xref: /linux/kernel/rcu/tree_plugin.h (revision be239684b18e1cdcafcf8c7face4a2f562c745ad)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
17 {
18 	/*
19 	 * In order to read the offloaded state of an rdp in a safe
20 	 * and stable way and prevent from its value to be changed
21 	 * under us, we must either hold the barrier mutex, the cpu
22 	 * hotplug lock (read or write) or the nocb lock. Local
23 	 * non-preemptible reads are also safe. NOCB kthreads and
24 	 * timers have their own means of synchronization against the
25 	 * offloaded state updaters.
26 	 */
27 	RCU_LOCKDEP_WARN(
28 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
29 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
30 		  rcu_lockdep_is_held_nocb(rdp) ||
31 		  (rdp == this_cpu_ptr(&rcu_data) &&
32 		   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
33 		  rcu_current_is_nocb_kthread(rdp)),
34 		"Unsafe read of RCU_NOCB offloaded state"
35 	);
36 
37 	return rcu_segcblist_is_offloaded(&rdp->cblist);
38 }
39 
40 /*
41  * Check the RCU kernel configuration parameters and print informative
42  * messages about anything out of the ordinary.
43  */
44 static void __init rcu_bootup_announce_oddness(void)
45 {
46 	if (IS_ENABLED(CONFIG_RCU_TRACE))
47 		pr_info("\tRCU event tracing is enabled.\n");
48 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
49 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
50 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
51 			RCU_FANOUT);
52 	if (rcu_fanout_exact)
53 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
54 	if (IS_ENABLED(CONFIG_PROVE_RCU))
55 		pr_info("\tRCU lockdep checking is enabled.\n");
56 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
57 		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
58 	if (RCU_NUM_LVLS >= 4)
59 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
60 	if (RCU_FANOUT_LEAF != 16)
61 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
62 			RCU_FANOUT_LEAF);
63 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
64 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
65 			rcu_fanout_leaf);
66 	if (nr_cpu_ids != NR_CPUS)
67 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
68 #ifdef CONFIG_RCU_BOOST
69 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
70 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
71 #endif
72 	if (blimit != DEFAULT_RCU_BLIMIT)
73 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
74 	if (qhimark != DEFAULT_RCU_QHIMARK)
75 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
76 	if (qlowmark != DEFAULT_RCU_QLOMARK)
77 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
78 	if (qovld != DEFAULT_RCU_QOVLD)
79 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
80 	if (jiffies_till_first_fqs != ULONG_MAX)
81 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
82 	if (jiffies_till_next_fqs != ULONG_MAX)
83 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
84 	if (jiffies_till_sched_qs != ULONG_MAX)
85 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
86 	if (rcu_kick_kthreads)
87 		pr_info("\tKick kthreads if too-long grace period.\n");
88 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
89 		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
90 	if (gp_preinit_delay)
91 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
92 	if (gp_init_delay)
93 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
94 	if (gp_cleanup_delay)
95 		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
96 	if (!use_softirq)
97 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
98 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
99 		pr_info("\tRCU debug extended QS entry/exit.\n");
100 	rcupdate_announce_bootup_oddness();
101 }
102 
103 #ifdef CONFIG_PREEMPT_RCU
104 
105 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
106 static void rcu_read_unlock_special(struct task_struct *t);
107 
108 /*
109  * Tell them what RCU they are running.
110  */
111 static void __init rcu_bootup_announce(void)
112 {
113 	pr_info("Preemptible hierarchical RCU implementation.\n");
114 	rcu_bootup_announce_oddness();
115 }
116 
117 /* Flags for rcu_preempt_ctxt_queue() decision table. */
118 #define RCU_GP_TASKS	0x8
119 #define RCU_EXP_TASKS	0x4
120 #define RCU_GP_BLKD	0x2
121 #define RCU_EXP_BLKD	0x1
122 
123 /*
124  * Queues a task preempted within an RCU-preempt read-side critical
125  * section into the appropriate location within the ->blkd_tasks list,
126  * depending on the states of any ongoing normal and expedited grace
127  * periods.  The ->gp_tasks pointer indicates which element the normal
128  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
129  * indicates which element the expedited grace period is waiting on (again,
130  * NULL if none).  If a grace period is waiting on a given element in the
131  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
132  * adding a task to the tail of the list blocks any grace period that is
133  * already waiting on one of the elements.  In contrast, adding a task
134  * to the head of the list won't block any grace period that is already
135  * waiting on one of the elements.
136  *
137  * This queuing is imprecise, and can sometimes make an ongoing grace
138  * period wait for a task that is not strictly speaking blocking it.
139  * Given the choice, we needlessly block a normal grace period rather than
140  * blocking an expedited grace period.
141  *
142  * Note that an endless sequence of expedited grace periods still cannot
143  * indefinitely postpone a normal grace period.  Eventually, all of the
144  * fixed number of preempted tasks blocking the normal grace period that are
145  * not also blocking the expedited grace period will resume and complete
146  * their RCU read-side critical sections.  At that point, the ->gp_tasks
147  * pointer will equal the ->exp_tasks pointer, at which point the end of
148  * the corresponding expedited grace period will also be the end of the
149  * normal grace period.
