1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #ifdef CONFIG_RCU_BOOST 34 35 #include "../locking/rtmutex_common.h" 36 37 /* 38 * Control variables for per-CPU and per-rcu_node kthreads. These 39 * handle all flavors of RCU. 40 */ 41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 44 DEFINE_PER_CPU(char, rcu_cpu_has_work); 45 46 #endif /* #ifdef CONFIG_RCU_BOOST */ 47 48 #ifdef CONFIG_RCU_NOCB_CPU 49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 50 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 51 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 52 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 53 54 /* 55 * Check the RCU kernel configuration parameters and print informative 56 * messages about anything out of the ordinary. If you like #ifdef, you 57 * will love this function. 58 */ 59 static void __init rcu_bootup_announce_oddness(void) 60 { 61 #ifdef CONFIG_RCU_TRACE 62 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 63 #endif 64 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32) 65 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 66 CONFIG_RCU_FANOUT); 67 #endif 68 #ifdef CONFIG_RCU_FANOUT_EXACT 69 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 70 #endif 71 #ifdef CONFIG_RCU_FAST_NO_HZ 72 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 73 #endif 74 #ifdef CONFIG_PROVE_RCU 75 pr_info("\tRCU lockdep checking is enabled.\n"); 76 #endif 77 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE 78 pr_info("\tRCU torture testing starts during boot.\n"); 79 #endif 80 #if defined(CONFIG_RCU_CPU_STALL_INFO) 81 pr_info("\tAdditional per-CPU info printed with stalls.\n"); 82 #endif 83 #if NUM_RCU_LVL_4 != 0 84 pr_info("\tFour-level hierarchy is enabled.\n"); 85 #endif 86 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) 87 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 88 if (nr_cpu_ids != NR_CPUS) 89 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 90 #ifdef CONFIG_RCU_BOOST 91 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 92 #endif 93 } 94 95 #ifdef CONFIG_PREEMPT_RCU 96 97 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 98 static struct rcu_state *rcu_state_p = &rcu_preempt_state; 99 100 static int rcu_preempted_readers_exp(struct rcu_node *rnp); 101 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 102 bool wake); 103 104 /* 105 * Tell them what RCU they are running. 106 */ 107 static void __init rcu_bootup_announce(void) 108 { 109 pr_info("Preemptible hierarchical RCU implementation.\n"); 110 rcu_bootup_announce_oddness(); 111 } 112 113 /* 114 * Record a preemptible-RCU quiescent state for the specified CPU. Note 115 * that this just means that the task currently running on the CPU is 116 * not in a quiescent state. There might be any number of tasks blocked 117 * while in an RCU read-side critical section. 118 * 119 * As with the other rcu_*_qs() functions, callers to this function 120 * must disable preemption. 121 */ 122 static void rcu_preempt_qs(void) 123 { 124 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) { 125 trace_rcu_grace_period(TPS("rcu_preempt"), 126 __this_cpu_read(rcu_preempt_data.gpnum), 127 TPS("cpuqs")); 128 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1); 129 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 130 current->rcu_read_unlock_special.b.need_qs = false; 131 } 132 } 133 134 /* 135 * We have entered the scheduler, and the current task might soon be 136 * context-switched away from. If this task is in an RCU read-side 137 * critical section, we will no longer be able to rely on the CPU to 138 * record that fact, so we enqueue the task on the blkd_tasks list. 139 * The task will dequeue itself when it exits the outermost enclosing 140 * RCU read-side critical section. Therefore, the current grace period 141 * cannot be permitted to complete until the blkd_tasks list entries 142 * predating the current grace period drain, in other words, until 143 * rnp->gp_tasks becomes NULL. 144 * 145 * Caller must disable preemption. 146 */ 147 static void rcu_preempt_note_context_switch(void) 148 { 149 struct task_struct *t = current; 150 unsigned long flags; 151 struct rcu_data *rdp; 152 struct rcu_node *rnp; 153 154 if (t->rcu_read_lock_nesting > 0 && 155 !t->rcu_read_unlock_special.b.blocked) { 156 157 /* Possibly blocking in an RCU read-side critical section. */ 158 rdp = this_cpu_ptr(rcu_preempt_state.rda); 159 rnp = rdp->mynode; 160 raw_spin_lock_irqsave(&rnp->lock, flags); 161 smp_mb__after_unlock_lock(); 162 t->rcu_read_unlock_special.b.blocked = true; 163 t->rcu_blocked_node = rnp; 164 165 /* 166 * If this CPU has already checked in, then this task 167 * will hold up the next grace period rather than the 168 * current grace period. Queue the task accordingly. 169 * If the task is queued for the current grace period 170 * (i.e., this CPU has not yet passed through a quiescent 171 * state for the current grace period), then as long 172 * as that task remains queued, the current grace period 173 * cannot end. Note that there is some uncertainty as 174 * to exactly when the current grace period started. 175 * We take a conservative approach, which can result 176 * in unnecessarily waiting on tasks that started very 177 * slightly after the current grace period began. C'est 178 * la vie!!! 179 * 180 * But first, note that the current CPU must still be 181 * on line! 182 */ 183 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); 184 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 185 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { 186 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); 187 rnp->gp_tasks = &t->rcu_node_entry; 188 #ifdef CONFIG_RCU_BOOST 189 if (rnp->boost_tasks != NULL) 190 rnp->boost_tasks = rnp->gp_tasks; 191 #endif /* #ifdef CONFIG_RCU_BOOST */ 192 } else { 193 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 194 if (rnp->qsmask & rdp->grpmask) 195 rnp->gp_tasks = &t->rcu_node_entry; 196 } 197 trace_rcu_preempt_task(rdp->rsp->name, 198 t->pid, 199 (rnp->qsmask & rdp->grpmask) 200 ? rnp->gpnum 201 : rnp->gpnum + 1); 202 raw_spin_unlock_irqrestore(&rnp->lock, flags); 203 } else if (t->rcu_read_lock_nesting < 0 && 204 t->rcu_read_unlock_special.s) { 205 206 /* 207 * Complete exit from RCU read-side critical section on 208 * behalf of preempted instance of __rcu_read_unlock(). 209 */ 210 rcu_read_unlock_special(t); 211 } 212 213 /* 214 * Either we were not in an RCU read-side critical section to 215 * begin with, or we have now recorded that critical section 216 * globally. Either way, we can now note a quiescent state 217 * for this CPU. Again, if we were in an RCU read-side critical 218 * section, and if that critical section was blocking the current 219 * grace period, then the fact that the task has been enqueued 220 * means that we continue to block the current grace period. 221 */ 222 rcu_preempt_qs(); 223 } 224 225 /* 226 * Check for preempted RCU readers blocking the current grace period 227 * for the specified rcu_node structure. If the caller needs a reliable 228 * answer, it must hold the rcu_node's ->lock. 229 */ 230 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 231 { 232 return rnp->gp_tasks != NULL; 233 } 234 235 /* 236 * Record a quiescent state for all tasks that were previously queued 237 * on the specified rcu_node structure and that were blocking the current 238 * RCU grace period. The caller must hold the specified rnp->lock with 239 * irqs disabled, and this lock is released upon return, but irqs remain 240 * disabled. 241 */ 242 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 243 __releases(rnp->lock) 244 { 245 unsigned long mask; 246 struct rcu_node *rnp_p; 247 248 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 249 raw_spin_unlock_irqrestore(&rnp->lock, flags); 250 return; /* Still need more quiescent states! */ 251 } 252 253 rnp_p = rnp->parent; 254 if (rnp_p == NULL) { 255 /* 256 * Either there is only one rcu_node in the tree, 257 * or tasks were kicked up to root rcu_node due to 258 * CPUs going offline. 259 */ 260 rcu_report_qs_rsp(&rcu_preempt_state, flags); 261 return; 262 } 263 264 /* Report up the rest of the hierarchy. */ 265 mask = rnp->grpmask; 266 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 267 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ 268 smp_mb__after_unlock_lock(); 269 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags); 270 } 271 272 /* 273 * Advance a ->blkd_tasks-list pointer to the next entry, instead 274 * returning NULL if at the end of the list. 275 */ 276 static struct list_head *rcu_next_node_entry(struct task_struct *t, 277 struct rcu_node *rnp) 278 { 279 struct list_head *np; 280 281 np = t->rcu_node_entry.next; 282 if (np == &rnp->blkd_tasks) 283 np = NULL; 284 return np; 285 } 286 287 /* 288 * Return true if the specified rcu_node structure has tasks that were 289 * preempted within an RCU read-side critical section. 290 */ 291 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 292 { 293 return !list_empty(&rnp->blkd_tasks); 294 } 295 296 /* 297 * Handle special cases during rcu_read_unlock(), such as needing to 298 * notify RCU core processing or task having blocked during the RCU 299 * read-side critical section. 300 */ 301 void rcu_read_unlock_special(struct task_struct *t) 302 { 303 bool empty; 304 bool empty_exp; 305 bool empty_norm; 306 bool empty_exp_now; 307 unsigned long flags; 308 struct list_head *np; 309 #ifdef CONFIG_RCU_BOOST 310 bool drop_boost_mutex = false; 311 #endif /* #ifdef CONFIG_RCU_BOOST */ 312 struct rcu_node *rnp; 313 union rcu_special special; 314 315 /* NMI handlers cannot block and cannot safely manipulate state. */ 316 if (in_nmi()) 317 return; 318 319 local_irq_save(flags); 320 321 /* 322 * If RCU core is waiting for this CPU to exit critical section, 323 * let it know that we have done so. Because irqs are disabled, 324 * t->rcu_read_unlock_special cannot change. 325 */ 326 special = t->rcu_read_unlock_special; 327 if (special.b.need_qs) { 328 rcu_preempt_qs(); 329 t->rcu_read_unlock_special.b.need_qs = false; 330 if (!t->rcu_read_unlock_special.s) { 331 local_irq_restore(flags); 332 return; 333 } 334 } 335 336 /* Hardware IRQ handlers cannot block, complain if they get here. */ 337 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) { 338 local_irq_restore(flags); 339 return; 340 } 341 342 /* Clean up if blocked during RCU read-side critical section. */ 343 if (special.b.blocked) { 344 t->rcu_read_unlock_special.b.blocked = false; 345 346 /* 347 * Remove this task from the list it blocked on. The 348 * task can migrate while we acquire the lock, but at 349 * most one time. So at most two passes through loop. 350 */ 351 for (;;) { 352 rnp = t->rcu_blocked_node; 353 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 354 smp_mb__after_unlock_lock(); 355 if (rnp == t->rcu_blocked_node) 356 break; 357 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 358 } 359 empty = !rcu_preempt_has_tasks(rnp); 360 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 361 empty_exp = !rcu_preempted_readers_exp(rnp); 362 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 363 np = rcu_next_node_entry(t, rnp); 364 list_del_init(&t->rcu_node_entry); 365 t->rcu_blocked_node = NULL; 366 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 367 rnp->gpnum, t->pid); 368 if (&t->rcu_node_entry == rnp->gp_tasks) 369 rnp->gp_tasks = np; 370 if (&t->rcu_node_entry == rnp->exp_tasks) 371 rnp->exp_tasks = np; 372 #ifdef CONFIG_RCU_BOOST 373 if (&t->rcu_node_entry == rnp->boost_tasks) 374 rnp->boost_tasks = np; 375 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */ 376 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 377 #endif /* #ifdef CONFIG_RCU_BOOST */ 378 379 /* 380 * If this was the last task on the list, go see if we 381 * need to propagate ->qsmaskinit bit clearing up the 382 * rcu_node tree. 383 */ 384 if (!empty && !rcu_preempt_has_tasks(rnp)) 385 rcu_cleanup_dead_rnp(rnp); 386 387 /* 388 * If this was the last task on the current list, and if 389 * we aren't waiting on any CPUs, report the quiescent state. 390 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 391 * so we must take a snapshot of the expedited state. 