1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include <uapi/linux/sched/types.h> 32 #include "../time/tick-internal.h" 33 34 #ifdef CONFIG_RCU_BOOST 35 36 #include "../locking/rtmutex_common.h" 37 38 /* 39 * Control variables for per-CPU and per-rcu_node kthreads. These 40 * handle all flavors of RCU. 41 */ 42 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 45 DEFINE_PER_CPU(char, rcu_cpu_has_work); 46 47 #else /* #ifdef CONFIG_RCU_BOOST */ 48 49 /* 50 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 51 * all uses are in dead code. Provide a definition to keep the compiler 52 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 53 * This probably needs to be excluded from -rt builds. 54 */ 55 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 56 57 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 58 59 #ifdef CONFIG_RCU_NOCB_CPU 60 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 61 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 62 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 63 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 64 65 /* 66 * Check the RCU kernel configuration parameters and print informative 67 * messages about anything out of the ordinary. 68 */ 69 static void __init rcu_bootup_announce_oddness(void) 70 { 71 if (IS_ENABLED(CONFIG_RCU_TRACE)) 72 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 76 RCU_FANOUT); 77 if (rcu_fanout_exact) 78 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 81 if (IS_ENABLED(CONFIG_PROVE_RCU)) 82 pr_info("\tRCU lockdep checking is enabled.\n"); 83 if (RCU_NUM_LVLS >= 4) 84 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 85 if (RCU_FANOUT_LEAF != 16) 86 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 87 RCU_FANOUT_LEAF); 88 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 89 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 90 if (nr_cpu_ids != NR_CPUS) 91 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 92 if (IS_ENABLED(CONFIG_RCU_BOOST)) 93 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 94 } 95 96 #ifdef CONFIG_PREEMPT_RCU 97 98 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 99 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 100 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 101 102 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 103 bool wake); 104 105 /* 106 * Tell them what RCU they are running. 107 */ 108 static void __init rcu_bootup_announce(void) 109 { 110 pr_info("Preemptible hierarchical RCU implementation.\n"); 111 rcu_bootup_announce_oddness(); 112 } 113 114 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 115 #define RCU_GP_TASKS 0x8 116 #define RCU_EXP_TASKS 0x4 117 #define RCU_GP_BLKD 0x2 118 #define RCU_EXP_BLKD 0x1 119 120 /* 121 * Queues a task preempted within an RCU-preempt read-side critical 122 * section into the appropriate location within the ->blkd_tasks list, 123 * depending on the states of any ongoing normal and expedited grace 124 * periods. The ->gp_tasks pointer indicates which element the normal 125 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 126 * indicates which element the expedited grace period is waiting on (again, 127 * NULL if none). If a grace period is waiting on a given element in the 128 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 129 * adding a task to the tail of the list blocks any grace period that is 130 * already waiting on one of the elements. In contrast, adding a task 131 * to the head of the list won't block any grace period that is already 132 * waiting on one of the elements. 133 * 134 * This queuing is imprecise, and can sometimes make an ongoing grace 135 * period wait for a task that is not strictly speaking blocking it. 136 * Given the choice, we needlessly block a normal grace period rather than 137 * blocking an expedited grace period. 138 * 139 * Note that an endless sequence of expedited grace periods still cannot 140 * indefinitely postpone a normal grace period. Eventually, all of the 141 * fixed number of preempted tasks blocking the normal grace period that are 142 * not also blocking the expedited grace period will resume and complete 143 * their RCU read-side critical sections. At that point, the ->gp_tasks 144 * pointer will equal the ->exp_tasks pointer, at which point the end of 145 * the corresponding expedited grace period will also be the end of the 146 * normal grace period. 147 */ 148 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 149 __releases(rnp->lock) /* But leaves rrupts disabled. */ 150 { 151 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 152 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 153 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 154 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 155 struct task_struct *t = current; 156 157 /* 158 * Decide where to queue the newly blocked task. In theory, 159 * this could be an if-statement. In practice, when I tried 160 * that, it was quite messy. 161 */ 162 switch (blkd_state) { 163 case 0: 164 case RCU_EXP_TASKS: 165 case RCU_EXP_TASKS + RCU_GP_BLKD: 166 case RCU_GP_TASKS: 167 case RCU_GP_TASKS + RCU_EXP_TASKS: 168 169 /* 170 * Blocking neither GP, or first task blocking the normal 171 * GP but not blocking the already-waiting expedited GP. 172 * Queue at the head of the list to avoid unnecessarily 173 * blocking the already-waiting GPs. 174 */ 175 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 176 break; 177 178 case RCU_EXP_BLKD: 179 case RCU_GP_BLKD: 180 case RCU_GP_BLKD + RCU_EXP_BLKD: 181 case RCU_GP_TASKS + RCU_EXP_BLKD: 182 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 183 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 184 185 /* 186 * First task arriving that blocks either GP, or first task 187 * arriving that blocks the expedited GP (with the normal 188 * GP already waiting), or a task arriving that blocks 189 * both GPs with both GPs already waiting. Queue at the 190 * tail of the list to avoid any GP waiting on any of the 191 * already queued tasks that are not blocking it. 192 */ 193 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 194 break; 195 196 case RCU_EXP_TASKS + RCU_EXP_BLKD: 197 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 198 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 199 200 /* 201 * Second or subsequent task blocking the expedited GP. 202 * The task either does not block the normal GP, or is the 203 * first task blocking the normal GP. Queue just after 204 * the first task blocking the expedited GP. 205 */ 206 list_add(&t->rcu_node_entry, rnp->exp_tasks); 207 break; 208 209 case RCU_GP_TASKS + RCU_GP_BLKD: 210 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 211 212 /* 213 * Second or subsequent task blocking the normal GP. 214 * The task does not block the expedited GP. Queue just 215 * after the first task blocking the normal GP. 216 */ 217 list_add(&t->rcu_node_entry, rnp->gp_tasks); 218 break; 219 220 default: 221 222 /* Yet another exercise in excessive paranoia. */ 223 WARN_ON_ONCE(1); 224 break; 225 } 226 227 /* 228 * We have now queued the task. If it was the first one to 229 * block either grace period, update the ->gp_tasks and/or 230 * ->exp_tasks pointers, respectively, to reference the newly 231 * blocked tasks. 232 */ 233 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 234 rnp->gp_tasks = &t->rcu_node_entry; 235 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 236 rnp->exp_tasks = &t->rcu_node_entry; 237 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 238 239 /* 240 * Report the quiescent state for the expedited GP. This expedited 241 * GP should not be able to end until we report, so there should be 242 * no need to check for a subsequent expedited GP. (Though we are 243 * still in a quiescent state in any case.) 244 */ 245 if (blkd_state & RCU_EXP_BLKD && 246 t->rcu_read_unlock_special.b.exp_need_qs) { 247 t->rcu_read_unlock_special.b.exp_need_qs = false; 248 rcu_report_exp_rdp(rdp->rsp, rdp, true); 249 } else { 250 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 251 } 252 } 253 254 /* 255 * Record a preemptible-RCU quiescent state for the specified CPU. Note 256 * that this just means that the task currently running on the CPU is 257 * not in a quiescent state. There might be any number of tasks blocked 258 * while in an RCU read-side critical section. 259 * 260 * As with the other rcu_*_qs() functions, callers to this function 261 * must disable preemption. 262 */ 263 static void rcu_preempt_qs(void) 264 { 265 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 266 trace_rcu_grace_period(TPS("rcu_preempt"), 267 __this_cpu_read(rcu_data_p->gpnum), 268 TPS("cpuqs")); 269 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 270 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 271 current->rcu_read_unlock_special.b.need_qs = false; 272 } 273 } 274 275 /* 276 * We have entered the scheduler, and the current task might soon be 277 * context-switched away from. If this task is in an RCU read-side 278 * critical section, we will no longer be able to rely on the CPU to 279 * record that fact, so we enqueue the task on the blkd_tasks list. 280 * The task will dequeue itself when it exits the outermost enclosing 281 * RCU read-side critical section. Therefore, the current grace period 282 * cannot be permitted to complete until the blkd_tasks list entries 283 * predating the current grace period drain, in other words, until 284 * rnp->gp_tasks becomes NULL. 285 * 286 * Caller must disable interrupts. 287 */ 288 static void rcu_preempt_note_context_switch(void) 289 { 290 struct task_struct *t = current; 291 struct rcu_data *rdp; 292 struct rcu_node *rnp; 293 294 if (t->rcu_read_lock_nesting > 0 && 295 !t->rcu_read_unlock_special.b.blocked) { 296 297 /* Possibly blocking in an RCU read-side critical section. */ 298 rdp = this_cpu_ptr(rcu_state_p->rda); 299 rnp = rdp->mynode; 300 raw_spin_lock_rcu_node(rnp); 301 t->rcu_read_unlock_special.b.blocked = true; 302 t->rcu_blocked_node = rnp; 303 304 /* 305 * Verify the CPU's sanity, trace the preemption, and 306 * then queue the task as required based on the states 307 * of any ongoing and expedited grace periods. 308 */ 309 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 310 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 311 trace_rcu_preempt_task(rdp->rsp->name, 312 t->pid, 313 (rnp->qsmask & rdp->grpmask) 314 ? rnp->gpnum 315 : rnp->gpnum + 1); 316 rcu_preempt_ctxt_queue(rnp, rdp); 317 } else if (t->rcu_read_lock_nesting < 0 && 318 t->rcu_read_unlock_special.s) { 319 320 /* 321 * Complete exit from RCU read-side critical section on 322 * behalf of preempted instance of __rcu_read_unlock(). 323 */ 324 rcu_read_unlock_special(t); 325 } 326 327 /* 328 * Either we were not in an RCU read-side critical section to 329 * begin with, or we have now recorded that critical section 330 * globally. Either way, we can now note a quiescent state 331 * for this CPU. Again, if we were in an RCU read-side critical 332 * section, and if that critical section was blocking the current 333 * grace period, then the fact that the task has been enqueued 334 * means that we continue to block the current grace period. 335 */ 336 rcu_preempt_qs(); 337 } 338 339 /* 340 * Check for preempted RCU readers blocking the current grace period 341 * for the specified rcu_node structure. If the caller needs a reliable 342 * answer, it must hold the rcu_node's ->lock. 343 */ 344 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 345 { 346 return rnp->gp_tasks != NULL; 347 } 348 349 /* 350 * Advance a ->blkd_tasks-list pointer to the next entry, instead 351 * returning NULL if at the end of the list. 352 */ 353 static struct list_head *rcu_next_node_entry(struct task_struct *t, 354 struct rcu_node *rnp) 355 { 356 struct list_head *np; 357 358 np = t->rcu_node_entry.next; 359 if (np == &rnp->blkd_tasks) 360 np = NULL; 361 return np; 362 } 363 364 /* 365 * Return true if the specified rcu_node structure has tasks that were 366 * preempted within an RCU read-side critical section. 