1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #ifdef CONFIG_RCU_BOOST 34 35 #include "../locking/rtmutex_common.h" 36 37 /* 38 * Control variables for per-CPU and per-rcu_node kthreads. These 39 * handle all flavors of RCU. 40 */ 41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 44 DEFINE_PER_CPU(char, rcu_cpu_has_work); 45 46 #endif /* #ifdef CONFIG_RCU_BOOST */ 47 48 #ifdef CONFIG_RCU_NOCB_CPU 49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 50 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 51 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 52 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 53 54 /* 55 * Check the RCU kernel configuration parameters and print informative 56 * messages about anything out of the ordinary. If you like #ifdef, you 57 * will love this function. 58 */ 59 static void __init rcu_bootup_announce_oddness(void) 60 { 61 if (IS_ENABLED(CONFIG_RCU_TRACE)) 62 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 63 if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || 64 (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)) 65 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 66 CONFIG_RCU_FANOUT); 67 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) 68 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 69 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 70 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 71 if (IS_ENABLED(CONFIG_PROVE_RCU)) 72 pr_info("\tRCU lockdep checking is enabled.\n"); 73 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE)) 74 pr_info("\tRCU torture testing starts during boot.\n"); 75 if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO)) 76 pr_info("\tAdditional per-CPU info printed with stalls.\n"); 77 if (NUM_RCU_LVL_4 != 0) 78 pr_info("\tFour-level hierarchy is enabled.\n"); 79 if (CONFIG_RCU_FANOUT_LEAF != 16) 80 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 81 CONFIG_RCU_FANOUT_LEAF); 82 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF) 83 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 84 if (nr_cpu_ids != NR_CPUS) 85 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 86 if (IS_ENABLED(CONFIG_RCU_BOOST)) 87 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 88 } 89 90 #ifdef CONFIG_PREEMPT_RCU 91 92 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 93 static struct rcu_state *rcu_state_p = &rcu_preempt_state; 94 95 static int rcu_preempted_readers_exp(struct rcu_node *rnp); 96 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 97 bool wake); 98 99 /* 100 * Tell them what RCU they are running. 101 */ 102 static void __init rcu_bootup_announce(void) 103 { 104 pr_info("Preemptible hierarchical RCU implementation.\n"); 105 rcu_bootup_announce_oddness(); 106 } 107 108 /* 109 * Record a preemptible-RCU quiescent state for the specified CPU. Note 110 * that this just means that the task currently running on the CPU is 111 * not in a quiescent state. There might be any number of tasks blocked 112 * while in an RCU read-side critical section. 113 * 114 * As with the other rcu_*_qs() functions, callers to this function 115 * must disable preemption. 116 */ 117 static void rcu_preempt_qs(void) 118 { 119 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) { 120 trace_rcu_grace_period(TPS("rcu_preempt"), 121 __this_cpu_read(rcu_preempt_data.gpnum), 122 TPS("cpuqs")); 123 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1); 124 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 125 current->rcu_read_unlock_special.b.need_qs = false; 126 } 127 } 128 129 /* 130 * We have entered the scheduler, and the current task might soon be 131 * context-switched away from. If this task is in an RCU read-side 132 * critical section, we will no longer be able to rely on the CPU to 133 * record that fact, so we enqueue the task on the blkd_tasks list. 134 * The task will dequeue itself when it exits the outermost enclosing 135 * RCU read-side critical section. Therefore, the current grace period 136 * cannot be permitted to complete until the blkd_tasks list entries 137 * predating the current grace period drain, in other words, until 138 * rnp->gp_tasks becomes NULL. 139 * 140 * Caller must disable preemption. 141 */ 142 static void rcu_preempt_note_context_switch(void) 143 { 144 struct task_struct *t = current; 145 unsigned long flags; 146 struct rcu_data *rdp; 147 struct rcu_node *rnp; 148 149 if (t->rcu_read_lock_nesting > 0 && 150 !t->rcu_read_unlock_special.b.blocked) { 151 152 /* Possibly blocking in an RCU read-side critical section. */ 153 rdp = this_cpu_ptr(rcu_preempt_state.rda); 154 rnp = rdp->mynode; 155 raw_spin_lock_irqsave(&rnp->lock, flags); 156 smp_mb__after_unlock_lock(); 157 t->rcu_read_unlock_special.b.blocked = true; 158 t->rcu_blocked_node = rnp; 159 160 /* 161 * If this CPU has already checked in, then this task 162 * will hold up the next grace period rather than the 163 * current grace period. Queue the task accordingly. 164 * If the task is queued for the current grace period 165 * (i.e., this CPU has not yet passed through a quiescent 166 * state for the current grace period), then as long 167 * as that task remains queued, the current grace period 168 * cannot end. Note that there is some uncertainty as 169 * to exactly when the current grace period started. 170 * We take a conservative approach, which can result 171 * in unnecessarily waiting on tasks that started very 172 * slightly after the current grace period began. C'est 173 * la vie!!! 174 * 175 * But first, note that the current CPU must still be 176 * on line! 177 */ 178 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 179 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 180 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) { 181 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev); 182 rnp->gp_tasks = &t->rcu_node_entry; 183 #ifdef CONFIG_RCU_BOOST 184 if (rnp->boost_tasks != NULL) 185 rnp->boost_tasks = rnp->gp_tasks; 186 #endif /* #ifdef CONFIG_RCU_BOOST */ 187 } else { 188 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 189 if (rnp->qsmask & rdp->grpmask) 190 rnp->gp_tasks = &t->rcu_node_entry; 191 } 192 trace_rcu_preempt_task(rdp->rsp->name, 193 t->pid, 194 (rnp->qsmask & rdp->grpmask) 195 ? rnp->gpnum 196 : rnp->gpnum + 1); 197 raw_spin_unlock_irqrestore(&rnp->lock, flags); 198 } else if (t->rcu_read_lock_nesting < 0 && 199 t->rcu_read_unlock_special.s) { 200 201 /* 202 * Complete exit from RCU read-side critical section on 203 * behalf of preempted instance of __rcu_read_unlock(). 204 */ 205 rcu_read_unlock_special(t); 206 } 207 208 /* 209 * Either we were not in an RCU read-side critical section to 210 * begin with, or we have now recorded that critical section 211 * globally. Either way, we can now note a quiescent state 212 * for this CPU. Again, if we were in an RCU read-side critical 213 * section, and if that critical section was blocking the current 214 * grace period, then the fact that the task has been enqueued 215 * means that we continue to block the current grace period. 216 */ 217 rcu_preempt_qs(); 218 } 219 220 /* 221 * Check for preempted RCU readers blocking the current grace period 222 * for the specified rcu_node structure. If the caller needs a reliable 223 * answer, it must hold the rcu_node's ->lock. 224 */ 225 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 226 { 227 return rnp->gp_tasks != NULL; 228 } 229 230 /* 231 * Advance a ->blkd_tasks-list pointer to the next entry, instead 232 * returning NULL if at the end of the list. 233 */ 234 static struct list_head *rcu_next_node_entry(struct task_struct *t, 235 struct rcu_node *rnp) 236 { 237 struct list_head *np; 238 239 np = t->rcu_node_entry.next; 240 if (np == &rnp->blkd_tasks) 241 np = NULL; 242 return np; 243 } 244 245 /* 246 * Return true if the specified rcu_node structure has tasks that were 247 * preempted within an RCU read-side critical section. 248 */ 249 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 250 { 251 return !list_empty(&rnp->blkd_tasks); 252 } 253 254 /* 255 * Handle special cases during rcu_read_unlock(), such as needing to 256 * notify RCU core processing or task having blocked during the RCU 257 * read-side critical section. 258 */ 259 void rcu_read_unlock_special(struct task_struct *t) 260 { 261 bool empty_exp; 262 bool empty_norm; 263 bool empty_exp_now; 264 unsigned long flags; 265 struct list_head *np; 266 #ifdef CONFIG_RCU_BOOST 267 bool drop_boost_mutex = false; 268 #endif /* #ifdef CONFIG_RCU_BOOST */ 269 struct rcu_node *rnp; 270 union rcu_special special; 271 272 /* NMI handlers cannot block and cannot safely manipulate state. */ 273 if (in_nmi()) 274 return; 275 276 local_irq_save(flags); 277 278 /* 279 * If RCU core is waiting for this CPU to exit critical section, 280 * let it know that we have done so. Because irqs are disabled, 281 * t->rcu_read_unlock_special cannot change. 282 */ 283 special = t->rcu_read_unlock_special; 284 if (special.b.need_qs) { 285 rcu_preempt_qs(); 286 t->rcu_read_unlock_special.b.need_qs = false; 287 if (!t->rcu_read_unlock_special.s) { 288 local_irq_restore(flags); 289 return; 290 } 291 } 292 293 /* Hardware IRQ handlers cannot block, complain if they get here. */ 294 if (in_irq() || in_serving_softirq()) { 295 lockdep_rcu_suspicious(__FILE__, __LINE__, 296 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 297 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n", 298 t->rcu_read_unlock_special.s, 299 t->rcu_read_unlock_special.b.blocked, 300 t->rcu_read_unlock_special.b.need_qs); 301 local_irq_restore(flags); 302 return; 303 } 304 305 /* Clean up if blocked during RCU read-side critical section. */ 306 if (special.b.blocked) { 307 t->rcu_read_unlock_special.b.blocked = false; 308 309 /* 310 * Remove this task from the list it blocked on. The 311 * task can migrate while we acquire the lock, but at 312 * most one time. So at most two passes through loop. 313 */ 314 for (;;) { 315 rnp = t->rcu_blocked_node; 316 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 317 smp_mb__after_unlock_lock(); 318 if (rnp == t->rcu_blocked_node) 319 break; 320 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 321 } 322 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 323 empty_exp = !rcu_preempted_readers_exp(rnp); 324 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 325 np = rcu_next_node_entry(t, rnp); 326 list_del_init(&t->rcu_node_entry); 327 t->rcu_blocked_node = NULL; 328 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 329 rnp->gpnum, t->pid); 330 if (&t->rcu_node_entry == rnp->gp_tasks) 331 rnp->gp_tasks = np; 332 if (&t->rcu_node_entry == rnp->exp_tasks) 333 rnp->exp_tasks = np; 334 #ifdef CONFIG_RCU_BOOST 335 if (&t->rcu_node_entry == rnp->boost_tasks) 336 rnp->boost_tasks = np; 337 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */ 338 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 339 #endif /* #ifdef CONFIG_RCU_BOOST */ 340 341 /* 342 * If this was the last task on the current list, and if 343 * we aren't waiting on any CPUs, report the quiescent state. 344 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 345 * so we must take a snapshot of the expedited state. 346 */ 347 empty_exp_now = !rcu_preempted_readers_exp(rnp); 348 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 349 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 350 rnp->gpnum, 351 0, rnp->qsmask, 352 rnp->level, 353 rnp->grplo, 354 rnp->grphi, 355 !!rnp->gp_tasks); 356 rcu_report_unblock_qs_rnp(&rcu_preempt_state, 357 rnp, flags); 358 } else { 359 raw_spin_unlock_irqrestore(&rnp->lock, flags); 360 } 361 362 #ifdef CONFIG_RCU_BOOST 363 /* Unboost if we were boosted. */ 364 if (drop_boost_mutex) 365 rt_mutex_unlock(&rnp->boost_mtx); 366 #endif /* #ifdef CONFIG_RCU_BOOST */ 367 368 /* 369 * If this was the last task on the expedited lists, 370 * then we need to report up the rcu_node hierarchy. 371 */ 372 if (!empty_exp && empty_exp_now) 373 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true); 374 } else { 375 local_irq_restore(flags); 376 } 377 } 378 379 /* 380 * Dump detailed information for all tasks blocking the current RCU 381 * grace period on the specified rcu_node structure. 