1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 20 21 /* 22 * Check the RCU kernel configuration parameters and print informative 23 * messages about anything out of the ordinary. 24 */ 25 static void __init rcu_bootup_announce_oddness(void) 26 { 27 if (IS_ENABLED(CONFIG_RCU_TRACE)) 28 pr_info("\tRCU event tracing is enabled.\n"); 29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 32 RCU_FANOUT); 33 if (rcu_fanout_exact) 34 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 37 if (IS_ENABLED(CONFIG_PROVE_RCU)) 38 pr_info("\tRCU lockdep checking is enabled.\n"); 39 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 40 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n"); 41 if (RCU_NUM_LVLS >= 4) 42 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 43 if (RCU_FANOUT_LEAF != 16) 44 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 45 RCU_FANOUT_LEAF); 46 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 47 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 48 rcu_fanout_leaf); 49 if (nr_cpu_ids != NR_CPUS) 50 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 51 #ifdef CONFIG_RCU_BOOST 52 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 53 kthread_prio, CONFIG_RCU_BOOST_DELAY); 54 #endif 55 if (blimit != DEFAULT_RCU_BLIMIT) 56 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 57 if (qhimark != DEFAULT_RCU_QHIMARK) 58 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 59 if (qlowmark != DEFAULT_RCU_QLOMARK) 60 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 61 if (qovld != DEFAULT_RCU_QOVLD) 62 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 63 if (jiffies_till_first_fqs != ULONG_MAX) 64 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 65 if (jiffies_till_next_fqs != ULONG_MAX) 66 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 67 if (jiffies_till_sched_qs != ULONG_MAX) 68 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 69 if (rcu_kick_kthreads) 70 pr_info("\tKick kthreads if too-long grace period.\n"); 71 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 72 pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); 73 if (gp_preinit_delay) 74 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 75 if (gp_init_delay) 76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 77 if (gp_cleanup_delay) 78 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); 79 if (!use_softirq) 80 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 81 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 82 pr_info("\tRCU debug extended QS entry/exit.\n"); 83 rcupdate_announce_bootup_oddness(); 84 } 85 86 #ifdef CONFIG_PREEMPT_RCU 87 88 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 89 static void rcu_read_unlock_special(struct task_struct *t); 90 91 /* 92 * Tell them what RCU they are running. 93 */ 94 static void __init rcu_bootup_announce(void) 95 { 96 pr_info("Preemptible hierarchical RCU implementation.\n"); 97 rcu_bootup_announce_oddness(); 98 } 99 100 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 101 #define RCU_GP_TASKS 0x8 102 #define RCU_EXP_TASKS 0x4 103 #define RCU_GP_BLKD 0x2 104 #define RCU_EXP_BLKD 0x1 105 106 /* 107 * Queues a task preempted within an RCU-preempt read-side critical 108 * section into the appropriate location within the ->blkd_tasks list, 109 * depending on the states of any ongoing normal and expedited grace 110 * periods. The ->gp_tasks pointer indicates which element the normal 111 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 112 * indicates which element the expedited grace period is waiting on (again, 113 * NULL if none). If a grace period is waiting on a given element in the 114 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 115 * adding a task to the tail of the list blocks any grace period that is 116 * already waiting on one of the elements. In contrast, adding a task 117 * to the head of the list won't block any grace period that is already 118 * waiting on one of the elements. 119 * 120 * This queuing is imprecise, and can sometimes make an ongoing grace 121 * period wait for a task that is not strictly speaking blocking it. 122 * Given the choice, we needlessly block a normal grace period rather than 123 * blocking an expedited grace period. 124 * 125 * Note that an endless sequence of expedited grace periods still cannot 126 * indefinitely postpone a normal grace period. Eventually, all of the 127 * fixed number of preempted tasks blocking the normal grace period that are 128 * not also blocking the expedited grace period will resume and complete 129 * their RCU read-side critical sections. At that point, the ->gp_tasks 130 * pointer will equal the ->exp_tasks pointer, at which point the end of 131 * the corresponding expedited grace period will also be the end of the 132 * normal grace period. 133 */ 134 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 135 __releases(rnp->lock) /* But leaves rrupts disabled. */ 136 { 137 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 138 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 139 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 140 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 141 struct task_struct *t = current; 142 143 raw_lockdep_assert_held_rcu_node(rnp); 144 WARN_ON_ONCE(rdp->mynode != rnp); 145 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 146 /* RCU better not be waiting on newly onlined CPUs! */ 147 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 148 rdp->grpmask); 149 150 /* 151 * Decide where to queue the newly blocked task. In theory, 152 * this could be an if-statement. In practice, when I tried 153 * that, it was quite messy. 154 */ 155 switch (blkd_state) { 156 case 0: 157 case RCU_EXP_TASKS: 158 case RCU_EXP_TASKS + RCU_GP_BLKD: 159 case RCU_GP_TASKS: 160 case RCU_GP_TASKS + RCU_EXP_TASKS: 161 162 /* 163 * Blocking neither GP, or first task blocking the normal 164 * GP but not blocking the already-waiting expedited GP. 165 * Queue at the head of the list to avoid unnecessarily 166 * blocking the already-waiting GPs. 167 */ 168 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 169 break; 170 171 case RCU_EXP_BLKD: 172 case RCU_GP_BLKD: 173 case RCU_GP_BLKD + RCU_EXP_BLKD: 174 case RCU_GP_TASKS + RCU_EXP_BLKD: 175 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 176 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 177 178 /* 179 * First task arriving that blocks either GP, or first task 180 * arriving that blocks the expedited GP (with the normal 181 * GP already waiting), or a task arriving that blocks 182 * both GPs with both GPs already waiting. Queue at the 183 * tail of the list to avoid any GP waiting on any of the 184 * already queued tasks that are not blocking it. 185 */ 186 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 187 break; 188 189 case RCU_EXP_TASKS + RCU_EXP_BLKD: 190 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 191 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 192 193 /* 194 * Second or subsequent task blocking the expedited GP. 195 * The task either does not block the normal GP, or is the 196 * first task blocking the normal GP. Queue just after 197 * the first task blocking the expedited GP. 198 */ 199 list_add(&t->rcu_node_entry, rnp->exp_tasks); 200 break; 201 202 case RCU_GP_TASKS + RCU_GP_BLKD: 203 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 204 205 /* 206 * Second or subsequent task blocking the normal GP. 207 * The task does not block the expedited GP. Queue just 208 * after the first task blocking the normal GP. 209 */ 210 list_add(&t->rcu_node_entry, rnp->gp_tasks); 211 break; 212 213 default: 214 215 /* Yet another exercise in excessive paranoia. */ 216 WARN_ON_ONCE(1); 217 break; 218 } 219 220 /* 221 * We have now queued the task. If it was the first one to 222 * block either grace period, update the ->gp_tasks and/or 223 * ->exp_tasks pointers, respectively, to reference the newly 224 * blocked tasks. 225 */ 226 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 227 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 228 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 229 } 230 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 231 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 232 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 233 !(rnp->qsmask & rdp->grpmask)); 234 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 235 !(rnp->expmask & rdp->grpmask)); 236 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 237 238 /* 239 * Report the quiescent state for the expedited GP. This expedited 240 * GP should not be able to end until we report, so there should be 241 * no need to check for a subsequent expedited GP. (Though we are 242 * still in a quiescent state in any case.) 243 */ 244 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) 245 rcu_report_exp_rdp(rdp); 246 else 247 WARN_ON_ONCE(rdp->exp_deferred_qs); 248 } 249 250 /* 251 * Record a preemptible-RCU quiescent state for the specified CPU. 252 * Note that this does not necessarily mean that the task currently running 253 * on the CPU is in a quiescent state: Instead, it means that the current 254 * grace period need not wait on any RCU read-side critical section that 255 * starts later on this CPU. It also means that if the current task is 256 * in an RCU read-side critical section, it has already added itself to 257 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 258 * current task, there might be any number of other tasks blocked while 259 * in an RCU read-side critical section. 260 * 261 * Callers to this function must disable preemption. 262 */ 263 static void rcu_qs(void) 264 { 265 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 266 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { 267 trace_rcu_grace_period(TPS("rcu_preempt"), 268 __this_cpu_read(rcu_data.gp_seq), 269 TPS("cpuqs")); 270 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 271 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 272 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 273 } 274 } 275 276 /* 277 * We have entered the scheduler, and the current task might soon be 278 * context-switched away from. If this task is in an RCU read-side 279 * critical section, we will no longer be able to rely on the CPU to 280 * record that fact, so we enqueue the task on the blkd_tasks list. 281 * The task will dequeue itself when it exits the outermost enclosing 282 * RCU read-side critical section. Therefore, the current grace period 283 * cannot be permitted to complete until the blkd_tasks list entries 284 * predating the current grace period drain, in other words, until 285 * rnp->gp_tasks becomes NULL. 286 * 287 * Caller must disable interrupts. 288 */ 289 void rcu_note_context_switch(bool preempt) 290 { 291 struct task_struct *t = current; 292 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 293 struct rcu_node *rnp; 294 295 trace_rcu_utilization(TPS("Start context switch")); 296 lockdep_assert_irqs_disabled(); 297 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0); 298 if (rcu_preempt_depth() > 0 && 299 !t->rcu_read_unlock_special.b.blocked) { 300 301 /* Possibly blocking in an RCU read-side critical section. */ 302 rnp = rdp->mynode; 303 raw_spin_lock_rcu_node(rnp); 304 t->rcu_read_unlock_special.b.blocked = true; 305 t->rcu_blocked_node = rnp; 306 307 /* 308 * Verify the CPU's sanity, trace the preemption, and 309 * then queue the task as required based on the states 310 * of any ongoing and expedited grace periods. 311 */ 312 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 313 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 314 trace_rcu_preempt_task(rcu_state.name, 315 t->pid, 316 (rnp->qsmask & rdp->grpmask) 317 ? rnp->gp_seq 318 : rcu_seq_snap(&rnp->gp_seq)); 319 rcu_preempt_ctxt_queue(rnp, rdp); 320 } else { 321 rcu_preempt_deferred_qs(t); 322 } 323 324 /* 325 * Either we were not in an RCU read-side critical section to 326 * begin with, or we have now recorded that critical section 327 * globally. Either way, we can now note a quiescent state 328 * for this CPU. Again, if we were in an RCU read-side critical 329 * section, and if that critical section was blocking the current 330 * grace period, then the fact that the task has been enqueued 331 * means that we continue to block the current grace period. 