 1631 1632 if (rsp->gpnum == rdp->gpnum) { 1633 ticks_title = "ticks this GP"; 1634 ticks_value = rdp->ticks_this_gp; 1635 } else { 1636 ticks_title = "GPs behind"; 1637 ticks_value = rsp->gpnum - rdp->gpnum; 1638 } 1639 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1640 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1641 cpu, 1642 "O."[!!cpu_online(cpu)], 1643 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1644 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1645 ticks_value, ticks_title, 1646 atomic_read(&rdtp->dynticks) & 0xfff, 1647 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1648 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1649 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1650 fast_no_hz); 1651 } 1652 1653 /* Terminate the stall-info list. */ 1654 static void print_cpu_stall_info_end(void) 1655 { 1656 pr_err("\t"); 1657 } 1658 1659 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1660 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1661 { 1662 rdp->ticks_this_gp = 0; 1663 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1664 } 1665 1666 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1667 static void increment_cpu_stall_ticks(void) 1668 { 1669 struct rcu_state *rsp; 1670 1671 for_each_rcu_flavor(rsp) 1672 raw_cpu_inc(rsp->rda->ticks_this_gp); 1673 } 1674 1675 #ifdef CONFIG_RCU_NOCB_CPU 1676 1677 /* 1678 * Offload callback processing from the boot-time-specified set of CPUs 1679 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1680 * kthread created that pulls the callbacks from the corresponding CPU, 1681 * waits for a grace period to elapse, and invokes the callbacks. 1682 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1683 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1684 * has been specified, in which case each kthread actively polls its 1685 * CPU. (Which isn't so great for energy efficiency, but which does 1686 * reduce RCU's overhead on that CPU.) 1687 * 1688 * This is intended to be used in conjunction with Frederic Weisbecker's 1689 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1690 * running CPU-bound user-mode computations. 1691 * 1692 * Offloading of callback processing could also in theory be used as 1693 * an energy-efficiency measure because CPUs with no RCU callbacks 1694 * queued are more aggressive about entering dyntick-idle mode. 1695 */ 1696 1697 1698 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1699 static int __init rcu_nocb_setup(char *str) 1700 { 1701 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1702 have_rcu_nocb_mask = true; 1703 cpulist_parse(str, rcu_nocb_mask); 1704 return 1; 1705 } 1706 __setup("rcu_nocbs=", rcu_nocb_setup); 1707 1708 static int __init parse_rcu_nocb_poll(char *arg) 1709 { 1710 rcu_nocb_poll = 1; 1711 return 0; 1712 } 1713 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1714 1715 /* 1716 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1717 * grace period. 1718 */ 1719 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1720 { 1721 swake_up_all(sq); 1722 } 1723 1724 /* 1725 * Set the root rcu_node structure's ->need_future_gp field 1726 * based on the sum of those of all rcu_node structures. This does 1727 * double-count the root rcu_node structure's requests, but this 1728 * is necessary to handle the possibility of a rcu_nocb_kthread() 1729 * having awakened during the time that the rcu_node structures 1730 * were being updated for the end of the previous grace period. 1731 */ 1732 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1733 { 1734 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1735 } 1736 1737 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1738 { 1739 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1740 } 1741 1742 static void rcu_init_one_nocb(struct rcu_node *rnp) 1743 { 1744 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1745 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1746 } 1747 1748 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1749 /* Is the specified CPU a no-CBs CPU? */ 1750 bool rcu_is_nocb_cpu(int cpu) 1751 { 1752 if (have_rcu_nocb_mask) 1753 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1754 return false; 1755 } 1756 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1757 1758 /* 1759 * Kick the leader kthread for this NOCB group. 1760 */ 1761 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1762 { 1763 struct rcu_data *rdp_leader = rdp->nocb_leader; 1764 1765 if (!READ_ONCE(rdp_leader->nocb_kthread)) 1766 return; 1767 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1768 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1769 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1770 swake_up(&rdp_leader->nocb_wq); 1771 } 1772 } 1773 1774 /* 1775 * Does the specified CPU need an RCU callback for the specified flavor 1776 * of rcu_barrier()? 1777 */ 1778 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1779 { 1780 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1781 unsigned long ret; 1782 #ifdef CONFIG_PROVE_RCU 1783 struct rcu_head *rhp; 1784 #endif /* #ifdef CONFIG_PROVE_RCU */ 1785 1786 /* 1787 * Check count of all no-CBs callbacks awaiting invocation. 