382 */ 383 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 384 { 385 unsigned long flags; 386 struct task_struct *t; 387 388 raw_spin_lock_irqsave(&rnp->lock, flags); 389 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 390 raw_spin_unlock_irqrestore(&rnp->lock, flags); 391 return; 392 } 393 t = list_entry(rnp->gp_tasks, 394 struct task_struct, rcu_node_entry); 395 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 396 sched_show_task(t); 397 raw_spin_unlock_irqrestore(&rnp->lock, flags); 398 } 399 400 /* 401 * Dump detailed information for all tasks blocking the current RCU 402 * grace period. 403 */ 404 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 405 { 406 struct rcu_node *rnp = rcu_get_root(rsp); 407 408 rcu_print_detail_task_stall_rnp(rnp); 409 rcu_for_each_leaf_node(rsp, rnp) 410 rcu_print_detail_task_stall_rnp(rnp); 411 } 412 413 #ifdef CONFIG_RCU_CPU_STALL_INFO 414 415 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 416 { 417 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 418 rnp->level, rnp->grplo, rnp->grphi); 419 } 420 421 static void rcu_print_task_stall_end(void) 422 { 423 pr_cont("\n"); 424 } 425 426 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 427 428 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 429 { 430 } 431 432 static void rcu_print_task_stall_end(void) 433 { 434 } 435 436 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 437 438 /* 439 * Scan the current list of tasks blocked within RCU read-side critical 440 * sections, printing out the tid of each. 441 */ 442 static int rcu_print_task_stall(struct rcu_node *rnp) 443 { 444 struct task_struct *t; 445 int ndetected = 0; 446 447 if (!rcu_preempt_blocked_readers_cgp(rnp)) 448 return 0; 449 rcu_print_task_stall_begin(rnp); 450 t = list_entry(rnp->gp_tasks, 451 struct task_struct, rcu_node_entry); 452 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 453 pr_cont(" P%d", t->pid); 454 ndetected++; 455 } 456 rcu_print_task_stall_end(); 457 return ndetected; 458 } 459 460 /* 461 * Check that the list of blocked tasks for the newly completed grace 462 * period is in fact empty. It is a serious bug to complete a grace 463 * period that still has RCU readers blocked! This function must be 464 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 465 * must be held by the caller. 466 * 467 * Also, if there are blocked tasks on the list, they automatically 468 * block the newly created grace period, so set up ->gp_tasks accordingly. 469 */ 470 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 471 { 472 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 473 if (rcu_preempt_has_tasks(rnp)) 474 rnp->gp_tasks = rnp->blkd_tasks.next; 475 WARN_ON_ONCE(rnp->qsmask); 476 } 477 478 /* 479 * Check for a quiescent state from the current CPU. When a task blocks, 480 * the task is recorded in the corresponding CPU's rcu_node structure, 481 * which is checked elsewhere. 482 * 483 * Caller must disable hard irqs. 484 */ 485 static void rcu_preempt_check_callbacks(void) 486 { 487 struct task_struct *t = current; 488 489 if (t->rcu_read_lock_nesting == 0) { 490 rcu_preempt_qs(); 491 return; 492 } 493 if (t->rcu_read_lock_nesting > 0 && 494 __this_cpu_read(rcu_preempt_data.qs_pending) && 495 !__this_cpu_read(rcu_preempt_data.passed_quiesce)) 496 t->rcu_read_unlock_special.b.need_qs = true; 497 } 498 499 #ifdef CONFIG_RCU_BOOST 500 501 static void rcu_preempt_do_callbacks(void) 502 { 503 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data)); 504 } 505 506 #endif /* #ifdef CONFIG_RCU_BOOST */ 507 508 /* 509 * Queue a preemptible-RCU callback for invocation after a grace period. 510 */ 511 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 512 { 513 __call_rcu(head, func, &rcu_preempt_state, -1, 0); 514 } 515 EXPORT_SYMBOL_GPL(call_rcu); 516 517 /** 518 * synchronize_rcu - wait until a grace period has elapsed. 519 * 520 * Control will return to the caller some time after a full grace 521 * period has elapsed, in other words after all currently executing RCU 522 * read-side critical sections have completed. Note, however, that 523 * upon return from synchronize_rcu(), the caller might well be executing 524 * concurrently with new RCU read-side critical sections that began while 525 * synchronize_rcu() was waiting. RCU read-side critical sections are 526 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 527 * 528 * See the description of synchronize_sched() for more detailed information 529 * on memory ordering guarantees. 530 */ 531 void synchronize_rcu(void) 532 { 533 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 534 !lock_is_held(&rcu_lock_map) && 535 !lock_is_held(&rcu_sched_lock_map), 536 "Illegal synchronize_rcu() in RCU read-side critical section"); 537 if (!rcu_scheduler_active) 538 return; 539 if (rcu_gp_is_expedited()) 540 synchronize_rcu_expedited(); 541 else 542 wait_rcu_gp(call_rcu); 543 } 544 EXPORT_SYMBOL_GPL(synchronize_rcu); 545 546 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq); 547 static unsigned long sync_rcu_preempt_exp_count; 548 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex); 549 550 /* 551 * Return non-zero if there are any tasks in RCU read-side critical 552 * sections blocking the current preemptible-RCU expedited grace period. 553 * If there is no preemptible-RCU expedited grace period currently in 554 * progress, returns zero unconditionally. 555 */ 556 static int rcu_preempted_readers_exp(struct rcu_node *rnp) 557 { 558 return rnp->exp_tasks != NULL; 559 } 560 561 /* 562 * return non-zero if there is no RCU expedited grace period in progress 563 * for the specified rcu_node structure, in other words, if all CPUs and 564 * tasks covered by the specified rcu_node structure have done their bit 565 * for the current expedited grace period. Works only for preemptible 566 * RCU -- other RCU implementation use other means. 567 * 568 * Caller must hold sync_rcu_preempt_exp_mutex. 569 */ 570 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) 571 { 572 return !rcu_preempted_readers_exp(rnp) && 573 ACCESS_ONCE(rnp->expmask) == 0; 574 } 575 576 /* 577 * Report the exit from RCU read-side critical section for the last task 578 * that queued itself during or before the current expedited preemptible-RCU 579 * grace period. This event is reported either to the rcu_node structure on 580 * which the task was queued or to one of that rcu_node structure's ancestors, 581 * recursively up the tree. (Calm down, calm down, we do the recursion 582 * iteratively!) 583 * 584 * Caller must hold sync_rcu_preempt_exp_mutex. 585 */ 586 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 587 bool wake) 588 { 589 unsigned long flags; 590 unsigned long mask; 591 592 raw_spin_lock_irqsave(&rnp->lock, flags); 593 smp_mb__after_unlock_lock(); 594 for (;;) { 595 if (!sync_rcu_preempt_exp_done(rnp)) { 596 raw_spin_unlock_irqrestore(&rnp->lock, flags); 597 break; 598 } 599 if (rnp->parent == NULL) { 600 raw_spin_unlock_irqrestore(&rnp->lock, flags); 601 if (wake) { 602 smp_mb(); /* EGP done before wake_up(). */ 603 wake_up(&sync_rcu_preempt_exp_wq); 604 } 605 break; 606 } 607 mask = rnp->grpmask; 608 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ 609 rnp = rnp->parent; 610 raw_spin_lock(&rnp->lock); /* irqs already disabled */ 611 smp_mb__after_unlock_lock(); 612 rnp->expmask &= ~mask; 613 } 614 } 615 616 /* 617 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 618 * grace period for the specified rcu_node structure, phase 1. If there 619 * are such tasks, set the ->expmask bits up the rcu_node tree and also 620 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2 621 * that work is needed here. 622 * 623 * Caller must hold sync_rcu_preempt_exp_mutex. 624 */ 625 static void 626 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp) 627 { 628 unsigned long flags; 629 unsigned long mask; 630 struct rcu_node *rnp_up; 631 632 raw_spin_lock_irqsave(&rnp->lock, flags); 633 smp_mb__after_unlock_lock(); 634 WARN_ON_ONCE(rnp->expmask); 635 WARN_ON_ONCE(rnp->exp_tasks); 636 if (!rcu_preempt_has_tasks(rnp)) { 637 /* No blocked tasks, nothing to do. */ 638 raw_spin_unlock_irqrestore(&rnp->lock, flags); 639 return; 640 } 641 /* Call for Phase 2 and propagate ->expmask bits up the tree. */ 642 rnp->expmask = 1; 643 rnp_up = rnp; 644 while (rnp_up->parent) { 645 mask = rnp_up->grpmask; 646 rnp_up = rnp_up->parent; 647 if (rnp_up->expmask & mask) 648 break; 649 raw_spin_lock(&rnp_up->lock); /* irqs already off */ 650 smp_mb__after_unlock_lock(); 651 rnp_up->expmask |= mask; 652 raw_spin_unlock(&rnp_up->lock); /* irqs still off */ 653 } 654 raw_spin_unlock_irqrestore(&rnp->lock, flags); 655 } 656 657 /* 658 * Snapshot the tasks blocking the newly started preemptible-RCU expedited 659 * grace period for the specified rcu_node structure, phase 2. If the 660 * leaf rcu_node structure has its ->expmask field set, check for tasks. 661 * If there are some, clear ->expmask and set ->exp_tasks accordingly, 662 * then initiate RCU priority boosting. Otherwise, clear ->expmask and 663 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits, 664 * enabling rcu_read_unlock_special() to do the bit-clearing. 665 * 666 * Caller must hold sync_rcu_preempt_exp_mutex. 667 */ 668 static void 669 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp) 670 { 671 unsigned long flags; 672 673 raw_spin_lock_irqsave(&rnp->lock, flags); 674 smp_mb__after_unlock_lock(); 675 if (!rnp->expmask) { 676 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */ 677 raw_spin_unlock_irqrestore(&rnp->lock, flags); 678 return; 679 } 680 681 /* Phase 1 is over. */ 682 rnp->expmask = 0; 683 684 /* 685 * If there are still blocked tasks, set up ->exp_tasks so that 686 * rcu_read_unlock_special() will wake us and then boost them. 687 */ 688 if (rcu_preempt_has_tasks(rnp)) { 689 rnp->exp_tasks = rnp->blkd_tasks.next; 690 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 691 return; 692 } 693 694 /* No longer any blocked tasks, so undo bit setting. */ 695 raw_spin_unlock_irqrestore(&rnp->lock, flags); 696 rcu_report_exp_rnp(rsp, rnp, false); 697 } 698 699 /** 700 * synchronize_rcu_expedited - Brute-force RCU grace period 701 * 702 * Wait for an RCU-preempt grace period, but expedite it. The basic 703 * idea is to invoke synchronize_sched_expedited() to push all the tasks to 704 * the ->blkd_tasks lists and wait for this list to drain. This consumes 705 * significant time on all CPUs and is unfriendly to real-time workloads, 706 * so is thus not recommended for any sort of common-case code. 707 * In fact, if you are using synchronize_rcu_expedited() in a loop, 708 * please restructure your code to batch your updates, and then Use a 709 * single synchronize_rcu() instead. 710 */ 711 void synchronize_rcu_expedited(void) 712 { 713 struct rcu_node *rnp; 714 struct rcu_state *rsp = &rcu_preempt_state; 715 unsigned long snap; 716 int trycount = 0; 717 718 smp_mb(); /* Caller's modifications seen first by other CPUs. */ 719 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1; 720 smp_mb(); /* Above access cannot bleed into critical section. */ 721 722 /* 723 * Block CPU-hotplug operations. This means that any CPU-hotplug 724 * operation that finds an rcu_node structure with tasks in the 725 * process of being boosted will know that all tasks blocking 726 * this expedited grace period will already be in the process of 727 * being boosted. This simplifies the process of moving tasks 728 * from leaf to root rcu_node structures. 729 */ 730 if (!try_get_online_cpus()) { 731 /* CPU-hotplug operation in flight, fall back to normal GP. */ 732 wait_rcu_gp(call_rcu); 733 return; 734 } 735 736 /* 737 * Acquire lock, falling back to synchronize_rcu() if too many 738 * lock-acquisition failures. Of course, if someone does the 739 * expedited grace period for us, just leave. 740 */ 741 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) { 742 if (ULONG_CMP_LT(snap, 743 ACCESS_ONCE(sync_rcu_preempt_exp_count))) { 744 put_online_cpus(); 745 goto mb_ret; /* Others did our work for us. */ 746 } 747 if (trycount++ < 10) { 748 udelay(trycount * num_online_cpus()); 749 } else { 750 put_online_cpus(); 751 wait_rcu_gp(call_rcu); 752 return; 753 } 754 } 755 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) { 756 put_online_cpus(); 757 goto unlock_mb_ret; /* Others did our work for us. */ 758 } 759 760 /* force all RCU readers onto ->blkd_tasks lists. */ 761 synchronize_sched_expedited(); 762 763 /* 764 * Snapshot current state of ->blkd_tasks lists into ->expmask. 765 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special() 766 * to start clearing them. Doing this in one phase leads to 767 * strange races between setting and clearing bits, so just say "no"! 