xref: /linux/kernel/rcu/tree_plugin.h (revision 4cf421e55d69016989548e0fb8585e69f54bd283)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include <uapi/linux/sched/types.h>
32 #include "../time/tick-internal.h"
33 
34 #ifdef CONFIG_RCU_BOOST
35 
36 #include "../locking/rtmutex_common.h"
37 
38 /*
39  * Control variables for per-CPU and per-rcu_node kthreads.  These
40  * handle all flavors of RCU.
41  */
42 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
45 DEFINE_PER_CPU(char, rcu_cpu_has_work);
46 
47 #else /* #ifdef CONFIG_RCU_BOOST */
48 
49 /*
50  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
51  * all uses are in dead code.  Provide a definition to keep the compiler
52  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
53  * This probably needs to be excluded from -rt builds.
54  */
55 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
56 
57 #endif /* #else #ifdef CONFIG_RCU_BOOST */
58 
59 #ifdef CONFIG_RCU_NOCB_CPU
60 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
61 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
62 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
63 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
64 
65 /*
66  * Check the RCU kernel configuration parameters and print informative
67  * messages about anything out of the ordinary.
68  */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71 	if (IS_ENABLED(CONFIG_RCU_TRACE))
72 		pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76 		       RCU_FANOUT);
77 	if (rcu_fanout_exact)
78 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 	if (IS_ENABLED(CONFIG_PROVE_RCU))
82 		pr_info("\tRCU lockdep checking is enabled.\n");
83 	if (RCU_NUM_LVLS >= 4)
84 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
85 	if (RCU_FANOUT_LEAF != 16)
86 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
87 			RCU_FANOUT_LEAF);
88 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
89 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
90 	if (nr_cpu_ids != NR_CPUS)
91 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
92 	if (IS_ENABLED(CONFIG_RCU_BOOST))
93 		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
94 }
95 
96 #ifdef CONFIG_PREEMPT_RCU
97 
98 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
99 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
100 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
101 
102 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
103 			       bool wake);
104 
105 /*
106  * Tell them what RCU they are running.
107  */
108 static void __init rcu_bootup_announce(void)
109 {
110 	pr_info("Preemptible hierarchical RCU implementation.\n");
111 	rcu_bootup_announce_oddness();
112 }
113 
114 /* Flags for rcu_preempt_ctxt_queue() decision table. */
115 #define RCU_GP_TASKS	0x8
116 #define RCU_EXP_TASKS	0x4
117 #define RCU_GP_BLKD	0x2
118 #define RCU_EXP_BLKD	0x1
119 
120 /*
121  * Queues a task preempted within an RCU-preempt read-side critical
122  * section into the appropriate location within the ->blkd_tasks list,
123  * depending on the states of any ongoing normal and expedited grace
124  * periods.  The ->gp_tasks pointer indicates which element the normal
125  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
126  * indicates which element the expedited grace period is waiting on (again,
127  * NULL if none).  If a grace period is waiting on a given element in the
128  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
129  * adding a task to the tail of the list blocks any grace period that is
130  * already waiting on one of the elements.  In contrast, adding a task
131  * to the head of the list won't block any grace period that is already
132  * waiting on one of the elements.
133  *
134  * This queuing is imprecise, and can sometimes make an ongoing grace
135  * period wait for a task that is not strictly speaking blocking it.
136  * Given the choice, we needlessly block a normal grace period rather than
137  * blocking an expedited grace period.
138  *
139  * Note that an endless sequence of expedited grace periods still cannot
140  * indefinitely postpone a normal grace period.  Eventually, all of the
141  * fixed number of preempted tasks blocking the normal grace period that are
142  * not also blocking the expedited grace period will resume and complete
143  * their RCU read-side critical sections.  At that point, the ->gp_tasks
144  * pointer will equal the ->exp_tasks pointer, at which point the end of
145  * the corresponding expedited grace period will also be the end of the
146  * normal grace period.
147  */
148 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
149 	__releases(rnp->lock) /* But leaves rrupts disabled. */
150 {
151 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
152 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
153 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
154 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
155 	struct task_struct *t = current;
156 
157 	/*
158 	 * Decide where to queue the newly blocked task.  In theory,
159 	 * this could be an if-statement.  In practice, when I tried
160 	 * that, it was quite messy.
161 	 */
162 	switch (blkd_state) {
163 	case 0:
164 	case                RCU_EXP_TASKS:
165 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
166 	case RCU_GP_TASKS:
167 	case RCU_GP_TASKS + RCU_EXP_TASKS:
168 
169 		/*
170 		 * Blocking neither GP, or first task blocking the normal
171 		 * GP but not blocking the already-waiting expedited GP.
172 		 * Queue at the head of the list to avoid unnecessarily
173 		 * blocking the already-waiting GPs.
174 		 */
175 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
176 		break;
177 
178 	case                                              RCU_EXP_BLKD:
179 	case                                RCU_GP_BLKD:
180 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
181 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
182 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
183 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
184 
185 		/*
186 		 * First task arriving that blocks either GP, or first task
187 		 * arriving that blocks the expedited GP (with the normal
188 		 * GP already waiting), or a task arriving that blocks
189 		 * both GPs with both GPs already waiting.  Queue at the
190 		 * tail of the list to avoid any GP waiting on any of the
191 		 * already queued tasks that are not blocking it.
192 		 */
193 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
194 		break;
195 
196 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
197 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
198 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
199 
200 		/*
201 		 * Second or subsequent task blocking the expedited GP.
202 		 * The task either does not block the normal GP, or is the
203 		 * first task blocking the normal GP.  Queue just after
204 		 * the first task blocking the expedited GP.
205 		 */
206 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
207 		break;
208 
209 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
210 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
211 
212 		/*
213 		 * Second or subsequent task blocking the normal GP.
214 		 * The task does not block the expedited GP. Queue just
215 		 * after the first task blocking the normal GP.
216 		 */
217 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
218 		break;
219 
220 	default:
221 
222 		/* Yet another exercise in excessive paranoia. */
223 		WARN_ON_ONCE(1);
224 		break;
225 	}
226 
227 	/*
228 	 * We have now queued the task.  If it was the first one to
229 	 * block either grace period, update the ->gp_tasks and/or
230 	 * ->exp_tasks pointers, respectively, to reference the newly
231 	 * blocked tasks.
232 	 */
233 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
234 		rnp->gp_tasks = &t->rcu_node_entry;
235 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
236 		rnp->exp_tasks = &t->rcu_node_entry;
237 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
238 
239 	/*
240 	 * Report the quiescent state for the expedited GP.  This expedited
241 	 * GP should not be able to end until we report, so there should be
242 	 * no need to check for a subsequent expedited GP.  (Though we are
243 	 * still in a quiescent state in any case.)
244 	 */
245 	if (blkd_state & RCU_EXP_BLKD &&
246 	    t->rcu_read_unlock_special.b.exp_need_qs) {
247 		t->rcu_read_unlock_special.b.exp_need_qs = false;
248 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
249 	} else {
250 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
251 	}
252 }
253 
254 /*
255  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
256  * that this just means that the task currently running on the CPU is
257  * not in a quiescent state.  There might be any number of tasks blocked
258  * while in an RCU read-side critical section.
259  *
260  * As with the other rcu_*_qs() functions, callers to this function
261  * must disable preemption.
262  */
263 static void rcu_preempt_qs(void)
264 {
265 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
266 		trace_rcu_grace_period(TPS("rcu_preempt"),
267 				       __this_cpu_read(rcu_data_p->gpnum),
268 				       TPS("cpuqs"));
269 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
270 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
271 		current->rcu_read_unlock_special.b.need_qs = false;
272 	}
273 }
274 
275 /*
276  * We have entered the scheduler, and the current task might soon be
277  * context-switched away from.  If this task is in an RCU read-side
278  * critical section, we will no longer be able to rely on the CPU to
279  * record that fact, so we enqueue the task on the blkd_tasks list.
280  * The task will dequeue itself when it exits the outermost enclosing
281  * RCU read-side critical section.  Therefore, the current grace period
282  * cannot be permitted to complete until the blkd_tasks list entries
283  * predating the current grace period drain, in other words, until
284  * rnp->gp_tasks becomes NULL.
285  *
286  * Caller must disable interrupts.