150  */
151 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
152 	__releases(rnp->lock) /* But leaves rrupts disabled. */
153 {
154 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
155 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
156 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
157 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
158 	struct task_struct *t = current;
159 
160 	raw_lockdep_assert_held_rcu_node(rnp);
161 	WARN_ON_ONCE(rdp->mynode != rnp);
162 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
163 	/* RCU better not be waiting on newly onlined CPUs! */
164 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
165 		     rdp->grpmask);
166 
167 	/*
168 	 * Decide where to queue the newly blocked task.  In theory,
169 	 * this could be an if-statement.  In practice, when I tried
170 	 * that, it was quite messy.
171 	 */
172 	switch (blkd_state) {
173 	case 0:
174 	case                RCU_EXP_TASKS:
175 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
176 	case RCU_GP_TASKS:
177 	case RCU_GP_TASKS + RCU_EXP_TASKS:
178 
179 		/*
180 		 * Blocking neither GP, or first task blocking the normal
181 		 * GP but not blocking the already-waiting expedited GP.
182 		 * Queue at the head of the list to avoid unnecessarily
183 		 * blocking the already-waiting GPs.
184 		 */
185 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
186 		break;
187 
188 	case                                              RCU_EXP_BLKD:
189 	case                                RCU_GP_BLKD:
190 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
191 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
192 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
193 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
194 
195 		/*
196 		 * First task arriving that blocks either GP, or first task
197 		 * arriving that blocks the expedited GP (with the normal
198 		 * GP already waiting), or a task arriving that blocks
199 		 * both GPs with both GPs already waiting.  Queue at the
200 		 * tail of the list to avoid any GP waiting on any of the
201 		 * already queued tasks that are not blocking it.
202 		 */
203 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
204 		break;
205 
206 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
207 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
208 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
209 
210 		/*
211 		 * Second or subsequent task blocking the expedited GP.
212 		 * The task either does not block the normal GP, or is the
213 		 * first task blocking the normal GP.  Queue just after
214 		 * the first task blocking the expedited GP.
215 		 */
216 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
217 		break;
218 
219 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
220 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
221 
222 		/*
223 		 * Second or subsequent task blocking the normal GP.
224 		 * The task does not block the expedited GP. Queue just
225 		 * after the first task blocking the normal GP.
226 		 */
227 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
228 		break;
229 
230 	default:
231 
232 		/* Yet another exercise in excessive paranoia. */
233 		WARN_ON_ONCE(1);
234 		break;
235 	}
236 
237 	/*
238 	 * We have now queued the task.  If it was the first one to
239 	 * block either grace period, update the ->gp_tasks and/or
240 	 * ->exp_tasks pointers, respectively, to reference the newly
241 	 * blocked tasks.
242 	 */
243 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
244 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
245 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
246 	}
247 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
248 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
249 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
250 		     !(rnp->qsmask & rdp->grpmask));
251 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
252 		     !(rnp->expmask & rdp->grpmask));
253 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
254 
255 	/*
256 	 * Report the quiescent state for the expedited GP.  This expedited
257 	 * GP should not be able to end until we report, so there should be
258 	 * no need to check for a subsequent expedited GP.  (Though we are
259 	 * still in a quiescent state in any case.)
260 	 *
261 	 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
262 	 */
263 	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
264 		rcu_report_exp_rdp(rdp);
265 	else
266 		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
267 }
268 
269 /*
270  * Record a preemptible-RCU quiescent state for the specified CPU.
271  * Note that this does not necessarily mean that the task currently running
272  * on the CPU is in a quiescent state:  Instead, it means that the current
273  * grace period need not wait on any RCU read-side critical section that
274  * starts later on this CPU.  It also means that if the current task is
275  * in an RCU read-side critical section, it has already added itself to
276  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
277  * current task, there might be any number of other tasks blocked while
278  * in an RCU read-side critical section.
279  *
280  * Unlike non-preemptible-RCU, quiescent state reports for expedited
281  * grace periods are handled separately via deferred quiescent states
282  * and context switch events.
283  *
284  * Callers to this function must disable preemption.
285  */
286 static void rcu_qs(void)
287 {
288 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
289 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
290 		trace_rcu_grace_period(TPS("rcu_preempt"),
291 				       __this_cpu_read(rcu_data.gp_seq),
292 				       TPS("cpuqs"));
293 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
294 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
295 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
296 	}
297 }
298 
299 /*
300  * We have entered the scheduler, and the current task might soon be
301  * context-switched away from.  If this task is in an RCU read-side
302  * critical section, we will no longer be able to rely on the CPU to
303  * record that fact, so we enqueue the task on the blkd_tasks list.
304  * The task will dequeue itself when it exits the outermost enclosing
305  * RCU read-side critical section.  Therefore, the current grace period
306  * cannot be permitted to complete until the blkd_tasks list entries
307  * predating the current grace period drain, in other words, until
308  * rnp->gp_tasks becomes NULL.
309  *
310  * Caller must disable interrupts.
