1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) 17 { 18 /* 19 * In order to read the offloaded state of an rdp in a safe 20 * and stable way and prevent from its value to be changed 21 * under us, we must either hold the barrier mutex, the cpu 22 * hotplug lock (read or write) or the nocb lock. Local 23 * non-preemptible reads are also safe. NOCB kthreads and 24 * timers have their own means of synchronization against the 25 * offloaded state updaters. 26 */ 27 RCU_LOCKDEP_WARN( 28 !(lockdep_is_held(&rcu_state.barrier_mutex) || 29 (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || 30 rcu_lockdep_is_held_nocb(rdp) || 31 (rdp == this_cpu_ptr(&rcu_data) && 32 !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || 33 rcu_current_is_nocb_kthread(rdp)), 34 "Unsafe read of RCU_NOCB offloaded state" 35 ); 36 37 return rcu_segcblist_is_offloaded(&rdp->cblist); 38 } 39 40 /* 41 * Check the RCU kernel configuration parameters and print informative 42 * messages about anything out of the ordinary. 43 */ 44 static void __init rcu_bootup_announce_oddness(void) 45 { 46 if (IS_ENABLED(CONFIG_RCU_TRACE)) 47 pr_info("\tRCU event tracing is enabled.\n"); 48 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 49 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 50 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 51 RCU_FANOUT); 52 if (rcu_fanout_exact) 53 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 54 if (IS_ENABLED(CONFIG_PROVE_RCU)) 55 pr_info("\tRCU lockdep checking is enabled.\n"); 56 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 57 pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n"); 58 if (RCU_NUM_LVLS >= 4) 59 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 60 if (RCU_FANOUT_LEAF != 16) 61 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 62 RCU_FANOUT_LEAF); 63 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 64 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 65 rcu_fanout_leaf); 66 if (nr_cpu_ids != NR_CPUS) 67 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 68 #ifdef CONFIG_RCU_BOOST 69 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 70 kthread_prio, CONFIG_RCU_BOOST_DELAY); 71 #endif 72 if (blimit != DEFAULT_RCU_BLIMIT) 73 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 74 if (qhimark != DEFAULT_RCU_QHIMARK) 75 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 76 if (qlowmark != DEFAULT_RCU_QLOMARK) 77 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 78 if (qovld != DEFAULT_RCU_QOVLD) 79 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 80 if (jiffies_till_first_fqs != ULONG_MAX) 81 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 82 if (jiffies_till_next_fqs != ULONG_MAX) 83 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 84 if (jiffies_till_sched_qs != ULONG_MAX) 85 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 86 if (rcu_kick_kthreads) 87 pr_info("\tKick kthreads if too-long grace period.\n"); 88 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 89 pr_info("\tRCU callback double-/use-after-free debug is enabled.\n"); 90 if (gp_preinit_delay) 91 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 92 if (gp_init_delay) 93 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 94 if (gp_cleanup_delay) 95 pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay); 96 if (!use_softirq) 97 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 98 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 99 pr_info("\tRCU debug extended QS entry/exit.\n"); 100 rcupdate_announce_bootup_oddness(); 101 } 102 103 #ifdef CONFIG_PREEMPT_RCU 104 105 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 106 static void rcu_read_unlock_special(struct task_struct *t); 107 108 /* 109 * Tell them what RCU they are running. 110 */ 111 static void __init rcu_bootup_announce(void) 112 { 113 pr_info("Preemptible hierarchical RCU implementation.\n"); 114 rcu_bootup_announce_oddness(); 115 } 116 117 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 118 #define RCU_GP_TASKS 0x8 119 #define RCU_EXP_TASKS 0x4 120 #define RCU_GP_BLKD 0x2 121 #define RCU_EXP_BLKD 0x1 122 123 /* 124 * Queues a task preempted within an RCU-preempt read-side critical 125 * section into the appropriate location within the ->blkd_tasks list, 126 * depending on the states of any ongoing normal and expedited grace 127 * periods. The ->gp_tasks pointer indicates which element the normal 128 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 129 * indicates which element the expedited grace period is waiting on (again, 130 * NULL if none). If a grace period is waiting on a given element in the 131 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 132 * adding a task to the tail of the list blocks any grace period that is 133 * already waiting on one of the elements. In contrast, adding a task 134 * to the head of the list won't block any grace period that is already 135 * waiting on one of the elements. 136 * 137 * This queuing is imprecise, and can sometimes make an ongoing grace 138 * period wait for a task that is not strictly speaking blocking it. 139 * Given the choice, we needlessly block a normal grace period rather than 140 * blocking an expedited grace period. 141 * 142 * Note that an endless sequence of expedited grace periods still cannot 143 * indefinitely postpone a normal grace period. Eventually, all of the 144 * fixed number of preempted tasks blocking the normal grace period that are 145 * not also blocking the expedited grace period will resume and complete 146 * their RCU read-side critical sections. At that point, the ->gp_tasks 147 * pointer will equal the ->exp_tasks pointer, at which point the end of 148 * the corresponding expedited grace period will also be the end of the 149 * normal grace period. 