1788 * There needs to be a barrier before this function is called, 1789 * but associated with a prior determination that no more 1790 * callbacks would be posted. In the worst case, the first 1791 * barrier in _rcu_barrier() suffices (but the caller cannot 1792 * necessarily rely on this, not a substitute for the caller 1793 * getting the concurrency design right!). There must also be 1794 * a barrier between the following load an posting of a callback 1795 * (if a callback is in fact needed). This is associated with an 1796 * atomic_inc() in the caller. 1797 */ 1798 ret = atomic_long_read(&rdp->nocb_q_count); 1799 1800 #ifdef CONFIG_PROVE_RCU 1801 rhp = READ_ONCE(rdp->nocb_head); 1802 if (!rhp) 1803 rhp = READ_ONCE(rdp->nocb_gp_head); 1804 if (!rhp) 1805 rhp = READ_ONCE(rdp->nocb_follower_head); 1806 1807 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1808 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1809 rcu_scheduler_fully_active) { 1810 /* RCU callback enqueued before CPU first came online??? */ 1811 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1812 cpu, rhp->func); 1813 WARN_ON_ONCE(1); 1814 } 1815 #endif /* #ifdef CONFIG_PROVE_RCU */ 1816 1817 return !!ret; 1818 } 1819 1820 /* 1821 * Enqueue the specified string of rcu_head structures onto the specified 1822 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1823 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1824 * counts are supplied by rhcount and rhcount_lazy. 1825 * 1826 * If warranted, also wake up the kthread servicing this CPUs queues. 1827 */ 1828 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1829 struct rcu_head *rhp, 1830 struct rcu_head **rhtp, 1831 int rhcount, int rhcount_lazy, 1832 unsigned long flags) 1833 { 1834 int len; 1835 struct rcu_head **old_rhpp; 1836 struct task_struct *t; 1837 1838 /* Enqueue the callback on the nocb list and update counts. */ 1839 atomic_long_add(rhcount, &rdp->nocb_q_count); 1840 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1841 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1842 WRITE_ONCE(*old_rhpp, rhp); 1843 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1844 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1845 1846 /* If we are not being polled and there is a kthread, awaken it ... */ 1847 t = READ_ONCE(rdp->nocb_kthread); 1848 if (rcu_nocb_poll || !t) { 1849 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1850 TPS("WakeNotPoll")); 1851 return; 1852 } 1853 len = atomic_long_read(&rdp->nocb_q_count); 1854 if (old_rhpp == &rdp->nocb_head) { 1855 if (!irqs_disabled_flags(flags)) { 1856 /* ... if queue was empty ... */ 1857 wake_nocb_leader(rdp, false); 1858 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1859 TPS("WakeEmpty")); 1860 } else { 1861 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 1862 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1863 TPS("WakeEmptyIsDeferred")); 1864 } 1865 rdp->qlen_last_fqs_check = 0; 1866 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1867 /* ... or if many callbacks queued. */ 1868 if (!irqs_disabled_flags(flags)) { 1869 wake_nocb_leader(rdp, true); 1870 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1871 TPS("WakeOvf")); 1872 } else { 1873 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 1874 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1875 TPS("WakeOvfIsDeferred")); 1876 } 1877 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1878 } else { 1879 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1880 } 1881 return; 1882 } 1883 1884 /* 1885 * This is a helper for __call_rcu(), which invokes this when the normal 1886 * callback queue is inoperable. If this is not a no-CBs CPU, this 1887 * function returns failure back to __call_rcu(), which can complain 1888 * appropriately. 1889 * 1890 * Otherwise, this function queues the callback where the corresponding 1891 * "rcuo" kthread can find it. 1892 */ 1893 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1894 bool lazy, unsigned long flags) 1895 { 1896 1897 if (!rcu_is_nocb_cpu(rdp->cpu)) 1898 return false; 1899 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1900 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1901 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1902 (unsigned long)rhp->func, 1903 -atomic_long_read(&rdp->nocb_q_count_lazy), 1904 -atomic_long_read(&rdp->nocb_q_count)); 1905 else 1906 trace_rcu_callback(rdp->rsp->name, rhp, 1907 -atomic_long_read(&rdp->nocb_q_count_lazy), 1908 -atomic_long_read(&rdp->nocb_q_count)); 1909 1910 /* 1911 * If called from an extended quiescent state with interrupts 1912 * disabled, invoke the RCU core in order to allow the idle-entry 1913 * deferred-wakeup check to function. 1914 */ 1915 if (irqs_disabled_flags(flags) && 1916 !rcu_is_watching() && 1917 cpu_online(smp_processor_id())) 1918 invoke_rcu_core(); 1919 1920 return true; 1921 } 1922 1923 /* 1924 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 1925 * not a no-CBs CPU. 1926 */ 1927 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 1928 struct rcu_data *rdp, 1929 unsigned long flags) 1930 { 1931 long ql = rsp->qlen; 1932 long qll = rsp->qlen_lazy; 1933 1934 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 1935 if (!rcu_is_nocb_cpu(smp_processor_id())) 1936 return false; 1937 rsp->qlen = 0; 1938 rsp->qlen_lazy = 0; 1939 1940 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 1941 if (rsp->orphan_donelist != NULL) { 1942 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 1943 rsp->orphan_donetail, ql, qll, flags); 1944 ql = qll = 0; 1945 rsp->orphan_donelist = NULL; 1946 rsp->orphan_donetail = &rsp->orphan_donelist; 1947 } 1948 if (rsp->orphan_nxtlist != NULL) { 1949 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 1950 rsp->orphan_nxttail, ql, qll, flags); 1951 ql = qll = 0; 1952 rsp->orphan_nxtlist = NULL; 1953 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 1954 } 1955 return true; 1956 } 1957 1958 /* 1959 * If necessary, kick off a new grace period, and either way wait 1960 * for a subsequent grace period to complete. 