367 */ 368 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 369 { 370 return !list_empty(&rnp->blkd_tasks); 371 } 372 373 /* 374 * Handle special cases during rcu_read_unlock(), such as needing to 375 * notify RCU core processing or task having blocked during the RCU 376 * read-side critical section. 377 */ 378 void rcu_read_unlock_special(struct task_struct *t) 379 { 380 bool empty_exp; 381 bool empty_norm; 382 bool empty_exp_now; 383 unsigned long flags; 384 struct list_head *np; 385 bool drop_boost_mutex = false; 386 struct rcu_data *rdp; 387 struct rcu_node *rnp; 388 union rcu_special special; 389 390 /* NMI handlers cannot block and cannot safely manipulate state. */ 391 if (in_nmi()) 392 return; 393 394 local_irq_save(flags); 395 396 /* 397 * If RCU core is waiting for this CPU to exit its critical section, 398 * report the fact that it has exited. Because irqs are disabled, 399 * t->rcu_read_unlock_special cannot change. 400 */ 401 special = t->rcu_read_unlock_special; 402 if (special.b.need_qs) { 403 rcu_preempt_qs(); 404 t->rcu_read_unlock_special.b.need_qs = false; 405 if (!t->rcu_read_unlock_special.s) { 406 local_irq_restore(flags); 407 return; 408 } 409 } 410 411 /* 412 * Respond to a request for an expedited grace period, but only if 413 * we were not preempted, meaning that we were running on the same 414 * CPU throughout. If we were preempted, the exp_need_qs flag 415 * would have been cleared at the time of the first preemption, 416 * and the quiescent state would be reported when we were dequeued. 417 */ 418 if (special.b.exp_need_qs) { 419 WARN_ON_ONCE(special.b.blocked); 420 t->rcu_read_unlock_special.b.exp_need_qs = false; 421 rdp = this_cpu_ptr(rcu_state_p->rda); 422 rcu_report_exp_rdp(rcu_state_p, rdp, true); 423 if (!t->rcu_read_unlock_special.s) { 424 local_irq_restore(flags); 425 return; 426 } 427 } 428 429 /* Hardware IRQ handlers cannot block, complain if they get here. */ 430 if (in_irq() || in_serving_softirq()) { 431 lockdep_rcu_suspicious(__FILE__, __LINE__, 432 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 433 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 434 t->rcu_read_unlock_special.s, 435 t->rcu_read_unlock_special.b.blocked, 436 t->rcu_read_unlock_special.b.exp_need_qs, 437 t->rcu_read_unlock_special.b.need_qs); 438 local_irq_restore(flags); 439 return; 440 } 441 442 /* Clean up if blocked during RCU read-side critical section. */ 443 if (special.b.blocked) { 444 t->rcu_read_unlock_special.b.blocked = false; 445 446 /* 447 * Remove this task from the list it blocked on. The task 448 * now remains queued on the rcu_node corresponding to the 449 * CPU it first blocked on, so there is no longer any need 450 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 451 */ 452 rnp = t->rcu_blocked_node; 453 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 454 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 455 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 456 empty_exp = sync_rcu_preempt_exp_done(rnp); 457 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 458 np = rcu_next_node_entry(t, rnp); 459 list_del_init(&t->rcu_node_entry); 460 t->rcu_blocked_node = NULL; 461 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 462 rnp->gpnum, t->pid); 463 if (&t->rcu_node_entry == rnp->gp_tasks) 464 rnp->gp_tasks = np; 465 if (&t->rcu_node_entry == rnp->exp_tasks) 466 rnp->exp_tasks = np; 467 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 468 if (&t->rcu_node_entry == rnp->boost_tasks) 469 rnp->boost_tasks = np; 470 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 471 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 472 } 473 474 /* 475 * If this was the last task on the current list, and if 476 * we aren't waiting on any CPUs, report the quiescent state. 477 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 478 * so we must take a snapshot of the expedited state. 479 */ 480 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 481 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 482 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 483 rnp->gpnum, 484 0, rnp->qsmask, 485 rnp->level, 486 rnp->grplo, 487 rnp->grphi, 488 !!rnp->gp_tasks); 489 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 490 } else { 491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 492 } 493 494 /* Unboost if we were boosted. */ 495 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 496 rt_mutex_unlock(&rnp->boost_mtx); 497 498 /* 499 * If this was the last task on the expedited lists, 500 * then we need to report up the rcu_node hierarchy. 501 */ 502 if (!empty_exp && empty_exp_now) 503 rcu_report_exp_rnp(rcu_state_p, rnp, true); 504 } else { 505 local_irq_restore(flags); 506 } 507 } 508 509 /* 510 * Dump detailed information for all tasks blocking the current RCU 511 * grace period on the specified rcu_node structure. 512 */ 513 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 514 { 515 unsigned long flags; 516 struct task_struct *t; 517 518 raw_spin_lock_irqsave_rcu_node(rnp, flags); 519 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 520 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 521 return; 522 } 523 t = list_entry(rnp->gp_tasks->prev, 524 struct task_struct, rcu_node_entry); 525 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 526 sched_show_task(t); 527 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 528 } 529 530 /* 531 * Dump detailed information for all tasks blocking the current RCU 532 * grace period. 533 */ 534 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 535 { 536 struct rcu_node *rnp = rcu_get_root(rsp); 537 538 rcu_print_detail_task_stall_rnp(rnp); 539 rcu_for_each_leaf_node(rsp, rnp) 540 rcu_print_detail_task_stall_rnp(rnp); 541 } 542 543 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 544 { 545 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 546 rnp->level, rnp->grplo, rnp->grphi); 547 } 548 549 static void rcu_print_task_stall_end(void) 550 { 551 pr_cont("\n"); 552 } 553 554 /* 555 * Scan the current list of tasks blocked within RCU read-side critical 556 * sections, printing out the tid of each. 557 */ 558 static int rcu_print_task_stall(struct rcu_node *rnp) 559 { 560 struct task_struct *t; 561 int ndetected = 0; 562 563 if (!rcu_preempt_blocked_readers_cgp(rnp)) 564 return 0; 565 rcu_print_task_stall_begin(rnp); 566 t = list_entry(rnp->gp_tasks->prev, 567 struct task_struct, rcu_node_entry); 568 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 569 pr_cont(" P%d", t->pid); 570 ndetected++; 571 } 572 rcu_print_task_stall_end(); 573 return ndetected; 574 } 575 576 /* 577 * Scan the current list of tasks blocked within RCU read-side critical 578 * sections, printing out the tid of each that is blocking the current 579 * expedited grace period. 580 */ 581 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 582 { 583 struct task_struct *t; 584 int ndetected = 0; 585 586 if (!rnp->exp_tasks) 587 return 0; 588 t = list_entry(rnp->exp_tasks->prev, 589 struct task_struct, rcu_node_entry); 590 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 591 pr_cont(" P%d", t->pid); 592 ndetected++; 593 } 594 return ndetected; 595 } 596 597 /* 598 * Check that the list of blocked tasks for the newly completed grace 599 * period is in fact empty. It is a serious bug to complete a grace 600 * period that still has RCU readers blocked! This function must be 601 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 602 * must be held by the caller. 603 * 604 * Also, if there are blocked tasks on the list, they automatically 605 * block the newly created grace period, so set up ->gp_tasks accordingly. 606 */ 607 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 608 { 609 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 610 if (rcu_preempt_has_tasks(rnp)) 611 rnp->gp_tasks = rnp->blkd_tasks.next; 612 WARN_ON_ONCE(rnp->qsmask); 613 } 614 615 /* 616 * Check for a quiescent state from the current CPU. When a task blocks, 617 * the task is recorded in the corresponding CPU's rcu_node structure, 618 * which is checked elsewhere. 619 * 620 * Caller must disable hard irqs. 621 */ 622 static void rcu_preempt_check_callbacks(void) 623 { 624 struct task_struct *t = current; 625 626 if (t->rcu_read_lock_nesting == 0) { 627 rcu_preempt_qs(); 628 return; 629 } 630 if (t->rcu_read_lock_nesting > 0 && 631 __this_cpu_read(rcu_data_p->core_needs_qs) && 632 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 633 t->rcu_read_unlock_special.b.need_qs = true; 634 } 635 636 #ifdef CONFIG_RCU_BOOST 637 638 static void rcu_preempt_do_callbacks(void) 639 { 640 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 641 } 642 643 #endif /* #ifdef CONFIG_RCU_BOOST */ 644 645 /* 646 * Queue a preemptible-RCU callback for invocation after a grace period. 647 */ 648 void call_rcu(struct rcu_head *head, rcu_callback_t func) 649 { 650 __call_rcu(head, func, rcu_state_p, -1, 0); 651 } 652 EXPORT_SYMBOL_GPL(call_rcu); 653 654 /** 655 * synchronize_rcu - wait until a grace period has elapsed. 656 * 657 * Control will return to the caller some time after a full grace 658 * period has elapsed, in other words after all currently executing RCU 659 * read-side critical sections have completed. Note, however, that 660 * upon return from synchronize_rcu(), the caller might well be executing 661 * concurrently with new RCU read-side critical sections that began while 662 * synchronize_rcu() was waiting. RCU read-side critical sections are 663 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 664 * 665 * See the description of synchronize_sched() for more detailed information 666 * on memory ordering guarantees. 667 */ 668 void synchronize_rcu(void) 669 { 670 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 671 lock_is_held(&rcu_lock_map) || 672 lock_is_held(&rcu_sched_lock_map), 673 "Illegal synchronize_rcu() in RCU read-side critical section"); 674 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 675 return; 676 if (rcu_gp_is_expedited()) 677 synchronize_rcu_expedited(); 678 else 679 wait_rcu_gp(call_rcu); 680 } 681 EXPORT_SYMBOL_GPL(synchronize_rcu); 682 683 /** 684 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 685 * 686 * Note that this primitive does not necessarily wait for an RCU grace period 687 * to complete. For example, if there are no RCU callbacks queued anywhere 688 * in the system, then rcu_barrier() is within its rights to return 689 * immediately, without waiting for anything, much less an RCU grace period. 690 */ 691 void rcu_barrier(void) 692 { 693 _rcu_barrier(rcu_state_p); 694 } 695 EXPORT_SYMBOL_GPL(rcu_barrier); 696 697 /* 698 * Initialize preemptible RCU's state structures. 699 */ 700 static void __init __rcu_init_preempt(void) 701 { 702 rcu_init_one(rcu_state_p); 703 } 704 705 /* 706 * Check for a task exiting while in a preemptible-RCU read-side 707 * critical section, clean up if so. No need to issue warnings, 708 * as debug_check_no_locks_held() already does this if lockdep 709 * is enabled. 710 */ 711 void exit_rcu(void) 712 { 713 struct task_struct *t = current; 714 715 if (likely(list_empty(¤t->rcu_node_entry))) 716 return; 717 t->rcu_read_lock_nesting = 1; 718 barrier(); 719 t->rcu_read_unlock_special.b.blocked = true; 720 __rcu_read_unlock(); 721 } 722 723 #else /* #ifdef CONFIG_PREEMPT_RCU */ 724 725 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 726 727 /* 728 * Tell them what RCU they are running. 729 */ 730 static void __init rcu_bootup_announce(void) 731 { 732 pr_info("Hierarchical RCU implementation.\n"); 733 rcu_bootup_announce_oddness(); 734 } 735 736 /* 737 * Because preemptible RCU does not exist, we never have to check for 738 * CPUs being in quiescent states. 