1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/sched/debug.h> 31 #include <linux/smpboot.h> 32 #include <linux/sched/isolation.h> 33 #include <uapi/linux/sched/types.h> 34 #include "../time/tick-internal.h" 35 36 #ifdef CONFIG_RCU_BOOST 37 38 #include "../locking/rtmutex_common.h" 39 40 /* 41 * Control variables for per-CPU and per-rcu_node kthreads. These 42 * handle all flavors of RCU. 43 */ 44 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 47 DEFINE_PER_CPU(char, rcu_cpu_has_work); 48 49 #else /* #ifdef CONFIG_RCU_BOOST */ 50 51 /* 52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 53 * all uses are in dead code. Provide a definition to keep the compiler 54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 55 * This probably needs to be excluded from -rt builds. 56 */ 57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1) 59 60 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 61 62 #ifdef CONFIG_RCU_NOCB_CPU 63 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 64 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 66 67 /* 68 * Check the RCU kernel configuration parameters and print informative 69 * messages about anything out of the ordinary. 70 */ 71 static void __init rcu_bootup_announce_oddness(void) 72 { 73 if (IS_ENABLED(CONFIG_RCU_TRACE)) 74 pr_info("\tRCU event tracing is enabled.\n"); 75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 78 RCU_FANOUT); 79 if (rcu_fanout_exact) 80 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 83 if (IS_ENABLED(CONFIG_PROVE_RCU)) 84 pr_info("\tRCU lockdep checking is enabled.\n"); 85 if (RCU_NUM_LVLS >= 4) 86 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 87 if (RCU_FANOUT_LEAF != 16) 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 89 RCU_FANOUT_LEAF); 90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 92 if (nr_cpu_ids != NR_CPUS) 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 94 #ifdef CONFIG_RCU_BOOST 95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY); 96 #endif 97 if (blimit != DEFAULT_RCU_BLIMIT) 98 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 99 if (qhimark != DEFAULT_RCU_QHIMARK) 100 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 101 if (qlowmark != DEFAULT_RCU_QLOMARK) 102 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 103 if (jiffies_till_first_fqs != ULONG_MAX) 104 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 105 if (jiffies_till_next_fqs != ULONG_MAX) 106 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 107 if (rcu_kick_kthreads) 108 pr_info("\tKick kthreads if too-long grace period.\n"); 109 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 110 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 111 if (gp_preinit_delay) 112 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 113 if (gp_init_delay) 114 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 115 if (gp_cleanup_delay) 116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 117 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 118 pr_info("\tRCU debug extended QS entry/exit.\n"); 119 rcupdate_announce_bootup_oddness(); 120 } 121 122 #ifdef CONFIG_PREEMPT_RCU 123 124 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 125 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 126 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 127 128 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 129 bool wake); 130 131 /* 132 * Tell them what RCU they are running. 133 */ 134 static void __init rcu_bootup_announce(void) 135 { 136 pr_info("Preemptible hierarchical RCU implementation.\n"); 137 rcu_bootup_announce_oddness(); 138 } 139 140 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 141 #define RCU_GP_TASKS 0x8 142 #define RCU_EXP_TASKS 0x4 143 #define RCU_GP_BLKD 0x2 144 #define RCU_EXP_BLKD 0x1 145 146 /* 147 * Queues a task preempted within an RCU-preempt read-side critical 148 * section into the appropriate location within the ->blkd_tasks list, 149 * depending on the states of any ongoing normal and expedited grace 150 * periods. The ->gp_tasks pointer indicates which element the normal 151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 152 * indicates which element the expedited grace period is waiting on (again, 153 * NULL if none). If a grace period is waiting on a given element in the 154 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 155 * adding a task to the tail of the list blocks any grace period that is 156 * already waiting on one of the elements. In contrast, adding a task 157 * to the head of the list won't block any grace period that is already 158 * waiting on one of the elements. 159 * 160 * This queuing is imprecise, and can sometimes make an ongoing grace 161 * period wait for a task that is not strictly speaking blocking it. 162 * Given the choice, we needlessly block a normal grace period rather than 163 * blocking an expedited grace period. 164 * 165 * Note that an endless sequence of expedited grace periods still cannot 166 * indefinitely postpone a normal grace period. Eventually, all of the 167 * fixed number of preempted tasks blocking the normal grace period that are 168 * not also blocking the expedited grace period will resume and complete 169 * their RCU read-side critical sections. At that point, the ->gp_tasks 170 * pointer will equal the ->exp_tasks pointer, at which point the end of 171 * the corresponding expedited grace period will also be the end of the 172 * normal grace period. 173 */ 174 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 175 __releases(rnp->lock) /* But leaves rrupts disabled. */ 176 { 177 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 178 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 179 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 180 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 181 struct task_struct *t = current; 182 183 lockdep_assert_held(&rnp->lock); 184 WARN_ON_ONCE(rdp->mynode != rnp); 185 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1); 186 187 /* 188 * Decide where to queue the newly blocked task. In theory, 189 * this could be an if-statement. In practice, when I tried 190 * that, it was quite messy. 191 */ 192 switch (blkd_state) { 193 case 0: 194 case RCU_EXP_TASKS: 195 case RCU_EXP_TASKS + RCU_GP_BLKD: 196 case RCU_GP_TASKS: 197 case RCU_GP_TASKS + RCU_EXP_TASKS: 198 199 /* 200 * Blocking neither GP, or first task blocking the normal 201 * GP but not blocking the already-waiting expedited GP. 202 * Queue at the head of the list to avoid unnecessarily 203 * blocking the already-waiting GPs. 204 */ 205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 206 break; 207 208 case RCU_EXP_BLKD: 209 case RCU_GP_BLKD: 210 case RCU_GP_BLKD + RCU_EXP_BLKD: 211 case RCU_GP_TASKS + RCU_EXP_BLKD: 212 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 213 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 214 215 /* 216 * First task arriving that blocks either GP, or first task 217 * arriving that blocks the expedited GP (with the normal 218 * GP already waiting), or a task arriving that blocks 219 * both GPs with both GPs already waiting. Queue at the 220 * tail of the list to avoid any GP waiting on any of the 221 * already queued tasks that are not blocking it. 222 */ 223 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 224 break; 225 226 case RCU_EXP_TASKS + RCU_EXP_BLKD: 227 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 228 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 229 230 /* 231 * Second or subsequent task blocking the expedited GP. 232 * The task either does not block the normal GP, or is the 233 * first task blocking the normal GP. Queue just after 234 * the first task blocking the expedited GP. 235 */ 236 list_add(&t->rcu_node_entry, rnp->exp_tasks); 237 break; 238 239 case RCU_GP_TASKS + RCU_GP_BLKD: 240 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 241 242 /* 243 * Second or subsequent task blocking the normal GP. 244 * The task does not block the expedited GP. Queue just 245 * after the first task blocking the normal GP. 246 */ 247 list_add(&t->rcu_node_entry, rnp->gp_tasks); 248 break; 249 250 default: 251 252 /* Yet another exercise in excessive paranoia. */ 253 WARN_ON_ONCE(1); 254 break; 255 } 256 257 /* 258 * We have now queued the task. If it was the first one to 259 * block either grace period, update the ->gp_tasks and/or 260 * ->exp_tasks pointers, respectively, to reference the newly 261 * blocked tasks. 262 */ 263 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 264 rnp->gp_tasks = &t->rcu_node_entry; 265 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 266 rnp->exp_tasks = &t->rcu_node_entry; 267 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 268 !(rnp->qsmask & rdp->grpmask)); 269 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 270 !(rnp->expmask & rdp->grpmask)); 271 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 272 273 /* 274 * Report the quiescent state for the expedited GP. This expedited 275 * GP should not be able to end until we report, so there should be 276 * no need to check for a subsequent expedited GP. (Though we are 277 * still in a quiescent state in any case.) 278 */ 279 if (blkd_state & RCU_EXP_BLKD && 280 t->rcu_read_unlock_special.b.exp_need_qs) { 281 t->rcu_read_unlock_special.b.exp_need_qs = false; 282 rcu_report_exp_rdp(rdp->rsp, rdp, true); 283 } else { 284 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 285 } 286 } 287 288 /* 289 * Record a preemptible-RCU quiescent state for the specified CPU. Note 290 * that this just means that the task currently running on the CPU is 291 * not in a quiescent state. There might be any number of tasks blocked 292 * while in an RCU read-side critical section. 293 * 294 * As with the other rcu_*_qs() functions, callers to this function 295 * must disable preemption. 296 */ 297 static void rcu_preempt_qs(void) 298 { 299 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n"); 300 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 301 trace_rcu_grace_period(TPS("rcu_preempt"), 302 __this_cpu_read(rcu_data_p->gpnum), 303 TPS("cpuqs")); 304 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 305 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 306 current->rcu_read_unlock_special.b.need_qs = false; 307 } 308 } 309 310 /* 311 * We have entered the scheduler, and the current task might soon be 312 * context-switched away from. If this task is in an RCU read-side 313 * critical section, we will no longer be able to rely on the CPU to 314 * record that fact, so we enqueue the task on the blkd_tasks list. 315 * The task will dequeue itself when it exits the outermost enclosing 316 * RCU read-side critical section. Therefore, the current grace period 317 * cannot be permitted to complete until the blkd_tasks list entries 318 * predating the current grace period drain, in other words, until 319 * rnp->gp_tasks becomes NULL. 320 * 321 * Caller must disable interrupts. 