150 */ 151 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 152 __releases(rnp->lock) /* But leaves rrupts disabled. */ 153 { 154 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 155 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 156 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 157 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 158 struct task_struct *t = current; 159 160 raw_lockdep_assert_held_rcu_node(rnp); 161 WARN_ON_ONCE(rdp->mynode != rnp); 162 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 163 /* RCU better not be waiting on newly onlined CPUs! */ 164 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 165 rdp->grpmask); 166 167 /* 168 * Decide where to queue the newly blocked task. In theory, 169 * this could be an if-statement. In practice, when I tried 170 * that, it was quite messy. 171 */ 172 switch (blkd_state) { 173 case 0: 174 case RCU_EXP_TASKS: 175 case RCU_EXP_TASKS + RCU_GP_BLKD: 176 case RCU_GP_TASKS: 177 case RCU_GP_TASKS + RCU_EXP_TASKS: 178 179 /* 180 * Blocking neither GP, or first task blocking the normal 181 * GP but not blocking the already-waiting expedited GP. 182 * Queue at the head of the list to avoid unnecessarily 183 * blocking the already-waiting GPs. 184 */ 185 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 186 break; 187 188 case RCU_EXP_BLKD: 189 case RCU_GP_BLKD: 190 case RCU_GP_BLKD + RCU_EXP_BLKD: 191 case RCU_GP_TASKS + RCU_EXP_BLKD: 192 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 193 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 194 195 /* 196 * First task arriving that blocks either GP, or first task 197 * arriving that blocks the expedited GP (with the normal 198 * GP already waiting), or a task arriving that blocks 199 * both GPs with both GPs already waiting. Queue at the 200 * tail of the list to avoid any GP waiting on any of the 201 * already queued tasks that are not blocking it. 202 */ 203 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 204 break; 205 206 case RCU_EXP_TASKS + RCU_EXP_BLKD: 207 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 208 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 209 210 /* 211 * Second or subsequent task blocking the expedited GP. 212 * The task either does not block the normal GP, or is the 213 * first task blocking the normal GP. Queue just after 214 * the first task blocking the expedited GP. 215 */ 216 list_add(&t->rcu_node_entry, rnp->exp_tasks); 217 break; 218 219 case RCU_GP_TASKS + RCU_GP_BLKD: 220 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 221 222 /* 223 * Second or subsequent task blocking the normal GP. 224 * The task does not block the expedited GP. Queue just 225 * after the first task blocking the normal GP. 226 */ 227 list_add(&t->rcu_node_entry, rnp->gp_tasks); 228 break; 229 230 default: 231 232 /* Yet another exercise in excessive paranoia. */ 233 WARN_ON_ONCE(1); 234 break; 235 } 236 237 /* 238 * We have now queued the task. If it was the first one to 239 * block either grace period, update the ->gp_tasks and/or 240 * ->exp_tasks pointers, respectively, to reference the newly 241 * blocked tasks. 242 */ 243 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 244 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 245 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 246 } 247 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 248 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 249 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 250 !(rnp->qsmask & rdp->grpmask)); 251 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 252 !(rnp->expmask & rdp->grpmask)); 253 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 254 255 /* 256 * Report the quiescent state for the expedited GP. This expedited 257 * GP should not be able to end until we report, so there should be 258 * no need to check for a subsequent expedited GP. (Though we are 259 * still in a quiescent state in any case.) 260 */ 261 if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp) 262 rcu_report_exp_rdp(rdp); 263 else 264 WARN_ON_ONCE(rdp->cpu_no_qs.b.exp); 265 } 266 267 /* 268 * Record a preemptible-RCU quiescent state for the specified CPU. 269 * Note that this does not necessarily mean that the task currently running 270 * on the CPU is in a quiescent state: Instead, it means that the current 271 * grace period need not wait on any RCU read-side critical section that 272 * starts later on this CPU. It also means that if the current task is 273 * in an RCU read-side critical section, it has already added itself to 274 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 275 * current task, there might be any number of other tasks blocked while 276 * in an RCU read-side critical section. 277 * 278 * Unlike non-preemptible-RCU, quiescent state reports for expedited 279 * grace periods are handled separately via deferred quiescent states 280 * and context switch events. 281 * 282 * Callers to this function must disable preemption. 