1961 */ 1962 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 1963 { 1964 unsigned long c; 1965 bool d; 1966 unsigned long flags; 1967 bool needwake; 1968 struct rcu_node *rnp = rdp->mynode; 1969 1970 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1971 needwake = rcu_start_future_gp(rnp, rdp, &c); 1972 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1973 if (needwake) 1974 rcu_gp_kthread_wake(rdp->rsp); 1975 1976 /* 1977 * Wait for the grace period. Do so interruptibly to avoid messing 1978 * up the load average. 1979 */ 1980 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 1981 for (;;) { 1982 swait_event_interruptible( 1983 rnp->nocb_gp_wq[c & 0x1], 1984 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 1985 if (likely(d)) 1986 break; 1987 WARN_ON(signal_pending(current)); 1988 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 1989 } 1990 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 1991 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 1992 } 1993 1994 /* 1995 * Leaders come here to wait for additional callbacks to show up. 1996 * This function does not return until callbacks appear. 1997 */ 1998 static void nocb_leader_wait(struct rcu_data *my_rdp) 1999 { 2000 bool firsttime = true; 2001 bool gotcbs; 2002 struct rcu_data *rdp; 2003 struct rcu_head **tail; 2004 2005 wait_again: 2006 2007 /* Wait for callbacks to appear. */ 2008 if (!rcu_nocb_poll) { 2009 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2010 swait_event_interruptible(my_rdp->nocb_wq, 2011 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2012 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2013 } else if (firsttime) { 2014 firsttime = false; /* Don't drown trace log with "Poll"! */ 2015 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2016 } 2017 2018 /* 2019 * Each pass through the following loop checks a follower for CBs. 2020 * We are our own first follower. Any CBs found are moved to 2021 * nocb_gp_head, where they await a grace period. 2022 */ 2023 gotcbs = false; 2024 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2025 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2026 if (!rdp->nocb_gp_head) 2027 continue; /* No CBs here, try next follower. */ 2028 2029 /* Move callbacks to wait-for-GP list, which is empty. */ 2030 WRITE_ONCE(rdp->nocb_head, NULL); 2031 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2032 gotcbs = true; 2033 } 2034 2035 /* 2036 * If there were no callbacks, sleep a bit, rescan after a 2037 * memory barrier, and go retry. 2038 */ 2039 if (unlikely(!gotcbs)) { 2040 if (!rcu_nocb_poll) 2041 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2042 "WokeEmpty"); 2043 WARN_ON(signal_pending(current)); 2044 schedule_timeout_interruptible(1); 2045 2046 /* Rescan in case we were a victim of memory ordering. */ 2047 my_rdp->nocb_leader_sleep = true; 2048 smp_mb(); /* Ensure _sleep true before scan. */ 2049 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2050 if (READ_ONCE(rdp->nocb_head)) { 2051 /* Found CB, so short-circuit next wait. */ 2052 my_rdp->nocb_leader_sleep = false; 2053 break; 2054 } 2055 goto wait_again; 2056 } 2057 2058 /* Wait for one grace period. */ 2059 rcu_nocb_wait_gp(my_rdp); 2060 2061 /* 2062 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2063 * We set it now, but recheck for new callbacks while 2064 * traversing our follower list. 2065 */ 2066 my_rdp->nocb_leader_sleep = true; 2067 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2068 2069 /* Each pass through the following loop wakes a follower, if needed. */ 2070 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2071 if (READ_ONCE(rdp->nocb_head)) 2072 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2073 if (!rdp->nocb_gp_head) 2074 continue; /* No CBs, so no need to wake follower. */ 2075 2076 /* Append callbacks to follower's "done" list. */ 2077 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2078 *tail = rdp->nocb_gp_head; 2079 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2080 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2081 /* 2082 * List was empty, wake up the follower. 2083 * Memory barriers supplied by atomic_long_add(). 2084 */ 2085 swake_up(&rdp->nocb_wq); 2086 } 2087 } 2088 2089 /* If we (the leader) don't have CBs, go wait some more. */ 2090 if (!my_rdp->nocb_follower_head) 2091 goto wait_again; 2092 } 2093 2094 /* 2095 * Followers come here to wait for additional callbacks to show up. 2096 * This function does not return until callbacks appear. 