311  */
312 void rcu_note_context_switch(bool preempt)
313 {
314 	struct task_struct *t = current;
315 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
316 	struct rcu_node *rnp;
317 
318 	trace_rcu_utilization(TPS("Start context switch"));
319 	lockdep_assert_irqs_disabled();
320 	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
321 	if (rcu_preempt_depth() > 0 &&
322 	    !t->rcu_read_unlock_special.b.blocked) {
323 
324 		/* Possibly blocking in an RCU read-side critical section. */
325 		rnp = rdp->mynode;
326 		raw_spin_lock_rcu_node(rnp);
327 		t->rcu_read_unlock_special.b.blocked = true;
328 		t->rcu_blocked_node = rnp;
329 
330 		/*
331 		 * Verify the CPU's sanity, trace the preemption, and
332 		 * then queue the task as required based on the states
333 		 * of any ongoing and expedited grace periods.
334 		 */
335 		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
336 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
337 		trace_rcu_preempt_task(rcu_state.name,
338 				       t->pid,
339 				       (rnp->qsmask & rdp->grpmask)
340 				       ? rnp->gp_seq
341 				       : rcu_seq_snap(&rnp->gp_seq));
342 		rcu_preempt_ctxt_queue(rnp, rdp);
343 	} else {
344 		rcu_preempt_deferred_qs(t);
345 	}
346 
347 	/*
348 	 * Either we were not in an RCU read-side critical section to
349 	 * begin with, or we have now recorded that critical section
350 	 * globally.  Either way, we can now note a quiescent state
351 	 * for this CPU.  Again, if we were in an RCU read-side critical
352 	 * section, and if that critical section was blocking the current
353 	 * grace period, then the fact that the task has been enqueued
354 	 * means that we continue to block the current grace period.
355 	 */
356 	rcu_qs();
357 	if (rdp->cpu_no_qs.b.exp)
358 		rcu_report_exp_rdp(rdp);
359 	rcu_tasks_qs(current, preempt);
360 	trace_rcu_utilization(TPS("End context switch"));
361 }
362 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
363 
364 /*
365  * Check for preempted RCU readers blocking the current grace period
366  * for the specified rcu_node structure.  If the caller needs a reliable
367  * answer, it must hold the rcu_node's ->lock.
368  */
369 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
370 {
371 	return READ_ONCE(rnp->gp_tasks) != NULL;
372 }
373 
374 /* limit value for ->rcu_read_lock_nesting. */
375 #define RCU_NEST_PMAX (INT_MAX / 2)
376 
377 static void rcu_preempt_read_enter(void)
378 {
379 	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
380 }
381 
382 static int rcu_preempt_read_exit(void)
383 {
384 	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
385 
386 	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
387 	return ret;
388 }
389 
390 static void rcu_preempt_depth_set(int val)
391 {
392 	WRITE_ONCE(current->rcu_read_lock_nesting, val);
393 }
394 
395 /*
396  * Preemptible RCU implementation for rcu_read_lock().
397  * Just increment ->rcu_read_lock_nesting, shared state will be updated
398  * if we block.
399  */
400 void __rcu_read_lock(void)
401 {
402 	rcu_preempt_read_enter();
403 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
404 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
405 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
406 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
407 	barrier();  /* critical section after entry code. */
408 }
409 EXPORT_SYMBOL_GPL(__rcu_read_lock);
410 
411 /*
412  * Preemptible RCU implementation for rcu_read_unlock().
413  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
414  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
415  * invoke rcu_read_unlock_special() to clean up after a context switch
416  * in an RCU read-side critical section and other special cases.
417  */
418 void __rcu_read_unlock(void)
419 {
420 	struct task_struct *t = current;
421 
422 	barrier();  // critical section before exit code.
423 	if (rcu_preempt_read_exit() == 0) {
424 		barrier();  // critical-section exit before .s check.
425 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
426 			rcu_read_unlock_special(t);
427 	}
428 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
429 		int rrln = rcu_preempt_depth();
430 
431 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
432 	}
433 }
434 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
435 
436 /*
437  * Advance a ->blkd_tasks-list pointer to the next entry, instead
438  * returning NULL if at the end of the list.
439  */
440 static struct list_head *rcu_next_node_entry(struct task_struct *t,
441 					     struct rcu_node *rnp)
442 {
443 	struct list_head *np;
444 
445 	np = t->rcu_node_entry.next;
446 	if (np == &rnp->blkd_tasks)
447 		np = NULL;
448 	return np;
449 }
450 
451 /*
452  * Return true if the specified rcu_node structure has tasks that were
453  * preempted within an RCU read-side critical section.
454  */
455 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
456 {
457 	return !list_empty(&rnp->blkd_tasks);
458 }
459 
460 /*
461  * Report deferred quiescent states.  The deferral time can
462  * be quite short, for example, in the case of the call from
463  * rcu_read_unlock_special().
464  */
465 static notrace void
466 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
467 {
468 	bool empty_exp;
469 	bool empty_norm;
470 	bool empty_exp_now;
471 	struct list_head *np;
472 	bool drop_boost_mutex = false;
473 	struct rcu_data *rdp;
474 	struct rcu_node *rnp;
475 	union rcu_special special;
476 
477 	/*
478 	 * If RCU core is waiting for this CPU to exit its critical section,
479 	 * report the fact that it has exited.  Because irqs are disabled,
480 	 * t->rcu_read_unlock_special cannot change.