322 */ 323 static void rcu_preempt_note_context_switch(bool preempt) 324 { 325 struct task_struct *t = current; 326 struct rcu_data *rdp; 327 struct rcu_node *rnp; 328 329 lockdep_assert_irqs_disabled(); 330 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0); 331 if (t->rcu_read_lock_nesting > 0 && 332 !t->rcu_read_unlock_special.b.blocked) { 333 334 /* Possibly blocking in an RCU read-side critical section. */ 335 rdp = this_cpu_ptr(rcu_state_p->rda); 336 rnp = rdp->mynode; 337 raw_spin_lock_rcu_node(rnp); 338 t->rcu_read_unlock_special.b.blocked = true; 339 t->rcu_blocked_node = rnp; 340 341 /* 342 * Verify the CPU's sanity, trace the preemption, and 343 * then queue the task as required based on the states 344 * of any ongoing and expedited grace periods. 345 */ 346 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 347 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 348 trace_rcu_preempt_task(rdp->rsp->name, 349 t->pid, 350 (rnp->qsmask & rdp->grpmask) 351 ? rnp->gpnum 352 : rnp->gpnum + 1); 353 rcu_preempt_ctxt_queue(rnp, rdp); 354 } else if (t->rcu_read_lock_nesting < 0 && 355 t->rcu_read_unlock_special.s) { 356 357 /* 358 * Complete exit from RCU read-side critical section on 359 * behalf of preempted instance of __rcu_read_unlock(). 360 */ 361 rcu_read_unlock_special(t); 362 } 363 364 /* 365 * Either we were not in an RCU read-side critical section to 366 * begin with, or we have now recorded that critical section 367 * globally. Either way, we can now note a quiescent state 368 * for this CPU. Again, if we were in an RCU read-side critical 369 * section, and if that critical section was blocking the current 370 * grace period, then the fact that the task has been enqueued 371 * means that we continue to block the current grace period. 372 */ 373 rcu_preempt_qs(); 374 } 375 376 /* 377 * Check for preempted RCU readers blocking the current grace period 378 * for the specified rcu_node structure. If the caller needs a reliable 379 * answer, it must hold the rcu_node's ->lock. 380 */ 381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 382 { 383 return rnp->gp_tasks != NULL; 384 } 385 386 /* 387 * Advance a ->blkd_tasks-list pointer to the next entry, instead 388 * returning NULL if at the end of the list. 389 */ 390 static struct list_head *rcu_next_node_entry(struct task_struct *t, 391 struct rcu_node *rnp) 392 { 393 struct list_head *np; 394 395 np = t->rcu_node_entry.next; 396 if (np == &rnp->blkd_tasks) 397 np = NULL; 398 return np; 399 } 400 401 /* 402 * Return true if the specified rcu_node structure has tasks that were 403 * preempted within an RCU read-side critical section. 404 */ 405 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 406 { 407 return !list_empty(&rnp->blkd_tasks); 408 } 409 410 /* 411 * Handle special cases during rcu_read_unlock(), such as needing to 412 * notify RCU core processing or task having blocked during the RCU 413 * read-side critical section. 414 */ 415 void rcu_read_unlock_special(struct task_struct *t) 416 { 417 bool empty_exp; 418 bool empty_norm; 419 bool empty_exp_now; 420 unsigned long flags; 421 struct list_head *np; 422 bool drop_boost_mutex = false; 423 struct rcu_data *rdp; 424 struct rcu_node *rnp; 425 union rcu_special special; 426 427 /* NMI handlers cannot block and cannot safely manipulate state. */ 428 if (in_nmi()) 429 return; 430 431 local_irq_save(flags); 432 433 /* 434 * If RCU core is waiting for this CPU to exit its critical section, 435 * report the fact that it has exited. Because irqs are disabled, 436 * t->rcu_read_unlock_special cannot change. 437 */ 438 special = t->rcu_read_unlock_special; 439 if (special.b.need_qs) { 440 rcu_preempt_qs(); 441 t->rcu_read_unlock_special.b.need_qs = false; 442 if (!t->rcu_read_unlock_special.s) { 443 local_irq_restore(flags); 444 return; 445 } 446 } 447 448 /* 449 * Respond to a request for an expedited grace period, but only if 450 * we were not preempted, meaning that we were running on the same 451 * CPU throughout. If we were preempted, the exp_need_qs flag 452 * would have been cleared at the time of the first preemption, 453 * and the quiescent state would be reported when we were dequeued. 454 */ 455 if (special.b.exp_need_qs) { 456 WARN_ON_ONCE(special.b.blocked); 457 t->rcu_read_unlock_special.b.exp_need_qs = false; 458 rdp = this_cpu_ptr(rcu_state_p->rda); 459 rcu_report_exp_rdp(rcu_state_p, rdp, true); 460 if (!t->rcu_read_unlock_special.s) { 461 local_irq_restore(flags); 462 return; 463 } 464 } 465 466 /* Hardware IRQ handlers cannot block, complain if they get here. */ 467 if (in_irq() || in_serving_softirq()) { 468 lockdep_rcu_suspicious(__FILE__, __LINE__, 469 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 470 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 471 t->rcu_read_unlock_special.s, 472 t->rcu_read_unlock_special.b.blocked, 473 t->rcu_read_unlock_special.b.exp_need_qs, 474 t->rcu_read_unlock_special.b.need_qs); 475 local_irq_restore(flags); 476 return; 477 } 478 479 /* Clean up if blocked during RCU read-side critical section. */ 480 if (special.b.blocked) { 481 t->rcu_read_unlock_special.b.blocked = false; 482 483 /* 484 * Remove this task from the list it blocked on. The task 485 * now remains queued on the rcu_node corresponding to the 486 * CPU it first blocked on, so there is no longer any need 487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 488 */ 489 rnp = t->rcu_blocked_node; 490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 491 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 492 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1); 493 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 494 empty_exp = sync_rcu_preempt_exp_done(rnp); 495 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 496 np = rcu_next_node_entry(t, rnp); 497 list_del_init(&t->rcu_node_entry); 498 t->rcu_blocked_node = NULL; 499 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 500 rnp->gpnum, t->pid); 501 if (&t->rcu_node_entry == rnp->gp_tasks) 502 rnp->gp_tasks = np; 503 if (&t->rcu_node_entry == rnp->exp_tasks) 504 rnp->exp_tasks = np; 505 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 506 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 507 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 508 if (&t->rcu_node_entry == rnp->boost_tasks) 509 rnp->boost_tasks = np; 510 } 511 512 /* 513 * If this was the last task on the current list, and if 514 * we aren't waiting on any CPUs, report the quiescent state. 515 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 516 * so we must take a snapshot of the expedited state. 517 */ 518 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 519 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 520 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 521 rnp->gpnum, 522 0, rnp->qsmask, 523 rnp->level, 524 rnp->grplo, 525 rnp->grphi, 526 !!rnp->gp_tasks); 527 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 528 } else { 529 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 530 } 531 532 /* Unboost if we were boosted. */ 533 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 534 rt_mutex_futex_unlock(&rnp->boost_mtx); 535 536 /* 537 * If this was the last task on the expedited lists, 538 * then we need to report up the rcu_node hierarchy. 539 */ 540 if (!empty_exp && empty_exp_now) 541 rcu_report_exp_rnp(rcu_state_p, rnp, true); 542 } else { 543 local_irq_restore(flags); 544 } 545 } 546 547 /* 548 * Dump detailed information for all tasks blocking the current RCU 549 * grace period on the specified rcu_node structure. 550 */ 551 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 552 { 553 unsigned long flags; 554 struct task_struct *t; 555 556 raw_spin_lock_irqsave_rcu_node(rnp, flags); 557 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 558 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 559 return; 560 } 561 t = list_entry(rnp->gp_tasks->prev, 562 struct task_struct, rcu_node_entry); 563 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 564 sched_show_task(t); 565 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 566 } 567 568 /* 569 * Dump detailed information for all tasks blocking the current RCU 570 * grace period. 571 */ 572 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 573 { 574 struct rcu_node *rnp = rcu_get_root(rsp); 575 576 rcu_print_detail_task_stall_rnp(rnp); 577 rcu_for_each_leaf_node(rsp, rnp) 578 rcu_print_detail_task_stall_rnp(rnp); 579 } 580 581 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 582 { 583 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 584 rnp->level, rnp->grplo, rnp->grphi); 585 } 586 587 static void rcu_print_task_stall_end(void) 588 { 589 pr_cont("\n"); 590 } 591 592 /* 593 * Scan the current list of tasks blocked within RCU read-side critical 594 * sections, printing out the tid of each. 595 */ 596 static int rcu_print_task_stall(struct rcu_node *rnp) 597 { 598 struct task_struct *t; 599 int ndetected = 0; 600 601 if (!rcu_preempt_blocked_readers_cgp(rnp)) 602 return 0; 603 rcu_print_task_stall_begin(rnp); 604 t = list_entry(rnp->gp_tasks->prev, 605 struct task_struct, rcu_node_entry); 606 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 607 pr_cont(" P%d", t->pid); 608 ndetected++; 609 } 610 rcu_print_task_stall_end(); 611 return ndetected; 612 } 613 614 /* 615 * Scan the current list of tasks blocked within RCU read-side critical 616 * sections, printing out the tid of each that is blocking the current 617 * expedited grace period. 618 */ 619 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 620 { 621 struct task_struct *t; 622 int ndetected = 0; 623 624 if (!rnp->exp_tasks) 625 return 0; 626 t = list_entry(rnp->exp_tasks->prev, 627 struct task_struct, rcu_node_entry); 628 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 629 pr_cont(" P%d", t->pid); 630 ndetected++; 631 } 632 return ndetected; 633 } 634 635 /* 636 * Check that the list of blocked tasks for the newly completed grace 637 * period is in fact empty. It is a serious bug to complete a grace 638 * period that still has RCU readers blocked! This function must be 639 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 640 * must be held by the caller. 641 * 642 * Also, if there are blocked tasks on the list, they automatically 643 * block the newly created grace period, so set up ->gp_tasks accordingly. 