768 */ 769 rcu_for_each_leaf_node(rsp, rnp) 770 sync_rcu_preempt_exp_init1(rsp, rnp); 771 rcu_for_each_leaf_node(rsp, rnp) 772 sync_rcu_preempt_exp_init2(rsp, rnp); 773 774 put_online_cpus(); 775 776 /* Wait for snapshotted ->blkd_tasks lists to drain. */ 777 rnp = rcu_get_root(rsp); 778 wait_event(sync_rcu_preempt_exp_wq, 779 sync_rcu_preempt_exp_done(rnp)); 780 781 /* Clean up and exit. */ 782 smp_mb(); /* ensure expedited GP seen before counter increment. */ 783 ACCESS_ONCE(sync_rcu_preempt_exp_count) = 784 sync_rcu_preempt_exp_count + 1; 785 unlock_mb_ret: 786 mutex_unlock(&sync_rcu_preempt_exp_mutex); 787 mb_ret: 788 smp_mb(); /* ensure subsequent action seen after grace period. */ 789 } 790 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 791 792 /** 793 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 794 * 795 * Note that this primitive does not necessarily wait for an RCU grace period 796 * to complete. For example, if there are no RCU callbacks queued anywhere 797 * in the system, then rcu_barrier() is within its rights to return 798 * immediately, without waiting for anything, much less an RCU grace period. 799 */ 800 void rcu_barrier(void) 801 { 802 _rcu_barrier(&rcu_preempt_state); 803 } 804 EXPORT_SYMBOL_GPL(rcu_barrier); 805 806 /* 807 * Initialize preemptible RCU's state structures. 808 */ 809 static void __init __rcu_init_preempt(void) 810 { 811 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data); 812 } 813 814 /* 815 * Check for a task exiting while in a preemptible-RCU read-side 816 * critical section, clean up if so. No need to issue warnings, 817 * as debug_check_no_locks_held() already does this if lockdep 818 * is enabled. 819 */ 820 void exit_rcu(void) 821 { 822 struct task_struct *t = current; 823 824 if (likely(list_empty(¤t->rcu_node_entry))) 825 return; 826 t->rcu_read_lock_nesting = 1; 827 barrier(); 828 t->rcu_read_unlock_special.b.blocked = true; 829 __rcu_read_unlock(); 830 } 831 832 #else /* #ifdef CONFIG_PREEMPT_RCU */ 833 834 static struct rcu_state *rcu_state_p = &rcu_sched_state; 835 836 /* 837 * Tell them what RCU they are running. 838 */ 839 static void __init rcu_bootup_announce(void) 840 { 841 pr_info("Hierarchical RCU implementation.\n"); 842 rcu_bootup_announce_oddness(); 843 } 844 845 /* 846 * Because preemptible RCU does not exist, we never have to check for 847 * CPUs being in quiescent states. 848 */ 849 static void rcu_preempt_note_context_switch(void) 850 { 851 } 852 853 /* 854 * Because preemptible RCU does not exist, there are never any preempted 855 * RCU readers. 856 */ 857 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 858 { 859 return 0; 860 } 861 862 /* 863 * Because there is no preemptible RCU, there can be no readers blocked. 864 */ 865 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 866 { 867 return false; 868 } 869 870 /* 871 * Because preemptible RCU does not exist, we never have to check for 872 * tasks blocked within RCU read-side critical sections. 873 */ 874 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 875 { 876 } 877 878 /* 879 * Because preemptible RCU does not exist, we never have to check for 880 * tasks blocked within RCU read-side critical sections. 881 */ 882 static int rcu_print_task_stall(struct rcu_node *rnp) 883 { 884 return 0; 885 } 886 887 /* 888 * Because there is no preemptible RCU, there can be no readers blocked, 889 * so there is no need to check for blocked tasks. So check only for 890 * bogus qsmask values. 891 */ 892 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 893 { 894 WARN_ON_ONCE(rnp->qsmask); 895 } 896 897 /* 898 * Because preemptible RCU does not exist, it never has any callbacks 899 * to check. 900 */ 901 static void rcu_preempt_check_callbacks(void) 902 { 903 } 904 905 /* 906 * Wait for an rcu-preempt grace period, but make it happen quickly. 907 * But because preemptible RCU does not exist, map to rcu-sched. 908 */ 909 void synchronize_rcu_expedited(void) 910 { 911 synchronize_sched_expedited(); 912 } 913 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 914 915 /* 916 * Because preemptible RCU does not exist, rcu_barrier() is just 917 * another name for rcu_barrier_sched(). 918 */ 919 void rcu_barrier(void) 920 { 921 rcu_barrier_sched(); 922 } 923 EXPORT_SYMBOL_GPL(rcu_barrier); 924 925 /* 926 * Because preemptible RCU does not exist, it need not be initialized. 927 */ 928 static void __init __rcu_init_preempt(void) 929 { 930 } 931 932 /* 933 * Because preemptible RCU does not exist, tasks cannot possibly exit 934 * while in preemptible RCU read-side critical sections. 935 */ 936 void exit_rcu(void) 937 { 938 } 939 940 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 941 942 #ifdef CONFIG_RCU_BOOST 943 944 #include "../locking/rtmutex_common.h" 945 946 #ifdef CONFIG_RCU_TRACE 947 948 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 949 { 950 if (!rcu_preempt_has_tasks(rnp)) 951 rnp->n_balk_blkd_tasks++; 952 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 953 rnp->n_balk_exp_gp_tasks++; 954 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 955 rnp->n_balk_boost_tasks++; 956 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 957 rnp->n_balk_notblocked++; 958 else if (rnp->gp_tasks != NULL && 959 ULONG_CMP_LT(jiffies, rnp->boost_time)) 960 rnp->n_balk_notyet++; 961 else 962 rnp->n_balk_nos++; 963 } 964 965 #else /* #ifdef CONFIG_RCU_TRACE */ 966 967 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 968 { 969 } 970 971 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 972 973 static void rcu_wake_cond(struct task_struct *t, int status) 974 { 975 /* 976 * If the thread is yielding, only wake it when this 977 * is invoked from idle 978 */ 979 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 980 wake_up_process(t); 981 } 982 983 /* 984 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 985 * or ->boost_tasks, advancing the pointer to the next task in the 986 * ->blkd_tasks list. 987 * 988 * Note that irqs must be enabled: boosting the task can block. 989 * Returns 1 if there are more tasks needing to be boosted. 990 */ 991 static int rcu_boost(struct rcu_node *rnp) 992 { 993 unsigned long flags; 994 struct task_struct *t; 995 struct list_head *tb; 996 997 if (ACCESS_ONCE(rnp->exp_tasks) == NULL && 998 ACCESS_ONCE(rnp->boost_tasks) == NULL) 999 return 0; /* Nothing left to boost. */ 1000 1001 raw_spin_lock_irqsave(&rnp->lock, flags); 1002 smp_mb__after_unlock_lock(); 1003 1004 /* 1005 * Recheck under the lock: all tasks in need of boosting 1006 * might exit their RCU read-side critical sections on their own. 1007 */ 1008 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1009 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1010 return 0; 1011 } 1012 1013 /* 1014 * Preferentially boost tasks blocking expedited grace periods. 1015 * This cannot starve the normal grace periods because a second 1016 * expedited grace period must boost all blocked tasks, including 1017 * those blocking the pre-existing normal grace period. 1018 */ 1019 if (rnp->exp_tasks != NULL) { 1020 tb = rnp->exp_tasks; 1021 rnp->n_exp_boosts++; 1022 } else { 1023 tb = rnp->boost_tasks; 1024 rnp->n_normal_boosts++; 1025 } 1026 rnp->n_tasks_boosted++; 1027 1028 /* 1029 * We boost task t by manufacturing an rt_mutex that appears to 1030 * be held by task t. We leave a pointer to that rt_mutex where 1031 * task t can find it, and task t will release the mutex when it 1032 * exits its outermost RCU read-side critical section. Then 1033 * simply acquiring this artificial rt_mutex will boost task 1034 * t's priority. (Thanks to tglx for suggesting this approach!) 1035 * 1036 * Note that task t must acquire rnp->lock to remove itself from 1037 * the ->blkd_tasks list, which it will do from exit() if from 1038 * nowhere else. We therefore are guaranteed that task t will 1039 * stay around at least until we drop rnp->lock. Note that 1040 * rnp->lock also resolves races between our priority boosting 1041 * and task t's exiting its outermost RCU read-side critical 1042 * section. 1043 */ 1044 t = container_of(tb, struct task_struct, rcu_node_entry); 1045 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1046 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1047 /* Lock only for side effect: boosts task t's priority. */ 1048 rt_mutex_lock(&rnp->boost_mtx); 1049 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1050 1051 return ACCESS_ONCE(rnp->exp_tasks) != NULL || 1052 ACCESS_ONCE(rnp->boost_tasks) != NULL; 1053 } 1054 1055 /* 1056 * Priority-boosting kthread. One per leaf rcu_node and one for the 1057 * root rcu_node. 1058 */ 1059 static int rcu_boost_kthread(void *arg) 1060 { 1061 struct rcu_node *rnp = (struct rcu_node *)arg; 1062 int spincnt = 0; 1063 int more2boost; 1064 1065 trace_rcu_utilization(TPS("Start boost kthread@init")); 1066 for (;;) { 1067 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1068 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1069 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1070 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1071 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1072 more2boost = rcu_boost(rnp); 1073 if (more2boost) 1074 spincnt++; 1075 else 1076 spincnt = 0; 1077 if (spincnt > 10) { 1078 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1079 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1080 schedule_timeout_interruptible(2); 1081 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1082 spincnt = 0; 1083 } 1084 } 1085 /* NOTREACHED */ 1086 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1087 return 0; 1088 } 1089 1090 /* 1091 * Check to see if it is time to start boosting RCU readers that are 1092 * blocking the current grace period, and, if so, tell the per-rcu_node 1093 * kthread to start boosting them. If there is an expedited grace 1094 * period in progress, it is always time to boost. 1095 * 1096 * The caller must hold rnp->lock, which this function releases. 1097 * The ->boost_kthread_task is immortal, so we don't need to worry 1098 * about it going away. 1099 */ 1100 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1101 __releases(rnp->lock) 1102 { 1103 struct task_struct *t; 1104 1105 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1106 rnp->n_balk_exp_gp_tasks++; 1107 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1108 return; 1109 } 1110 if (rnp->exp_tasks != NULL || 1111 (rnp->gp_tasks != NULL && 1112 rnp->boost_tasks == NULL && 1113 rnp->qsmask == 0 && 1114 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1115 if (rnp->exp_tasks == NULL) 1116 rnp->boost_tasks = rnp->gp_tasks; 1117 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1118 t = rnp->boost_kthread_task; 1119 if (t) 1120 rcu_wake_cond(t, rnp->boost_kthread_status); 1121 } else { 1122 rcu_initiate_boost_trace(rnp); 1123 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1124 } 1125 } 1126 1127 /* 1128 * Wake up the per-CPU kthread to invoke RCU callbacks. 1129 */ 1130 static void invoke_rcu_callbacks_kthread(void) 1131 { 1132 unsigned long flags; 1133 1134 local_irq_save(flags); 1135 __this_cpu_write(rcu_cpu_has_work, 1); 1136 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1137 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1138 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1139 __this_cpu_read(rcu_cpu_kthread_status)); 1140 } 1141 local_irq_restore(flags); 1142 } 1143 1144 /* 1145 * Is the current CPU running the RCU-callbacks kthread? 1146 * Caller must have preemption disabled. 1147 */ 1148 static bool rcu_is_callbacks_kthread(void) 1149 { 1150 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1151 } 1152 1153 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1154 1155 /* 1156 * Do priority-boost accounting for the start of a new grace period. 1157 */ 1158 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1159 { 1160 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1161 } 1162 1163 /* 1164 * Create an RCU-boost kthread for the specified node if one does not 1165 * already exist. We only create this kthread for preemptible RCU. 1166 * Returns zero if all is well, a negated errno otherwise. 