283 */ 284 static void rcu_qs(void) 285 { 286 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 287 if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) { 288 trace_rcu_grace_period(TPS("rcu_preempt"), 289 __this_cpu_read(rcu_data.gp_seq), 290 TPS("cpuqs")); 291 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 292 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 293 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 294 } 295 } 296 297 /* 298 * We have entered the scheduler, and the current task might soon be 299 * context-switched away from. If this task is in an RCU read-side 300 * critical section, we will no longer be able to rely on the CPU to 301 * record that fact, so we enqueue the task on the blkd_tasks list. 302 * The task will dequeue itself when it exits the outermost enclosing 303 * RCU read-side critical section. Therefore, the current grace period 304 * cannot be permitted to complete until the blkd_tasks list entries 305 * predating the current grace period drain, in other words, until 306 * rnp->gp_tasks becomes NULL. 307 * 308 * Caller must disable interrupts. 309 */ 310 void rcu_note_context_switch(bool preempt) 311 { 312 struct task_struct *t = current; 313 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 314 struct rcu_node *rnp; 315 316 trace_rcu_utilization(TPS("Start context switch")); 317 lockdep_assert_irqs_disabled(); 318 WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); 319 if (rcu_preempt_depth() > 0 && 320 !t->rcu_read_unlock_special.b.blocked) { 321 322 /* Possibly blocking in an RCU read-side critical section. */ 323 rnp = rdp->mynode; 324 raw_spin_lock_rcu_node(rnp); 325 t->rcu_read_unlock_special.b.blocked = true; 326 t->rcu_blocked_node = rnp; 327 328 /* 329 * Verify the CPU's sanity, trace the preemption, and 330 * then queue the task as required based on the states 331 * of any ongoing and expedited grace periods. 332 */ 333 WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp)); 334 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 335 trace_rcu_preempt_task(rcu_state.name, 336 t->pid, 337 (rnp->qsmask & rdp->grpmask) 338 ? rnp->gp_seq 339 : rcu_seq_snap(&rnp->gp_seq)); 340 rcu_preempt_ctxt_queue(rnp, rdp); 341 } else { 342 rcu_preempt_deferred_qs(t); 343 } 344 345 /* 346 * Either we were not in an RCU read-side critical section to 347 * begin with, or we have now recorded that critical section 348 * globally. Either way, we can now note a quiescent state 349 * for this CPU. Again, if we were in an RCU read-side critical 350 * section, and if that critical section was blocking the current 351 * grace period, then the fact that the task has been enqueued 352 * means that we continue to block the current grace period. 353 */ 354 rcu_qs(); 355 if (rdp->cpu_no_qs.b.exp) 356 rcu_report_exp_rdp(rdp); 357 rcu_tasks_qs(current, preempt); 358 trace_rcu_utilization(TPS("End context switch")); 359 } 360 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 361 362 /* 363 * Check for preempted RCU readers blocking the current grace period 364 * for the specified rcu_node structure. If the caller needs a reliable 365 * answer, it must hold the rcu_node's ->lock. 366 */ 367 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 368 { 369 return READ_ONCE(rnp->gp_tasks) != NULL; 370 } 371 372 /* limit value for ->rcu_read_lock_nesting. */ 373 #define RCU_NEST_PMAX (INT_MAX / 2) 374 375 static void rcu_preempt_read_enter(void) 376 { 377 WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); 378 } 379 380 static int rcu_preempt_read_exit(void) 381 { 382 int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; 383 384 WRITE_ONCE(current->rcu_read_lock_nesting, ret); 385 return ret; 386 } 387 388 static void rcu_preempt_depth_set(int val) 389 { 390 WRITE_ONCE(current->rcu_read_lock_nesting, val); 391 } 392 393 /* 394 * Preemptible RCU implementation for rcu_read_lock(). 395 * Just increment ->rcu_read_lock_nesting, shared state will be updated 396 * if we block. 397 */ 398 void __rcu_read_lock(void) 399 { 400 rcu_preempt_read_enter(); 401 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 402 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 403 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) 404 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); 405 barrier(); /* critical section after entry code. */ 406 } 407 EXPORT_SYMBOL_GPL(__rcu_read_lock); 408 409 /* 410 * Preemptible RCU implementation for rcu_read_unlock(). 411 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 412 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 413 * invoke rcu_read_unlock_special() to clean up after a context switch 414 * in an RCU read-side critical section and other special cases. 415 */ 416 void __rcu_read_unlock(void) 417 { 418 struct task_struct *t = current; 419 420 barrier(); // critical section before exit code. 421 if (rcu_preempt_read_exit() == 0) { 422 barrier(); // critical-section exit before .s check. 423 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 424 rcu_read_unlock_special(t); 425 } 426 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 427 int rrln = rcu_preempt_depth(); 428 429 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 430 } 431 } 432 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 433 434 /* 435 * Advance a ->blkd_tasks-list pointer to the next entry, instead 436 * returning NULL if at the end of the list. 437 */ 438 static struct list_head *rcu_next_node_entry(struct task_struct *t, 439 struct rcu_node *rnp) 440 { 441 struct list_head *np; 442 443 np = t->rcu_node_entry.next; 444 if (np == &rnp->blkd_tasks) 445 np = NULL; 446 return np; 447 } 448 449 /* 450 * Return true if the specified rcu_node structure has tasks that were 451 * preempted within an RCU read-side critical section. 452 */ 453 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 454 { 455 return !list_empty(&rnp->blkd_tasks); 456 } 457 458 /* 459 * Report deferred quiescent states. The deferral time can 460 * be quite short, for example, in the case of the call from 461 * rcu_read_unlock_special(). 