392 */ 393 empty_exp_now = !rcu_preempted_readers_exp(rnp); 394 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 395 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 396 rnp->gpnum, 397 0, rnp->qsmask, 398 rnp->level, 399 rnp->grplo, 400 rnp->grphi, 401 !!rnp->gp_tasks); 402 rcu_report_unblock_qs_rnp(rnp, flags); 403 } else { 404 raw_spin_unlock_irqrestore(&rnp->lock, flags); 405 } 406 407 #ifdef CONFIG_RCU_BOOST 408 /* Unboost if we were boosted. */ 409 if (drop_boost_mutex) 410 rt_mutex_unlock(&rnp->boost_mtx); 411 #endif /* #ifdef CONFIG_RCU_BOOST */ 412 413 /* 414 * If this was the last task on the expedited lists, 415 * then we need to report up the rcu_node hierarchy. 416 */ 417 if (!empty_exp && empty_exp_now) 418 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); 419 } else { 420 local_irq_restore(flags); 421 } 422 } 423 424 /* 425 * Dump detailed information for all tasks blocking the current RCU 426 * grace period on the specified rcu_node structure. 427 */ 428 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 429 { 430 unsigned long flags; 431 struct task_struct *t; 432 433 raw_spin_lock_irqsave(&rnp->lock, flags); 434 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 435 raw_spin_unlock_irqrestore(&rnp->lock, flags); 436 return; 437 } 438 t = list_entry(rnp->gp_tasks, 439 struct task_struct, rcu_node_entry); 440 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 441 sched_show_task(t); 442 raw_spin_unlock_irqrestore(&rnp->lock, flags); 443 } 444 445 /* 446 * Dump detailed information for all tasks blocking the current RCU 447 * grace period. 448 */ 449 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 450 { 451 struct rcu_node *rnp = rcu_get_root(rsp); 452 453 rcu_print_detail_task_stall_rnp(rnp); 454 rcu_for_each_leaf_node(rsp, rnp) 455 rcu_print_detail_task_stall_rnp(rnp); 456 } 457 458 #ifdef CONFIG_RCU_CPU_STALL_INFO 459 460 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 461 { 462 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 463 rnp->level, rnp->grplo, rnp->grphi); 464 } 465 466 static void rcu_print_task_stall_end(void) 467 { 468 pr_cont("\n"); 469 } 470 471 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 472 473 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 474 { 475 } 476 477 static void rcu_print_task_stall_end(void) 478 { 479 } 480 481 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 482 483 /* 484 * Scan the current list of tasks blocked within RCU read-side critical 485 * sections, printing out the tid of each. 486 */ 487 static int rcu_print_task_stall(struct rcu_node *rnp) 488 { 489 struct task_struct *t; 490 int ndetected = 0; 491 492 if (!rcu_preempt_blocked_readers_cgp(rnp)) 493 return 0; 494 rcu_print_task_stall_begin(rnp); 495 t = list_entry(rnp->gp_tasks, 496 struct task_struct, rcu_node_entry); 497 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 498 pr_cont(" P%d", t->pid); 499 ndetected++; 500 } 501 rcu_print_task_stall_end(); 502 return ndetected; 503 } 504 505 /* 506 * Check that the list of blocked tasks for the newly completed grace 507 * period is in fact empty. It is a serious bug to complete a grace 508 * period that still has RCU readers blocked! This function must be 509 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 510 * must be held by the caller. 511 * 512 * Also, if there are blocked tasks on the list, they automatically 513 * block the newly created grace period, so set up ->gp_tasks accordingly. 514 */ 515 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 516 { 517 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 518 if (rcu_preempt_has_tasks(rnp)) 519 rnp->gp_tasks = rnp->blkd_tasks.next; 520 WARN_ON_ONCE(rnp->qsmask); 521 } 522 523 #ifdef CONFIG_HOTPLUG_CPU 524 525 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 526 527 /* 528 * Check for a quiescent state from the current CPU. When a task blocks, 529 * the task is recorded in the corresponding CPU's rcu_node structure, 530 * which is checked elsewhere. 531 * 532 * Caller must disable hard irqs. 533 */ 534 static void rcu_preempt_check_callbacks(void) 535 { 536 struct task_struct *t = current; 537 538 if (t->rcu_read_lock_nesting == 0) { 539 rcu_preempt_qs(); 540 return; 541 } 542 if (t->rcu_read_lock_nesting > 0 && 543 __this_cpu_read(rcu_preempt_data.qs_pending) && 544 !__this_cpu_read(rcu_preempt_data.passed_quiesce)) 545 t->rcu_read_unlock_special.b.need_qs = true; 546 } 547 548 #ifdef CONFIG_RCU_BOOST 549 550 static void rcu_preempt_do_callbacks(void) 551 { 552 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); 553 } 554 555 #endif /* #ifdef CONFIG_RCU_BOOST */ 556 557 /* 558 * Queue a preemptible-RCU callback for invocation after a grace period. 559 */ 560 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 561 { 562 __call_rcu(head, func, &rcu_preempt_state, -1, 0); 563 } 564 EXPORT_SYMBOL_GPL(call_rcu); 565 566 /** 567 * synchronize_rcu - wait until a grace period has elapsed. 568 * 569 * Control will return to the caller some time after a full grace 570 * period has elapsed, in other words after all currently executing RCU 571 * read-side critical sections have completed. Note, however, that 572 * upon return from synchronize_rcu(), the caller might well be executing 573 * concurrently with new RCU read-side critical sections that began while 574 * synchronize_rcu() was waiting. RCU read-side critical sections are 575 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 576 * 577 * See the description of synchronize_sched() for more detailed information 578 * on memory ordering guarantees. 579 */ 580 void synchronize_rcu(void) 581 { 582 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 583 !lock_is_held(&rcu_lock_map) && 584 !lock_is_held(&rcu_sched_lock_map), 585 "Illegal synchronize_rcu() in RCU read-side critical section"); 586 if (!rcu_scheduler_active) 587 return; 588 if (rcu_expedited) 589 synchronize_rcu_expedited(); 590 else 591 wait_rcu_gp(call_rcu); 592 } 593 EXPORT_SYMBOL_GPL(synchronize_rcu); 594 595 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); 596 static unsigned long sync_rcu_preempt_exp_count; 597 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); 598 599 /* 600 * Return non-zero if there are any tasks in RCU read-side critical 601 * sections blocking the current preemptible-RCU expedited grace period. 602 * If there is no preemptible-RCU expedited grace period currently in 603 * progress, returns zero unconditionally. 604 */ 605 static int rcu_preempted_readers_exp(struct rcu_node *rnp) 606 { 607 return rnp->exp_tasks != NULL; 608 } 609 610 /* 611 * return non-zero if there is no RCU expedited grace period in progress 612 * for the specified rcu_node structure, in other words, if all CPUs and 613 * tasks covered by the specified rcu_node structure have done their bit 614 * for the current expedited grace period. Works only for preemptible 615 * RCU -- other RCU implementation use other means. 616 * 617 * Caller must hold sync_rcu_preempt_exp_mutex. 618 */ 619 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) 620 { 621 return !rcu_preempted_readers_exp(rnp) && 622 ACCESS_ONCE(rnp->expmask) == 0; 623 } 624 625 /* 626 * Report the exit from RCU read-side critical section for the last task 627 * that queued itself during or before the current expedited preemptible-RCU 628 * grace period. This event is reported either to the rcu_node structure on 629 * which the task was queued or to one of that rcu_node structure's ancestors, 630 * recursively up the tree. (Calm down, calm down, we do the recursion 631 * iteratively!) 632 * 633 * Most callers will set the "wake" flag, but the task initiating the 634 * expedited grace period need not wake itself. 635 * 636 * Caller must hold sync_rcu_preempt_exp_mutex. 637 */ 638 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 639 bool wake) 640 { 641 unsigned long flags; 642 unsigned long mask; 643 644 raw_spin_lock_irqsave(&rnp->lock, flags); 645 smp_mb__after_unlock_lock(); 646 for (;;) { 647 if (!sync_rcu_preempt_exp_done(rnp)) { 648 raw_spin_unlock_irqrestore(&rnp->lock, flags); 649 break; 650 } 651 if (rnp->parent == NULL) { 652 raw_spin_unlock_irqrestore(&rnp->lock, flags); 653 if (wake) { 654 smp_mb(); /* EGP done before wake_up(). */ 655 wake_up(&sync_rcu_preempt_exp_wq); 656 } 657 break; 658 } 659 mask = rnp->grpmask; 660 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 661 rnp = rnp->parent; 662 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 663 smp_mb__after_unlock_lock(); 664 rnp->expmask &= ~mask; 665 } 666 } 667 668 /* 669 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 670 * grace period for the specified rcu_node structure. If there are no such 671 * tasks, report it up the rcu_node hierarchy. 672 * 673 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude 674 * CPU hotplug operations. 675 */ 676 static void 677 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp) 678 { 679 unsigned long flags; 680 int must_wait = 0; 681 682 raw_spin_lock_irqsave(&rnp->lock, flags); 683 smp_mb__after_unlock_lock(); 684 if (!rcu_preempt_has_tasks(rnp)) { 685 raw_spin_unlock_irqrestore(&rnp->lock, flags); 686 } else { 687 rnp->exp_tasks = rnp->blkd_tasks.next; 688 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 689 must_wait = 1; 690 } 691 if (!must_wait) 692 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */ 693 } 694 695 /** 696 * synchronize_rcu_expedited - Brute-force RCU grace period 697 * 698 * Wait for an RCU-preempt grace period, but expedite it. The basic 699 * idea is to invoke synchronize_sched_expedited() to push all the tasks to 700 * the ->blkd_tasks lists and wait for this list to drain. This consumes 701 * significant time on all CPUs and is unfriendly to real-time workloads, 702 * so is thus not recommended for any sort of common-case code. 703 * In fact, if you are using synchronize_rcu_expedited() in a loop, 704 * please restructure your code to batch your updates, and then Use a 705 * single synchronize_rcu() instead. 706 */ 707 void synchronize_rcu_expedited(void) 708 { 709 unsigned long flags; 710 struct rcu_node *rnp; 711 struct rcu_state *rsp = &rcu_preempt_state; 712 unsigned long snap; 713 int trycount = 0; 714 715 smp_mb(); /* Caller's modifications seen first by other CPUs. */ 716 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; 717 smp_mb(); /* Above access cannot bleed into critical section. */ 718 719 /* 720 * Block CPU-hotplug operations. This means that any CPU-hotplug 721 * operation that finds an rcu_node structure with tasks in the 722 * process of being boosted will know that all tasks blocking 723 * this expedited grace period will already be in the process of 724 * being boosted. This simplifies the process of moving tasks 725 * from leaf to root rcu_node structures. 726 */ 727 if (!try_get_online_cpus()) { 728 /* CPU-hotplug operation in flight, fall back to normal GP. */ 729 wait_rcu_gp(call_rcu); 730 return; 731 } 732 733 /* 734 * Acquire lock, falling back to synchronize_rcu() if too many 735 * lock-acquisition failures. Of course, if someone does the 736 * expedited grace period for us, just leave. 737 */ 738 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { 739 if (ULONG_CMP_LT(snap, 740 ACCESS_ONCE(sync_rcu_preempt_exp_count))) { 741 put_online_cpus(); 742 goto mb_ret; /* Others did our work for us. */ 743 } 744 if (trycount++ < 10) { 745 udelay(trycount * num_online_cpus()); 746 } else { 747 put_online_cpus(); 748 wait_rcu_gp(call_rcu); 749 return; 750 } 751 } 752 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) { 753 put_online_cpus(); 754 goto unlock_mb_ret; /* Others did our work for us. */ 755 } 756 757 /* force all RCU readers onto ->blkd_tasks lists. */ 758 synchronize_sched_expedited(); 759 760 /* Initialize ->expmask for all non-leaf rcu_node structures. */ 761 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) { 762 raw_spin_lock_irqsave(&rnp->lock, flags); 763 smp_mb__after_unlock_lock(); 764 rnp->expmask = rnp->qsmaskinit; 765 raw_spin_unlock_irqrestore(&rnp->lock, flags); 766 } 767 768 /* Snapshot current state of ->blkd_tasks lists. */ 769 rcu_for_each_leaf_node(rsp, rnp) 770 sync_rcu_preempt_exp_init(rsp, rnp); 771 if (NUM_RCU_NODES > 1) 772 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp)); 773 774 put_online_cpus(); 775 776 /* Wait for snapshotted ->blkd_tasks lists to drain. */ 777 rnp = rcu_get_root(rsp); 778 wait_event(sync_rcu_preempt_exp_wq, 779 sync_rcu_preempt_exp_done(rnp)); 780 781 /* Clean up and exit. */ 782 smp_mb(); /* ensure expedited GP seen before counter increment. */ 783 ACCESS_ONCE(sync_rcu_preempt_exp_count) = 784 sync_rcu_preempt_exp_count + 1; 785 unlock_mb_ret: 786 mutex_unlock(&sync_rcu_preempt_exp_mutex); 787 mb_ret: 788 smp_mb(); /* ensure subsequent action seen after grace period. */ 789 } 790 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 791 792 /** 793 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 794 * 795 * Note that this primitive does not necessarily wait for an RCU grace period 796 * to complete. For example, if there are no RCU callbacks queued anywhere 797 * in the system, then rcu_barrier() is within its rights to return 798 * immediately, without waiting for anything, much less an RCU grace period. 