644 */ 645 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 646 { 647 struct task_struct *t; 648 649 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 650 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 651 if (rcu_preempt_has_tasks(rnp)) { 652 rnp->gp_tasks = rnp->blkd_tasks.next; 653 t = container_of(rnp->gp_tasks, struct task_struct, 654 rcu_node_entry); 655 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 656 rnp->gpnum, t->pid); 657 } 658 WARN_ON_ONCE(rnp->qsmask); 659 } 660 661 /* 662 * Check for a quiescent state from the current CPU. When a task blocks, 663 * the task is recorded in the corresponding CPU's rcu_node structure, 664 * which is checked elsewhere. 665 * 666 * Caller must disable hard irqs. 667 */ 668 static void rcu_preempt_check_callbacks(void) 669 { 670 struct task_struct *t = current; 671 672 if (t->rcu_read_lock_nesting == 0) { 673 rcu_preempt_qs(); 674 return; 675 } 676 if (t->rcu_read_lock_nesting > 0 && 677 __this_cpu_read(rcu_data_p->core_needs_qs) && 678 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 679 t->rcu_read_unlock_special.b.need_qs = true; 680 } 681 682 #ifdef CONFIG_RCU_BOOST 683 684 static void rcu_preempt_do_callbacks(void) 685 { 686 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 687 } 688 689 #endif /* #ifdef CONFIG_RCU_BOOST */ 690 691 /** 692 * call_rcu() - Queue an RCU callback for invocation after a grace period. 693 * @head: structure to be used for queueing the RCU updates. 694 * @func: actual callback function to be invoked after the grace period 695 * 696 * The callback function will be invoked some time after a full grace 697 * period elapses, in other words after all pre-existing RCU read-side 698 * critical sections have completed. However, the callback function 699 * might well execute concurrently with RCU read-side critical sections 700 * that started after call_rcu() was invoked. RCU read-side critical 701 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 702 * and may be nested. 703 * 704 * Note that all CPUs must agree that the grace period extended beyond 705 * all pre-existing RCU read-side critical section. On systems with more 706 * than one CPU, this means that when "func()" is invoked, each CPU is 707 * guaranteed to have executed a full memory barrier since the end of its 708 * last RCU read-side critical section whose beginning preceded the call 709 * to call_rcu(). It also means that each CPU executing an RCU read-side 710 * critical section that continues beyond the start of "func()" must have 711 * executed a memory barrier after the call_rcu() but before the beginning 712 * of that RCU read-side critical section. Note that these guarantees 713 * include CPUs that are offline, idle, or executing in user mode, as 714 * well as CPUs that are executing in the kernel. 715 * 716 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 717 * resulting RCU callback function "func()", then both CPU A and CPU B are 718 * guaranteed to execute a full memory barrier during the time interval 719 * between the call to call_rcu() and the invocation of "func()" -- even 720 * if CPU A and CPU B are the same CPU (but again only if the system has 721 * more than one CPU). 722 */ 723 void call_rcu(struct rcu_head *head, rcu_callback_t func) 724 { 725 __call_rcu(head, func, rcu_state_p, -1, 0); 726 } 727 EXPORT_SYMBOL_GPL(call_rcu); 728 729 /** 730 * synchronize_rcu - wait until a grace period has elapsed. 731 * 732 * Control will return to the caller some time after a full grace 733 * period has elapsed, in other words after all currently executing RCU 734 * read-side critical sections have completed. Note, however, that 735 * upon return from synchronize_rcu(), the caller might well be executing 736 * concurrently with new RCU read-side critical sections that began while 737 * synchronize_rcu() was waiting. RCU read-side critical sections are 738 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 739 * 740 * See the description of synchronize_sched() for more detailed 741 * information on memory-ordering guarantees. However, please note 742 * that -only- the memory-ordering guarantees apply. For example, 743 * synchronize_rcu() is -not- guaranteed to wait on things like code 744 * protected by preempt_disable(), instead, synchronize_rcu() is -only- 745 * guaranteed to wait on RCU read-side critical sections, that is, sections 746 * of code protected by rcu_read_lock(). 747 */ 748 void synchronize_rcu(void) 749 { 750 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 751 lock_is_held(&rcu_lock_map) || 752 lock_is_held(&rcu_sched_lock_map), 753 "Illegal synchronize_rcu() in RCU read-side critical section"); 754 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 755 return; 756 if (rcu_gp_is_expedited()) 757 synchronize_rcu_expedited(); 758 else 759 wait_rcu_gp(call_rcu); 760 } 761 EXPORT_SYMBOL_GPL(synchronize_rcu); 762 763 /** 764 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 765 * 766 * Note that this primitive does not necessarily wait for an RCU grace period 767 * to complete. For example, if there are no RCU callbacks queued anywhere 768 * in the system, then rcu_barrier() is within its rights to return 769 * immediately, without waiting for anything, much less an RCU grace period. 770 */ 771 void rcu_barrier(void) 772 { 773 _rcu_barrier(rcu_state_p); 774 } 775 EXPORT_SYMBOL_GPL(rcu_barrier); 776 777 /* 778 * Initialize preemptible RCU's state structures. 779 */ 780 static void __init __rcu_init_preempt(void) 781 { 782 rcu_init_one(rcu_state_p); 783 } 784 785 /* 786 * Check for a task exiting while in a preemptible-RCU read-side 787 * critical section, clean up if so. No need to issue warnings, 788 * as debug_check_no_locks_held() already does this if lockdep 789 * is enabled. 790 */ 791 void exit_rcu(void) 792 { 793 struct task_struct *t = current; 794 795 if (likely(list_empty(¤t->rcu_node_entry))) 796 return; 797 t->rcu_read_lock_nesting = 1; 798 barrier(); 799 t->rcu_read_unlock_special.b.blocked = true; 800 __rcu_read_unlock(); 801 } 802 803 #else /* #ifdef CONFIG_PREEMPT_RCU */ 804 805 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 806 807 /* 808 * Tell them what RCU they are running. 809 */ 810 static void __init rcu_bootup_announce(void) 811 { 812 pr_info("Hierarchical RCU implementation.\n"); 813 rcu_bootup_announce_oddness(); 814 } 815 816 /* 817 * Because preemptible RCU does not exist, we never have to check for 818 * CPUs being in quiescent states. 819 */ 820 static void rcu_preempt_note_context_switch(bool preempt) 821 { 822 } 823 824 /* 825 * Because preemptible RCU does not exist, there are never any preempted 826 * RCU readers. 827 */ 828 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 829 { 830 return 0; 831 } 832 833 /* 834 * Because there is no preemptible RCU, there can be no readers blocked. 835 */ 836 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 837 { 838 return false; 839 } 840 841 /* 842 * Because preemptible RCU does not exist, we never have to check for 843 * tasks blocked within RCU read-side critical sections. 844 */ 845 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 846 { 847 } 848 849 /* 850 * Because preemptible RCU does not exist, we never have to check for 851 * tasks blocked within RCU read-side critical sections. 852 */ 853 static int rcu_print_task_stall(struct rcu_node *rnp) 854 { 855 return 0; 856 } 857 858 /* 859 * Because preemptible RCU does not exist, we never have to check for 860 * tasks blocked within RCU read-side critical sections that are 861 * blocking the current expedited grace period. 862 */ 863 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 864 { 865 return 0; 866 } 867 868 /* 869 * Because there is no preemptible RCU, there can be no readers blocked, 870 * so there is no need to check for blocked tasks. So check only for 871 * bogus qsmask values. 872 */ 873 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 874 { 875 WARN_ON_ONCE(rnp->qsmask); 876 } 877 878 /* 879 * Because preemptible RCU does not exist, it never has any callbacks 880 * to check. 881 */ 882 static void rcu_preempt_check_callbacks(void) 883 { 884 } 885 886 /* 887 * Because preemptible RCU does not exist, rcu_barrier() is just 888 * another name for rcu_barrier_sched(). 889 */ 890 void rcu_barrier(void) 891 { 892 rcu_barrier_sched(); 893 } 894 EXPORT_SYMBOL_GPL(rcu_barrier); 895 896 /* 897 * Because preemptible RCU does not exist, it need not be initialized. 898 */ 899 static void __init __rcu_init_preempt(void) 900 { 901 } 902 903 /* 904 * Because preemptible RCU does not exist, tasks cannot possibly exit 905 * while in preemptible RCU read-side critical sections. 906 */ 907 void exit_rcu(void) 908 { 909 } 910 911 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 912 913 #ifdef CONFIG_RCU_BOOST 914 915 static void rcu_wake_cond(struct task_struct *t, int status) 916 { 917 /* 918 * If the thread is yielding, only wake it when this 919 * is invoked from idle 920 */ 921 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 922 wake_up_process(t); 923 } 924 925 /* 926 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 927 * or ->boost_tasks, advancing the pointer to the next task in the 928 * ->blkd_tasks list. 929 * 930 * Note that irqs must be enabled: boosting the task can block. 931 * Returns 1 if there are more tasks needing to be boosted. 932 */ 933 static int rcu_boost(struct rcu_node *rnp) 934 { 935 unsigned long flags; 936 struct task_struct *t; 937 struct list_head *tb; 938 939 if (READ_ONCE(rnp->exp_tasks) == NULL && 940 READ_ONCE(rnp->boost_tasks) == NULL) 941 return 0; /* Nothing left to boost. */ 942 943 raw_spin_lock_irqsave_rcu_node(rnp, flags); 944 945 /* 946 * Recheck under the lock: all tasks in need of boosting 947 * might exit their RCU read-side critical sections on their own. 948 */ 949 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 950 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 951 return 0; 952 } 953 954 /* 955 * Preferentially boost tasks blocking expedited grace periods. 956 * This cannot starve the normal grace periods because a second 957 * expedited grace period must boost all blocked tasks, including 958 * those blocking the pre-existing normal grace period. 959 */ 960 if (rnp->exp_tasks != NULL) { 961 tb = rnp->exp_tasks; 962 rnp->n_exp_boosts++; 963 } else { 964 tb = rnp->boost_tasks; 965 rnp->n_normal_boosts++; 966 } 967 rnp->n_tasks_boosted++; 968 969 /* 970 * We boost task t by manufacturing an rt_mutex that appears to 971 * be held by task t. We leave a pointer to that rt_mutex where 972 * task t can find it, and task t will release the mutex when it 973 * exits its outermost RCU read-side critical section. Then 974 * simply acquiring this artificial rt_mutex will boost task 975 * t's priority. (Thanks to tglx for suggesting this approach!) 