xref: /linux/kernel/rcu/tree_plugin.h (revision f3539c12d8196ce0a1993364d30b3a18908470d1)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32 
33 #ifdef CONFIG_RCU_BOOST
34 
35 #include "../locking/rtmutex_common.h"
36 
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45 
46 #else /* #ifdef CONFIG_RCU_BOOST */
47 
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55 
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57 
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63 
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.
67  */
68 static void __init rcu_bootup_announce_oddness(void)
69 {
70 	if (IS_ENABLED(CONFIG_RCU_TRACE))
71 		pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
73 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
74 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
75 		       RCU_FANOUT);
76 	if (rcu_fanout_exact)
77 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
79 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 	if (IS_ENABLED(CONFIG_PROVE_RCU))
81 		pr_info("\tRCU lockdep checking is enabled.\n");
82 	if (RCU_NUM_LVLS >= 4)
83 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
84 	if (RCU_FANOUT_LEAF != 16)
85 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
86 			RCU_FANOUT_LEAF);
87 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
88 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
89 	if (nr_cpu_ids != NR_CPUS)
90 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
91 	if (IS_ENABLED(CONFIG_RCU_BOOST))
92 		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
93 }
94 
95 #ifdef CONFIG_PREEMPT_RCU
96 
97 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
98 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
99 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
100 
101 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
102 			       bool wake);
103 
104 /*
105  * Tell them what RCU they are running.
106  */
107 static void __init rcu_bootup_announce(void)
108 {
109 	pr_info("Preemptible hierarchical RCU implementation.\n");
110 	rcu_bootup_announce_oddness();
111 }
112 
113 /* Flags for rcu_preempt_ctxt_queue() decision table. */
114 #define RCU_GP_TASKS	0x8
115 #define RCU_EXP_TASKS	0x4
116 #define RCU_GP_BLKD	0x2
117 #define RCU_EXP_BLKD	0x1
118 
119 /*
120  * Queues a task preempted within an RCU-preempt read-side critical
121  * section into the appropriate location within the ->blkd_tasks list,
122  * depending on the states of any ongoing normal and expedited grace
123  * periods.  The ->gp_tasks pointer indicates which element the normal
124  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
125  * indicates which element the expedited grace period is waiting on (again,
126  * NULL if none).  If a grace period is waiting on a given element in the
127  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
128  * adding a task to the tail of the list blocks any grace period that is
129  * already waiting on one of the elements.  In contrast, adding a task
130  * to the head of the list won't block any grace period that is already
131  * waiting on one of the elements.
132  *
133  * This queuing is imprecise, and can sometimes make an ongoing grace
134  * period wait for a task that is not strictly speaking blocking it.
135  * Given the choice, we needlessly block a normal grace period rather than
136  * blocking an expedited grace period.
137  *
138  * Note that an endless sequence of expedited grace periods still cannot
139  * indefinitely postpone a normal grace period.  Eventually, all of the
140  * fixed number of preempted tasks blocking the normal grace period that are
141  * not also blocking the expedited grace period will resume and complete
142  * their RCU read-side critical sections.  At that point, the ->gp_tasks
143  * pointer will equal the ->exp_tasks pointer, at which point the end of
144  * the corresponding expedited grace period will also be the end of the
145  * normal grace period.
146  */
147 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
148 	__releases(rnp->lock) /* But leaves rrupts disabled. */
149 {
150 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
151 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
152 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
153 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
154 	struct task_struct *t = current;
155 
156 	/*
157 	 * Decide where to queue the newly blocked task.  In theory,
158 	 * this could be an if-statement.  In practice, when I tried
159 	 * that, it was quite messy.
160 	 */
161 	switch (blkd_state) {
162 	case 0:
163 	case                RCU_EXP_TASKS:
164 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
165 	case RCU_GP_TASKS:
166 	case RCU_GP_TASKS + RCU_EXP_TASKS:
167 
168 		/*
169 		 * Blocking neither GP, or first task blocking the normal
170 		 * GP but not blocking the already-waiting expedited GP.
171 		 * Queue at the head of the list to avoid unnecessarily
172 		 * blocking the already-waiting GPs.
173 		 */
174 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
175 		break;
176 
177 	case                                              RCU_EXP_BLKD:
178 	case                                RCU_GP_BLKD:
179 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
180 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
181 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
182 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
183 
184 		/*
185 		 * First task arriving that blocks either GP, or first task
186 		 * arriving that blocks the expedited GP (with the normal
187 		 * GP already waiting), or a task arriving that blocks
188 		 * both GPs with both GPs already waiting.  Queue at the
189 		 * tail of the list to avoid any GP waiting on any of the
190 		 * already queued tasks that are not blocking it.
191 		 */
192 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
193 		break;
194 
195 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
196 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
197 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
198 
199 		/*
200 		 * Second or subsequent task blocking the expedited GP.
201 		 * The task either does not block the normal GP, or is the
202 		 * first task blocking the normal GP.  Queue just after
203 		 * the first task blocking the expedited GP.
204 		 */
205 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
206 		break;
207 
208 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
209 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
210 
211 		/*
212 		 * Second or subsequent task blocking the normal GP.
213 		 * The task does not block the expedited GP. Queue just
214 		 * after the first task blocking the normal GP.
215 		 */
216 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
217 		break;
218 
219 	default:
220 
221 		/* Yet another exercise in excessive paranoia. */
222 		WARN_ON_ONCE(1);
223 		break;
224 	}
225 
226 	/*
227 	 * We have now queued the task.  If it was the first one to
228 	 * block either grace period, update the ->gp_tasks and/or
229 	 * ->exp_tasks pointers, respectively, to reference the newly
230 	 * blocked tasks.
231 	 */
232 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
233 		rnp->gp_tasks = &t->rcu_node_entry;
234 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
235 		rnp->exp_tasks = &t->rcu_node_entry;
236 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
237 
238 	/*
239 	 * Report the quiescent state for the expedited GP.  This expedited
240 	 * GP should not be able to end until we report, so there should be
241 	 * no need to check for a subsequent expedited GP.  (Though we are
242 	 * still in a quiescent state in any case.)
243 	 */
244 	if (blkd_state & RCU_EXP_BLKD &&
245 	    t->rcu_read_unlock_special.b.exp_need_qs) {
246 		t->rcu_read_unlock_special.b.exp_need_qs = false;
247 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
248 	} else {
249 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
250 	}
251 }
252 
253 /*
254  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
255  * that this just means that the task currently running on the CPU is
256  * not in a quiescent state.  There might be any number of tasks blocked
257  * while in an RCU read-side critical section.
258  *
259  * As with the other rcu_*_qs() functions, callers to this function
260  * must disable preemption.
261  */
262 static void rcu_preempt_qs(void)
263 {
264 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
265 		trace_rcu_grace_period(TPS("rcu_preempt"),
266 				       __this_cpu_read(rcu_data_p->gpnum),
267 				       TPS("cpuqs"));
268 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
269 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
270 		current->rcu_read_unlock_special.b.need_qs = false;
271 	}
272 }
273 
274 /*
275  * We have entered the scheduler, and the current task might soon be
276  * context-switched away from.  If this task is in an RCU read-side
277  * critical section, we will no longer be able to rely on the CPU to
278  * record that fact, so we enqueue the task on the blkd_tasks list.
279  * The task will dequeue itself when it exits the outermost enclosing
280  * RCU read-side critical section.  Therefore, the current grace period
281  * cannot be permitted to complete until the blkd_tasks list entries
282  * predating the current grace period drain, in other words, until
283  * rnp->gp_tasks becomes NULL.
284  *
285  * Caller must disable interrupts.
286  */
287 static void rcu_preempt_note_context_switch(void)
288 {
289 	struct task_struct *t = current;
290 	struct rcu_data *rdp;
291 	struct rcu_node *rnp;
292 
293 	if (t->rcu_read_lock_nesting > 0 &&
294 	    !t->rcu_read_unlock_special.b.blocked) {
295 
296 		/* Possibly blocking in an RCU read-side critical section. */
297 		rdp = this_cpu_ptr(rcu_state_p->rda);
298 		rnp = rdp->mynode;
299 		raw_spin_lock_rcu_node(rnp);
300 		t->rcu_read_unlock_special.b.blocked = true;
301 		t->rcu_blocked_node = rnp;
302 
303 		/*
304 		 * Verify the CPU's sanity, trace the preemption, and
305 		 * then queue the task as required based on the states
306 		 * of any ongoing and expedited grace periods.
307 		 */
308 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310 		trace_rcu_preempt_task(rdp->rsp->name,
311 				       t->pid,
312 				       (rnp->qsmask & rdp->grpmask)
313 				       ? rnp->gpnum
314 				       : rnp->gpnum + 1);
315 		rcu_preempt_ctxt_queue(rnp, rdp);
316 	} else if (t->rcu_read_lock_nesting < 0 &&
317 		   t->rcu_read_unlock_special.s) {
318 
319 		/*
320 		 * Complete exit from RCU read-side critical section on
321 		 * behalf of preempted instance of __rcu_read_unlock().
322 		 */
323 		rcu_read_unlock_special(t);
324 	}
325 
326 	/*
327 	 * Either we were not in an RCU read-side critical section to
328 	 * begin with, or we have now recorded that critical section
329 	 * globally.  Either way, we can now note a quiescent state
330 	 * for this CPU.  Again, if we were in an RCU read-side critical
331 	 * section, and if that critical section was blocking the current
332 	 * grace period, then the fact that the task has been enqueued
333 	 * means that we continue to block the current grace period.
334 	 */
335 	rcu_preempt_qs();
336 }
337 
338 /*
339  * Check for preempted RCU readers blocking the current grace period
340  * for the specified rcu_node structure.  If the caller needs a reliable
341  * answer, it must hold the rcu_node's ->lock.
342  */
343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
344 {
345 	return rnp->gp_tasks != NULL;
346 }
347 
348 /*
349  * Advance a ->blkd_tasks-list pointer to the next entry, instead
350  * returning NULL if at the end of the list.
351  */
352 static struct list_head *rcu_next_node_entry(struct task_struct *t,
353 					     struct rcu_node *rnp)
354 {
355 	struct list_head *np;
356 
357 	np = t->rcu_node_entry.next;
358 	if (np == &rnp->blkd_tasks)
359 		np = NULL;
360 	return np;
361 }
362 
363 /*
364  * Return true if the specified rcu_node structure has tasks that were
365  * preempted within an RCU read-side critical section.
366  */
367 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
368 {
369 	return !list_empty(&rnp->blkd_tasks);
370 }
371 
372 /*
373  * Handle special cases during rcu_read_unlock(), such as needing to
374  * notify RCU core processing or task having blocked during the RCU
375  * read-side critical section.