332 */ 333 rcu_qs(); 334 if (rdp->exp_deferred_qs) 335 rcu_report_exp_rdp(rdp); 336 rcu_tasks_qs(current, preempt); 337 trace_rcu_utilization(TPS("End context switch")); 338 } 339 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 340 341 /* 342 * Check for preempted RCU readers blocking the current grace period 343 * for the specified rcu_node structure. If the caller needs a reliable 344 * answer, it must hold the rcu_node's ->lock. 345 */ 346 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 347 { 348 return READ_ONCE(rnp->gp_tasks) != NULL; 349 } 350 351 /* limit value for ->rcu_read_lock_nesting. */ 352 #define RCU_NEST_PMAX (INT_MAX / 2) 353 354 static void rcu_preempt_read_enter(void) 355 { 356 current->rcu_read_lock_nesting++; 357 } 358 359 static int rcu_preempt_read_exit(void) 360 { 361 return --current->rcu_read_lock_nesting; 362 } 363 364 static void rcu_preempt_depth_set(int val) 365 { 366 current->rcu_read_lock_nesting = val; 367 } 368 369 /* 370 * Preemptible RCU implementation for rcu_read_lock(). 371 * Just increment ->rcu_read_lock_nesting, shared state will be updated 372 * if we block. 373 */ 374 void __rcu_read_lock(void) 375 { 376 rcu_preempt_read_enter(); 377 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 378 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 379 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) 380 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); 381 barrier(); /* critical section after entry code. */ 382 } 383 EXPORT_SYMBOL_GPL(__rcu_read_lock); 384 385 /* 386 * Preemptible RCU implementation for rcu_read_unlock(). 387 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 388 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 389 * invoke rcu_read_unlock_special() to clean up after a context switch 390 * in an RCU read-side critical section and other special cases. 391 */ 392 void __rcu_read_unlock(void) 393 { 394 struct task_struct *t = current; 395 396 if (rcu_preempt_read_exit() == 0) { 397 barrier(); /* critical section before exit code. */ 398 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 399 rcu_read_unlock_special(t); 400 } 401 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 402 int rrln = rcu_preempt_depth(); 403 404 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 405 } 406 } 407 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 408 409 /* 410 * Advance a ->blkd_tasks-list pointer to the next entry, instead 411 * returning NULL if at the end of the list. 412 */ 413 static struct list_head *rcu_next_node_entry(struct task_struct *t, 414 struct rcu_node *rnp) 415 { 416 struct list_head *np; 417 418 np = t->rcu_node_entry.next; 419 if (np == &rnp->blkd_tasks) 420 np = NULL; 421 return np; 422 } 423 424 /* 425 * Return true if the specified rcu_node structure has tasks that were 426 * preempted within an RCU read-side critical section. 427 */ 428 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 429 { 430 return !list_empty(&rnp->blkd_tasks); 431 } 432 433 /* 434 * Report deferred quiescent states. The deferral time can 435 * be quite short, for example, in the case of the call from 436 * rcu_read_unlock_special(). 437 */ 438 static void 439 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 440 { 441 bool empty_exp; 442 bool empty_norm; 443 bool empty_exp_now; 444 struct list_head *np; 445 bool drop_boost_mutex = false; 446 struct rcu_data *rdp; 447 struct rcu_node *rnp; 448 union rcu_special special; 449 450 /* 451 * If RCU core is waiting for this CPU to exit its critical section, 452 * report the fact that it has exited. Because irqs are disabled, 453 * t->rcu_read_unlock_special cannot change. 454 */ 455 special = t->rcu_read_unlock_special; 456 rdp = this_cpu_ptr(&rcu_data); 457 if (!special.s && !rdp->exp_deferred_qs) { 458 local_irq_restore(flags); 459 return; 460 } 461 t->rcu_read_unlock_special.s = 0; 462 if (special.b.need_qs) { 463 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 464 rcu_report_qs_rdp(rdp); 465 udelay(rcu_unlock_delay); 466 } else { 467 rcu_qs(); 468 } 469 } 470 471 /* 472 * Respond to a request by an expedited grace period for a 473 * quiescent state from this CPU. Note that requests from 474 * tasks are handled when removing the task from the 475 * blocked-tasks list below. 476 */ 477 if (rdp->exp_deferred_qs) 478 rcu_report_exp_rdp(rdp); 479 480 /* Clean up if blocked during RCU read-side critical section. */ 481 if (special.b.blocked) { 482 483 /* 484 * Remove this task from the list it blocked on. The task 485 * now remains queued on the rcu_node corresponding to the 486 * CPU it first blocked on, so there is no longer any need 487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 488 */ 489 rnp = t->rcu_blocked_node; 490 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 491 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 492 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 493 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 494 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 495 (!empty_norm || rnp->qsmask)); 496 empty_exp = sync_rcu_exp_done(rnp); 497 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 498 np = rcu_next_node_entry(t, rnp); 499 list_del_init(&t->rcu_node_entry); 500 t->rcu_blocked_node = NULL; 501 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 502 rnp->gp_seq, t->pid); 503 if (&t->rcu_node_entry == rnp->gp_tasks) 504 WRITE_ONCE(rnp->gp_tasks, np); 505 if (&t->rcu_node_entry == rnp->exp_tasks) 506 WRITE_ONCE(rnp->exp_tasks, np); 507 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 508 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 509 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 510 if (&t->rcu_node_entry == rnp->boost_tasks) 511 WRITE_ONCE(rnp->boost_tasks, np); 512 } 513 514 /* 515 * If this was the last task on the current list, and if 516 * we aren't waiting on any CPUs, report the quiescent state. 517 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 518 * so we must take a snapshot of the expedited state. 519 */ 520 empty_exp_now = sync_rcu_exp_done(rnp); 521 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 522 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 523 rnp->gp_seq, 524 0, rnp->qsmask, 525 rnp->level, 526 rnp->grplo, 527 rnp->grphi, 528 !!rnp->gp_tasks); 529 rcu_report_unblock_qs_rnp(rnp, flags); 530 } else { 531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 532 } 533 534 /* Unboost if we were boosted. */ 535 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 536 rt_mutex_futex_unlock(&rnp->boost_mtx); 537 538 /* 539 * If this was the last task on the expedited lists, 540 * then we need to report up the rcu_node hierarchy. 541 */ 542 if (!empty_exp && empty_exp_now) 543 rcu_report_exp_rnp(rnp, true); 544 } else { 545 local_irq_restore(flags); 546 } 547 } 548 549 /* 550 * Is a deferred quiescent-state pending, and are we also not in 551 * an RCU read-side critical section? It is the caller's responsibility 552 * to ensure it is otherwise safe to report any deferred quiescent 553 * states. The reason for this is that it is safe to report a 554 * quiescent state during context switch even though preemption 555 * is disabled. This function cannot be expected to understand these 556 * nuances, so the caller must handle them. 557 */ 558 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 559 { 560 return (__this_cpu_read(rcu_data.exp_deferred_qs) || 561 READ_ONCE(t->rcu_read_unlock_special.s)) && 562 rcu_preempt_depth() == 0; 563 } 564 565 /* 566 * Report a deferred quiescent state if needed and safe to do so. 567 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 568 * not being in an RCU read-side critical section. The caller must 569 * evaluate safety in terms of interrupt, softirq, and preemption 570 * disabling. 571 */ 572 static void rcu_preempt_deferred_qs(struct task_struct *t) 573 { 574 unsigned long flags; 575 576 if (!rcu_preempt_need_deferred_qs(t)) 577 return; 578 local_irq_save(flags); 579 rcu_preempt_deferred_qs_irqrestore(t, flags); 580 } 581 582 /* 583 * Minimal handler to give the scheduler a chance to re-evaluate. 584 */ 585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 586 { 587 struct rcu_data *rdp; 588 589 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 590 rdp->defer_qs_iw_pending = false; 591 } 592 593 /* 594 * Handle special cases during rcu_read_unlock(), such as needing to 595 * notify RCU core processing or task having blocked during the RCU 596 * read-side critical section. 597 */ 598 static void rcu_read_unlock_special(struct task_struct *t) 599 { 600 unsigned long flags; 601 bool preempt_bh_were_disabled = 602 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 603 bool irqs_were_disabled; 604 605 /* NMI handlers cannot block and cannot safely manipulate state. */ 606 if (in_nmi()) 607 return; 608 609 local_irq_save(flags); 610 irqs_were_disabled = irqs_disabled_flags(flags); 611 if (preempt_bh_were_disabled || irqs_were_disabled) { 612 bool exp; 613 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 614 struct rcu_node *rnp = rdp->mynode; 615 616 exp = (t->rcu_blocked_node && 617 READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 618 (rdp->grpmask & READ_ONCE(rnp->expmask)); 619 // Need to defer quiescent state until everything is enabled. 620 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) { 621 // Using softirq, safe to awaken, and either the 622 // wakeup is free or there is an expedited GP. 623 raise_softirq_irqoff(RCU_SOFTIRQ); 624 } else { 625 // Enabling BH or preempt does reschedule, so... 626 // Also if no expediting, slow is OK. 627 // Plus nohz_full CPUs eventually get tick enabled. 628 set_tsk_need_resched(current); 629 set_preempt_need_resched(); 630 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 631 !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) { 632 // Get scheduler to re-evaluate and call hooks. 633 // If !IRQ_WORK, FQS scan will eventually IPI. 634 init_irq_work(&rdp->defer_qs_iw, 635 rcu_preempt_deferred_qs_handler); 636 rdp->defer_qs_iw_pending = true; 637 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 638 } 639 } 640 local_irq_restore(flags); 641 return; 642 } 643 rcu_preempt_deferred_qs_irqrestore(t, flags); 644 } 645 646 /* 647 * Check that the list of blocked tasks for the newly completed grace 648 * period is in fact empty. It is a serious bug to complete a grace 649 * period that still has RCU readers blocked! This function must be 650 * invoked -before- updating this rnp's ->gp_seq. 651 * 652 * Also, if there are blocked tasks on the list, they automatically 653 * block the newly created grace period, so set up ->gp_tasks accordingly. 654 */ 655 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 656 { 657 struct task_struct *t; 658 659 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 660 raw_lockdep_assert_held_rcu_node(rnp); 661 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 662 dump_blkd_tasks(rnp, 10); 663 if (rcu_preempt_has_tasks(rnp) && 664 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 665 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 666 t = container_of(rnp->gp_tasks, struct task_struct, 667 rcu_node_entry); 668 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 669 rnp->gp_seq, t->pid); 670 } 671 WARN_ON_ONCE(rnp->qsmask); 672 } 673 674 /* 675 * Check for a quiescent state from the current CPU, including voluntary 676 * context switches for Tasks RCU. When a task blocks, the task is 677 * recorded in the corresponding CPU's rcu_node structure, which is checked 678 * elsewhere, hence this function need only check for quiescent states 679 * related to the current CPU, not to those related to tasks. 