739 */ 740 static void rcu_preempt_note_context_switch(void) 741 { 742 } 743 744 /* 745 * Because preemptible RCU does not exist, there are never any preempted 746 * RCU readers. 747 */ 748 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 749 { 750 return 0; 751 } 752 753 /* 754 * Because there is no preemptible RCU, there can be no readers blocked. 755 */ 756 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 757 { 758 return false; 759 } 760 761 /* 762 * Because preemptible RCU does not exist, we never have to check for 763 * tasks blocked within RCU read-side critical sections. 764 */ 765 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 766 { 767 } 768 769 /* 770 * Because preemptible RCU does not exist, we never have to check for 771 * tasks blocked within RCU read-side critical sections. 772 */ 773 static int rcu_print_task_stall(struct rcu_node *rnp) 774 { 775 return 0; 776 } 777 778 /* 779 * Because preemptible RCU does not exist, we never have to check for 780 * tasks blocked within RCU read-side critical sections that are 781 * blocking the current expedited grace period. 782 */ 783 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 784 { 785 return 0; 786 } 787 788 /* 789 * Because there is no preemptible RCU, there can be no readers blocked, 790 * so there is no need to check for blocked tasks. So check only for 791 * bogus qsmask values. 792 */ 793 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 794 { 795 WARN_ON_ONCE(rnp->qsmask); 796 } 797 798 /* 799 * Because preemptible RCU does not exist, it never has any callbacks 800 * to check. 801 */ 802 static void rcu_preempt_check_callbacks(void) 803 { 804 } 805 806 /* 807 * Because preemptible RCU does not exist, rcu_barrier() is just 808 * another name for rcu_barrier_sched(). 809 */ 810 void rcu_barrier(void) 811 { 812 rcu_barrier_sched(); 813 } 814 EXPORT_SYMBOL_GPL(rcu_barrier); 815 816 /* 817 * Because preemptible RCU does not exist, it need not be initialized. 818 */ 819 static void __init __rcu_init_preempt(void) 820 { 821 } 822 823 /* 824 * Because preemptible RCU does not exist, tasks cannot possibly exit 825 * while in preemptible RCU read-side critical sections. 826 */ 827 void exit_rcu(void) 828 { 829 } 830 831 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 832 833 #ifdef CONFIG_RCU_BOOST 834 835 #include "../locking/rtmutex_common.h" 836 837 #ifdef CONFIG_RCU_TRACE 838 839 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 840 { 841 if (!rcu_preempt_has_tasks(rnp)) 842 rnp->n_balk_blkd_tasks++; 843 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 844 rnp->n_balk_exp_gp_tasks++; 845 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 846 rnp->n_balk_boost_tasks++; 847 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 848 rnp->n_balk_notblocked++; 849 else if (rnp->gp_tasks != NULL && 850 ULONG_CMP_LT(jiffies, rnp->boost_time)) 851 rnp->n_balk_notyet++; 852 else 853 rnp->n_balk_nos++; 854 } 855 856 #else /* #ifdef CONFIG_RCU_TRACE */ 857 858 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 859 { 860 } 861 862 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 863 864 static void rcu_wake_cond(struct task_struct *t, int status) 865 { 866 /* 867 * If the thread is yielding, only wake it when this 868 * is invoked from idle 869 */ 870 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 871 wake_up_process(t); 872 } 873 874 /* 875 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 876 * or ->boost_tasks, advancing the pointer to the next task in the 877 * ->blkd_tasks list. 878 * 879 * Note that irqs must be enabled: boosting the task can block. 880 * Returns 1 if there are more tasks needing to be boosted. 881 */ 882 static int rcu_boost(struct rcu_node *rnp) 883 { 884 unsigned long flags; 885 struct task_struct *t; 886 struct list_head *tb; 887 888 if (READ_ONCE(rnp->exp_tasks) == NULL && 889 READ_ONCE(rnp->boost_tasks) == NULL) 890 return 0; /* Nothing left to boost. */ 891 892 raw_spin_lock_irqsave_rcu_node(rnp, flags); 893 894 /* 895 * Recheck under the lock: all tasks in need of boosting 896 * might exit their RCU read-side critical sections on their own. 897 */ 898 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 899 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 900 return 0; 901 } 902 903 /* 904 * Preferentially boost tasks blocking expedited grace periods. 905 * This cannot starve the normal grace periods because a second 906 * expedited grace period must boost all blocked tasks, including 907 * those blocking the pre-existing normal grace period. 908 */ 909 if (rnp->exp_tasks != NULL) { 910 tb = rnp->exp_tasks; 911 rnp->n_exp_boosts++; 912 } else { 913 tb = rnp->boost_tasks; 914 rnp->n_normal_boosts++; 915 } 916 rnp->n_tasks_boosted++; 917 918 /* 919 * We boost task t by manufacturing an rt_mutex that appears to 920 * be held by task t. We leave a pointer to that rt_mutex where 921 * task t can find it, and task t will release the mutex when it 922 * exits its outermost RCU read-side critical section. Then 923 * simply acquiring this artificial rt_mutex will boost task 924 * t's priority. (Thanks to tglx for suggesting this approach!) 925 * 926 * Note that task t must acquire rnp->lock to remove itself from 927 * the ->blkd_tasks list, which it will do from exit() if from 928 * nowhere else. We therefore are guaranteed that task t will 929 * stay around at least until we drop rnp->lock. Note that 930 * rnp->lock also resolves races between our priority boosting 931 * and task t's exiting its outermost RCU read-side critical 932 * section. 933 */ 934 t = container_of(tb, struct task_struct, rcu_node_entry); 935 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 936 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 937 /* Lock only for side effect: boosts task t's priority. */ 938 rt_mutex_lock(&rnp->boost_mtx); 939 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 940 941 return READ_ONCE(rnp->exp_tasks) != NULL || 942 READ_ONCE(rnp->boost_tasks) != NULL; 943 } 944 945 /* 946 * Priority-boosting kthread, one per leaf rcu_node. 947 */ 948 static int rcu_boost_kthread(void *arg) 949 { 950 struct rcu_node *rnp = (struct rcu_node *)arg; 951 int spincnt = 0; 952 int more2boost; 953 954 trace_rcu_utilization(TPS("Start boost kthread@init")); 955 for (;;) { 956 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 957 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 958 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 959 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 960 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 961 more2boost = rcu_boost(rnp); 962 if (more2boost) 963 spincnt++; 964 else 965 spincnt = 0; 966 if (spincnt > 10) { 967 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 968 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 969 schedule_timeout_interruptible(2); 970 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 971 spincnt = 0; 972 } 973 } 974 /* NOTREACHED */ 975 trace_rcu_utilization(TPS("End boost kthread@notreached")); 976 return 0; 977 } 978 979 /* 980 * Check to see if it is time to start boosting RCU readers that are 981 * blocking the current grace period, and, if so, tell the per-rcu_node 982 * kthread to start boosting them. If there is an expedited grace 983 * period in progress, it is always time to boost. 984 * 985 * The caller must hold rnp->lock, which this function releases. 986 * The ->boost_kthread_task is immortal, so we don't need to worry 987 * about it going away. 988 */ 989 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 990 __releases(rnp->lock) 991 { 992 struct task_struct *t; 993 994 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 995 rnp->n_balk_exp_gp_tasks++; 996 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 997 return; 998 } 999 if (rnp->exp_tasks != NULL || 1000 (rnp->gp_tasks != NULL && 1001 rnp->boost_tasks == NULL && 1002 rnp->qsmask == 0 && 1003 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1004 if (rnp->exp_tasks == NULL) 1005 rnp->boost_tasks = rnp->gp_tasks; 1006 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1007 t = rnp->boost_kthread_task; 1008 if (t) 1009 rcu_wake_cond(t, rnp->boost_kthread_status); 1010 } else { 1011 rcu_initiate_boost_trace(rnp); 1012 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1013 } 1014 } 1015 1016 /* 1017 * Wake up the per-CPU kthread to invoke RCU callbacks. 1018 */ 1019 static void invoke_rcu_callbacks_kthread(void) 1020 { 1021 unsigned long flags; 1022 1023 local_irq_save(flags); 1024 __this_cpu_write(rcu_cpu_has_work, 1); 1025 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1026 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1027 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1028 __this_cpu_read(rcu_cpu_kthread_status)); 1029 } 1030 local_irq_restore(flags); 1031 } 1032 1033 /* 1034 * Is the current CPU running the RCU-callbacks kthread? 1035 * Caller must have preemption disabled. 1036 */ 1037 static bool rcu_is_callbacks_kthread(void) 1038 { 1039 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1040 } 1041 1042 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1043 1044 /* 1045 * Do priority-boost accounting for the start of a new grace period. 1046 */ 1047 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1048 { 1049 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1050 } 1051 1052 /* 1053 * Create an RCU-boost kthread for the specified node if one does not 1054 * already exist. We only create this kthread for preemptible RCU. 1055 * Returns zero if all is well, a negated errno otherwise. 1056 */ 1057 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1058 struct rcu_node *rnp) 1059 { 1060 int rnp_index = rnp - &rsp->node[0]; 1061 unsigned long flags; 1062 struct sched_param sp; 1063 struct task_struct *t; 1064 1065 if (rcu_state_p != rsp) 1066 return 0; 1067 1068 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1069 return 0; 1070 1071 rsp->boost = 1; 1072 if (rnp->boost_kthread_task != NULL) 1073 return 0; 1074 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1075 "rcub/%d", rnp_index); 1076 if (IS_ERR(t)) 1077 return PTR_ERR(t); 1078 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1079 rnp->boost_kthread_task = t; 1080 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1081 sp.sched_priority = kthread_prio; 1082 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1083 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1084 return 0; 1085 } 1086 1087 static void rcu_kthread_do_work(void) 1088 { 1089 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1090 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1091 rcu_preempt_do_callbacks(); 1092 } 1093 1094 static void rcu_cpu_kthread_setup(unsigned int cpu) 1095 { 1096 struct sched_param sp; 1097 1098 sp.sched_priority = kthread_prio; 1099 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1100 } 1101 1102 static void rcu_cpu_kthread_park(unsigned int cpu) 1103 { 1104 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1105 } 1106 1107 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1108 { 1109 return __this_cpu_read(rcu_cpu_has_work); 1110 } 1111 1112 /* 1113 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1114 * RCU softirq used in flavors and configurations of RCU that do not 1115 * support RCU priority boosting. 1116 */ 1117 static void rcu_cpu_kthread(unsigned int cpu) 1118 { 1119 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1120 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1121 int spincnt; 1122 1123 for (spincnt = 0; spincnt < 10; spincnt++) { 1124 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1125 local_bh_disable(); 1126 *statusp = RCU_KTHREAD_RUNNING; 1127 this_cpu_inc(rcu_cpu_kthread_loops); 1128 local_irq_disable(); 1129 work = *workp; 1130 *workp = 0; 1131 local_irq_enable(); 1132 if (work) 1133 rcu_kthread_do_work(); 1134 local_bh_enable(); 1135 if (*workp == 0) { 1136 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1137 *statusp = RCU_KTHREAD_WAITING; 1138 return; 1139 } 1140 } 1141 *statusp = RCU_KTHREAD_YIELDING; 1142 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1143 schedule_timeout_interruptible(2); 1144 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1145 *statusp = RCU_KTHREAD_WAITING; 1146 } 1147 1148 /* 1149 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1150 * served by the rcu_node in question. The CPU hotplug lock is still 1151 * held, so the value of rnp->qsmaskinit will be stable. 