376  */
377 void rcu_read_unlock_special(struct task_struct *t)
378 {
379 	bool empty_exp;
380 	bool empty_norm;
381 	bool empty_exp_now;
382 	unsigned long flags;
383 	struct list_head *np;
384 	bool drop_boost_mutex = false;
385 	struct rcu_data *rdp;
386 	struct rcu_node *rnp;
387 	union rcu_special special;
388 
389 	/* NMI handlers cannot block and cannot safely manipulate state. */
390 	if (in_nmi())
391 		return;
392 
393 	local_irq_save(flags);
394 
395 	/*
396 	 * If RCU core is waiting for this CPU to exit its critical section,
397 	 * report the fact that it has exited.  Because irqs are disabled,
398 	 * t->rcu_read_unlock_special cannot change.
399 	 */
400 	special = t->rcu_read_unlock_special;
401 	if (special.b.need_qs) {
402 		rcu_preempt_qs();
403 		t->rcu_read_unlock_special.b.need_qs = false;
404 		if (!t->rcu_read_unlock_special.s) {
405 			local_irq_restore(flags);
406 			return;
407 		}
408 	}
409 
410 	/*
411 	 * Respond to a request for an expedited grace period, but only if
412 	 * we were not preempted, meaning that we were running on the same
413 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
414 	 * would have been cleared at the time of the first preemption,
415 	 * and the quiescent state would be reported when we were dequeued.
416 	 */
417 	if (special.b.exp_need_qs) {
418 		WARN_ON_ONCE(special.b.blocked);
419 		t->rcu_read_unlock_special.b.exp_need_qs = false;
420 		rdp = this_cpu_ptr(rcu_state_p->rda);
421 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
422 		if (!t->rcu_read_unlock_special.s) {
423 			local_irq_restore(flags);
424 			return;
425 		}
426 	}
427 
428 	/* Hardware IRQ handlers cannot block, complain if they get here. */
429 	if (in_irq() || in_serving_softirq()) {
430 		lockdep_rcu_suspicious(__FILE__, __LINE__,
431 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
432 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
433 			 t->rcu_read_unlock_special.s,
434 			 t->rcu_read_unlock_special.b.blocked,
435 			 t->rcu_read_unlock_special.b.exp_need_qs,
436 			 t->rcu_read_unlock_special.b.need_qs);
437 		local_irq_restore(flags);
438 		return;
439 	}
440 
441 	/* Clean up if blocked during RCU read-side critical section. */
442 	if (special.b.blocked) {
443 		t->rcu_read_unlock_special.b.blocked = false;
444 
445 		/*
446 		 * Remove this task from the list it blocked on.  The task
447 		 * now remains queued on the rcu_node corresponding to the
448 		 * CPU it first blocked on, so there is no longer any need
449 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
450 		 */
451 		rnp = t->rcu_blocked_node;
452 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
453 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
454 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
455 		empty_exp = sync_rcu_preempt_exp_done(rnp);
456 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
457 		np = rcu_next_node_entry(t, rnp);
458 		list_del_init(&t->rcu_node_entry);
459 		t->rcu_blocked_node = NULL;
460 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
461 						rnp->gpnum, t->pid);
462 		if (&t->rcu_node_entry == rnp->gp_tasks)
463 			rnp->gp_tasks = np;
464 		if (&t->rcu_node_entry == rnp->exp_tasks)
465 			rnp->exp_tasks = np;
466 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
467 			if (&t->rcu_node_entry == rnp->boost_tasks)
468 				rnp->boost_tasks = np;
469 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
470 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
471 		}
472 
473 		/*
474 		 * If this was the last task on the current list, and if
475 		 * we aren't waiting on any CPUs, report the quiescent state.
476 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
477 		 * so we must take a snapshot of the expedited state.
478 		 */
479 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
480 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
481 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
482 							 rnp->gpnum,
483 							 0, rnp->qsmask,
484 							 rnp->level,
485 							 rnp->grplo,
486 							 rnp->grphi,
487 							 !!rnp->gp_tasks);
488 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
489 		} else {
490 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
491 		}
492 
493 		/* Unboost if we were boosted. */
494 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
495 			rt_mutex_unlock(&rnp->boost_mtx);
496 
497 		/*
498 		 * If this was the last task on the expedited lists,
499 		 * then we need to report up the rcu_node hierarchy.
500 		 */
501 		if (!empty_exp && empty_exp_now)
502 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
503 	} else {
504 		local_irq_restore(flags);
505 	}
506 }
507 
508 /*
509  * Dump detailed information for all tasks blocking the current RCU
510  * grace period on the specified rcu_node structure.
511  */
512 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
513 {
514 	unsigned long flags;
515 	struct task_struct *t;
516 
517 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
518 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
519 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
520 		return;
521 	}
522 	t = list_entry(rnp->gp_tasks->prev,
523 		       struct task_struct, rcu_node_entry);
524 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
525 		sched_show_task(t);
526 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
527 }
528 
529 /*
530  * Dump detailed information for all tasks blocking the current RCU
531  * grace period.
532  */
533 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
534 {
535 	struct rcu_node *rnp = rcu_get_root(rsp);
536 
537 	rcu_print_detail_task_stall_rnp(rnp);
538 	rcu_for_each_leaf_node(rsp, rnp)
539 		rcu_print_detail_task_stall_rnp(rnp);
540 }
541 
542 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
543 {
544 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
545 	       rnp->level, rnp->grplo, rnp->grphi);
546 }
547 
548 static void rcu_print_task_stall_end(void)
549 {
550 	pr_cont("\n");
551 }
552 
553 /*
554  * Scan the current list of tasks blocked within RCU read-side critical
555  * sections, printing out the tid of each.
556  */
557 static int rcu_print_task_stall(struct rcu_node *rnp)
558 {
559 	struct task_struct *t;
560 	int ndetected = 0;
561 
562 	if (!rcu_preempt_blocked_readers_cgp(rnp))
563 		return 0;
564 	rcu_print_task_stall_begin(rnp);
565 	t = list_entry(rnp->gp_tasks->prev,
566 		       struct task_struct, rcu_node_entry);
567 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
568 		pr_cont(" P%d", t->pid);
569 		ndetected++;
570 	}
571 	rcu_print_task_stall_end();
572 	return ndetected;
573 }
574 
575 /*
576  * Scan the current list of tasks blocked within RCU read-side critical
577  * sections, printing out the tid of each that is blocking the current
578  * expedited grace period.
579  */
580 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
581 {
582 	struct task_struct *t;
583 	int ndetected = 0;
584 
585 	if (!rnp->exp_tasks)
586 		return 0;
587 	t = list_entry(rnp->exp_tasks->prev,
588 		       struct task_struct, rcu_node_entry);
589 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
590 		pr_cont(" P%d", t->pid);
591 		ndetected++;
592 	}
593 	return ndetected;
594 }
595 
596 /*
597  * Check that the list of blocked tasks for the newly completed grace
598  * period is in fact empty.  It is a serious bug to complete a grace
599  * period that still has RCU readers blocked!  This function must be
600  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
601  * must be held by the caller.
602  *
603  * Also, if there are blocked tasks on the list, they automatically
604  * block the newly created grace period, so set up ->gp_tasks accordingly.
605  */
606 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
607 {
608 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
609 	if (rcu_preempt_has_tasks(rnp))
610 		rnp->gp_tasks = rnp->blkd_tasks.next;
611 	WARN_ON_ONCE(rnp->qsmask);
612 }
613 
614 /*
615  * Check for a quiescent state from the current CPU.  When a task blocks,
616  * the task is recorded in the corresponding CPU's rcu_node structure,
617  * which is checked elsewhere.
618  *
619  * Caller must disable hard irqs.
620  */
621 static void rcu_preempt_check_callbacks(void)
622 {
623 	struct task_struct *t = current;
624 
625 	if (t->rcu_read_lock_nesting == 0) {
626 		rcu_preempt_qs();
627 		return;
628 	}
629 	if (t->rcu_read_lock_nesting > 0 &&
630 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
631 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
632 		t->rcu_read_unlock_special.b.need_qs = true;
633 }
634 
635 #ifdef CONFIG_RCU_BOOST
636 
637 static void rcu_preempt_do_callbacks(void)
638 {
639 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
640 }
641 
642 #endif /* #ifdef CONFIG_RCU_BOOST */
643 
644 /*
645  * Queue a preemptible-RCU callback for invocation after a grace period.
646  */
647 void call_rcu(struct rcu_head *head, rcu_callback_t func)
648 {
649 	__call_rcu(head, func, rcu_state_p, -1, 0);
650 }
651 EXPORT_SYMBOL_GPL(call_rcu);
652 
653 /**
654  * synchronize_rcu - wait until a grace period has elapsed.
655  *
656  * Control will return to the caller some time after a full grace
657  * period has elapsed, in other words after all currently executing RCU
658  * read-side critical sections have completed.  Note, however, that
659  * upon return from synchronize_rcu(), the caller might well be executing
660  * concurrently with new RCU read-side critical sections that began while
661  * synchronize_rcu() was waiting.  RCU read-side critical sections are
662  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
663  *
664  * See the description of synchronize_sched() for more detailed information
665  * on memory ordering guarantees.
666  */
667 void synchronize_rcu(void)
668 {
669 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
670 			 lock_is_held(&rcu_lock_map) ||
671 			 lock_is_held(&rcu_sched_lock_map),
672 			 "Illegal synchronize_rcu() in RCU read-side critical section");
673 	if (!rcu_scheduler_active)
674 		return;
675 	if (rcu_gp_is_expedited())
676 		synchronize_rcu_expedited();
677 	else
678 		wait_rcu_gp(call_rcu);
679 }
680 EXPORT_SYMBOL_GPL(synchronize_rcu);
681 
682 /**
683  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
684  *
685  * Note that this primitive does not necessarily wait for an RCU grace period
686  * to complete.  For example, if there are no RCU callbacks queued anywhere
687  * in the system, then rcu_barrier() is within its rights to return
688  * immediately, without waiting for anything, much less an RCU grace period.
689  */
690 void rcu_barrier(void)
691 {
692 	_rcu_barrier(rcu_state_p);
693 }
694 EXPORT_SYMBOL_GPL(rcu_barrier);
695 
696 /*
697  * Initialize preemptible RCU's state structures.
698  */
699 static void __init __rcu_init_preempt(void)
700 {
701 	rcu_init_one(rcu_state_p);
702 }
703 
704 /*
705  * Check for a task exiting while in a preemptible-RCU read-side
706  * critical section, clean up if so.  No need to issue warnings,
707  * as debug_check_no_locks_held() already does this if lockdep
708  * is enabled.
709  */
710 void exit_rcu(void)
711 {
712 	struct task_struct *t = current;
713 
714 	if (likely(list_empty(&current->rcu_node_entry)))
715 		return;
716 	t->rcu_read_lock_nesting = 1;
717 	barrier();
718 	t->rcu_read_unlock_special.b.blocked = true;
719 	__rcu_read_unlock();
720 }
721 
722 #else /* #ifdef CONFIG_PREEMPT_RCU */
723 
724 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
725 
726 /*
727  * Tell them what RCU they are running.
728  */
729 static void __init rcu_bootup_announce(void)
730 {
731 	pr_info("Hierarchical RCU implementation.\n");
732 	rcu_bootup_announce_oddness();
733 }
734 
735 /*
736  * Because preemptible RCU does not exist, we never have to check for
737  * CPUs being in quiescent states.