2097 */ 2098 static void nocb_follower_wait(struct rcu_data *rdp) 2099 { 2100 bool firsttime = true; 2101 2102 for (;;) { 2103 if (!rcu_nocb_poll) { 2104 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2105 "FollowerSleep"); 2106 swait_event_interruptible(rdp->nocb_wq, 2107 READ_ONCE(rdp->nocb_follower_head)); 2108 } else if (firsttime) { 2109 /* Don't drown trace log with "Poll"! */ 2110 firsttime = false; 2111 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2112 } 2113 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2114 /* ^^^ Ensure CB invocation follows _head test. */ 2115 return; 2116 } 2117 if (!rcu_nocb_poll) 2118 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2119 "WokeEmpty"); 2120 WARN_ON(signal_pending(current)); 2121 schedule_timeout_interruptible(1); 2122 } 2123 } 2124 2125 /* 2126 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2127 * callbacks queued by the corresponding no-CBs CPU, however, there is 2128 * an optional leader-follower relationship so that the grace-period 2129 * kthreads don't have to do quite so many wakeups. 2130 */ 2131 static int rcu_nocb_kthread(void *arg) 2132 { 2133 int c, cl; 2134 struct rcu_head *list; 2135 struct rcu_head *next; 2136 struct rcu_head **tail; 2137 struct rcu_data *rdp = arg; 2138 2139 /* Each pass through this loop invokes one batch of callbacks */ 2140 for (;;) { 2141 /* Wait for callbacks. */ 2142 if (rdp->nocb_leader == rdp) 2143 nocb_leader_wait(rdp); 2144 else 2145 nocb_follower_wait(rdp); 2146 2147 /* Pull the ready-to-invoke callbacks onto local list. */ 2148 list = READ_ONCE(rdp->nocb_follower_head); 2149 BUG_ON(!list); 2150 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2151 WRITE_ONCE(rdp->nocb_follower_head, NULL); 2152 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2153 2154 /* Each pass through the following loop invokes a callback. */ 2155 trace_rcu_batch_start(rdp->rsp->name, 2156 atomic_long_read(&rdp->nocb_q_count_lazy), 2157 atomic_long_read(&rdp->nocb_q_count), -1); 2158 c = cl = 0; 2159 while (list) { 2160 next = list->next; 2161 /* Wait for enqueuing to complete, if needed. */ 2162 while (next == NULL && &list->next != tail) { 2163 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2164 TPS("WaitQueue")); 2165 schedule_timeout_interruptible(1); 2166 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2167 TPS("WokeQueue")); 2168 next = list->next; 2169 } 2170 debug_rcu_head_unqueue(list); 2171 local_bh_disable(); 2172 if (__rcu_reclaim(rdp->rsp->name, list)) 2173 cl++; 2174 c++; 2175 local_bh_enable(); 2176 list = next; 2177 } 2178 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2179 smp_mb__before_atomic(); /* _add after CB invocation. */ 2180 atomic_long_add(-c, &rdp->nocb_q_count); 2181 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2182 rdp->n_nocbs_invoked += c; 2183 } 2184 return 0; 2185 } 2186 2187 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2188 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2189 { 2190 return READ_ONCE(rdp->nocb_defer_wakeup); 2191 } 2192 2193 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2194 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2195 { 2196 int ndw; 2197 2198 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2199 return; 2200 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2201 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); 2202 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2203 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2204 } 2205 2206 void __init rcu_init_nohz(void) 2207 { 2208 int cpu; 2209 bool need_rcu_nocb_mask = true; 2210 struct rcu_state *rsp; 2211 2212 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2213 need_rcu_nocb_mask = false; 2214 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2215 2216 #if defined(CONFIG_NO_HZ_FULL) 2217 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2218 need_rcu_nocb_mask = true; 2219 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2220 2221 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2222 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2223 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2224 return; 2225 } 2226 have_rcu_nocb_mask = true; 2227 } 2228 if (!have_rcu_nocb_mask) 2229 return; 2230 2231 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2232 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2233 cpumask_set_cpu(0, rcu_nocb_mask); 2234 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2235 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2236 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2237 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2238 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2239 #if defined(CONFIG_NO_HZ_FULL) 2240 if (tick_nohz_full_running) 2241 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2242 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2243 2244 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2245 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2246 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2247 rcu_nocb_mask); 2248 } 2249 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2250 cpumask_pr_args(rcu_nocb_mask)); 2251 if (rcu_nocb_poll) 2252 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2253 2254 for_each_rcu_flavor(rsp) { 2255 for_each_cpu(cpu, rcu_nocb_mask) 2256 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2257 rcu_organize_nocb_kthreads(rsp); 2258 } 2259 } 2260 2261 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2262 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2263 { 2264 rdp->nocb_tail = &rdp->nocb_head; 2265 init_swait_queue_head(&rdp->nocb_wq); 2266 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2267 } 2268 2269 /* 2270 * If the specified CPU is a no-CBs CPU that does not already have its 2271 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2272 * brought online out of order, this can require re-organizing the 2273 * leader-follower relationships. 