481 	 */
482 	special = t->rcu_read_unlock_special;
483 	rdp = this_cpu_ptr(&rcu_data);
484 	if (!special.s && !rdp->cpu_no_qs.b.exp) {
485 		local_irq_restore(flags);
486 		return;
487 	}
488 	t->rcu_read_unlock_special.s = 0;
489 	if (special.b.need_qs) {
490 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
491 			rdp->cpu_no_qs.b.norm = false;
492 			rcu_report_qs_rdp(rdp);
493 			udelay(rcu_unlock_delay);
494 		} else {
495 			rcu_qs();
496 		}
497 	}
498 
499 	/*
500 	 * Respond to a request by an expedited grace period for a
501 	 * quiescent state from this CPU.  Note that requests from
502 	 * tasks are handled when removing the task from the
503 	 * blocked-tasks list below.
504 	 */
505 	if (rdp->cpu_no_qs.b.exp)
506 		rcu_report_exp_rdp(rdp);
507 
508 	/* Clean up if blocked during RCU read-side critical section. */
509 	if (special.b.blocked) {
510 
511 		/*
512 		 * Remove this task from the list it blocked on.  The task
513 		 * now remains queued on the rcu_node corresponding to the
514 		 * CPU it first blocked on, so there is no longer any need
515 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
516 		 */
517 		rnp = t->rcu_blocked_node;
518 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
519 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
520 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
521 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
522 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
523 			     (!empty_norm || rnp->qsmask));
524 		empty_exp = sync_rcu_exp_done(rnp);
525 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
526 		np = rcu_next_node_entry(t, rnp);
527 		list_del_init(&t->rcu_node_entry);
528 		t->rcu_blocked_node = NULL;
529 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
530 						rnp->gp_seq, t->pid);
531 		if (&t->rcu_node_entry == rnp->gp_tasks)
532 			WRITE_ONCE(rnp->gp_tasks, np);
533 		if (&t->rcu_node_entry == rnp->exp_tasks)
534 			WRITE_ONCE(rnp->exp_tasks, np);
535 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
536 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
537 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
538 			if (&t->rcu_node_entry == rnp->boost_tasks)
539 				WRITE_ONCE(rnp->boost_tasks, np);
540 		}
541 
542 		/*
543 		 * If this was the last task on the current list, and if
544 		 * we aren't waiting on any CPUs, report the quiescent state.
545 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
546 		 * so we must take a snapshot of the expedited state.
547 		 */
548 		empty_exp_now = sync_rcu_exp_done(rnp);
549 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
550 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
551 							 rnp->gp_seq,
552 							 0, rnp->qsmask,
553 							 rnp->level,
554 							 rnp->grplo,
555 							 rnp->grphi,
556 							 !!rnp->gp_tasks);
557 			rcu_report_unblock_qs_rnp(rnp, flags);
558 		} else {
559 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
560 		}
561 
562 		/*
563 		 * If this was the last task on the expedited lists,
564 		 * then we need to report up the rcu_node hierarchy.
565 		 */
566 		if (!empty_exp && empty_exp_now)
567 			rcu_report_exp_rnp(rnp, true);
568 
569 		/* Unboost if we were boosted. */
570 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
571 			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
572 	} else {
573 		local_irq_restore(flags);
574 	}
575 }
576 
577 /*
578  * Is a deferred quiescent-state pending, and are we also not in
579  * an RCU read-side critical section?  It is the caller's responsibility
580  * to ensure it is otherwise safe to report any deferred quiescent
581  * states.  The reason for this is that it is safe to report a
582  * quiescent state during context switch even though preemption
583  * is disabled.  This function cannot be expected to understand these
584  * nuances, so the caller must handle them.
585  */
586 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
587 {
588 	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
589 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
590 	       rcu_preempt_depth() == 0;
591 }
592 
593 /*
594  * Report a deferred quiescent state if needed and safe to do so.
595  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
596  * not being in an RCU read-side critical section.  The caller must
597  * evaluate safety in terms of interrupt, softirq, and preemption
598  * disabling.
599  */
600 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
601 {
602 	unsigned long flags;
603 
604 	if (!rcu_preempt_need_deferred_qs(t))
605 		return;
606 	local_irq_save(flags);
607 	rcu_preempt_deferred_qs_irqrestore(t, flags);
608 }
609 
610 /*
611  * Minimal handler to give the scheduler a chance to re-evaluate.
612  */
613 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
614 {
615 	struct rcu_data *rdp;
616 
617 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
618 	rdp->defer_qs_iw_pending = false;
619 }
620 
621 /*
622  * Handle special cases during rcu_read_unlock(), such as needing to
623  * notify RCU core processing or task having blocked during the RCU
624  * read-side critical section.
625  */
626 static void rcu_read_unlock_special(struct task_struct *t)
627 {
628 	unsigned long flags;
629 	bool irqs_were_disabled;
630 	bool preempt_bh_were_disabled =
631 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
632 
633 	/* NMI handlers cannot block and cannot safely manipulate state. */
634 	if (in_nmi())
635 		return;
636 
637 	local_irq_save(flags);
638 	irqs_were_disabled = irqs_disabled_flags(flags);
639 	if (preempt_bh_were_disabled || irqs_were_disabled) {
640 		bool expboost; // Expedited GP in flight or possible boosting.