738  */
739 static void rcu_preempt_note_context_switch(void)
740 {
741 }
742 
743 /*
744  * Because preemptible RCU does not exist, there are never any preempted
745  * RCU readers.
746  */
747 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
748 {
749 	return 0;
750 }
751 
752 /*
753  * Because there is no preemptible RCU, there can be no readers blocked.
754  */
755 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
756 {
757 	return false;
758 }
759 
760 /*
761  * Because preemptible RCU does not exist, we never have to check for
762  * tasks blocked within RCU read-side critical sections.
763  */
764 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
765 {
766 }
767 
768 /*
769  * Because preemptible RCU does not exist, we never have to check for
770  * tasks blocked within RCU read-side critical sections.
771  */
772 static int rcu_print_task_stall(struct rcu_node *rnp)
773 {
774 	return 0;
775 }
776 
777 /*
778  * Because preemptible RCU does not exist, we never have to check for
779  * tasks blocked within RCU read-side critical sections that are
780  * blocking the current expedited grace period.
781  */
782 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
783 {
784 	return 0;
785 }
786 
787 /*
788  * Because there is no preemptible RCU, there can be no readers blocked,
789  * so there is no need to check for blocked tasks.  So check only for
790  * bogus qsmask values.
791  */
792 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
793 {
794 	WARN_ON_ONCE(rnp->qsmask);
795 }
796 
797 /*
798  * Because preemptible RCU does not exist, it never has any callbacks
799  * to check.
800  */
801 static void rcu_preempt_check_callbacks(void)
802 {
803 }
804 
805 /*
806  * Because preemptible RCU does not exist, rcu_barrier() is just
807  * another name for rcu_barrier_sched().
808  */
809 void rcu_barrier(void)
810 {
811 	rcu_barrier_sched();
812 }
813 EXPORT_SYMBOL_GPL(rcu_barrier);
814 
815 /*
816  * Because preemptible RCU does not exist, it need not be initialized.
817  */
818 static void __init __rcu_init_preempt(void)
819 {
820 }
821 
822 /*
823  * Because preemptible RCU does not exist, tasks cannot possibly exit
824  * while in preemptible RCU read-side critical sections.
825  */
826 void exit_rcu(void)
827 {
828 }
829 
830 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
831 
832 #ifdef CONFIG_RCU_BOOST
833 
834 #include "../locking/rtmutex_common.h"
835 
836 #ifdef CONFIG_RCU_TRACE
837 
838 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
839 {
840 	if (!rcu_preempt_has_tasks(rnp))
841 		rnp->n_balk_blkd_tasks++;
842 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
843 		rnp->n_balk_exp_gp_tasks++;
844 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
845 		rnp->n_balk_boost_tasks++;
846 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
847 		rnp->n_balk_notblocked++;
848 	else if (rnp->gp_tasks != NULL &&
849 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
850 		rnp->n_balk_notyet++;
851 	else
852 		rnp->n_balk_nos++;
853 }
854 
855 #else /* #ifdef CONFIG_RCU_TRACE */
856 
857 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
858 {
859 }
860 
861 #endif /* #else #ifdef CONFIG_RCU_TRACE */
862 
863 static void rcu_wake_cond(struct task_struct *t, int status)
864 {
865 	/*
866 	 * If the thread is yielding, only wake it when this
867 	 * is invoked from idle
868 	 */
869 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
870 		wake_up_process(t);
871 }
872 
873 /*
874  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
875  * or ->boost_tasks, advancing the pointer to the next task in the
876  * ->blkd_tasks list.
877  *
878  * Note that irqs must be enabled: boosting the task can block.
879  * Returns 1 if there are more tasks needing to be boosted.
880  */
881 static int rcu_boost(struct rcu_node *rnp)
882 {
883 	unsigned long flags;
884 	struct task_struct *t;
885 	struct list_head *tb;
886 
887 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
888 	    READ_ONCE(rnp->boost_tasks) == NULL)
889 		return 0;  /* Nothing left to boost. */
890 
891 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
892 
893 	/*
894 	 * Recheck under the lock: all tasks in need of boosting
895 	 * might exit their RCU read-side critical sections on their own.
896 	 */
897 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
898 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
899 		return 0;
900 	}
901 
902 	/*
903 	 * Preferentially boost tasks blocking expedited grace periods.
904 	 * This cannot starve the normal grace periods because a second
905 	 * expedited grace period must boost all blocked tasks, including
906 	 * those blocking the pre-existing normal grace period.
907 	 */
908 	if (rnp->exp_tasks != NULL) {
909 		tb = rnp->exp_tasks;
910 		rnp->n_exp_boosts++;
911 	} else {
912 		tb = rnp->boost_tasks;
913 		rnp->n_normal_boosts++;
914 	}
915 	rnp->n_tasks_boosted++;
916 
917 	/*
918 	 * We boost task t by manufacturing an rt_mutex that appears to
919 	 * be held by task t.  We leave a pointer to that rt_mutex where
920 	 * task t can find it, and task t will release the mutex when it
921 	 * exits its outermost RCU read-side critical section.  Then
922 	 * simply acquiring this artificial rt_mutex will boost task
923 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
924 	 *
925 	 * Note that task t must acquire rnp->lock to remove itself from
926 	 * the ->blkd_tasks list, which it will do from exit() if from
927 	 * nowhere else.  We therefore are guaranteed that task t will
928 	 * stay around at least until we drop rnp->lock.  Note that
929 	 * rnp->lock also resolves races between our priority boosting
930 	 * and task t's exiting its outermost RCU read-side critical
931 	 * section.
932 	 */
933 	t = container_of(tb, struct task_struct, rcu_node_entry);
934 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
935 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
936 	/* Lock only for side effect: boosts task t's priority. */
937 	rt_mutex_lock(&rnp->boost_mtx);
938 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
939 
940 	return READ_ONCE(rnp->exp_tasks) != NULL ||
941 	       READ_ONCE(rnp->boost_tasks) != NULL;
942 }
943 
944 /*
945  * Priority-boosting kthread, one per leaf rcu_node.
946  */
947 static int rcu_boost_kthread(void *arg)
948 {
949 	struct rcu_node *rnp = (struct rcu_node *)arg;
950 	int spincnt = 0;
951 	int more2boost;
952 
953 	trace_rcu_utilization(TPS("Start boost kthread@init"));
954 	for (;;) {
955 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
956 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
957 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
958 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
959 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
960 		more2boost = rcu_boost(rnp);
961 		if (more2boost)
962 			spincnt++;
963 		else
964 			spincnt = 0;
965 		if (spincnt > 10) {
966 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
967 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
968 			schedule_timeout_interruptible(2);
969 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
970 			spincnt = 0;
971 		}
972 	}
973 	/* NOTREACHED */
974 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
975 	return 0;
976 }
977 
978 /*
979  * Check to see if it is time to start boosting RCU readers that are
980  * blocking the current grace period, and, if so, tell the per-rcu_node
981  * kthread to start boosting them.  If there is an expedited grace
982  * period in progress, it is always time to boost.
983  *
984  * The caller must hold rnp->lock, which this function releases.
985  * The ->boost_kthread_task is immortal, so we don't need to worry
986  * about it going away.
987  */
988 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
989 	__releases(rnp->lock)
990 {
991 	struct task_struct *t;
992 
993 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
994 		rnp->n_balk_exp_gp_tasks++;
995 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
996 		return;
997 	}
998 	if (rnp->exp_tasks != NULL ||
999 	    (rnp->gp_tasks != NULL &&
1000 	     rnp->boost_tasks == NULL &&
1001 	     rnp->qsmask == 0 &&
1002 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1003 		if (rnp->exp_tasks == NULL)
1004 			rnp->boost_tasks = rnp->gp_tasks;
1005 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1006 		t = rnp->boost_kthread_task;
1007 		if (t)
1008 			rcu_wake_cond(t, rnp->boost_kthread_status);
1009 	} else {
1010 		rcu_initiate_boost_trace(rnp);
1011 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1012 	}
1013 }
1014 
1015 /*
1016  * Wake up the per-CPU kthread to invoke RCU callbacks.
1017  */
1018 static void invoke_rcu_callbacks_kthread(void)
1019 {
1020 	unsigned long flags;
1021 
1022 	local_irq_save(flags);
1023 	__this_cpu_write(rcu_cpu_has_work, 1);
1024 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1025 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1026 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1027 			      __this_cpu_read(rcu_cpu_kthread_status));
1028 	}
1029 	local_irq_restore(flags);
1030 }
1031 
1032 /*
1033  * Is the current CPU running the RCU-callbacks kthread?
1034  * Caller must have preemption disabled.
1035  */
1036 static bool rcu_is_callbacks_kthread(void)
1037 {
1038 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1039 }
1040 
1041 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1042 
1043 /*
1044  * Do priority-boost accounting for the start of a new grace period.
1045  */
1046 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1047 {
1048 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1049 }
1050 
1051 /*
1052  * Create an RCU-boost kthread for the specified node if one does not
1053  * already exist.  We only create this kthread for preemptible RCU.
1054  * Returns zero if all is well, a negated errno otherwise.
1055  */
1056 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1057 				       struct rcu_node *rnp)
1058 {
1059 	int rnp_index = rnp - &rsp->node[0];
1060 	unsigned long flags;
1061 	struct sched_param sp;
1062 	struct task_struct *t;
1063 
1064 	if (rcu_state_p != rsp)
1065 		return 0;
1066 
1067 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1068 		return 0;
1069 
1070 	rsp->boost = 1;
1071 	if (rnp->boost_kthread_task != NULL)
1072 		return 0;
1073 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1074 			   "rcub/%d", rnp_index);
1075 	if (IS_ERR(t))
1076 		return PTR_ERR(t);
1077 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1078 	rnp->boost_kthread_task = t;
1079 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1080 	sp.sched_priority = kthread_prio;
1081 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1082 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1083 	return 0;
1084 }
1085 
1086 static void rcu_kthread_do_work(void)
1087 {
1088 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1089 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1090 	rcu_preempt_do_callbacks();
1091 }
1092 
1093 static void rcu_cpu_kthread_setup(unsigned int cpu)
1094 {
1095 	struct sched_param sp;
1096 
1097 	sp.sched_priority = kthread_prio;
1098 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1099 }
1100 
1101 static void rcu_cpu_kthread_park(unsigned int cpu)
1102 {
1103 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1104 }
1105 
1106 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1107 {
1108 	return __this_cpu_read(rcu_cpu_has_work);
1109 }
1110 
1111 /*
1112  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1113  * RCU softirq used in flavors and configurations of RCU that do not
1114  * support RCU priority boosting.