2274 */ 2275 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2276 { 2277 struct rcu_data *rdp; 2278 struct rcu_data *rdp_last; 2279 struct rcu_data *rdp_old_leader; 2280 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2281 struct task_struct *t; 2282 2283 /* 2284 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2285 * then nothing to do. 2286 */ 2287 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2288 return; 2289 2290 /* If we didn't spawn the leader first, reorganize! */ 2291 rdp_old_leader = rdp_spawn->nocb_leader; 2292 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2293 rdp_last = NULL; 2294 rdp = rdp_old_leader; 2295 do { 2296 rdp->nocb_leader = rdp_spawn; 2297 if (rdp_last && rdp != rdp_spawn) 2298 rdp_last->nocb_next_follower = rdp; 2299 if (rdp == rdp_spawn) { 2300 rdp = rdp->nocb_next_follower; 2301 } else { 2302 rdp_last = rdp; 2303 rdp = rdp->nocb_next_follower; 2304 rdp_last->nocb_next_follower = NULL; 2305 } 2306 } while (rdp); 2307 rdp_spawn->nocb_next_follower = rdp_old_leader; 2308 } 2309 2310 /* Spawn the kthread for this CPU and RCU flavor. */ 2311 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2312 "rcuo%c/%d", rsp->abbr, cpu); 2313 BUG_ON(IS_ERR(t)); 2314 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2315 } 2316 2317 /* 2318 * If the specified CPU is a no-CBs CPU that does not already have its 2319 * rcuo kthreads, spawn them. 2320 */ 2321 static void rcu_spawn_all_nocb_kthreads(int cpu) 2322 { 2323 struct rcu_state *rsp; 2324 2325 if (rcu_scheduler_fully_active) 2326 for_each_rcu_flavor(rsp) 2327 rcu_spawn_one_nocb_kthread(rsp, cpu); 2328 } 2329 2330 /* 2331 * Once the scheduler is running, spawn rcuo kthreads for all online 2332 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2333 * non-boot CPUs come online -- if this changes, we will need to add 2334 * some mutual exclusion. 2335 */ 2336 static void __init rcu_spawn_nocb_kthreads(void) 2337 { 2338 int cpu; 2339 2340 for_each_online_cpu(cpu) 2341 rcu_spawn_all_nocb_kthreads(cpu); 2342 } 2343 2344 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2345 static int rcu_nocb_leader_stride = -1; 2346 module_param(rcu_nocb_leader_stride, int, 0444); 2347 2348 /* 2349 * Initialize leader-follower relationships for all no-CBs CPU. 2350 */ 2351 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2352 { 2353 int cpu; 2354 int ls = rcu_nocb_leader_stride; 2355 int nl = 0; /* Next leader. */ 2356 struct rcu_data *rdp; 2357 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2358 struct rcu_data *rdp_prev = NULL; 2359 2360 if (!have_rcu_nocb_mask) 2361 return; 2362 if (ls == -1) { 2363 ls = int_sqrt(nr_cpu_ids); 2364 rcu_nocb_leader_stride = ls; 2365 } 2366 2367 /* 2368 * Each pass through this loop sets up one rcu_data structure and 2369 * spawns one rcu_nocb_kthread(). 2370 */ 2371 for_each_cpu(cpu, rcu_nocb_mask) { 2372 rdp = per_cpu_ptr(rsp->rda, cpu); 2373 if (rdp->cpu >= nl) { 2374 /* New leader, set up for followers & next leader. */ 2375 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2376 rdp->nocb_leader = rdp; 2377 rdp_leader = rdp; 2378 } else { 2379 /* Another follower, link to previous leader. */ 2380 rdp->nocb_leader = rdp_leader; 2381 rdp_prev->nocb_next_follower = rdp; 2382 } 2383 rdp_prev = rdp; 2384 } 2385 } 2386 2387 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2388 static bool init_nocb_callback_list(struct rcu_data *rdp) 2389 { 2390 if (!rcu_is_nocb_cpu(rdp->cpu)) 2391 return false; 2392 2393 /* If there are early-boot callbacks, move them to nocb lists. */ 2394 if (rdp->nxtlist) { 2395 rdp->nocb_head = rdp->nxtlist; 2396 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; 2397 atomic_long_set(&rdp->nocb_q_count, rdp->qlen); 2398 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); 2399 rdp->nxtlist = NULL; 2400 rdp->qlen = 0; 2401 rdp->qlen_lazy = 0; 2402 } 2403 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2404 return true; 2405 } 2406 2407 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2408 2409 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2410 { 2411 WARN_ON_ONCE(1); /* Should be dead code. */ 2412 return false; 2413 } 2414 2415 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2416 { 2417 } 2418 2419 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2420 { 2421 } 2422 2423 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2424 { 2425 return NULL; 2426 } 2427 2428 static void rcu_init_one_nocb(struct rcu_node *rnp) 2429 { 2430 } 2431 2432 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2433 bool lazy, unsigned long flags) 2434 { 2435 return false; 2436 } 2437 2438 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2439 struct rcu_data *rdp, 2440 unsigned long flags) 2441 { 2442 return false; 2443 } 2444 2445 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2446 { 2447 } 2448 2449 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2450 { 2451 return false; 2452 } 2453 2454 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2455 { 2456 } 2457 2458 static void rcu_spawn_all_nocb_kthreads(int cpu) 2459 { 2460 } 2461 2462 static void __init rcu_spawn_nocb_kthreads(void) 2463 { 2464 } 2465 2466 static bool init_nocb_callback_list(struct rcu_data *rdp) 2467 { 2468 return false; 2469 } 2470 2471 