799 */ 800 void rcu_barrier(void) 801 { 802 _rcu_barrier(&rcu_preempt_state); 803 } 804 EXPORT_SYMBOL_GPL(rcu_barrier); 805 806 /* 807 * Initialize preemptible RCU's state structures. 808 */ 809 static void __init __rcu_init_preempt(void) 810 { 811 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); 812 } 813 814 /* 815 * Check for a task exiting while in a preemptible-RCU read-side 816 * critical section, clean up if so. No need to issue warnings, 817 * as debug_check_no_locks_held() already does this if lockdep 818 * is enabled. 819 */ 820 void exit_rcu(void) 821 { 822 struct task_struct *t = current; 823 824 if (likely(list_empty(¤t->rcu_node_entry))) 825 return; 826 t->rcu_read_lock_nesting = 1; 827 barrier(); 828 t->rcu_read_unlock_special.b.blocked = true; 829 __rcu_read_unlock(); 830 } 831 832 #else /* #ifdef CONFIG_PREEMPT_RCU */ 833 834 static struct rcu_state *rcu_state_p = &rcu_sched_state; 835 836 /* 837 * Tell them what RCU they are running. 838 */ 839 static void __init rcu_bootup_announce(void) 840 { 841 pr_info("Hierarchical RCU implementation.\n"); 842 rcu_bootup_announce_oddness(); 843 } 844 845 /* 846 * Because preemptible RCU does not exist, we never have to check for 847 * CPUs being in quiescent states. 848 */ 849 static void rcu_preempt_note_context_switch(void) 850 { 851 } 852 853 /* 854 * Because preemptible RCU does not exist, there are never any preempted 855 * RCU readers. 856 */ 857 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 858 { 859 return 0; 860 } 861 862 #ifdef CONFIG_HOTPLUG_CPU 863 864 /* 865 * Because there is no preemptible RCU, there can be no readers blocked. 866 */ 867 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 868 { 869 return false; 870 } 871 872 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 873 874 /* 875 * Because preemptible RCU does not exist, we never have to check for 876 * tasks blocked within RCU read-side critical sections. 877 */ 878 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 879 { 880 } 881 882 /* 883 * Because preemptible RCU does not exist, we never have to check for 884 * tasks blocked within RCU read-side critical sections. 885 */ 886 static int rcu_print_task_stall(struct rcu_node *rnp) 887 { 888 return 0; 889 } 890 891 /* 892 * Because there is no preemptible RCU, there can be no readers blocked, 893 * so there is no need to check for blocked tasks. So check only for 894 * bogus qsmask values. 895 */ 896 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 897 { 898 WARN_ON_ONCE(rnp->qsmask); 899 } 900 901 /* 902 * Because preemptible RCU does not exist, it never has any callbacks 903 * to check. 904 */ 905 static void rcu_preempt_check_callbacks(void) 906 { 907 } 908 909 /* 910 * Wait for an rcu-preempt grace period, but make it happen quickly. 911 * But because preemptible RCU does not exist, map to rcu-sched. 912 */ 913 void synchronize_rcu_expedited(void) 914 { 915 synchronize_sched_expedited(); 916 } 917 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 918 919 /* 920 * Because preemptible RCU does not exist, rcu_barrier() is just 921 * another name for rcu_barrier_sched(). 922 */ 923 void rcu_barrier(void) 924 { 925 rcu_barrier_sched(); 926 } 927 EXPORT_SYMBOL_GPL(rcu_barrier); 928 929 /* 930 * Because preemptible RCU does not exist, it need not be initialized. 931 */ 932 static void __init __rcu_init_preempt(void) 933 { 934 } 935 936 /* 937 * Because preemptible RCU does not exist, tasks cannot possibly exit 938 * while in preemptible RCU read-side critical sections. 939 */ 940 void exit_rcu(void) 941 { 942 } 943 944 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 945 946 #ifdef CONFIG_RCU_BOOST 947 948 #include "../locking/rtmutex_common.h" 949 950 #ifdef CONFIG_RCU_TRACE 951 952 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 953 { 954 if (!rcu_preempt_has_tasks(rnp)) 955 rnp->n_balk_blkd_tasks++; 956 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 957 rnp->n_balk_exp_gp_tasks++; 958 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 959 rnp->n_balk_boost_tasks++; 960 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 961 rnp->n_balk_notblocked++; 962 else if (rnp->gp_tasks != NULL && 963 ULONG_CMP_LT(jiffies, rnp->boost_time)) 964 rnp->n_balk_notyet++; 965 else 966 rnp->n_balk_nos++; 967 } 968 969 #else /* #ifdef CONFIG_RCU_TRACE */ 970 971 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 972 { 973 } 974 975 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 976 977 static void rcu_wake_cond(struct task_struct *t, int status) 978 { 979 /* 980 * If the thread is yielding, only wake it when this 981 * is invoked from idle 982 */ 983 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 984 wake_up_process(t); 985 } 986 987 /* 988 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 989 * or ->boost_tasks, advancing the pointer to the next task in the 990 * ->blkd_tasks list. 991 * 992 * Note that irqs must be enabled: boosting the task can block. 993 * Returns 1 if there are more tasks needing to be boosted. 994 */ 995 static int rcu_boost(struct rcu_node *rnp) 996 { 997 unsigned long flags; 998 struct task_struct *t; 999 struct list_head *tb; 1000 1001 if (ACCESS_ONCE(rnp->exp_tasks) == NULL && 1002 ACCESS_ONCE(rnp->boost_tasks) == NULL) 1003 return 0; /* Nothing left to boost. */ 1004 1005 raw_spin_lock_irqsave(&rnp->lock, flags); 1006 smp_mb__after_unlock_lock(); 1007 1008 /* 1009 * Recheck under the lock: all tasks in need of boosting 1010 * might exit their RCU read-side critical sections on their own. 1011 */ 1012 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1013 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1014 return 0; 1015 } 1016 1017 /* 1018 * Preferentially boost tasks blocking expedited grace periods. 1019 * This cannot starve the normal grace periods because a second 1020 * expedited grace period must boost all blocked tasks, including 1021 * those blocking the pre-existing normal grace period. 1022 */ 1023 if (rnp->exp_tasks != NULL) { 1024 tb = rnp->exp_tasks; 1025 rnp->n_exp_boosts++; 1026 } else { 1027 tb = rnp->boost_tasks; 1028 rnp->n_normal_boosts++; 1029 } 1030 rnp->n_tasks_boosted++; 1031 1032 /* 1033 * We boost task t by manufacturing an rt_mutex that appears to 1034 * be held by task t. We leave a pointer to that rt_mutex where 1035 * task t can find it, and task t will release the mutex when it 1036 * exits its outermost RCU read-side critical section. Then 1037 * simply acquiring this artificial rt_mutex will boost task 1038 * t's priority. (Thanks to tglx for suggesting this approach!) 1039 * 1040 * Note that task t must acquire rnp->lock to remove itself from 1041 * the ->blkd_tasks list, which it will do from exit() if from 1042 * nowhere else. We therefore are guaranteed that task t will 1043 * stay around at least until we drop rnp->lock. Note that 1044 * rnp->lock also resolves races between our priority boosting 1045 * and task t's exiting its outermost RCU read-side critical 1046 * section. 1047 */ 1048 t = container_of(tb, struct task_struct, rcu_node_entry); 1049 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1050 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1051 /* Lock only for side effect: boosts task t's priority. */ 1052 rt_mutex_lock(&rnp->boost_mtx); 1053 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1054 1055 return ACCESS_ONCE(rnp->exp_tasks) != NULL || 1056 ACCESS_ONCE(rnp->boost_tasks) != NULL; 1057 } 1058 1059 /* 1060 * Priority-boosting kthread. One per leaf rcu_node and one for the 1061 * root rcu_node. 1062 */ 1063 static int rcu_boost_kthread(void *arg) 1064 { 1065 struct rcu_node *rnp = (struct rcu_node *)arg; 1066 int spincnt = 0; 1067 int more2boost; 1068 1069 trace_rcu_utilization(TPS("Start boost kthread@init")); 1070 for (;;) { 1071 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1072 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1073 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1074 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1075 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1076 more2boost = rcu_boost(rnp); 1077 if (more2boost) 1078 spincnt++; 1079 else 1080 spincnt = 0; 1081 if (spincnt > 10) { 1082 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1083 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1084 schedule_timeout_interruptible(2); 1085 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1086 spincnt = 0; 1087 } 1088 } 1089 /* NOTREACHED */ 1090 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1091 return 0; 1092 } 1093 1094 /* 1095 * Check to see if it is time to start boosting RCU readers that are 1096 * blocking the current grace period, and, if so, tell the per-rcu_node 1097 * kthread to start boosting them. If there is an expedited grace 1098 * period in progress, it is always time to boost. 1099 * 1100 * The caller must hold rnp->lock, which this function releases. 1101 * The ->boost_kthread_task is immortal, so we don't need to worry 1102 * about it going away. 1103 */ 1104 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1105 __releases(rnp->lock) 1106 { 1107 struct task_struct *t; 1108 1109 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1110 rnp->n_balk_exp_gp_tasks++; 1111 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1112 return; 1113 } 1114 if (rnp->exp_tasks != NULL || 1115 (rnp->gp_tasks != NULL && 1116 rnp->boost_tasks == NULL && 1117 rnp->qsmask == 0 && 1118 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1119 if (rnp->exp_tasks == NULL) 1120 rnp->boost_tasks = rnp->gp_tasks; 1121 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1122 t = rnp->boost_kthread_task; 1123 if (t) 1124 rcu_wake_cond(t, rnp->boost_kthread_status); 1125 } else { 1126 rcu_initiate_boost_trace(rnp); 1127 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1128 } 1129 } 1130 1131 /* 1132 * Wake up the per-CPU kthread to invoke RCU callbacks. 1133 */ 1134 static void invoke_rcu_callbacks_kthread(void) 1135 { 1136 unsigned long flags; 1137 1138 local_irq_save(flags); 1139 __this_cpu_write(rcu_cpu_has_work, 1); 1140 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1141 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1142 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1143 __this_cpu_read(rcu_cpu_kthread_status)); 1144 } 1145 local_irq_restore(flags); 1146 } 1147 1148 /* 1149 * Is the current CPU running the RCU-callbacks kthread? 1150 * Caller must have preemption disabled. 1151 */ 1152 static bool rcu_is_callbacks_kthread(void) 1153 { 1154 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1155 } 1156 1157 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1158 1159 /* 1160 * Do priority-boost accounting for the start of a new grace period. 1161 */ 1162 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1163 { 1164 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1165 } 1166 1167 /* 1168 * Create an RCU-boost kthread for the specified node if one does not 1169 * already exist. We only create this kthread for preemptible RCU. 1170 * Returns zero if all is well, a negated errno otherwise. 