462 */ 463 static notrace void 464 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 465 { 466 bool empty_exp; 467 bool empty_norm; 468 bool empty_exp_now; 469 struct list_head *np; 470 bool drop_boost_mutex = false; 471 struct rcu_data *rdp; 472 struct rcu_node *rnp; 473 union rcu_special special; 474 475 /* 476 * If RCU core is waiting for this CPU to exit its critical section, 477 * report the fact that it has exited. Because irqs are disabled, 478 * t->rcu_read_unlock_special cannot change. 479 */ 480 special = t->rcu_read_unlock_special; 481 rdp = this_cpu_ptr(&rcu_data); 482 if (!special.s && !rdp->cpu_no_qs.b.exp) { 483 local_irq_restore(flags); 484 return; 485 } 486 t->rcu_read_unlock_special.s = 0; 487 if (special.b.need_qs) { 488 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 489 rdp->cpu_no_qs.b.norm = false; 490 rcu_report_qs_rdp(rdp); 491 udelay(rcu_unlock_delay); 492 } else { 493 rcu_qs(); 494 } 495 } 496 497 /* 498 * Respond to a request by an expedited grace period for a 499 * quiescent state from this CPU. Note that requests from 500 * tasks are handled when removing the task from the 501 * blocked-tasks list below. 502 */ 503 if (rdp->cpu_no_qs.b.exp) 504 rcu_report_exp_rdp(rdp); 505 506 /* Clean up if blocked during RCU read-side critical section. */ 507 if (special.b.blocked) { 508 509 /* 510 * Remove this task from the list it blocked on. The task 511 * now remains queued on the rcu_node corresponding to the 512 * CPU it first blocked on, so there is no longer any need 513 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 514 */ 515 rnp = t->rcu_blocked_node; 516 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 517 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 518 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 519 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 520 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 521 (!empty_norm || rnp->qsmask)); 522 empty_exp = sync_rcu_exp_done(rnp); 523 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 524 np = rcu_next_node_entry(t, rnp); 525 list_del_init(&t->rcu_node_entry); 526 t->rcu_blocked_node = NULL; 527 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 528 rnp->gp_seq, t->pid); 529 if (&t->rcu_node_entry == rnp->gp_tasks) 530 WRITE_ONCE(rnp->gp_tasks, np); 531 if (&t->rcu_node_entry == rnp->exp_tasks) 532 WRITE_ONCE(rnp->exp_tasks, np); 533 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 534 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 535 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t; 536 if (&t->rcu_node_entry == rnp->boost_tasks) 537 WRITE_ONCE(rnp->boost_tasks, np); 538 } 539 540 /* 541 * If this was the last task on the current list, and if 542 * we aren't waiting on any CPUs, report the quiescent state. 543 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 544 * so we must take a snapshot of the expedited state. 545 */ 546 empty_exp_now = sync_rcu_exp_done(rnp); 547 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 548 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 549 rnp->gp_seq, 550 0, rnp->qsmask, 551 rnp->level, 552 rnp->grplo, 553 rnp->grphi, 554 !!rnp->gp_tasks); 555 rcu_report_unblock_qs_rnp(rnp, flags); 556 } else { 557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 558 } 559 560 /* 561 * If this was the last task on the expedited lists, 562 * then we need to report up the rcu_node hierarchy. 563 */ 564 if (!empty_exp && empty_exp_now) 565 rcu_report_exp_rnp(rnp, true); 566 567 /* Unboost if we were boosted. */ 568 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 569 rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex); 570 } else { 571 local_irq_restore(flags); 572 } 573 } 574 575 /* 576 * Is a deferred quiescent-state pending, and are we also not in 577 * an RCU read-side critical section? It is the caller's responsibility 578 * to ensure it is otherwise safe to report any deferred quiescent 579 * states. The reason for this is that it is safe to report a 580 * quiescent state during context switch even though preemption 581 * is disabled. This function cannot be expected to understand these 582 * nuances, so the caller must handle them. 583 */ 584 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t) 585 { 586 return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) || 587 READ_ONCE(t->rcu_read_unlock_special.s)) && 588 rcu_preempt_depth() == 0; 589 } 590 591 /* 592 * Report a deferred quiescent state if needed and safe to do so. 593 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 594 * not being in an RCU read-side critical section. The caller must 595 * evaluate safety in terms of interrupt, softirq, and preemption 596 * disabling. 597 */ 598 notrace void rcu_preempt_deferred_qs(struct task_struct *t) 599 { 600 unsigned long flags; 601 602 if (!rcu_preempt_need_deferred_qs(t)) 603 return; 604 local_irq_save(flags); 605 rcu_preempt_deferred_qs_irqrestore(t, flags); 606 } 607 608 /* 609 * Minimal handler to give the scheduler a chance to re-evaluate. 610 */ 611 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 612 { 613 struct rcu_data *rdp; 614 615 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 616 rdp->defer_qs_iw_pending = false; 617 } 618 619 /* 620 * Handle special cases during rcu_read_unlock(), such as needing to 621 * notify RCU core processing or task having blocked during the RCU 622 * read-side critical section. 623 */ 624 static void rcu_read_unlock_special(struct task_struct *t) 625 { 626 unsigned long flags; 627 bool irqs_were_disabled; 628 bool preempt_bh_were_disabled = 629 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 630 631 /* NMI handlers cannot block and cannot safely manipulate state. */ 632 if (in_nmi()) 633 return; 634 635 local_irq_save(flags); 636 irqs_were_disabled = irqs_disabled_flags(flags); 637 if (preempt_bh_were_disabled || irqs_were_disabled) { 638 bool expboost; // Expedited GP in flight or possible boosting. 