1152 * 1153 * We don't include outgoingcpu in the affinity set, use -1 if there is 1154 * no outgoing CPU. If there are no CPUs left in the affinity set, 1155 * this function allows the kthread to execute on any CPU. 1156 */ 1157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1158 { 1159 struct task_struct *t = rnp->boost_kthread_task; 1160 unsigned long mask = rcu_rnp_online_cpus(rnp); 1161 cpumask_var_t cm; 1162 int cpu; 1163 1164 if (!t) 1165 return; 1166 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1167 return; 1168 for_each_leaf_node_possible_cpu(rnp, cpu) 1169 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1170 cpu != outgoingcpu) 1171 cpumask_set_cpu(cpu, cm); 1172 if (cpumask_weight(cm) == 0) 1173 cpumask_setall(cm); 1174 set_cpus_allowed_ptr(t, cm); 1175 free_cpumask_var(cm); 1176 } 1177 1178 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1179 .store = &rcu_cpu_kthread_task, 1180 .thread_should_run = rcu_cpu_kthread_should_run, 1181 .thread_fn = rcu_cpu_kthread, 1182 .thread_comm = "rcuc/%u", 1183 .setup = rcu_cpu_kthread_setup, 1184 .park = rcu_cpu_kthread_park, 1185 }; 1186 1187 /* 1188 * Spawn boost kthreads -- called as soon as the scheduler is running. 1189 */ 1190 static void __init rcu_spawn_boost_kthreads(void) 1191 { 1192 struct rcu_node *rnp; 1193 int cpu; 1194 1195 for_each_possible_cpu(cpu) 1196 per_cpu(rcu_cpu_has_work, cpu) = 0; 1197 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1198 rcu_for_each_leaf_node(rcu_state_p, rnp) 1199 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1200 } 1201 1202 static void rcu_prepare_kthreads(int cpu) 1203 { 1204 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1205 struct rcu_node *rnp = rdp->mynode; 1206 1207 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1208 if (rcu_scheduler_fully_active) 1209 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1210 } 1211 1212 #else /* #ifdef CONFIG_RCU_BOOST */ 1213 1214 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1215 __releases(rnp->lock) 1216 { 1217 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1218 } 1219 1220 static void invoke_rcu_callbacks_kthread(void) 1221 { 1222 WARN_ON_ONCE(1); 1223 } 1224 1225 static bool rcu_is_callbacks_kthread(void) 1226 { 1227 return false; 1228 } 1229 1230 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1231 { 1232 } 1233 1234 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1235 { 1236 } 1237 1238 static void __init rcu_spawn_boost_kthreads(void) 1239 { 1240 } 1241 1242 static void rcu_prepare_kthreads(int cpu) 1243 { 1244 } 1245 1246 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1247 1248 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1249 1250 /* 1251 * Check to see if any future RCU-related work will need to be done 1252 * by the current CPU, even if none need be done immediately, returning 1253 * 1 if so. This function is part of the RCU implementation; it is -not- 1254 * an exported member of the RCU API. 1255 * 1256 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1257 * any flavor of RCU. 1258 */ 1259 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1260 { 1261 *nextevt = KTIME_MAX; 1262 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) 1263 ? 0 : rcu_cpu_has_callbacks(NULL); 1264 } 1265 1266 /* 1267 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1268 * after it. 1269 */ 1270 static void rcu_cleanup_after_idle(void) 1271 { 1272 } 1273 1274 /* 1275 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1276 * is nothing. 1277 */ 1278 static void rcu_prepare_for_idle(void) 1279 { 1280 } 1281 1282 /* 1283 * Don't bother keeping a running count of the number of RCU callbacks 1284 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1285 */ 1286 static void rcu_idle_count_callbacks_posted(void) 1287 { 1288 } 1289 1290 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1291 1292 /* 1293 * This code is invoked when a CPU goes idle, at which point we want 1294 * to have the CPU do everything required for RCU so that it can enter 1295 * the energy-efficient dyntick-idle mode. This is handled by a 1296 * state machine implemented by rcu_prepare_for_idle() below. 1297 * 1298 * The following three proprocessor symbols control this state machine: 1299 * 1300 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1301 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1302 * is sized to be roughly one RCU grace period. Those energy-efficiency 1303 * benchmarkers who might otherwise be tempted to set this to a large 1304 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1305 * system. And if you are -that- concerned about energy efficiency, 1306 * just power the system down and be done with it! 1307 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1308 * permitted to sleep in dyntick-idle mode with only lazy RCU 1309 * callbacks pending. Setting this too high can OOM your system. 1310 * 1311 * The values below work well in practice. If future workloads require 1312 * adjustment, they can be converted into kernel config parameters, though 1313 * making the state machine smarter might be a better option. 1314 */ 1315 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1316 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1317 1318 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1319 module_param(rcu_idle_gp_delay, int, 0644); 1320 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1321 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1322 1323 /* 1324 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1325 * only if it has been awhile since the last time we did so. Afterwards, 1326 * if there are any callbacks ready for immediate invocation, return true. 1327 */ 1328 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1329 { 1330 bool cbs_ready = false; 1331 struct rcu_data *rdp; 1332 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1333 struct rcu_node *rnp; 1334 struct rcu_state *rsp; 1335 1336 /* Exit early if we advanced recently. */ 1337 if (jiffies == rdtp->last_advance_all) 1338 return false; 1339 rdtp->last_advance_all = jiffies; 1340 1341 for_each_rcu_flavor(rsp) { 1342 rdp = this_cpu_ptr(rsp->rda); 1343 rnp = rdp->mynode; 1344 1345 /* 1346 * Don't bother checking unless a grace period has 1347 * completed since we last checked and there are 1348 * callbacks not yet ready to invoke. 1349 */ 1350 if ((rdp->completed != rnp->completed || 1351 unlikely(READ_ONCE(rdp->gpwrap))) && 1352 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1353 note_gp_changes(rsp, rdp); 1354 1355 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1356 cbs_ready = true; 1357 } 1358 return cbs_ready; 1359 } 1360 1361 /* 1362 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1363 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1364 * caller to set the timeout based on whether or not there are non-lazy 1365 * callbacks. 1366 * 1367 * The caller must have disabled interrupts. 1368 */ 1369 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1370 { 1371 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1372 unsigned long dj; 1373 1374 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) { 1375 *nextevt = KTIME_MAX; 1376 return 0; 1377 } 1378 1379 /* Snapshot to detect later posting of non-lazy callback. */ 1380 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1381 1382 /* If no callbacks, RCU doesn't need the CPU. */ 1383 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1384 *nextevt = KTIME_MAX; 1385 return 0; 1386 } 1387 1388 /* Attempt to advance callbacks. */ 1389 if (rcu_try_advance_all_cbs()) { 1390 /* Some ready to invoke, so initiate later invocation. */ 1391 invoke_rcu_core(); 1392 return 1; 1393 } 1394 rdtp->last_accelerate = jiffies; 1395 1396 /* Request timer delay depending on laziness, and round. */ 1397 if (!rdtp->all_lazy) { 1398 dj = round_up(rcu_idle_gp_delay + jiffies, 1399 rcu_idle_gp_delay) - jiffies; 1400 } else { 1401 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1402 } 1403 *nextevt = basemono + dj * TICK_NSEC; 1404 return 0; 1405 } 1406 1407 /* 1408 * Prepare a CPU for idle from an RCU perspective. The first major task 1409 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1410 * The second major task is to check to see if a non-lazy callback has 1411 * arrived at a CPU that previously had only lazy callbacks. The third 1412 * major task is to accelerate (that is, assign grace-period numbers to) 1413 * any recently arrived callbacks. 1414 * 1415 * The caller must have disabled interrupts. 1416 */ 1417 static void rcu_prepare_for_idle(void) 1418 { 1419 bool needwake; 1420 struct rcu_data *rdp; 1421 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1422 struct rcu_node *rnp; 1423 struct rcu_state *rsp; 1424 int tne; 1425 1426 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1427 rcu_is_nocb_cpu(smp_processor_id())) 1428 return; 1429 1430 /* Handle nohz enablement switches conservatively. */ 1431 tne = READ_ONCE(tick_nohz_active); 1432 if (tne != rdtp->tick_nohz_enabled_snap) { 1433 if (rcu_cpu_has_callbacks(NULL)) 1434 invoke_rcu_core(); /* force nohz to see update. */ 1435 rdtp->tick_nohz_enabled_snap = tne; 1436 return; 1437 } 1438 if (!tne) 1439 return; 1440 1441 /* 1442 * If a non-lazy callback arrived at a CPU having only lazy 1443 * callbacks, invoke RCU core for the side-effect of recalculating 1444 * idle duration on re-entry to idle. 1445 */ 1446 if (rdtp->all_lazy && 1447 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1448 rdtp->all_lazy = false; 1449 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1450 invoke_rcu_core(); 1451 return; 1452 } 1453 1454 /* 1455 * If we have not yet accelerated this jiffy, accelerate all 1456 * callbacks on this CPU. 1457 */ 1458 if (rdtp->last_accelerate == jiffies) 1459 return; 1460 rdtp->last_accelerate = jiffies; 1461 for_each_rcu_flavor(rsp) { 1462 rdp = this_cpu_ptr(rsp->rda); 1463 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1464 continue; 1465 rnp = rdp->mynode; 1466 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1467 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1468 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1469 if (needwake) 1470 rcu_gp_kthread_wake(rsp); 1471 } 1472 } 1473 1474 /* 1475 * Clean up for exit from idle. Attempt to advance callbacks based on 1476 * any grace periods that elapsed while the CPU was idle, and if any 1477 * callbacks are now ready to invoke, initiate invocation. 1478 */ 1479 static void rcu_cleanup_after_idle(void) 1480 { 1481 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1482 rcu_is_nocb_cpu(smp_processor_id())) 1483 return; 1484 if (rcu_try_advance_all_cbs()) 1485 invoke_rcu_core(); 1486 } 1487 1488 /* 1489 * Keep a running count of the number of non-lazy callbacks posted 1490 * on this CPU. This running counter (which is never decremented) allows 1491 * rcu_prepare_for_idle() to detect when something out of the idle loop 1492 * posts a callback, even if an equal number of callbacks are invoked. 1493 * Of course, callbacks should only be posted from within a trace event 1494 * designed to be called from idle or from within RCU_NONIDLE(). 