1171 */ 1172 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1173 struct rcu_node *rnp) 1174 { 1175 int rnp_index = rnp - &rsp->node[0]; 1176 unsigned long flags; 1177 struct sched_param sp; 1178 struct task_struct *t; 1179 1180 if (&rcu_preempt_state != rsp) 1181 return 0; 1182 1183 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0) 1184 return 0; 1185 1186 rsp->boost = 1; 1187 if (rnp->boost_kthread_task != NULL) 1188 return 0; 1189 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1190 "rcub/%d", rnp_index); 1191 if (IS_ERR(t)) 1192 return PTR_ERR(t); 1193 raw_spin_lock_irqsave(&rnp->lock, flags); 1194 smp_mb__after_unlock_lock(); 1195 rnp->boost_kthread_task = t; 1196 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1197 sp.sched_priority = kthread_prio; 1198 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1199 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1200 return 0; 1201 } 1202 1203 static void rcu_kthread_do_work(void) 1204 { 1205 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1206 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1207 rcu_preempt_do_callbacks(); 1208 } 1209 1210 static void rcu_cpu_kthread_setup(unsigned int cpu) 1211 { 1212 struct sched_param sp; 1213 1214 sp.sched_priority = kthread_prio; 1215 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1216 } 1217 1218 static void rcu_cpu_kthread_park(unsigned int cpu) 1219 { 1220 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1221 } 1222 1223 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1224 { 1225 return __this_cpu_read(rcu_cpu_has_work); 1226 } 1227 1228 /* 1229 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1230 * RCU softirq used in flavors and configurations of RCU that do not 1231 * support RCU priority boosting. 1232 */ 1233 static void rcu_cpu_kthread(unsigned int cpu) 1234 { 1235 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1236 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1237 int spincnt; 1238 1239 for (spincnt = 0; spincnt < 10; spincnt++) { 1240 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1241 local_bh_disable(); 1242 *statusp = RCU_KTHREAD_RUNNING; 1243 this_cpu_inc(rcu_cpu_kthread_loops); 1244 local_irq_disable(); 1245 work = *workp; 1246 *workp = 0; 1247 local_irq_enable(); 1248 if (work) 1249 rcu_kthread_do_work(); 1250 local_bh_enable(); 1251 if (*workp == 0) { 1252 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1253 *statusp = RCU_KTHREAD_WAITING; 1254 return; 1255 } 1256 } 1257 *statusp = RCU_KTHREAD_YIELDING; 1258 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1259 schedule_timeout_interruptible(2); 1260 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1261 *statusp = RCU_KTHREAD_WAITING; 1262 } 1263 1264 /* 1265 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1266 * served by the rcu_node in question. The CPU hotplug lock is still 1267 * held, so the value of rnp->qsmaskinit will be stable. 1268 * 1269 * We don't include outgoingcpu in the affinity set, use -1 if there is 1270 * no outgoing CPU. If there are no CPUs left in the affinity set, 1271 * this function allows the kthread to execute on any CPU. 1272 */ 1273 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1274 { 1275 struct task_struct *t = rnp->boost_kthread_task; 1276 unsigned long mask = rnp->qsmaskinit; 1277 cpumask_var_t cm; 1278 int cpu; 1279 1280 if (!t) 1281 return; 1282 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1283 return; 1284 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) 1285 if ((mask & 0x1) && cpu != outgoingcpu) 1286 cpumask_set_cpu(cpu, cm); 1287 if (cpumask_weight(cm) == 0) 1288 cpumask_setall(cm); 1289 set_cpus_allowed_ptr(t, cm); 1290 free_cpumask_var(cm); 1291 } 1292 1293 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1294 .store = &rcu_cpu_kthread_task, 1295 .thread_should_run = rcu_cpu_kthread_should_run, 1296 .thread_fn = rcu_cpu_kthread, 1297 .thread_comm = "rcuc/%u", 1298 .setup = rcu_cpu_kthread_setup, 1299 .park = rcu_cpu_kthread_park, 1300 }; 1301 1302 /* 1303 * Spawn boost kthreads -- called as soon as the scheduler is running. 1304 */ 1305 static void __init rcu_spawn_boost_kthreads(void) 1306 { 1307 struct rcu_node *rnp; 1308 int cpu; 1309 1310 for_each_possible_cpu(cpu) 1311 per_cpu(rcu_cpu_has_work, cpu) = 0; 1312 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1313 rcu_for_each_leaf_node(rcu_state_p, rnp) 1314 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1315 } 1316 1317 static void rcu_prepare_kthreads(int cpu) 1318 { 1319 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1320 struct rcu_node *rnp = rdp->mynode; 1321 1322 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1323 if (rcu_scheduler_fully_active) 1324 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1325 } 1326 1327 #else /* #ifdef CONFIG_RCU_BOOST */ 1328 1329 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1330 __releases(rnp->lock) 1331 { 1332 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1333 } 1334 1335 static void invoke_rcu_callbacks_kthread(void) 1336 { 1337 WARN_ON_ONCE(1); 1338 } 1339 1340 static bool rcu_is_callbacks_kthread(void) 1341 { 1342 return false; 1343 } 1344 1345 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1346 { 1347 } 1348 1349 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1350 { 1351 } 1352 1353 static void __init rcu_spawn_boost_kthreads(void) 1354 { 1355 } 1356 1357 static void rcu_prepare_kthreads(int cpu) 1358 { 1359 } 1360 1361 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1362 1363 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1364 1365 /* 1366 * Check to see if any future RCU-related work will need to be done 1367 * by the current CPU, even if none need be done immediately, returning 1368 * 1 if so. This function is part of the RCU implementation; it is -not- 1369 * an exported member of the RCU API. 1370 * 1371 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1372 * any flavor of RCU. 1373 */ 1374 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1375 int rcu_needs_cpu(unsigned long *delta_jiffies) 1376 { 1377 *delta_jiffies = ULONG_MAX; 1378 return rcu_cpu_has_callbacks(NULL); 1379 } 1380 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1381 1382 /* 1383 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1384 * after it. 1385 */ 1386 static void rcu_cleanup_after_idle(void) 1387 { 1388 } 1389 1390 /* 1391 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1392 * is nothing. 1393 */ 1394 static void rcu_prepare_for_idle(void) 1395 { 1396 } 1397 1398 /* 1399 * Don't bother keeping a running count of the number of RCU callbacks 1400 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1401 */ 1402 static void rcu_idle_count_callbacks_posted(void) 1403 { 1404 } 1405 1406 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1407 1408 /* 1409 * This code is invoked when a CPU goes idle, at which point we want 1410 * to have the CPU do everything required for RCU so that it can enter 1411 * the energy-efficient dyntick-idle mode. This is handled by a 1412 * state machine implemented by rcu_prepare_for_idle() below. 1413 * 1414 * The following three proprocessor symbols control this state machine: 1415 * 1416 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1417 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1418 * is sized to be roughly one RCU grace period. Those energy-efficiency 1419 * benchmarkers who might otherwise be tempted to set this to a large 1420 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1421 * system. And if you are -that- concerned about energy efficiency, 1422 * just power the system down and be done with it! 1423 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1424 * permitted to sleep in dyntick-idle mode with only lazy RCU 1425 * callbacks pending. Setting this too high can OOM your system. 1426 * 1427 * The values below work well in practice. If future workloads require 1428 * adjustment, they can be converted into kernel config parameters, though 1429 * making the state machine smarter might be a better option. 1430 */ 1431 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1432 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1433 1434 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1435 module_param(rcu_idle_gp_delay, int, 0644); 1436 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1437 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1438 1439 extern int tick_nohz_active; 1440 1441 /* 1442 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1443 * only if it has been awhile since the last time we did so. Afterwards, 1444 * if there are any callbacks ready for immediate invocation, return true. 1445 */ 1446 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1447 { 1448 bool cbs_ready = false; 1449 struct rcu_data *rdp; 1450 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1451 struct rcu_node *rnp; 1452 struct rcu_state *rsp; 1453 1454 /* Exit early if we advanced recently. */ 1455 if (jiffies == rdtp->last_advance_all) 1456 return false; 1457 rdtp->last_advance_all = jiffies; 1458 1459 for_each_rcu_flavor(rsp) { 1460 rdp = this_cpu_ptr(rsp->rda); 1461 rnp = rdp->mynode; 1462 1463 /* 1464 * Don't bother checking unless a grace period has 1465 * completed since we last checked and there are 1466 * callbacks not yet ready to invoke. 1467 */ 1468 if ((rdp->completed != rnp->completed || 1469 unlikely(ACCESS_ONCE(rdp->gpwrap))) && 1470 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1471 note_gp_changes(rsp, rdp); 1472 1473 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1474 cbs_ready = true; 1475 } 1476 return cbs_ready; 1477 } 1478 1479 /* 1480 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1481 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1482 * caller to set the timeout based on whether or not there are non-lazy 1483 * callbacks. 1484 * 1485 * The caller must have disabled interrupts. 1486 */ 1487 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1488 int rcu_needs_cpu(unsigned long *dj) 1489 { 1490 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1491 1492 /* Snapshot to detect later posting of non-lazy callback. */ 1493 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1494 1495 /* If no callbacks, RCU doesn't need the CPU. */ 1496 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1497 *dj = ULONG_MAX; 1498 return 0; 1499 } 1500 1501 /* Attempt to advance callbacks. */ 1502 if (rcu_try_advance_all_cbs()) { 1503 /* Some ready to invoke, so initiate later invocation. */ 1504 invoke_rcu_core(); 1505 return 1; 1506 } 1507 rdtp->last_accelerate = jiffies; 1508 1509 /* Request timer delay depending on laziness, and round. */ 1510 if (!rdtp->all_lazy) { 1511 *dj = round_up(rcu_idle_gp_delay + jiffies, 1512 rcu_idle_gp_delay) - jiffies; 1513 } else { 1514 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1515 } 1516 return 0; 1517 } 1518 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1519 1520 /* 1521 * Prepare a CPU for idle from an RCU perspective. The first major task 1522 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1523 * The second major task is to check to see if a non-lazy callback has 1524 * arrived at a CPU that previously had only lazy callbacks. The third 1525 * major task is to accelerate (that is, assign grace-period numbers to) 1526 * any recently arrived callbacks. 1527 * 1528 * The caller must have disabled interrupts. 1529 */ 1530 static void rcu_prepare_for_idle(void) 1531 { 1532 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1533 bool needwake; 1534 struct rcu_data *rdp; 1535 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1536 struct rcu_node *rnp; 1537 struct rcu_state *rsp; 1538 int tne; 1539 1540 /* Handle nohz enablement switches conservatively. */ 1541 tne = ACCESS_ONCE(tick_nohz_active); 1542 if (tne != rdtp->tick_nohz_enabled_snap) { 1543 if (rcu_cpu_has_callbacks(NULL)) 1544 invoke_rcu_core(); /* force nohz to see update. */ 1545 rdtp->tick_nohz_enabled_snap = tne; 1546 return; 1547 } 1548 if (!tne) 1549 return; 1550 1551 /* If this is a no-CBs CPU, no callbacks, just return. */ 1552 if (rcu_is_nocb_cpu(smp_processor_id())) 1553 return; 1554 1555 /* 1556 * If a non-lazy callback arrived at a CPU having only lazy 1557 * callbacks, invoke RCU core for the side-effect of recalculating 1558 * idle duration on re-entry to idle. 1559 */ 1560 if (rdtp->all_lazy && 1561 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1562 rdtp->all_lazy = false; 1563 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1564 invoke_rcu_core(); 1565 return; 1566 } 1567 1568 /* 1569 * If we have not yet accelerated this jiffy, accelerate all 1570 * callbacks on this CPU. 1571 */ 1572 if (rdtp->last_accelerate == jiffies) 1573 return; 1574 rdtp->last_accelerate = jiffies; 1575 for_each_rcu_flavor(rsp) { 1576 rdp = this_cpu_ptr(rsp->rda); 1577 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1578 continue; 1579 rnp = rdp->mynode; 1580 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1581 smp_mb__after_unlock_lock(); 1582 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1583 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1584 if (needwake) 1585 rcu_gp_kthread_wake(rsp); 1586 } 1587 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1588 } 1589 1590 /* 1591 * Clean up for exit from idle. Attempt to advance callbacks based on 1592 * any grace periods that elapsed while the CPU was idle, and if any 1593 * callbacks are now ready to invoke, initiate invocation. 