641 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
642 		struct rcu_node *rnp = rdp->mynode;
643 
644 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
645 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
646 			   (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
647 			   ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
648 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
649 			    t->rcu_blocked_node);
650 		// Need to defer quiescent state until everything is enabled.
651 		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
652 			// Using softirq, safe to awaken, and either the
653 			// wakeup is free or there is either an expedited
654 			// GP in flight or a potential need to deboost.
655 			raise_softirq_irqoff(RCU_SOFTIRQ);
656 		} else {
657 			// Enabling BH or preempt does reschedule, so...
658 			// Also if no expediting and no possible deboosting,
659 			// slow is OK.  Plus nohz_full CPUs eventually get
660 			// tick enabled.
661 			set_tsk_need_resched(current);
662 			set_preempt_need_resched();
663 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
664 			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
665 				// Get scheduler to re-evaluate and call hooks.
666 				// If !IRQ_WORK, FQS scan will eventually IPI.
667 				if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
668 				    IS_ENABLED(CONFIG_PREEMPT_RT))
669 					rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
670 								rcu_preempt_deferred_qs_handler);
671 				else
672 					init_irq_work(&rdp->defer_qs_iw,
673 						      rcu_preempt_deferred_qs_handler);
674 				rdp->defer_qs_iw_pending = true;
675 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
676 			}
677 		}
678 		local_irq_restore(flags);
679 		return;
680 	}
681 	rcu_preempt_deferred_qs_irqrestore(t, flags);
682 }
683 
684 /*
685  * Check that the list of blocked tasks for the newly completed grace
686  * period is in fact empty.  It is a serious bug to complete a grace
687  * period that still has RCU readers blocked!  This function must be
688  * invoked -before- updating this rnp's ->gp_seq.
689  *
690  * Also, if there are blocked tasks on the list, they automatically
691  * block the newly created grace period, so set up ->gp_tasks accordingly.
692  */
693 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
694 {
695 	struct task_struct *t;
696 
697 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
698 	raw_lockdep_assert_held_rcu_node(rnp);
699 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
700 		dump_blkd_tasks(rnp, 10);
701 	if (rcu_preempt_has_tasks(rnp) &&
702 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
703 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
704 		t = container_of(rnp->gp_tasks, struct task_struct,
705 				 rcu_node_entry);
706 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
707 						rnp->gp_seq, t->pid);
708 	}
709 	WARN_ON_ONCE(rnp->qsmask);
710 }
711 
712 /*
713  * Check for a quiescent state from the current CPU, including voluntary
714  * context switches for Tasks RCU.  When a task blocks, the task is
715  * recorded in the corresponding CPU's rcu_node structure, which is checked
716  * elsewhere, hence this function need only check for quiescent states
717  * related to the current CPU, not to those related to tasks.
718  */
719 static void rcu_flavor_sched_clock_irq(int user)
720 {
721 	struct task_struct *t = current;
722 
723 	lockdep_assert_irqs_disabled();
724 	if (rcu_preempt_depth() > 0 ||
725 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
726 		/* No QS, force context switch if deferred. */
727 		if (rcu_preempt_need_deferred_qs(t)) {
728 			set_tsk_need_resched(t);
729 			set_preempt_need_resched();
730 		}
731 	} else if (rcu_preempt_need_deferred_qs(t)) {
732 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
733 		return;
734 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
735 		rcu_qs(); /* Report immediate QS. */
736 		return;
737 	}
738 
739 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
740 	if (rcu_preempt_depth() > 0 &&
741 	    __this_cpu_read(rcu_data.core_needs_qs) &&
742 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
743 	    !t->rcu_read_unlock_special.b.need_qs &&
744 	    time_after(jiffies, rcu_state.gp_start + HZ))
745 		t->rcu_read_unlock_special.b.need_qs = true;
746 }
747 
748 /*
749  * Check for a task exiting while in a preemptible-RCU read-side
750  * critical section, clean up if so.  No need to issue warnings, as
751  * debug_check_no_locks_held() already does this if lockdep is enabled.
752  * Besides, if this function does anything other than just immediately
753  * return, there was a bug of some sort.  Spewing warnings from this
754  * function is like as not to simply obscure important prior warnings.
755  */
756 void exit_rcu(void)
757 {
758 	struct task_struct *t = current;
759 
760 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
761 		rcu_preempt_depth_set(1);
762 		barrier();
763 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
764 	} else if (unlikely(rcu_preempt_depth())) {
765 		rcu_preempt_depth_set(1);
766 	} else {
767 		return;
768 	}
769 	__rcu_read_unlock();
770 	rcu_preempt_deferred_qs(current);
771 }
772 
773 /*
774  * Dump the blocked-tasks state, but limit the list dump to the
775  * specified number of elements.