976 * 977 * Note that task t must acquire rnp->lock to remove itself from 978 * the ->blkd_tasks list, which it will do from exit() if from 979 * nowhere else. We therefore are guaranteed that task t will 980 * stay around at least until we drop rnp->lock. Note that 981 * rnp->lock also resolves races between our priority boosting 982 * and task t's exiting its outermost RCU read-side critical 983 * section. 984 */ 985 t = container_of(tb, struct task_struct, rcu_node_entry); 986 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 987 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 988 /* Lock only for side effect: boosts task t's priority. */ 989 rt_mutex_lock(&rnp->boost_mtx); 990 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 991 992 return READ_ONCE(rnp->exp_tasks) != NULL || 993 READ_ONCE(rnp->boost_tasks) != NULL; 994 } 995 996 /* 997 * Priority-boosting kthread, one per leaf rcu_node. 998 */ 999 static int rcu_boost_kthread(void *arg) 1000 { 1001 struct rcu_node *rnp = (struct rcu_node *)arg; 1002 int spincnt = 0; 1003 int more2boost; 1004 1005 trace_rcu_utilization(TPS("Start boost kthread@init")); 1006 for (;;) { 1007 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1008 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1009 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1010 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1011 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1012 more2boost = rcu_boost(rnp); 1013 if (more2boost) 1014 spincnt++; 1015 else 1016 spincnt = 0; 1017 if (spincnt > 10) { 1018 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1019 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1020 schedule_timeout_interruptible(2); 1021 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1022 spincnt = 0; 1023 } 1024 } 1025 /* NOTREACHED */ 1026 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1027 return 0; 1028 } 1029 1030 /* 1031 * Check to see if it is time to start boosting RCU readers that are 1032 * blocking the current grace period, and, if so, tell the per-rcu_node 1033 * kthread to start boosting them. If there is an expedited grace 1034 * period in progress, it is always time to boost. 1035 * 1036 * The caller must hold rnp->lock, which this function releases. 1037 * The ->boost_kthread_task is immortal, so we don't need to worry 1038 * about it going away. 1039 */ 1040 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1041 __releases(rnp->lock) 1042 { 1043 struct task_struct *t; 1044 1045 lockdep_assert_held(&rnp->lock); 1046 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1047 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1048 return; 1049 } 1050 if (rnp->exp_tasks != NULL || 1051 (rnp->gp_tasks != NULL && 1052 rnp->boost_tasks == NULL && 1053 rnp->qsmask == 0 && 1054 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1055 if (rnp->exp_tasks == NULL) 1056 rnp->boost_tasks = rnp->gp_tasks; 1057 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1058 t = rnp->boost_kthread_task; 1059 if (t) 1060 rcu_wake_cond(t, rnp->boost_kthread_status); 1061 } else { 1062 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1063 } 1064 } 1065 1066 /* 1067 * Wake up the per-CPU kthread to invoke RCU callbacks. 1068 */ 1069 static void invoke_rcu_callbacks_kthread(void) 1070 { 1071 unsigned long flags; 1072 1073 local_irq_save(flags); 1074 __this_cpu_write(rcu_cpu_has_work, 1); 1075 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1076 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1077 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1078 __this_cpu_read(rcu_cpu_kthread_status)); 1079 } 1080 local_irq_restore(flags); 1081 } 1082 1083 /* 1084 * Is the current CPU running the RCU-callbacks kthread? 1085 * Caller must have preemption disabled. 1086 */ 1087 static bool rcu_is_callbacks_kthread(void) 1088 { 1089 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1090 } 1091 1092 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1093 1094 /* 1095 * Do priority-boost accounting for the start of a new grace period. 1096 */ 1097 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1098 { 1099 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1100 } 1101 1102 /* 1103 * Create an RCU-boost kthread for the specified node if one does not 1104 * already exist. We only create this kthread for preemptible RCU. 1105 * Returns zero if all is well, a negated errno otherwise. 1106 */ 1107 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1108 struct rcu_node *rnp) 1109 { 1110 int rnp_index = rnp - &rsp->node[0]; 1111 unsigned long flags; 1112 struct sched_param sp; 1113 struct task_struct *t; 1114 1115 if (rcu_state_p != rsp) 1116 return 0; 1117 1118 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1119 return 0; 1120 1121 rsp->boost = 1; 1122 if (rnp->boost_kthread_task != NULL) 1123 return 0; 1124 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1125 "rcub/%d", rnp_index); 1126 if (IS_ERR(t)) 1127 return PTR_ERR(t); 1128 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1129 rnp->boost_kthread_task = t; 1130 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1131 sp.sched_priority = kthread_prio; 1132 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1133 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1134 return 0; 1135 } 1136 1137 static void rcu_kthread_do_work(void) 1138 { 1139 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1140 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1141 rcu_preempt_do_callbacks(); 1142 } 1143 1144 static void rcu_cpu_kthread_setup(unsigned int cpu) 1145 { 1146 struct sched_param sp; 1147 1148 sp.sched_priority = kthread_prio; 1149 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1150 } 1151 1152 static void rcu_cpu_kthread_park(unsigned int cpu) 1153 { 1154 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1155 } 1156 1157 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1158 { 1159 return __this_cpu_read(rcu_cpu_has_work); 1160 } 1161 1162 /* 1163 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1164 * RCU softirq used in flavors and configurations of RCU that do not 1165 * support RCU priority boosting. 1166 */ 1167 static void rcu_cpu_kthread(unsigned int cpu) 1168 { 1169 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1170 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1171 int spincnt; 1172 1173 for (spincnt = 0; spincnt < 10; spincnt++) { 1174 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1175 local_bh_disable(); 1176 *statusp = RCU_KTHREAD_RUNNING; 1177 this_cpu_inc(rcu_cpu_kthread_loops); 1178 local_irq_disable(); 1179 work = *workp; 1180 *workp = 0; 1181 local_irq_enable(); 1182 if (work) 1183 rcu_kthread_do_work(); 1184 local_bh_enable(); 1185 if (*workp == 0) { 1186 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1187 *statusp = RCU_KTHREAD_WAITING; 1188 return; 1189 } 1190 } 1191 *statusp = RCU_KTHREAD_YIELDING; 1192 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1193 schedule_timeout_interruptible(2); 1194 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1195 *statusp = RCU_KTHREAD_WAITING; 1196 } 1197 1198 /* 1199 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1200 * served by the rcu_node in question. The CPU hotplug lock is still 1201 * held, so the value of rnp->qsmaskinit will be stable. 1202 * 1203 * We don't include outgoingcpu in the affinity set, use -1 if there is 1204 * no outgoing CPU. If there are no CPUs left in the affinity set, 1205 * this function allows the kthread to execute on any CPU. 1206 */ 1207 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1208 { 1209 struct task_struct *t = rnp->boost_kthread_task; 1210 unsigned long mask = rcu_rnp_online_cpus(rnp); 1211 cpumask_var_t cm; 1212 int cpu; 1213 1214 if (!t) 1215 return; 1216 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1217 return; 1218 for_each_leaf_node_possible_cpu(rnp, cpu) 1219 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1220 cpu != outgoingcpu) 1221 cpumask_set_cpu(cpu, cm); 1222 if (cpumask_weight(cm) == 0) 1223 cpumask_setall(cm); 1224 set_cpus_allowed_ptr(t, cm); 1225 free_cpumask_var(cm); 1226 } 1227 1228 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1229 .store = &rcu_cpu_kthread_task, 1230 .thread_should_run = rcu_cpu_kthread_should_run, 1231 .thread_fn = rcu_cpu_kthread, 1232 .thread_comm = "rcuc/%u", 1233 .setup = rcu_cpu_kthread_setup, 1234 .park = rcu_cpu_kthread_park, 1235 }; 1236 1237 /* 1238 * Spawn boost kthreads -- called as soon as the scheduler is running. 1239 */ 1240 static void __init rcu_spawn_boost_kthreads(void) 1241 { 1242 struct rcu_node *rnp; 1243 int cpu; 1244 1245 for_each_possible_cpu(cpu) 1246 per_cpu(rcu_cpu_has_work, cpu) = 0; 1247 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1248 rcu_for_each_leaf_node(rcu_state_p, rnp) 1249 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1250 } 1251 1252 static void rcu_prepare_kthreads(int cpu) 1253 { 1254 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1255 struct rcu_node *rnp = rdp->mynode; 1256 1257 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1258 if (rcu_scheduler_fully_active) 1259 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1260 } 1261 1262 #else /* #ifdef CONFIG_RCU_BOOST */ 1263 1264 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1265 __releases(rnp->lock) 1266 { 1267 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1268 } 1269 1270 static void invoke_rcu_callbacks_kthread(void) 1271 { 1272 WARN_ON_ONCE(1); 1273 } 1274 1275 static bool rcu_is_callbacks_kthread(void) 1276 { 1277 return false; 1278 } 1279 1280 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1281 { 1282 } 1283 1284 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1285 { 1286 } 1287 1288 static void __init rcu_spawn_boost_kthreads(void) 1289 { 1290 } 1291 1292 static void rcu_prepare_kthreads(int cpu) 1293 { 1294 } 1295 1296 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1297 1298 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1299 1300 /* 1301 * Check to see if any future RCU-related work will need to be done 1302 * by the current CPU, even if none need be done immediately, returning 1303 * 1 if so. This function is part of the RCU implementation; it is -not- 1304 * an exported member of the RCU API. 1305 * 1306 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1307 * any flavor of RCU. 1308 */ 1309 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1310 { 1311 *nextevt = KTIME_MAX; 1312 return rcu_cpu_has_callbacks(NULL); 1313 } 1314 1315 /* 1316 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1317 * after it. 1318 */ 1319 static void rcu_cleanup_after_idle(void) 1320 { 1321 } 1322 1323 /* 1324 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1325 * is nothing. 