1115  */
1116 static void rcu_cpu_kthread(unsigned int cpu)
1117 {
1118 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1119 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1120 	int spincnt;
1121 
1122 	for (spincnt = 0; spincnt < 10; spincnt++) {
1123 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1124 		local_bh_disable();
1125 		*statusp = RCU_KTHREAD_RUNNING;
1126 		this_cpu_inc(rcu_cpu_kthread_loops);
1127 		local_irq_disable();
1128 		work = *workp;
1129 		*workp = 0;
1130 		local_irq_enable();
1131 		if (work)
1132 			rcu_kthread_do_work();
1133 		local_bh_enable();
1134 		if (*workp == 0) {
1135 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1136 			*statusp = RCU_KTHREAD_WAITING;
1137 			return;
1138 		}
1139 	}
1140 	*statusp = RCU_KTHREAD_YIELDING;
1141 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1142 	schedule_timeout_interruptible(2);
1143 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1144 	*statusp = RCU_KTHREAD_WAITING;
1145 }
1146 
1147 /*
1148  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1149  * served by the rcu_node in question.  The CPU hotplug lock is still
1150  * held, so the value of rnp->qsmaskinit will be stable.
1151  *
1152  * We don't include outgoingcpu in the affinity set, use -1 if there is
1153  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1154  * this function allows the kthread to execute on any CPU.
1155  */
1156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1157 {
1158 	struct task_struct *t = rnp->boost_kthread_task;
1159 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1160 	cpumask_var_t cm;
1161 	int cpu;
1162 
1163 	if (!t)
1164 		return;
1165 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1166 		return;
1167 	for_each_leaf_node_possible_cpu(rnp, cpu)
1168 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1169 		    cpu != outgoingcpu)
1170 			cpumask_set_cpu(cpu, cm);
1171 	if (cpumask_weight(cm) == 0)
1172 		cpumask_setall(cm);
1173 	set_cpus_allowed_ptr(t, cm);
1174 	free_cpumask_var(cm);
1175 }
1176 
1177 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1178 	.store			= &rcu_cpu_kthread_task,
1179 	.thread_should_run	= rcu_cpu_kthread_should_run,
1180 	.thread_fn		= rcu_cpu_kthread,
1181 	.thread_comm		= "rcuc/%u",
1182 	.setup			= rcu_cpu_kthread_setup,
1183 	.park			= rcu_cpu_kthread_park,
1184 };
1185 
1186 /*
1187  * Spawn boost kthreads -- called as soon as the scheduler is running.
1188  */
1189 static void __init rcu_spawn_boost_kthreads(void)
1190 {
1191 	struct rcu_node *rnp;
1192 	int cpu;
1193 
1194 	for_each_possible_cpu(cpu)
1195 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1196 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1197 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1198 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1199 }
1200 
1201 static void rcu_prepare_kthreads(int cpu)
1202 {
1203 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1204 	struct rcu_node *rnp = rdp->mynode;
1205 
1206 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1207 	if (rcu_scheduler_fully_active)
1208 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1209 }
1210 
1211 #else /* #ifdef CONFIG_RCU_BOOST */
1212 
1213 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1214 	__releases(rnp->lock)
1215 {
1216 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217 }
1218 
1219 static void invoke_rcu_callbacks_kthread(void)
1220 {
1221 	WARN_ON_ONCE(1);
1222 }
1223 
1224 static bool rcu_is_callbacks_kthread(void)
1225 {
1226 	return false;
1227 }
1228 
1229 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1230 {
1231 }
1232 
1233 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1234 {
1235 }
1236 
1237 static void __init rcu_spawn_boost_kthreads(void)
1238 {
1239 }
1240 
1241 static void rcu_prepare_kthreads(int cpu)
1242 {
1243 }
1244 
1245 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1246 
1247 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1248 
1249 /*
1250  * Check to see if any future RCU-related work will need to be done
1251  * by the current CPU, even if none need be done immediately, returning
1252  * 1 if so.  This function is part of the RCU implementation; it is -not-
1253  * an exported member of the RCU API.
1254  *
1255  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1256  * any flavor of RCU.
1257  */
1258 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1259 {
1260 	*nextevt = KTIME_MAX;
1261 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1262 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1263 }
1264 
1265 /*
1266  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1267  * after it.
1268  */
1269 static void rcu_cleanup_after_idle(void)
1270 {
1271 }
1272 
1273 /*
1274  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1275  * is nothing.
1276  */
1277 static void rcu_prepare_for_idle(void)
1278 {
1279 }
1280 
1281 /*
1282  * Don't bother keeping a running count of the number of RCU callbacks
1283  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1284  */
1285 static void rcu_idle_count_callbacks_posted(void)
1286 {
1287 }
1288 
1289 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1290 
1291 /*
1292  * This code is invoked when a CPU goes idle, at which point we want
1293  * to have the CPU do everything required for RCU so that it can enter
1294  * the energy-efficient dyntick-idle mode.  This is handled by a
1295  * state machine implemented by rcu_prepare_for_idle() below.
1296  *
1297  * The following three proprocessor symbols control this state machine:
1298  *
1299  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1300  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1301  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1302  *	benchmarkers who might otherwise be tempted to set this to a large
1303  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1304  *	system.  And if you are -that- concerned about energy efficiency,
1305  *	just power the system down and be done with it!
1306  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1307  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1308  *	callbacks pending.  Setting this too high can OOM your system.
1309  *
1310  * The values below work well in practice.  If future workloads require
1311  * adjustment, they can be converted into kernel config parameters, though
1312  * making the state machine smarter might be a better option.
1313  */
1314 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1315 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1316 
1317 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1318 module_param(rcu_idle_gp_delay, int, 0644);
1319 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1320 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1321 
1322 /*
1323  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1324  * only if it has been awhile since the last time we did so.  Afterwards,
1325  * if there are any callbacks ready for immediate invocation, return true.
1326  */
1327 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1328 {
1329 	bool cbs_ready = false;
1330 	struct rcu_data *rdp;
1331 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1332 	struct rcu_node *rnp;
1333 	struct rcu_state *rsp;
1334 
1335 	/* Exit early if we advanced recently. */
1336 	if (jiffies == rdtp->last_advance_all)
1337 		return false;
1338 	rdtp->last_advance_all = jiffies;
1339 
1340 	for_each_rcu_flavor(rsp) {
1341 		rdp = this_cpu_ptr(rsp->rda);
1342 		rnp = rdp->mynode;
1343 
1344 		/*
1345 		 * Don't bother checking unless a grace period has
1346 		 * completed since we last checked and there are
1347 		 * callbacks not yet ready to invoke.
1348 		 */
1349 		if ((rdp->completed != rnp->completed ||
1350 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1351 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1352 			note_gp_changes(rsp, rdp);
1353 
1354 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1355 			cbs_ready = true;
1356 	}
1357 	return cbs_ready;
1358 }
1359 
1360 /*
1361  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1362  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1363  * caller to set the timeout based on whether or not there are non-lazy
1364  * callbacks.
1365  *
1366  * The caller must have disabled interrupts.
1367  */
1368 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1369 {
1370 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1371 	unsigned long dj;
1372 
1373 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1374 		*nextevt = KTIME_MAX;
1375 		return 0;
1376 	}
1377 
1378 	/* Snapshot to detect later posting of non-lazy callback. */
1379 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1380 
1381 	/* If no callbacks, RCU doesn't need the CPU. */
1382 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1383 		*nextevt = KTIME_MAX;
1384 		return 0;
1385 	}
1386 
1387 	/* Attempt to advance callbacks. */
1388 	if (rcu_try_advance_all_cbs()) {
1389 		/* Some ready to invoke, so initiate later invocation. */
1390 		invoke_rcu_core();
1391 		return 1;
1392 	}
1393 	rdtp->last_accelerate = jiffies;
1394 
1395 	/* Request timer delay depending on laziness, and round. */
1396 	if (!rdtp->all_lazy) {
1397 		dj = round_up(rcu_idle_gp_delay + jiffies,
1398 			       rcu_idle_gp_delay) - jiffies;
1399 	} else {
1400 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1401 	}
1402 	*nextevt = basemono + dj * TICK_NSEC;
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Prepare a CPU for idle from an RCU perspective.  The first major task
1408  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1409  * The second major task is to check to see if a non-lazy callback has
1410  * arrived at a CPU that previously had only lazy callbacks.  The third
1411  * major task is to accelerate (that is, assign grace-period numbers to)
1412  * any recently arrived callbacks.
1413  *
1414  * The caller must have disabled interrupts.
1415  */
1416 static void rcu_prepare_for_idle(void)
1417 {
1418 	bool needwake;
1419 	struct rcu_data *rdp;
1420 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1421 	struct rcu_node *rnp;
1422 	struct rcu_state *rsp;
1423 	int tne;
1424 
1425 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1426 	    rcu_is_nocb_cpu(smp_processor_id()))
1427 		return;
1428 
1429 	/* Handle nohz enablement switches conservatively. */
1430 	tne = READ_ONCE(tick_nohz_active);
1431 	if (tne != rdtp->tick_nohz_enabled_snap) {
1432 		if (rcu_cpu_has_callbacks(NULL))
1433 			invoke_rcu_core(); /* force nohz to see update. */
1434 		rdtp->tick_nohz_enabled_snap = tne;
1435 		return;
1436 	}
1437 	if (!tne)
1438 		return;
1439 
1440 	/*
1441 	 * If a non-lazy callback arrived at a CPU having only lazy
1442 	 * callbacks, invoke RCU core for the side-effect of recalculating
1443 	 * idle duration on re-entry to idle.
1444 	 */
1445 	if (rdtp->all_lazy &&
1446 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1447 		rdtp->all_lazy = false;
1448 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1449 		invoke_rcu_core();
1450 		return;
1451 	}
1452 
1453 	/*
1454 	 * If we have not yet accelerated this jiffy, accelerate all
1455 	 * callbacks on this CPU.
1456 	 */
1457 	if (rdtp->last_accelerate == jiffies)
1458 		return;
1459 	rdtp->last_accelerate = jiffies;
1460 	for_each_rcu_flavor(rsp) {
1461 		rdp = this_cpu_ptr(rsp->rda);
1462 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1463 			continue;
1464 		rnp = rdp->mynode;
1465 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1466 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1467 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1468 		if (needwake)
1469 			rcu_gp_kthread_wake(rsp);
1470 	}
1471 }
1472 
1473 /*
1474  * Clean up for exit from idle.  Attempt to advance callbacks based on
1475  * any grace periods that elapsed while the CPU was idle, and if any
1476  * callbacks are now ready to invoke, initiate invocation.
1477  */
1478 static void rcu_cleanup_after_idle(void)
1479 {
1480 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1481 	    rcu_is_nocb_cpu(smp_processor_id()))
1482 		return;
1483 	if (rcu_try_advance_all_cbs())
1484 		invoke_rcu_core();
1485 }
1486 
1487 /*
1488  * Keep a running count of the number of non-lazy callbacks posted
1489  * on this CPU.  This running counter (which is never decremented) allows
1490  * rcu_prepare_for_idle() to detect when something out of the idle loop
1491  * posts a callback, even if an equal number of callbacks are invoked.
1492  * Of course, callbacks should only be posted from within a trace event
1493  * designed to be called from idle or from within RCU_NONIDLE().