1167 */ 1168 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1169 struct rcu_node *rnp) 1170 { 1171 int rnp_index = rnp - &rsp->node[0]; 1172 unsigned long flags; 1173 struct sched_param sp; 1174 struct task_struct *t; 1175 1176 if (&rcu_preempt_state != rsp) 1177 return 0; 1178 1179 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1180 return 0; 1181 1182 rsp->boost = 1; 1183 if (rnp->boost_kthread_task != NULL) 1184 return 0; 1185 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1186 "rcub/%d", rnp_index); 1187 if (IS_ERR(t)) 1188 return PTR_ERR(t); 1189 raw_spin_lock_irqsave(&rnp->lock, flags); 1190 smp_mb__after_unlock_lock(); 1191 rnp->boost_kthread_task = t; 1192 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1193 sp.sched_priority = kthread_prio; 1194 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1195 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1196 return 0; 1197 } 1198 1199 static void rcu_kthread_do_work(void) 1200 { 1201 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1202 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1203 rcu_preempt_do_callbacks(); 1204 } 1205 1206 static void rcu_cpu_kthread_setup(unsigned int cpu) 1207 { 1208 struct sched_param sp; 1209 1210 sp.sched_priority = kthread_prio; 1211 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1212 } 1213 1214 static void rcu_cpu_kthread_park(unsigned int cpu) 1215 { 1216 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1217 } 1218 1219 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1220 { 1221 return __this_cpu_read(rcu_cpu_has_work); 1222 } 1223 1224 /* 1225 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1226 * RCU softirq used in flavors and configurations of RCU that do not 1227 * support RCU priority boosting. 1228 */ 1229 static void rcu_cpu_kthread(unsigned int cpu) 1230 { 1231 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1232 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1233 int spincnt; 1234 1235 for (spincnt = 0; spincnt < 10; spincnt++) { 1236 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1237 local_bh_disable(); 1238 *statusp = RCU_KTHREAD_RUNNING; 1239 this_cpu_inc(rcu_cpu_kthread_loops); 1240 local_irq_disable(); 1241 work = *workp; 1242 *workp = 0; 1243 local_irq_enable(); 1244 if (work) 1245 rcu_kthread_do_work(); 1246 local_bh_enable(); 1247 if (*workp == 0) { 1248 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1249 *statusp = RCU_KTHREAD_WAITING; 1250 return; 1251 } 1252 } 1253 *statusp = RCU_KTHREAD_YIELDING; 1254 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1255 schedule_timeout_interruptible(2); 1256 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1257 *statusp = RCU_KTHREAD_WAITING; 1258 } 1259 1260 /* 1261 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1262 * served by the rcu_node in question. The CPU hotplug lock is still 1263 * held, so the value of rnp->qsmaskinit will be stable. 1264 * 1265 * We don't include outgoingcpu in the affinity set, use -1 if there is 1266 * no outgoing CPU. If there are no CPUs left in the affinity set, 1267 * this function allows the kthread to execute on any CPU. 1268 */ 1269 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1270 { 1271 struct task_struct *t = rnp->boost_kthread_task; 1272 unsigned long mask = rcu_rnp_online_cpus(rnp); 1273 cpumask_var_t cm; 1274 int cpu; 1275 1276 if (!t) 1277 return; 1278 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1279 return; 1280 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) 1281 if ((mask & 0x1) && cpu != outgoingcpu) 1282 cpumask_set_cpu(cpu, cm); 1283 if (cpumask_weight(cm) == 0) 1284 cpumask_setall(cm); 1285 set_cpus_allowed_ptr(t, cm); 1286 free_cpumask_var(cm); 1287 } 1288 1289 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1290 .store = &rcu_cpu_kthread_task, 1291 .thread_should_run = rcu_cpu_kthread_should_run, 1292 .thread_fn = rcu_cpu_kthread, 1293 .thread_comm = "rcuc/%u", 1294 .setup = rcu_cpu_kthread_setup, 1295 .park = rcu_cpu_kthread_park, 1296 }; 1297 1298 /* 1299 * Spawn boost kthreads -- called as soon as the scheduler is running. 1300 */ 1301 static void __init rcu_spawn_boost_kthreads(void) 1302 { 1303 struct rcu_node *rnp; 1304 int cpu; 1305 1306 for_each_possible_cpu(cpu) 1307 per_cpu(rcu_cpu_has_work, cpu) = 0; 1308 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1309 rcu_for_each_leaf_node(rcu_state_p, rnp) 1310 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1311 } 1312 1313 static void rcu_prepare_kthreads(int cpu) 1314 { 1315 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1316 struct rcu_node *rnp = rdp->mynode; 1317 1318 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1319 if (rcu_scheduler_fully_active) 1320 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1321 } 1322 1323 #else /* #ifdef CONFIG_RCU_BOOST */ 1324 1325 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1326 __releases(rnp->lock) 1327 { 1328 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1329 } 1330 1331 static void invoke_rcu_callbacks_kthread(void) 1332 { 1333 WARN_ON_ONCE(1); 1334 } 1335 1336 static bool rcu_is_callbacks_kthread(void) 1337 { 1338 return false; 1339 } 1340 1341 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1342 { 1343 } 1344 1345 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1346 { 1347 } 1348 1349 static void __init rcu_spawn_boost_kthreads(void) 1350 { 1351 } 1352 1353 static void rcu_prepare_kthreads(int cpu) 1354 { 1355 } 1356 1357 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1358 1359 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1360 1361 /* 1362 * Check to see if any future RCU-related work will need to be done 1363 * by the current CPU, even if none need be done immediately, returning 1364 * 1 if so. This function is part of the RCU implementation; it is -not- 1365 * an exported member of the RCU API. 1366 * 1367 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1368 * any flavor of RCU. 1369 */ 1370 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1371 int rcu_needs_cpu(unsigned long *delta_jiffies) 1372 { 1373 *delta_jiffies = ULONG_MAX; 1374 return rcu_cpu_has_callbacks(NULL); 1375 } 1376 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1377 1378 /* 1379 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1380 * after it. 1381 */ 1382 static void rcu_cleanup_after_idle(void) 1383 { 1384 } 1385 1386 /* 1387 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1388 * is nothing. 1389 */ 1390 static void rcu_prepare_for_idle(void) 1391 { 1392 } 1393 1394 /* 1395 * Don't bother keeping a running count of the number of RCU callbacks 1396 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1397 */ 1398 static void rcu_idle_count_callbacks_posted(void) 1399 { 1400 } 1401 1402 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1403 1404 /* 1405 * This code is invoked when a CPU goes idle, at which point we want 1406 * to have the CPU do everything required for RCU so that it can enter 1407 * the energy-efficient dyntick-idle mode. This is handled by a 1408 * state machine implemented by rcu_prepare_for_idle() below. 1409 * 1410 * The following three proprocessor symbols control this state machine: 1411 * 1412 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1413 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1414 * is sized to be roughly one RCU grace period. Those energy-efficiency 1415 * benchmarkers who might otherwise be tempted to set this to a large 1416 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1417 * system. And if you are -that- concerned about energy efficiency, 1418 * just power the system down and be done with it! 1419 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1420 * permitted to sleep in dyntick-idle mode with only lazy RCU 1421 * callbacks pending. Setting this too high can OOM your system. 1422 * 1423 * The values below work well in practice. If future workloads require 1424 * adjustment, they can be converted into kernel config parameters, though 1425 * making the state machine smarter might be a better option. 1426 */ 1427 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1428 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1429 1430 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1431 module_param(rcu_idle_gp_delay, int, 0644); 1432 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1433 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1434 1435 extern int tick_nohz_active; 1436 1437 /* 1438 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1439 * only if it has been awhile since the last time we did so. Afterwards, 1440 * if there are any callbacks ready for immediate invocation, return true. 1441 */ 1442 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1443 { 1444 bool cbs_ready = false; 1445 struct rcu_data *rdp; 1446 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1447 struct rcu_node *rnp; 1448 struct rcu_state *rsp; 1449 1450 /* Exit early if we advanced recently. */ 1451 if (jiffies == rdtp->last_advance_all) 1452 return false; 1453 rdtp->last_advance_all = jiffies; 1454 1455 for_each_rcu_flavor(rsp) { 1456 rdp = this_cpu_ptr(rsp->rda); 1457 rnp = rdp->mynode; 1458 1459 /* 1460 * Don't bother checking unless a grace period has 1461 * completed since we last checked and there are 1462 * callbacks not yet ready to invoke. 1463 */ 1464 if ((rdp->completed != rnp->completed || 1465 unlikely(ACCESS_ONCE(rdp->gpwrap))) && 1466 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1467 note_gp_changes(rsp, rdp); 1468 1469 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1470 cbs_ready = true; 1471 } 1472 return cbs_ready; 1473 } 1474 1475 /* 1476 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1477 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1478 * caller to set the timeout based on whether or not there are non-lazy 1479 * callbacks. 1480 * 1481 * The caller must have disabled interrupts. 1482 */ 1483 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1484 int rcu_needs_cpu(unsigned long *dj) 1485 { 1486 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1487 1488 /* Snapshot to detect later posting of non-lazy callback. */ 1489 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1490 1491 /* If no callbacks, RCU doesn't need the CPU. */ 1492 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1493 *dj = ULONG_MAX; 1494 return 0; 1495 } 1496 1497 /* Attempt to advance callbacks. */ 1498 if (rcu_try_advance_all_cbs()) { 1499 /* Some ready to invoke, so initiate later invocation. */ 1500 invoke_rcu_core(); 1501 return 1; 1502 } 1503 rdtp->last_accelerate = jiffies; 1504 1505 /* Request timer delay depending on laziness, and round. */ 1506 if (!rdtp->all_lazy) { 1507 *dj = round_up(rcu_idle_gp_delay + jiffies, 1508 rcu_idle_gp_delay) - jiffies; 1509 } else { 1510 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1511 } 1512 return 0; 1513 } 1514 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1515 1516 /* 1517 * Prepare a CPU for idle from an RCU perspective. The first major task 1518 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1519 * The second major task is to check to see if a non-lazy callback has 1520 * arrived at a CPU that previously had only lazy callbacks. The third 1521 * major task is to accelerate (that is, assign grace-period numbers to) 1522 * any recently arrived callbacks. 1523 * 1524 * The caller must have disabled interrupts. 1525 */ 1526 static void rcu_prepare_for_idle(void) 1527 { 1528 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1529 bool needwake; 1530 struct rcu_data *rdp; 1531 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1532 struct rcu_node *rnp; 1533 struct rcu_state *rsp; 1534 int tne; 1535 1536 /* Handle nohz enablement switches conservatively. */ 1537 tne = ACCESS_ONCE(tick_nohz_active); 1538 if (tne != rdtp->tick_nohz_enabled_snap) { 1539 if (rcu_cpu_has_callbacks(NULL)) 1540 invoke_rcu_core(); /* force nohz to see update. */ 1541 rdtp->tick_nohz_enabled_snap = tne; 1542 return; 1543 } 1544 if (!tne) 1545 return; 1546 1547 /* If this is a no-CBs CPU, no callbacks, just return. */ 1548 if (rcu_is_nocb_cpu(smp_processor_id())) 1549 return; 1550 1551 /* 1552 * If a non-lazy callback arrived at a CPU having only lazy 1553 * callbacks, invoke RCU core for the side-effect of recalculating 1554 * idle duration on re-entry to idle. 1555 */ 1556 if (rdtp->all_lazy && 1557 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1558 rdtp->all_lazy = false; 1559 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1560 invoke_rcu_core(); 1561 return; 1562 } 1563 1564 /* 1565 * If we have not yet accelerated this jiffy, accelerate all 1566 * callbacks on this CPU. 1567 */ 1568 if (rdtp->last_accelerate == jiffies) 1569 return; 1570 rdtp->last_accelerate = jiffies; 1571 for_each_rcu_flavor(rsp) { 1572 rdp = this_cpu_ptr(rsp->rda); 1573 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1574 continue; 1575 rnp = rdp->mynode; 1576 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 1577 smp_mb__after_unlock_lock(); 1578 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1579 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 1580 if (needwake) 1581 rcu_gp_kthread_wake(rsp); 1582 } 1583 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1584 } 1585 1586 /* 1587 * Clean up for exit from idle. Attempt to advance callbacks based on 1588 * any grace periods that elapsed while the CPU was idle, and if any 1589 * callbacks are now ready to invoke, initiate invocation. 