1326 */ 1327 static void rcu_prepare_for_idle(void) 1328 { 1329 } 1330 1331 /* 1332 * Don't bother keeping a running count of the number of RCU callbacks 1333 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1334 */ 1335 static void rcu_idle_count_callbacks_posted(void) 1336 { 1337 } 1338 1339 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1340 1341 /* 1342 * This code is invoked when a CPU goes idle, at which point we want 1343 * to have the CPU do everything required for RCU so that it can enter 1344 * the energy-efficient dyntick-idle mode. This is handled by a 1345 * state machine implemented by rcu_prepare_for_idle() below. 1346 * 1347 * The following three proprocessor symbols control this state machine: 1348 * 1349 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1350 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1351 * is sized to be roughly one RCU grace period. Those energy-efficiency 1352 * benchmarkers who might otherwise be tempted to set this to a large 1353 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1354 * system. And if you are -that- concerned about energy efficiency, 1355 * just power the system down and be done with it! 1356 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1357 * permitted to sleep in dyntick-idle mode with only lazy RCU 1358 * callbacks pending. Setting this too high can OOM your system. 1359 * 1360 * The values below work well in practice. If future workloads require 1361 * adjustment, they can be converted into kernel config parameters, though 1362 * making the state machine smarter might be a better option. 1363 */ 1364 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1365 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1366 1367 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1368 module_param(rcu_idle_gp_delay, int, 0644); 1369 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1370 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1371 1372 /* 1373 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1374 * only if it has been awhile since the last time we did so. Afterwards, 1375 * if there are any callbacks ready for immediate invocation, return true. 1376 */ 1377 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1378 { 1379 bool cbs_ready = false; 1380 struct rcu_data *rdp; 1381 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1382 struct rcu_node *rnp; 1383 struct rcu_state *rsp; 1384 1385 /* Exit early if we advanced recently. */ 1386 if (jiffies == rdtp->last_advance_all) 1387 return false; 1388 rdtp->last_advance_all = jiffies; 1389 1390 for_each_rcu_flavor(rsp) { 1391 rdp = this_cpu_ptr(rsp->rda); 1392 rnp = rdp->mynode; 1393 1394 /* 1395 * Don't bother checking unless a grace period has 1396 * completed since we last checked and there are 1397 * callbacks not yet ready to invoke. 1398 */ 1399 if ((rdp->completed != rnp->completed || 1400 unlikely(READ_ONCE(rdp->gpwrap))) && 1401 rcu_segcblist_pend_cbs(&rdp->cblist)) 1402 note_gp_changes(rsp, rdp); 1403 1404 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1405 cbs_ready = true; 1406 } 1407 return cbs_ready; 1408 } 1409 1410 /* 1411 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1412 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1413 * caller to set the timeout based on whether or not there are non-lazy 1414 * callbacks. 1415 * 1416 * The caller must have disabled interrupts. 1417 */ 1418 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1419 { 1420 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1421 unsigned long dj; 1422 1423 lockdep_assert_irqs_disabled(); 1424 1425 /* Snapshot to detect later posting of non-lazy callback. */ 1426 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1427 1428 /* If no callbacks, RCU doesn't need the CPU. */ 1429 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1430 *nextevt = KTIME_MAX; 1431 return 0; 1432 } 1433 1434 /* Attempt to advance callbacks. */ 1435 if (rcu_try_advance_all_cbs()) { 1436 /* Some ready to invoke, so initiate later invocation. */ 1437 invoke_rcu_core(); 1438 return 1; 1439 } 1440 rdtp->last_accelerate = jiffies; 1441 1442 /* Request timer delay depending on laziness, and round. */ 1443 if (!rdtp->all_lazy) { 1444 dj = round_up(rcu_idle_gp_delay + jiffies, 1445 rcu_idle_gp_delay) - jiffies; 1446 } else { 1447 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1448 } 1449 *nextevt = basemono + dj * TICK_NSEC; 1450 return 0; 1451 } 1452 1453 /* 1454 * Prepare a CPU for idle from an RCU perspective. The first major task 1455 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1456 * The second major task is to check to see if a non-lazy callback has 1457 * arrived at a CPU that previously had only lazy callbacks. The third 1458 * major task is to accelerate (that is, assign grace-period numbers to) 1459 * any recently arrived callbacks. 1460 * 1461 * The caller must have disabled interrupts. 1462 */ 1463 static void rcu_prepare_for_idle(void) 1464 { 1465 bool needwake; 1466 struct rcu_data *rdp; 1467 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1468 struct rcu_node *rnp; 1469 struct rcu_state *rsp; 1470 int tne; 1471 1472 lockdep_assert_irqs_disabled(); 1473 if (rcu_is_nocb_cpu(smp_processor_id())) 1474 return; 1475 1476 /* Handle nohz enablement switches conservatively. */ 1477 tne = READ_ONCE(tick_nohz_active); 1478 if (tne != rdtp->tick_nohz_enabled_snap) { 1479 if (rcu_cpu_has_callbacks(NULL)) 1480 invoke_rcu_core(); /* force nohz to see update. */ 1481 rdtp->tick_nohz_enabled_snap = tne; 1482 return; 1483 } 1484 if (!tne) 1485 return; 1486 1487 /* 1488 * If a non-lazy callback arrived at a CPU having only lazy 1489 * callbacks, invoke RCU core for the side-effect of recalculating 1490 * idle duration on re-entry to idle. 1491 */ 1492 if (rdtp->all_lazy && 1493 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1494 rdtp->all_lazy = false; 1495 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1496 invoke_rcu_core(); 1497 return; 1498 } 1499 1500 /* 1501 * If we have not yet accelerated this jiffy, accelerate all 1502 * callbacks on this CPU. 1503 */ 1504 if (rdtp->last_accelerate == jiffies) 1505 return; 1506 rdtp->last_accelerate = jiffies; 1507 for_each_rcu_flavor(rsp) { 1508 rdp = this_cpu_ptr(rsp->rda); 1509 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1510 continue; 1511 rnp = rdp->mynode; 1512 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1513 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1514 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1515 if (needwake) 1516 rcu_gp_kthread_wake(rsp); 1517 } 1518 } 1519 1520 /* 1521 * Clean up for exit from idle. Attempt to advance callbacks based on 1522 * any grace periods that elapsed while the CPU was idle, and if any 1523 * callbacks are now ready to invoke, initiate invocation. 1524 */ 1525 static void rcu_cleanup_after_idle(void) 1526 { 1527 lockdep_assert_irqs_disabled(); 1528 if (rcu_is_nocb_cpu(smp_processor_id())) 1529 return; 1530 if (rcu_try_advance_all_cbs()) 1531 invoke_rcu_core(); 1532 } 1533 1534 /* 1535 * Keep a running count of the number of non-lazy callbacks posted 1536 * on this CPU. This running counter (which is never decremented) allows 1537 * rcu_prepare_for_idle() to detect when something out of the idle loop 1538 * posts a callback, even if an equal number of callbacks are invoked. 1539 * Of course, callbacks should only be posted from within a trace event 1540 * designed to be called from idle or from within RCU_NONIDLE(). 1541 */ 1542 static void rcu_idle_count_callbacks_posted(void) 1543 { 1544 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1545 } 1546 1547 /* 1548 * Data for flushing lazy RCU callbacks at OOM time. 1549 */ 1550 static atomic_t oom_callback_count; 1551 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1552 1553 /* 1554 * RCU OOM callback -- decrement the outstanding count and deliver the 1555 * wake-up if we are the last one. 1556 */ 1557 static void rcu_oom_callback(struct rcu_head *rhp) 1558 { 1559 if (atomic_dec_and_test(&oom_callback_count)) 1560 wake_up(&oom_callback_wq); 1561 } 1562 1563 /* 1564 * Post an rcu_oom_notify callback on the current CPU if it has at 1565 * least one lazy callback. This will unnecessarily post callbacks 1566 * to CPUs that already have a non-lazy callback at the end of their 1567 * callback list, but this is an infrequent operation, so accept some 1568 * extra overhead to keep things simple. 1569 */ 1570 static void rcu_oom_notify_cpu(void *unused) 1571 { 1572 struct rcu_state *rsp; 1573 struct rcu_data *rdp; 1574 1575 for_each_rcu_flavor(rsp) { 1576 rdp = raw_cpu_ptr(rsp->rda); 1577 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) { 1578 atomic_inc(&oom_callback_count); 1579 rsp->call(&rdp->oom_head, rcu_oom_callback); 1580 } 1581 } 1582 } 1583 1584 /* 1585 * If low on memory, ensure that each CPU has a non-lazy callback. 1586 * This will wake up CPUs that have only lazy callbacks, in turn 1587 * ensuring that they free up the corresponding memory in a timely manner. 1588 * Because an uncertain amount of memory will be freed in some uncertain 1589 * timeframe, we do not claim to have freed anything. 1590 */ 1591 static int rcu_oom_notify(struct notifier_block *self, 1592 unsigned long notused, void *nfreed) 1593 { 1594 int cpu; 1595 1596 /* Wait for callbacks from earlier instance to complete. */ 1597 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1598 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1599 1600 /* 1601 * Prevent premature wakeup: ensure that all increments happen 1602 * before there is a chance of the counter reaching zero. 1603 */ 1604 atomic_set(&oom_callback_count, 1); 1605 1606 for_each_online_cpu(cpu) { 1607 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1608 cond_resched_rcu_qs(); 1609 } 1610 1611 /* Unconditionally decrement: no need to wake ourselves up. */ 1612 atomic_dec(&oom_callback_count); 1613 1614 return NOTIFY_OK; 1615 } 1616 1617 static struct notifier_block rcu_oom_nb = { 1618 .notifier_call = rcu_oom_notify 1619 }; 1620 1621 static int __init rcu_register_oom_notifier(void) 1622 { 1623 register_oom_notifier(&rcu_oom_nb); 1624 return 0; 1625 } 1626 early_initcall(rcu_register_oom_notifier); 1627 1628 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1629 1630 #ifdef CONFIG_RCU_FAST_NO_HZ 1631 1632 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1633 { 1634 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1635 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1636 1637 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1638 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1639 ulong2long(nlpd), 1640 rdtp->all_lazy ? 