639 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 640 struct rcu_node *rnp = rdp->mynode; 641 642 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 643 (rdp->grpmask & READ_ONCE(rnp->expmask)) || 644 (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && 645 ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) || 646 (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && 647 t->rcu_blocked_node); 648 // Need to defer quiescent state until everything is enabled. 649 if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) { 650 // Using softirq, safe to awaken, and either the 651 // wakeup is free or there is either an expedited 652 // GP in flight or a potential need to deboost. 653 raise_softirq_irqoff(RCU_SOFTIRQ); 654 } else { 655 // Enabling BH or preempt does reschedule, so... 656 // Also if no expediting and no possible deboosting, 657 // slow is OK. Plus nohz_full CPUs eventually get 658 // tick enabled. 659 set_tsk_need_resched(current); 660 set_preempt_need_resched(); 661 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 662 expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { 663 // Get scheduler to re-evaluate and call hooks. 664 // If !IRQ_WORK, FQS scan will eventually IPI. 665 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && 666 IS_ENABLED(CONFIG_PREEMPT_RT)) 667 rdp->defer_qs_iw = IRQ_WORK_INIT_HARD( 668 rcu_preempt_deferred_qs_handler); 669 else 670 init_irq_work(&rdp->defer_qs_iw, 671 rcu_preempt_deferred_qs_handler); 672 rdp->defer_qs_iw_pending = true; 673 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 674 } 675 } 676 local_irq_restore(flags); 677 return; 678 } 679 rcu_preempt_deferred_qs_irqrestore(t, flags); 680 } 681 682 /* 683 * Check that the list of blocked tasks for the newly completed grace 684 * period is in fact empty. It is a serious bug to complete a grace 685 * period that still has RCU readers blocked! This function must be 686 * invoked -before- updating this rnp's ->gp_seq. 687 * 688 * Also, if there are blocked tasks on the list, they automatically 689 * block the newly created grace period, so set up ->gp_tasks accordingly. 690 */ 691 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 692 { 693 struct task_struct *t; 694 695 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 696 raw_lockdep_assert_held_rcu_node(rnp); 697 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 698 dump_blkd_tasks(rnp, 10); 699 if (rcu_preempt_has_tasks(rnp) && 700 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 701 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 702 t = container_of(rnp->gp_tasks, struct task_struct, 703 rcu_node_entry); 704 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 705 rnp->gp_seq, t->pid); 706 } 707 WARN_ON_ONCE(rnp->qsmask); 708 } 709 710 /* 711 * Check for a quiescent state from the current CPU, including voluntary 712 * context switches for Tasks RCU. When a task blocks, the task is 713 * recorded in the corresponding CPU's rcu_node structure, which is checked 714 * elsewhere, hence this function need only check for quiescent states 715 * related to the current CPU, not to those related to tasks. 716 */ 717 static void rcu_flavor_sched_clock_irq(int user) 718 { 719 struct task_struct *t = current; 720 721 lockdep_assert_irqs_disabled(); 722 if (rcu_preempt_depth() > 0 || 723 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 724 /* No QS, force context switch if deferred. */ 725 if (rcu_preempt_need_deferred_qs(t)) { 726 set_tsk_need_resched(t); 727 set_preempt_need_resched(); 728 } 729 } else if (rcu_preempt_need_deferred_qs(t)) { 730 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 731 return; 732 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 733 rcu_qs(); /* Report immediate QS. */ 734 return; 735 } 736 737 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 738 if (rcu_preempt_depth() > 0 && 739 __this_cpu_read(rcu_data.core_needs_qs) && 740 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 741 !t->rcu_read_unlock_special.b.need_qs && 742 time_after(jiffies, rcu_state.gp_start + HZ)) 743 t->rcu_read_unlock_special.b.need_qs = true; 744 } 745 746 /* 747 * Check for a task exiting while in a preemptible-RCU read-side 748 * critical section, clean up if so. No need to issue warnings, as 749 * debug_check_no_locks_held() already does this if lockdep is enabled. 750 * Besides, if this function does anything other than just immediately 751 * return, there was a bug of some sort. Spewing warnings from this 752 * function is like as not to simply obscure important prior warnings. 753 */ 754 void exit_rcu(void) 755 { 756 struct task_struct *t = current; 757 758 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 759 rcu_preempt_depth_set(1); 760 barrier(); 761 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 762 } else if (unlikely(rcu_preempt_depth())) { 763 rcu_preempt_depth_set(1); 764 } else { 765 return; 766 } 767 __rcu_read_unlock(); 768 rcu_preempt_deferred_qs(current); 769 } 770 771 /* 772 * Dump the blocked-tasks state, but limit the list dump to the 773 * specified number of elements. 