680 */ 681 static void rcu_flavor_sched_clock_irq(int user) 682 { 683 struct task_struct *t = current; 684 685 lockdep_assert_irqs_disabled(); 686 if (user || rcu_is_cpu_rrupt_from_idle()) { 687 rcu_note_voluntary_context_switch(current); 688 } 689 if (rcu_preempt_depth() > 0 || 690 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 691 /* No QS, force context switch if deferred. */ 692 if (rcu_preempt_need_deferred_qs(t)) { 693 set_tsk_need_resched(t); 694 set_preempt_need_resched(); 695 } 696 } else if (rcu_preempt_need_deferred_qs(t)) { 697 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 698 return; 699 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 700 rcu_qs(); /* Report immediate QS. */ 701 return; 702 } 703 704 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 705 if (rcu_preempt_depth() > 0 && 706 __this_cpu_read(rcu_data.core_needs_qs) && 707 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 708 !t->rcu_read_unlock_special.b.need_qs && 709 time_after(jiffies, rcu_state.gp_start + HZ)) 710 t->rcu_read_unlock_special.b.need_qs = true; 711 } 712 713 /* 714 * Check for a task exiting while in a preemptible-RCU read-side 715 * critical section, clean up if so. No need to issue warnings, as 716 * debug_check_no_locks_held() already does this if lockdep is enabled. 717 * Besides, if this function does anything other than just immediately 718 * return, there was a bug of some sort. Spewing warnings from this 719 * function is like as not to simply obscure important prior warnings. 720 */ 721 void exit_rcu(void) 722 { 723 struct task_struct *t = current; 724 725 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 726 rcu_preempt_depth_set(1); 727 barrier(); 728 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 729 } else if (unlikely(rcu_preempt_depth())) { 730 rcu_preempt_depth_set(1); 731 } else { 732 return; 733 } 734 __rcu_read_unlock(); 735 rcu_preempt_deferred_qs(current); 736 } 737 738 /* 739 * Dump the blocked-tasks state, but limit the list dump to the 740 * specified number of elements. 741 */ 742 static void 743 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 744 { 745 int cpu; 746 int i; 747 struct list_head *lhp; 748 bool onl; 749 struct rcu_data *rdp; 750 struct rcu_node *rnp1; 751 752 raw_lockdep_assert_held_rcu_node(rnp); 753 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 754 __func__, rnp->grplo, rnp->grphi, rnp->level, 755 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 756 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 757 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 758 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 759 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 760 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 761 READ_ONCE(rnp->exp_tasks)); 762 pr_info("%s: ->blkd_tasks", __func__); 763 i = 0; 764 list_for_each(lhp, &rnp->blkd_tasks) { 765 pr_cont(" %p", lhp); 766 if (++i >= ncheck) 767 break; 768 } 769 pr_cont("\n"); 770 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 771 rdp = per_cpu_ptr(&rcu_data, cpu); 772 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 773 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 774 cpu, ".o"[onl], 775 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 776 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 777 } 778 } 779 780 #else /* #ifdef CONFIG_PREEMPT_RCU */ 781 782 /* 783 * If strict grace periods are enabled, and if the calling 784 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately 785 * report that quiescent state and, if requested, spin for a bit. 786 */ 787 void rcu_read_unlock_strict(void) 788 { 789 struct rcu_data *rdp; 790 791 if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) || 792 irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) 793 return; 794 rdp = this_cpu_ptr(&rcu_data); 795 rcu_report_qs_rdp(rdp); 796 udelay(rcu_unlock_delay); 797 } 798 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); 799 800 /* 801 * Tell them what RCU they are running. 802 */ 803 static void __init rcu_bootup_announce(void) 804 { 805 pr_info("Hierarchical RCU implementation.\n"); 806 rcu_bootup_announce_oddness(); 807 } 808 809 /* 810 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 811 * how many quiescent states passed, just if there was at least one since 812 * the start of the grace period, this just sets a flag. The caller must 813 * have disabled preemption. 814 */ 815 static void rcu_qs(void) 816 { 817 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 818 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 819 return; 820 trace_rcu_grace_period(TPS("rcu_sched"), 821 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 822 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 823 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 824 return; 825 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); 826 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 827 } 828 829 /* 830 * Register an urgently needed quiescent state. If there is an 831 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 832 * dyntick-idle quiescent state visible to other CPUs, which will in 833 * some cases serve for expedited as well as normal grace periods. 834 * Either way, register a lightweight quiescent state. 835 */ 836 void rcu_all_qs(void) 837 { 838 unsigned long flags; 839 840 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 841 return; 842 preempt_disable(); 843 /* Load rcu_urgent_qs before other flags. */ 844 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 845 preempt_enable(); 846 return; 847 } 848 this_cpu_write(rcu_data.rcu_urgent_qs, false); 849 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 850 local_irq_save(flags); 851 rcu_momentary_dyntick_idle(); 852 local_irq_restore(flags); 853 } 854 rcu_qs(); 855 preempt_enable(); 856 } 857 EXPORT_SYMBOL_GPL(rcu_all_qs); 858 859 /* 860 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 861 */ 862 void rcu_note_context_switch(bool preempt) 863 { 864 trace_rcu_utilization(TPS("Start context switch")); 865 rcu_qs(); 866 /* Load rcu_urgent_qs before other flags. */ 867 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 868 goto out; 869 this_cpu_write(rcu_data.rcu_urgent_qs, false); 870 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 871 rcu_momentary_dyntick_idle(); 872 rcu_tasks_qs(current, preempt); 873 out: 874 trace_rcu_utilization(TPS("End context switch")); 875 } 876 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 877 878 /* 879 * Because preemptible RCU does not exist, there are never any preempted 880 * RCU readers. 881 */ 882 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 883 { 884 return 0; 885 } 886 887 /* 888 * Because there is no preemptible RCU, there can be no readers blocked. 889 */ 890 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 891 { 892 return false; 893 } 894 895 /* 896 * Because there is no preemptible RCU, there can be no deferred quiescent 897 * states. 898 */ 899 static bool rcu_preempt_need_deferred_qs(struct task_struct *t) 900 { 901 return false; 902 } 903 static void rcu_preempt_deferred_qs(struct task_struct *t) { } 904 905 /* 906 * Because there is no preemptible RCU, there can be no readers blocked, 907 * so there is no need to check for blocked tasks. So check only for 908 * bogus qsmask values. 909 */ 910 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 911 { 912 WARN_ON_ONCE(rnp->qsmask); 913 } 914 915 /* 916 * Check to see if this CPU is in a non-context-switch quiescent state, 917 * namely user mode and idle loop. 918 */ 919 static void rcu_flavor_sched_clock_irq(int user) 920 { 921 if (user || rcu_is_cpu_rrupt_from_idle()) { 922 923 /* 924 * Get here if this CPU took its interrupt from user 925 * mode or from the idle loop, and if this is not a 926 * nested interrupt. In this case, the CPU is in 927 * a quiescent state, so note it. 928 * 929 * No memory barrier is required here because rcu_qs() 930 * references only CPU-local variables that other CPUs 931 * neither access nor modify, at least not while the 932 * corresponding CPU is online. 933 */ 934 935 rcu_qs(); 936 } 937 } 938 939 /* 940 * Because preemptible RCU does not exist, tasks cannot possibly exit 941 * while in preemptible RCU read-side critical sections. 942 */ 943 void exit_rcu(void) 944 { 945 } 946 947 /* 948 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 949 */ 950 static void 951 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 952 { 953 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 954 } 955 956 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 957 958 /* 959 * If boosting, set rcuc kthreads to realtime priority. 960 */ 961 static void rcu_cpu_kthread_setup(unsigned int cpu) 962 { 963 #ifdef CONFIG_RCU_BOOST 964 struct sched_param sp; 965 966 sp.sched_priority = kthread_prio; 967 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 968 #endif /* #ifdef CONFIG_RCU_BOOST */ 969 } 970 971 #ifdef CONFIG_RCU_BOOST 972 973 /* 974 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 975 * or ->boost_tasks, advancing the pointer to the next task in the 976 * ->blkd_tasks list. 977 * 978 * Note that irqs must be enabled: boosting the task can block. 979 * Returns 1 if there are more tasks needing to be boosted. 980 */ 981 static int rcu_boost(struct rcu_node *rnp) 982 { 983 unsigned long flags; 984 struct task_struct *t; 985 struct list_head *tb; 986 987 if (READ_ONCE(rnp->exp_tasks) == NULL && 988 READ_ONCE(rnp->boost_tasks) == NULL) 989 return 0; /* Nothing left to boost. */ 990 991 raw_spin_lock_irqsave_rcu_node(rnp, flags); 992 993 /* 994 * Recheck under the lock: all tasks in need of boosting 995 * might exit their RCU read-side critical sections on their own. 996 */ 997 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 998 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 999 return 0; 1000 } 1001 1002 /* 1003 * Preferentially boost tasks blocking expedited grace periods. 1004 * This cannot starve the normal grace periods because a second 1005 * expedited grace period must boost all blocked tasks, including 1006 * those blocking the pre-existing normal grace period. 1007 */ 1008 if (rnp->exp_tasks != NULL) 1009 tb = rnp->exp_tasks; 1010 else 1011 tb = rnp->boost_tasks; 1012 1013 /* 1014 * We boost task t by manufacturing an rt_mutex that appears to 1015 * be held by task t. We leave a pointer to that rt_mutex where 1016 * task t can find it, and task t will release the mutex when it 1017 * exits its outermost RCU read-side critical section. Then 1018 * simply acquiring this artificial rt_mutex will boost task 1019 * t's priority. (Thanks to tglx for suggesting this approach!) 1020 * 1021 * Note that task t must acquire rnp->lock to remove itself from 1022 * the ->blkd_tasks list, which it will do from exit() if from 1023 * nowhere else. We therefore are guaranteed that task t will 1024 * stay around at least until we drop rnp->lock. Note that 1025 * rnp->lock also resolves races between our priority boosting 1026 * and task t's exiting its outermost RCU read-side critical 1027 * section. 1028 */ 1029 t = container_of(tb, struct task_struct, rcu_node_entry); 1030 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1031 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1032 /* Lock only for side effect: boosts task t's priority. */ 1033 rt_mutex_lock(&rnp->boost_mtx); 1034 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1035 1036 return READ_ONCE(rnp->exp_tasks) != NULL || 1037 READ_ONCE(rnp->boost_tasks) != NULL; 1038 } 1039 1040 /* 1041 * Priority-boosting kthread, one per leaf rcu_node. 1042 */ 1043 static int rcu_boost_kthread(void *arg) 1044 { 1045 struct rcu_node *rnp = (struct rcu_node *)arg; 1046 int spincnt = 0; 1047 int more2boost; 1048 1049 trace_rcu_utilization(TPS("Start boost kthread@init")); 1050 for (;;) { 1051 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1052 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1053 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1054 READ_ONCE(rnp->exp_tasks)); 1055 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1056 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1057 more2boost = rcu_boost(rnp); 1058 if (more2boost) 1059 spincnt++; 1060 else 1061 spincnt = 0; 1062 if (spincnt > 10) { 1063 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1064 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1065 schedule_timeout_idle(2); 1066 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1067 spincnt = 0; 1068 } 1069 } 1070 /* NOTREACHED */ 1071 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1072 return 0; 1073 } 1074 1075 /* 1076 * Check to see if it is time to start boosting RCU readers that are 1077 * blocking the current grace period, and, if so, tell the per-rcu_node 1078 * kthread to start boosting them. If there is an expedited grace 1079 * period in progress, it is always time to boost. 