'L' : '.', 1641 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1642 } 1643 1644 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1645 1646 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1647 { 1648 *cp = '\0'; 1649 } 1650 1651 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1652 1653 /* Initiate the stall-info list. */ 1654 static void print_cpu_stall_info_begin(void) 1655 { 1656 pr_cont("\n"); 1657 } 1658 1659 /* 1660 * Print out diagnostic information for the specified stalled CPU. 1661 * 1662 * If the specified CPU is aware of the current RCU grace period 1663 * (flavor specified by rsp), then print the number of scheduling 1664 * clock interrupts the CPU has taken during the time that it has 1665 * been aware. Otherwise, print the number of RCU grace periods 1666 * that this CPU is ignorant of, for example, "1" if the CPU was 1667 * aware of the previous grace period. 1668 * 1669 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1670 */ 1671 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1672 { 1673 unsigned long delta; 1674 char fast_no_hz[72]; 1675 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1676 struct rcu_dynticks *rdtp = rdp->dynticks; 1677 char *ticks_title; 1678 unsigned long ticks_value; 1679 1680 if (rsp->gpnum == rdp->gpnum) { 1681 ticks_title = "ticks this GP"; 1682 ticks_value = rdp->ticks_this_gp; 1683 } else { 1684 ticks_title = "GPs behind"; 1685 ticks_value = rsp->gpnum - rdp->gpnum; 1686 } 1687 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1688 delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum; 1689 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n", 1690 cpu, 1691 "O."[!!cpu_online(cpu)], 1692 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1693 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1694 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' : 1695 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' : 1696 "!."[!delta], 1697 ticks_value, ticks_title, 1698 rcu_dynticks_snap(rdtp) & 0xfff, 1699 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1700 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1701 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1702 fast_no_hz); 1703 } 1704 1705 /* Terminate the stall-info list. */ 1706 static void print_cpu_stall_info_end(void) 1707 { 1708 pr_err("\t"); 1709 } 1710 1711 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1712 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1713 { 1714 rdp->ticks_this_gp = 0; 1715 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1716 } 1717 1718 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1719 static void increment_cpu_stall_ticks(void) 1720 { 1721 struct rcu_state *rsp; 1722 1723 for_each_rcu_flavor(rsp) 1724 raw_cpu_inc(rsp->rda->ticks_this_gp); 1725 } 1726 1727 #ifdef CONFIG_RCU_NOCB_CPU 1728 1729 /* 1730 * Offload callback processing from the boot-time-specified set of CPUs 1731 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1732 * kthread created that pulls the callbacks from the corresponding CPU, 1733 * waits for a grace period to elapse, and invokes the callbacks. 1734 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1735 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1736 * has been specified, in which case each kthread actively polls its 1737 * CPU. (Which isn't so great for energy efficiency, but which does 1738 * reduce RCU's overhead on that CPU.) 1739 * 1740 * This is intended to be used in conjunction with Frederic Weisbecker's 1741 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1742 * running CPU-bound user-mode computations. 1743 * 1744 * Offloading of callback processing could also in theory be used as 1745 * an energy-efficiency measure because CPUs with no RCU callbacks 1746 * queued are more aggressive about entering dyntick-idle mode. 1747 */ 1748 1749 1750 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1751 static int __init rcu_nocb_setup(char *str) 1752 { 1753 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1754 cpulist_parse(str, rcu_nocb_mask); 1755 return 1; 1756 } 1757 __setup("rcu_nocbs=", rcu_nocb_setup); 1758 1759 static int __init parse_rcu_nocb_poll(char *arg) 1760 { 1761 rcu_nocb_poll = true; 1762 return 0; 1763 } 1764 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1765 1766 /* 1767 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1768 * grace period. 1769 */ 1770 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1771 { 1772 swake_up_all(sq); 1773 } 1774 1775 /* 1776 * Set the root rcu_node structure's ->need_future_gp field 1777 * based on the sum of those of all rcu_node structures. This does 1778 * double-count the root rcu_node structure's requests, but this 1779 * is necessary to handle the possibility of a rcu_nocb_kthread() 1780 * having awakened during the time that the rcu_node structures 1781 * were being updated for the end of the previous grace period. 1782 */ 1783 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1784 { 1785 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1786 } 1787 1788 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1789 { 1790 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1791 } 1792 1793 static void rcu_init_one_nocb(struct rcu_node *rnp) 1794 { 1795 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1796 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1797 } 1798 1799 /* Is the specified CPU a no-CBs CPU? */ 1800 bool rcu_is_nocb_cpu(int cpu) 1801 { 1802 if (cpumask_available(rcu_nocb_mask)) 1803 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1804 return false; 1805 } 1806 1807 /* 1808 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock 1809 * and this function releases it. 1810 */ 1811 static void __wake_nocb_leader(struct rcu_data *rdp, bool force, 1812 unsigned long flags) 1813 __releases(rdp->nocb_lock) 1814 { 1815 struct rcu_data *rdp_leader = rdp->nocb_leader; 1816 1817 lockdep_assert_held(&rdp->nocb_lock); 1818 if (!READ_ONCE(rdp_leader->nocb_kthread)) { 1819 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1820 return; 1821 } 1822 if (rdp_leader->nocb_leader_sleep || force) { 1823 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1824 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1825 del_timer(&rdp->nocb_timer); 1826 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1827 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */ 1828 swake_up(&rdp_leader->nocb_wq); 1829 } else { 1830 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1831 } 1832 } 1833 1834 /* 1835 * Kick the leader kthread for this NOCB group, but caller has not 1836 * acquired locks. 1837 */ 1838 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1839 { 1840 unsigned long flags; 1841 1842 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1843 __wake_nocb_leader(rdp, force, flags); 1844 } 1845 1846 /* 1847 * Arrange to wake the leader kthread for this NOCB group at some 1848 * future time when it is safe to do so. 1849 */ 1850 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype, 1851 const char *reason) 1852 { 1853 unsigned long flags; 1854 1855 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1856 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1857 mod_timer(&rdp->nocb_timer, jiffies + 1); 1858 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1859 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason); 1860 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1861 } 1862 1863 /* 1864 * Does the specified CPU need an RCU callback for the specified flavor 1865 * of rcu_barrier()? 1866 */ 1867 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1868 { 1869 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1870 unsigned long ret; 1871 #ifdef CONFIG_PROVE_RCU 1872 struct rcu_head *rhp; 1873 #endif /* #ifdef CONFIG_PROVE_RCU */ 1874 1875 /* 1876 * Check count of all no-CBs callbacks awaiting invocation. 1877 * There needs to be a barrier before this function is called, 1878 * but associated with a prior determination that no more 1879 * callbacks would be posted. In the worst case, the first 1880 * barrier in _rcu_barrier() suffices (but the caller cannot 1881 * necessarily rely on this, not a substitute for the caller 1882 * getting the concurrency design right!). There must also be 1883 * a barrier between the following load an posting of a callback 1884 * (if a callback is in fact needed). This is associated with an 1885 * atomic_inc() in the caller. 1886 */ 1887 ret = atomic_long_read(&rdp->nocb_q_count); 1888 1889 #ifdef CONFIG_PROVE_RCU 1890 rhp = READ_ONCE(rdp->nocb_head); 1891 if (!rhp) 1892 rhp = READ_ONCE(rdp->nocb_gp_head); 1893 if (!rhp) 1894 rhp = READ_ONCE(rdp->nocb_follower_head); 1895 1896 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1897 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1898 rcu_scheduler_fully_active) { 1899 /* RCU callback enqueued before CPU first came online??? */ 1900 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1901 cpu, rhp->func); 1902 WARN_ON_ONCE(1); 1903 } 1904 #endif /* #ifdef CONFIG_PROVE_RCU */ 1905 1906 return !!ret; 1907 } 1908 1909 /* 1910 * Enqueue the specified string of rcu_head structures onto the specified 1911 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1912 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1913 * counts are supplied by rhcount and rhcount_lazy. 1914 * 1915 * If warranted, also wake up the kthread servicing this CPUs queues. 