1495 */ 1496 static void rcu_idle_count_callbacks_posted(void) 1497 { 1498 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1499 } 1500 1501 /* 1502 * Data for flushing lazy RCU callbacks at OOM time. 1503 */ 1504 static atomic_t oom_callback_count; 1505 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1506 1507 /* 1508 * RCU OOM callback -- decrement the outstanding count and deliver the 1509 * wake-up if we are the last one. 1510 */ 1511 static void rcu_oom_callback(struct rcu_head *rhp) 1512 { 1513 if (atomic_dec_and_test(&oom_callback_count)) 1514 wake_up(&oom_callback_wq); 1515 } 1516 1517 /* 1518 * Post an rcu_oom_notify callback on the current CPU if it has at 1519 * least one lazy callback. This will unnecessarily post callbacks 1520 * to CPUs that already have a non-lazy callback at the end of their 1521 * callback list, but this is an infrequent operation, so accept some 1522 * extra overhead to keep things simple. 1523 */ 1524 static void rcu_oom_notify_cpu(void *unused) 1525 { 1526 struct rcu_state *rsp; 1527 struct rcu_data *rdp; 1528 1529 for_each_rcu_flavor(rsp) { 1530 rdp = raw_cpu_ptr(rsp->rda); 1531 if (rdp->qlen_lazy != 0) { 1532 atomic_inc(&oom_callback_count); 1533 rsp->call(&rdp->oom_head, rcu_oom_callback); 1534 } 1535 } 1536 } 1537 1538 /* 1539 * If low on memory, ensure that each CPU has a non-lazy callback. 1540 * This will wake up CPUs that have only lazy callbacks, in turn 1541 * ensuring that they free up the corresponding memory in a timely manner. 1542 * Because an uncertain amount of memory will be freed in some uncertain 1543 * timeframe, we do not claim to have freed anything. 1544 */ 1545 static int rcu_oom_notify(struct notifier_block *self, 1546 unsigned long notused, void *nfreed) 1547 { 1548 int cpu; 1549 1550 /* Wait for callbacks from earlier instance to complete. */ 1551 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1552 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1553 1554 /* 1555 * Prevent premature wakeup: ensure that all increments happen 1556 * before there is a chance of the counter reaching zero. 1557 */ 1558 atomic_set(&oom_callback_count, 1); 1559 1560 for_each_online_cpu(cpu) { 1561 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1562 cond_resched_rcu_qs(); 1563 } 1564 1565 /* Unconditionally decrement: no need to wake ourselves up. */ 1566 atomic_dec(&oom_callback_count); 1567 1568 return NOTIFY_OK; 1569 } 1570 1571 static struct notifier_block rcu_oom_nb = { 1572 .notifier_call = rcu_oom_notify 1573 }; 1574 1575 static int __init rcu_register_oom_notifier(void) 1576 { 1577 register_oom_notifier(&rcu_oom_nb); 1578 return 0; 1579 } 1580 early_initcall(rcu_register_oom_notifier); 1581 1582 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1583 1584 #ifdef CONFIG_RCU_FAST_NO_HZ 1585 1586 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1587 { 1588 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1589 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1590 1591 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1592 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1593 ulong2long(nlpd), 1594 rdtp->all_lazy ? 'L' : '.', 1595 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1596 } 1597 1598 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1599 1600 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1601 { 1602 *cp = '\0'; 1603 } 1604 1605 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1606 1607 /* Initiate the stall-info list. */ 1608 static void print_cpu_stall_info_begin(void) 1609 { 1610 pr_cont("\n"); 1611 } 1612 1613 /* 1614 * Print out diagnostic information for the specified stalled CPU. 1615 * 1616 * If the specified CPU is aware of the current RCU grace period 1617 * (flavor specified by rsp), then print the number of scheduling 1618 * clock interrupts the CPU has taken during the time that it has 1619 * been aware. Otherwise, print the number of RCU grace periods 1620 * that this CPU is ignorant of, for example, "1" if the CPU was 1621 * aware of the previous grace period. 1622 * 1623 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1624 */ 1625 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1626 { 1627 char fast_no_hz[72]; 1628 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1629 struct rcu_dynticks *rdtp = rdp->dynticks; 1630 char *ticks_title; 1631 unsigned long ticks_value; 1632 1633 if (rsp->gpnum == rdp->gpnum) { 1634 ticks_title = "ticks this GP"; 1635 ticks_value = rdp->ticks_this_gp; 1636 } else { 1637 ticks_title = "GPs behind"; 1638 ticks_value = rsp->gpnum - rdp->gpnum; 1639 } 1640 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1641 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1642 cpu, 1643 "O."[!!cpu_online(cpu)], 1644 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1645 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1646 ticks_value, ticks_title, 1647 rcu_dynticks_snap(rdtp) & 0xfff, 1648 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1649 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1650 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1651 fast_no_hz); 1652 } 1653 1654 /* Terminate the stall-info list. */ 1655 static void print_cpu_stall_info_end(void) 1656 { 1657 pr_err("\t"); 1658 } 1659 1660 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1661 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1662 { 1663 rdp->ticks_this_gp = 0; 1664 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1665 } 1666 1667 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1668 static void increment_cpu_stall_ticks(void) 1669 { 1670 struct rcu_state *rsp; 1671 1672 for_each_rcu_flavor(rsp) 1673 raw_cpu_inc(rsp->rda->ticks_this_gp); 1674 } 1675 1676 #ifdef CONFIG_RCU_NOCB_CPU 1677 1678 /* 1679 * Offload callback processing from the boot-time-specified set of CPUs 1680 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1681 * kthread created that pulls the callbacks from the corresponding CPU, 1682 * waits for a grace period to elapse, and invokes the callbacks. 1683 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1684 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1685 * has been specified, in which case each kthread actively polls its 1686 * CPU. (Which isn't so great for energy efficiency, but which does 1687 * reduce RCU's overhead on that CPU.) 1688 * 1689 * This is intended to be used in conjunction with Frederic Weisbecker's 1690 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1691 * running CPU-bound user-mode computations. 1692 * 1693 * Offloading of callback processing could also in theory be used as 1694 * an energy-efficiency measure because CPUs with no RCU callbacks 1695 * queued are more aggressive about entering dyntick-idle mode. 1696 */ 1697 1698 1699 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1700 static int __init rcu_nocb_setup(char *str) 1701 { 1702 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1703 have_rcu_nocb_mask = true; 1704 cpulist_parse(str, rcu_nocb_mask); 1705 return 1; 1706 } 1707 __setup("rcu_nocbs=", rcu_nocb_setup); 1708 1709 static int __init parse_rcu_nocb_poll(char *arg) 1710 { 1711 rcu_nocb_poll = 1; 1712 return 0; 1713 } 1714 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1715 1716 /* 1717 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1718 * grace period. 1719 */ 1720 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1721 { 1722 swake_up_all(sq); 1723 } 1724 1725 /* 1726 * Set the root rcu_node structure's ->need_future_gp field 1727 * based on the sum of those of all rcu_node structures. This does 1728 * double-count the root rcu_node structure's requests, but this 1729 * is necessary to handle the possibility of a rcu_nocb_kthread() 1730 * having awakened during the time that the rcu_node structures 1731 * were being updated for the end of the previous grace period. 1732 */ 1733 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1734 { 1735 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1736 } 1737 1738 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1739 { 1740 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1741 } 1742 1743 static void rcu_init_one_nocb(struct rcu_node *rnp) 1744 { 1745 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1746 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1747 } 1748 1749 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1750 /* Is the specified CPU a no-CBs CPU? */ 1751 bool rcu_is_nocb_cpu(int cpu) 1752 { 1753 if (have_rcu_nocb_mask) 1754 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1755 return false; 1756 } 1757 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1758 1759 /* 1760 * Kick the leader kthread for this NOCB group. 1761 */ 1762 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1763 { 1764 struct rcu_data *rdp_leader = rdp->nocb_leader; 1765 1766 if (!READ_ONCE(rdp_leader->nocb_kthread)) 1767 return; 1768 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1769 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1770 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1771 swake_up(&rdp_leader->nocb_wq); 1772 } 1773 } 1774 1775 /* 1776 * Does the specified CPU need an RCU callback for the specified flavor 1777 * of rcu_barrier()? 1778 */ 1779 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1780 { 1781 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1782 unsigned long ret; 1783 #ifdef CONFIG_PROVE_RCU 1784 struct rcu_head *rhp; 1785 #endif /* #ifdef CONFIG_PROVE_RCU */ 1786 1787 /* 1788 * Check count of all no-CBs callbacks awaiting invocation. 1789 * There needs to be a barrier before this function is called, 1790 * but associated with a prior determination that no more 1791 * callbacks would be posted. In the worst case, the first 1792 * barrier in _rcu_barrier() suffices (but the caller cannot 1793 * necessarily rely on this, not a substitute for the caller 1794 * getting the concurrency design right!). There must also be 1795 * a barrier between the following load an posting of a callback 1796 * (if a callback is in fact needed). This is associated with an 1797 * atomic_inc() in the caller. 1798 */ 1799 ret = atomic_long_read(&rdp->nocb_q_count); 1800 1801 #ifdef CONFIG_PROVE_RCU 1802 rhp = READ_ONCE(rdp->nocb_head); 1803 if (!rhp) 1804 rhp = READ_ONCE(rdp->nocb_gp_head); 1805 if (!rhp) 1806 rhp = READ_ONCE(rdp->nocb_follower_head); 1807 1808 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1809 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1810 rcu_scheduler_fully_active) { 1811 /* RCU callback enqueued before CPU first came online??? */ 1812 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1813 cpu, rhp->func); 1814 WARN_ON_ONCE(1); 1815 } 1816 #endif /* #ifdef CONFIG_PROVE_RCU */ 1817 1818 return !!ret; 1819 } 1820 1821 /* 1822 * Enqueue the specified string of rcu_head structures onto the specified 1823 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1824 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1825 * counts are supplied by rhcount and rhcount_lazy. 1826 * 1827 * If warranted, also wake up the kthread servicing this CPUs queues. 