776  */
777 static void
778 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
779 {
780 	int cpu;
781 	int i;
782 	struct list_head *lhp;
783 	struct rcu_data *rdp;
784 	struct rcu_node *rnp1;
785 
786 	raw_lockdep_assert_held_rcu_node(rnp);
787 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
788 		__func__, rnp->grplo, rnp->grphi, rnp->level,
789 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
790 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
791 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
792 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
793 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
794 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
795 		READ_ONCE(rnp->exp_tasks));
796 	pr_info("%s: ->blkd_tasks", __func__);
797 	i = 0;
798 	list_for_each(lhp, &rnp->blkd_tasks) {
799 		pr_cont(" %p", lhp);
800 		if (++i >= ncheck)
801 			break;
802 	}
803 	pr_cont("\n");
804 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
805 		rdp = per_cpu_ptr(&rcu_data, cpu);
806 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
807 			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
808 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
809 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
810 	}
811 }
812 
813 #else /* #ifdef CONFIG_PREEMPT_RCU */
814 
815 /*
816  * If strict grace periods are enabled, and if the calling
817  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
818  * report that quiescent state and, if requested, spin for a bit.
819  */
820 void rcu_read_unlock_strict(void)
821 {
822 	struct rcu_data *rdp;
823 
824 	if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
825 		return;
826 	rdp = this_cpu_ptr(&rcu_data);
827 	rdp->cpu_no_qs.b.norm = false;
828 	rcu_report_qs_rdp(rdp);
829 	udelay(rcu_unlock_delay);
830 }
831 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
832 
833 /*
834  * Tell them what RCU they are running.
835  */
836 static void __init rcu_bootup_announce(void)
837 {
838 	pr_info("Hierarchical RCU implementation.\n");
839 	rcu_bootup_announce_oddness();
840 }
841 
842 /*
843  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
844  * how many quiescent states passed, just if there was at least one since
845  * the start of the grace period, this just sets a flag.  The caller must
846  * have disabled preemption.
847  */
848 static void rcu_qs(void)
849 {
850 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
851 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
852 		return;
853 	trace_rcu_grace_period(TPS("rcu_sched"),
854 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
855 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
856 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
857 		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
858 }
859 
860 /*
861  * Register an urgently needed quiescent state.  If there is an
862  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
863  * dyntick-idle quiescent state visible to other CPUs, which will in
864  * some cases serve for expedited as well as normal grace periods.
865  * Either way, register a lightweight quiescent state.
866  */
867 void rcu_all_qs(void)
868 {
869 	unsigned long flags;
870 
871 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
872 		return;
873 	preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels
874 	/* Load rcu_urgent_qs before other flags. */
875 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
876 		preempt_enable();
877 		return;
878 	}
879 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
880 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
881 		local_irq_save(flags);
882 		rcu_momentary_dyntick_idle();
883 		local_irq_restore(flags);
884 	}
885 	rcu_qs();
886 	preempt_enable();
887 }
888 EXPORT_SYMBOL_GPL(rcu_all_qs);
889 
890 /*
891  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
892  */
893 void rcu_note_context_switch(bool preempt)
894 {
895 	trace_rcu_utilization(TPS("Start context switch"));
896 	rcu_qs();
897 	/* Load rcu_urgent_qs before other flags. */
898 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
899 		goto out;
900 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
901 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
902 		rcu_momentary_dyntick_idle();
903 out:
904 	rcu_tasks_qs(current, preempt);
905 	trace_rcu_utilization(TPS("End context switch"));
906 }
907 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
908 
909 /*
910  * Because preemptible RCU does not exist, there are never any preempted
911  * RCU readers.
912  */
913 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
914 {
915 	return 0;
916 }
917 
918 /*
919  * Because there is no preemptible RCU, there can be no readers blocked.
920  */
921 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
922 {
923 	return false;
924 }
925 
926 /*
927  * Because there is no preemptible RCU, there can be no deferred quiescent
928  * states.
929  */
930 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
931 {
932 	return false;
933 }
934 
935 // Except that we do need to respond to a request by an expedited
936 // grace period for a quiescent state from this CPU.  Note that in
937 // non-preemptible kernels, there can be no context switches within RCU
938 // read-side critical sections, which in turn means that the leaf rcu_node
939 // structure's blocked-tasks list is always empty.  is therefore no need to
940 // actually check it.  Instead, a quiescent state from this CPU suffices,
941 // and this function is only called from such a quiescent state.
942 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
943 {
944 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
945 
946 	if (READ_ONCE(rdp->cpu_no_qs.b.exp))
947 		rcu_report_exp_rdp(rdp);
948 }
949 
950 /*
951  * Because there is no preemptible RCU, there can be no readers blocked,
952  * so there is no need to check for blocked tasks.  So check only for
953  * bogus qsmask values.
954  */
955 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
956 {
957 	WARN_ON_ONCE(rnp->qsmask);
958 }
959 
960 /*
961  * Check to see if this CPU is in a non-context-switch quiescent state,
962  * namely user mode and idle loop.
963  */
964 static void rcu_flavor_sched_clock_irq(int user)
965 {
966 	if (user || rcu_is_cpu_rrupt_from_idle()) {
967 
968 		/*
969 		 * Get here if this CPU took its interrupt from user
970 		 * mode or from the idle loop, and if this is not a
971 		 * nested interrupt.  In this case, the CPU is in
972 		 * a quiescent state, so note it.