1594 */ 1595 static void rcu_cleanup_after_idle(void) 1596 { 1597 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1598 if (rcu_is_nocb_cpu(smp_processor_id())) 1599 return; 1600 if (rcu_try_advance_all_cbs()) 1601 invoke_rcu_core(); 1602 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1603 } 1604 1605 /* 1606 * Keep a running count of the number of non-lazy callbacks posted 1607 * on this CPU. This running counter (which is never decremented) allows 1608 * rcu_prepare_for_idle() to detect when something out of the idle loop 1609 * posts a callback, even if an equal number of callbacks are invoked. 1610 * Of course, callbacks should only be posted from within a trace event 1611 * designed to be called from idle or from within RCU_NONIDLE(). 1612 */ 1613 static void rcu_idle_count_callbacks_posted(void) 1614 { 1615 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1616 } 1617 1618 /* 1619 * Data for flushing lazy RCU callbacks at OOM time. 1620 */ 1621 static atomic_t oom_callback_count; 1622 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1623 1624 /* 1625 * RCU OOM callback -- decrement the outstanding count and deliver the 1626 * wake-up if we are the last one. 1627 */ 1628 static void rcu_oom_callback(struct rcu_head *rhp) 1629 { 1630 if (atomic_dec_and_test(&oom_callback_count)) 1631 wake_up(&oom_callback_wq); 1632 } 1633 1634 /* 1635 * Post an rcu_oom_notify callback on the current CPU if it has at 1636 * least one lazy callback. This will unnecessarily post callbacks 1637 * to CPUs that already have a non-lazy callback at the end of their 1638 * callback list, but this is an infrequent operation, so accept some 1639 * extra overhead to keep things simple. 1640 */ 1641 static void rcu_oom_notify_cpu(void *unused) 1642 { 1643 struct rcu_state *rsp; 1644 struct rcu_data *rdp; 1645 1646 for_each_rcu_flavor(rsp) { 1647 rdp = raw_cpu_ptr(rsp->rda); 1648 if (rdp->qlen_lazy != 0) { 1649 atomic_inc(&oom_callback_count); 1650 rsp->call(&rdp->oom_head, rcu_oom_callback); 1651 } 1652 } 1653 } 1654 1655 /* 1656 * If low on memory, ensure that each CPU has a non-lazy callback. 1657 * This will wake up CPUs that have only lazy callbacks, in turn 1658 * ensuring that they free up the corresponding memory in a timely manner. 1659 * Because an uncertain amount of memory will be freed in some uncertain 1660 * timeframe, we do not claim to have freed anything. 1661 */ 1662 static int rcu_oom_notify(struct notifier_block *self, 1663 unsigned long notused, void *nfreed) 1664 { 1665 int cpu; 1666 1667 /* Wait for callbacks from earlier instance to complete. */ 1668 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1669 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1670 1671 /* 1672 * Prevent premature wakeup: ensure that all increments happen 1673 * before there is a chance of the counter reaching zero. 1674 */ 1675 atomic_set(&oom_callback_count, 1); 1676 1677 get_online_cpus(); 1678 for_each_online_cpu(cpu) { 1679 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1680 cond_resched_rcu_qs(); 1681 } 1682 put_online_cpus(); 1683 1684 /* Unconditionally decrement: no need to wake ourselves up. */ 1685 atomic_dec(&oom_callback_count); 1686 1687 return NOTIFY_OK; 1688 } 1689 1690 static struct notifier_block rcu_oom_nb = { 1691 .notifier_call = rcu_oom_notify 1692 }; 1693 1694 static int __init rcu_register_oom_notifier(void) 1695 { 1696 register_oom_notifier(&rcu_oom_nb); 1697 return 0; 1698 } 1699 early_initcall(rcu_register_oom_notifier); 1700 1701 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1702 1703 #ifdef CONFIG_RCU_CPU_STALL_INFO 1704 1705 #ifdef CONFIG_RCU_FAST_NO_HZ 1706 1707 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1708 { 1709 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1710 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1711 1712 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1713 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1714 ulong2long(nlpd), 1715 rdtp->all_lazy ? 'L' : '.', 1716 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1717 } 1718 1719 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1720 1721 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1722 { 1723 *cp = '\0'; 1724 } 1725 1726 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1727 1728 /* Initiate the stall-info list. */ 1729 static void print_cpu_stall_info_begin(void) 1730 { 1731 pr_cont("\n"); 1732 } 1733 1734 /* 1735 * Print out diagnostic information for the specified stalled CPU. 1736 * 1737 * If the specified CPU is aware of the current RCU grace period 1738 * (flavor specified by rsp), then print the number of scheduling 1739 * clock interrupts the CPU has taken during the time that it has 1740 * been aware. Otherwise, print the number of RCU grace periods 1741 * that this CPU is ignorant of, for example, "1" if the CPU was 1742 * aware of the previous grace period. 1743 * 1744 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1745 */ 1746 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1747 { 1748 char fast_no_hz[72]; 1749 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1750 struct rcu_dynticks *rdtp = rdp->dynticks; 1751 char *ticks_title; 1752 unsigned long ticks_value; 1753 1754 if (rsp->gpnum == rdp->gpnum) { 1755 ticks_title = "ticks this GP"; 1756 ticks_value = rdp->ticks_this_gp; 1757 } else { 1758 ticks_title = "GPs behind"; 1759 ticks_value = rsp->gpnum - rdp->gpnum; 1760 } 1761 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1762 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1763 cpu, ticks_value, ticks_title, 1764 atomic_read(&rdtp->dynticks) & 0xfff, 1765 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1766 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1767 ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1768 fast_no_hz); 1769 } 1770 1771 /* Terminate the stall-info list. */ 1772 static void print_cpu_stall_info_end(void) 1773 { 1774 pr_err("\t"); 1775 } 1776 1777 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1778 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1779 { 1780 rdp->ticks_this_gp = 0; 1781 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1782 } 1783 1784 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1785 static void increment_cpu_stall_ticks(void) 1786 { 1787 struct rcu_state *rsp; 1788 1789 for_each_rcu_flavor(rsp) 1790 raw_cpu_inc(rsp->rda->ticks_this_gp); 1791 } 1792 1793 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1794 1795 static void print_cpu_stall_info_begin(void) 1796 { 1797 pr_cont(" {"); 1798 } 1799 1800 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1801 { 1802 pr_cont(" %d", cpu); 1803 } 1804 1805 static void print_cpu_stall_info_end(void) 1806 { 1807 pr_cont("} "); 1808 } 1809 1810 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1811 { 1812 } 1813 1814 static void increment_cpu_stall_ticks(void) 1815 { 1816 } 1817 1818 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1819 1820 #ifdef CONFIG_RCU_NOCB_CPU 1821 1822 /* 1823 * Offload callback processing from the boot-time-specified set of CPUs 1824 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1825 * kthread created that pulls the callbacks from the corresponding CPU, 1826 * waits for a grace period to elapse, and invokes the callbacks. 1827 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1828 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1829 * has been specified, in which case each kthread actively polls its 1830 * CPU. (Which isn't so great for energy efficiency, but which does 1831 * reduce RCU's overhead on that CPU.) 1832 * 1833 * This is intended to be used in conjunction with Frederic Weisbecker's 1834 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1835 * running CPU-bound user-mode computations. 1836 * 1837 * Offloading of callback processing could also in theory be used as 1838 * an energy-efficiency measure because CPUs with no RCU callbacks 1839 * queued are more aggressive about entering dyntick-idle mode. 1840 */ 1841 1842 1843 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1844 static int __init rcu_nocb_setup(char *str) 1845 { 1846 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1847 have_rcu_nocb_mask = true; 1848 cpulist_parse(str, rcu_nocb_mask); 1849 return 1; 1850 } 1851 __setup("rcu_nocbs=", rcu_nocb_setup); 1852 1853 static int __init parse_rcu_nocb_poll(char *arg) 1854 { 1855 rcu_nocb_poll = 1; 1856 return 0; 1857 } 1858 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1859 1860 /* 1861 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1862 * grace period. 1863 */ 1864 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1865 { 1866 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); 1867 } 1868 1869 /* 1870 * Set the root rcu_node structure's ->need_future_gp field 1871 * based on the sum of those of all rcu_node structures. This does 1872 * double-count the root rcu_node structure's requests, but this 1873 * is necessary to handle the possibility of a rcu_nocb_kthread() 1874 * having awakened during the time that the rcu_node structures 1875 * were being updated for the end of the previous grace period. 1876 */ 1877 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1878 { 1879 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1880 } 1881 1882 static void rcu_init_one_nocb(struct rcu_node *rnp) 1883 { 1884 init_waitqueue_head(&rnp->nocb_gp_wq[0]); 1885 init_waitqueue_head(&rnp->nocb_gp_wq[1]); 1886 } 1887 1888 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1889 /* Is the specified CPU a no-CBs CPU? */ 1890 bool rcu_is_nocb_cpu(int cpu) 1891 { 1892 if (have_rcu_nocb_mask) 1893 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1894 return false; 1895 } 1896 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1897 1898 /* 1899 * Kick the leader kthread for this NOCB group. 1900 */ 1901 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1902 { 1903 struct rcu_data *rdp_leader = rdp->nocb_leader; 1904 1905 if (!ACCESS_ONCE(rdp_leader->nocb_kthread)) 1906 return; 1907 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1908 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1909 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false; 1910 wake_up(&rdp_leader->nocb_wq); 1911 } 1912 } 1913 1914 /* 1915 * Does the specified CPU need an RCU callback for the specified flavor 1916 * of rcu_barrier()? 1917 */ 1918 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1919 { 1920 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1921 unsigned long ret; 1922 #ifdef CONFIG_PROVE_RCU 1923 struct rcu_head *rhp; 1924 #endif /* #ifdef CONFIG_PROVE_RCU */ 1925 1926 /* 1927 * Check count of all no-CBs callbacks awaiting invocation. 1928 * There needs to be a barrier before this function is called, 1929 * but associated with a prior determination that no more 1930 * callbacks would be posted. In the worst case, the first 1931 * barrier in _rcu_barrier() suffices (but the caller cannot 1932 * necessarily rely on this, not a substitute for the caller 1933 * getting the concurrency design right!). There must also be 1934 * a barrier between the following load an posting of a callback 1935 * (if a callback is in fact needed). This is associated with an 1936 * atomic_inc() in the caller. 