287  */
288 static void rcu_preempt_note_context_switch(void)
289 {
290 	struct task_struct *t = current;
291 	struct rcu_data *rdp;
292 	struct rcu_node *rnp;
293 
294 	if (t->rcu_read_lock_nesting > 0 &&
295 	    !t->rcu_read_unlock_special.b.blocked) {
296 
297 		/* Possibly blocking in an RCU read-side critical section. */
298 		rdp = this_cpu_ptr(rcu_state_p->rda);
299 		rnp = rdp->mynode;
300 		raw_spin_lock_rcu_node(rnp);
301 		t->rcu_read_unlock_special.b.blocked = true;
302 		t->rcu_blocked_node = rnp;
303 
304 		/*
305 		 * Verify the CPU's sanity, trace the preemption, and
306 		 * then queue the task as required based on the states
307 		 * of any ongoing and expedited grace periods.
308 		 */
309 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
310 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
311 		trace_rcu_preempt_task(rdp->rsp->name,
312 				       t->pid,
313 				       (rnp->qsmask & rdp->grpmask)
314 				       ? rnp->gpnum
315 				       : rnp->gpnum + 1);
316 		rcu_preempt_ctxt_queue(rnp, rdp);
317 	} else if (t->rcu_read_lock_nesting < 0 &&
318 		   t->rcu_read_unlock_special.s) {
319 
320 		/*
321 		 * Complete exit from RCU read-side critical section on
322 		 * behalf of preempted instance of __rcu_read_unlock().
323 		 */
324 		rcu_read_unlock_special(t);
325 	}
326 
327 	/*
328 	 * Either we were not in an RCU read-side critical section to
329 	 * begin with, or we have now recorded that critical section
330 	 * globally.  Either way, we can now note a quiescent state
331 	 * for this CPU.  Again, if we were in an RCU read-side critical
332 	 * section, and if that critical section was blocking the current
333 	 * grace period, then the fact that the task has been enqueued
334 	 * means that we continue to block the current grace period.
335 	 */
336 	rcu_preempt_qs();
337 }
338 
339 /*
340  * Check for preempted RCU readers blocking the current grace period
341  * for the specified rcu_node structure.  If the caller needs a reliable
342  * answer, it must hold the rcu_node's ->lock.
343  */
344 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
345 {
346 	return rnp->gp_tasks != NULL;
347 }
348 
349 /*
350  * Advance a ->blkd_tasks-list pointer to the next entry, instead
351  * returning NULL if at the end of the list.
352  */
353 static struct list_head *rcu_next_node_entry(struct task_struct *t,
354 					     struct rcu_node *rnp)
355 {
356 	struct list_head *np;
357 
358 	np = t->rcu_node_entry.next;
359 	if (np == &rnp->blkd_tasks)
360 		np = NULL;
361 	return np;
362 }
363 
364 /*
365  * Return true if the specified rcu_node structure has tasks that were
366  * preempted within an RCU read-side critical section.
367  */
368 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
369 {
370 	return !list_empty(&rnp->blkd_tasks);
371 }
372 
373 /*
374  * Handle special cases during rcu_read_unlock(), such as needing to
375  * notify RCU core processing or task having blocked during the RCU
376  * read-side critical section.
377  */
378 void rcu_read_unlock_special(struct task_struct *t)
379 {
380 	bool empty_exp;
381 	bool empty_norm;
382 	bool empty_exp_now;
383 	unsigned long flags;
384 	struct list_head *np;
385 	bool drop_boost_mutex = false;
386 	struct rcu_data *rdp;
387 	struct rcu_node *rnp;
388 	union rcu_special special;
389 
390 	/* NMI handlers cannot block and cannot safely manipulate state. */
391 	if (in_nmi())
392 		return;
393 
394 	local_irq_save(flags);
395 
396 	/*
397 	 * If RCU core is waiting for this CPU to exit its critical section,
398 	 * report the fact that it has exited.  Because irqs are disabled,
399 	 * t->rcu_read_unlock_special cannot change.
400 	 */
401 	special = t->rcu_read_unlock_special;
402 	if (special.b.need_qs) {
403 		rcu_preempt_qs();
404 		t->rcu_read_unlock_special.b.need_qs = false;
405 		if (!t->rcu_read_unlock_special.s) {
406 			local_irq_restore(flags);
407 			return;
408 		}
409 	}
410 
411 	/*
412 	 * Respond to a request for an expedited grace period, but only if
413 	 * we were not preempted, meaning that we were running on the same
414 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
415 	 * would have been cleared at the time of the first preemption,
416 	 * and the quiescent state would be reported when we were dequeued.
417 	 */
418 	if (special.b.exp_need_qs) {
419 		WARN_ON_ONCE(special.b.blocked);
420 		t->rcu_read_unlock_special.b.exp_need_qs = false;
421 		rdp = this_cpu_ptr(rcu_state_p->rda);
422 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
423 		if (!t->rcu_read_unlock_special.s) {
424 			local_irq_restore(flags);
425 			return;
426 		}
427 	}
428 
429 	/* Hardware IRQ handlers cannot block, complain if they get here. */
430 	if (in_irq() || in_serving_softirq()) {
431 		lockdep_rcu_suspicious(__FILE__, __LINE__,
432 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
433 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
434 			 t->rcu_read_unlock_special.s,
435 			 t->rcu_read_unlock_special.b.blocked,
436 			 t->rcu_read_unlock_special.b.exp_need_qs,
437 			 t->rcu_read_unlock_special.b.need_qs);
438 		local_irq_restore(flags);
439 		return;
440 	}
441 
442 	/* Clean up if blocked during RCU read-side critical section. */
443 	if (special.b.blocked) {
444 		t->rcu_read_unlock_special.b.blocked = false;
445 
446 		/*
447 		 * Remove this task from the list it blocked on.  The task
448 		 * now remains queued on the rcu_node corresponding to the
449 		 * CPU it first blocked on, so there is no longer any need
450 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
451 		 */
452 		rnp = t->rcu_blocked_node;
453 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
454 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
455 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
456 		empty_exp = sync_rcu_preempt_exp_done(rnp);
457 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
458 		np = rcu_next_node_entry(t, rnp);
459 		list_del_init(&t->rcu_node_entry);
460 		t->rcu_blocked_node = NULL;
461 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
462 						rnp->gpnum, t->pid);
463 		if (&t->rcu_node_entry == rnp->gp_tasks)
464 			rnp->gp_tasks = np;
465 		if (&t->rcu_node_entry == rnp->exp_tasks)
466 			rnp->exp_tasks = np;
467 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
468 			if (&t->rcu_node_entry == rnp->boost_tasks)
469 				rnp->boost_tasks = np;
470 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
471 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
472 		}
473 
474 		/*
475 		 * If this was the last task on the current list, and if
476 		 * we aren't waiting on any CPUs, report the quiescent state.
477 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
478 		 * so we must take a snapshot of the expedited state.
479 		 */
480 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
481 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
482 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
483 							 rnp->gpnum,
484 							 0, rnp->qsmask,
485 							 rnp->level,
486 							 rnp->grplo,
487 							 rnp->grphi,
488 							 !!rnp->gp_tasks);
489 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
490 		} else {
491 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
492 		}
493 
494 		/* Unboost if we were boosted. */
495 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
496 			rt_mutex_unlock(&rnp->boost_mtx);
497 
498 		/*
499 		 * If this was the last task on the expedited lists,
500 		 * then we need to report up the rcu_node hierarchy.
501 		 */
502 		if (!empty_exp && empty_exp_now)
503 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
504 	} else {
505 		local_irq_restore(flags);
506 	}
507 }
508 
509 /*
510  * Dump detailed information for all tasks blocking the current RCU
511  * grace period on the specified rcu_node structure.
512  */
513 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
514 {
515 	unsigned long flags;
516 	struct task_struct *t;
517 
518 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
519 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
520 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
521 		return;
522 	}
523 	t = list_entry(rnp->gp_tasks->prev,
524 		       struct task_struct, rcu_node_entry);
525 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
526 		sched_show_task(t);
527 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
528 }
529 
530 /*
531  * Dump detailed information for all tasks blocking the current RCU
532  * grace period.