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2472 2473 /* 2474 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2475 * arbitrarily long period of time with the scheduling-clock tick turned 2476 * off. RCU will be paying attention to this CPU because it is in the 2477 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2478 * machine because the scheduling-clock tick has been disabled. Therefore, 2479 * if an adaptive-ticks CPU is failing to respond to the current grace 2480 * period and has not be idle from an RCU perspective, kick it. 2481 */ 2482 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2483 { 2484 #ifdef CONFIG_NO_HZ_FULL 2485 if (tick_nohz_full_cpu(cpu)) 2486 smp_send_reschedule(cpu); 2487 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2488 } 2489 2490 2491 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2492 2493 static int full_sysidle_state; /* Current system-idle state. */ 2494 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2495 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2496 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2497 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2498 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2499 2500 /* 2501 * Invoked to note exit from irq or task transition to idle. Note that 2502 * usermode execution does -not- count as idle here! After all, we want 2503 * to detect full-system idle states, not RCU quiescent states and grace 2504 * periods. The caller must have disabled interrupts. 2505 */ 2506 static void rcu_sysidle_enter(int irq) 2507 { 2508 unsigned long j; 2509 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2510 2511 /* If there are no nohz_full= CPUs, no need to track this. */ 2512 if (!tick_nohz_full_enabled()) 2513 return; 2514 2515 /* Adjust nesting, check for fully idle. */ 2516 if (irq) { 2517 rdtp->dynticks_idle_nesting--; 2518 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2519 if (rdtp->dynticks_idle_nesting != 0) 2520 return; /* Still not fully idle. */ 2521 } else { 2522 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2523 DYNTICK_TASK_NEST_VALUE) { 2524 rdtp->dynticks_idle_nesting = 0; 2525 } else { 2526 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2527 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2528 return; /* Still not fully idle. */ 2529 } 2530 } 2531 2532 /* Record start of fully idle period. */ 2533 j = jiffies; 2534 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); 2535 smp_mb__before_atomic(); 2536 atomic_inc(&rdtp->dynticks_idle); 2537 smp_mb__after_atomic(); 2538 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2539 } 2540 2541 /* 2542 * Unconditionally force exit from full system-idle state. This is 2543 * invoked when a normal CPU exits idle, but must be called separately 2544 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2545 * is that the timekeeping CPU is permitted to take scheduling-clock 2546 * interrupts while the system is in system-idle state, and of course 2547 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2548 * interrupt from any other type of interrupt. 2549 */ 2550 void rcu_sysidle_force_exit(void) 2551 { 2552 int oldstate = READ_ONCE(full_sysidle_state); 2553 int newoldstate; 2554 2555 /* 2556 * Each pass through the following loop attempts to exit full 2557 * system-idle state. If contention proves to be a problem, 2558 * a trylock-based contention tree could be used here. 2559 */ 2560 while (oldstate > RCU_SYSIDLE_SHORT) { 2561 newoldstate = cmpxchg(&full_sysidle_state, 2562 oldstate, RCU_SYSIDLE_NOT); 2563 if (oldstate == newoldstate && 2564 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2565 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2566 return; /* We cleared it, done! */ 2567 } 2568 oldstate = newoldstate; 2569 } 2570 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2571 } 2572 2573 /* 2574 * Invoked to note entry to irq or task transition from idle. Note that 2575 * usermode execution does -not- count as idle here! The caller must 2576 * have disabled interrupts. 2577 */ 2578 static void rcu_sysidle_exit(int irq) 2579 { 2580 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2581 2582 /* If there are no nohz_full= CPUs, no need to track this. */ 2583 if (!tick_nohz_full_enabled()) 2584 return; 2585 2586 /* Adjust nesting, check for already non-idle. */ 2587 if (irq) { 2588 rdtp->dynticks_idle_nesting++; 2589 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2590 if (rdtp->dynticks_idle_nesting != 1) 2591 return; /* Already non-idle. */ 2592 } else { 2593 /* 2594 * Allow for irq misnesting. Yes, it really is possible 2595 * to enter an irq handler then never leave it, and maybe 2596 * also vice versa. Handle both possibilities. 2597 */ 2598 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2599 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2600 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2601 return; /* Already non-idle. */ 2602 } else { 2603 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2604 } 2605 } 2606 2607 /* Record end of idle period. */ 2608 smp_mb__before_atomic(); 2609 atomic_inc(&rdtp->dynticks_idle); 2610 smp_mb__after_atomic(); 2611 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2612 2613 /* 2614 * If we are the timekeeping CPU, we are permitted to be non-idle 2615 * during a system-idle state. This must be the case, because 2616 * the timekeeping CPU has to take scheduling-clock interrupts 2617 * during the time that the system is transitioning to full 2618 * system-idle state. This means that the timekeeping CPU must 2619 * invoke rcu_sysidle_force_exit() directly if it does anything 2620 * more than take a scheduling-clock interrupt. 