1828 */ 1829 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1830 struct rcu_head *rhp, 1831 struct rcu_head **rhtp, 1832 int rhcount, int rhcount_lazy, 1833 unsigned long flags) 1834 { 1835 int len; 1836 struct rcu_head **old_rhpp; 1837 struct task_struct *t; 1838 1839 /* Enqueue the callback on the nocb list and update counts. */ 1840 atomic_long_add(rhcount, &rdp->nocb_q_count); 1841 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1842 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1843 WRITE_ONCE(*old_rhpp, rhp); 1844 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1845 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1846 1847 /* If we are not being polled and there is a kthread, awaken it ... */ 1848 t = READ_ONCE(rdp->nocb_kthread); 1849 if (rcu_nocb_poll || !t) { 1850 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1851 TPS("WakeNotPoll")); 1852 return; 1853 } 1854 len = atomic_long_read(&rdp->nocb_q_count); 1855 if (old_rhpp == &rdp->nocb_head) { 1856 if (!irqs_disabled_flags(flags)) { 1857 /* ... if queue was empty ... */ 1858 wake_nocb_leader(rdp, false); 1859 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1860 TPS("WakeEmpty")); 1861 } else { 1862 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 1863 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1864 TPS("WakeEmptyIsDeferred")); 1865 } 1866 rdp->qlen_last_fqs_check = 0; 1867 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1868 /* ... or if many callbacks queued. */ 1869 if (!irqs_disabled_flags(flags)) { 1870 wake_nocb_leader(rdp, true); 1871 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1872 TPS("WakeOvf")); 1873 } else { 1874 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 1875 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1876 TPS("WakeOvfIsDeferred")); 1877 } 1878 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1879 } else { 1880 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1881 } 1882 return; 1883 } 1884 1885 /* 1886 * This is a helper for __call_rcu(), which invokes this when the normal 1887 * callback queue is inoperable. If this is not a no-CBs CPU, this 1888 * function returns failure back to __call_rcu(), which can complain 1889 * appropriately. 1890 * 1891 * Otherwise, this function queues the callback where the corresponding 1892 * "rcuo" kthread can find it. 1893 */ 1894 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1895 bool lazy, unsigned long flags) 1896 { 1897 1898 if (!rcu_is_nocb_cpu(rdp->cpu)) 1899 return false; 1900 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1901 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1902 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1903 (unsigned long)rhp->func, 1904 -atomic_long_read(&rdp->nocb_q_count_lazy), 1905 -atomic_long_read(&rdp->nocb_q_count)); 1906 else 1907 trace_rcu_callback(rdp->rsp->name, rhp, 1908 -atomic_long_read(&rdp->nocb_q_count_lazy), 1909 -atomic_long_read(&rdp->nocb_q_count)); 1910 1911 /* 1912 * If called from an extended quiescent state with interrupts 1913 * disabled, invoke the RCU core in order to allow the idle-entry 1914 * deferred-wakeup check to function. 1915 */ 1916 if (irqs_disabled_flags(flags) && 1917 !rcu_is_watching() && 1918 cpu_online(smp_processor_id())) 1919 invoke_rcu_core(); 1920 1921 return true; 1922 } 1923 1924 /* 1925 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 1926 * not a no-CBs CPU. 1927 */ 1928 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 1929 struct rcu_data *rdp, 1930 unsigned long flags) 1931 { 1932 long ql = rsp->qlen; 1933 long qll = rsp->qlen_lazy; 1934 1935 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 1936 if (!rcu_is_nocb_cpu(smp_processor_id())) 1937 return false; 1938 rsp->qlen = 0; 1939 rsp->qlen_lazy = 0; 1940 1941 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 1942 if (rsp->orphan_donelist != NULL) { 1943 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 1944 rsp->orphan_donetail, ql, qll, flags); 1945 ql = qll = 0; 1946 rsp->orphan_donelist = NULL; 1947 rsp->orphan_donetail = &rsp->orphan_donelist; 1948 } 1949 if (rsp->orphan_nxtlist != NULL) { 1950 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 1951 rsp->orphan_nxttail, ql, qll, flags); 1952 ql = qll = 0; 1953 rsp->orphan_nxtlist = NULL; 1954 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 1955 } 1956 return true; 1957 } 1958 1959 /* 1960 * If necessary, kick off a new grace period, and either way wait 1961 * for a subsequent grace period to complete. 1962 */ 1963 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 1964 { 1965 unsigned long c; 1966 bool d; 1967 unsigned long flags; 1968 bool needwake; 1969 struct rcu_node *rnp = rdp->mynode; 1970 1971 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1972 needwake = rcu_start_future_gp(rnp, rdp, &c); 1973 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1974 if (needwake) 1975 rcu_gp_kthread_wake(rdp->rsp); 1976 1977 /* 1978 * Wait for the grace period. Do so interruptibly to avoid messing 1979 * up the load average. 1980 */ 1981 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 1982 for (;;) { 1983 swait_event_interruptible( 1984 rnp->nocb_gp_wq[c & 0x1], 1985 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 1986 if (likely(d)) 1987 break; 1988 WARN_ON(signal_pending(current)); 1989 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 1990 } 1991 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 1992 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 1993 } 1994 1995 /* 1996 * Leaders come here to wait for additional callbacks to show up. 1997 * This function does not return until callbacks appear. 1998 */ 1999 static void nocb_leader_wait(struct rcu_data *my_rdp) 2000 { 2001 bool firsttime = true; 2002 bool gotcbs; 2003 struct rcu_data *rdp; 2004 struct rcu_head **tail; 2005 2006 wait_again: 2007 2008 /* Wait for callbacks to appear. */ 2009 if (!rcu_nocb_poll) { 2010 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2011 swait_event_interruptible(my_rdp->nocb_wq, 2012 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2013 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2014 } else if (firsttime) { 2015 firsttime = false; /* Don't drown trace log with "Poll"! */ 2016 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2017 } 2018 2019 /* 2020 * Each pass through the following loop checks a follower for CBs. 2021 * We are our own first follower. Any CBs found are moved to 2022 * nocb_gp_head, where they await a grace period. 2023 */ 2024 gotcbs = false; 2025 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2026 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2027 if (!rdp->nocb_gp_head) 2028 continue; /* No CBs here, try next follower. */ 2029 2030 /* Move callbacks to wait-for-GP list, which is empty. */ 2031 WRITE_ONCE(rdp->nocb_head, NULL); 2032 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2033 gotcbs = true; 2034 } 2035 2036 /* 2037 * If there were no callbacks, sleep a bit, rescan after a 2038 * memory barrier, and go retry. 2039 */ 2040 if (unlikely(!gotcbs)) { 2041 if (!rcu_nocb_poll) 2042 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2043 "WokeEmpty"); 2044 WARN_ON(signal_pending(current)); 2045 schedule_timeout_interruptible(1); 2046 2047 /* Rescan in case we were a victim of memory ordering. */ 2048 my_rdp->nocb_leader_sleep = true; 2049 smp_mb(); /* Ensure _sleep true before scan. */ 2050 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2051 if (READ_ONCE(rdp->nocb_head)) { 2052 /* Found CB, so short-circuit next wait. */ 2053 my_rdp->nocb_leader_sleep = false; 2054 break; 2055 } 2056 goto wait_again; 2057 } 2058 2059 /* Wait for one grace period. */ 2060 rcu_nocb_wait_gp(my_rdp); 2061 2062 /* 2063 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2064 * We set it now, but recheck for new callbacks while 2065 * traversing our follower list. 2066 */ 2067 my_rdp->nocb_leader_sleep = true; 2068 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2069 2070 /* Each pass through the following loop wakes a follower, if needed. */ 2071 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2072 if (READ_ONCE(rdp->nocb_head)) 2073 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2074 if (!rdp->nocb_gp_head) 2075 continue; /* No CBs, so no need to wake follower. */ 2076 2077 /* Append callbacks to follower's "done" list. */ 2078 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2079 *tail = rdp->nocb_gp_head; 2080 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2081 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2082 /* 2083 * List was empty, wake up the follower. 2084 * Memory barriers supplied by atomic_long_add(). 2085 */ 2086 swake_up(&rdp->nocb_wq); 2087 } 2088 } 2089 2090 /* If we (the leader) don't have CBs, go wait some more. */ 2091 if (!my_rdp->nocb_follower_head) 2092 goto wait_again; 2093 } 2094 2095 /* 2096 * Followers come here to wait for additional callbacks to show up. 2097 * This function does not return until callbacks appear. 2098 */ 2099 static void nocb_follower_wait(struct rcu_data *rdp) 2100 { 2101 bool firsttime = true; 2102 2103 for (;;) { 2104 if (!rcu_nocb_poll) { 2105 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2106 "FollowerSleep"); 2107 swait_event_interruptible(rdp->nocb_wq, 2108 READ_ONCE(rdp->nocb_follower_head)); 2109 } else if (firsttime) { 2110 /* Don't drown trace log with "Poll"! */ 2111 firsttime = false; 2112 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2113 } 2114 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2115 /* ^^^ Ensure CB invocation follows _head test. */ 2116 return; 2117 } 2118 if (!rcu_nocb_poll) 2119 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2120 "WokeEmpty"); 2121 WARN_ON(signal_pending(current)); 2122 schedule_timeout_interruptible(1); 2123 } 2124 } 2125 2126 /* 2127 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2128 * callbacks queued by the corresponding no-CBs CPU, however, there is 2129 * an optional leader-follower relationship so that the grace-period 2130 * kthreads don't have to do quite so many wakeups. 2131 */ 2132 static int rcu_nocb_kthread(void *arg) 2133 { 2134 int c, cl; 2135 struct rcu_head *list; 2136 struct rcu_head *next; 2137 struct rcu_head **tail; 2138 struct rcu_data *rdp = arg; 2139 2140 /* Each pass through this loop invokes one batch of callbacks */ 2141 for (;;) { 2142 /* Wait for callbacks. */ 2143 if (rdp->nocb_leader == rdp) 2144 nocb_leader_wait(rdp); 2145 else 2146 nocb_follower_wait(rdp); 2147 2148 /* Pull the ready-to-invoke callbacks onto local list. */ 2149 list = READ_ONCE(rdp->nocb_follower_head); 2150 BUG_ON(!list); 2151 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2152 WRITE_ONCE(rdp->nocb_follower_head, NULL); 2153 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2154 2155 /* Each pass through the following loop invokes a callback. */ 2156 trace_rcu_batch_start(rdp->rsp->name, 2157 atomic_long_read(&rdp->nocb_q_count_lazy), 2158 atomic_long_read(&rdp->nocb_q_count), -1); 2159 c = cl = 0; 2160 while (list) { 2161 next = list->next; 2162 /* Wait for enqueuing to complete, if needed. */ 2163 while (next == NULL && &list->next != tail) { 2164 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2165 TPS("WaitQueue")); 2166 schedule_timeout_interruptible(1); 2167 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2168 TPS("WokeQueue")); 2169 next = list->next; 2170 } 2171 debug_rcu_head_unqueue(list); 2172 local_bh_disable(); 2173 if (__rcu_reclaim(rdp->rsp->name, list)) 2174 cl++; 2175 c++; 2176 local_bh_enable(); 2177 cond_resched_rcu_qs(); 2178 list = next; 2179 } 2180 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2181 smp_mb__before_atomic(); /* _add after CB invocation. */ 2182 atomic_long_add(-c, &rdp->nocb_q_count); 2183 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2184 rdp->n_nocbs_invoked += c; 2185 } 2186 return 0; 2187 } 2188 2189 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2190 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2191 { 2192 return READ_ONCE(rdp->nocb_defer_wakeup); 2193 } 2194 2195 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2196 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2197 { 2198 int ndw; 2199 2200 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2201 return; 2202 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2203 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); 2204 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2205 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2206 } 2207 2208 void __init rcu_init_nohz(void) 2209 { 2210 int cpu; 2211 bool need_rcu_nocb_mask = true; 2212 struct rcu_state *rsp; 2213 2214 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2215 need_rcu_nocb_mask = false; 2216 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2217 2218 #if