1916 */ 1917 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1918 struct rcu_head *rhp, 1919 struct rcu_head **rhtp, 1920 int rhcount, int rhcount_lazy, 1921 unsigned long flags) 1922 { 1923 int len; 1924 struct rcu_head **old_rhpp; 1925 struct task_struct *t; 1926 1927 /* Enqueue the callback on the nocb list and update counts. */ 1928 atomic_long_add(rhcount, &rdp->nocb_q_count); 1929 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1930 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1931 WRITE_ONCE(*old_rhpp, rhp); 1932 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1933 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1934 1935 /* If we are not being polled and there is a kthread, awaken it ... */ 1936 t = READ_ONCE(rdp->nocb_kthread); 1937 if (rcu_nocb_poll || !t) { 1938 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1939 TPS("WakeNotPoll")); 1940 return; 1941 } 1942 len = atomic_long_read(&rdp->nocb_q_count); 1943 if (old_rhpp == &rdp->nocb_head) { 1944 if (!irqs_disabled_flags(flags)) { 1945 /* ... if queue was empty ... */ 1946 wake_nocb_leader(rdp, false); 1947 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1948 TPS("WakeEmpty")); 1949 } else { 1950 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 1951 TPS("WakeEmptyIsDeferred")); 1952 } 1953 rdp->qlen_last_fqs_check = 0; 1954 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1955 /* ... or if many callbacks queued. */ 1956 if (!irqs_disabled_flags(flags)) { 1957 wake_nocb_leader(rdp, true); 1958 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1959 TPS("WakeOvf")); 1960 } else { 1961 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE, 1962 TPS("WakeOvfIsDeferred")); 1963 } 1964 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1965 } else { 1966 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1967 } 1968 return; 1969 } 1970 1971 /* 1972 * This is a helper for __call_rcu(), which invokes this when the normal 1973 * callback queue is inoperable. If this is not a no-CBs CPU, this 1974 * function returns failure back to __call_rcu(), which can complain 1975 * appropriately. 1976 * 1977 * Otherwise, this function queues the callback where the corresponding 1978 * "rcuo" kthread can find it. 1979 */ 1980 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1981 bool lazy, unsigned long flags) 1982 { 1983 1984 if (!rcu_is_nocb_cpu(rdp->cpu)) 1985 return false; 1986 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1987 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1988 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1989 (unsigned long)rhp->func, 1990 -atomic_long_read(&rdp->nocb_q_count_lazy), 1991 -atomic_long_read(&rdp->nocb_q_count)); 1992 else 1993 trace_rcu_callback(rdp->rsp->name, rhp, 1994 -atomic_long_read(&rdp->nocb_q_count_lazy), 1995 -atomic_long_read(&rdp->nocb_q_count)); 1996 1997 /* 1998 * If called from an extended quiescent state with interrupts 1999 * disabled, invoke the RCU core in order to allow the idle-entry 2000 * deferred-wakeup check to function. 2001 */ 2002 if (irqs_disabled_flags(flags) && 2003 !rcu_is_watching() && 2004 cpu_online(smp_processor_id())) 2005 invoke_rcu_core(); 2006 2007 return true; 2008 } 2009 2010 /* 2011 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2012 * not a no-CBs CPU. 2013 */ 2014 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2015 struct rcu_data *rdp, 2016 unsigned long flags) 2017 { 2018 lockdep_assert_irqs_disabled(); 2019 if (!rcu_is_nocb_cpu(smp_processor_id())) 2020 return false; /* Not NOCBs CPU, caller must migrate CBs. */ 2021 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist), 2022 rcu_segcblist_tail(&rdp->cblist), 2023 rcu_segcblist_n_cbs(&rdp->cblist), 2024 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags); 2025 rcu_segcblist_init(&rdp->cblist); 2026 rcu_segcblist_disable(&rdp->cblist); 2027 return true; 2028 } 2029 2030 /* 2031 * If necessary, kick off a new grace period, and either way wait 2032 * for a subsequent grace period to complete. 2033 */ 2034 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2035 { 2036 unsigned long c; 2037 bool d; 2038 unsigned long flags; 2039 bool needwake; 2040 struct rcu_node *rnp = rdp->mynode; 2041 2042 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2043 needwake = rcu_start_future_gp(rnp, rdp, &c); 2044 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2045 if (needwake) 2046 rcu_gp_kthread_wake(rdp->rsp); 2047 2048 /* 2049 * Wait for the grace period. Do so interruptibly to avoid messing 2050 * up the load average. 2051 */ 2052 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2053 for (;;) { 2054 swait_event_interruptible( 2055 rnp->nocb_gp_wq[c & 0x1], 2056 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2057 if (likely(d)) 2058 break; 2059 WARN_ON(signal_pending(current)); 2060 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2061 } 2062 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2063 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2064 } 2065 2066 /* 2067 * Leaders come here to wait for additional callbacks to show up. 2068 * This function does not return until callbacks appear. 2069 */ 2070 static void nocb_leader_wait(struct rcu_data *my_rdp) 2071 { 2072 bool firsttime = true; 2073 unsigned long flags; 2074 bool gotcbs; 2075 struct rcu_data *rdp; 2076 struct rcu_head **tail; 2077 2078 wait_again: 2079 2080 /* Wait for callbacks to appear. */ 2081 if (!rcu_nocb_poll) { 2082 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep")); 2083 swait_event_interruptible(my_rdp->nocb_wq, 2084 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2085 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2086 my_rdp->nocb_leader_sleep = true; 2087 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2088 del_timer(&my_rdp->nocb_timer); 2089 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2090 } else if (firsttime) { 2091 firsttime = false; /* Don't drown trace log with "Poll"! */ 2092 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll")); 2093 } 2094 2095 /* 2096 * Each pass through the following loop checks a follower for CBs. 2097 * We are our own first follower. Any CBs found are moved to 2098 * nocb_gp_head, where they await a grace period. 2099 */ 2100 gotcbs = false; 2101 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */ 2102 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2103 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2104 if (!rdp->nocb_gp_head) 2105 continue; /* No CBs here, try next follower. */ 2106 2107 /* Move callbacks to wait-for-GP list, which is empty. */ 2108 WRITE_ONCE(rdp->nocb_head, NULL); 2109 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2110 gotcbs = true; 2111 } 2112 2113 /* No callbacks? Sleep a bit if polling, and go retry. */ 2114 if (unlikely(!gotcbs)) { 2115 WARN_ON(signal_pending(current)); 2116 if (rcu_nocb_poll) { 2117 schedule_timeout_interruptible(1); 2118 } else { 2119 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2120 TPS("WokeEmpty")); 2121 } 2122 goto wait_again; 2123 } 2124 2125 /* Wait for one grace period. */ 2126 rcu_nocb_wait_gp(my_rdp); 2127 2128 /* Each pass through the following loop wakes a follower, if needed. */ 2129 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2130 if (!rcu_nocb_poll && 2131 READ_ONCE(rdp->nocb_head) && 2132 READ_ONCE(my_rdp->nocb_leader_sleep)) { 2133 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags); 2134 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2135 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags); 2136 } 2137 if (!rdp->nocb_gp_head) 2138 continue; /* No CBs, so no need to wake follower. */ 2139 2140 /* Append callbacks to follower's "done" list. */ 2141 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2142 tail = rdp->nocb_follower_tail; 2143 rdp->nocb_follower_tail = rdp->nocb_gp_tail; 2144 *tail = rdp->nocb_gp_head; 2145 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2146 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2147 /* List was empty, so wake up the follower. */ 2148 swake_up(&rdp->nocb_wq); 2149 } 2150 } 2151 2152 /* If we (the leader) don't have CBs, go wait some more. */ 2153 if (!my_rdp->nocb_follower_head) 2154 goto wait_again; 2155 } 2156 2157 /* 2158 * Followers come here to wait for additional callbacks to show up. 2159 * This function does not return until callbacks appear. 2160 */ 2161 static void nocb_follower_wait(struct rcu_data *rdp) 2162 { 2163 for (;;) { 2164 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep")); 2165 swait_event_interruptible(rdp->nocb_wq, 2166 READ_ONCE(rdp->nocb_follower_head)); 2167 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2168 /* ^^^ Ensure CB invocation follows _head test. */ 2169 return; 2170 } 2171 WARN_ON(signal_pending(current)); 2172 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty")); 2173 } 2174 } 2175 2176 /* 2177 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2178 * callbacks queued by the corresponding no-CBs CPU, however, there is 2179 * an optional leader-follower relationship so that the grace-period 2180 * kthreads don't have to do quite so many wakeups. 2181 */ 2182 static int rcu_nocb_kthread(void *arg) 2183 { 2184 int c, cl; 2185 unsigned long flags; 2186 struct rcu_head *list; 2187 struct rcu_head *next; 2188 struct rcu_head **tail; 2189 struct rcu_data *rdp = arg; 2190 2191 /* Each pass through this loop invokes one batch of callbacks */ 2192 for (;;) { 2193 /* Wait for callbacks. */ 2194 if (rdp->nocb_leader == rdp) 2195 nocb_leader_wait(rdp); 2196 else 2197 nocb_follower_wait(rdp); 2198 2199 /* Pull the ready-to-invoke callbacks onto local list. */ 2200 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2201 list = rdp->nocb_follower_head; 2202 rdp->nocb_follower_head = NULL; 2203 tail = rdp->nocb_follower_tail; 2204 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2205 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2206 BUG_ON(!list); 2207 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty")); 2208 2209 /* Each pass through the following loop invokes a callback. */ 2210 trace_rcu_batch_start(rdp->rsp->name, 2211 atomic_long_read(&rdp->nocb_q_count_lazy), 2212 atomic_long_read(&rdp->nocb_q_count), -1); 2213 c = cl = 0; 2214 while (list) { 2215 next = list->next; 2216 /* Wait for enqueuing to complete, if needed. */ 2217 while (next == NULL && &list->next != tail) { 2218 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2219 TPS("WaitQueue")); 2220 schedule_timeout_interruptible(1); 2221 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2222 TPS("WokeQueue")); 2223 next = list->next; 2224 } 2225 debug_rcu_head_unqueue(list); 2226 local_bh_disable(); 2227 if (__rcu_reclaim(rdp->rsp->name, list)) 2228 cl++; 2229 c++; 2230 local_bh_enable(); 2231 cond_resched_rcu_qs(); 2232 list = next; 2233 } 2234 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2235 smp_mb__before_atomic(); /* _add after CB invocation. */ 2236 atomic_long_add(-c, &rdp->nocb_q_count); 2237 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2238 rdp->n_nocbs_invoked += c; 2239 } 2240 return 0; 2241 } 2242 2243 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2244 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2245 { 2246 return READ_ONCE(rdp->nocb_defer_wakeup); 2247 } 2248 2249 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2250 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2251 { 2252 unsigned long flags; 2253 int ndw; 2254 2255 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2256 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2257 