533  */
534 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
535 {
536 	struct rcu_node *rnp = rcu_get_root(rsp);
537 
538 	rcu_print_detail_task_stall_rnp(rnp);
539 	rcu_for_each_leaf_node(rsp, rnp)
540 		rcu_print_detail_task_stall_rnp(rnp);
541 }
542 
543 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
544 {
545 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
546 	       rnp->level, rnp->grplo, rnp->grphi);
547 }
548 
549 static void rcu_print_task_stall_end(void)
550 {
551 	pr_cont("\n");
552 }
553 
554 /*
555  * Scan the current list of tasks blocked within RCU read-side critical
556  * sections, printing out the tid of each.
557  */
558 static int rcu_print_task_stall(struct rcu_node *rnp)
559 {
560 	struct task_struct *t;
561 	int ndetected = 0;
562 
563 	if (!rcu_preempt_blocked_readers_cgp(rnp))
564 		return 0;
565 	rcu_print_task_stall_begin(rnp);
566 	t = list_entry(rnp->gp_tasks->prev,
567 		       struct task_struct, rcu_node_entry);
568 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
569 		pr_cont(" P%d", t->pid);
570 		ndetected++;
571 	}
572 	rcu_print_task_stall_end();
573 	return ndetected;
574 }
575 
576 /*
577  * Scan the current list of tasks blocked within RCU read-side critical
578  * sections, printing out the tid of each that is blocking the current
579  * expedited grace period.
580  */
581 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
582 {
583 	struct task_struct *t;
584 	int ndetected = 0;
585 
586 	if (!rnp->exp_tasks)
587 		return 0;
588 	t = list_entry(rnp->exp_tasks->prev,
589 		       struct task_struct, rcu_node_entry);
590 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
591 		pr_cont(" P%d", t->pid);
592 		ndetected++;
593 	}
594 	return ndetected;
595 }
596 
597 /*
598  * Check that the list of blocked tasks for the newly completed grace
599  * period is in fact empty.  It is a serious bug to complete a grace
600  * period that still has RCU readers blocked!  This function must be
601  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
602  * must be held by the caller.
603  *
604  * Also, if there are blocked tasks on the list, they automatically
605  * block the newly created grace period, so set up ->gp_tasks accordingly.
606  */
607 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
608 {
609 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
610 	if (rcu_preempt_has_tasks(rnp))
611 		rnp->gp_tasks = rnp->blkd_tasks.next;
612 	WARN_ON_ONCE(rnp->qsmask);
613 }
614 
615 /*
616  * Check for a quiescent state from the current CPU.  When a task blocks,
617  * the task is recorded in the corresponding CPU's rcu_node structure,
618  * which is checked elsewhere.
619  *
620  * Caller must disable hard irqs.
621  */
622 static void rcu_preempt_check_callbacks(void)
623 {
624 	struct task_struct *t = current;
625 
626 	if (t->rcu_read_lock_nesting == 0) {
627 		rcu_preempt_qs();
628 		return;
629 	}
630 	if (t->rcu_read_lock_nesting > 0 &&
631 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
632 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
633 		t->rcu_read_unlock_special.b.need_qs = true;
634 }
635 
636 #ifdef CONFIG_RCU_BOOST
637 
638 static void rcu_preempt_do_callbacks(void)
639 {
640 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
641 }
642 
643 #endif /* #ifdef CONFIG_RCU_BOOST */
644 
645 /*
646  * Queue a preemptible-RCU callback for invocation after a grace period.
647  */
648 void call_rcu(struct rcu_head *head, rcu_callback_t func)
649 {
650 	__call_rcu(head, func, rcu_state_p, -1, 0);
651 }
652 EXPORT_SYMBOL_GPL(call_rcu);
653 
654 /**
655  * synchronize_rcu - wait until a grace period has elapsed.
656  *
657  * Control will return to the caller some time after a full grace
658  * period has elapsed, in other words after all currently executing RCU
659  * read-side critical sections have completed.  Note, however, that
660  * upon return from synchronize_rcu(), the caller might well be executing
661  * concurrently with new RCU read-side critical sections that began while
662  * synchronize_rcu() was waiting.  RCU read-side critical sections are
663  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
664  *
665  * See the description of synchronize_sched() for more detailed information
666  * on memory ordering guarantees.
667  */
668 void synchronize_rcu(void)
669 {
670 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
671 			 lock_is_held(&rcu_lock_map) ||
672 			 lock_is_held(&rcu_sched_lock_map),
673 			 "Illegal synchronize_rcu() in RCU read-side critical section");
674 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
675 		return;
676 	if (rcu_gp_is_expedited())
677 		synchronize_rcu_expedited();
678 	else
679 		wait_rcu_gp(call_rcu);
680 }
681 EXPORT_SYMBOL_GPL(synchronize_rcu);
682 
683 /**
684  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
685  *
686  * Note that this primitive does not necessarily wait for an RCU grace period
687  * to complete.  For example, if there are no RCU callbacks queued anywhere
688  * in the system, then rcu_barrier() is within its rights to return
689  * immediately, without waiting for anything, much less an RCU grace period.
690  */
691 void rcu_barrier(void)
692 {
693 	_rcu_barrier(rcu_state_p);
694 }
695 EXPORT_SYMBOL_GPL(rcu_barrier);
696 
697 /*
698  * Initialize preemptible RCU's state structures.
699  */
700 static void __init __rcu_init_preempt(void)
701 {
702 	rcu_init_one(rcu_state_p);
703 }
704 
705 /*
706  * Check for a task exiting while in a preemptible-RCU read-side
707  * critical section, clean up if so.  No need to issue warnings,
708  * as debug_check_no_locks_held() already does this if lockdep
709  * is enabled.
710  */
711 void exit_rcu(void)
712 {
713 	struct task_struct *t = current;
714 
715 	if (likely(list_empty(&current->rcu_node_entry)))
716 		return;
717 	t->rcu_read_lock_nesting = 1;
718 	barrier();
719 	t->rcu_read_unlock_special.b.blocked = true;
720 	__rcu_read_unlock();
721 }
722 
723 #else /* #ifdef CONFIG_PREEMPT_RCU */
724 
725 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
726 
727 /*
728  * Tell them what RCU they are running.
729  */
730 static void __init rcu_bootup_announce(void)
731 {
732 	pr_info("Hierarchical RCU implementation.\n");
733 	rcu_bootup_announce_oddness();
734 }
735 
736 /*
737  * Because preemptible RCU does not exist, we never have to check for
738  * CPUs being in quiescent states.
739  */
740 static void rcu_preempt_note_context_switch(void)
741 {
742 }
743 
744 /*
745  * Because preemptible RCU does not exist, there are never any preempted
746  * RCU readers.
747  */
748 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
749 {
750 	return 0;
751 }
752 
753 /*
754  * Because there is no preemptible RCU, there can be no readers blocked.
755  */
756 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
757 {
758 	return false;
759 }
760 
761 /*
762  * Because preemptible RCU does not exist, we never have to check for
763  * tasks blocked within RCU read-side critical sections.
764  */
765 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
766 {
767 }
768 
769 /*
770  * Because preemptible RCU does not exist, we never have to check for
771  * tasks blocked within RCU read-side critical sections.
772  */
773 static int rcu_print_task_stall(struct rcu_node *rnp)
774 {
775 	return 0;
776 }
777 
778 /*
779  * Because preemptible RCU does not exist, we never have to check for
780  * tasks blocked within RCU read-side critical sections that are
781  * blocking the current expedited grace period.
782  */
783 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
784 {
785 	return 0;
786 }
787 
788 /*
789  * Because there is no preemptible RCU, there can be no readers blocked,
790  * so there is no need to check for blocked tasks.  So check only for
791  * bogus qsmask values.
792  */
793 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
794 {
795 	WARN_ON_ONCE(rnp->qsmask);
796 }
797 
798 /*
799  * Because preemptible RCU does not exist, it never has any callbacks
800  * to check.
801  */
802 static void rcu_preempt_check_callbacks(void)
803 {
804 }
805 
806 /*
807  * Because preemptible RCU does not exist, rcu_barrier() is just
808  * another name for rcu_barrier_sched().
809  */
810 void rcu_barrier(void)
811 {
812 	rcu_barrier_sched();
813 }
814 EXPORT_SYMBOL_GPL(rcu_barrier);
815 
816 /*
817  * Because preemptible RCU does not exist, it need not be initialized.
818  */
819 static void __init __rcu_init_preempt(void)
820 {
821 }
822 
823 /*
824  * Because preemptible RCU does not exist, tasks cannot possibly exit
825  * while in preemptible RCU read-side critical sections.