1937 */ 1938 ret = atomic_long_read(&rdp->nocb_q_count); 1939 1940 #ifdef CONFIG_PROVE_RCU 1941 rhp = ACCESS_ONCE(rdp->nocb_head); 1942 if (!rhp) 1943 rhp = ACCESS_ONCE(rdp->nocb_gp_head); 1944 if (!rhp) 1945 rhp = ACCESS_ONCE(rdp->nocb_follower_head); 1946 1947 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1948 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) { 1949 /* RCU callback enqueued before CPU first came online??? */ 1950 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1951 cpu, rhp->func); 1952 WARN_ON_ONCE(1); 1953 } 1954 #endif /* #ifdef CONFIG_PROVE_RCU */ 1955 1956 return !!ret; 1957 } 1958 1959 /* 1960 * Enqueue the specified string of rcu_head structures onto the specified 1961 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1962 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1963 * counts are supplied by rhcount and rhcount_lazy. 1964 * 1965 * If warranted, also wake up the kthread servicing this CPUs queues. 1966 */ 1967 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1968 struct rcu_head *rhp, 1969 struct rcu_head **rhtp, 1970 int rhcount, int rhcount_lazy, 1971 unsigned long flags) 1972 { 1973 int len; 1974 struct rcu_head **old_rhpp; 1975 struct task_struct *t; 1976 1977 /* Enqueue the callback on the nocb list and update counts. */ 1978 atomic_long_add(rhcount, &rdp->nocb_q_count); 1979 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1980 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1981 ACCESS_ONCE(*old_rhpp) = rhp; 1982 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1983 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1984 1985 /* If we are not being polled and there is a kthread, awaken it ... */ 1986 t = ACCESS_ONCE(rdp->nocb_kthread); 1987 if (rcu_nocb_poll || !t) { 1988 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1989 TPS("WakeNotPoll")); 1990 return; 1991 } 1992 len = atomic_long_read(&rdp->nocb_q_count); 1993 if (old_rhpp == &rdp->nocb_head) { 1994 if (!irqs_disabled_flags(flags)) { 1995 /* ... if queue was empty ... */ 1996 wake_nocb_leader(rdp, false); 1997 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1998 TPS("WakeEmpty")); 1999 } else { 2000 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 2001 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2002 TPS("WakeEmptyIsDeferred")); 2003 } 2004 rdp->qlen_last_fqs_check = 0; 2005 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 2006 /* ... or if many callbacks queued. */ 2007 if (!irqs_disabled_flags(flags)) { 2008 wake_nocb_leader(rdp, true); 2009 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2010 TPS("WakeOvf")); 2011 } else { 2012 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 2013 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2014 TPS("WakeOvfIsDeferred")); 2015 } 2016 rdp->qlen_last_fqs_check = LONG_MAX / 2; 2017 } else { 2018 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 2019 } 2020 return; 2021 } 2022 2023 /* 2024 * This is a helper for __call_rcu(), which invokes this when the normal 2025 * callback queue is inoperable. If this is not a no-CBs CPU, this 2026 * function returns failure back to __call_rcu(), which can complain 2027 * appropriately. 2028 * 2029 * Otherwise, this function queues the callback where the corresponding 2030 * "rcuo" kthread can find it. 2031 */ 2032 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2033 bool lazy, unsigned long flags) 2034 { 2035 2036 if (!rcu_is_nocb_cpu(rdp->cpu)) 2037 return false; 2038 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2039 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2040 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 2041 (unsigned long)rhp->func, 2042 -atomic_long_read(&rdp->nocb_q_count_lazy), 2043 -atomic_long_read(&rdp->nocb_q_count)); 2044 else 2045 trace_rcu_callback(rdp->rsp->name, rhp, 2046 -atomic_long_read(&rdp->nocb_q_count_lazy), 2047 -atomic_long_read(&rdp->nocb_q_count)); 2048 2049 /* 2050 * If called from an extended quiescent state with interrupts 2051 * disabled, invoke the RCU core in order to allow the idle-entry 2052 * deferred-wakeup check to function. 2053 */ 2054 if (irqs_disabled_flags(flags) && 2055 !rcu_is_watching() && 2056 cpu_online(smp_processor_id())) 2057 invoke_rcu_core(); 2058 2059 return true; 2060 } 2061 2062 /* 2063 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2064 * not a no-CBs CPU. 2065 */ 2066 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2067 struct rcu_data *rdp, 2068 unsigned long flags) 2069 { 2070 long ql = rsp->qlen; 2071 long qll = rsp->qlen_lazy; 2072 2073 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 2074 if (!rcu_is_nocb_cpu(smp_processor_id())) 2075 return false; 2076 rsp->qlen = 0; 2077 rsp->qlen_lazy = 0; 2078 2079 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 2080 if (rsp->orphan_donelist != NULL) { 2081 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 2082 rsp->orphan_donetail, ql, qll, flags); 2083 ql = qll = 0; 2084 rsp->orphan_donelist = NULL; 2085 rsp->orphan_donetail = &rsp->orphan_donelist; 2086 } 2087 if (rsp->orphan_nxtlist != NULL) { 2088 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 2089 rsp->orphan_nxttail, ql, qll, flags); 2090 ql = qll = 0; 2091 rsp->orphan_nxtlist = NULL; 2092 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2093 } 2094 return true; 2095 } 2096 2097 /* 2098 * If necessary, kick off a new grace period, and either way wait 2099 * for a subsequent grace period to complete. 2100 */ 2101 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2102 { 2103 unsigned long c; 2104 bool d; 2105 unsigned long flags; 2106 bool needwake; 2107 struct rcu_node *rnp = rdp->mynode; 2108 2109 raw_spin_lock_irqsave(&rnp->lock, flags); 2110 smp_mb__after_unlock_lock(); 2111 needwake = rcu_start_future_gp(rnp, rdp, &c); 2112 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2113 if (needwake) 2114 rcu_gp_kthread_wake(rdp->rsp); 2115 2116 /* 2117 * Wait for the grace period. Do so interruptibly to avoid messing 2118 * up the load average. 2119 */ 2120 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2121 for (;;) { 2122 wait_event_interruptible( 2123 rnp->nocb_gp_wq[c & 0x1], 2124 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c))); 2125 if (likely(d)) 2126 break; 2127 WARN_ON(signal_pending(current)); 2128 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2129 } 2130 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2131 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2132 } 2133 2134 /* 2135 * Leaders come here to wait for additional callbacks to show up. 2136 * This function does not return until callbacks appear. 2137 */ 2138 static void nocb_leader_wait(struct rcu_data *my_rdp) 2139 { 2140 bool firsttime = true; 2141 bool gotcbs; 2142 struct rcu_data *rdp; 2143 struct rcu_head **tail; 2144 2145 wait_again: 2146 2147 /* Wait for callbacks to appear. */ 2148 if (!rcu_nocb_poll) { 2149 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2150 wait_event_interruptible(my_rdp->nocb_wq, 2151 !ACCESS_ONCE(my_rdp->nocb_leader_sleep)); 2152 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2153 } else if (firsttime) { 2154 firsttime = false; /* Don't drown trace log with "Poll"! */ 2155 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2156 } 2157 2158 /* 2159 * Each pass through the following loop checks a follower for CBs. 2160 * We are our own first follower. Any CBs found are moved to 2161 * nocb_gp_head, where they await a grace period. 2162 */ 2163 gotcbs = false; 2164 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2165 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head); 2166 if (!rdp->nocb_gp_head) 2167 continue; /* No CBs here, try next follower. */ 2168 2169 /* Move callbacks to wait-for-GP list, which is empty. */ 2170 ACCESS_ONCE(rdp->nocb_head) = NULL; 2171 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2172 gotcbs = true; 2173 } 2174 2175 /* 2176 * If there were no callbacks, sleep a bit, rescan after a 2177 * memory barrier, and go retry. 2178 */ 2179 if (unlikely(!gotcbs)) { 2180 if (!rcu_nocb_poll) 2181 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2182 "WokeEmpty"); 2183 WARN_ON(signal_pending(current)); 2184 schedule_timeout_interruptible(1); 2185 2186 /* Rescan in case we were a victim of memory ordering. */ 2187 my_rdp->nocb_leader_sleep = true; 2188 smp_mb(); /* Ensure _sleep true before scan. */ 2189 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2190 if (ACCESS_ONCE(rdp->nocb_head)) { 2191 /* Found CB, so short-circuit next wait. */ 2192 my_rdp->nocb_leader_sleep = false; 2193 break; 2194 } 2195 goto wait_again; 2196 } 2197 2198 /* Wait for one grace period. */ 2199 rcu_nocb_wait_gp(my_rdp); 2200 2201 /* 2202 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2203 * We set it now, but recheck for new callbacks while 2204 * traversing our follower list. 2205 */ 2206 my_rdp->nocb_leader_sleep = true; 2207 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2208 2209 /* Each pass through the following loop wakes a follower, if needed. */ 2210 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2211 if (ACCESS_ONCE(rdp->nocb_head)) 2212 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2213 if (!rdp->nocb_gp_head) 2214 continue; /* No CBs, so no need to wake follower. */ 2215 2216 /* Append callbacks to follower's "done" list. */ 2217 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2218 *tail = rdp->nocb_gp_head; 2219 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2220 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2221 /* 2222 * List was empty, wake up the follower. 2223 * Memory barriers supplied by atomic_long_add(). 2224 */ 2225 wake_up(&rdp->nocb_wq); 2226 } 2227 } 2228 2229 /* If we (the leader) don't have CBs, go wait some more. */ 2230 if (!my_rdp->nocb_follower_head) 2231 goto wait_again; 2232 } 2233 2234 /* 2235 * Followers come here to wait for additional callbacks to show up. 2236 * This function does not return until callbacks appear. 2237 */ 2238 static void nocb_follower_wait(struct rcu_data *rdp) 2239 { 2240 bool firsttime = true; 2241 2242 for (;;) { 2243 if (!rcu_nocb_poll) { 2244 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2245 "FollowerSleep"); 2246 wait_event_interruptible(rdp->nocb_wq, 2247 ACCESS_ONCE(rdp->nocb_follower_head)); 2248 } else if (firsttime) { 2249 /* Don't drown trace log with "Poll"! */ 2250 firsttime = false; 2251 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2252 } 2253 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2254 /* ^^^ Ensure CB invocation follows _head test. */ 2255 return; 2256 } 2257 if (!rcu_nocb_poll) 2258 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2259 "WokeEmpty"); 2260 WARN_ON(signal_pending(current)); 2261 schedule_timeout_interruptible(1); 2262 } 2263 } 2264 2265 /* 2266 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2267 * callbacks queued by the corresponding no-CBs CPU, however, there is 2268 * an optional leader-follower relationship so that the grace-period 2269 * kthreads don't have to do quite so many wakeups. 