2621 */ 2622 if (smp_processor_id() == tick_do_timer_cpu) 2623 return; 2624 2625 /* Update system-idle state: We are clearly no longer fully idle! */ 2626 rcu_sysidle_force_exit(); 2627 } 2628 2629 /* 2630 * Check to see if the current CPU is idle. Note that usermode execution 2631 * does not count as idle. The caller must have disabled interrupts, 2632 * and must be running on tick_do_timer_cpu. 2633 */ 2634 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2635 unsigned long *maxj) 2636 { 2637 int cur; 2638 unsigned long j; 2639 struct rcu_dynticks *rdtp = rdp->dynticks; 2640 2641 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2642 if (!tick_nohz_full_enabled()) 2643 return; 2644 2645 /* 2646 * If some other CPU has already reported non-idle, if this is 2647 * not the flavor of RCU that tracks sysidle state, or if this 2648 * is an offline or the timekeeping CPU, nothing to do. 2649 */ 2650 if (!*isidle || rdp->rsp != rcu_state_p || 2651 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2652 return; 2653 /* Verify affinity of current kthread. */ 2654 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2655 2656 /* Pick up current idle and NMI-nesting counter and check. */ 2657 cur = atomic_read(&rdtp->dynticks_idle); 2658 if (cur & 0x1) { 2659 *isidle = false; /* We are not idle! */ 2660 return; 2661 } 2662 smp_mb(); /* Read counters before timestamps. */ 2663 2664 /* Pick up timestamps. */ 2665 j = READ_ONCE(rdtp->dynticks_idle_jiffies); 2666 /* If this CPU entered idle more recently, update maxj timestamp. */ 2667 if (ULONG_CMP_LT(*maxj, j)) 2668 *maxj = j; 2669 } 2670 2671 /* 2672 * Is this the flavor of RCU that is handling full-system idle? 2673 */ 2674 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2675 { 2676 return rsp == rcu_state_p; 2677 } 2678 2679 /* 2680 * Return a delay in jiffies based on the number of CPUs, rcu_node 2681 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2682 * systems more time to transition to full-idle state in order to 2683 * avoid the cache thrashing that otherwise occur on the state variable. 2684 * Really small systems (less than a couple of tens of CPUs) should 2685 * instead use a single global atomically incremented counter, and later 2686 * versions of this will automatically reconfigure themselves accordingly. 2687 */ 2688 static unsigned long rcu_sysidle_delay(void) 2689 { 2690 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2691 return 0; 2692 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2693 } 2694 2695 /* 2696 * Advance the full-system-idle state. This is invoked when all of 2697 * the non-timekeeping CPUs are idle. 2698 */ 2699 static void rcu_sysidle(unsigned long j) 2700 { 2701 /* Check the current state. */ 2702 switch (READ_ONCE(full_sysidle_state)) { 2703 case RCU_SYSIDLE_NOT: 2704 2705 /* First time all are idle, so note a short idle period. */ 2706 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); 2707 break; 2708 2709 case RCU_SYSIDLE_SHORT: 2710 2711 /* 2712 * Idle for a bit, time to advance to next state? 2713 * cmpxchg failure means race with non-idle, let them win. 2714 */ 2715 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2716 (void)cmpxchg(&full_sysidle_state, 2717 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2718 break; 2719 2720 case RCU_SYSIDLE_LONG: 2721 2722 /* 2723 * Do an additional check pass before advancing to full. 2724 * cmpxchg failure means race with non-idle, let them win. 2725 */ 2726 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2727 (void)cmpxchg(&full_sysidle_state, 2728 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2729 break; 2730 2731 default: 2732 break; 2733 } 2734 } 2735 2736 /* 2737 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2738 * back to the beginning. 2739 */ 2740 static void rcu_sysidle_cancel(void) 2741 { 2742 smp_mb(); 2743 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2744 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); 2745 } 2746 2747 /* 2748 * Update the sysidle state based on the results of a force-quiescent-state 2749 * scan of the CPUs' dyntick-idle state. 2750 */ 2751 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2752 unsigned long maxj, bool gpkt) 2753 { 2754 if (rsp != rcu_state_p) 2755 return; /* Wrong flavor, ignore. */ 2756 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2757 return; /* Running state machine from timekeeping CPU. */ 2758 if (isidle) 2759 rcu_sysidle(maxj); /* More idle! */ 2760 else 2761 rcu_sysidle_cancel(); /* Idle is over. */ 2762 } 2763 2764 /* 2765 * Wrapper for rcu_sysidle_report() when called from the grace-period 2766 * kthread's context. 2767 */ 2768 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2769 unsigned long maxj) 2770 { 2771 /* If there are no nohz_full= CPUs, no need to track this. */ 2772 if (!tick_nohz_full_enabled()) 2773 return; 2774 2775 rcu_sysidle_report(rsp, isidle, maxj, true); 2776 } 2777 2778 /* Callback and function for forcing an RCU grace period. */ 2779 struct rcu_sysidle_head { 2780 struct rcu_head rh; 2781 int inuse; 2782 }; 2783 2784 static void rcu_sysidle_cb(struct rcu_head *rhp) 2785 { 2786 struct rcu_sysidle_head *rshp; 2787 2788 /* 2789 * The following memory barrier is needed to replace the 2790 * memory barriers that would normally be in the memory 2791 * allocator. 