826  */
827 void exit_rcu(void)
828 {
829 }
830 
831 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
832 
833 #ifdef CONFIG_RCU_BOOST
834 
835 #include "../locking/rtmutex_common.h"
836 
837 #ifdef CONFIG_RCU_TRACE
838 
839 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
840 {
841 	if (!rcu_preempt_has_tasks(rnp))
842 		rnp->n_balk_blkd_tasks++;
843 	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
844 		rnp->n_balk_exp_gp_tasks++;
845 	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
846 		rnp->n_balk_boost_tasks++;
847 	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
848 		rnp->n_balk_notblocked++;
849 	else if (rnp->gp_tasks != NULL &&
850 		 ULONG_CMP_LT(jiffies, rnp->boost_time))
851 		rnp->n_balk_notyet++;
852 	else
853 		rnp->n_balk_nos++;
854 }
855 
856 #else /* #ifdef CONFIG_RCU_TRACE */
857 
858 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
859 {
860 }
861 
862 #endif /* #else #ifdef CONFIG_RCU_TRACE */
863 
864 static void rcu_wake_cond(struct task_struct *t, int status)
865 {
866 	/*
867 	 * If the thread is yielding, only wake it when this
868 	 * is invoked from idle
869 	 */
870 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
871 		wake_up_process(t);
872 }
873 
874 /*
875  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
876  * or ->boost_tasks, advancing the pointer to the next task in the
877  * ->blkd_tasks list.
878  *
879  * Note that irqs must be enabled: boosting the task can block.
880  * Returns 1 if there are more tasks needing to be boosted.
881  */
882 static int rcu_boost(struct rcu_node *rnp)
883 {
884 	unsigned long flags;
885 	struct task_struct *t;
886 	struct list_head *tb;
887 
888 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
889 	    READ_ONCE(rnp->boost_tasks) == NULL)
890 		return 0;  /* Nothing left to boost. */
891 
892 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
893 
894 	/*
895 	 * Recheck under the lock: all tasks in need of boosting
896 	 * might exit their RCU read-side critical sections on their own.
897 	 */
898 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
899 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
900 		return 0;
901 	}
902 
903 	/*
904 	 * Preferentially boost tasks blocking expedited grace periods.
905 	 * This cannot starve the normal grace periods because a second
906 	 * expedited grace period must boost all blocked tasks, including
907 	 * those blocking the pre-existing normal grace period.
908 	 */
909 	if (rnp->exp_tasks != NULL) {
910 		tb = rnp->exp_tasks;
911 		rnp->n_exp_boosts++;
912 	} else {
913 		tb = rnp->boost_tasks;
914 		rnp->n_normal_boosts++;
915 	}
916 	rnp->n_tasks_boosted++;
917 
918 	/*
919 	 * We boost task t by manufacturing an rt_mutex that appears to
920 	 * be held by task t.  We leave a pointer to that rt_mutex where
921 	 * task t can find it, and task t will release the mutex when it
922 	 * exits its outermost RCU read-side critical section.  Then
923 	 * simply acquiring this artificial rt_mutex will boost task
924 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
925 	 *
926 	 * Note that task t must acquire rnp->lock to remove itself from
927 	 * the ->blkd_tasks list, which it will do from exit() if from
928 	 * nowhere else.  We therefore are guaranteed that task t will
929 	 * stay around at least until we drop rnp->lock.  Note that
930 	 * rnp->lock also resolves races between our priority boosting
931 	 * and task t's exiting its outermost RCU read-side critical
932 	 * section.
933 	 */
934 	t = container_of(tb, struct task_struct, rcu_node_entry);
935 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
936 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
937 	/* Lock only for side effect: boosts task t's priority. */
938 	rt_mutex_lock(&rnp->boost_mtx);
939 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
940 
941 	return READ_ONCE(rnp->exp_tasks) != NULL ||
942 	       READ_ONCE(rnp->boost_tasks) != NULL;
943 }
944 
945 /*
946  * Priority-boosting kthread, one per leaf rcu_node.
947  */
948 static int rcu_boost_kthread(void *arg)
949 {
950 	struct rcu_node *rnp = (struct rcu_node *)arg;
951 	int spincnt = 0;
952 	int more2boost;
953 
954 	trace_rcu_utilization(TPS("Start boost kthread@init"));
955 	for (;;) {
956 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
957 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
958 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
959 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
960 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
961 		more2boost = rcu_boost(rnp);
962 		if (more2boost)
963 			spincnt++;
964 		else
965 			spincnt = 0;
966 		if (spincnt > 10) {
967 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
968 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
969 			schedule_timeout_interruptible(2);
970 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
971 			spincnt = 0;
972 		}
973 	}
974 	/* NOTREACHED */
975 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
976 	return 0;
977 }
978 
979 /*
980  * Check to see if it is time to start boosting RCU readers that are
981  * blocking the current grace period, and, if so, tell the per-rcu_node
982  * kthread to start boosting them.  If there is an expedited grace
983  * period in progress, it is always time to boost.
984  *
985  * The caller must hold rnp->lock, which this function releases.
986  * The ->boost_kthread_task is immortal, so we don't need to worry
987  * about it going away.
988  */
989 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
990 	__releases(rnp->lock)
991 {
992 	struct task_struct *t;
993 
994 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
995 		rnp->n_balk_exp_gp_tasks++;
996 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
997 		return;
998 	}
999 	if (rnp->exp_tasks != NULL ||
1000 	    (rnp->gp_tasks != NULL &&
1001 	     rnp->boost_tasks == NULL &&
1002 	     rnp->qsmask == 0 &&
1003 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1004 		if (rnp->exp_tasks == NULL)
1005 			rnp->boost_tasks = rnp->gp_tasks;
1006 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1007 		t = rnp->boost_kthread_task;
1008 		if (t)
1009 			rcu_wake_cond(t, rnp->boost_kthread_status);
1010 	} else {
1011 		rcu_initiate_boost_trace(rnp);
1012 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1013 	}
1014 }
1015 
1016 /*
1017  * Wake up the per-CPU kthread to invoke RCU callbacks.
1018  */
1019 static void invoke_rcu_callbacks_kthread(void)
1020 {
1021 	unsigned long flags;
1022 
1023 	local_irq_save(flags);
1024 	__this_cpu_write(rcu_cpu_has_work, 1);
1025 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1026 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1027 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1028 			      __this_cpu_read(rcu_cpu_kthread_status));
1029 	}
1030 	local_irq_restore(flags);
1031 }
1032 
1033 /*
1034  * Is the current CPU running the RCU-callbacks kthread?
1035  * Caller must have preemption disabled.
1036  */
1037 static bool rcu_is_callbacks_kthread(void)
1038 {
1039 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1040 }
1041 
1042 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1043 
1044 /*
1045  * Do priority-boost accounting for the start of a new grace period.
1046  */
1047 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1048 {
1049 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1050 }
1051 
1052 /*
1053  * Create an RCU-boost kthread for the specified node if one does not
1054  * already exist.  We only create this kthread for preemptible RCU.
1055  * Returns zero if all is well, a negated errno otherwise.
1056  */
1057 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1058 				       struct rcu_node *rnp)
1059 {
1060 	int rnp_index = rnp - &rsp->node[0];
1061 	unsigned long flags;
1062 	struct sched_param sp;
1063 	struct task_struct *t;
1064 
1065 	if (rcu_state_p != rsp)
1066 		return 0;
1067 
1068 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1069 		return 0;
1070 
1071 	rsp->boost = 1;
1072 	if (rnp->boost_kthread_task != NULL)
1073 		return 0;
1074 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1075 			   "rcub/%d", rnp_index);
1076 	if (IS_ERR(t))
1077 		return PTR_ERR(t);
1078 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1079 	rnp->boost_kthread_task = t;
1080 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1081 	sp.sched_priority = kthread_prio;
1082 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1083 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1084 	return 0;
1085 }
1086 
1087 static void rcu_kthread_do_work(void)
1088 {
1089 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1090 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1091 	rcu_preempt_do_callbacks();
1092 }
1093 
1094 static void rcu_cpu_kthread_setup(unsigned int cpu)
1095 {
1096 	struct sched_param sp;
1097 
1098 	sp.sched_priority = kthread_prio;
1099 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1100 }
1101 
1102 static void rcu_cpu_kthread_park(unsigned int cpu)
1103 {
1104 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1105 }
1106 
1107 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1108 {
1109 	return __this_cpu_read(rcu_cpu_has_work);
1110 }
1111 
1112 /*
1113  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1114  * RCU softirq used in flavors and configurations of RCU that do not
1115  * support RCU priority boosting.