1590 */ 1591 static void rcu_cleanup_after_idle(void) 1592 { 1593 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1594 if (rcu_is_nocb_cpu(smp_processor_id())) 1595 return; 1596 if (rcu_try_advance_all_cbs()) 1597 invoke_rcu_core(); 1598 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1599 } 1600 1601 /* 1602 * Keep a running count of the number of non-lazy callbacks posted 1603 * on this CPU. This running counter (which is never decremented) allows 1604 * rcu_prepare_for_idle() to detect when something out of the idle loop 1605 * posts a callback, even if an equal number of callbacks are invoked. 1606 * Of course, callbacks should only be posted from within a trace event 1607 * designed to be called from idle or from within RCU_NONIDLE(). 1608 */ 1609 static void rcu_idle_count_callbacks_posted(void) 1610 { 1611 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1612 } 1613 1614 /* 1615 * Data for flushing lazy RCU callbacks at OOM time. 1616 */ 1617 static atomic_t oom_callback_count; 1618 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1619 1620 /* 1621 * RCU OOM callback -- decrement the outstanding count and deliver the 1622 * wake-up if we are the last one. 1623 */ 1624 static void rcu_oom_callback(struct rcu_head *rhp) 1625 { 1626 if (atomic_dec_and_test(&oom_callback_count)) 1627 wake_up(&oom_callback_wq); 1628 } 1629 1630 /* 1631 * Post an rcu_oom_notify callback on the current CPU if it has at 1632 * least one lazy callback. This will unnecessarily post callbacks 1633 * to CPUs that already have a non-lazy callback at the end of their 1634 * callback list, but this is an infrequent operation, so accept some 1635 * extra overhead to keep things simple. 1636 */ 1637 static void rcu_oom_notify_cpu(void *unused) 1638 { 1639 struct rcu_state *rsp; 1640 struct rcu_data *rdp; 1641 1642 for_each_rcu_flavor(rsp) { 1643 rdp = raw_cpu_ptr(rsp->rda); 1644 if (rdp->qlen_lazy != 0) { 1645 atomic_inc(&oom_callback_count); 1646 rsp->call(&rdp->oom_head, rcu_oom_callback); 1647 } 1648 } 1649 } 1650 1651 /* 1652 * If low on memory, ensure that each CPU has a non-lazy callback. 1653 * This will wake up CPUs that have only lazy callbacks, in turn 1654 * ensuring that they free up the corresponding memory in a timely manner. 1655 * Because an uncertain amount of memory will be freed in some uncertain 1656 * timeframe, we do not claim to have freed anything. 1657 */ 1658 static int rcu_oom_notify(struct notifier_block *self, 1659 unsigned long notused, void *nfreed) 1660 { 1661 int cpu; 1662 1663 /* Wait for callbacks from earlier instance to complete. */ 1664 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1665 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1666 1667 /* 1668 * Prevent premature wakeup: ensure that all increments happen 1669 * before there is a chance of the counter reaching zero. 1670 */ 1671 atomic_set(&oom_callback_count, 1); 1672 1673 get_online_cpus(); 1674 for_each_online_cpu(cpu) { 1675 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1676 cond_resched_rcu_qs(); 1677 } 1678 put_online_cpus(); 1679 1680 /* Unconditionally decrement: no need to wake ourselves up. */ 1681 atomic_dec(&oom_callback_count); 1682 1683 return NOTIFY_OK; 1684 } 1685 1686 static struct notifier_block rcu_oom_nb = { 1687 .notifier_call = rcu_oom_notify 1688 }; 1689 1690 static int __init rcu_register_oom_notifier(void) 1691 { 1692 register_oom_notifier(&rcu_oom_nb); 1693 return 0; 1694 } 1695 early_initcall(rcu_register_oom_notifier); 1696 1697 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1698 1699 #ifdef CONFIG_RCU_CPU_STALL_INFO 1700 1701 #ifdef CONFIG_RCU_FAST_NO_HZ 1702 1703 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1704 { 1705 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1706 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1707 1708 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1709 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1710 ulong2long(nlpd), 1711 rdtp->all_lazy ? 'L' : '.', 1712 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1713 } 1714 1715 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1716 1717 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1718 { 1719 *cp = '\0'; 1720 } 1721 1722 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1723 1724 /* Initiate the stall-info list. */ 1725 static void print_cpu_stall_info_begin(void) 1726 { 1727 pr_cont("\n"); 1728 } 1729 1730 /* 1731 * Print out diagnostic information for the specified stalled CPU. 1732 * 1733 * If the specified CPU is aware of the current RCU grace period 1734 * (flavor specified by rsp), then print the number of scheduling 1735 * clock interrupts the CPU has taken during the time that it has 1736 * been aware. Otherwise, print the number of RCU grace periods 1737 * that this CPU is ignorant of, for example, "1" if the CPU was 1738 * aware of the previous grace period. 1739 * 1740 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1741 */ 1742 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1743 { 1744 char fast_no_hz[72]; 1745 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1746 struct rcu_dynticks *rdtp = rdp->dynticks; 1747 char *ticks_title; 1748 unsigned long ticks_value; 1749 1750 if (rsp->gpnum == rdp->gpnum) { 1751 ticks_title = "ticks this GP"; 1752 ticks_value = rdp->ticks_this_gp; 1753 } else { 1754 ticks_title = "GPs behind"; 1755 ticks_value = rsp->gpnum - rdp->gpnum; 1756 } 1757 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1758 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1759 cpu, ticks_value, ticks_title, 1760 atomic_read(&rdtp->dynticks) & 0xfff, 1761 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1762 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1763 ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1764 fast_no_hz); 1765 } 1766 1767 /* Terminate the stall-info list. */ 1768 static void print_cpu_stall_info_end(void) 1769 { 1770 pr_err("\t"); 1771 } 1772 1773 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1774 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1775 { 1776 rdp->ticks_this_gp = 0; 1777 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1778 } 1779 1780 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1781 static void increment_cpu_stall_ticks(void) 1782 { 1783 struct rcu_state *rsp; 1784 1785 for_each_rcu_flavor(rsp) 1786 raw_cpu_inc(rsp->rda->ticks_this_gp); 1787 } 1788 1789 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1790 1791 static void print_cpu_stall_info_begin(void) 1792 { 1793 pr_cont(" {"); 1794 } 1795 1796 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1797 { 1798 pr_cont(" %d", cpu); 1799 } 1800 1801 static void print_cpu_stall_info_end(void) 1802 { 1803 pr_cont("} "); 1804 } 1805 1806 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1807 { 1808 } 1809 1810 static void increment_cpu_stall_ticks(void) 1811 { 1812 } 1813 1814 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */ 1815 1816 #ifdef CONFIG_RCU_NOCB_CPU 1817 1818 /* 1819 * Offload callback processing from the boot-time-specified set of CPUs 1820 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1821 * kthread created that pulls the callbacks from the corresponding CPU, 1822 * waits for a grace period to elapse, and invokes the callbacks. 1823 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1824 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1825 * has been specified, in which case each kthread actively polls its 1826 * CPU. (Which isn't so great for energy efficiency, but which does 1827 * reduce RCU's overhead on that CPU.) 1828 * 1829 * This is intended to be used in conjunction with Frederic Weisbecker's 1830 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1831 * running CPU-bound user-mode computations. 1832 * 1833 * Offloading of callback processing could also in theory be used as 1834 * an energy-efficiency measure because CPUs with no RCU callbacks 1835 * queued are more aggressive about entering dyntick-idle mode. 1836 */ 1837 1838 1839 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1840 static int __init rcu_nocb_setup(char *str) 1841 { 1842 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1843 have_rcu_nocb_mask = true; 1844 cpulist_parse(str, rcu_nocb_mask); 1845 return 1; 1846 } 1847 __setup("rcu_nocbs=", rcu_nocb_setup); 1848 1849 static int __init parse_rcu_nocb_poll(char *arg) 1850 { 1851 rcu_nocb_poll = 1; 1852 return 0; 1853 } 1854 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1855 1856 /* 1857 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1858 * grace period. 1859 */ 1860 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1861 { 1862 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]); 1863 } 1864 1865 /* 1866 * Set the root rcu_node structure's ->need_future_gp field 1867 * based on the sum of those of all rcu_node structures. This does 1868 * double-count the root rcu_node structure's requests, but this 1869 * is necessary to handle the possibility of a rcu_nocb_kthread() 1870 * having awakened during the time that the rcu_node structures 1871 * were being updated for the end of the previous grace period. 1872 */ 1873 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1874 { 1875 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1876 } 1877 1878 static void rcu_init_one_nocb(struct rcu_node *rnp) 1879 { 1880 init_waitqueue_head(&rnp->nocb_gp_wq[0]); 1881 init_waitqueue_head(&rnp->nocb_gp_wq[1]); 1882 } 1883 1884 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1885 /* Is the specified CPU a no-CBs CPU? */ 1886 bool rcu_is_nocb_cpu(int cpu) 1887 { 1888 if (have_rcu_nocb_mask) 1889 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1890 return false; 1891 } 1892 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1893 1894 /* 1895 * Kick the leader kthread for this NOCB group. 1896 */ 1897 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1898 { 1899 struct rcu_data *rdp_leader = rdp->nocb_leader; 1900 1901 if (!ACCESS_ONCE(rdp_leader->nocb_kthread)) 1902 return; 1903 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1904 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1905 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false; 1906 wake_up(&rdp_leader->nocb_wq); 1907 } 1908 } 1909 1910 /* 1911 * Does the specified CPU need an RCU callback for the specified flavor 1912 * of rcu_barrier()? 1913 */ 1914 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1915 { 1916 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1917 unsigned long ret; 1918 #ifdef CONFIG_PROVE_RCU 1919 struct rcu_head *rhp; 1920 #endif /* #ifdef CONFIG_PROVE_RCU */ 1921 1922 /* 1923 * Check count of all no-CBs callbacks awaiting invocation. 1924 * There needs to be a barrier before this function is called, 1925 * but associated with a prior determination that no more 1926 * callbacks would be posted. In the worst case, the first 1927 * barrier in _rcu_barrier() suffices (but the caller cannot 1928 * necessarily rely on this, not a substitute for the caller 1929 * getting the concurrency design right!). There must also be 1930 * a barrier between the following load an posting of a callback 1931 * (if a callback is in fact needed). This is associated with an 1932 * atomic_inc() in the caller. 