defined(CONFIG_NO_HZ_FULL) 2219 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2220 need_rcu_nocb_mask = true; 2221 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2222 2223 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2224 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2225 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2226 return; 2227 } 2228 have_rcu_nocb_mask = true; 2229 } 2230 if (!have_rcu_nocb_mask) 2231 return; 2232 2233 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2234 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2235 cpumask_set_cpu(0, rcu_nocb_mask); 2236 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2237 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2238 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2239 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2240 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2241 #if defined(CONFIG_NO_HZ_FULL) 2242 if (tick_nohz_full_running) 2243 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2244 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2245 2246 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2247 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2248 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2249 rcu_nocb_mask); 2250 } 2251 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2252 cpumask_pr_args(rcu_nocb_mask)); 2253 if (rcu_nocb_poll) 2254 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2255 2256 for_each_rcu_flavor(rsp) { 2257 for_each_cpu(cpu, rcu_nocb_mask) 2258 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2259 rcu_organize_nocb_kthreads(rsp); 2260 } 2261 } 2262 2263 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2264 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2265 { 2266 rdp->nocb_tail = &rdp->nocb_head; 2267 init_swait_queue_head(&rdp->nocb_wq); 2268 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2269 } 2270 2271 /* 2272 * If the specified CPU is a no-CBs CPU that does not already have its 2273 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2274 * brought online out of order, this can require re-organizing the 2275 * leader-follower relationships. 2276 */ 2277 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2278 { 2279 struct rcu_data *rdp; 2280 struct rcu_data *rdp_last; 2281 struct rcu_data *rdp_old_leader; 2282 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2283 struct task_struct *t; 2284 2285 /* 2286 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2287 * then nothing to do. 2288 */ 2289 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2290 return; 2291 2292 /* If we didn't spawn the leader first, reorganize! */ 2293 rdp_old_leader = rdp_spawn->nocb_leader; 2294 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2295 rdp_last = NULL; 2296 rdp = rdp_old_leader; 2297 do { 2298 rdp->nocb_leader = rdp_spawn; 2299 if (rdp_last && rdp != rdp_spawn) 2300 rdp_last->nocb_next_follower = rdp; 2301 if (rdp == rdp_spawn) { 2302 rdp = rdp->nocb_next_follower; 2303 } else { 2304 rdp_last = rdp; 2305 rdp = rdp->nocb_next_follower; 2306 rdp_last->nocb_next_follower = NULL; 2307 } 2308 } while (rdp); 2309 rdp_spawn->nocb_next_follower = rdp_old_leader; 2310 } 2311 2312 /* Spawn the kthread for this CPU and RCU flavor. */ 2313 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2314 "rcuo%c/%d", rsp->abbr, cpu); 2315 BUG_ON(IS_ERR(t)); 2316 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2317 } 2318 2319 /* 2320 * If the specified CPU is a no-CBs CPU that does not already have its 2321 * rcuo kthreads, spawn them. 2322 */ 2323 static void rcu_spawn_all_nocb_kthreads(int cpu) 2324 { 2325 struct rcu_state *rsp; 2326 2327 if (rcu_scheduler_fully_active) 2328 for_each_rcu_flavor(rsp) 2329 rcu_spawn_one_nocb_kthread(rsp, cpu); 2330 } 2331 2332 /* 2333 * Once the scheduler is running, spawn rcuo kthreads for all online 2334 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2335 * non-boot CPUs come online -- if this changes, we will need to add 2336 * some mutual exclusion. 2337 */ 2338 static void __init rcu_spawn_nocb_kthreads(void) 2339 { 2340 int cpu; 2341 2342 for_each_online_cpu(cpu) 2343 rcu_spawn_all_nocb_kthreads(cpu); 2344 } 2345 2346 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2347 static int rcu_nocb_leader_stride = -1; 2348 module_param(rcu_nocb_leader_stride, int, 0444); 2349 2350 /* 2351 * Initialize leader-follower relationships for all no-CBs CPU. 2352 */ 2353 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2354 { 2355 int cpu; 2356 int ls = rcu_nocb_leader_stride; 2357 int nl = 0; /* Next leader. */ 2358 struct rcu_data *rdp; 2359 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2360 struct rcu_data *rdp_prev = NULL; 2361 2362 if (!have_rcu_nocb_mask) 2363 return; 2364 if (ls == -1) { 2365 ls = int_sqrt(nr_cpu_ids); 2366 rcu_nocb_leader_stride = ls; 2367 } 2368 2369 /* 2370 * Each pass through this loop sets up one rcu_data structure. 2371 * Should the corresponding CPU come online in the future, then 2372 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 2373 */ 2374 for_each_cpu(cpu, rcu_nocb_mask) { 2375 rdp = per_cpu_ptr(rsp->rda, cpu); 2376 if (rdp->cpu >= nl) { 2377 /* New leader, set up for followers & next leader. */ 2378 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2379 rdp->nocb_leader = rdp; 2380 rdp_leader = rdp; 2381 } else { 2382 /* Another follower, link to previous leader. */ 2383 rdp->nocb_leader = rdp_leader; 2384 rdp_prev->nocb_next_follower = rdp; 2385 } 2386 rdp_prev = rdp; 2387 } 2388 } 2389 2390 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2391 static bool init_nocb_callback_list(struct rcu_data *rdp) 2392 { 2393 if (!rcu_is_nocb_cpu(rdp->cpu)) 2394 return false; 2395 2396 /* If there are early-boot callbacks, move them to nocb lists. */ 2397 if (rdp->nxtlist) { 2398 rdp->nocb_head = rdp->nxtlist; 2399 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; 2400 atomic_long_set(&rdp->nocb_q_count, rdp->qlen); 2401 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); 2402 rdp->nxtlist = NULL; 2403 rdp->qlen = 0; 2404 rdp->qlen_lazy = 0; 2405 } 2406 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2407 return true; 2408 } 2409 2410 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2411 2412 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2413 { 2414 WARN_ON_ONCE(1); /* Should be dead code. */ 2415 return false; 2416 } 2417 2418 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2419 { 2420 } 2421 2422 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2423 { 2424 } 2425 2426 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2427 { 2428 return NULL; 2429 } 2430 2431 static void rcu_init_one_nocb(struct rcu_node *rnp) 2432 { 2433 } 2434 2435 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2436 bool lazy, unsigned long flags) 2437 { 2438 return false; 2439 } 2440 2441 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2442 struct rcu_data *rdp, 2443 unsigned long flags) 2444 { 2445 return false; 2446 } 2447 2448 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2449 { 2450 } 2451 2452 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2453 { 2454 return false; 2455 } 2456 2457 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2458 { 2459 } 2460 2461 static void rcu_spawn_all_nocb_kthreads(int cpu) 2462 { 2463 } 2464 2465 static void __init rcu_spawn_nocb_kthreads(void) 2466 { 2467 } 2468 2469 static bool init_nocb_callback_list(struct rcu_data *rdp) 2470 { 2471 return false; 2472 } 2473 2474 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2475 2476 /* 2477 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2478 * arbitrarily long period of time with the scheduling-clock tick turned 2479 * off. RCU will be paying attention to this CPU because it is in the 2480 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2481 * machine because the scheduling-clock tick has been disabled. Therefore, 2482 * if an adaptive-ticks CPU is failing to respond to the current grace 2483 * period and has not be idle from an RCU perspective, kick it. 2484 */ 2485 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2486 { 2487 #ifdef CONFIG_NO_HZ_FULL 2488 if (tick_nohz_full_cpu(cpu)) 2489 smp_send_reschedule(cpu); 2490 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2491 } 2492 2493 2494 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2495 2496 static int full_sysidle_state; /* Current system-idle state. */ 2497 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2498 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2499 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2500 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2501 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2502 2503 /* 2504 * Invoked to note exit from irq or task transition to idle. Note that 2505 * usermode execution does -not- count as idle here! After all, we want 2506 * to detect full-system idle states, not RCU quiescent states and grace 2507 * periods. The caller must have disabled interrupts. 2508 */ 2509 static void rcu_sysidle_enter(int irq) 2510 { 2511 unsigned long j; 2512 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2513 2514 /* If there are no nohz_full= CPUs, no need to track this. */ 2515 if (!tick_nohz_full_enabled()) 2516 return; 2517 2518 /* Adjust nesting, check for fully idle. */ 2519 if (irq) { 2520 rdtp->dynticks_idle_nesting--; 2521 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2522 if (rdtp->dynticks_idle_nesting != 0) 2523 return; /* Still not fully idle. */ 2524 } else { 2525 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2526 DYNTICK_TASK_NEST_VALUE) { 2527 rdtp->dynticks_idle_nesting = 0; 2528 } else { 2529 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2530 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2531 return; /* Still not fully idle. */ 2532 } 2533 } 2534 2535 /* Record start of fully idle period. */ 2536 j = jiffies; 2537 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); 2538 smp_mb__before_atomic(); 2539 atomic_inc(&rdtp->dynticks_idle); 2540 smp_mb__after_atomic(); 2541 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2542 } 2543 2544 /* 2545 * Unconditionally force exit from full system-idle state. This is 2546 * invoked when a normal CPU exits idle, but must be called separately 2547 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2548 * is that the timekeeping CPU is permitted to take scheduling-clock 2549 * interrupts while the system is in system-idle state, and of course 2550 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2551 * interrupt from any other type of interrupt. 2552 */ 2553 void rcu_sysidle_force_exit(void) 2554 { 2555 int oldstate = READ_ONCE(full_sysidle_state); 2556 int newoldstate; 2557 2558 /* 2559 * Each pass through the following loop attempts to exit full 2560 * system-idle state. If contention proves to be a problem, 2561 * a trylock-based contention tree could be used here. 2562 */ 2563 while (oldstate > RCU_SYSIDLE_SHORT) { 2564 newoldstate = cmpxchg(&full_sysidle_state, 2565 oldstate, RCU_SYSIDLE_NOT); 2566 if (oldstate == newoldstate && 2567 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2568 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2569 return; /* We cleared it, done! */ 2570 } 2571 oldstate = newoldstate; 2572 } 2573 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2574 } 2575 2576 /* 2577 * Invoked to note entry to irq or task transition from idle. Note that 2578 * usermode execution does -not- count as idle here! The caller must 2579 * have disabled interrupts. 