1116  */
1117 static void rcu_cpu_kthread(unsigned int cpu)
1118 {
1119 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1120 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1121 	int spincnt;
1122 
1123 	for (spincnt = 0; spincnt < 10; spincnt++) {
1124 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1125 		local_bh_disable();
1126 		*statusp = RCU_KTHREAD_RUNNING;
1127 		this_cpu_inc(rcu_cpu_kthread_loops);
1128 		local_irq_disable();
1129 		work = *workp;
1130 		*workp = 0;
1131 		local_irq_enable();
1132 		if (work)
1133 			rcu_kthread_do_work();
1134 		local_bh_enable();
1135 		if (*workp == 0) {
1136 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1137 			*statusp = RCU_KTHREAD_WAITING;
1138 			return;
1139 		}
1140 	}
1141 	*statusp = RCU_KTHREAD_YIELDING;
1142 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1143 	schedule_timeout_interruptible(2);
1144 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1145 	*statusp = RCU_KTHREAD_WAITING;
1146 }
1147 
1148 /*
1149  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1150  * served by the rcu_node in question.  The CPU hotplug lock is still
1151  * held, so the value of rnp->qsmaskinit will be stable.
1152  *
1153  * We don't include outgoingcpu in the affinity set, use -1 if there is
1154  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1155  * this function allows the kthread to execute on any CPU.
1156  */
1157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1158 {
1159 	struct task_struct *t = rnp->boost_kthread_task;
1160 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1161 	cpumask_var_t cm;
1162 	int cpu;
1163 
1164 	if (!t)
1165 		return;
1166 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1167 		return;
1168 	for_each_leaf_node_possible_cpu(rnp, cpu)
1169 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1170 		    cpu != outgoingcpu)
1171 			cpumask_set_cpu(cpu, cm);
1172 	if (cpumask_weight(cm) == 0)
1173 		cpumask_setall(cm);
1174 	set_cpus_allowed_ptr(t, cm);
1175 	free_cpumask_var(cm);
1176 }
1177 
1178 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1179 	.store			= &rcu_cpu_kthread_task,
1180 	.thread_should_run	= rcu_cpu_kthread_should_run,
1181 	.thread_fn		= rcu_cpu_kthread,
1182 	.thread_comm		= "rcuc/%u",
1183 	.setup			= rcu_cpu_kthread_setup,
1184 	.park			= rcu_cpu_kthread_park,
1185 };
1186 
1187 /*
1188  * Spawn boost kthreads -- called as soon as the scheduler is running.
1189  */
1190 static void __init rcu_spawn_boost_kthreads(void)
1191 {
1192 	struct rcu_node *rnp;
1193 	int cpu;
1194 
1195 	for_each_possible_cpu(cpu)
1196 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1197 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1198 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1199 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1200 }
1201 
1202 static void rcu_prepare_kthreads(int cpu)
1203 {
1204 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1205 	struct rcu_node *rnp = rdp->mynode;
1206 
1207 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1208 	if (rcu_scheduler_fully_active)
1209 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1210 }
1211 
1212 #else /* #ifdef CONFIG_RCU_BOOST */
1213 
1214 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1215 	__releases(rnp->lock)
1216 {
1217 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1218 }
1219 
1220 static void invoke_rcu_callbacks_kthread(void)
1221 {
1222 	WARN_ON_ONCE(1);
1223 }
1224 
1225 static bool rcu_is_callbacks_kthread(void)
1226 {
1227 	return false;
1228 }
1229 
1230 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1231 {
1232 }
1233 
1234 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1235 {
1236 }
1237 
1238 static void __init rcu_spawn_boost_kthreads(void)
1239 {
1240 }
1241 
1242 static void rcu_prepare_kthreads(int cpu)
1243 {
1244 }
1245 
1246 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1247 
1248 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1249 
1250 /*
1251  * Check to see if any future RCU-related work will need to be done
1252  * by the current CPU, even if none need be done immediately, returning
1253  * 1 if so.  This function is part of the RCU implementation; it is -not-
1254  * an exported member of the RCU API.
1255  *
1256  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1257  * any flavor of RCU.
1258  */
1259 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1260 {
1261 	*nextevt = KTIME_MAX;
1262 	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1263 	       ? 0 : rcu_cpu_has_callbacks(NULL);
1264 }
1265 
1266 /*
1267  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1268  * after it.
1269  */
1270 static void rcu_cleanup_after_idle(void)
1271 {
1272 }
1273 
1274 /*
1275  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1276  * is nothing.
1277  */
1278 static void rcu_prepare_for_idle(void)
1279 {
1280 }
1281 
1282 /*
1283  * Don't bother keeping a running count of the number of RCU callbacks
1284  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1285  */
1286 static void rcu_idle_count_callbacks_posted(void)
1287 {
1288 }
1289 
1290 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1291 
1292 /*
1293  * This code is invoked when a CPU goes idle, at which point we want
1294  * to have the CPU do everything required for RCU so that it can enter
1295  * the energy-efficient dyntick-idle mode.  This is handled by a
1296  * state machine implemented by rcu_prepare_for_idle() below.
1297  *
1298  * The following three proprocessor symbols control this state machine:
1299  *
1300  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1301  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1302  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1303  *	benchmarkers who might otherwise be tempted to set this to a large
1304  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1305  *	system.  And if you are -that- concerned about energy efficiency,
1306  *	just power the system down and be done with it!
1307  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1308  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1309  *	callbacks pending.  Setting this too high can OOM your system.
1310  *
1311  * The values below work well in practice.  If future workloads require
1312  * adjustment, they can be converted into kernel config parameters, though
1313  * making the state machine smarter might be a better option.
1314  */
1315 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1316 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1317 
1318 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1319 module_param(rcu_idle_gp_delay, int, 0644);
1320 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1321 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1322 
1323 /*
1324  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1325  * only if it has been awhile since the last time we did so.  Afterwards,
1326  * if there are any callbacks ready for immediate invocation, return true.
1327  */
1328 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1329 {
1330 	bool cbs_ready = false;
1331 	struct rcu_data *rdp;
1332 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1333 	struct rcu_node *rnp;
1334 	struct rcu_state *rsp;
1335 
1336 	/* Exit early if we advanced recently. */
1337 	if (jiffies == rdtp->last_advance_all)
1338 		return false;
1339 	rdtp->last_advance_all = jiffies;
1340 
1341 	for_each_rcu_flavor(rsp) {
1342 		rdp = this_cpu_ptr(rsp->rda);
1343 		rnp = rdp->mynode;
1344 
1345 		/*
1346 		 * Don't bother checking unless a grace period has
1347 		 * completed since we last checked and there are
1348 		 * callbacks not yet ready to invoke.
1349 		 */
1350 		if ((rdp->completed != rnp->completed ||
1351 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1352 		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1353 			note_gp_changes(rsp, rdp);
1354 
1355 		if (cpu_has_callbacks_ready_to_invoke(rdp))
1356 			cbs_ready = true;
1357 	}
1358 	return cbs_ready;
1359 }
1360 
1361 /*
1362  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1363  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1364  * caller to set the timeout based on whether or not there are non-lazy
1365  * callbacks.
1366  *
1367  * The caller must have disabled interrupts.
1368  */
1369 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1370 {
1371 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1372 	unsigned long dj;
1373 
1374 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1375 		*nextevt = KTIME_MAX;
1376 		return 0;
1377 	}
1378 
1379 	/* Snapshot to detect later posting of non-lazy callback. */
1380 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1381 
1382 	/* If no callbacks, RCU doesn't need the CPU. */
1383 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1384 		*nextevt = KTIME_MAX;
1385 		return 0;
1386 	}
1387 
1388 	/* Attempt to advance callbacks. */
1389 	if (rcu_try_advance_all_cbs()) {
1390 		/* Some ready to invoke, so initiate later invocation. */
1391 		invoke_rcu_core();
1392 		return 1;
1393 	}
1394 	rdtp->last_accelerate = jiffies;
1395 
1396 	/* Request timer delay depending on laziness, and round. */
1397 	if (!rdtp->all_lazy) {
1398 		dj = round_up(rcu_idle_gp_delay + jiffies,
1399 			       rcu_idle_gp_delay) - jiffies;
1400 	} else {
1401 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1402 	}
1403 	*nextevt = basemono + dj * TICK_NSEC;
1404 	return 0;
1405 }
1406 
1407 /*
1408  * Prepare a CPU for idle from an RCU perspective.  The first major task
1409  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1410  * The second major task is to check to see if a non-lazy callback has
1411  * arrived at a CPU that previously had only lazy callbacks.  The third
1412  * major task is to accelerate (that is, assign grace-period numbers to)
1413  * any recently arrived callbacks.