774 */ 775 static void 776 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 777 { 778 int cpu; 779 int i; 780 struct list_head *lhp; 781 struct rcu_data *rdp; 782 struct rcu_node *rnp1; 783 784 raw_lockdep_assert_held_rcu_node(rnp); 785 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 786 __func__, rnp->grplo, rnp->grphi, rnp->level, 787 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 788 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 789 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 790 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 791 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 792 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 793 READ_ONCE(rnp->exp_tasks)); 794 pr_info("%s: ->blkd_tasks", __func__); 795 i = 0; 796 list_for_each(lhp, &rnp->blkd_tasks) { 797 pr_cont(" %p", lhp); 798 if (++i >= ncheck) 799 break; 800 } 801 pr_cont("\n"); 802 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 803 rdp = per_cpu_ptr(&rcu_data, cpu); 804 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 805 cpu, ".o"[rcu_rdp_cpu_online(rdp)], 806 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 807 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 808 } 809 } 810 811 #else /* #ifdef CONFIG_PREEMPT_RCU */ 812 813 /* 814 * If strict grace periods are enabled, and if the calling 815 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately 816 * report that quiescent state and, if requested, spin for a bit. 817 */ 818 void rcu_read_unlock_strict(void) 819 { 820 struct rcu_data *rdp; 821 822 if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) 823 return; 824 rdp = this_cpu_ptr(&rcu_data); 825 rdp->cpu_no_qs.b.norm = false; 826 rcu_report_qs_rdp(rdp); 827 udelay(rcu_unlock_delay); 828 } 829 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); 830 831 /* 832 * Tell them what RCU they are running. 833 */ 834 static void __init rcu_bootup_announce(void) 835 { 836 pr_info("Hierarchical RCU implementation.\n"); 837 rcu_bootup_announce_oddness(); 838 } 839 840 /* 841 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 842 * how many quiescent states passed, just if there was at least one since 843 * the start of the grace period, this just sets a flag. The caller must 844 * have disabled preemption. 845 */ 846 static void rcu_qs(void) 847 { 848 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 849 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 850 return; 851 trace_rcu_grace_period(TPS("rcu_sched"), 852 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 853 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 854 if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 855 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 856 } 857 858 /* 859 * Register an urgently needed quiescent state. If there is an 860 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 861 * dyntick-idle quiescent state visible to other CPUs, which will in 862 * some cases serve for expedited as well as normal grace periods. 863 * Either way, register a lightweight quiescent state. 864 */ 865 void rcu_all_qs(void) 866 { 867 unsigned long flags; 868 869 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 870 return; 871 preempt_disable(); // For CONFIG_PREEMPT_COUNT=y kernels 872 /* Load rcu_urgent_qs before other flags. */ 873 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 874 preempt_enable(); 875 return; 876 } 877 this_cpu_write(rcu_data.rcu_urgent_qs, false); 878 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 879 local_irq_save(flags); 880 rcu_momentary_dyntick_idle(); 881 local_irq_restore(flags); 882 } 883 rcu_qs(); 884 preempt_enable(); 885 } 886 EXPORT_SYMBOL_GPL(rcu_all_qs); 887 888 /* 889 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 890 */ 891 void rcu_note_context_switch(bool preempt) 892 { 893 trace_rcu_utilization(TPS("Start context switch")); 894 rcu_qs(); 895 /* Load rcu_urgent_qs before other flags. */ 896 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 897 goto out; 898 this_cpu_write(rcu_data.rcu_urgent_qs, false); 899 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 900 rcu_momentary_dyntick_idle(); 901 out: 902 rcu_tasks_qs(current, preempt); 903 trace_rcu_utilization(TPS("End context switch")); 904 } 905 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 906 907 /* 908 * Because preemptible RCU does not exist, there are never any preempted 909 * RCU readers. 910 */ 911 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 912 { 913 return 0; 914 } 915 916 /* 917 * Because there is no preemptible RCU, there can be no readers blocked. 918 */ 919 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 920 { 921 return false; 922 } 923 924 /* 925 * Because there is no preemptible RCU, there can be no deferred quiescent 926 * states. 927 */ 928 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t) 929 { 930 return false; 931 } 932 933 // Except that we do need to respond to a request by an expedited 934 // grace period for a quiescent state from this CPU. Note that in 935 // non-preemptible kernels, there can be no context switches within RCU 936 // read-side critical sections, which in turn means that the leaf rcu_node 937 // structure's blocked-tasks list is always empty. is therefore no need to 938 // actually check it. Instead, a quiescent state from this CPU suffices, 939 // and this function is only called from such a quiescent state. 940 notrace void rcu_preempt_deferred_qs(struct task_struct *t) 941 { 942 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 943 944 if (rdp->cpu_no_qs.b.exp) 945 rcu_report_exp_rdp(rdp); 946 } 947 948 /* 949 * Because there is no preemptible RCU, there can be no readers blocked, 950 * so there is no need to check for blocked tasks. So check only for 951 * bogus qsmask values. 