1933 */ 1934 ret = atomic_long_read(&rdp->nocb_q_count); 1935 1936 #ifdef CONFIG_PROVE_RCU 1937 rhp = ACCESS_ONCE(rdp->nocb_head); 1938 if (!rhp) 1939 rhp = ACCESS_ONCE(rdp->nocb_gp_head); 1940 if (!rhp) 1941 rhp = ACCESS_ONCE(rdp->nocb_follower_head); 1942 1943 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1944 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp && 1945 rcu_scheduler_fully_active) { 1946 /* RCU callback enqueued before CPU first came online??? */ 1947 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1948 cpu, rhp->func); 1949 WARN_ON_ONCE(1); 1950 } 1951 #endif /* #ifdef CONFIG_PROVE_RCU */ 1952 1953 return !!ret; 1954 } 1955 1956 /* 1957 * Enqueue the specified string of rcu_head structures onto the specified 1958 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1959 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1960 * counts are supplied by rhcount and rhcount_lazy. 1961 * 1962 * If warranted, also wake up the kthread servicing this CPUs queues. 1963 */ 1964 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1965 struct rcu_head *rhp, 1966 struct rcu_head **rhtp, 1967 int rhcount, int rhcount_lazy, 1968 unsigned long flags) 1969 { 1970 int len; 1971 struct rcu_head **old_rhpp; 1972 struct task_struct *t; 1973 1974 /* Enqueue the callback on the nocb list and update counts. */ 1975 atomic_long_add(rhcount, &rdp->nocb_q_count); 1976 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1977 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1978 ACCESS_ONCE(*old_rhpp) = rhp; 1979 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1980 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1981 1982 /* If we are not being polled and there is a kthread, awaken it ... */ 1983 t = ACCESS_ONCE(rdp->nocb_kthread); 1984 if (rcu_nocb_poll || !t) { 1985 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1986 TPS("WakeNotPoll")); 1987 return; 1988 } 1989 len = atomic_long_read(&rdp->nocb_q_count); 1990 if (old_rhpp == &rdp->nocb_head) { 1991 if (!irqs_disabled_flags(flags)) { 1992 /* ... if queue was empty ... */ 1993 wake_nocb_leader(rdp, false); 1994 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1995 TPS("WakeEmpty")); 1996 } else { 1997 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 1998 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1999 TPS("WakeEmptyIsDeferred")); 2000 } 2001 rdp->qlen_last_fqs_check = 0; 2002 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 2003 /* ... or if many callbacks queued. */ 2004 if (!irqs_disabled_flags(flags)) { 2005 wake_nocb_leader(rdp, true); 2006 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2007 TPS("WakeOvf")); 2008 } else { 2009 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 2010 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2011 TPS("WakeOvfIsDeferred")); 2012 } 2013 rdp->qlen_last_fqs_check = LONG_MAX / 2; 2014 } else { 2015 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 2016 } 2017 return; 2018 } 2019 2020 /* 2021 * This is a helper for __call_rcu(), which invokes this when the normal 2022 * callback queue is inoperable. If this is not a no-CBs CPU, this 2023 * function returns failure back to __call_rcu(), which can complain 2024 * appropriately. 2025 * 2026 * Otherwise, this function queues the callback where the corresponding 2027 * "rcuo" kthread can find it. 2028 */ 2029 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2030 bool lazy, unsigned long flags) 2031 { 2032 2033 if (!rcu_is_nocb_cpu(rdp->cpu)) 2034 return false; 2035 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 2036 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 2037 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 2038 (unsigned long)rhp->func, 2039 -atomic_long_read(&rdp->nocb_q_count_lazy), 2040 -atomic_long_read(&rdp->nocb_q_count)); 2041 else 2042 trace_rcu_callback(rdp->rsp->name, rhp, 2043 -atomic_long_read(&rdp->nocb_q_count_lazy), 2044 -atomic_long_read(&rdp->nocb_q_count)); 2045 2046 /* 2047 * If called from an extended quiescent state with interrupts 2048 * disabled, invoke the RCU core in order to allow the idle-entry 2049 * deferred-wakeup check to function. 2050 */ 2051 if (irqs_disabled_flags(flags) && 2052 !rcu_is_watching() && 2053 cpu_online(smp_processor_id())) 2054 invoke_rcu_core(); 2055 2056 return true; 2057 } 2058 2059 /* 2060 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2061 * not a no-CBs CPU. 2062 */ 2063 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2064 struct rcu_data *rdp, 2065 unsigned long flags) 2066 { 2067 long ql = rsp->qlen; 2068 long qll = rsp->qlen_lazy; 2069 2070 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 2071 if (!rcu_is_nocb_cpu(smp_processor_id())) 2072 return false; 2073 rsp->qlen = 0; 2074 rsp->qlen_lazy = 0; 2075 2076 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 2077 if (rsp->orphan_donelist != NULL) { 2078 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 2079 rsp->orphan_donetail, ql, qll, flags); 2080 ql = qll = 0; 2081 rsp->orphan_donelist = NULL; 2082 rsp->orphan_donetail = &rsp->orphan_donelist; 2083 } 2084 if (rsp->orphan_nxtlist != NULL) { 2085 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 2086 rsp->orphan_nxttail, ql, qll, flags); 2087 ql = qll = 0; 2088 rsp->orphan_nxtlist = NULL; 2089 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2090 } 2091 return true; 2092 } 2093 2094 /* 2095 * If necessary, kick off a new grace period, and either way wait 2096 * for a subsequent grace period to complete. 2097 */ 2098 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2099 { 2100 unsigned long c; 2101 bool d; 2102 unsigned long flags; 2103 bool needwake; 2104 struct rcu_node *rnp = rdp->mynode; 2105 2106 raw_spin_lock_irqsave(&rnp->lock, flags); 2107 smp_mb__after_unlock_lock(); 2108 needwake = rcu_start_future_gp(rnp, rdp, &c); 2109 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2110 if (needwake) 2111 rcu_gp_kthread_wake(rdp->rsp); 2112 2113 /* 2114 * Wait for the grace period. Do so interruptibly to avoid messing 2115 * up the load average. 2116 */ 2117 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2118 for (;;) { 2119 wait_event_interruptible( 2120 rnp->nocb_gp_wq[c & 0x1], 2121 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c))); 2122 if (likely(d)) 2123 break; 2124 WARN_ON(signal_pending(current)); 2125 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2126 } 2127 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2128 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2129 } 2130 2131 /* 2132 * Leaders come here to wait for additional callbacks to show up. 2133 * This function does not return until callbacks appear. 2134 */ 2135 static void nocb_leader_wait(struct rcu_data *my_rdp) 2136 { 2137 bool firsttime = true; 2138 bool gotcbs; 2139 struct rcu_data *rdp; 2140 struct rcu_head **tail; 2141 2142 wait_again: 2143 2144 /* Wait for callbacks to appear. */ 2145 if (!rcu_nocb_poll) { 2146 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2147 wait_event_interruptible(my_rdp->nocb_wq, 2148 !ACCESS_ONCE(my_rdp->nocb_leader_sleep)); 2149 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2150 } else if (firsttime) { 2151 firsttime = false; /* Don't drown trace log with "Poll"! */ 2152 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2153 } 2154 2155 /* 2156 * Each pass through the following loop checks a follower for CBs. 2157 * We are our own first follower. Any CBs found are moved to 2158 * nocb_gp_head, where they await a grace period. 2159 */ 2160 gotcbs = false; 2161 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2162 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head); 2163 if (!rdp->nocb_gp_head) 2164 continue; /* No CBs here, try next follower. */ 2165 2166 /* Move callbacks to wait-for-GP list, which is empty. */ 2167 ACCESS_ONCE(rdp->nocb_head) = NULL; 2168 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2169 gotcbs = true; 2170 } 2171 2172 /* 2173 * If there were no callbacks, sleep a bit, rescan after a 2174 * memory barrier, and go retry. 2175 */ 2176 if (unlikely(!gotcbs)) { 2177 if (!rcu_nocb_poll) 2178 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2179 "WokeEmpty"); 2180 WARN_ON(signal_pending(current)); 2181 schedule_timeout_interruptible(1); 2182 2183 /* Rescan in case we were a victim of memory ordering. */ 2184 my_rdp->nocb_leader_sleep = true; 2185 smp_mb(); /* Ensure _sleep true before scan. */ 2186 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2187 if (ACCESS_ONCE(rdp->nocb_head)) { 2188 /* Found CB, so short-circuit next wait. */ 2189 my_rdp->nocb_leader_sleep = false; 2190 break; 2191 } 2192 goto wait_again; 2193 } 2194 2195 /* Wait for one grace period. */ 2196 rcu_nocb_wait_gp(my_rdp); 2197 2198 /* 2199 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2200 * We set it now, but recheck for new callbacks while 2201 * traversing our follower list. 2202 */ 2203 my_rdp->nocb_leader_sleep = true; 2204 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2205 2206 /* Each pass through the following loop wakes a follower, if needed. */ 2207 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2208 if (ACCESS_ONCE(rdp->nocb_head)) 2209 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2210 if (!rdp->nocb_gp_head) 2211 continue; /* No CBs, so no need to wake follower. */ 2212 2213 /* Append callbacks to follower's "done" list. */ 2214 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2215 *tail = rdp->nocb_gp_head; 2216 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2217 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2218 /* 2219 * List was empty, wake up the follower. 2220 * Memory barriers supplied by atomic_long_add(). 2221 */ 2222 wake_up(&rdp->nocb_wq); 2223 } 2224 } 2225 2226 /* If we (the leader) don't have CBs, go wait some more. */ 2227 if (!my_rdp->nocb_follower_head) 2228 goto wait_again; 2229 } 2230 2231 /* 2232 * Followers come here to wait for additional callbacks to show up. 2233 * This function does not return until callbacks appear. 2234 */ 2235 static void nocb_follower_wait(struct rcu_data *rdp) 2236 { 2237 bool firsttime = true; 2238 2239 for (;;) { 2240 if (!rcu_nocb_poll) { 2241 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2242 "FollowerSleep"); 2243 wait_event_interruptible(rdp->nocb_wq, 2244 ACCESS_ONCE(rdp->nocb_follower_head)); 2245 } else if (firsttime) { 2246 /* Don't drown trace log with "Poll"! */ 2247 firsttime = false; 2248 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2249 } 2250 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2251 /* ^^^ Ensure CB invocation follows _head test. */ 2252 return; 2253 } 2254 if (!rcu_nocb_poll) 2255 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2256 "WokeEmpty"); 2257 WARN_ON(signal_pending(current)); 2258 schedule_timeout_interruptible(1); 2259 } 2260 } 2261 2262 /* 2263 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2264 * callbacks queued by the corresponding no-CBs CPU, however, there is 2265 * an optional leader-follower relationship so that the grace-period 2266 * kthreads don't have to do quite so many wakeups. 