1414  *
1415  * The caller must have disabled interrupts.
1416  */
1417 static void rcu_prepare_for_idle(void)
1418 {
1419 	bool needwake;
1420 	struct rcu_data *rdp;
1421 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1422 	struct rcu_node *rnp;
1423 	struct rcu_state *rsp;
1424 	int tne;
1425 
1426 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1427 	    rcu_is_nocb_cpu(smp_processor_id()))
1428 		return;
1429 
1430 	/* Handle nohz enablement switches conservatively. */
1431 	tne = READ_ONCE(tick_nohz_active);
1432 	if (tne != rdtp->tick_nohz_enabled_snap) {
1433 		if (rcu_cpu_has_callbacks(NULL))
1434 			invoke_rcu_core(); /* force nohz to see update. */
1435 		rdtp->tick_nohz_enabled_snap = tne;
1436 		return;
1437 	}
1438 	if (!tne)
1439 		return;
1440 
1441 	/*
1442 	 * If a non-lazy callback arrived at a CPU having only lazy
1443 	 * callbacks, invoke RCU core for the side-effect of recalculating
1444 	 * idle duration on re-entry to idle.
1445 	 */
1446 	if (rdtp->all_lazy &&
1447 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1448 		rdtp->all_lazy = false;
1449 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1450 		invoke_rcu_core();
1451 		return;
1452 	}
1453 
1454 	/*
1455 	 * If we have not yet accelerated this jiffy, accelerate all
1456 	 * callbacks on this CPU.
1457 	 */
1458 	if (rdtp->last_accelerate == jiffies)
1459 		return;
1460 	rdtp->last_accelerate = jiffies;
1461 	for_each_rcu_flavor(rsp) {
1462 		rdp = this_cpu_ptr(rsp->rda);
1463 		if (!*rdp->nxttail[RCU_DONE_TAIL])
1464 			continue;
1465 		rnp = rdp->mynode;
1466 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1467 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1468 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1469 		if (needwake)
1470 			rcu_gp_kthread_wake(rsp);
1471 	}
1472 }
1473 
1474 /*
1475  * Clean up for exit from idle.  Attempt to advance callbacks based on
1476  * any grace periods that elapsed while the CPU was idle, and if any
1477  * callbacks are now ready to invoke, initiate invocation.
1478  */
1479 static void rcu_cleanup_after_idle(void)
1480 {
1481 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1482 	    rcu_is_nocb_cpu(smp_processor_id()))
1483 		return;
1484 	if (rcu_try_advance_all_cbs())
1485 		invoke_rcu_core();
1486 }
1487 
1488 /*
1489  * Keep a running count of the number of non-lazy callbacks posted
1490  * on this CPU.  This running counter (which is never decremented) allows
1491  * rcu_prepare_for_idle() to detect when something out of the idle loop
1492  * posts a callback, even if an equal number of callbacks are invoked.
1493  * Of course, callbacks should only be posted from within a trace event
1494  * designed to be called from idle or from within RCU_NONIDLE().
1495  */
1496 static void rcu_idle_count_callbacks_posted(void)
1497 {
1498 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1499 }
1500 
1501 /*
1502  * Data for flushing lazy RCU callbacks at OOM time.
1503  */
1504 static atomic_t oom_callback_count;
1505 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1506 
1507 /*
1508  * RCU OOM callback -- decrement the outstanding count and deliver the
1509  * wake-up if we are the last one.
1510  */
1511 static void rcu_oom_callback(struct rcu_head *rhp)
1512 {
1513 	if (atomic_dec_and_test(&oom_callback_count))
1514 		wake_up(&oom_callback_wq);
1515 }
1516 
1517 /*
1518  * Post an rcu_oom_notify callback on the current CPU if it has at
1519  * least one lazy callback.  This will unnecessarily post callbacks
1520  * to CPUs that already have a non-lazy callback at the end of their
1521  * callback list, but this is an infrequent operation, so accept some
1522  * extra overhead to keep things simple.
1523  */
1524 static void rcu_oom_notify_cpu(void *unused)
1525 {
1526 	struct rcu_state *rsp;
1527 	struct rcu_data *rdp;
1528 
1529 	for_each_rcu_flavor(rsp) {
1530 		rdp = raw_cpu_ptr(rsp->rda);
1531 		if (rdp->qlen_lazy != 0) {
1532 			atomic_inc(&oom_callback_count);
1533 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1534 		}
1535 	}
1536 }
1537 
1538 /*
1539  * If low on memory, ensure that each CPU has a non-lazy callback.
1540  * This will wake up CPUs that have only lazy callbacks, in turn
1541  * ensuring that they free up the corresponding memory in a timely manner.
1542  * Because an uncertain amount of memory will be freed in some uncertain
1543  * timeframe, we do not claim to have freed anything.
1544  */
1545 static int rcu_oom_notify(struct notifier_block *self,
1546 			  unsigned long notused, void *nfreed)
1547 {
1548 	int cpu;
1549 
1550 	/* Wait for callbacks from earlier instance to complete. */
1551 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1552 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1553 
1554 	/*
1555 	 * Prevent premature wakeup: ensure that all increments happen
1556 	 * before there is a chance of the counter reaching zero.
1557 	 */
1558 	atomic_set(&oom_callback_count, 1);
1559 
1560 	for_each_online_cpu(cpu) {
1561 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1562 		cond_resched_rcu_qs();
1563 	}
1564 
1565 	/* Unconditionally decrement: no need to wake ourselves up. */
1566 	atomic_dec(&oom_callback_count);
1567 
1568 	return NOTIFY_OK;
1569 }
1570 
1571 static struct notifier_block rcu_oom_nb = {
1572 	.notifier_call = rcu_oom_notify
1573 };
1574 
1575 static int __init rcu_register_oom_notifier(void)
1576 {
1577 	register_oom_notifier(&rcu_oom_nb);
1578 	return 0;
1579 }
1580 early_initcall(rcu_register_oom_notifier);
1581 
1582 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1583 
1584 #ifdef CONFIG_RCU_FAST_NO_HZ
1585 
1586 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1587 {
1588 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1589 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1590 
1591 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1592 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1593 		ulong2long(nlpd),
1594 		rdtp->all_lazy ? 'L' : '.',
1595 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1596 }
1597 
1598 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1599 
1600 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1601 {
1602 	*cp = '\0';
1603 }
1604 
1605 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1606 
1607 /* Initiate the stall-info list. */
1608 static void print_cpu_stall_info_begin(void)
1609 {
1610 	pr_cont("\n");
1611 }
1612 
1613 /*
1614  * Print out diagnostic information for the specified stalled CPU.
1615  *
1616  * If the specified CPU is aware of the current RCU grace period
1617  * (flavor specified by rsp), then print the number of scheduling
1618  * clock interrupts the CPU has taken during the time that it has
1619  * been aware.  Otherwise, print the number of RCU grace periods
1620  * that this CPU is ignorant of, for example, "1" if the CPU was
1621  * aware of the previous grace period.