1494  */
1495 static void rcu_idle_count_callbacks_posted(void)
1496 {
1497 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1498 }
1499 
1500 /*
1501  * Data for flushing lazy RCU callbacks at OOM time.
1502  */
1503 static atomic_t oom_callback_count;
1504 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1505 
1506 /*
1507  * RCU OOM callback -- decrement the outstanding count and deliver the
1508  * wake-up if we are the last one.
1509  */
1510 static void rcu_oom_callback(struct rcu_head *rhp)
1511 {
1512 	if (atomic_dec_and_test(&oom_callback_count))
1513 		wake_up(&oom_callback_wq);
1514 }
1515 
1516 /*
1517  * Post an rcu_oom_notify callback on the current CPU if it has at
1518  * least one lazy callback.  This will unnecessarily post callbacks
1519  * to CPUs that already have a non-lazy callback at the end of their
1520  * callback list, but this is an infrequent operation, so accept some
1521  * extra overhead to keep things simple.
1522  */
1523 static void rcu_oom_notify_cpu(void *unused)
1524 {
1525 	struct rcu_state *rsp;
1526 	struct rcu_data *rdp;
1527 
1528 	for_each_rcu_flavor(rsp) {
1529 		rdp = raw_cpu_ptr(rsp->rda);
1530 		if (rdp->qlen_lazy != 0) {
1531 			atomic_inc(&oom_callback_count);
1532 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1533 		}
1534 	}
1535 }
1536 
1537 /*
1538  * If low on memory, ensure that each CPU has a non-lazy callback.
1539  * This will wake up CPUs that have only lazy callbacks, in turn
1540  * ensuring that they free up the corresponding memory in a timely manner.
1541  * Because an uncertain amount of memory will be freed in some uncertain
1542  * timeframe, we do not claim to have freed anything.
1543  */
1544 static int rcu_oom_notify(struct notifier_block *self,
1545 			  unsigned long notused, void *nfreed)
1546 {
1547 	int cpu;
1548 
1549 	/* Wait for callbacks from earlier instance to complete. */
1550 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1551 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1552 
1553 	/*
1554 	 * Prevent premature wakeup: ensure that all increments happen
1555 	 * before there is a chance of the counter reaching zero.
1556 	 */
1557 	atomic_set(&oom_callback_count, 1);
1558 
1559 	for_each_online_cpu(cpu) {
1560 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1561 		cond_resched_rcu_qs();
1562 	}
1563 
1564 	/* Unconditionally decrement: no need to wake ourselves up. */
1565 	atomic_dec(&oom_callback_count);
1566 
1567 	return NOTIFY_OK;
1568 }
1569 
1570 static struct notifier_block rcu_oom_nb = {
1571 	.notifier_call = rcu_oom_notify
1572 };
1573 
1574 static int __init rcu_register_oom_notifier(void)
1575 {
1576 	register_oom_notifier(&rcu_oom_nb);
1577 	return 0;
1578 }
1579 early_initcall(rcu_register_oom_notifier);
1580 
1581 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1582 
1583 #ifdef CONFIG_RCU_FAST_NO_HZ
1584 
1585 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1586 {
1587 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1588 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1589 
1590 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1591 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1592 		ulong2long(nlpd),
1593 		rdtp->all_lazy ? 'L' : '.',
1594 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1595 }
1596 
1597 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1598 
1599 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1600 {
1601 	*cp = '\0';
1602 }
1603 
1604 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1605 
1606 /* Initiate the stall-info list. */
1607 static void print_cpu_stall_info_begin(void)
1608 {
1609 	pr_cont("\n");
1610 }
1611 
1612 /*
1613  * Print out diagnostic information for the specified stalled CPU.
1614  *
1615  * If the specified CPU is aware of the current RCU grace period
1616  * (flavor specified by rsp), then print the number of scheduling
1617  * clock interrupts the CPU has taken during the time that it has
1618  * been aware.  Otherwise, print the number of RCU grace periods
1619  * that this CPU is ignorant of, for example, "1" if the CPU was
1620  * aware of the previous grace period.
1621  *
1622  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1623  */
1624 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1625 {
1626 	char fast_no_hz[72];
1627 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1628 	struct rcu_dynticks *rdtp = rdp->dynticks;
1629 	char *ticks_title;
1630 	unsigned long ticks_value;
1631 
1632 	if (rsp->gpnum == rdp->gpnum) {
1633 		ticks_title = "ticks this GP";
1634 		ticks_value = rdp->ticks_this_gp;
1635 	} else {
1636 		ticks_title = "GPs behind";
1637 		ticks_value = rsp->gpnum - rdp->gpnum;
1638 	}
1639 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1640 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1641 	       cpu,
1642 	       "O."[!!cpu_online(cpu)],
1643 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1644 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1645 	       ticks_value, ticks_title,
1646 	       atomic_read(&rdtp->dynticks) & 0xfff,
1647 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1648 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1649 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1650 	       fast_no_hz);
1651 }
1652 
1653 /* Terminate the stall-info list. */
1654 static void print_cpu_stall_info_end(void)
1655 {
1656 	pr_err("\t");
1657 }
1658 
1659 /* Zero ->ticks_this_gp for all flavors of RCU. */
1660 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1661 {
1662 	rdp->ticks_this_gp = 0;
1663 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1664 }
1665 
1666 /* Increment ->ticks_this_gp for all flavors of RCU. */
1667 static void increment_cpu_stall_ticks(void)
1668 {
1669 	struct rcu_state *rsp;
1670 
1671 	for_each_rcu_flavor(rsp)
1672 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1673 }
1674 
1675 #ifdef CONFIG_RCU_NOCB_CPU
1676 
1677 /*
1678  * Offload callback processing from the boot-time-specified set of CPUs
1679  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1680  * kthread created that pulls the callbacks from the corresponding CPU,
1681  * waits for a grace period to elapse, and invokes the callbacks.
1682  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1683  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1684  * has been specified, in which case each kthread actively polls its
1685  * CPU.  (Which isn't so great for energy efficiency, but which does
1686  * reduce RCU's overhead on that CPU.)
1687  *
1688  * This is intended to be used in conjunction with Frederic Weisbecker's
1689  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1690  * running CPU-bound user-mode computations.
1691  *
1692  * Offloading of callback processing could also in theory be used as
1693  * an energy-efficiency measure because CPUs with no RCU callbacks
1694  * queued are more aggressive about entering dyntick-idle mode.
1695  */
1696 
1697 
1698 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1699 static int __init rcu_nocb_setup(char *str)
1700 {
1701 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1702 	have_rcu_nocb_mask = true;
1703 	cpulist_parse(str, rcu_nocb_mask);
1704 	return 1;
1705 }
1706 __setup("rcu_nocbs=", rcu_nocb_setup);
1707 
1708 static int __init parse_rcu_nocb_poll(char *arg)
1709 {
1710 	rcu_nocb_poll = 1;
1711 	return 0;
1712 }
1713 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1714 
1715 /*
1716  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1717  * grace period.
1718  */
1719 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1720 {
1721 	swake_up_all(sq);
1722 }
1723 
1724 /*
1725  * Set the root rcu_node structure's ->need_future_gp field
1726  * based on the sum of those of all rcu_node structures.  This does
1727  * double-count the root rcu_node structure's requests, but this
1728  * is necessary to handle the possibility of a rcu_nocb_kthread()
1729  * having awakened during the time that the rcu_node structures
1730  * were being updated for the end of the previous grace period.
1731  */
1732 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1733 {
1734 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1735 }
1736 
1737 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1738 {
1739 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1740 }
1741 
1742 static void rcu_init_one_nocb(struct rcu_node *rnp)
1743 {
1744 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1745 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1746 }
1747 
1748 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1749 /* Is the specified CPU a no-CBs CPU? */
1750 bool rcu_is_nocb_cpu(int cpu)
1751 {
1752 	if (have_rcu_nocb_mask)
1753 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1754 	return false;
1755 }
1756 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1757 
1758 /*
1759  * Kick the leader kthread for this NOCB group.
1760  */
1761 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1762 {
1763 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1764 
1765 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1766 		return;
1767 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1768 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1769 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1770 		swake_up(&rdp_leader->nocb_wq);
1771 	}
1772 }
1773 
1774 /*
1775  * Does the specified CPU need an RCU callback for the specified flavor
1776  * of rcu_barrier()?
1777  */
1778 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1779 {
1780 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1781 	unsigned long ret;
1782 #ifdef CONFIG_PROVE_RCU
1783 	struct rcu_head *rhp;
1784 #endif /* #ifdef CONFIG_PROVE_RCU */
1785 
1786 	/*
1787 	 * Check count of all no-CBs callbacks awaiting invocation.
1788 	 * There needs to be a barrier before this function is called,
1789 	 * but associated with a prior determination that no more
1790 	 * callbacks would be posted.  In the worst case, the first
1791 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1792 	 * necessarily rely on this, not a substitute for the caller
1793 	 * getting the concurrency design right!).  There must also be
1794 	 * a barrier between the following load an posting of a callback
1795 	 * (if a callback is in fact needed).  This is associated with an
1796 	 * atomic_inc() in the caller.
1797 	 */
1798 	ret = atomic_long_read(&rdp->nocb_q_count);
1799 
1800 #ifdef CONFIG_PROVE_RCU
1801 	rhp = READ_ONCE(rdp->nocb_head);
1802 	if (!rhp)
1803 		rhp = READ_ONCE(rdp->nocb_gp_head);
1804 	if (!rhp)
1805 		rhp = READ_ONCE(rdp->nocb_follower_head);
1806 
1807 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1808 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1809 	    rcu_scheduler_fully_active) {
1810 		/* RCU callback enqueued before CPU first came online??? */
1811 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1812 		       cpu, rhp->func);
1813 		WARN_ON_ONCE(1);
1814 	}
1815 #endif /* #ifdef CONFIG_PROVE_RCU */
1816 
1817 	return !!ret;
1818 }
1819 
1820 /*
1821  * Enqueue the specified string of rcu_head structures onto the specified
1822  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1823  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1824  * counts are supplied by rhcount and rhcount_lazy.
1825  *
1826  * If warranted, also wake up the kthread servicing this CPUs queues.