1080 * 1081 * The caller must hold rnp->lock, which this function releases. 1082 * The ->boost_kthread_task is immortal, so we don't need to worry 1083 * about it going away. 1084 */ 1085 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1086 __releases(rnp->lock) 1087 { 1088 raw_lockdep_assert_held_rcu_node(rnp); 1089 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1090 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1091 return; 1092 } 1093 if (rnp->exp_tasks != NULL || 1094 (rnp->gp_tasks != NULL && 1095 rnp->boost_tasks == NULL && 1096 rnp->qsmask == 0 && 1097 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) { 1098 if (rnp->exp_tasks == NULL) 1099 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1101 rcu_wake_cond(rnp->boost_kthread_task, 1102 READ_ONCE(rnp->boost_kthread_status)); 1103 } else { 1104 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1105 } 1106 } 1107 1108 /* 1109 * Is the current CPU running the RCU-callbacks kthread? 1110 * Caller must have preemption disabled. 1111 */ 1112 static bool rcu_is_callbacks_kthread(void) 1113 { 1114 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; 1115 } 1116 1117 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1118 1119 /* 1120 * Do priority-boost accounting for the start of a new grace period. 1121 */ 1122 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1123 { 1124 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1125 } 1126 1127 /* 1128 * Create an RCU-boost kthread for the specified node if one does not 1129 * already exist. We only create this kthread for preemptible RCU. 1130 * Returns zero if all is well, a negated errno otherwise. 1131 */ 1132 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1133 { 1134 int rnp_index = rnp - rcu_get_root(); 1135 unsigned long flags; 1136 struct sched_param sp; 1137 struct task_struct *t; 1138 1139 if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) 1140 return; 1141 1142 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1143 return; 1144 1145 rcu_state.boost = 1; 1146 1147 if (rnp->boost_kthread_task != NULL) 1148 return; 1149 1150 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1151 "rcub/%d", rnp_index); 1152 if (WARN_ON_ONCE(IS_ERR(t))) 1153 return; 1154 1155 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1156 rnp->boost_kthread_task = t; 1157 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1158 sp.sched_priority = kthread_prio; 1159 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1160 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1161 } 1162 1163 /* 1164 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1165 * served by the rcu_node in question. The CPU hotplug lock is still 1166 * held, so the value of rnp->qsmaskinit will be stable. 1167 * 1168 * We don't include outgoingcpu in the affinity set, use -1 if there is 1169 * no outgoing CPU. If there are no CPUs left in the affinity set, 1170 * this function allows the kthread to execute on any CPU. 1171 */ 1172 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1173 { 1174 struct task_struct *t = rnp->boost_kthread_task; 1175 unsigned long mask = rcu_rnp_online_cpus(rnp); 1176 cpumask_var_t cm; 1177 int cpu; 1178 1179 if (!t) 1180 return; 1181 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1182 return; 1183 for_each_leaf_node_possible_cpu(rnp, cpu) 1184 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1185 cpu != outgoingcpu) 1186 cpumask_set_cpu(cpu, cm); 1187 if (cpumask_weight(cm) == 0) 1188 cpumask_setall(cm); 1189 set_cpus_allowed_ptr(t, cm); 1190 free_cpumask_var(cm); 1191 } 1192 1193 /* 1194 * Spawn boost kthreads -- called as soon as the scheduler is running. 1195 */ 1196 static void __init rcu_spawn_boost_kthreads(void) 1197 { 1198 struct rcu_node *rnp; 1199 1200 rcu_for_each_leaf_node(rnp) 1201 rcu_spawn_one_boost_kthread(rnp); 1202 } 1203 1204 static void rcu_prepare_kthreads(int cpu) 1205 { 1206 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1207 struct rcu_node *rnp = rdp->mynode; 1208 1209 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1210 if (rcu_scheduler_fully_active) 1211 rcu_spawn_one_boost_kthread(rnp); 1212 } 1213 1214 #else /* #ifdef CONFIG_RCU_BOOST */ 1215 1216 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1217 __releases(rnp->lock) 1218 { 1219 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1220 } 1221 1222 static bool rcu_is_callbacks_kthread(void) 1223 { 1224 return false; 1225 } 1226 1227 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1228 { 1229 } 1230 1231 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1232 { 1233 } 1234 1235 static void __init rcu_spawn_boost_kthreads(void) 1236 { 1237 } 1238 1239 static void rcu_prepare_kthreads(int cpu) 1240 { 1241 } 1242 1243 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1244 1245 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1246 1247 /* 1248 * Check to see if any future non-offloaded RCU-related work will need 1249 * to be done by the current CPU, even if none need be done immediately, 1250 * returning 1 if so. This function is part of the RCU implementation; 1251 * it is -not- an exported member of the RCU API. 1252 * 1253 * Because we not have RCU_FAST_NO_HZ, just check whether or not this 1254 * CPU has RCU callbacks queued. 1255 */ 1256 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1257 { 1258 *nextevt = KTIME_MAX; 1259 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 1260 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist); 1261 } 1262 1263 /* 1264 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1265 * after it. 1266 */ 1267 static void rcu_cleanup_after_idle(void) 1268 { 1269 } 1270 1271 /* 1272 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1273 * is nothing. 1274 */ 1275 static void rcu_prepare_for_idle(void) 1276 { 1277 } 1278 1279 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1280 1281 /* 1282 * This code is invoked when a CPU goes idle, at which point we want 1283 * to have the CPU do everything required for RCU so that it can enter 1284 * the energy-efficient dyntick-idle mode. 1285 * 1286 * The following preprocessor symbol controls this: 1287 * 1288 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1289 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1290 * is sized to be roughly one RCU grace period. Those energy-efficiency 1291 * benchmarkers who might otherwise be tempted to set this to a large 1292 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1293 * system. And if you are -that- concerned about energy efficiency, 1294 * just power the system down and be done with it! 1295 * 1296 * The value below works well in practice. If future workloads require 1297 * adjustment, they can be converted into kernel config parameters, though 1298 * making the state machine smarter might be a better option. 1299 */ 1300 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1301 1302 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1303 module_param(rcu_idle_gp_delay, int, 0644); 1304 1305 /* 1306 * Try to advance callbacks on the current CPU, but only if it has been 1307 * awhile since the last time we did so. Afterwards, if there are any 1308 * callbacks ready for immediate invocation, return true. 1309 */ 1310 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1311 { 1312 bool cbs_ready = false; 1313 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1314 struct rcu_node *rnp; 1315 1316 /* Exit early if we advanced recently. */ 1317 if (jiffies == rdp->last_advance_all) 1318 return false; 1319 rdp->last_advance_all = jiffies; 1320 1321 rnp = rdp->mynode; 1322 1323 /* 1324 * Don't bother checking unless a grace period has 1325 * completed since we last checked and there are 1326 * callbacks not yet ready to invoke. 1327 */ 1328 if ((rcu_seq_completed_gp(rdp->gp_seq, 1329 rcu_seq_current(&rnp->gp_seq)) || 1330 unlikely(READ_ONCE(rdp->gpwrap))) && 1331 rcu_segcblist_pend_cbs(&rdp->cblist)) 1332 note_gp_changes(rdp); 1333 1334 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 1335 cbs_ready = true; 1336 return cbs_ready; 1337 } 1338 1339 /* 1340 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1341 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1342 * caller about what to set the timeout. 1343 * 1344 * The caller must have disabled interrupts. 1345 */ 1346 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1347 { 1348 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1349 unsigned long dj; 1350 1351 lockdep_assert_irqs_disabled(); 1352 1353 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */ 1354 if (rcu_segcblist_empty(&rdp->cblist) || 1355 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) { 1356 *nextevt = KTIME_MAX; 1357 return 0; 1358 } 1359 1360 /* Attempt to advance callbacks. */ 1361 if (rcu_try_advance_all_cbs()) { 1362 /* Some ready to invoke, so initiate later invocation. */ 1363 invoke_rcu_core(); 1364 return 1; 1365 } 1366 rdp->last_accelerate = jiffies; 1367 1368 /* Request timer and round. */ 1369 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; 1370 1371 *nextevt = basemono + dj * TICK_NSEC; 1372 return 0; 1373 } 1374 1375 /* 1376 * Prepare a CPU for idle from an RCU perspective. The first major task is to 1377 * sense whether nohz mode has been enabled or disabled via sysfs. The second 1378 * major task is to accelerate (that is, assign grace-period numbers to) any 1379 * recently arrived callbacks. 1380 * 1381 * The caller must have disabled interrupts. 1382 */ 1383 static void rcu_prepare_for_idle(void) 1384 { 1385 bool needwake; 1386 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1387 struct rcu_node *rnp; 1388 int tne; 1389 1390 lockdep_assert_irqs_disabled(); 1391 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1392 return; 1393 1394 /* Handle nohz enablement switches conservatively. */ 1395 tne = READ_ONCE(tick_nohz_active); 1396 if (tne != rdp->tick_nohz_enabled_snap) { 1397 if (!rcu_segcblist_empty(&rdp->cblist)) 1398 invoke_rcu_core(); /* force nohz to see update. */ 1399 rdp->tick_nohz_enabled_snap = tne; 1400 return; 1401 } 1402 if (!tne) 1403 return; 1404 1405 /* 1406 * If we have not yet accelerated this jiffy, accelerate all 1407 * callbacks on this CPU. 1408 */ 1409 if (rdp->last_accelerate == jiffies) 1410 return; 1411 rdp->last_accelerate = jiffies; 1412 if (rcu_segcblist_pend_cbs(&rdp->cblist)) { 1413 rnp = rdp->mynode; 1414 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1415 needwake = rcu_accelerate_cbs(rnp, rdp); 1416 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1417 if (needwake) 1418 rcu_gp_kthread_wake(); 1419 } 1420 } 1421 1422 /* 1423 * Clean up for exit from idle. Attempt to advance callbacks based on 1424 * any grace periods that elapsed while the CPU was idle, and if any 1425 * callbacks are now ready to invoke, initiate invocation. 1426 */ 1427 static void rcu_cleanup_after_idle(void) 1428 { 1429 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1430 1431 lockdep_assert_irqs_disabled(); 1432 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1433 return; 1434 if (rcu_try_advance_all_cbs()) 1435 invoke_rcu_core(); 1436 } 1437 1438 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1439 1440 #ifdef CONFIG_RCU_NOCB_CPU 1441 1442 /* 1443 * Offload callback processing from the boot-time-specified set of CPUs 1444 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 1445 * created that pull the callbacks from the corresponding CPU, wait for 1446 * a grace period to elapse, and invoke the callbacks. These kthreads 1447 * are organized into GP kthreads, which manage incoming callbacks, wait for 1448 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 1449 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 1450 * do a wake_up() on their GP kthread when they insert a callback into any 1451 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 1452 * in which case each kthread actively polls its CPU. (Which isn't so great 1453 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 1454 * 1455 * This is intended to be used in conjunction with Frederic Weisbecker's 1456 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1457 * running CPU-bound user-mode computations. 