2580 */ 2581 static void rcu_sysidle_exit(int irq) 2582 { 2583 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2584 2585 /* If there are no nohz_full= CPUs, no need to track this. */ 2586 if (!tick_nohz_full_enabled()) 2587 return; 2588 2589 /* Adjust nesting, check for already non-idle. */ 2590 if (irq) { 2591 rdtp->dynticks_idle_nesting++; 2592 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2593 if (rdtp->dynticks_idle_nesting != 1) 2594 return; /* Already non-idle. */ 2595 } else { 2596 /* 2597 * Allow for irq misnesting. Yes, it really is possible 2598 * to enter an irq handler then never leave it, and maybe 2599 * also vice versa. Handle both possibilities. 2600 */ 2601 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2602 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2603 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2604 return; /* Already non-idle. */ 2605 } else { 2606 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2607 } 2608 } 2609 2610 /* Record end of idle period. */ 2611 smp_mb__before_atomic(); 2612 atomic_inc(&rdtp->dynticks_idle); 2613 smp_mb__after_atomic(); 2614 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2615 2616 /* 2617 * If we are the timekeeping CPU, we are permitted to be non-idle 2618 * during a system-idle state. This must be the case, because 2619 * the timekeeping CPU has to take scheduling-clock interrupts 2620 * during the time that the system is transitioning to full 2621 * system-idle state. This means that the timekeeping CPU must 2622 * invoke rcu_sysidle_force_exit() directly if it does anything 2623 * more than take a scheduling-clock interrupt. 2624 */ 2625 if (smp_processor_id() == tick_do_timer_cpu) 2626 return; 2627 2628 /* Update system-idle state: We are clearly no longer fully idle! */ 2629 rcu_sysidle_force_exit(); 2630 } 2631 2632 /* 2633 * Check to see if the current CPU is idle. Note that usermode execution 2634 * does not count as idle. The caller must have disabled interrupts, 2635 * and must be running on tick_do_timer_cpu. 2636 */ 2637 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2638 unsigned long *maxj) 2639 { 2640 int cur; 2641 unsigned long j; 2642 struct rcu_dynticks *rdtp = rdp->dynticks; 2643 2644 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2645 if (!tick_nohz_full_enabled()) 2646 return; 2647 2648 /* 2649 * If some other CPU has already reported non-idle, if this is 2650 * not the flavor of RCU that tracks sysidle state, or if this 2651 * is an offline or the timekeeping CPU, nothing to do. 2652 */ 2653 if (!*isidle || rdp->rsp != rcu_state_p || 2654 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2655 return; 2656 /* Verify affinity of current kthread. */ 2657 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2658 2659 /* Pick up current idle and NMI-nesting counter and check. */ 2660 cur = atomic_read(&rdtp->dynticks_idle); 2661 if (cur & 0x1) { 2662 *isidle = false; /* We are not idle! */ 2663 return; 2664 } 2665 smp_mb(); /* Read counters before timestamps. */ 2666 2667 /* Pick up timestamps. */ 2668 j = READ_ONCE(rdtp->dynticks_idle_jiffies); 2669 /* If this CPU entered idle more recently, update maxj timestamp. */ 2670 if (ULONG_CMP_LT(*maxj, j)) 2671 *maxj = j; 2672 } 2673 2674 /* 2675 * Is this the flavor of RCU that is handling full-system idle? 2676 */ 2677 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2678 { 2679 return rsp == rcu_state_p; 2680 } 2681 2682 /* 2683 * Return a delay in jiffies based on the number of CPUs, rcu_node 2684 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2685 * systems more time to transition to full-idle state in order to 2686 * avoid the cache thrashing that otherwise occur on the state variable. 2687 * Really small systems (less than a couple of tens of CPUs) should 2688 * instead use a single global atomically incremented counter, and later 2689 * versions of this will automatically reconfigure themselves accordingly. 2690 */ 2691 static unsigned long rcu_sysidle_delay(void) 2692 { 2693 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2694 return 0; 2695 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2696 } 2697 2698 /* 2699 * Advance the full-system-idle state. This is invoked when all of 2700 * the non-timekeeping CPUs are idle. 2701 */ 2702 static void rcu_sysidle(unsigned long j) 2703 { 2704 /* Check the current state. */ 2705 switch (READ_ONCE(full_sysidle_state)) { 2706 case RCU_SYSIDLE_NOT: 2707 2708 /* First time all are idle, so note a short idle period. */ 2709 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); 2710 break; 2711 2712 case RCU_SYSIDLE_SHORT: 2713 2714 /* 2715 * Idle for a bit, time to advance to next state? 2716 * cmpxchg failure means race with non-idle, let them win. 2717 */ 2718 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2719 (void)cmpxchg(&full_sysidle_state, 2720 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2721 break; 2722 2723 case RCU_SYSIDLE_LONG: 2724 2725 /* 2726 * Do an additional check pass before advancing to full. 2727 * cmpxchg failure means race with non-idle, let them win. 2728 */ 2729 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2730 (void)cmpxchg(&full_sysidle_state, 2731 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2732 break; 2733 2734 default: 2735 break; 2736 } 2737 } 2738 2739 /* 2740 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2741 * back to the beginning. 2742 */ 2743 static void rcu_sysidle_cancel(void) 2744 { 2745 smp_mb(); 2746 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2747 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); 2748 } 2749 2750 /* 2751 * Update the sysidle state based on the results of a force-quiescent-state 2752 * scan of the CPUs' dyntick-idle state. 2753 */ 2754 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2755 unsigned long maxj, bool gpkt) 2756 { 2757 if (rsp != rcu_state_p) 2758 return; /* Wrong flavor, ignore. */ 2759 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2760 return; /* Running state machine from timekeeping CPU. */ 2761 if (isidle) 2762 rcu_sysidle(maxj); /* More idle! */ 2763 else 2764 rcu_sysidle_cancel(); /* Idle is over. */ 2765 } 2766 2767 /* 2768 * Wrapper for rcu_sysidle_report() when called from the grace-period 2769 * kthread's context. 2770 */ 2771 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2772 unsigned long maxj) 2773 { 2774 /* If there are no nohz_full= CPUs, no need to track this. */ 2775 if (!tick_nohz_full_enabled()) 2776 return; 2777 2778 rcu_sysidle_report(rsp, isidle, maxj, true); 2779 } 2780 2781 /* Callback and function for forcing an RCU grace period. */ 2782 struct rcu_sysidle_head { 2783 struct rcu_head rh; 2784 int inuse; 2785 }; 2786 2787 static void rcu_sysidle_cb(struct rcu_head *rhp) 2788 { 2789 struct rcu_sysidle_head *rshp; 2790 2791 /* 2792 * The following memory barrier is needed to replace the 2793 * memory barriers that would normally be in the memory 2794 * allocator. 2795 */ 2796 smp_mb(); /* grace period precedes setting inuse. */ 2797 2798 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2799 WRITE_ONCE(rshp->inuse, 0); 2800 } 2801 2802 /* 2803 * Check to see if the system is fully idle, other than the timekeeping CPU. 2804 * The caller must have disabled interrupts. This is not intended to be 2805 * called unless tick_nohz_full_enabled(). 2806 */ 2807 bool rcu_sys_is_idle(void) 2808 { 2809 static struct rcu_sysidle_head rsh; 2810 int rss = READ_ONCE(full_sysidle_state); 2811 2812 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2813 return false; 2814 2815 /* Handle small-system case by doing a full scan of CPUs. */ 2816 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2817 int oldrss = rss - 1; 2818 2819 /* 2820 * One pass to advance to each state up to _FULL. 2821 * Give up if any pass fails to advance the state. 2822 */ 2823 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2824 int cpu; 2825 bool isidle = true; 2826 unsigned long maxj = jiffies - ULONG_MAX / 4; 2827 struct rcu_data *rdp; 2828 2829 /* Scan all the CPUs looking for nonidle CPUs. */ 2830 for_each_possible_cpu(cpu) { 2831 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2832 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2833 if (!isidle) 2834 break; 2835 } 2836 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2837 oldrss = rss; 2838 rss = READ_ONCE(full_sysidle_state); 2839 } 2840 } 2841 2842 /* If this is the first observation of an idle period, record it. */ 2843 if (rss == RCU_SYSIDLE_FULL) { 2844 rss = cmpxchg(&full_sysidle_state, 2845 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2846 return rss == RCU_SYSIDLE_FULL; 2847 } 2848 2849 smp_mb(); /* ensure rss load happens before later caller actions. */ 2850 2851 /* If already fully idle, tell the caller (in case of races). */ 2852 if (rss == RCU_SYSIDLE_FULL_NOTED) 2853 return true; 2854 2855 /* 2856 * If we aren't there yet, and a grace period is not in flight, 2857 * initiate a grace period. Either way, tell the caller that 2858 * we are not there yet. We use an xchg() rather than an assignment 2859 * to make up for the memory barriers that would otherwise be 2860 * provided by the memory allocator. 2861 */ 2862 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2863 !rcu_gp_in_progress(rcu_state_p) && 2864 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2865 call_rcu(&rsh.rh, rcu_sysidle_cb); 2866 return false; 2867 } 2868 2869 /* 2870 * Initialize dynticks sysidle state for CPUs coming online. 2871 */ 2872 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2873 { 2874 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 2875 } 2876 2877 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2878 2879 static void rcu_sysidle_enter(int irq) 2880 { 2881 } 2882 2883 static void rcu_sysidle_exit(int irq) 2884 { 2885 } 2886 2887 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2888 unsigned long *maxj) 2889 { 2890 } 2891 2892 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2893 { 2894 return false; 2895 } 2896 2897 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2898 unsigned long maxj) 2899 { 2900 } 2901 2902 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2903 { 2904 } 2905 2906 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2907 2908 /* 2909 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2910 * grace-period kthread will do force_quiescent_state() processing? 2911 * The idea is to avoid waking up RCU core processing on such a 2912 * CPU unless the grace period has extended for too long. 2913 * 2914 * This code relies on the fact that all NO_HZ_FULL CPUs are also 2915 * CONFIG_RCU_NOCB_CPU CPUs. 2916 */ 2917 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 2918 { 2919 #ifdef CONFIG_NO_HZ_FULL 2920 if (tick_nohz_full_cpu(smp_processor_id()) && 2921 (!rcu_gp_in_progress(rsp) || 2922 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 2923 return true; 2924 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2925 return false; 2926 } 2927 2928 /* 2929 * Bind the grace-period kthread for the sysidle flavor of RCU to the 2930 * timekeeping CPU. 2931 */ 2932 static void rcu_bind_gp_kthread(void) 2933 { 2934 int __maybe_unused cpu; 2935 2936 if (!tick_nohz_full_enabled()) 2937 return; 2938 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2939 cpu = tick_do_timer_cpu; 2940 if (cpu >= 0 && cpu < nr_cpu_ids) 2941 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 2942 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2943 housekeeping_affine(current); 2944 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2945 } 2946 2947 /* Record the current task on dyntick-idle entry. */ 2948 static void rcu_dynticks_task_enter(void) 2949 { 2950 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2951 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 2952 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2953 } 2954 2955 /* Record no current task on dyntick-idle exit. */ 2956 static void rcu_dynticks_task_exit(void) 2957 { 2958 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 2959 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 2960 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 2961 } 2962