2270 */ 2271 static int rcu_nocb_kthread(void *arg) 2272 { 2273 int c, cl; 2274 struct rcu_head *list; 2275 struct rcu_head *next; 2276 struct rcu_head **tail; 2277 struct rcu_data *rdp = arg; 2278 2279 /* Each pass through this loop invokes one batch of callbacks */ 2280 for (;;) { 2281 /* Wait for callbacks. */ 2282 if (rdp->nocb_leader == rdp) 2283 nocb_leader_wait(rdp); 2284 else 2285 nocb_follower_wait(rdp); 2286 2287 /* Pull the ready-to-invoke callbacks onto local list. */ 2288 list = ACCESS_ONCE(rdp->nocb_follower_head); 2289 BUG_ON(!list); 2290 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2291 ACCESS_ONCE(rdp->nocb_follower_head) = NULL; 2292 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2293 2294 /* Each pass through the following loop invokes a callback. */ 2295 trace_rcu_batch_start(rdp->rsp->name, 2296 atomic_long_read(&rdp->nocb_q_count_lazy), 2297 atomic_long_read(&rdp->nocb_q_count), -1); 2298 c = cl = 0; 2299 while (list) { 2300 next = list->next; 2301 /* Wait for enqueuing to complete, if needed. */ 2302 while (next == NULL && &list->next != tail) { 2303 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2304 TPS("WaitQueue")); 2305 schedule_timeout_interruptible(1); 2306 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2307 TPS("WokeQueue")); 2308 next = list->next; 2309 } 2310 debug_rcu_head_unqueue(list); 2311 local_bh_disable(); 2312 if (__rcu_reclaim(rdp->rsp->name, list)) 2313 cl++; 2314 c++; 2315 local_bh_enable(); 2316 list = next; 2317 } 2318 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2319 smp_mb__before_atomic(); /* _add after CB invocation. */ 2320 atomic_long_add(-c, &rdp->nocb_q_count); 2321 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2322 rdp->n_nocbs_invoked += c; 2323 } 2324 return 0; 2325 } 2326 2327 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2328 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2329 { 2330 return ACCESS_ONCE(rdp->nocb_defer_wakeup); 2331 } 2332 2333 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2334 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2335 { 2336 int ndw; 2337 2338 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2339 return; 2340 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup); 2341 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT; 2342 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2343 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2344 } 2345 2346 void __init rcu_init_nohz(void) 2347 { 2348 int cpu; 2349 bool need_rcu_nocb_mask = true; 2350 struct rcu_state *rsp; 2351 2352 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2353 need_rcu_nocb_mask = false; 2354 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2355 2356 #if defined(CONFIG_NO_HZ_FULL) 2357 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2358 need_rcu_nocb_mask = true; 2359 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2360 2361 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2362 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2363 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2364 return; 2365 } 2366 have_rcu_nocb_mask = true; 2367 } 2368 if (!have_rcu_nocb_mask) 2369 return; 2370 2371 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2372 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2373 cpumask_set_cpu(0, rcu_nocb_mask); 2374 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2375 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2376 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2377 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2378 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2379 #if defined(CONFIG_NO_HZ_FULL) 2380 if (tick_nohz_full_running) 2381 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2382 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2383 2384 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2385 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2386 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2387 rcu_nocb_mask); 2388 } 2389 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2390 cpumask_pr_args(rcu_nocb_mask)); 2391 if (rcu_nocb_poll) 2392 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2393 2394 for_each_rcu_flavor(rsp) { 2395 for_each_cpu(cpu, rcu_nocb_mask) { 2396 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2397 2398 /* 2399 * If there are early callbacks, they will need 2400 * to be moved to the nocb lists. 2401 */ 2402 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] != 2403 &rdp->nxtlist && 2404 rdp->nxttail[RCU_NEXT_TAIL] != NULL); 2405 init_nocb_callback_list(rdp); 2406 } 2407 rcu_organize_nocb_kthreads(rsp); 2408 } 2409 } 2410 2411 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2412 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2413 { 2414 rdp->nocb_tail = &rdp->nocb_head; 2415 init_waitqueue_head(&rdp->nocb_wq); 2416 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2417 } 2418 2419 /* 2420 * If the specified CPU is a no-CBs CPU that does not already have its 2421 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2422 * brought online out of order, this can require re-organizing the 2423 * leader-follower relationships. 2424 */ 2425 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2426 { 2427 struct rcu_data *rdp; 2428 struct rcu_data *rdp_last; 2429 struct rcu_data *rdp_old_leader; 2430 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2431 struct task_struct *t; 2432 2433 /* 2434 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2435 * then nothing to do. 2436 */ 2437 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2438 return; 2439 2440 /* If we didn't spawn the leader first, reorganize! */ 2441 rdp_old_leader = rdp_spawn->nocb_leader; 2442 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2443 rdp_last = NULL; 2444 rdp = rdp_old_leader; 2445 do { 2446 rdp->nocb_leader = rdp_spawn; 2447 if (rdp_last && rdp != rdp_spawn) 2448 rdp_last->nocb_next_follower = rdp; 2449 if (rdp == rdp_spawn) { 2450 rdp = rdp->nocb_next_follower; 2451 } else { 2452 rdp_last = rdp; 2453 rdp = rdp->nocb_next_follower; 2454 rdp_last->nocb_next_follower = NULL; 2455 } 2456 } while (rdp); 2457 rdp_spawn->nocb_next_follower = rdp_old_leader; 2458 } 2459 2460 /* Spawn the kthread for this CPU and RCU flavor. */ 2461 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2462 "rcuo%c/%d", rsp->abbr, cpu); 2463 BUG_ON(IS_ERR(t)); 2464 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t; 2465 } 2466 2467 /* 2468 * If the specified CPU is a no-CBs CPU that does not already have its 2469 * rcuo kthreads, spawn them. 2470 */ 2471 static void rcu_spawn_all_nocb_kthreads(int cpu) 2472 { 2473 struct rcu_state *rsp; 2474 2475 if (rcu_scheduler_fully_active) 2476 for_each_rcu_flavor(rsp) 2477 rcu_spawn_one_nocb_kthread(rsp, cpu); 2478 } 2479 2480 /* 2481 * Once the scheduler is running, spawn rcuo kthreads for all online 2482 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2483 * non-boot CPUs come online -- if this changes, we will need to add 2484 * some mutual exclusion. 2485 */ 2486 static void __init rcu_spawn_nocb_kthreads(void) 2487 { 2488 int cpu; 2489 2490 for_each_online_cpu(cpu) 2491 rcu_spawn_all_nocb_kthreads(cpu); 2492 } 2493 2494 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2495 static int rcu_nocb_leader_stride = -1; 2496 module_param(rcu_nocb_leader_stride, int, 0444); 2497 2498 /* 2499 * Initialize leader-follower relationships for all no-CBs CPU. 2500 */ 2501 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2502 { 2503 int cpu; 2504 int ls = rcu_nocb_leader_stride; 2505 int nl = 0; /* Next leader. */ 2506 struct rcu_data *rdp; 2507 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2508 struct rcu_data *rdp_prev = NULL; 2509 2510 if (!have_rcu_nocb_mask) 2511 return; 2512 if (ls == -1) { 2513 ls = int_sqrt(nr_cpu_ids); 2514 rcu_nocb_leader_stride = ls; 2515 } 2516 2517 /* 2518 * Each pass through this loop sets up one rcu_data structure and 2519 * spawns one rcu_nocb_kthread(). 2520 */ 2521 for_each_cpu(cpu, rcu_nocb_mask) { 2522 rdp = per_cpu_ptr(rsp->rda, cpu); 2523 if (rdp->cpu >= nl) { 2524 /* New leader, set up for followers & next leader. */ 2525 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2526 rdp->nocb_leader = rdp; 2527 rdp_leader = rdp; 2528 } else { 2529 /* Another follower, link to previous leader. */ 2530 rdp->nocb_leader = rdp_leader; 2531 rdp_prev->nocb_next_follower = rdp; 2532 } 2533 rdp_prev = rdp; 2534 } 2535 } 2536 2537 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2538 static bool init_nocb_callback_list(struct rcu_data *rdp) 2539 { 2540 if (!rcu_is_nocb_cpu(rdp->cpu)) 2541 return false; 2542 2543 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2544 return true; 2545 } 2546 2547 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2548 2549 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2550 { 2551 WARN_ON_ONCE(1); /* Should be dead code. */ 2552 return false; 2553 } 2554 2555 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2556 { 2557 } 2558 2559 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2560 { 2561 } 2562 2563 static void rcu_init_one_nocb(struct rcu_node *rnp) 2564 { 2565 } 2566 2567 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2568 bool lazy, unsigned long flags) 2569 { 2570 return false; 2571 } 2572 2573 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2574 struct rcu_data *rdp, 2575 unsigned long flags) 2576 { 2577 return false; 2578 } 2579 2580 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2581 { 2582 } 2583 2584 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2585 { 2586 return false; 2587 } 2588 2589 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2590 { 2591 } 2592 2593 static void rcu_spawn_all_nocb_kthreads(int cpu) 2594 { 2595 } 2596 2597 static void __init rcu_spawn_nocb_kthreads(void) 2598 { 2599 } 2600 2601 static bool init_nocb_callback_list(struct rcu_data *rdp) 2602 { 2603 return false; 2604 } 2605 2606 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2607 2608 /* 2609 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2610 * arbitrarily long period of time with the scheduling-clock tick turned 2611 * off. RCU will be paying attention to this CPU because it is in the 2612 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2613 * machine because the scheduling-clock tick has been disabled. Therefore, 2614 * if an adaptive-ticks CPU is failing to respond to the current grace 2615 * period and has not be idle from an RCU perspective, kick it. 2616 */ 2617 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2618 { 2619 #ifdef CONFIG_NO_HZ_FULL 2620 if (tick_nohz_full_cpu(cpu)) 2621 smp_send_reschedule(cpu); 2622 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2623 } 2624 2625 2626 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2627 2628 static int full_sysidle_state; /* Current system-idle state. */ 2629 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2630 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2631 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2632 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2633 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2634 2635 /* 2636 * Invoked to note exit from irq or task transition to idle. Note that 2637 * usermode execution does -not- count as idle here! After all, we want 2638 * to detect full-system idle states, not RCU quiescent states and grace 2639 * periods. The caller must have disabled interrupts. 2640 */ 2641 static void rcu_sysidle_enter(int irq) 2642 { 2643 unsigned long j; 2644 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2645 2646 /* If there are no nohz_full= CPUs, no need to track this. */ 2647 if (!tick_nohz_full_enabled()) 2648 return; 2649 2650 /* Adjust nesting, check for fully idle. */ 2651 if (irq) { 2652 rdtp->dynticks_idle_nesting--; 2653 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2654 if (rdtp->dynticks_idle_nesting != 0) 2655 return; /* Still not fully idle. */ 2656 } else { 2657 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2658 DYNTICK_TASK_NEST_VALUE) { 2659 rdtp->dynticks_idle_nesting = 0; 2660 } else { 2661 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2662 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2663 return; /* Still not fully idle. */ 2664 } 2665 } 2666 2667 /* Record start of fully idle period. */ 2668 j = jiffies; 2669 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j; 2670 smp_mb__before_atomic(); 2671 atomic_inc(&rdtp->dynticks_idle); 2672 smp_mb__after_atomic(); 2673 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2674 } 2675 2676 /* 2677 * Unconditionally force exit from full system-idle state. This is 2678 * invoked when a normal CPU exits idle, but must be called separately 2679 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2680 * is that the timekeeping CPU is permitted to take scheduling-clock 2681 * interrupts while the system is in system-idle state, and of course 2682 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2683 * interrupt from any other type of interrupt. 2684 */ 2685 void rcu_sysidle_force_exit(void) 2686 { 2687 int oldstate = ACCESS_ONCE(full_sysidle_state); 2688 int newoldstate; 2689 2690 /* 2691 * Each pass through the following loop attempts to exit full 2692 * system-idle state. If contention proves to be a problem, 2693 * a trylock-based contention tree could be used here. 2694 */ 2695 while (oldstate > RCU_SYSIDLE_SHORT) { 2696 newoldstate = cmpxchg(&full_sysidle_state, 2697 oldstate, RCU_SYSIDLE_NOT); 2698 if (oldstate == newoldstate && 2699 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2700 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2701 return; /* We cleared it, done! */ 2702 } 2703 oldstate = newoldstate; 2704 } 2705 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2706 } 2707 2708 /* 2709 * Invoked to note entry to irq or task transition from idle. Note that 2710 * usermode execution does -not- count as idle here! The caller must 2711 * have disabled interrupts. 