1458 * 1459 * Offloading of callbacks can also be used as an energy-efficiency 1460 * measure because CPUs with no RCU callbacks queued are more aggressive 1461 * about entering dyntick-idle mode. 1462 */ 1463 1464 1465 /* 1466 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 1467 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a 1468 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is 1469 * given, a warning is emitted and all CPUs are offloaded. 1470 */ 1471 static int __init rcu_nocb_setup(char *str) 1472 { 1473 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1474 if (!strcasecmp(str, "all")) 1475 cpumask_setall(rcu_nocb_mask); 1476 else 1477 if (cpulist_parse(str, rcu_nocb_mask)) { 1478 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 1479 cpumask_setall(rcu_nocb_mask); 1480 } 1481 return 1; 1482 } 1483 __setup("rcu_nocbs=", rcu_nocb_setup); 1484 1485 static int __init parse_rcu_nocb_poll(char *arg) 1486 { 1487 rcu_nocb_poll = true; 1488 return 0; 1489 } 1490 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1491 1492 /* 1493 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 1494 * After all, the main point of bypassing is to avoid lock contention 1495 * on ->nocb_lock, which only can happen at high call_rcu() rates. 1496 */ 1497 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 1498 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 1499 1500 /* 1501 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 1502 * lock isn't immediately available, increment ->nocb_lock_contended to 1503 * flag the contention. 1504 */ 1505 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 1506 __acquires(&rdp->nocb_bypass_lock) 1507 { 1508 lockdep_assert_irqs_disabled(); 1509 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 1510 return; 1511 atomic_inc(&rdp->nocb_lock_contended); 1512 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1513 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 1514 raw_spin_lock(&rdp->nocb_bypass_lock); 1515 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 1516 atomic_dec(&rdp->nocb_lock_contended); 1517 } 1518 1519 /* 1520 * Spinwait until the specified rcu_data structure's ->nocb_lock is 1521 * not contended. Please note that this is extremely special-purpose, 1522 * relying on the fact that at most two kthreads and one CPU contend for 1523 * this lock, and also that the two kthreads are guaranteed to have frequent 1524 * grace-period-duration time intervals between successive acquisitions 1525 * of the lock. This allows us to use an extremely simple throttling 1526 * mechanism, and further to apply it only to the CPU doing floods of 1527 * call_rcu() invocations. Don't try this at home! 1528 */ 1529 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 1530 { 1531 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 1532 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 1533 cpu_relax(); 1534 } 1535 1536 /* 1537 * Conditionally acquire the specified rcu_data structure's 1538 * ->nocb_bypass_lock. 1539 */ 1540 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 1541 { 1542 lockdep_assert_irqs_disabled(); 1543 return raw_spin_trylock(&rdp->nocb_bypass_lock); 1544 } 1545 1546 /* 1547 * Release the specified rcu_data structure's ->nocb_bypass_lock. 1548 */ 1549 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 1550 __releases(&rdp->nocb_bypass_lock) 1551 { 1552 lockdep_assert_irqs_disabled(); 1553 raw_spin_unlock(&rdp->nocb_bypass_lock); 1554 } 1555 1556 /* 1557 * Acquire the specified rcu_data structure's ->nocb_lock, but only 1558 * if it corresponds to a no-CBs CPU. 1559 */ 1560 static void rcu_nocb_lock(struct rcu_data *rdp) 1561 { 1562 lockdep_assert_irqs_disabled(); 1563 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) 1564 return; 1565 raw_spin_lock(&rdp->nocb_lock); 1566 } 1567 1568 /* 1569 * Release the specified rcu_data structure's ->nocb_lock, but only 1570 * if it corresponds to a no-CBs CPU. 1571 */ 1572 static void rcu_nocb_unlock(struct rcu_data *rdp) 1573 { 1574 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 1575 lockdep_assert_irqs_disabled(); 1576 raw_spin_unlock(&rdp->nocb_lock); 1577 } 1578 } 1579 1580 /* 1581 * Release the specified rcu_data structure's ->nocb_lock and restore 1582 * interrupts, but only if it corresponds to a no-CBs CPU. 1583 */ 1584 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1585 unsigned long flags) 1586 { 1587 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 1588 lockdep_assert_irqs_disabled(); 1589 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1590 } else { 1591 local_irq_restore(flags); 1592 } 1593 } 1594 1595 /* Lockdep check that ->cblist may be safely accessed. */ 1596 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1597 { 1598 lockdep_assert_irqs_disabled(); 1599 if (rcu_segcblist_is_offloaded(&rdp->cblist)) 1600 lockdep_assert_held(&rdp->nocb_lock); 1601 } 1602 1603 /* 1604 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1605 * grace period. 1606 */ 1607 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1608 { 1609 swake_up_all(sq); 1610 } 1611 1612 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1613 { 1614 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 1615 } 1616 1617 static void rcu_init_one_nocb(struct rcu_node *rnp) 1618 { 1619 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1620 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1621 } 1622 1623 /* Is the specified CPU a no-CBs CPU? */ 1624 bool rcu_is_nocb_cpu(int cpu) 1625 { 1626 if (cpumask_available(rcu_nocb_mask)) 1627 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1628 return false; 1629 } 1630 1631 /* 1632 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock 1633 * and this function releases it. 1634 */ 1635 static bool wake_nocb_gp(struct rcu_data *rdp, bool force, 1636 unsigned long flags) 1637 __releases(rdp->nocb_lock) 1638 { 1639 bool needwake = false; 1640 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1641 1642 lockdep_assert_held(&rdp->nocb_lock); 1643 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 1644 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1645 TPS("AlreadyAwake")); 1646 rcu_nocb_unlock_irqrestore(rdp, flags); 1647 return false; 1648 } 1649 del_timer(&rdp->nocb_timer); 1650 rcu_nocb_unlock_irqrestore(rdp, flags); 1651 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1652 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 1653 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 1654 needwake = true; 1655 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 1656 } 1657 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1658 if (needwake) 1659 wake_up_process(rdp_gp->nocb_gp_kthread); 1660 1661 return needwake; 1662 } 1663 1664 /* 1665 * Arrange to wake the GP kthread for this NOCB group at some future 1666 * time when it is safe to do so. 1667 */ 1668 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 1669 const char *reason) 1670 { 1671 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_OFF) 1672 return; 1673 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) 1674 mod_timer(&rdp->nocb_timer, jiffies + 1); 1675 if (rdp->nocb_defer_wakeup < waketype) 1676 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); 1677 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 1678 } 1679 1680 /* 1681 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1682 * However, if there is a callback to be enqueued and if ->nocb_bypass 1683 * proves to be initially empty, just return false because the no-CB GP 1684 * kthread may need to be awakened in this case. 1685 * 1686 * Note that this function always returns true if rhp is NULL. 1687 */ 1688 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1689 unsigned long j) 1690 { 1691 struct rcu_cblist rcl; 1692 1693 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist)); 1694 rcu_lockdep_assert_cblist_protected(rdp); 1695 lockdep_assert_held(&rdp->nocb_bypass_lock); 1696 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 1697 raw_spin_unlock(&rdp->nocb_bypass_lock); 1698 return false; 1699 } 1700 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 1701 if (rhp) 1702 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1703 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 1704 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 1705 WRITE_ONCE(rdp->nocb_bypass_first, j); 1706 rcu_nocb_bypass_unlock(rdp); 1707 return true; 1708 } 1709 1710 /* 1711 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 1712 * However, if there is a callback to be enqueued and if ->nocb_bypass 1713 * proves to be initially empty, just return false because the no-CB GP 1714 * kthread may need to be awakened in this case. 1715 * 1716 * Note that this function always returns true if rhp is NULL. 1717 */ 1718 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1719 unsigned long j) 1720 { 1721 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) 1722 return true; 1723 rcu_lockdep_assert_cblist_protected(rdp); 1724 rcu_nocb_bypass_lock(rdp); 1725 return rcu_nocb_do_flush_bypass(rdp, rhp, j); 1726 } 1727 1728 /* 1729 * If the ->nocb_bypass_lock is immediately available, flush the 1730 * ->nocb_bypass queue into ->cblist. 1731 */ 1732 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 1733 { 1734 rcu_lockdep_assert_cblist_protected(rdp); 1735 if (!rcu_segcblist_is_offloaded(&rdp->cblist) || 1736 !rcu_nocb_bypass_trylock(rdp)) 1737 return; 1738 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); 1739 } 1740 1741 /* 1742 * See whether it is appropriate to use the ->nocb_bypass list in order 1743 * to control contention on ->nocb_lock. A limited number of direct 1744 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 1745 * is non-empty, further callbacks must be placed into ->nocb_bypass, 1746 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 1747 * back to direct use of ->cblist. However, ->nocb_bypass should not be 1748 * used if ->cblist is empty, because otherwise callbacks can be stranded 1749 * on ->nocb_bypass because we cannot count on the current CPU ever again 1750 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 1751 * non-empty, the corresponding no-CBs grace-period kthread must not be 1752 * in an indefinite sleep state. 1753 * 1754 * Finally, it is not permitted to use the bypass during early boot, 1755 * as doing so would confuse the auto-initialization code. Besides 1756 * which, there is no point in worrying about lock contention while 1757 * there is only one CPU in operation. 1758 */ 1759 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1760 bool *was_alldone, unsigned long flags) 1761 { 1762 unsigned long c; 1763 unsigned long cur_gp_seq; 1764 unsigned long j = jiffies; 1765 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1766 1767 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { 1768 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1769 return false; /* Not offloaded, no bypassing. */ 1770 } 1771 lockdep_assert_irqs_disabled(); 1772 1773 // Don't use ->nocb_bypass during early boot. 1774 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 1775 rcu_nocb_lock(rdp); 1776 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1777 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1778 return false; 1779 } 1780 1781 // If we have advanced to a new jiffy, reset counts to allow 1782 // moving back from ->nocb_bypass to ->cblist. 1783 if (j == rdp->nocb_nobypass_last) { 1784 c = rdp->nocb_nobypass_count + 1; 1785 } else { 1786 WRITE_ONCE(rdp->nocb_nobypass_last, j); 1787 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 1788 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 1789 nocb_nobypass_lim_per_jiffy)) 1790 c = 0; 1791 else if (c > nocb_nobypass_lim_per_jiffy) 1792 c = nocb_nobypass_lim_per_jiffy; 1793 } 1794 WRITE_ONCE(rdp->nocb_nobypass_count, c); 1795 1796 // If there hasn't yet been all that many ->cblist enqueues 1797 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 1798 // ->nocb_bypass first. 1799 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { 1800 rcu_nocb_lock(rdp); 1801 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1802 if (*was_alldone) 1803 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1804 TPS("FirstQ")); 1805 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); 1806 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1807 return false; // Caller must enqueue the callback. 