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2258 return; 2259 } 2260 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2261 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2262 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2263 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2264 } 2265 2266 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2267 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2268 { 2269 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2270 2271 do_nocb_deferred_wakeup_common(rdp); 2272 } 2273 2274 /* 2275 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2276 * This means we do an inexact common-case check. Note that if 2277 * we miss, ->nocb_timer will eventually clean things up. 2278 */ 2279 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2280 { 2281 if (rcu_nocb_need_deferred_wakeup(rdp)) 2282 do_nocb_deferred_wakeup_common(rdp); 2283 } 2284 2285 void __init rcu_init_nohz(void) 2286 { 2287 int cpu; 2288 bool need_rcu_nocb_mask = true; 2289 struct rcu_state *rsp; 2290 2291 #if defined(CONFIG_NO_HZ_FULL) 2292 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2293 need_rcu_nocb_mask = true; 2294 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2295 2296 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2297 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2298 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2299 return; 2300 } 2301 } 2302 if (!cpumask_available(rcu_nocb_mask)) 2303 return; 2304 2305 #if defined(CONFIG_NO_HZ_FULL) 2306 if (tick_nohz_full_running) 2307 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2308 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2309 2310 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2311 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2312 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2313 rcu_nocb_mask); 2314 } 2315 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2316 cpumask_pr_args(rcu_nocb_mask)); 2317 if (rcu_nocb_poll) 2318 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2319 2320 for_each_rcu_flavor(rsp) { 2321 for_each_cpu(cpu, rcu_nocb_mask) 2322 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2323 rcu_organize_nocb_kthreads(rsp); 2324 } 2325 } 2326 2327 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2328 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2329 { 2330 rdp->nocb_tail = &rdp->nocb_head; 2331 init_swait_queue_head(&rdp->nocb_wq); 2332 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2333 raw_spin_lock_init(&rdp->nocb_lock); 2334 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2335 } 2336 2337 /* 2338 * If the specified CPU is a no-CBs CPU that does not already have its 2339 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2340 * brought online out of order, this can require re-organizing the 2341 * leader-follower relationships. 2342 */ 2343 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2344 { 2345 struct rcu_data *rdp; 2346 struct rcu_data *rdp_last; 2347 struct rcu_data *rdp_old_leader; 2348 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2349 struct task_struct *t; 2350 2351 /* 2352 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2353 * then nothing to do. 2354 */ 2355 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2356 return; 2357 2358 /* If we didn't spawn the leader first, reorganize! */ 2359 rdp_old_leader = rdp_spawn->nocb_leader; 2360 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2361 rdp_last = NULL; 2362 rdp = rdp_old_leader; 2363 do { 2364 rdp->nocb_leader = rdp_spawn; 2365 if (rdp_last && rdp != rdp_spawn) 2366 rdp_last->nocb_next_follower = rdp; 2367 if (rdp == rdp_spawn) { 2368 rdp = rdp->nocb_next_follower; 2369 } else { 2370 rdp_last = rdp; 2371 rdp = rdp->nocb_next_follower; 2372 rdp_last->nocb_next_follower = NULL; 2373 } 2374 } while (rdp); 2375 rdp_spawn->nocb_next_follower = rdp_old_leader; 2376 } 2377 2378 /* Spawn the kthread for this CPU and RCU flavor. */ 2379 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2380 "rcuo%c/%d", rsp->abbr, cpu); 2381 BUG_ON(IS_ERR(t)); 2382 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2383 } 2384 2385 /* 2386 * If the specified CPU is a no-CBs CPU that does not already have its 2387 * rcuo kthreads, spawn them. 2388 */ 2389 static void rcu_spawn_all_nocb_kthreads(int cpu) 2390 { 2391 struct rcu_state *rsp; 2392 2393 if (rcu_scheduler_fully_active) 2394 for_each_rcu_flavor(rsp) 2395 rcu_spawn_one_nocb_kthread(rsp, cpu); 2396 } 2397 2398 /* 2399 * Once the scheduler is running, spawn rcuo kthreads for all online 2400 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2401 * non-boot CPUs come online -- if this changes, we will need to add 2402 * some mutual exclusion. 2403 */ 2404 static void __init rcu_spawn_nocb_kthreads(void) 2405 { 2406 int cpu; 2407 2408 for_each_online_cpu(cpu) 2409 rcu_spawn_all_nocb_kthreads(cpu); 2410 } 2411 2412 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2413 static int rcu_nocb_leader_stride = -1; 2414 module_param(rcu_nocb_leader_stride, int, 0444); 2415 2416 /* 2417 * Initialize leader-follower relationships for all no-CBs CPU. 2418 */ 2419 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2420 { 2421 int cpu; 2422 int ls = rcu_nocb_leader_stride; 2423 int nl = 0; /* Next leader. */ 2424 struct rcu_data *rdp; 2425 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2426 struct rcu_data *rdp_prev = NULL; 2427 2428 if (!cpumask_available(rcu_nocb_mask)) 2429 return; 2430 if (ls == -1) { 2431 ls = int_sqrt(nr_cpu_ids); 2432 rcu_nocb_leader_stride = ls; 2433 } 2434 2435 /* 2436 * Each pass through this loop sets up one rcu_data structure. 2437 * Should the corresponding CPU come online in the future, then 2438 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2439 */ 2440 for_each_cpu(cpu, rcu_nocb_mask) { 2441 rdp = per_cpu_ptr(rsp->rda, cpu); 2442 if (rdp->cpu >= nl) { 2443 /* New leader, set up for followers & next leader. */ 2444 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2445 rdp->nocb_leader = rdp; 2446 rdp_leader = rdp; 2447 } else { 2448 /* Another follower, link to previous leader. */ 2449 rdp->nocb_leader = rdp_leader; 2450 rdp_prev->nocb_next_follower = rdp; 2451 } 2452 rdp_prev = rdp; 2453 } 2454 } 2455 2456 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2457 static bool init_nocb_callback_list(struct rcu_data *rdp) 2458 { 2459 if (!rcu_is_nocb_cpu(rdp->cpu)) 2460 return false; 2461 2462 /* If there are early-boot callbacks, move them to nocb lists. */ 2463 if (!rcu_segcblist_empty(&rdp->cblist)) { 2464 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist); 2465 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist); 2466 atomic_long_set(&rdp->nocb_q_count, 2467 rcu_segcblist_n_cbs(&rdp->cblist)); 2468 atomic_long_set(&rdp->nocb_q_count_lazy, 2469 rcu_segcblist_n_lazy_cbs(&rdp->cblist)); 2470 rcu_segcblist_init(&rdp->cblist); 2471 } 2472 rcu_segcblist_disable(&rdp->cblist); 2473 return true; 2474 } 2475 2476 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2477 2478 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2479 { 2480 WARN_ON_ONCE(1); /* Should be dead code. */ 2481 return false; 2482 } 2483 2484 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2485 { 2486 } 2487 2488 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2489 { 2490 } 2491 2492 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2493 { 2494 return NULL; 2495 } 2496 2497 static void rcu_init_one_nocb(struct rcu_node *rnp) 2498 { 2499 } 2500 2501 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2502 bool lazy, unsigned long flags) 2503 { 2504 return false; 2505 } 2506 2507 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp, 2508 struct rcu_data *rdp, 2509 unsigned long flags) 2510 { 2511 return false; 2512 } 2513 2514 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2515 { 2516 } 2517 2518 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2519 { 2520 return false; 2521 } 2522 2523 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2524 { 2525 } 2526 2527 static void rcu_spawn_all_nocb_kthreads(int cpu) 2528 { 2529 } 2530 2531 static void __init rcu_spawn_nocb_kthreads(void) 2532 { 2533 } 2534 2535 static bool init_nocb_callback_list(struct rcu_data *rdp) 2536 { 2537 return false; 2538 } 2539 2540 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2541 2542 /* 2543 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2544 * arbitrarily long period of time with the scheduling-clock tick turned 2545 * off. RCU will be paying attention to this CPU because it is in the 2546 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2547 * machine because the scheduling-clock tick has been disabled. Therefore, 2548 * if an adaptive-ticks CPU is failing to respond to the current grace 2549 * period and has not be idle from an RCU perspective, kick it. 2550 */ 2551 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2552 { 2553 #ifdef CONFIG_NO_HZ_FULL 2554 if (tick_nohz_full_cpu(cpu)) 2555 smp_send_reschedule(cpu); 2556 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2557 } 2558 2559 /* 2560 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2561 * grace-period kthread will do force_quiescent_state() processing? 2562 * The idea is to avoid waking up RCU core processing on such a 2563 * CPU unless the grace period has extended for too long. 2564 * 2565 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2566 * CONFIG_RCU_NOCB_CPU CPUs. 2567 */ 2568 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2569 { 2570 #ifdef CONFIG_NO_HZ_FULL 2571 if (tick_nohz_full_cpu(smp_processor_id()) && 2572 (!rcu_gp_in_progress(rsp) || 2573 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2574 return true; 2575 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2576 return false; 2577 } 2578 2579 /* 2580 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2581 * timekeeping CPU. 2582 */ 2583 static void rcu_bind_gp_kthread(void) 2584 { 2585 int __maybe_unused cpu; 2586 2587 if (!tick_nohz_full_enabled()) 2588 return; 2589 housekeeping_affine(current, HK_FLAG_RCU); 2590 } 2591 2592 /* Record the current task on dyntick-idle entry. */ 2593 static void rcu_dynticks_task_enter(void) 2594 { 2595 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2596 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2597 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2598 } 2599 2600 /* Record no current task on dyntick-idle exit. */ 2601 static void rcu_dynticks_task_exit(void) 2602 { 2603 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2604 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2605 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2606 } 2607