952 */ 953 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 954 { 955 WARN_ON_ONCE(rnp->qsmask); 956 } 957 958 /* 959 * Check to see if this CPU is in a non-context-switch quiescent state, 960 * namely user mode and idle loop. 961 */ 962 static void rcu_flavor_sched_clock_irq(int user) 963 { 964 if (user || rcu_is_cpu_rrupt_from_idle()) { 965 966 /* 967 * Get here if this CPU took its interrupt from user 968 * mode or from the idle loop, and if this is not a 969 * nested interrupt. In this case, the CPU is in 970 * a quiescent state, so note it. 971 * 972 * No memory barrier is required here because rcu_qs() 973 * references only CPU-local variables that other CPUs 974 * neither access nor modify, at least not while the 975 * corresponding CPU is online. 976 */ 977 rcu_qs(); 978 } 979 } 980 981 /* 982 * Because preemptible RCU does not exist, tasks cannot possibly exit 983 * while in preemptible RCU read-side critical sections. 984 */ 985 void exit_rcu(void) 986 { 987 } 988 989 /* 990 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 991 */ 992 static void 993 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 994 { 995 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 996 } 997 998 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 999 1000 /* 1001 * If boosting, set rcuc kthreads to realtime priority. 1002 */ 1003 static void rcu_cpu_kthread_setup(unsigned int cpu) 1004 { 1005 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1006 #ifdef CONFIG_RCU_BOOST 1007 struct sched_param sp; 1008 1009 sp.sched_priority = kthread_prio; 1010 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1011 #endif /* #ifdef CONFIG_RCU_BOOST */ 1012 1013 WRITE_ONCE(rdp->rcuc_activity, jiffies); 1014 } 1015 1016 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp) 1017 { 1018 #ifdef CONFIG_RCU_NOCB_CPU 1019 return rdp->nocb_cb_kthread == current; 1020 #else 1021 return false; 1022 #endif 1023 } 1024 1025 /* 1026 * Is the current CPU running the RCU-callbacks kthread? 1027 * Caller must have preemption disabled. 1028 */ 1029 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp) 1030 { 1031 return rdp->rcu_cpu_kthread_task == current || 1032 rcu_is_callbacks_nocb_kthread(rdp); 1033 } 1034 1035 #ifdef CONFIG_RCU_BOOST 1036 1037 /* 1038 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1039 * or ->boost_tasks, advancing the pointer to the next task in the 1040 * ->blkd_tasks list. 1041 * 1042 * Note that irqs must be enabled: boosting the task can block. 1043 * Returns 1 if there are more tasks needing to be boosted. 1044 */ 1045 static int rcu_boost(struct rcu_node *rnp) 1046 { 1047 unsigned long flags; 1048 struct task_struct *t; 1049 struct list_head *tb; 1050 1051 if (READ_ONCE(rnp->exp_tasks) == NULL && 1052 READ_ONCE(rnp->boost_tasks) == NULL) 1053 return 0; /* Nothing left to boost. */ 1054 1055 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1056 1057 /* 1058 * Recheck under the lock: all tasks in need of boosting 1059 * might exit their RCU read-side critical sections on their own. 1060 */ 1061 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1062 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1063 return 0; 1064 } 1065 1066 /* 1067 * Preferentially boost tasks blocking expedited grace periods. 1068 * This cannot starve the normal grace periods because a second 1069 * expedited grace period must boost all blocked tasks, including 1070 * those blocking the pre-existing normal grace period. 1071 */ 1072 if (rnp->exp_tasks != NULL) 1073 tb = rnp->exp_tasks; 1074 else 1075 tb = rnp->boost_tasks; 1076 1077 /* 1078 * We boost task t by manufacturing an rt_mutex that appears to 1079 * be held by task t. We leave a pointer to that rt_mutex where 1080 * task t can find it, and task t will release the mutex when it 1081 * exits its outermost RCU read-side critical section. Then 1082 * simply acquiring this artificial rt_mutex will boost task 1083 * t's priority. (Thanks to tglx for suggesting this approach!) 1084 * 1085 * Note that task t must acquire rnp->lock to remove itself from 1086 * the ->blkd_tasks list, which it will do from exit() if from 1087 * nowhere else. We therefore are guaranteed that task t will 1088 * stay around at least until we drop rnp->lock. Note that 1089 * rnp->lock also resolves races between our priority boosting 1090 * and task t's exiting its outermost RCU read-side critical 1091 * section. 1092 */ 1093 t = container_of(tb, struct task_struct, rcu_node_entry); 1094 rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); 1095 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1096 /* Lock only for side effect: boosts task t's priority. */ 1097 rt_mutex_lock(&rnp->boost_mtx); 1098 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1099 rnp->n_boosts++; 1100 1101 return READ_ONCE(rnp->exp_tasks) != NULL || 1102 READ_ONCE(rnp->boost_tasks) != NULL; 1103 } 1104 1105 /* 1106 * Priority-boosting kthread, one per leaf rcu_node. 1107 */ 1108 static int rcu_boost_kthread(void *arg) 1109 { 1110 struct rcu_node *rnp = (struct rcu_node *)arg; 1111 int spincnt = 0; 1112 int more2boost; 1113 1114 trace_rcu_utilization(TPS("Start boost kthread@init")); 1115 for (;;) { 1116 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1117 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1118 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1119 READ_ONCE(rnp->exp_tasks)); 1120 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1121 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1122 more2boost = rcu_boost(rnp); 1123 if (more2boost) 1124 spincnt++; 1125 else 1126 spincnt = 0; 1127 if (spincnt > 10) { 1128 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1129 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1130 schedule_timeout_idle(2); 1131 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1132 spincnt = 0; 1133 } 1134 } 1135 /* NOTREACHED */ 1136 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1137 return 0; 1138 } 1139 1140 /* 1141 * Check to see if it is time to start boosting RCU readers that are 1142 * blocking the current grace period, and, if so, tell the per-rcu_node 1143 * kthread to start boosting them. If there is an expedited grace 1144 * period in progress, it is always time to boost. 