1622  *
1623  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1624  */
1625 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1626 {
1627 	char fast_no_hz[72];
1628 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1629 	struct rcu_dynticks *rdtp = rdp->dynticks;
1630 	char *ticks_title;
1631 	unsigned long ticks_value;
1632 
1633 	if (rsp->gpnum == rdp->gpnum) {
1634 		ticks_title = "ticks this GP";
1635 		ticks_value = rdp->ticks_this_gp;
1636 	} else {
1637 		ticks_title = "GPs behind";
1638 		ticks_value = rsp->gpnum - rdp->gpnum;
1639 	}
1640 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1641 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1642 	       cpu,
1643 	       "O."[!!cpu_online(cpu)],
1644 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1645 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1646 	       ticks_value, ticks_title,
1647 	       rcu_dynticks_snap(rdtp) & 0xfff,
1648 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1649 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1650 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1651 	       fast_no_hz);
1652 }
1653 
1654 /* Terminate the stall-info list. */
1655 static void print_cpu_stall_info_end(void)
1656 {
1657 	pr_err("\t");
1658 }
1659 
1660 /* Zero ->ticks_this_gp for all flavors of RCU. */
1661 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1662 {
1663 	rdp->ticks_this_gp = 0;
1664 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1665 }
1666 
1667 /* Increment ->ticks_this_gp for all flavors of RCU. */
1668 static void increment_cpu_stall_ticks(void)
1669 {
1670 	struct rcu_state *rsp;
1671 
1672 	for_each_rcu_flavor(rsp)
1673 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1674 }
1675 
1676 #ifdef CONFIG_RCU_NOCB_CPU
1677 
1678 /*
1679  * Offload callback processing from the boot-time-specified set of CPUs
1680  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1681  * kthread created that pulls the callbacks from the corresponding CPU,
1682  * waits for a grace period to elapse, and invokes the callbacks.
1683  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1684  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1685  * has been specified, in which case each kthread actively polls its
1686  * CPU.  (Which isn't so great for energy efficiency, but which does
1687  * reduce RCU's overhead on that CPU.)
1688  *
1689  * This is intended to be used in conjunction with Frederic Weisbecker's
1690  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1691  * running CPU-bound user-mode computations.
1692  *
1693  * Offloading of callback processing could also in theory be used as
1694  * an energy-efficiency measure because CPUs with no RCU callbacks
1695  * queued are more aggressive about entering dyntick-idle mode.
1696  */
1697 
1698 
1699 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1700 static int __init rcu_nocb_setup(char *str)
1701 {
1702 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1703 	have_rcu_nocb_mask = true;
1704 	cpulist_parse(str, rcu_nocb_mask);
1705 	return 1;
1706 }
1707 __setup("rcu_nocbs=", rcu_nocb_setup);
1708 
1709 static int __init parse_rcu_nocb_poll(char *arg)
1710 {
1711 	rcu_nocb_poll = 1;
1712 	return 0;
1713 }
1714 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1715 
1716 /*
1717  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1718  * grace period.
1719  */
1720 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1721 {
1722 	swake_up_all(sq);
1723 }
1724 
1725 /*
1726  * Set the root rcu_node structure's ->need_future_gp field
1727  * based on the sum of those of all rcu_node structures.  This does
1728  * double-count the root rcu_node structure's requests, but this
1729  * is necessary to handle the possibility of a rcu_nocb_kthread()
1730  * having awakened during the time that the rcu_node structures
1731  * were being updated for the end of the previous grace period.
1732  */
1733 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1734 {
1735 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1736 }
1737 
1738 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1739 {
1740 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1741 }
1742 
1743 static void rcu_init_one_nocb(struct rcu_node *rnp)
1744 {
1745 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1746 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1747 }
1748 
1749 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1750 /* Is the specified CPU a no-CBs CPU? */
1751 bool rcu_is_nocb_cpu(int cpu)
1752 {
1753 	if (have_rcu_nocb_mask)
1754 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1755 	return false;
1756 }
1757 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1758 
1759 /*
1760  * Kick the leader kthread for this NOCB group.
1761  */
1762 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1763 {
1764 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1765 
1766 	if (!READ_ONCE(rdp_leader->nocb_kthread))
1767 		return;
1768 	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1769 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1770 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1771 		swake_up(&rdp_leader->nocb_wq);
1772 	}
1773 }
1774 
1775 /*
1776  * Does the specified CPU need an RCU callback for the specified flavor
1777  * of rcu_barrier()?
1778  */
1779 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1780 {
1781 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1782 	unsigned long ret;
1783 #ifdef CONFIG_PROVE_RCU
1784 	struct rcu_head *rhp;
1785 #endif /* #ifdef CONFIG_PROVE_RCU */
1786 
1787 	/*
1788 	 * Check count of all no-CBs callbacks awaiting invocation.
1789 	 * There needs to be a barrier before this function is called,
1790 	 * but associated with a prior determination that no more
1791 	 * callbacks would be posted.  In the worst case, the first
1792 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1793 	 * necessarily rely on this, not a substitute for the caller
1794 	 * getting the concurrency design right!).  There must also be
1795 	 * a barrier between the following load an posting of a callback
1796 	 * (if a callback is in fact needed).  This is associated with an
1797 	 * atomic_inc() in the caller.
1798 	 */
1799 	ret = atomic_long_read(&rdp->nocb_q_count);
1800 
1801 #ifdef CONFIG_PROVE_RCU
1802 	rhp = READ_ONCE(rdp->nocb_head);
1803 	if (!rhp)
1804 		rhp = READ_ONCE(rdp->nocb_gp_head);
1805 	if (!rhp)
1806 		rhp = READ_ONCE(rdp->nocb_follower_head);
1807 
1808 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1809 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1810 	    rcu_scheduler_fully_active) {
1811 		/* RCU callback enqueued before CPU first came online??? */
1812 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1813 		       cpu, rhp->func);
1814 		WARN_ON_ONCE(1);
1815 	}
1816 #endif /* #ifdef CONFIG_PROVE_RCU */
1817 
1818 	return !!ret;
1819 }
1820 
1821 /*
1822  * Enqueue the specified string of rcu_head structures onto the specified
1823  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1824  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1825  * counts are supplied by rhcount and rhcount_lazy.
1826  *
1827  * If warranted, also wake up the kthread servicing this CPUs queues.
1828  */
1829 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1830 				    struct rcu_head *rhp,
1831 				    struct rcu_head **rhtp,
1832 				    int rhcount, int rhcount_lazy,
1833 				    unsigned long flags)
1834 {
1835 	int len;
1836 	struct rcu_head **old_rhpp;
1837 	struct task_struct *t;
1838 
1839 	/* Enqueue the callback on the nocb list and update counts. */
1840 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1841 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1842 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1843 	WRITE_ONCE(*old_rhpp, rhp);
1844 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1845 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1846 
1847 	/* If we are not being polled and there is a kthread, awaken it ... */
1848 	t = READ_ONCE(rdp->nocb_kthread);
1849 	if (rcu_nocb_poll || !t) {
1850 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1851 				    TPS("WakeNotPoll"));
1852 		return;
1853 	}
1854 	len = atomic_long_read(&rdp->nocb_q_count);
1855 	if (old_rhpp == &rdp->nocb_head) {
1856 		if (!irqs_disabled_flags(flags)) {
1857 			/* ... if queue was empty ... */
1858 			wake_nocb_leader(rdp, false);
1859 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1860 					    TPS("WakeEmpty"));
1861 		} else {
1862 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1863 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1864 					    TPS("WakeEmptyIsDeferred"));
1865 		}
1866 		rdp->qlen_last_fqs_check = 0;
1867 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1868 		/* ... or if many callbacks queued. */
1869 		if (!irqs_disabled_flags(flags)) {
1870 			wake_nocb_leader(rdp, true);
1871 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1872 					    TPS("WakeOvf"));
1873 		} else {
1874 			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1875 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1876 					    TPS("WakeOvfIsDeferred"));
1877 		}
1878 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1879 	} else {
1880 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1881 	}
1882 	return;
1883 }
1884 
1885 /*
1886  * This is a helper for __call_rcu(), which invokes this when the normal
1887  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1888  * function returns failure back to __call_rcu(), which can complain
1889  * appropriately.
1890  *
1891  * Otherwise, this function queues the callback where the corresponding
1892  * "rcuo" kthread can find it.
1893  */
1894 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1895 			    bool lazy, unsigned long flags)
1896 {
1897 
1898 	if (!rcu_is_nocb_cpu(rdp->cpu))
1899 		return false;
1900 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1901 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1902 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1903 					 (unsigned long)rhp->func,
1904 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1905 					 -atomic_long_read(&rdp->nocb_q_count));
1906 	else
1907 		trace_rcu_callback(rdp->rsp->name, rhp,
1908 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1909 				   -atomic_long_read(&rdp->nocb_q_count));
1910 
1911 	/*
1912 	 * If called from an extended quiescent state with interrupts
1913 	 * disabled, invoke the RCU core in order to allow the idle-entry
1914 	 * deferred-wakeup check to function.