2267 */ 2268 static int rcu_nocb_kthread(void *arg) 2269 { 2270 int c, cl; 2271 struct rcu_head *list; 2272 struct rcu_head *next; 2273 struct rcu_head **tail; 2274 struct rcu_data *rdp = arg; 2275 2276 /* Each pass through this loop invokes one batch of callbacks */ 2277 for (;;) { 2278 /* Wait for callbacks. */ 2279 if (rdp->nocb_leader == rdp) 2280 nocb_leader_wait(rdp); 2281 else 2282 nocb_follower_wait(rdp); 2283 2284 /* Pull the ready-to-invoke callbacks onto local list. */ 2285 list = ACCESS_ONCE(rdp->nocb_follower_head); 2286 BUG_ON(!list); 2287 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2288 ACCESS_ONCE(rdp->nocb_follower_head) = NULL; 2289 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2290 2291 /* Each pass through the following loop invokes a callback. */ 2292 trace_rcu_batch_start(rdp->rsp->name, 2293 atomic_long_read(&rdp->nocb_q_count_lazy), 2294 atomic_long_read(&rdp->nocb_q_count), -1); 2295 c = cl = 0; 2296 while (list) { 2297 next = list->next; 2298 /* Wait for enqueuing to complete, if needed. */ 2299 while (next == NULL && &list->next != tail) { 2300 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2301 TPS("WaitQueue")); 2302 schedule_timeout_interruptible(1); 2303 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2304 TPS("WokeQueue")); 2305 next = list->next; 2306 } 2307 debug_rcu_head_unqueue(list); 2308 local_bh_disable(); 2309 if (__rcu_reclaim(rdp->rsp->name, list)) 2310 cl++; 2311 c++; 2312 local_bh_enable(); 2313 list = next; 2314 } 2315 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2316 smp_mb__before_atomic(); /* _add after CB invocation. */ 2317 atomic_long_add(-c, &rdp->nocb_q_count); 2318 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2319 rdp->n_nocbs_invoked += c; 2320 } 2321 return 0; 2322 } 2323 2324 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2325 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2326 { 2327 return ACCESS_ONCE(rdp->nocb_defer_wakeup); 2328 } 2329 2330 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2331 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2332 { 2333 int ndw; 2334 2335 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2336 return; 2337 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup); 2338 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT; 2339 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2340 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2341 } 2342 2343 void __init rcu_init_nohz(void) 2344 { 2345 int cpu; 2346 bool need_rcu_nocb_mask = true; 2347 struct rcu_state *rsp; 2348 2349 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2350 need_rcu_nocb_mask = false; 2351 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2352 2353 #if defined(CONFIG_NO_HZ_FULL) 2354 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2355 need_rcu_nocb_mask = true; 2356 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2357 2358 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2359 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2360 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2361 return; 2362 } 2363 have_rcu_nocb_mask = true; 2364 } 2365 if (!have_rcu_nocb_mask) 2366 return; 2367 2368 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2369 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2370 cpumask_set_cpu(0, rcu_nocb_mask); 2371 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2372 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2373 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2374 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2375 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2376 #if defined(CONFIG_NO_HZ_FULL) 2377 if (tick_nohz_full_running) 2378 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2379 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2380 2381 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2382 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2383 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2384 rcu_nocb_mask); 2385 } 2386 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2387 cpumask_pr_args(rcu_nocb_mask)); 2388 if (rcu_nocb_poll) 2389 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2390 2391 for_each_rcu_flavor(rsp) { 2392 for_each_cpu(cpu, rcu_nocb_mask) 2393 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2394 rcu_organize_nocb_kthreads(rsp); 2395 } 2396 } 2397 2398 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2399 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2400 { 2401 rdp->nocb_tail = &rdp->nocb_head; 2402 init_waitqueue_head(&rdp->nocb_wq); 2403 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2404 } 2405 2406 /* 2407 * If the specified CPU is a no-CBs CPU that does not already have its 2408 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2409 * brought online out of order, this can require re-organizing the 2410 * leader-follower relationships. 2411 */ 2412 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2413 { 2414 struct rcu_data *rdp; 2415 struct rcu_data *rdp_last; 2416 struct rcu_data *rdp_old_leader; 2417 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2418 struct task_struct *t; 2419 2420 /* 2421 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2422 * then nothing to do. 2423 */ 2424 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2425 return; 2426 2427 /* If we didn't spawn the leader first, reorganize! */ 2428 rdp_old_leader = rdp_spawn->nocb_leader; 2429 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2430 rdp_last = NULL; 2431 rdp = rdp_old_leader; 2432 do { 2433 rdp->nocb_leader = rdp_spawn; 2434 if (rdp_last && rdp != rdp_spawn) 2435 rdp_last->nocb_next_follower = rdp; 2436 if (rdp == rdp_spawn) { 2437 rdp = rdp->nocb_next_follower; 2438 } else { 2439 rdp_last = rdp; 2440 rdp = rdp->nocb_next_follower; 2441 rdp_last->nocb_next_follower = NULL; 2442 } 2443 } while (rdp); 2444 rdp_spawn->nocb_next_follower = rdp_old_leader; 2445 } 2446 2447 /* Spawn the kthread for this CPU and RCU flavor. */ 2448 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2449 "rcuo%c/%d", rsp->abbr, cpu); 2450 BUG_ON(IS_ERR(t)); 2451 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t; 2452 } 2453 2454 /* 2455 * If the specified CPU is a no-CBs CPU that does not already have its 2456 * rcuo kthreads, spawn them. 2457 */ 2458 static void rcu_spawn_all_nocb_kthreads(int cpu) 2459 { 2460 struct rcu_state *rsp; 2461 2462 if (rcu_scheduler_fully_active) 2463 for_each_rcu_flavor(rsp) 2464 rcu_spawn_one_nocb_kthread(rsp, cpu); 2465 } 2466 2467 /* 2468 * Once the scheduler is running, spawn rcuo kthreads for all online 2469 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2470 * non-boot CPUs come online -- if this changes, we will need to add 2471 * some mutual exclusion. 2472 */ 2473 static void __init rcu_spawn_nocb_kthreads(void) 2474 { 2475 int cpu; 2476 2477 for_each_online_cpu(cpu) 2478 rcu_spawn_all_nocb_kthreads(cpu); 2479 } 2480 2481 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2482 static int rcu_nocb_leader_stride = -1; 2483 module_param(rcu_nocb_leader_stride, int, 0444); 2484 2485 /* 2486 * Initialize leader-follower relationships for all no-CBs CPU. 2487 */ 2488 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2489 { 2490 int cpu; 2491 int ls = rcu_nocb_leader_stride; 2492 int nl = 0; /* Next leader. */ 2493 struct rcu_data *rdp; 2494 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2495 struct rcu_data *rdp_prev = NULL; 2496 2497 if (!have_rcu_nocb_mask) 2498 return; 2499 if (ls == -1) { 2500 ls = int_sqrt(nr_cpu_ids); 2501 rcu_nocb_leader_stride = ls; 2502 } 2503 2504 /* 2505 * Each pass through this loop sets up one rcu_data structure and 2506 * spawns one rcu_nocb_kthread(). 2507 */ 2508 for_each_cpu(cpu, rcu_nocb_mask) { 2509 rdp = per_cpu_ptr(rsp->rda, cpu); 2510 if (rdp->cpu >= nl) { 2511 /* New leader, set up for followers & next leader. */ 2512 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2513 rdp->nocb_leader = rdp; 2514 rdp_leader = rdp; 2515 } else { 2516 /* Another follower, link to previous leader. */ 2517 rdp->nocb_leader = rdp_leader; 2518 rdp_prev->nocb_next_follower = rdp; 2519 } 2520 rdp_prev = rdp; 2521 } 2522 } 2523 2524 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2525 static bool init_nocb_callback_list(struct rcu_data *rdp) 2526 { 2527 if (!rcu_is_nocb_cpu(rdp->cpu)) 2528 return false; 2529 2530 /* If there are early-boot callbacks, move them to nocb lists. */ 2531 if (rdp->nxtlist) { 2532 rdp->nocb_head = rdp->nxtlist; 2533 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; 2534 atomic_long_set(&rdp->nocb_q_count, rdp->qlen); 2535 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); 2536 rdp->nxtlist = NULL; 2537 rdp->qlen = 0; 2538 rdp->qlen_lazy = 0; 2539 } 2540 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2541 return true; 2542 } 2543 2544 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2545 2546 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2547 { 2548 WARN_ON_ONCE(1); /* Should be dead code. */ 2549 return false; 2550 } 2551 2552 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 2553 { 2554 } 2555 2556 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2557 { 2558 } 2559 2560 static void rcu_init_one_nocb(struct rcu_node *rnp) 2561 { 2562 } 2563 2564 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2565 bool lazy, unsigned long flags) 2566 { 2567 return false; 2568 } 2569 2570 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2571 struct rcu_data *rdp, 2572 unsigned long flags) 2573 { 2574 return false; 2575 } 2576 2577 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2578 { 2579 } 2580 2581 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2582 { 2583 return false; 2584 } 2585 2586 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2587 { 2588 } 2589 2590 static void rcu_spawn_all_nocb_kthreads(int cpu) 2591 { 2592 } 2593 2594 static void __init rcu_spawn_nocb_kthreads(void) 2595 { 2596 } 2597 2598 static bool init_nocb_callback_list(struct rcu_data *rdp) 2599 { 2600 return false; 2601 } 2602 2603 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2604 2605 /* 2606 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2607 * arbitrarily long period of time with the scheduling-clock tick turned 2608 * off. RCU will be paying attention to this CPU because it is in the 2609 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2610 * machine because the scheduling-clock tick has been disabled. Therefore, 2611 * if an adaptive-ticks CPU is failing to respond to the current grace 2612 * period and has not be idle from an RCU perspective, kick it. 2613 */ 2614 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2615 { 2616 #ifdef CONFIG_NO_HZ_FULL 2617 if (tick_nohz_full_cpu(cpu)) 2618 smp_send_reschedule(cpu); 2619 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2620 } 2621 2622 2623 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2624 2625 static int full_sysidle_state; /* Current system-idle state. */ 2626 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2627 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2628 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2629 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2630 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2631 2632 /* 2633 * Invoked to note exit from irq or task transition to idle. Note that 2634 * usermode execution does -not- count as idle here! After all, we want 2635 * to detect full-system idle states, not RCU quiescent states and grace 2636 * periods. The caller must have disabled interrupts. 2637 */ 2638 static void rcu_sysidle_enter(int irq) 2639 { 2640 unsigned long j; 2641 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2642 2643 /* If there are no nohz_full= CPUs, no need to track this. */ 2644 if (!tick_nohz_full_enabled()) 2645 return; 2646 2647 /* Adjust nesting, check for fully idle. */ 2648 if (irq) { 2649 rdtp->dynticks_idle_nesting--; 2650 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2651 if (rdtp->dynticks_idle_nesting != 0) 2652 return; /* Still not fully idle. */ 2653 } else { 2654 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2655 DYNTICK_TASK_NEST_VALUE) { 2656 rdtp->dynticks_idle_nesting = 0; 2657 } else { 2658 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2659 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2660 return; /* Still not fully idle. */ 2661 } 2662 } 2663 2664 /* Record start of fully idle period. */ 2665 j = jiffies; 2666 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j; 2667 smp_mb__before_atomic(); 2668 atomic_inc(&rdtp->dynticks_idle); 2669 smp_mb__after_atomic(); 2670 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2671 } 2672 2673 /* 2674 * Unconditionally force exit from full system-idle state. This is 2675 * invoked when a normal CPU exits idle, but must be called separately 2676 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2677 * is that the timekeeping CPU is permitted to take scheduling-clock 2678 * interrupts while the system is in system-idle state, and of course 2679 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2680 * interrupt from any other type of interrupt. 2681 */ 2682 void rcu_sysidle_force_exit(void) 2683 { 2684 int oldstate = ACCESS_ONCE(full_sysidle_state); 2685 int newoldstate; 2686 2687 /* 2688 * Each pass through the following loop attempts to exit full 2689 * system-idle state. If contention proves to be a problem, 2690 * a trylock-based contention tree could be used here. 2691 */ 2692 while (oldstate > RCU_SYSIDLE_SHORT) { 2693 newoldstate = cmpxchg(&full_sysidle_state, 2694 oldstate, RCU_SYSIDLE_NOT); 2695 if (oldstate == newoldstate && 2696 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2697 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2698 return; /* We cleared it, done! */ 2699 } 2700 oldstate = newoldstate; 2701 } 2702 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2703 } 2704 2705 /* 2706 * Invoked to note entry to irq or task transition from idle. Note that 2707 * usermode execution does -not- count as idle here! The caller must 2708 * have disabled interrupts. 