1145 * 1146 * The caller must hold rnp->lock, which this function releases. 1147 * The ->boost_kthread_task is immortal, so we don't need to worry 1148 * about it going away. 1149 */ 1150 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1151 __releases(rnp->lock) 1152 { 1153 raw_lockdep_assert_held_rcu_node(rnp); 1154 if (!rnp->boost_kthread_task || 1155 (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) { 1156 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1157 return; 1158 } 1159 if (rnp->exp_tasks != NULL || 1160 (rnp->gp_tasks != NULL && 1161 rnp->boost_tasks == NULL && 1162 rnp->qsmask == 0 && 1163 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld || 1164 IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) { 1165 if (rnp->exp_tasks == NULL) 1166 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1167 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1168 rcu_wake_cond(rnp->boost_kthread_task, 1169 READ_ONCE(rnp->boost_kthread_status)); 1170 } else { 1171 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1172 } 1173 } 1174 1175 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1176 1177 /* 1178 * Do priority-boost accounting for the start of a new grace period. 1179 */ 1180 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1181 { 1182 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1183 } 1184 1185 /* 1186 * Create an RCU-boost kthread for the specified node if one does not 1187 * already exist. We only create this kthread for preemptible RCU. 1188 */ 1189 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1190 { 1191 unsigned long flags; 1192 int rnp_index = rnp - rcu_get_root(); 1193 struct sched_param sp; 1194 struct task_struct *t; 1195 1196 mutex_lock(&rnp->boost_kthread_mutex); 1197 if (rnp->boost_kthread_task || !rcu_scheduler_fully_active) 1198 goto out; 1199 1200 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1201 "rcub/%d", rnp_index); 1202 if (WARN_ON_ONCE(IS_ERR(t))) 1203 goto out; 1204 1205 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1206 rnp->boost_kthread_task = t; 1207 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1208 sp.sched_priority = kthread_prio; 1209 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1210 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1211 1212 out: 1213 mutex_unlock(&rnp->boost_kthread_mutex); 1214 } 1215 1216 /* 1217 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1218 * served by the rcu_node in question. The CPU hotplug lock is still 1219 * held, so the value of rnp->qsmaskinit will be stable. 1220 * 1221 * We don't include outgoingcpu in the affinity set, use -1 if there is 1222 * no outgoing CPU. If there are no CPUs left in the affinity set, 1223 * this function allows the kthread to execute on any CPU. 1224 * 1225 * Any future concurrent calls are serialized via ->boost_kthread_mutex. 1226 */ 1227 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1228 { 1229 struct task_struct *t = rnp->boost_kthread_task; 1230 unsigned long mask; 1231 cpumask_var_t cm; 1232 int cpu; 1233 1234 if (!t) 1235 return; 1236 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1237 return; 1238 mutex_lock(&rnp->boost_kthread_mutex); 1239 mask = rcu_rnp_online_cpus(rnp); 1240 for_each_leaf_node_possible_cpu(rnp, cpu) 1241 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1242 cpu != outgoingcpu) 1243 cpumask_set_cpu(cpu, cm); 1244 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); 1245 if (cpumask_empty(cm)) { 1246 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); 1247 if (outgoingcpu >= 0) 1248 cpumask_clear_cpu(outgoingcpu, cm); 1249 } 1250 set_cpus_allowed_ptr(t, cm); 1251 mutex_unlock(&rnp->boost_kthread_mutex); 1252 free_cpumask_var(cm); 1253 } 1254 1255 #else /* #ifdef CONFIG_RCU_BOOST */ 1256 1257 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1258 __releases(rnp->lock) 1259 { 1260 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1261 } 1262 1263 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1264 { 1265 } 1266 1267 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1268 { 1269 } 1270 1271 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1272 { 1273 } 1274 1275 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1276 1277 /* 1278 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 1279 * grace-period kthread will do force_quiescent_state() processing? 1280 * The idea is to avoid waking up RCU core processing on such a 1281 * CPU unless the grace period has extended for too long. 1282 * 1283 * This code relies on the fact that all NO_HZ_FULL CPUs are also 1284 * RCU_NOCB_CPU CPUs. 1285 */ 1286 static bool rcu_nohz_full_cpu(void) 1287 { 1288 #ifdef CONFIG_NO_HZ_FULL 1289 if (tick_nohz_full_cpu(smp_processor_id()) && 1290 (!rcu_gp_in_progress() || 1291 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 1292 return true; 1293 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 1294 return false; 1295 } 1296 1297 /* 1298 * Bind the RCU grace-period kthreads to the housekeeping CPU. 1299 */ 1300 static void rcu_bind_gp_kthread(void) 1301 { 1302 if (!tick_nohz_full_enabled()) 1303 return; 1304 housekeeping_affine(current, HK_TYPE_RCU); 1305 } 1306