1827  */
1828 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1829 				    struct rcu_head *rhp,
1830 				    struct rcu_head **rhtp,
1831 				    int rhcount, int rhcount_lazy,
1832 				    unsigned long flags)
1833 {
1834 	int len;
1835 	struct rcu_head **old_rhpp;
1836 	struct task_struct *t;
1837 
1838 	/* Enqueue the callback on the nocb list and update counts. */
1839 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1840 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1841 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1842 	WRITE_ONCE(*old_rhpp, rhp);
1843 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1844 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1845 
1846 	/* If we are not being polled and there is a kthread, awaken it ... */
1847 	t = READ_ONCE(rdp->nocb_kthread);
1848 	if (rcu_nocb_poll || !t) {
1849 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1850 				    TPS("WakeNotPoll"));
1851 		return;
1852 	}
1853 	len = atomic_long_read(&rdp->nocb_q_count);
1854 	if (old_rhpp == &rdp->nocb_head) {
1855 		if (!irqs_disabled_flags(flags)) {
1856 			/* ... if queue was empty ... */
1857 			wake_nocb_leader(rdp, false);
1858 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1859 					    TPS("WakeEmpty"));
1860 		} else {
1861 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1862 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1863 					    TPS("WakeEmptyIsDeferred"));
1864 		}
1865 		rdp->qlen_last_fqs_check = 0;
1866 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1867 		/* ... or if many callbacks queued. */
1868 		if (!irqs_disabled_flags(flags)) {
1869 			wake_nocb_leader(rdp, true);
1870 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1871 					    TPS("WakeOvf"));
1872 		} else {
1873 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1874 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1875 					    TPS("WakeOvfIsDeferred"));
1876 		}
1877 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1878 	} else {
1879 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1880 	}
1881 	return;
1882 }
1883 
1884 /*
1885  * This is a helper for __call_rcu(), which invokes this when the normal
1886  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1887  * function returns failure back to __call_rcu(), which can complain
1888  * appropriately.
1889  *
1890  * Otherwise, this function queues the callback where the corresponding
1891  * "rcuo" kthread can find it.
1892  */
1893 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1894 			    bool lazy, unsigned long flags)
1895 {
1896 
1897 	if (!rcu_is_nocb_cpu(rdp->cpu))
1898 		return false;
1899 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1900 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1901 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1902 					 (unsigned long)rhp->func,
1903 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1904 					 -atomic_long_read(&rdp->nocb_q_count));
1905 	else
1906 		trace_rcu_callback(rdp->rsp->name, rhp,
1907 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1908 				   -atomic_long_read(&rdp->nocb_q_count));
1909 
1910 	/*
1911 	 * If called from an extended quiescent state with interrupts
1912 	 * disabled, invoke the RCU core in order to allow the idle-entry
1913 	 * deferred-wakeup check to function.
1914 	 */
1915 	if (irqs_disabled_flags(flags) &&
1916 	    !rcu_is_watching() &&
1917 	    cpu_online(smp_processor_id()))
1918 		invoke_rcu_core();
1919 
1920 	return true;
1921 }
1922 
1923 /*
1924  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1925  * not a no-CBs CPU.
1926  */
1927 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1928 						     struct rcu_data *rdp,
1929 						     unsigned long flags)
1930 {
1931 	long ql = rsp->qlen;
1932 	long qll = rsp->qlen_lazy;
1933 
1934 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1935 	if (!rcu_is_nocb_cpu(smp_processor_id()))
1936 		return false;
1937 	rsp->qlen = 0;
1938 	rsp->qlen_lazy = 0;
1939 
1940 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
1941 	if (rsp->orphan_donelist != NULL) {
1942 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1943 					rsp->orphan_donetail, ql, qll, flags);
1944 		ql = qll = 0;
1945 		rsp->orphan_donelist = NULL;
1946 		rsp->orphan_donetail = &rsp->orphan_donelist;
1947 	}
1948 	if (rsp->orphan_nxtlist != NULL) {
1949 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1950 					rsp->orphan_nxttail, ql, qll, flags);
1951 		ql = qll = 0;
1952 		rsp->orphan_nxtlist = NULL;
1953 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1954 	}
1955 	return true;
1956 }
1957 
1958 /*
1959  * If necessary, kick off a new grace period, and either way wait
1960  * for a subsequent grace period to complete.
1961  */
1962 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1963 {
1964 	unsigned long c;
1965 	bool d;
1966 	unsigned long flags;
1967 	bool needwake;
1968 	struct rcu_node *rnp = rdp->mynode;
1969 
1970 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1971 	needwake = rcu_start_future_gp(rnp, rdp, &c);
1972 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1973 	if (needwake)
1974 		rcu_gp_kthread_wake(rdp->rsp);
1975 
1976 	/*
1977 	 * Wait for the grace period.  Do so interruptibly to avoid messing
1978 	 * up the load average.
1979 	 */
1980 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1981 	for (;;) {
1982 		swait_event_interruptible(
1983 			rnp->nocb_gp_wq[c & 0x1],
1984 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1985 		if (likely(d))
1986 			break;
1987 		WARN_ON(signal_pending(current));
1988 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1989 	}
1990 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1991 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
1992 }
1993 
1994 /*
1995  * Leaders come here to wait for additional callbacks to show up.
1996  * This function does not return until callbacks appear.
1997  */
1998 static void nocb_leader_wait(struct rcu_data *my_rdp)
1999 {
2000 	bool firsttime = true;
2001 	bool gotcbs;
2002 	struct rcu_data *rdp;
2003 	struct rcu_head **tail;
2004 
2005 wait_again:
2006 
2007 	/* Wait for callbacks to appear. */
2008 	if (!rcu_nocb_poll) {
2009 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2010 		swait_event_interruptible(my_rdp->nocb_wq,
2011 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2012 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2013 	} else if (firsttime) {
2014 		firsttime = false; /* Don't drown trace log with "Poll"! */
2015 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2016 	}
2017 
2018 	/*
2019 	 * Each pass through the following loop checks a follower for CBs.
2020 	 * We are our own first follower.  Any CBs found are moved to
2021 	 * nocb_gp_head, where they await a grace period.
2022 	 */
2023 	gotcbs = false;
2024 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2025 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2026 		if (!rdp->nocb_gp_head)
2027 			continue;  /* No CBs here, try next follower. */
2028 
2029 		/* Move callbacks to wait-for-GP list, which is empty. */
2030 		WRITE_ONCE(rdp->nocb_head, NULL);
2031 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2032 		gotcbs = true;
2033 	}
2034 
2035 	/*
2036 	 * If there were no callbacks, sleep a bit, rescan after a
2037 	 * memory barrier, and go retry.
2038 	 */
2039 	if (unlikely(!gotcbs)) {
2040 		if (!rcu_nocb_poll)
2041 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2042 					    "WokeEmpty");
2043 		WARN_ON(signal_pending(current));
2044 		schedule_timeout_interruptible(1);
2045 
2046 		/* Rescan in case we were a victim of memory ordering. */
2047 		my_rdp->nocb_leader_sleep = true;
2048 		smp_mb();  /* Ensure _sleep true before scan. */
2049 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2050 			if (READ_ONCE(rdp->nocb_head)) {
2051 				/* Found CB, so short-circuit next wait. */
2052 				my_rdp->nocb_leader_sleep = false;
2053 				break;
2054 			}
2055 		goto wait_again;
2056 	}
2057 
2058 	/* Wait for one grace period. */
2059 	rcu_nocb_wait_gp(my_rdp);
2060 
2061 	/*
2062 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2063 	 * We set it now, but recheck for new callbacks while
2064 	 * traversing our follower list.
2065 	 */
2066 	my_rdp->nocb_leader_sleep = true;
2067 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2068 
2069 	/* Each pass through the following loop wakes a follower, if needed. */
2070 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2071 		if (READ_ONCE(rdp->nocb_head))
2072 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2073 		if (!rdp->nocb_gp_head)
2074 			continue; /* No CBs, so no need to wake follower. */
2075 
2076 		/* Append callbacks to follower's "done" list. */
2077 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2078 		*tail = rdp->nocb_gp_head;
2079 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2080 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2081 			/*
2082 			 * List was empty, wake up the follower.
2083 			 * Memory barriers supplied by atomic_long_add().
2084 			 */
2085 			swake_up(&rdp->nocb_wq);
2086 		}
2087 	}
2088 
2089 	/* If we (the leader) don't have CBs, go wait some more. */
2090 	if (!my_rdp->nocb_follower_head)
2091 		goto wait_again;
2092 }
2093 
2094 /*
2095  * Followers come here to wait for additional callbacks to show up.
2096  * This function does not return until callbacks appear.
2097  */
2098 static void nocb_follower_wait(struct rcu_data *rdp)
2099 {
2100 	bool firsttime = true;
2101 
2102 	for (;;) {
2103 		if (!rcu_nocb_poll) {
2104 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2105 					    "FollowerSleep");
2106 			swait_event_interruptible(rdp->nocb_wq,
2107 						 READ_ONCE(rdp->nocb_follower_head));
2108 		} else if (firsttime) {
2109 			/* Don't drown trace log with "Poll"! */
2110 			firsttime = false;
2111 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2112 		}
2113 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2114 			/* ^^^ Ensure CB invocation follows _head test. */
2115 			return;
2116 		}
2117 		if (!rcu_nocb_poll)
2118 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2119 					    "WokeEmpty");
2120 		WARN_ON(signal_pending(current));
2121 		schedule_timeout_interruptible(1);
2122 	}
2123 }
2124 
2125 /*
2126  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2127  * callbacks queued by the corresponding no-CBs CPU, however, there is
2128  * an optional leader-follower relationship so that the grace-period
2129  * kthreads don't have to do quite so many wakeups.
2130  */
2131 static int rcu_nocb_kthread(void *arg)
2132 {
2133 	int c, cl;
2134 	struct rcu_head *list;
2135 	struct rcu_head *next;
2136 	struct rcu_head **tail;
2137 	struct rcu_data *rdp = arg;
2138 
2139 	/* Each pass through this loop invokes one batch of callbacks */
2140 	for (;;) {
2141 		/* Wait for callbacks. */
2142 		if (rdp->nocb_leader == rdp)
2143 			nocb_leader_wait(rdp);
2144 		else
2145 			nocb_follower_wait(rdp);
2146 
2147 		/* Pull the ready-to-invoke callbacks onto local list. */
2148 		list = READ_ONCE(rdp->nocb_follower_head);
2149 		BUG_ON(!list);
2150 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2151 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2152 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2153 
2154 		/* Each pass through the following loop invokes a callback. */
2155 		trace_rcu_batch_start(rdp->rsp->name,
2156 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2157 				      atomic_long_read(&rdp->nocb_q_count), -1);
2158 		c = cl = 0;
2159 		while (list) {
2160 			next = list->next;
2161 			/* Wait for enqueuing to complete, if needed. */
2162 			while (next == NULL && &list->next != tail) {
2163 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2164 						    TPS("WaitQueue"));
2165 				schedule_timeout_interruptible(1);
2166 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2167 						    TPS("WokeQueue"));
2168 				next = list->next;
2169 			}
2170 			debug_rcu_head_unqueue(list);
2171 			local_bh_disable();
2172 			if (__rcu_reclaim(rdp->rsp->name, list))
2173 				cl++;
2174 			c++;
2175 			local_bh_enable();
2176 			list = next;
2177 		}
2178 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2179 		smp_mb__before_atomic();  /* _add after CB invocation. */
2180 		atomic_long_add(-c, &rdp->nocb_q_count);
2181 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2182 		rdp->n_nocbs_invoked += c;
2183 	}
2184 	return 0;
2185 }
2186 
2187 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2188 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2189 {
2190 	return READ_ONCE(rdp->nocb_defer_wakeup);
2191 }
2192 
2193 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2194 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2195 {
2196 	int ndw;
2197 
2198 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2199 		return;
2200 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2201 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2202 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2203 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2204 }
2205 
2206 void __init rcu_init_nohz(void)
2207 {
2208 	int cpu;
2209 	bool need_rcu_nocb_mask = true;
2210 	struct rcu_state *rsp;
2211 
2212 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2213 	need_rcu_nocb_mask = false;
2214 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2215 
2216 #if defined(CONFIG_NO_HZ_FULL)
2217 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2218 		need_rcu_nocb_mask = true;
2219 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2220 
2221 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2222 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2223 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2224 			return;
2225 		}
2226 		have_rcu_nocb_mask = true;
2227 	}
2228 	if (!have_rcu_nocb_mask)
2229 		return;
2230 
2231 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2232 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2233 	cpumask_set_cpu(0, rcu_nocb_mask);
2234 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2235 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2236 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2237 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2238 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2239 #if defined(CONFIG_NO_HZ_FULL)
2240 	if (tick_nohz_full_running)
2241 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2242 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2243 
2244 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2245 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2246 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2247 			    rcu_nocb_mask);
2248 	}
2249 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2250 		cpumask_pr_args(rcu_nocb_mask));
2251 	if (rcu_nocb_poll)
2252 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2253 
2254 	for_each_rcu_flavor(rsp) {
2255 		for_each_cpu(cpu, rcu_nocb_mask)
2256 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2257 		rcu_organize_nocb_kthreads(rsp);
2258 	}
2259 }
2260 
2261 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2262 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2263 {
2264 	rdp->nocb_tail = &rdp->nocb_head;
2265 	init_swait_queue_head(&rdp->nocb_wq);
2266 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2267 }
2268 
2269 /*
2270  * If the specified CPU is a no-CBs CPU that does not already have its
2271  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2272  * brought online out of order, this can require re-organizing the
2273  * leader-follower relationships.