2712 */ 2713 static void rcu_sysidle_exit(int irq) 2714 { 2715 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2716 2717 /* If there are no nohz_full= CPUs, no need to track this. */ 2718 if (!tick_nohz_full_enabled()) 2719 return; 2720 2721 /* Adjust nesting, check for already non-idle. */ 2722 if (irq) { 2723 rdtp->dynticks_idle_nesting++; 2724 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2725 if (rdtp->dynticks_idle_nesting != 1) 2726 return; /* Already non-idle. */ 2727 } else { 2728 /* 2729 * Allow for irq misnesting. Yes, it really is possible 2730 * to enter an irq handler then never leave it, and maybe 2731 * also vice versa. Handle both possibilities. 2732 */ 2733 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2734 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2735 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2736 return; /* Already non-idle. */ 2737 } else { 2738 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2739 } 2740 } 2741 2742 /* Record end of idle period. */ 2743 smp_mb__before_atomic(); 2744 atomic_inc(&rdtp->dynticks_idle); 2745 smp_mb__after_atomic(); 2746 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2747 2748 /* 2749 * If we are the timekeeping CPU, we are permitted to be non-idle 2750 * during a system-idle state. This must be the case, because 2751 * the timekeeping CPU has to take scheduling-clock interrupts 2752 * during the time that the system is transitioning to full 2753 * system-idle state. This means that the timekeeping CPU must 2754 * invoke rcu_sysidle_force_exit() directly if it does anything 2755 * more than take a scheduling-clock interrupt. 2756 */ 2757 if (smp_processor_id() == tick_do_timer_cpu) 2758 return; 2759 2760 /* Update system-idle state: We are clearly no longer fully idle! */ 2761 rcu_sysidle_force_exit(); 2762 } 2763 2764 /* 2765 * Check to see if the current CPU is idle. Note that usermode execution 2766 * does not count as idle. The caller must have disabled interrupts. 2767 */ 2768 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2769 unsigned long *maxj) 2770 { 2771 int cur; 2772 unsigned long j; 2773 struct rcu_dynticks *rdtp = rdp->dynticks; 2774 2775 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2776 if (!tick_nohz_full_enabled()) 2777 return; 2778 2779 /* 2780 * If some other CPU has already reported non-idle, if this is 2781 * not the flavor of RCU that tracks sysidle state, or if this 2782 * is an offline or the timekeeping CPU, nothing to do. 2783 */ 2784 if (!*isidle || rdp->rsp != rcu_state_p || 2785 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2786 return; 2787 if (rcu_gp_in_progress(rdp->rsp)) 2788 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2789 2790 /* Pick up current idle and NMI-nesting counter and check. */ 2791 cur = atomic_read(&rdtp->dynticks_idle); 2792 if (cur & 0x1) { 2793 *isidle = false; /* We are not idle! */ 2794 return; 2795 } 2796 smp_mb(); /* Read counters before timestamps. */ 2797 2798 /* Pick up timestamps. */ 2799 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies); 2800 /* If this CPU entered idle more recently, update maxj timestamp. */ 2801 if (ULONG_CMP_LT(*maxj, j)) 2802 *maxj = j; 2803 } 2804 2805 /* 2806 * Is this the flavor of RCU that is handling full-system idle? 2807 */ 2808 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2809 { 2810 return rsp == rcu_state_p; 2811 } 2812 2813 /* 2814 * Return a delay in jiffies based on the number of CPUs, rcu_node 2815 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2816 * systems more time to transition to full-idle state in order to 2817 * avoid the cache thrashing that otherwise occur on the state variable. 2818 * Really small systems (less than a couple of tens of CPUs) should 2819 * instead use a single global atomically incremented counter, and later 2820 * versions of this will automatically reconfigure themselves accordingly. 2821 */ 2822 static unsigned long rcu_sysidle_delay(void) 2823 { 2824 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2825 return 0; 2826 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2827 } 2828 2829 /* 2830 * Advance the full-system-idle state. This is invoked when all of 2831 * the non-timekeeping CPUs are idle. 2832 */ 2833 static void rcu_sysidle(unsigned long j) 2834 { 2835 /* Check the current state. */ 2836 switch (ACCESS_ONCE(full_sysidle_state)) { 2837 case RCU_SYSIDLE_NOT: 2838 2839 /* First time all are idle, so note a short idle period. */ 2840 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT; 2841 break; 2842 2843 case RCU_SYSIDLE_SHORT: 2844 2845 /* 2846 * Idle for a bit, time to advance to next state? 2847 * cmpxchg failure means race with non-idle, let them win. 2848 */ 2849 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2850 (void)cmpxchg(&full_sysidle_state, 2851 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2852 break; 2853 2854 case RCU_SYSIDLE_LONG: 2855 2856 /* 2857 * Do an additional check pass before advancing to full. 2858 * cmpxchg failure means race with non-idle, let them win. 2859 */ 2860 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2861 (void)cmpxchg(&full_sysidle_state, 2862 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2863 break; 2864 2865 default: 2866 break; 2867 } 2868 } 2869 2870 /* 2871 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2872 * back to the beginning. 2873 */ 2874 static void rcu_sysidle_cancel(void) 2875 { 2876 smp_mb(); 2877 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2878 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT; 2879 } 2880 2881 /* 2882 * Update the sysidle state based on the results of a force-quiescent-state 2883 * scan of the CPUs' dyntick-idle state. 2884 */ 2885 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2886 unsigned long maxj, bool gpkt) 2887 { 2888 if (rsp != rcu_state_p) 2889 return; /* Wrong flavor, ignore. */ 2890 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2891 return; /* Running state machine from timekeeping CPU. */ 2892 if (isidle) 2893 rcu_sysidle(maxj); /* More idle! */ 2894 else 2895 rcu_sysidle_cancel(); /* Idle is over. */ 2896 } 2897 2898 /* 2899 * Wrapper for rcu_sysidle_report() when called from the grace-period 2900 * kthread's context. 2901 */ 2902 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2903 unsigned long maxj) 2904 { 2905 /* If there are no nohz_full= CPUs, no need to track this. */ 2906 if (!tick_nohz_full_enabled()) 2907 return; 2908 2909 rcu_sysidle_report(rsp, isidle, maxj, true); 2910 } 2911 2912 /* Callback and function for forcing an RCU grace period. */ 2913 struct rcu_sysidle_head { 2914 struct rcu_head rh; 2915 int inuse; 2916 }; 2917 2918 static void rcu_sysidle_cb(struct rcu_head *rhp) 2919 { 2920 struct rcu_sysidle_head *rshp; 2921 2922 /* 2923 * The following memory barrier is needed to replace the 2924 * memory barriers that would normally be in the memory 2925 * allocator. 2926 */ 2927 smp_mb(); /* grace period precedes setting inuse. */ 2928 2929 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2930 ACCESS_ONCE(rshp->inuse) = 0; 2931 } 2932 2933 /* 2934 * Check to see if the system is fully idle, other than the timekeeping CPU. 2935 * The caller must have disabled interrupts. This is not intended to be 2936 * called unless tick_nohz_full_enabled(). 2937 */ 2938 bool rcu_sys_is_idle(void) 2939 { 2940 static struct rcu_sysidle_head rsh; 2941 int rss = ACCESS_ONCE(full_sysidle_state); 2942 2943 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2944 return false; 2945 2946 /* Handle small-system case by doing a full scan of CPUs. */ 2947 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2948 int oldrss = rss - 1; 2949 2950 /* 2951 * One pass to advance to each state up to _FULL. 2952 * Give up if any pass fails to advance the state. 2953 */ 2954 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2955 int cpu; 2956 bool isidle = true; 2957 unsigned long maxj = jiffies - ULONG_MAX / 4; 2958 struct rcu_data *rdp; 2959 2960 /* Scan all the CPUs looking for nonidle CPUs. */ 2961 for_each_possible_cpu(cpu) { 2962 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2963 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2964 if (!isidle) 2965 break; 2966 } 2967 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2968 oldrss = rss; 2969 rss = ACCESS_ONCE(full_sysidle_state); 2970 } 2971 } 2972 2973 /* If this is the first observation of an idle period, record it. */ 2974 if (rss == RCU_SYSIDLE_FULL) { 2975 rss = cmpxchg(&full_sysidle_state, 2976 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2977 return rss == RCU_SYSIDLE_FULL; 2978 } 2979 2980 smp_mb(); /* ensure rss load happens before later caller actions. */ 2981 2982 /* If already fully idle, tell the caller (in case of races). */ 2983 if (rss == RCU_SYSIDLE_FULL_NOTED) 2984 return true; 2985 2986 /* 2987 * If we aren't there yet, and a grace period is not in flight, 2988 * initiate a grace period. Either way, tell the caller that 2989 * we are not there yet. We use an xchg() rather than an assignment 2990 * to make up for the memory barriers that would otherwise be 2991 * provided by the memory allocator. 2992 */ 2993 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2994 !rcu_gp_in_progress(rcu_state_p) && 2995 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2996 call_rcu(&rsh.rh, rcu_sysidle_cb); 2997 return false; 2998 } 2999 3000 /* 3001 * Initialize dynticks sysidle state for CPUs coming online. 3002 */ 3003 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 3004 { 3005 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 3006 } 3007 3008 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3009 3010 static void rcu_sysidle_enter(int irq) 3011 { 3012 } 3013 3014 static void rcu_sysidle_exit(int irq) 3015 { 3016 } 3017 3018 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 3019 unsigned long *maxj) 3020 { 3021 } 3022 3023 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 3024 { 3025 return false; 3026 } 3027 3028 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 3029 unsigned long maxj) 3030 { 3031 } 3032 3033 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 3034 { 3035 } 3036 3037 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3038 3039 /* 3040 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 3041 * grace-period kthread will do force_quiescent_state() processing? 3042 * The idea is to avoid waking up RCU core processing on such a 3043 * CPU unless the grace period has extended for too long. 3044 * 3045 * This code relies on the fact that all NO_HZ_FULL CPUs are also 3046 * CONFIG_RCU_NOCB_CPU CPUs. 3047 */ 3048 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 3049 { 3050 #ifdef CONFIG_NO_HZ_FULL 3051 if (tick_nohz_full_cpu(smp_processor_id()) && 3052 (!rcu_gp_in_progress(rsp) || 3053 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ))) 3054 return 1; 3055 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 3056 return 0; 3057 } 3058 3059 /* 3060 * Bind the grace-period kthread for the sysidle flavor of RCU to the 3061 * timekeeping CPU. 3062 */ 3063 static void rcu_bind_gp_kthread(void) 3064 { 3065 int __maybe_unused cpu; 3066 3067 if (!tick_nohz_full_enabled()) 3068 return; 3069 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 3070 cpu = tick_do_timer_cpu; 3071 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu) 3072 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 3073 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3074 if (!is_housekeeping_cpu(raw_smp_processor_id())) 3075 housekeeping_affine(current); 3076 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3077 } 3078 3079 /* Record the current task on dyntick-idle entry. */ 3080 static void rcu_dynticks_task_enter(void) 3081 { 3082 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3083 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id(); 3084 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3085 } 3086 3087 /* Record no current task on dyntick-idle exit. */ 3088 static void rcu_dynticks_task_exit(void) 3089 { 3090 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3091 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1; 3092 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3093 } 3094