2792 */ 2793 smp_mb(); /* grace period precedes setting inuse. */ 2794 2795 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2796 WRITE_ONCE(rshp->inuse, 0); 2797 } 2798 2799 /* 2800 * Check to see if the system is fully idle, other than the timekeeping CPU. 2801 * The caller must have disabled interrupts. This is not intended to be 2802 * called unless tick_nohz_full_enabled(). 2803 */ 2804 bool rcu_sys_is_idle(void) 2805 { 2806 static struct rcu_sysidle_head rsh; 2807 int rss = READ_ONCE(full_sysidle_state); 2808 2809 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2810 return false; 2811 2812 /* Handle small-system case by doing a full scan of CPUs. */ 2813 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2814 int oldrss = rss - 1; 2815 2816 /* 2817 * One pass to advance to each state up to _FULL. 2818 * Give up if any pass fails to advance the state. 2819 */ 2820 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2821 int cpu; 2822 bool isidle = true; 2823 unsigned long maxj = jiffies - ULONG_MAX / 4; 2824 struct rcu_data *rdp; 2825 2826 /* Scan all the CPUs looking for nonidle CPUs. */ 2827 for_each_possible_cpu(cpu) { 2828 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2829 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2830 if (!isidle) 2831 break; 2832 } 2833 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2834 oldrss = rss; 2835 rss = READ_ONCE(full_sysidle_state); 2836 } 2837 } 2838 2839 /* If this is the first observation of an idle period, record it. */ 2840 if (rss == RCU_SYSIDLE_FULL) { 2841 rss = cmpxchg(&full_sysidle_state, 2842 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2843 return rss == RCU_SYSIDLE_FULL; 2844 } 2845 2846 smp_mb(); /* ensure rss load happens before later caller actions. */ 2847 2848 /* If already fully idle, tell the caller (in case of races). */ 2849 if (rss == RCU_SYSIDLE_FULL_NOTED) 2850 return true; 2851 2852 /* 2853 * If we aren't there yet, and a grace period is not in flight, 2854 * initiate a grace period. Either way, tell the caller that 2855 * we are not there yet. We use an xchg() rather than an assignment 2856 * to make up for the memory barriers that would otherwise be 2857 * provided by the memory allocator. 2858 */ 2859 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2860 !rcu_gp_in_progress(rcu_state_p) && 2861 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2862 call_rcu(&rsh.rh, rcu_sysidle_cb); 2863 return false; 2864 } 2865 2866 /* 2867 * Initialize dynticks sysidle state for CPUs coming online. 2868 */ 2869 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2870 { 2871 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 2872 } 2873 2874 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2875 2876 static void rcu_sysidle_enter(int irq) 2877 { 2878 } 2879 2880 static void rcu_sysidle_exit(int irq) 2881 { 2882 } 2883 2884 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2885 unsigned long *maxj) 2886 { 2887 } 2888 2889 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2890 { 2891 return false; 2892 } 2893 2894 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2895 unsigned long maxj) 2896 { 2897 } 2898 2899 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2900 { 2901 } 2902 2903 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2904 2905 /* 2906 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2907 * grace-period kthread will do force_quiescent_state() processing? 2908 * The idea is to avoid waking up RCU core processing on such a 2909 * CPU unless the grace period has extended for too long. 2910 * 2911 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2912 * CONFIG_RCU_NOCB_CPU CPUs. 2913 */ 2914 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2915 { 2916 #ifdef CONFIG_NO_HZ_FULL 2917 if (tick_nohz_full_cpu(smp_processor_id()) && 2918 (!rcu_gp_in_progress(rsp) || 2919 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2920 return true; 2921 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2922 return false; 2923 } 2924 2925 /* 2926 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2927 * timekeeping CPU. 2928 */ 2929 static void rcu_bind_gp_kthread(void) 2930 { 2931 int __maybe_unused cpu; 2932 2933 if (!tick_nohz_full_enabled()) 2934 return; 2935 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2936 cpu = tick_do_timer_cpu; 2937 if (cpu >= 0 && cpu < nr_cpu_ids) 2938 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 2939 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2940 housekeeping_affine(current); 2941 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2942 } 2943 2944 /* Record the current task on dyntick-idle entry. */ 2945 static void rcu_dynticks_task_enter(void) 2946 { 2947 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2948 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2949 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2950 } 2951 2952 /* Record no current task on dyntick-idle exit. */ 2953 static void rcu_dynticks_task_exit(void) 2954 { 2955 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2956 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2957 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2958 } 2959