1808 } 1809 1810 // If ->nocb_bypass has been used too long or is too full, 1811 // flush ->nocb_bypass to ->cblist. 1812 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || 1813 ncbs >= qhimark) { 1814 rcu_nocb_lock(rdp); 1815 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { 1816 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 1817 if (*was_alldone) 1818 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1819 TPS("FirstQ")); 1820 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1821 return false; // Caller must enqueue the callback. 1822 } 1823 if (j != rdp->nocb_gp_adv_time && 1824 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1825 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1826 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1827 rdp->nocb_gp_adv_time = j; 1828 } 1829 rcu_nocb_unlock_irqrestore(rdp, flags); 1830 return true; // Callback already enqueued. 1831 } 1832 1833 // We need to use the bypass. 1834 rcu_nocb_wait_contended(rdp); 1835 rcu_nocb_bypass_lock(rdp); 1836 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 1837 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 1838 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 1839 if (!ncbs) { 1840 WRITE_ONCE(rdp->nocb_bypass_first, j); 1841 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 1842 } 1843 rcu_nocb_bypass_unlock(rdp); 1844 smp_mb(); /* Order enqueue before wake. */ 1845 if (ncbs) { 1846 local_irq_restore(flags); 1847 } else { 1848 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 1849 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 1850 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 1851 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1852 TPS("FirstBQwake")); 1853 __call_rcu_nocb_wake(rdp, true, flags); 1854 } else { 1855 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1856 TPS("FirstBQnoWake")); 1857 rcu_nocb_unlock_irqrestore(rdp, flags); 1858 } 1859 } 1860 return true; // Callback already enqueued. 1861 } 1862 1863 /* 1864 * Awaken the no-CBs grace-period kthead if needed, either due to it 1865 * legitimately being asleep or due to overload conditions. 1866 * 1867 * If warranted, also wake up the kthread servicing this CPUs queues. 1868 */ 1869 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 1870 unsigned long flags) 1871 __releases(rdp->nocb_lock) 1872 { 1873 unsigned long cur_gp_seq; 1874 unsigned long j; 1875 long len; 1876 struct task_struct *t; 1877 1878 // If we are being polled or there is no kthread, just leave. 1879 t = READ_ONCE(rdp->nocb_gp_kthread); 1880 if (rcu_nocb_poll || !t) { 1881 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1882 TPS("WakeNotPoll")); 1883 rcu_nocb_unlock_irqrestore(rdp, flags); 1884 return; 1885 } 1886 // Need to actually to a wakeup. 1887 len = rcu_segcblist_n_cbs(&rdp->cblist); 1888 if (was_alldone) { 1889 rdp->qlen_last_fqs_check = len; 1890 if (!irqs_disabled_flags(flags)) { 1891 /* ... if queue was empty ... */ 1892 wake_nocb_gp(rdp, false, flags); 1893 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 1894 TPS("WakeEmpty")); 1895 } else { 1896 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 1897 TPS("WakeEmptyIsDeferred")); 1898 rcu_nocb_unlock_irqrestore(rdp, flags); 1899 } 1900 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1901 /* ... or if many callbacks queued. */ 1902 rdp->qlen_last_fqs_check = len; 1903 j = jiffies; 1904 if (j != rdp->nocb_gp_adv_time && 1905 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 1906 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 1907 rcu_advance_cbs_nowake(rdp->mynode, rdp); 1908 rdp->nocb_gp_adv_time = j; 1909 } 1910 smp_mb(); /* Enqueue before timer_pending(). */ 1911 if ((rdp->nocb_cb_sleep || 1912 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 1913 !timer_pending(&rdp->nocb_bypass_timer)) 1914 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 1915 TPS("WakeOvfIsDeferred")); 1916 rcu_nocb_unlock_irqrestore(rdp, flags); 1917 } else { 1918 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 1919 rcu_nocb_unlock_irqrestore(rdp, flags); 1920 } 1921 return; 1922 } 1923 1924 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ 1925 static void do_nocb_bypass_wakeup_timer(struct timer_list *t) 1926 { 1927 unsigned long flags; 1928 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); 1929 1930 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1931 rcu_nocb_lock_irqsave(rdp, flags); 1932 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1933 __call_rcu_nocb_wake(rdp, true, flags); 1934 } 1935 1936 /* 1937 * Check if we ignore this rdp. 1938 * 1939 * We check that without holding the nocb lock but 1940 * we make sure not to miss a freshly offloaded rdp 1941 * with the current ordering: 1942 * 1943 * rdp_offload_toggle() nocb_gp_enabled_cb() 1944 * ------------------------- ---------------------------- 1945 * WRITE flags LOCK nocb_gp_lock 1946 * LOCK nocb_gp_lock READ/WRITE nocb_gp_sleep 1947 * READ/WRITE nocb_gp_sleep UNLOCK nocb_gp_lock 1948 * UNLOCK nocb_gp_lock READ flags 1949 */ 1950 static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp) 1951 { 1952 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP; 1953 1954 return rcu_segcblist_test_flags(&rdp->cblist, flags); 1955 } 1956 1957 static inline bool nocb_gp_update_state(struct rcu_data *rdp, bool *needwake_state) 1958 { 1959 struct rcu_segcblist *cblist = &rdp->cblist; 1960 1961 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 1962 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 1963 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 1964 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 1965 *needwake_state = true; 1966 } 1967 return true; 1968 } 1969 1970 /* 1971 * De-offloading. Clear our flag and notify the de-offload worker. 1972 * We will ignore this rdp until it ever gets re-offloaded. 1973 */ 1974 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1975 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 1976 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 1977 *needwake_state = true; 1978 return false; 1979 } 1980 1981 1982 /* 1983 * No-CBs GP kthreads come here to wait for additional callbacks to show up 1984 * or for grace periods to end. 1985 */ 1986 static void nocb_gp_wait(struct rcu_data *my_rdp) 1987 { 1988 bool bypass = false; 1989 long bypass_ncbs; 1990 int __maybe_unused cpu = my_rdp->cpu; 1991 unsigned long cur_gp_seq; 1992 unsigned long flags; 1993 bool gotcbs = false; 1994 unsigned long j = jiffies; 1995 bool needwait_gp = false; // This prevents actual uninitialized use. 1996 bool needwake; 1997 bool needwake_gp; 1998 struct rcu_data *rdp; 1999 struct rcu_node *rnp; 2000 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 2001 bool wasempty = false; 2002 2003 /* 2004 * Each pass through the following loop checks for CBs and for the 2005 * nearest grace period (if any) to wait for next. The CB kthreads 2006 * and the global grace-period kthread are awakened if needed. 2007 */ 2008 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 2009 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { 2010 bool needwake_state = false; 2011 2012 if (!nocb_gp_enabled_cb(rdp)) 2013 continue; 2014 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 2015 rcu_nocb_lock_irqsave(rdp, flags); 2016 if (!nocb_gp_update_state(rdp, &needwake_state)) { 2017 rcu_nocb_unlock_irqrestore(rdp, flags); 2018 if (needwake_state) 2019 swake_up_one(&rdp->nocb_state_wq); 2020 continue; 2021 } 2022 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 2023 if (bypass_ncbs && 2024 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 2025 bypass_ncbs > 2 * qhimark)) { 2026 // Bypass full or old, so flush it. 2027 (void)rcu_nocb_try_flush_bypass(rdp, j); 2028 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 2029 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 2030 rcu_nocb_unlock_irqrestore(rdp, flags); 2031 if (needwake_state) 2032 swake_up_one(&rdp->nocb_state_wq); 2033 continue; /* No callbacks here, try next. */ 2034 } 2035 if (bypass_ncbs) { 2036 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2037 TPS("Bypass")); 2038 bypass = true; 2039 } 2040 rnp = rdp->mynode; 2041 if (bypass) { // Avoid race with first bypass CB. 2042 WRITE_ONCE(my_rdp->nocb_defer_wakeup, 2043 RCU_NOCB_WAKE_NOT); 2044 del_timer(&my_rdp->nocb_timer); 2045 } 2046 // Advance callbacks if helpful and low contention. 2047 needwake_gp = false; 2048 if (!rcu_segcblist_restempty(&rdp->cblist, 2049 RCU_NEXT_READY_TAIL) || 2050 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 2051 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 2052 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 2053 needwake_gp = rcu_advance_cbs(rnp, rdp); 2054 wasempty = rcu_segcblist_restempty(&rdp->cblist, 2055 RCU_NEXT_READY_TAIL); 2056 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 2057 } 2058 // Need to wait on some grace period? 2059 WARN_ON_ONCE(wasempty && 2060 !rcu_segcblist_restempty(&rdp->cblist, 2061 RCU_NEXT_READY_TAIL)); 2062 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 2063 if (!needwait_gp || 2064 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 2065 wait_gp_seq = cur_gp_seq; 2066 needwait_gp = true; 2067 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 2068 TPS("NeedWaitGP")); 2069 } 2070 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 2071 needwake = rdp->nocb_cb_sleep; 2072 WRITE_ONCE(rdp->nocb_cb_sleep, false); 2073 smp_mb(); /* CB invocation -after- GP end. */ 2074 } else { 2075 needwake = false; 2076 } 2077 rcu_nocb_unlock_irqrestore(rdp, flags); 2078 if (needwake) { 2079 swake_up_one(&rdp->nocb_cb_wq); 2080 gotcbs = true; 2081 } 2082 if (needwake_gp) 2083 rcu_gp_kthread_wake(); 2084 if (needwake_state) 2085 swake_up_one(&rdp->nocb_state_wq); 2086 } 2087 2088 my_rdp->nocb_gp_bypass = bypass; 2089 my_rdp->nocb_gp_gp = needwait_gp; 2090 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 2091 if (bypass && !rcu_nocb_poll) { 2092 // At least one child with non-empty ->nocb_bypass, so set 2093 // timer in order to avoid stranding its callbacks. 2094 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2095 mod_timer(&my_rdp->nocb_bypass_timer, j + 2); 2096 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2097 } 2098 if (rcu_nocb_poll) { 2099 /* Polling, so trace if first poll in the series. */ 2100 if (gotcbs) 2101 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 2102 schedule_timeout_idle(1); 2103 } else if (!needwait_gp) { 2104 /* Wait for callbacks to appear. */ 2105 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 2106 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 2107 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2108 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 2109 } else { 2110 rnp = my_rdp->mynode; 2111 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 2112 swait_event_interruptible_exclusive( 2113 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 2114 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 2115 !READ_ONCE(my_rdp->nocb_gp_sleep)); 2116 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 2117 } 2118 if (!rcu_nocb_poll) { 2119 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 2120 if (bypass) 2121 del_timer(&my_rdp->nocb_bypass_timer); 2122 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 2123 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 2124 } 2125 my_rdp->nocb_gp_seq = -1; 2126 WARN_ON(signal_pending(current)); 2127 } 2128 2129 /* 2130 * No-CBs grace-period-wait kthread. There is one of these per group 2131 * of CPUs, but only once at least one CPU in that group has come online 2132 * at least once since boot. This kthread checks for newly posted 2133 * callbacks from any of the CPUs it is responsible for, waits for a 2134 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 2135 * that then have callback-invocation work to do. 2136 */ 2137 static int rcu_nocb_gp_kthread(void *arg) 2138 { 2139 struct rcu_data *rdp = arg; 2140 2141 for (;;) { 2142 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 2143 nocb_gp_wait(rdp); 2144 cond_resched_tasks_rcu_qs(); 2145 } 2146 return 0; 2147 } 2148 2149 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 2150 { 2151 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 2152 return rcu_segcblist_test_flags(&rdp->cblist, flags); 2153 } 2154 2155 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 2156 { 2157 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 2158 } 2159 2160 /* 2161 * Invoke any ready callbacks from the corresponding no-CBs CPU, 2162 * then, if there are no more, wait for more to appear. 