2274  */
2275 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2276 {
2277 	struct rcu_data *rdp;
2278 	struct rcu_data *rdp_last;
2279 	struct rcu_data *rdp_old_leader;
2280 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2281 	struct task_struct *t;
2282 
2283 	/*
2284 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2285 	 * then nothing to do.
2286 	 */
2287 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2288 		return;
2289 
2290 	/* If we didn't spawn the leader first, reorganize! */
2291 	rdp_old_leader = rdp_spawn->nocb_leader;
2292 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2293 		rdp_last = NULL;
2294 		rdp = rdp_old_leader;
2295 		do {
2296 			rdp->nocb_leader = rdp_spawn;
2297 			if (rdp_last && rdp != rdp_spawn)
2298 				rdp_last->nocb_next_follower = rdp;
2299 			if (rdp == rdp_spawn) {
2300 				rdp = rdp->nocb_next_follower;
2301 			} else {
2302 				rdp_last = rdp;
2303 				rdp = rdp->nocb_next_follower;
2304 				rdp_last->nocb_next_follower = NULL;
2305 			}
2306 		} while (rdp);
2307 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2308 	}
2309 
2310 	/* Spawn the kthread for this CPU and RCU flavor. */
2311 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2312 			"rcuo%c/%d", rsp->abbr, cpu);
2313 	BUG_ON(IS_ERR(t));
2314 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2315 }
2316 
2317 /*
2318  * If the specified CPU is a no-CBs CPU that does not already have its
2319  * rcuo kthreads, spawn them.
2320  */
2321 static void rcu_spawn_all_nocb_kthreads(int cpu)
2322 {
2323 	struct rcu_state *rsp;
2324 
2325 	if (rcu_scheduler_fully_active)
2326 		for_each_rcu_flavor(rsp)
2327 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2328 }
2329 
2330 /*
2331  * Once the scheduler is running, spawn rcuo kthreads for all online
2332  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2333  * non-boot CPUs come online -- if this changes, we will need to add
2334  * some mutual exclusion.
2335  */
2336 static void __init rcu_spawn_nocb_kthreads(void)
2337 {
2338 	int cpu;
2339 
2340 	for_each_online_cpu(cpu)
2341 		rcu_spawn_all_nocb_kthreads(cpu);
2342 }
2343 
2344 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2345 static int rcu_nocb_leader_stride = -1;
2346 module_param(rcu_nocb_leader_stride, int, 0444);
2347 
2348 /*
2349  * Initialize leader-follower relationships for all no-CBs CPU.
2350  */
2351 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2352 {
2353 	int cpu;
2354 	int ls = rcu_nocb_leader_stride;
2355 	int nl = 0;  /* Next leader. */
2356 	struct rcu_data *rdp;
2357 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2358 	struct rcu_data *rdp_prev = NULL;
2359 
2360 	if (!have_rcu_nocb_mask)
2361 		return;
2362 	if (ls == -1) {
2363 		ls = int_sqrt(nr_cpu_ids);
2364 		rcu_nocb_leader_stride = ls;
2365 	}
2366 
2367 	/*
2368 	 * Each pass through this loop sets up one rcu_data structure and
2369 	 * spawns one rcu_nocb_kthread().
2370 	 */
2371 	for_each_cpu(cpu, rcu_nocb_mask) {
2372 		rdp = per_cpu_ptr(rsp->rda, cpu);
2373 		if (rdp->cpu >= nl) {
2374 			/* New leader, set up for followers & next leader. */
2375 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2376 			rdp->nocb_leader = rdp;
2377 			rdp_leader = rdp;
2378 		} else {
2379 			/* Another follower, link to previous leader. */
2380 			rdp->nocb_leader = rdp_leader;
2381 			rdp_prev->nocb_next_follower = rdp;
2382 		}
2383 		rdp_prev = rdp;
2384 	}
2385 }
2386 
2387 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2388 static bool init_nocb_callback_list(struct rcu_data *rdp)
2389 {
2390 	if (!rcu_is_nocb_cpu(rdp->cpu))
2391 		return false;
2392 
2393 	/* If there are early-boot callbacks, move them to nocb lists. */
2394 	if (rdp->nxtlist) {
2395 		rdp->nocb_head = rdp->nxtlist;
2396 		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2397 		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2398 		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2399 		rdp->nxtlist = NULL;
2400 		rdp->qlen = 0;
2401 		rdp->qlen_lazy = 0;
2402 	}
2403 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2404 	return true;
2405 }
2406 
2407 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2408 
2409 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2410 {
2411 	WARN_ON_ONCE(1); /* Should be dead code. */
2412 	return false;
2413 }
2414 
2415 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2416 {
2417 }
2418 
2419 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2420 {
2421 }
2422 
2423 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2424 {
2425 	return NULL;
2426 }
2427 
2428 static void rcu_init_one_nocb(struct rcu_node *rnp)
2429 {
2430 }
2431 
2432 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2433 			    bool lazy, unsigned long flags)
2434 {
2435 	return false;
2436 }
2437 
2438 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2439 						     struct rcu_data *rdp,
2440 						     unsigned long flags)
2441 {
2442 	return false;
2443 }
2444 
2445 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2446 {
2447 }
2448 
2449 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2450 {
2451 	return false;
2452 }
2453 
2454 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2455 {
2456 }
2457 
2458 static void rcu_spawn_all_nocb_kthreads(int cpu)
2459 {
2460 }
2461 
2462 static void __init rcu_spawn_nocb_kthreads(void)
2463 {
2464 }
2465 
2466 static bool init_nocb_callback_list(struct rcu_data *rdp)
2467 {
2468 	return false;
2469 }
2470 
2471 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2472 
2473 /*
2474  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2475  * arbitrarily long period of time with the scheduling-clock tick turned
2476  * off.  RCU will be paying attention to this CPU because it is in the
2477  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2478  * machine because the scheduling-clock tick has been disabled.  Therefore,
2479  * if an adaptive-ticks CPU is failing to respond to the current grace
2480  * period and has not be idle from an RCU perspective, kick it.
2481  */
2482 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2483 {
2484 #ifdef CONFIG_NO_HZ_FULL
2485 	if (tick_nohz_full_cpu(cpu))
2486 		smp_send_reschedule(cpu);
2487 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2488 }
2489 
2490 
2491 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2492 
2493 static int full_sysidle_state;		/* Current system-idle state. */
2494 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2495 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2496 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2497 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2498 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2499 
2500 /*
2501  * Invoked to note exit from irq or task transition to idle.  Note that
2502  * usermode execution does -not- count as idle here!  After all, we want
2503  * to detect full-system idle states, not RCU quiescent states and grace
2504  * periods.  The caller must have disabled interrupts.
2505  */
2506 static void rcu_sysidle_enter(int irq)
2507 {
2508 	unsigned long j;
2509 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2510 
2511 	/* If there are no nohz_full= CPUs, no need to track this. */
2512 	if (!tick_nohz_full_enabled())
2513 		return;
2514 
2515 	/* Adjust nesting, check for fully idle. */
2516 	if (irq) {
2517 		rdtp->dynticks_idle_nesting--;
2518 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2519 		if (rdtp->dynticks_idle_nesting != 0)
2520 			return;  /* Still not fully idle. */
2521 	} else {
2522 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2523 		    DYNTICK_TASK_NEST_VALUE) {
2524 			rdtp->dynticks_idle_nesting = 0;
2525 		} else {
2526 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2527 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2528 			return;  /* Still not fully idle. */
2529 		}
2530 	}
2531 
2532 	/* Record start of fully idle period. */
2533 	j = jiffies;
2534 	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2535 	smp_mb__before_atomic();
2536 	atomic_inc(&rdtp->dynticks_idle);
2537 	smp_mb__after_atomic();
2538 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2539 }
2540 
2541 /*
2542  * Unconditionally force exit from full system-idle state.  This is
2543  * invoked when a normal CPU exits idle, but must be called separately
2544  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2545  * is that the timekeeping CPU is permitted to take scheduling-clock
2546  * interrupts while the system is in system-idle state, and of course
2547  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2548  * interrupt from any other type of interrupt.
2549  */
2550 void rcu_sysidle_force_exit(void)
2551 {
2552 	int oldstate = READ_ONCE(full_sysidle_state);
2553 	int newoldstate;
2554 
2555 	/*
2556 	 * Each pass through the following loop attempts to exit full
2557 	 * system-idle state.  If contention proves to be a problem,
2558 	 * a trylock-based contention tree could be used here.
2559 	 */
2560 	while (oldstate > RCU_SYSIDLE_SHORT) {
2561 		newoldstate = cmpxchg(&full_sysidle_state,
2562 				      oldstate, RCU_SYSIDLE_NOT);
2563 		if (oldstate == newoldstate &&
2564 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2565 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2566 			return; /* We cleared it, done! */
2567 		}
2568 		oldstate = newoldstate;
2569 	}
2570 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2571 }
2572 
2573 /*
2574  * Invoked to note entry to irq or task transition from idle.  Note that
2575  * usermode execution does -not- count as idle here!  The caller must
2576  * have disabled interrupts.