2709 */ 2710 static void rcu_sysidle_exit(int irq) 2711 { 2712 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2713 2714 /* If there are no nohz_full= CPUs, no need to track this. */ 2715 if (!tick_nohz_full_enabled()) 2716 return; 2717 2718 /* Adjust nesting, check for already non-idle. */ 2719 if (irq) { 2720 rdtp->dynticks_idle_nesting++; 2721 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2722 if (rdtp->dynticks_idle_nesting != 1) 2723 return; /* Already non-idle. */ 2724 } else { 2725 /* 2726 * Allow for irq misnesting. Yes, it really is possible 2727 * to enter an irq handler then never leave it, and maybe 2728 * also vice versa. Handle both possibilities. 2729 */ 2730 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2731 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2732 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2733 return; /* Already non-idle. */ 2734 } else { 2735 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2736 } 2737 } 2738 2739 /* Record end of idle period. */ 2740 smp_mb__before_atomic(); 2741 atomic_inc(&rdtp->dynticks_idle); 2742 smp_mb__after_atomic(); 2743 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2744 2745 /* 2746 * If we are the timekeeping CPU, we are permitted to be non-idle 2747 * during a system-idle state. This must be the case, because 2748 * the timekeeping CPU has to take scheduling-clock interrupts 2749 * during the time that the system is transitioning to full 2750 * system-idle state. This means that the timekeeping CPU must 2751 * invoke rcu_sysidle_force_exit() directly if it does anything 2752 * more than take a scheduling-clock interrupt. 2753 */ 2754 if (smp_processor_id() == tick_do_timer_cpu) 2755 return; 2756 2757 /* Update system-idle state: We are clearly no longer fully idle! */ 2758 rcu_sysidle_force_exit(); 2759 } 2760 2761 /* 2762 * Check to see if the current CPU is idle. Note that usermode execution 2763 * does not count as idle. The caller must have disabled interrupts, 2764 * and must be running on tick_do_timer_cpu. 2765 */ 2766 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2767 unsigned long *maxj) 2768 { 2769 int cur; 2770 unsigned long j; 2771 struct rcu_dynticks *rdtp = rdp->dynticks; 2772 2773 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2774 if (!tick_nohz_full_enabled()) 2775 return; 2776 2777 /* 2778 * If some other CPU has already reported non-idle, if this is 2779 * not the flavor of RCU that tracks sysidle state, or if this 2780 * is an offline or the timekeeping CPU, nothing to do. 2781 */ 2782 if (!*isidle || rdp->rsp != rcu_state_p || 2783 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2784 return; 2785 /* Verify affinity of current kthread. */ 2786 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2787 2788 /* Pick up current idle and NMI-nesting counter and check. */ 2789 cur = atomic_read(&rdtp->dynticks_idle); 2790 if (cur & 0x1) { 2791 *isidle = false; /* We are not idle! */ 2792 return; 2793 } 2794 smp_mb(); /* Read counters before timestamps. */ 2795 2796 /* Pick up timestamps. */ 2797 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies); 2798 /* If this CPU entered idle more recently, update maxj timestamp. */ 2799 if (ULONG_CMP_LT(*maxj, j)) 2800 *maxj = j; 2801 } 2802 2803 /* 2804 * Is this the flavor of RCU that is handling full-system idle? 2805 */ 2806 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2807 { 2808 return rsp == rcu_state_p; 2809 } 2810 2811 /* 2812 * Return a delay in jiffies based on the number of CPUs, rcu_node 2813 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2814 * systems more time to transition to full-idle state in order to 2815 * avoid the cache thrashing that otherwise occur on the state variable. 2816 * Really small systems (less than a couple of tens of CPUs) should 2817 * instead use a single global atomically incremented counter, and later 2818 * versions of this will automatically reconfigure themselves accordingly. 2819 */ 2820 static unsigned long rcu_sysidle_delay(void) 2821 { 2822 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2823 return 0; 2824 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2825 } 2826 2827 /* 2828 * Advance the full-system-idle state. This is invoked when all of 2829 * the non-timekeeping CPUs are idle. 2830 */ 2831 static void rcu_sysidle(unsigned long j) 2832 { 2833 /* Check the current state. */ 2834 switch (ACCESS_ONCE(full_sysidle_state)) { 2835 case RCU_SYSIDLE_NOT: 2836 2837 /* First time all are idle, so note a short idle period. */ 2838 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT; 2839 break; 2840 2841 case RCU_SYSIDLE_SHORT: 2842 2843 /* 2844 * Idle for a bit, time to advance to next state? 2845 * cmpxchg failure means race with non-idle, let them win. 2846 */ 2847 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2848 (void)cmpxchg(&full_sysidle_state, 2849 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2850 break; 2851 2852 case RCU_SYSIDLE_LONG: 2853 2854 /* 2855 * Do an additional check pass before advancing to full. 2856 * cmpxchg failure means race with non-idle, let them win. 2857 */ 2858 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2859 (void)cmpxchg(&full_sysidle_state, 2860 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2861 break; 2862 2863 default: 2864 break; 2865 } 2866 } 2867 2868 /* 2869 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2870 * back to the beginning. 2871 */ 2872 static void rcu_sysidle_cancel(void) 2873 { 2874 smp_mb(); 2875 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2876 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT; 2877 } 2878 2879 /* 2880 * Update the sysidle state based on the results of a force-quiescent-state 2881 * scan of the CPUs' dyntick-idle state. 2882 */ 2883 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2884 unsigned long maxj, bool gpkt) 2885 { 2886 if (rsp != rcu_state_p) 2887 return; /* Wrong flavor, ignore. */ 2888 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2889 return; /* Running state machine from timekeeping CPU. */ 2890 if (isidle) 2891 rcu_sysidle(maxj); /* More idle! */ 2892 else 2893 rcu_sysidle_cancel(); /* Idle is over. */ 2894 } 2895 2896 /* 2897 * Wrapper for rcu_sysidle_report() when called from the grace-period 2898 * kthread's context. 2899 */ 2900 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2901 unsigned long maxj) 2902 { 2903 /* If there are no nohz_full= CPUs, no need to track this. */ 2904 if (!tick_nohz_full_enabled()) 2905 return; 2906 2907 rcu_sysidle_report(rsp, isidle, maxj, true); 2908 } 2909 2910 /* Callback and function for forcing an RCU grace period. */ 2911 struct rcu_sysidle_head { 2912 struct rcu_head rh; 2913 int inuse; 2914 }; 2915 2916 static void rcu_sysidle_cb(struct rcu_head *rhp) 2917 { 2918 struct rcu_sysidle_head *rshp; 2919 2920 /* 2921 * The following memory barrier is needed to replace the 2922 * memory barriers that would normally be in the memory 2923 * allocator. 2924 */ 2925 smp_mb(); /* grace period precedes setting inuse. */ 2926 2927 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2928 ACCESS_ONCE(rshp->inuse) = 0; 2929 } 2930 2931 /* 2932 * Check to see if the system is fully idle, other than the timekeeping CPU. 2933 * The caller must have disabled interrupts. This is not intended to be 2934 * called unless tick_nohz_full_enabled(). 2935 */ 2936 bool rcu_sys_is_idle(void) 2937 { 2938 static struct rcu_sysidle_head rsh; 2939 int rss = ACCESS_ONCE(full_sysidle_state); 2940 2941 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2942 return false; 2943 2944 /* Handle small-system case by doing a full scan of CPUs. */ 2945 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2946 int oldrss = rss - 1; 2947 2948 /* 2949 * One pass to advance to each state up to _FULL. 2950 * Give up if any pass fails to advance the state. 2951 */ 2952 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2953 int cpu; 2954 bool isidle = true; 2955 unsigned long maxj = jiffies - ULONG_MAX / 4; 2956 struct rcu_data *rdp; 2957 2958 /* Scan all the CPUs looking for nonidle CPUs. */ 2959 for_each_possible_cpu(cpu) { 2960 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2961 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2962 if (!isidle) 2963 break; 2964 } 2965 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2966 oldrss = rss; 2967 rss = ACCESS_ONCE(full_sysidle_state); 2968 } 2969 } 2970 2971 /* If this is the first observation of an idle period, record it. */ 2972 if (rss == RCU_SYSIDLE_FULL) { 2973 rss = cmpxchg(&full_sysidle_state, 2974 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2975 return rss == RCU_SYSIDLE_FULL; 2976 } 2977 2978 smp_mb(); /* ensure rss load happens before later caller actions. */ 2979 2980 /* If already fully idle, tell the caller (in case of races). */ 2981 if (rss == RCU_SYSIDLE_FULL_NOTED) 2982 return true; 2983 2984 /* 2985 * If we aren't there yet, and a grace period is not in flight, 2986 * initiate a grace period. Either way, tell the caller that 2987 * we are not there yet. We use an xchg() rather than an assignment 2988 * to make up for the memory barriers that would otherwise be 2989 * provided by the memory allocator. 2990 */ 2991 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2992 !rcu_gp_in_progress(rcu_state_p) && 2993 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2994 call_rcu(&rsh.rh, rcu_sysidle_cb); 2995 return false; 2996 } 2997 2998 /* 2999 * Initialize dynticks sysidle state for CPUs coming online. 3000 */ 3001 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 3002 { 3003 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 3004 } 3005 3006 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3007 3008 static void rcu_sysidle_enter(int irq) 3009 { 3010 } 3011 3012 static void rcu_sysidle_exit(int irq) 3013 { 3014 } 3015 3016 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 3017 unsigned long *maxj) 3018 { 3019 } 3020 3021 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 3022 { 3023 return false; 3024 } 3025 3026 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 3027 unsigned long maxj) 3028 { 3029 } 3030 3031 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 3032 { 3033 } 3034 3035 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3036 3037 /* 3038 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 3039 * grace-period kthread will do force_quiescent_state() processing? 3040 * The idea is to avoid waking up RCU core processing on such a 3041 * CPU unless the grace period has extended for too long. 3042 * 3043 * This code relies on the fact that all NO_HZ_FULL CPUs are also 3044 * CONFIG_RCU_NOCB_CPU CPUs. 3045 */ 3046 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 3047 { 3048 #ifdef CONFIG_NO_HZ_FULL 3049 if (tick_nohz_full_cpu(smp_processor_id()) && 3050 (!rcu_gp_in_progress(rsp) || 3051 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ))) 3052 return 1; 3053 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 3054 return 0; 3055 } 3056 3057 /* 3058 * Bind the grace-period kthread for the sysidle flavor of RCU to the 3059 * timekeeping CPU. 3060 */ 3061 static void rcu_bind_gp_kthread(void) 3062 { 3063 int __maybe_unused cpu; 3064 3065 if (!tick_nohz_full_enabled()) 3066 return; 3067 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 3068 cpu = tick_do_timer_cpu; 3069 if (cpu >= 0 && cpu < nr_cpu_ids) 3070 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 3071 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3072 housekeeping_affine(current); 3073 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3074 } 3075 3076 /* Record the current task on dyntick-idle entry. */ 3077 static void rcu_dynticks_task_enter(void) 3078 { 3079 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3080 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id(); 3081 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3082 } 3083 3084 /* Record no current task on dyntick-idle exit. */ 3085 static void rcu_dynticks_task_exit(void) 3086 { 3087 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3088 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1; 3089 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3090 } 3091