973 		 *
974 		 * No memory barrier is required here because rcu_qs()
975 		 * references only CPU-local variables that other CPUs
976 		 * neither access nor modify, at least not while the
977 		 * corresponding CPU is online.
978 		 */
979 		rcu_qs();
980 	}
981 }
982 
983 /*
984  * Because preemptible RCU does not exist, tasks cannot possibly exit
985  * while in preemptible RCU read-side critical sections.
986  */
987 void exit_rcu(void)
988 {
989 }
990 
991 /*
992  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
993  */
994 static void
995 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
996 {
997 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
998 }
999 
1000 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1001 
1002 /*
1003  * If boosting, set rcuc kthreads to realtime priority.
1004  */
1005 static void rcu_cpu_kthread_setup(unsigned int cpu)
1006 {
1007 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1008 #ifdef CONFIG_RCU_BOOST
1009 	struct sched_param sp;
1010 
1011 	sp.sched_priority = kthread_prio;
1012 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1013 #endif /* #ifdef CONFIG_RCU_BOOST */
1014 
1015 	WRITE_ONCE(rdp->rcuc_activity, jiffies);
1016 }
1017 
1018 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1019 {
1020 #ifdef CONFIG_RCU_NOCB_CPU
1021 	return rdp->nocb_cb_kthread == current;
1022 #else
1023 	return false;
1024 #endif
1025 }
1026 
1027 /*
1028  * Is the current CPU running the RCU-callbacks kthread?
1029  * Caller must have preemption disabled.
1030  */
1031 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1032 {
1033 	return rdp->rcu_cpu_kthread_task == current ||
1034 			rcu_is_callbacks_nocb_kthread(rdp);
1035 }
1036 
1037 #ifdef CONFIG_RCU_BOOST
1038 
1039 /*
1040  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1041  * or ->boost_tasks, advancing the pointer to the next task in the
1042  * ->blkd_tasks list.
1043  *
1044  * Note that irqs must be enabled: boosting the task can block.
1045  * Returns 1 if there are more tasks needing to be boosted.
1046  */
1047 static int rcu_boost(struct rcu_node *rnp)
1048 {
1049 	unsigned long flags;
1050 	struct task_struct *t;
1051 	struct list_head *tb;
1052 
1053 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1054 	    READ_ONCE(rnp->boost_tasks) == NULL)
1055 		return 0;  /* Nothing left to boost. */
1056 
1057 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1058 
1059 	/*
1060 	 * Recheck under the lock: all tasks in need of boosting
1061 	 * might exit their RCU read-side critical sections on their own.
1062 	 */
1063 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1064 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1065 		return 0;
1066 	}
1067 
1068 	/*
1069 	 * Preferentially boost tasks blocking expedited grace periods.
1070 	 * This cannot starve the normal grace periods because a second
1071 	 * expedited grace period must boost all blocked tasks, including
1072 	 * those blocking the pre-existing normal grace period.
1073 	 */
1074 	if (rnp->exp_tasks != NULL)
1075 		tb = rnp->exp_tasks;
1076 	else
1077 		tb = rnp->boost_tasks;
1078 
1079 	/*
1080 	 * We boost task t by manufacturing an rt_mutex that appears to
1081 	 * be held by task t.  We leave a pointer to that rt_mutex where
1082 	 * task t can find it, and task t will release the mutex when it
1083 	 * exits its outermost RCU read-side critical section.  Then
1084 	 * simply acquiring this artificial rt_mutex will boost task
1085 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1086 	 *
1087 	 * Note that task t must acquire rnp->lock to remove itself from
1088 	 * the ->blkd_tasks list, which it will do from exit() if from
1089 	 * nowhere else.  We therefore are guaranteed that task t will
1090 	 * stay around at least until we drop rnp->lock.  Note that
1091 	 * rnp->lock also resolves races between our priority boosting
1092 	 * and task t's exiting its outermost RCU read-side critical
1093 	 * section.
1094 	 */
1095 	t = container_of(tb, struct task_struct, rcu_node_entry);
1096 	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1097 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1098 	/* Lock only for side effect: boosts task t's priority. */
1099 	rt_mutex_lock(&rnp->boost_mtx);
1100 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1101 	rnp->n_boosts++;
1102 
1103 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1104 	       READ_ONCE(rnp->boost_tasks) != NULL;
1105 }
1106 
1107 /*
1108  * Priority-boosting kthread, one per leaf rcu_node.
1109  */
1110 static int rcu_boost_kthread(void *arg)
1111 {
1112 	struct rcu_node *rnp = (struct rcu_node *)arg;
1113 	int spincnt = 0;
1114 	int more2boost;
1115 
1116 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1117 	for (;;) {
1118 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1119 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1120 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1121 			 READ_ONCE(rnp->exp_tasks));
1122 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1123 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1124 		more2boost = rcu_boost(rnp);
1125 		if (more2boost)
1126 			spincnt++;
1127 		else
1128 			spincnt = 0;
1129 		if (spincnt > 10) {
1130 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1131 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1132 			schedule_timeout_idle(2);
1133 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1134 			spincnt = 0;
1135 		}
1136 	}
1137 	/* NOTREACHED */
1138 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1139 	return 0;
1140 }
1141 
1142 /*
1143  * Check to see if it is time to start boosting RCU readers that are
1144  * blocking the current grace period, and, if so, tell the per-rcu_node
1145  * kthread to start boosting them.  If there is an expedited grace
1146  * period in progress, it is always time to boost.