2577  */
2578 static void rcu_sysidle_exit(int irq)
2579 {
2580 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2581 
2582 	/* If there are no nohz_full= CPUs, no need to track this. */
2583 	if (!tick_nohz_full_enabled())
2584 		return;
2585 
2586 	/* Adjust nesting, check for already non-idle. */
2587 	if (irq) {
2588 		rdtp->dynticks_idle_nesting++;
2589 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2590 		if (rdtp->dynticks_idle_nesting != 1)
2591 			return; /* Already non-idle. */
2592 	} else {
2593 		/*
2594 		 * Allow for irq misnesting.  Yes, it really is possible
2595 		 * to enter an irq handler then never leave it, and maybe
2596 		 * also vice versa.  Handle both possibilities.
2597 		 */
2598 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2599 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2600 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2601 			return; /* Already non-idle. */
2602 		} else {
2603 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2604 		}
2605 	}
2606 
2607 	/* Record end of idle period. */
2608 	smp_mb__before_atomic();
2609 	atomic_inc(&rdtp->dynticks_idle);
2610 	smp_mb__after_atomic();
2611 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2612 
2613 	/*
2614 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2615 	 * during a system-idle state.  This must be the case, because
2616 	 * the timekeeping CPU has to take scheduling-clock interrupts
2617 	 * during the time that the system is transitioning to full
2618 	 * system-idle state.  This means that the timekeeping CPU must
2619 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2620 	 * more than take a scheduling-clock interrupt.
2621 	 */
2622 	if (smp_processor_id() == tick_do_timer_cpu)
2623 		return;
2624 
2625 	/* Update system-idle state: We are clearly no longer fully idle! */
2626 	rcu_sysidle_force_exit();
2627 }
2628 
2629 /*
2630  * Check to see if the current CPU is idle.  Note that usermode execution
2631  * does not count as idle.  The caller must have disabled interrupts,
2632  * and must be running on tick_do_timer_cpu.
2633  */
2634 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2635 				  unsigned long *maxj)
2636 {
2637 	int cur;
2638 	unsigned long j;
2639 	struct rcu_dynticks *rdtp = rdp->dynticks;
2640 
2641 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2642 	if (!tick_nohz_full_enabled())
2643 		return;
2644 
2645 	/*
2646 	 * If some other CPU has already reported non-idle, if this is
2647 	 * not the flavor of RCU that tracks sysidle state, or if this
2648 	 * is an offline or the timekeeping CPU, nothing to do.
2649 	 */
2650 	if (!*isidle || rdp->rsp != rcu_state_p ||
2651 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2652 		return;
2653 	/* Verify affinity of current kthread. */
2654 	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2655 
2656 	/* Pick up current idle and NMI-nesting counter and check. */
2657 	cur = atomic_read(&rdtp->dynticks_idle);
2658 	if (cur & 0x1) {
2659 		*isidle = false; /* We are not idle! */
2660 		return;
2661 	}
2662 	smp_mb(); /* Read counters before timestamps. */
2663 
2664 	/* Pick up timestamps. */
2665 	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2666 	/* If this CPU entered idle more recently, update maxj timestamp. */
2667 	if (ULONG_CMP_LT(*maxj, j))
2668 		*maxj = j;
2669 }
2670 
2671 /*
2672  * Is this the flavor of RCU that is handling full-system idle?
2673  */
2674 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2675 {
2676 	return rsp == rcu_state_p;
2677 }
2678 
2679 /*
2680  * Return a delay in jiffies based on the number of CPUs, rcu_node
2681  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2682  * systems more time to transition to full-idle state in order to
2683  * avoid the cache thrashing that otherwise occur on the state variable.
2684  * Really small systems (less than a couple of tens of CPUs) should
2685  * instead use a single global atomically incremented counter, and later
2686  * versions of this will automatically reconfigure themselves accordingly.
2687  */
2688 static unsigned long rcu_sysidle_delay(void)
2689 {
2690 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2691 		return 0;
2692 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2693 }
2694 
2695 /*
2696  * Advance the full-system-idle state.  This is invoked when all of
2697  * the non-timekeeping CPUs are idle.
2698  */
2699 static void rcu_sysidle(unsigned long j)
2700 {
2701 	/* Check the current state. */
2702 	switch (READ_ONCE(full_sysidle_state)) {
2703 	case RCU_SYSIDLE_NOT:
2704 
2705 		/* First time all are idle, so note a short idle period. */
2706 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2707 		break;
2708 
2709 	case RCU_SYSIDLE_SHORT:
2710 
2711 		/*
2712 		 * Idle for a bit, time to advance to next state?
2713 		 * cmpxchg failure means race with non-idle, let them win.
2714 		 */
2715 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2716 			(void)cmpxchg(&full_sysidle_state,
2717 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2718 		break;
2719 
2720 	case RCU_SYSIDLE_LONG:
2721 
2722 		/*
2723 		 * Do an additional check pass before advancing to full.
2724 		 * cmpxchg failure means race with non-idle, let them win.
2725 		 */
2726 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2727 			(void)cmpxchg(&full_sysidle_state,
2728 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2729 		break;
2730 
2731 	default:
2732 		break;
2733 	}
2734 }
2735 
2736 /*
2737  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2738  * back to the beginning.
2739  */
2740 static void rcu_sysidle_cancel(void)
2741 {
2742 	smp_mb();
2743 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2744 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2745 }
2746 
2747 /*
2748  * Update the sysidle state based on the results of a force-quiescent-state
2749  * scan of the CPUs' dyntick-idle state.
2750  */
2751 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2752 			       unsigned long maxj, bool gpkt)
2753 {
2754 	if (rsp != rcu_state_p)
2755 		return;  /* Wrong flavor, ignore. */
2756 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2757 		return;  /* Running state machine from timekeeping CPU. */
2758 	if (isidle)
2759 		rcu_sysidle(maxj);    /* More idle! */
2760 	else
2761 		rcu_sysidle_cancel(); /* Idle is over. */
2762 }
2763 
2764 /*
2765  * Wrapper for rcu_sysidle_report() when called from the grace-period
2766  * kthread's context.
2767  */
2768 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2769 				  unsigned long maxj)
2770 {
2771 	/* If there are no nohz_full= CPUs, no need to track this. */
2772 	if (!tick_nohz_full_enabled())
2773 		return;
2774 
2775 	rcu_sysidle_report(rsp, isidle, maxj, true);
2776 }
2777 
2778 /* Callback and function for forcing an RCU grace period. */
2779 struct rcu_sysidle_head {
2780 	struct rcu_head rh;
2781 	int inuse;
2782 };
2783 
2784 static void rcu_sysidle_cb(struct rcu_head *rhp)
2785 {
2786 	struct rcu_sysidle_head *rshp;
2787 
2788 	/*
2789 	 * The following memory barrier is needed to replace the
2790 	 * memory barriers that would normally be in the memory
2791 	 * allocator.
2792 	 */
2793 	smp_mb();  /* grace period precedes setting inuse. */
2794 
2795 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2796 	WRITE_ONCE(rshp->inuse, 0);
2797 }
2798 
2799 /*
2800  * Check to see if the system is fully idle, other than the timekeeping CPU.
2801  * The caller must have disabled interrupts.  This is not intended to be
2802  * called unless tick_nohz_full_enabled().
2803  */
2804 bool rcu_sys_is_idle(void)
2805 {
2806 	static struct rcu_sysidle_head rsh;
2807 	int rss = READ_ONCE(full_sysidle_state);
2808 
2809 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2810 		return false;
2811 
2812 	/* Handle small-system case by doing a full scan of CPUs. */
2813 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2814 		int oldrss = rss - 1;
2815 
2816 		/*
2817 		 * One pass to advance to each state up to _FULL.
2818 		 * Give up if any pass fails to advance the state.
2819 		 */
2820 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2821 			int cpu;
2822 			bool isidle = true;
2823 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2824 			struct rcu_data *rdp;
2825 
2826 			/* Scan all the CPUs looking for nonidle CPUs. */
2827 			for_each_possible_cpu(cpu) {
2828 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2829 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2830 				if (!isidle)
2831 					break;
2832 			}
2833 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2834 			oldrss = rss;
2835 			rss = READ_ONCE(full_sysidle_state);
2836 		}
2837 	}
2838 
2839 	/* If this is the first observation of an idle period, record it. */
2840 	if (rss == RCU_SYSIDLE_FULL) {
2841 		rss = cmpxchg(&full_sysidle_state,
2842 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2843 		return rss == RCU_SYSIDLE_FULL;
2844 	}
2845 
2846 	smp_mb(); /* ensure rss load happens before later caller actions. */
2847 
2848 	/* If already fully idle, tell the caller (in case of races). */
2849 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2850 		return true;
2851 
2852 	/*
2853 	 * If we aren't there yet, and a grace period is not in flight,
2854 	 * initiate a grace period.  Either way, tell the caller that
2855 	 * we are not there yet.  We use an xchg() rather than an assignment
2856 	 * to make up for the memory barriers that would otherwise be
2857 	 * provided by the memory allocator.
2858 	 */
2859 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2860 	    !rcu_gp_in_progress(rcu_state_p) &&
2861 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2862 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2863 	return false;
2864 }
2865 
2866 /*
2867  * Initialize dynticks sysidle state for CPUs coming online.
2868  */
2869 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2870 {
2871 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2872 }
2873 
2874 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2875 
2876 static void rcu_sysidle_enter(int irq)
2877 {
2878 }
2879 
2880 static void rcu_sysidle_exit(int irq)
2881 {
2882 }
2883 
2884 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2885 				  unsigned long *maxj)
2886 {
2887 }
2888 
2889 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2890 {
2891 	return false;
2892 }
2893 
2894 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2895 				  unsigned long maxj)
2896 {
2897 }
2898 
2899 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2900 {
2901 }
2902 
2903 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2904 
2905 /*
2906  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2907  * grace-period kthread will do force_quiescent_state() processing?
2908  * The idea is to avoid waking up RCU core processing on such a
2909  * CPU unless the grace period has extended for too long.
2910  *
2911  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2912  * CONFIG_RCU_NOCB_CPU CPUs.
2913  */
2914 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2915 {
2916 #ifdef CONFIG_NO_HZ_FULL
2917 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2918 	    (!rcu_gp_in_progress(rsp) ||
2919 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2920 		return true;
2921 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2922 	return false;
2923 }
2924 
2925 /*
2926  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2927  * timekeeping CPU.
2928  */
2929 static void rcu_bind_gp_kthread(void)
2930 {
2931 	int __maybe_unused cpu;
2932 
2933 	if (!tick_nohz_full_enabled())
2934 		return;
2935 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2936 	cpu = tick_do_timer_cpu;
2937 	if (cpu >= 0 && cpu < nr_cpu_ids)
2938 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2939 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2940 	housekeeping_affine(current);
2941 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2942 }
2943 
2944 /* Record the current task on dyntick-idle entry. */
2945 static void rcu_dynticks_task_enter(void)
2946 {
2947 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2948 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2949 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2950 }
2951 
2952 /* Record no current task on dyntick-idle exit. */
2953 static void rcu_dynticks_task_exit(void)
2954 {
2955 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2956 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2957 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2958 }
2959