2163 */ 2164 static void nocb_cb_wait(struct rcu_data *rdp) 2165 { 2166 struct rcu_segcblist *cblist = &rdp->cblist; 2167 unsigned long cur_gp_seq; 2168 unsigned long flags; 2169 bool needwake_state = false; 2170 bool needwake_gp = false; 2171 struct rcu_node *rnp = rdp->mynode; 2172 2173 local_irq_save(flags); 2174 rcu_momentary_dyntick_idle(); 2175 local_irq_restore(flags); 2176 local_bh_disable(); 2177 rcu_do_batch(rdp); 2178 local_bh_enable(); 2179 lockdep_assert_irqs_enabled(); 2180 rcu_nocb_lock_irqsave(rdp, flags); 2181 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 2182 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 2183 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 2184 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 2185 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2186 } 2187 2188 WRITE_ONCE(rdp->nocb_cb_sleep, true); 2189 2190 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 2191 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 2192 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 2193 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 2194 needwake_state = true; 2195 } 2196 if (rcu_segcblist_ready_cbs(cblist)) 2197 WRITE_ONCE(rdp->nocb_cb_sleep, false); 2198 } else { 2199 /* 2200 * De-offloading. Clear our flag and notify the de-offload worker. 2201 * We won't touch the callbacks and keep sleeping until we ever 2202 * get re-offloaded. 2203 */ 2204 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 2205 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 2206 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 2207 needwake_state = true; 2208 } 2209 2210 if (rdp->nocb_cb_sleep) 2211 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 2212 2213 rcu_nocb_unlock_irqrestore(rdp, flags); 2214 if (needwake_gp) 2215 rcu_gp_kthread_wake(); 2216 2217 if (needwake_state) 2218 swake_up_one(&rdp->nocb_state_wq); 2219 2220 do { 2221 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 2222 nocb_cb_wait_cond(rdp)); 2223 2224 // VVV Ensure CB invocation follows _sleep test. 2225 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^ 2226 WARN_ON(signal_pending(current)); 2227 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 2228 } 2229 } while (!nocb_cb_can_run(rdp)); 2230 } 2231 2232 /* 2233 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 2234 * nocb_cb_wait() to do the dirty work. 2235 */ 2236 static int rcu_nocb_cb_kthread(void *arg) 2237 { 2238 struct rcu_data *rdp = arg; 2239 2240 // Each pass through this loop does one callback batch, and, 2241 // if there are no more ready callbacks, waits for them. 2242 for (;;) { 2243 nocb_cb_wait(rdp); 2244 cond_resched_tasks_rcu_qs(); 2245 } 2246 return 0; 2247 } 2248 2249 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2250 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2251 { 2252 return READ_ONCE(rdp->nocb_defer_wakeup) > RCU_NOCB_WAKE_NOT; 2253 } 2254 2255 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2256 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp) 2257 { 2258 unsigned long flags; 2259 int ndw; 2260 int ret; 2261 2262 rcu_nocb_lock_irqsave(rdp, flags); 2263 if (!rcu_nocb_need_deferred_wakeup(rdp)) { 2264 rcu_nocb_unlock_irqrestore(rdp, flags); 2265 return false; 2266 } 2267 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2268 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2269 ret = wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 2270 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 2271 2272 return ret; 2273 } 2274 2275 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 2276 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 2277 { 2278 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 2279 2280 do_nocb_deferred_wakeup_common(rdp); 2281 } 2282 2283 /* 2284 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 2285 * This means we do an inexact common-case check. Note that if 2286 * we miss, ->nocb_timer will eventually clean things up. 2287 */ 2288 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 2289 { 2290 if (rcu_nocb_need_deferred_wakeup(rdp)) 2291 return do_nocb_deferred_wakeup_common(rdp); 2292 return false; 2293 } 2294 2295 void rcu_nocb_flush_deferred_wakeup(void) 2296 { 2297 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 2298 } 2299 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 2300 2301 static int rdp_offload_toggle(struct rcu_data *rdp, 2302 bool offload, unsigned long flags) 2303 __releases(rdp->nocb_lock) 2304 { 2305 struct rcu_segcblist *cblist = &rdp->cblist; 2306 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 2307 bool wake_gp = false; 2308 2309 rcu_segcblist_offload(cblist, offload); 2310 2311 if (rdp->nocb_cb_sleep) 2312 rdp->nocb_cb_sleep = false; 2313 rcu_nocb_unlock_irqrestore(rdp, flags); 2314 2315 /* 2316 * Ignore former value of nocb_cb_sleep and force wake up as it could 2317 * have been spuriously set to false already. 2318 */ 2319 swake_up_one(&rdp->nocb_cb_wq); 2320 2321 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 2322 if (rdp_gp->nocb_gp_sleep) { 2323 rdp_gp->nocb_gp_sleep = false; 2324 wake_gp = true; 2325 } 2326 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 2327 2328 if (wake_gp) 2329 wake_up_process(rdp_gp->nocb_gp_kthread); 2330 2331 return 0; 2332 } 2333 2334 static int __rcu_nocb_rdp_deoffload(struct rcu_data *rdp) 2335 { 2336 struct rcu_segcblist *cblist = &rdp->cblist; 2337 unsigned long flags; 2338 int ret; 2339 2340 pr_info("De-offloading %d\n", rdp->cpu); 2341 2342 rcu_nocb_lock_irqsave(rdp, flags); 2343 /* 2344 * If there are still pending work offloaded, the offline 2345 * CPU won't help much handling them. 2346 */ 2347 if (cpu_is_offline(rdp->cpu) && !rcu_segcblist_empty(&rdp->cblist)) { 2348 rcu_nocb_unlock_irqrestore(rdp, flags); 2349 return -EBUSY; 2350 } 2351 2352 ret = rdp_offload_toggle(rdp, false, flags); 2353 swait_event_exclusive(rdp->nocb_state_wq, 2354 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB | 2355 SEGCBLIST_KTHREAD_GP)); 2356 rcu_nocb_lock_irqsave(rdp, flags); 2357 /* Make sure nocb timer won't stay around */ 2358 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_OFF); 2359 rcu_nocb_unlock_irqrestore(rdp, flags); 2360 del_timer_sync(&rdp->nocb_timer); 2361 2362 /* 2363 * Flush bypass. While IRQs are disabled and once we set 2364 * SEGCBLIST_SOFTIRQ_ONLY, no callback is supposed to be 2365 * enqueued on bypass. 2366 */ 2367 rcu_nocb_lock_irqsave(rdp, flags); 2368 rcu_nocb_flush_bypass(rdp, NULL, jiffies); 2369 rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY); 2370 /* 2371 * With SEGCBLIST_SOFTIRQ_ONLY, we can't use 2372 * rcu_nocb_unlock_irqrestore() anymore. Theoretically we 2373 * could set SEGCBLIST_SOFTIRQ_ONLY with cb unlocked and IRQs 2374 * disabled now, but let's be paranoid. 2375 */ 2376 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 2377 2378 return ret; 2379 } 2380 2381 static long rcu_nocb_rdp_deoffload(void *arg) 2382 { 2383 struct rcu_data *rdp = arg; 2384 2385 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 2386 return __rcu_nocb_rdp_deoffload(rdp); 2387 } 2388 2389 int rcu_nocb_cpu_deoffload(int cpu) 2390 { 2391 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2392 int ret = 0; 2393 2394 if (rdp == rdp->nocb_gp_rdp) { 2395 pr_info("Can't deoffload an rdp GP leader (yet)\n"); 2396 return -EINVAL; 2397 } 2398 mutex_lock(&rcu_state.barrier_mutex); 2399 cpus_read_lock(); 2400 if (rcu_segcblist_is_offloaded(&rdp->cblist)) { 2401 if (cpu_online(cpu)) 2402 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 2403 else 2404 ret = __rcu_nocb_rdp_deoffload(rdp); 2405 if (!ret) 2406 cpumask_clear_cpu(cpu, rcu_nocb_mask); 2407 } 2408 cpus_read_unlock(); 2409 mutex_unlock(&rcu_state.barrier_mutex); 2410 2411 return ret; 2412 } 2413 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 2414 2415 static int __rcu_nocb_rdp_offload(struct rcu_data *rdp) 2416 { 2417 struct rcu_segcblist *cblist = &rdp->cblist; 2418 unsigned long flags; 2419 int ret; 2420 2421 /* 2422 * For now we only support re-offload, ie: the rdp must have been 2423 * offloaded on boot first. 2424 */ 2425 if (!rdp->nocb_gp_rdp) 2426 return -EINVAL; 2427 2428 pr_info("Offloading %d\n", rdp->cpu); 2429 /* 2430 * Can't use rcu_nocb_lock_irqsave() while we are in 2431 * SEGCBLIST_SOFTIRQ_ONLY mode. 2432 */ 2433 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 2434 /* Re-enable nocb timer */ 2435 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 2436 /* 2437 * We didn't take the nocb lock while working on the 2438 * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode. 2439 * Every modifications that have been done previously on 2440 * rdp->cblist must be visible remotely by the nocb kthreads 2441 * upon wake up after reading the cblist flags. 2442 * 2443 * The layout against nocb_lock enforces that ordering: 2444 * 2445 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 2446 * ------------------------- ---------------------------- 2447 * WRITE callbacks rcu_nocb_lock() 2448 * rcu_nocb_lock() READ flags 2449 * WRITE flags READ callbacks 2450 * rcu_nocb_unlock() rcu_nocb_unlock() 2451 */ 2452 ret = rdp_offload_toggle(rdp, true, flags); 2453 swait_event_exclusive(rdp->nocb_state_wq, 2454 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 2455 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 2456 2457 return ret; 2458 } 2459 2460 static long rcu_nocb_rdp_offload(void *arg) 2461 { 2462 struct rcu_data *rdp = arg; 2463 2464 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 2465 return __rcu_nocb_rdp_offload(rdp); 2466 } 2467 2468 int rcu_nocb_cpu_offload(int cpu) 2469 { 2470 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2471 int ret = 0; 2472 2473 mutex_lock(&rcu_state.barrier_mutex); 2474 cpus_read_lock(); 2475 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { 2476 if (cpu_online(cpu)) 2477 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 2478 else 2479 ret = __rcu_nocb_rdp_offload(rdp); 2480 if (!ret) 2481 cpumask_set_cpu(cpu, rcu_nocb_mask); 2482 } 2483 cpus_read_unlock(); 2484 mutex_unlock(&rcu_state.barrier_mutex); 2485 2486 return ret; 2487 } 2488 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 2489 2490 void __init rcu_init_nohz(void) 2491 { 2492 int cpu; 2493 bool need_rcu_nocb_mask = false; 2494 struct rcu_data *rdp; 2495 2496 #if defined(CONFIG_NO_HZ_FULL) 2497 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2498 need_rcu_nocb_mask = true; 2499 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2500 2501 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { 2502 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2503 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2504 return; 2505 } 2506 } 2507 if (!cpumask_available(rcu_nocb_mask)) 2508 return; 2509 2510 #if defined(CONFIG_NO_HZ_FULL) 2511 if (tick_nohz_full_running) 2512 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2513 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2514 2515 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2516 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 2517 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2518 rcu_nocb_mask); 2519 } 2520 if (cpumask_empty(rcu_nocb_mask)) 2521 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 2522 else 2523 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2524 cpumask_pr_args(rcu_nocb_mask)); 2525 if (rcu_nocb_poll) 2526 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2527 2528 for_each_cpu(cpu, rcu_nocb_mask) { 2529 rdp = per_cpu_ptr(&rcu_data, cpu); 2530 if (rcu_segcblist_empty(&rdp->cblist)) 2531 rcu_segcblist_init(&rdp->cblist); 2532 rcu_segcblist_offload(&rdp->cblist, true); 2533 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 2534 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP); 2535 } 2536 rcu_organize_nocb_kthreads(); 2537 } 2538 2539 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2540 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2541 { 2542 init_swait_queue_head(&rdp->nocb_cb_wq); 2543 init_swait_queue_head(&rdp->nocb_gp_wq); 