1147  *
1148  * The caller must hold rnp->lock, which this function releases.
1149  * The ->boost_kthread_task is immortal, so we don't need to worry
1150  * about it going away.
1151  */
1152 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1153 	__releases(rnp->lock)
1154 {
1155 	raw_lockdep_assert_held_rcu_node(rnp);
1156 	if (!rnp->boost_kthread_task ||
1157 	    (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1158 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1159 		return;
1160 	}
1161 	if (rnp->exp_tasks != NULL ||
1162 	    (rnp->gp_tasks != NULL &&
1163 	     rnp->boost_tasks == NULL &&
1164 	     rnp->qsmask == 0 &&
1165 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1166 	      IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1167 		if (rnp->exp_tasks == NULL)
1168 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1169 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1170 		rcu_wake_cond(rnp->boost_kthread_task,
1171 			      READ_ONCE(rnp->boost_kthread_status));
1172 	} else {
1173 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1174 	}
1175 }
1176 
1177 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1178 
1179 /*
1180  * Do priority-boost accounting for the start of a new grace period.
1181  */
1182 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1183 {
1184 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1185 }
1186 
1187 /*
1188  * Create an RCU-boost kthread for the specified node if one does not
1189  * already exist.  We only create this kthread for preemptible RCU.
1190  */
1191 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1192 {
1193 	unsigned long flags;
1194 	int rnp_index = rnp - rcu_get_root();
1195 	struct sched_param sp;
1196 	struct task_struct *t;
1197 
1198 	mutex_lock(&rnp->boost_kthread_mutex);
1199 	if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
1200 		goto out;
1201 
1202 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1203 			   "rcub/%d", rnp_index);
1204 	if (WARN_ON_ONCE(IS_ERR(t)))
1205 		goto out;
1206 
1207 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1208 	rnp->boost_kthread_task = t;
1209 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1210 	sp.sched_priority = kthread_prio;
1211 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1212 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1213 
1214  out:
1215 	mutex_unlock(&rnp->boost_kthread_mutex);
1216 }
1217 
1218 /*
1219  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1220  * served by the rcu_node in question.  The CPU hotplug lock is still
1221  * held, so the value of rnp->qsmaskinit will be stable.
1222  *
1223  * We don't include outgoingcpu in the affinity set, use -1 if there is
1224  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1225  * this function allows the kthread to execute on any CPU.
1226  *
1227  * Any future concurrent calls are serialized via ->boost_kthread_mutex.
1228  */
1229 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1230 {
1231 	struct task_struct *t = rnp->boost_kthread_task;
1232 	unsigned long mask;
1233 	cpumask_var_t cm;
1234 	int cpu;
1235 
1236 	if (!t)
1237 		return;
1238 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1239 		return;
1240 	mutex_lock(&rnp->boost_kthread_mutex);
1241 	mask = rcu_rnp_online_cpus(rnp);
1242 	for_each_leaf_node_possible_cpu(rnp, cpu)
1243 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1244 		    cpu != outgoingcpu)
1245 			cpumask_set_cpu(cpu, cm);
1246 	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
1247 	if (cpumask_empty(cm)) {
1248 		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
1249 		if (outgoingcpu >= 0)
1250 			cpumask_clear_cpu(outgoingcpu, cm);
1251 	}
1252 	set_cpus_allowed_ptr(t, cm);
1253 	mutex_unlock(&rnp->boost_kthread_mutex);
1254 	free_cpumask_var(cm);
1255 }
1256 
1257 #else /* #ifdef CONFIG_RCU_BOOST */
1258 
1259 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1260 	__releases(rnp->lock)
1261 {
1262 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1263 }
1264 
1265 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1266 {
1267 }
1268 
1269 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1270 {
1271 }
1272 
1273 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1274 {
1275 }
1276 
1277 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1278 
1279 /*
1280  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1281  * grace-period kthread will do force_quiescent_state() processing?
1282  * The idea is to avoid waking up RCU core processing on such a
1283  * CPU unless the grace period has extended for too long.
1284  *
1285  * This code relies on the fact that all NO_HZ_FULL CPUs are also
1286  * RCU_NOCB_CPU CPUs.
1287  */
1288 static bool rcu_nohz_full_cpu(void)
1289 {
1290 #ifdef CONFIG_NO_HZ_FULL
1291 	if (tick_nohz_full_cpu(smp_processor_id()) &&
1292 	    (!rcu_gp_in_progress() ||
1293 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1294 		return true;
1295 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1296 	return false;
1297 }
1298 
1299 /*
1300  * Bind the RCU grace-period kthreads to the housekeeping CPU.
1301  */
1302 static void rcu_bind_gp_kthread(void)
1303 {
1304 	if (!tick_nohz_full_enabled())
1305 		return;
1306 	housekeeping_affine(current, HK_TYPE_RCU);
1307 }
1308