2544 init_swait_queue_head(&rdp->nocb_state_wq); 2545 raw_spin_lock_init(&rdp->nocb_lock); 2546 raw_spin_lock_init(&rdp->nocb_bypass_lock); 2547 raw_spin_lock_init(&rdp->nocb_gp_lock); 2548 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 2549 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); 2550 rcu_cblist_init(&rdp->nocb_bypass); 2551 } 2552 2553 /* 2554 * If the specified CPU is a no-CBs CPU that does not already have its 2555 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 2556 * for this CPU's group has not yet been created, spawn it as well. 2557 */ 2558 static void rcu_spawn_one_nocb_kthread(int cpu) 2559 { 2560 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2561 struct rcu_data *rdp_gp; 2562 struct task_struct *t; 2563 2564 /* 2565 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2566 * then nothing to do. 2567 */ 2568 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) 2569 return; 2570 2571 /* If we didn't spawn the GP kthread first, reorganize! */ 2572 rdp_gp = rdp->nocb_gp_rdp; 2573 if (!rdp_gp->nocb_gp_kthread) { 2574 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 2575 "rcuog/%d", rdp_gp->cpu); 2576 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) 2577 return; 2578 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 2579 } 2580 2581 /* Spawn the kthread for this CPU. */ 2582 t = kthread_run(rcu_nocb_cb_kthread, rdp, 2583 "rcuo%c/%d", rcu_state.abbr, cpu); 2584 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 2585 return; 2586 WRITE_ONCE(rdp->nocb_cb_kthread, t); 2587 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 2588 } 2589 2590 /* 2591 * If the specified CPU is a no-CBs CPU that does not already have its 2592 * rcuo kthread, spawn it. 2593 */ 2594 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2595 { 2596 if (rcu_scheduler_fully_active) 2597 rcu_spawn_one_nocb_kthread(cpu); 2598 } 2599 2600 /* 2601 * Once the scheduler is running, spawn rcuo kthreads for all online 2602 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2603 * non-boot CPUs come online -- if this changes, we will need to add 2604 * some mutual exclusion. 2605 */ 2606 static void __init rcu_spawn_nocb_kthreads(void) 2607 { 2608 int cpu; 2609 2610 for_each_online_cpu(cpu) 2611 rcu_spawn_cpu_nocb_kthread(cpu); 2612 } 2613 2614 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 2615 static int rcu_nocb_gp_stride = -1; 2616 module_param(rcu_nocb_gp_stride, int, 0444); 2617 2618 /* 2619 * Initialize GP-CB relationships for all no-CBs CPU. 2620 */ 2621 static void __init rcu_organize_nocb_kthreads(void) 2622 { 2623 int cpu; 2624 bool firsttime = true; 2625 bool gotnocbs = false; 2626 bool gotnocbscbs = true; 2627 int ls = rcu_nocb_gp_stride; 2628 int nl = 0; /* Next GP kthread. */ 2629 struct rcu_data *rdp; 2630 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 2631 struct rcu_data *rdp_prev = NULL; 2632 2633 if (!cpumask_available(rcu_nocb_mask)) 2634 return; 2635 if (ls == -1) { 2636 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 2637 rcu_nocb_gp_stride = ls; 2638 } 2639 2640 /* 2641 * Each pass through this loop sets up one rcu_data structure. 2642 * Should the corresponding CPU come online in the future, then 2643 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2644 */ 2645 for_each_cpu(cpu, rcu_nocb_mask) { 2646 rdp = per_cpu_ptr(&rcu_data, cpu); 2647 if (rdp->cpu >= nl) { 2648 /* New GP kthread, set up for CBs & next GP. */ 2649 gotnocbs = true; 2650 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2651 rdp->nocb_gp_rdp = rdp; 2652 rdp_gp = rdp; 2653 if (dump_tree) { 2654 if (!firsttime) 2655 pr_cont("%s\n", gotnocbscbs 2656 ? "" : " (self only)"); 2657 gotnocbscbs = false; 2658 firsttime = false; 2659 pr_alert("%s: No-CB GP kthread CPU %d:", 2660 __func__, cpu); 2661 } 2662 } else { 2663 /* Another CB kthread, link to previous GP kthread. */ 2664 gotnocbscbs = true; 2665 rdp->nocb_gp_rdp = rdp_gp; 2666 rdp_prev->nocb_next_cb_rdp = rdp; 2667 if (dump_tree) 2668 pr_cont(" %d", cpu); 2669 } 2670 rdp_prev = rdp; 2671 } 2672 if (gotnocbs && dump_tree) 2673 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 2674 } 2675 2676 /* 2677 * Bind the current task to the offloaded CPUs. If there are no offloaded 2678 * CPUs, leave the task unbound. Splat if the bind attempt fails. 2679 */ 2680 void rcu_bind_current_to_nocb(void) 2681 { 2682 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) 2683 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 2684 } 2685 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 2686 2687 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 2688 #ifdef CONFIG_SMP 2689 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 2690 { 2691 return tsp && tsp->state == TASK_RUNNING && !tsp->on_cpu ? "!" : ""; 2692 } 2693 #else // #ifdef CONFIG_SMP 2694 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 2695 { 2696 return ""; 2697 } 2698 #endif // #else #ifdef CONFIG_SMP 2699 2700 /* 2701 * Dump out nocb grace-period kthread state for the specified rcu_data 2702 * structure. 2703 */ 2704 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 2705 { 2706 struct rcu_node *rnp = rdp->mynode; 2707 2708 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 2709 rdp->cpu, 2710 "kK"[!!rdp->nocb_gp_kthread], 2711 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 2712 "dD"[!!rdp->nocb_defer_wakeup], 2713 "tT"[timer_pending(&rdp->nocb_timer)], 2714 "bB"[timer_pending(&rdp->nocb_bypass_timer)], 2715 "sS"[!!rdp->nocb_gp_sleep], 2716 ".W"[swait_active(&rdp->nocb_gp_wq)], 2717 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 2718 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 2719 ".B"[!!rdp->nocb_gp_bypass], 2720 ".G"[!!rdp->nocb_gp_gp], 2721 (long)rdp->nocb_gp_seq, 2722 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 2723 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 2724 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 2725 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 2726 } 2727 2728 /* Dump out nocb kthread state for the specified rcu_data structure. */ 2729 static void show_rcu_nocb_state(struct rcu_data *rdp) 2730 { 2731 char bufw[20]; 2732 char bufr[20]; 2733 struct rcu_segcblist *rsclp = &rdp->cblist; 2734 bool waslocked; 2735 bool wastimer; 2736 bool wassleep; 2737 2738 if (rdp->nocb_gp_rdp == rdp) 2739 show_rcu_nocb_gp_state(rdp); 2740 2741 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 2742 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 2743 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 2744 rdp->cpu, rdp->nocb_gp_rdp->cpu, 2745 rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1, 2746 "kK"[!!rdp->nocb_cb_kthread], 2747 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 2748 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 2749 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 2750 "sS"[!!rdp->nocb_cb_sleep], 2751 ".W"[swait_active(&rdp->nocb_cb_wq)], 2752 jiffies - rdp->nocb_bypass_first, 2753 jiffies - rdp->nocb_nobypass_last, 2754 rdp->nocb_nobypass_count, 2755 ".D"[rcu_segcblist_ready_cbs(rsclp)], 2756 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 2757 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 2758 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 2759 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 2760 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 2761 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 2762 rcu_segcblist_n_cbs(&rdp->cblist), 2763 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 2764 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 2765 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 2766 2767 /* It is OK for GP kthreads to have GP state. */ 2768 if (rdp->nocb_gp_rdp == rdp) 2769 return; 2770 2771 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 2772 wastimer = timer_pending(&rdp->nocb_bypass_timer); 2773 wassleep = swait_active(&rdp->nocb_gp_wq); 2774 if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep) 2775 return; /* Nothing untowards. */ 2776 2777 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n", 2778 "lL"[waslocked], 2779 "dD"[!!rdp->nocb_defer_wakeup], 2780 "tT"[wastimer], 2781 "sS"[!!rdp->nocb_gp_sleep], 2782 ".W"[wassleep]); 2783 } 2784 2785 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2786 2787 /* No ->nocb_lock to acquire. */ 2788 static void rcu_nocb_lock(struct rcu_data *rdp) 2789 { 2790 } 2791 2792 /* No ->nocb_lock to release. */ 2793 static void rcu_nocb_unlock(struct rcu_data *rdp) 2794 { 2795 } 2796 2797 /* No ->nocb_lock to release. */ 2798 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 2799 unsigned long flags) 2800 { 2801 local_irq_restore(flags); 2802 } 2803 2804 /* Lockdep check that ->cblist may be safely accessed. */ 2805 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 2806 { 2807 lockdep_assert_irqs_disabled(); 2808 } 2809 2810 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2811 { 2812 } 2813 2814 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2815 { 2816 return NULL; 2817 } 2818 2819 static void rcu_init_one_nocb(struct rcu_node *rnp) 2820 { 2821 } 2822 2823 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2824 unsigned long j) 2825 { 2826 return true; 2827 } 2828 2829 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 2830 bool *was_alldone, unsigned long flags) 2831 { 2832 return false; 2833 } 2834 2835 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 2836 unsigned long flags) 2837 { 2838 WARN_ON_ONCE(1); /* Should be dead code! */ 2839 } 2840 2841 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2842 { 2843 } 2844 2845 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2846 { 2847 return false; 2848 } 2849 2850 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 2851 { 2852 return false; 2853 } 2854 2855 static void rcu_spawn_cpu_nocb_kthread(int cpu) 2856 { 2857 } 2858 2859 static void __init rcu_spawn_nocb_kthreads(void) 2860 { 2861 } 2862 2863 static void show_rcu_nocb_state(struct rcu_data *rdp) 2864 { 2865 } 2866 2867 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2868 2869 /* 2870 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2871 * grace-period kthread will do force_quiescent_state() processing? 2872 * The idea is to avoid waking up RCU core processing on such a 2873 * CPU unless the grace period has extended for too long. 2874 * 2875 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2876 * CONFIG_RCU_NOCB_CPU CPUs. 2877 */ 2878 static bool rcu_nohz_full_cpu(void) 2879 { 2880 #ifdef CONFIG_NO_HZ_FULL 2881 if (tick_nohz_full_cpu(smp_processor_id()) && 2882 (!rcu_gp_in_progress() || 2883 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 2884 return true; 2885 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2886 return false; 2887 } 2888 2889 /* 2890 * Bind the RCU grace-period kthreads to the housekeeping CPU. 2891 */ 2892 static void rcu_bind_gp_kthread(void) 2893 { 2894 if (!tick_nohz_full_enabled()) 2895 return; 2896 housekeeping_affine(current, HK_FLAG_RCU); 2897 } 2898 2899 /* Record the current task on dyntick-idle entry. */ 2900 static void noinstr rcu_dynticks_task_enter(void) 2901 { 2902 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2903 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2904 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2905 } 2906 2907 /* Record no current task on dyntick-idle exit. */ 2908 static void noinstr rcu_dynticks_task_exit(void) 2909 { 2910 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2911 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2912 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2913 } 2914 2915 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */ 2916 static void rcu_dynticks_task_trace_enter(void) 2917 { 2918 #ifdef CONFIG_TASKS_RCU_TRACE 2919 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 2920 current->trc_reader_special.b.need_mb = true; 2921 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ 2922 } 2923 2924 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */ 2925 static void rcu_dynticks_task_trace_exit(void) 2926 { 2927 #ifdef CONFIG_TASKS_RCU_TRACE 2928 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 2929 current->trc_reader_special.b.need_mb = false; 2930 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */ 2931 } 2932