1915 	 */
1916 	if (irqs_disabled_flags(flags) &&
1917 	    !rcu_is_watching() &&
1918 	    cpu_online(smp_processor_id()))
1919 		invoke_rcu_core();
1920 
1921 	return true;
1922 }
1923 
1924 /*
1925  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1926  * not a no-CBs CPU.
1927  */
1928 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1929 						     struct rcu_data *rdp,
1930 						     unsigned long flags)
1931 {
1932 	long ql = rsp->qlen;
1933 	long qll = rsp->qlen_lazy;
1934 
1935 	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1936 	if (!rcu_is_nocb_cpu(smp_processor_id()))
1937 		return false;
1938 	rsp->qlen = 0;
1939 	rsp->qlen_lazy = 0;
1940 
1941 	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
1942 	if (rsp->orphan_donelist != NULL) {
1943 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1944 					rsp->orphan_donetail, ql, qll, flags);
1945 		ql = qll = 0;
1946 		rsp->orphan_donelist = NULL;
1947 		rsp->orphan_donetail = &rsp->orphan_donelist;
1948 	}
1949 	if (rsp->orphan_nxtlist != NULL) {
1950 		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1951 					rsp->orphan_nxttail, ql, qll, flags);
1952 		ql = qll = 0;
1953 		rsp->orphan_nxtlist = NULL;
1954 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1955 	}
1956 	return true;
1957 }
1958 
1959 /*
1960  * If necessary, kick off a new grace period, and either way wait
1961  * for a subsequent grace period to complete.
1962  */
1963 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1964 {
1965 	unsigned long c;
1966 	bool d;
1967 	unsigned long flags;
1968 	bool needwake;
1969 	struct rcu_node *rnp = rdp->mynode;
1970 
1971 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1972 	needwake = rcu_start_future_gp(rnp, rdp, &c);
1973 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1974 	if (needwake)
1975 		rcu_gp_kthread_wake(rdp->rsp);
1976 
1977 	/*
1978 	 * Wait for the grace period.  Do so interruptibly to avoid messing
1979 	 * up the load average.
1980 	 */
1981 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1982 	for (;;) {
1983 		swait_event_interruptible(
1984 			rnp->nocb_gp_wq[c & 0x1],
1985 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1986 		if (likely(d))
1987 			break;
1988 		WARN_ON(signal_pending(current));
1989 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1990 	}
1991 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1992 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
1993 }
1994 
1995 /*
1996  * Leaders come here to wait for additional callbacks to show up.
1997  * This function does not return until callbacks appear.
1998  */
1999 static void nocb_leader_wait(struct rcu_data *my_rdp)
2000 {
2001 	bool firsttime = true;
2002 	bool gotcbs;
2003 	struct rcu_data *rdp;
2004 	struct rcu_head **tail;
2005 
2006 wait_again:
2007 
2008 	/* Wait for callbacks to appear. */
2009 	if (!rcu_nocb_poll) {
2010 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2011 		swait_event_interruptible(my_rdp->nocb_wq,
2012 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2013 		/* Memory barrier handled by smp_mb() calls below and repoll. */
2014 	} else if (firsttime) {
2015 		firsttime = false; /* Don't drown trace log with "Poll"! */
2016 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2017 	}
2018 
2019 	/*
2020 	 * Each pass through the following loop checks a follower for CBs.
2021 	 * We are our own first follower.  Any CBs found are moved to
2022 	 * nocb_gp_head, where they await a grace period.
2023 	 */
2024 	gotcbs = false;
2025 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2026 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2027 		if (!rdp->nocb_gp_head)
2028 			continue;  /* No CBs here, try next follower. */
2029 
2030 		/* Move callbacks to wait-for-GP list, which is empty. */
2031 		WRITE_ONCE(rdp->nocb_head, NULL);
2032 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2033 		gotcbs = true;
2034 	}
2035 
2036 	/*
2037 	 * If there were no callbacks, sleep a bit, rescan after a
2038 	 * memory barrier, and go retry.
2039 	 */
2040 	if (unlikely(!gotcbs)) {
2041 		if (!rcu_nocb_poll)
2042 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2043 					    "WokeEmpty");
2044 		WARN_ON(signal_pending(current));
2045 		schedule_timeout_interruptible(1);
2046 
2047 		/* Rescan in case we were a victim of memory ordering. */
2048 		my_rdp->nocb_leader_sleep = true;
2049 		smp_mb();  /* Ensure _sleep true before scan. */
2050 		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2051 			if (READ_ONCE(rdp->nocb_head)) {
2052 				/* Found CB, so short-circuit next wait. */
2053 				my_rdp->nocb_leader_sleep = false;
2054 				break;
2055 			}
2056 		goto wait_again;
2057 	}
2058 
2059 	/* Wait for one grace period. */
2060 	rcu_nocb_wait_gp(my_rdp);
2061 
2062 	/*
2063 	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2064 	 * We set it now, but recheck for new callbacks while
2065 	 * traversing our follower list.
2066 	 */
2067 	my_rdp->nocb_leader_sleep = true;
2068 	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2069 
2070 	/* Each pass through the following loop wakes a follower, if needed. */
2071 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2072 		if (READ_ONCE(rdp->nocb_head))
2073 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2074 		if (!rdp->nocb_gp_head)
2075 			continue; /* No CBs, so no need to wake follower. */
2076 
2077 		/* Append callbacks to follower's "done" list. */
2078 		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2079 		*tail = rdp->nocb_gp_head;
2080 		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2081 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2082 			/*
2083 			 * List was empty, wake up the follower.
2084 			 * Memory barriers supplied by atomic_long_add().
2085 			 */
2086 			swake_up(&rdp->nocb_wq);
2087 		}
2088 	}
2089 
2090 	/* If we (the leader) don't have CBs, go wait some more. */
2091 	if (!my_rdp->nocb_follower_head)
2092 		goto wait_again;
2093 }
2094 
2095 /*
2096  * Followers come here to wait for additional callbacks to show up.
2097  * This function does not return until callbacks appear.
2098  */
2099 static void nocb_follower_wait(struct rcu_data *rdp)
2100 {
2101 	bool firsttime = true;
2102 
2103 	for (;;) {
2104 		if (!rcu_nocb_poll) {
2105 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2106 					    "FollowerSleep");
2107 			swait_event_interruptible(rdp->nocb_wq,
2108 						 READ_ONCE(rdp->nocb_follower_head));
2109 		} else if (firsttime) {
2110 			/* Don't drown trace log with "Poll"! */
2111 			firsttime = false;
2112 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2113 		}
2114 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2115 			/* ^^^ Ensure CB invocation follows _head test. */
2116 			return;
2117 		}
2118 		if (!rcu_nocb_poll)
2119 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2120 					    "WokeEmpty");
2121 		WARN_ON(signal_pending(current));
2122 		schedule_timeout_interruptible(1);
2123 	}
2124 }
2125 
2126 /*
2127  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2128  * callbacks queued by the corresponding no-CBs CPU, however, there is
2129  * an optional leader-follower relationship so that the grace-period
2130  * kthreads don't have to do quite so many wakeups.
2131  */
2132 static int rcu_nocb_kthread(void *arg)
2133 {
2134 	int c, cl;
2135 	struct rcu_head *list;
2136 	struct rcu_head *next;
2137 	struct rcu_head **tail;
2138 	struct rcu_data *rdp = arg;
2139 
2140 	/* Each pass through this loop invokes one batch of callbacks */
2141 	for (;;) {
2142 		/* Wait for callbacks. */
2143 		if (rdp->nocb_leader == rdp)
2144 			nocb_leader_wait(rdp);
2145 		else
2146 			nocb_follower_wait(rdp);
2147 
2148 		/* Pull the ready-to-invoke callbacks onto local list. */
2149 		list = READ_ONCE(rdp->nocb_follower_head);
2150 		BUG_ON(!list);
2151 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2152 		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2153 		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2154 
2155 		/* Each pass through the following loop invokes a callback. */
2156 		trace_rcu_batch_start(rdp->rsp->name,
2157 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2158 				      atomic_long_read(&rdp->nocb_q_count), -1);
2159 		c = cl = 0;
2160 		while (list) {
2161 			next = list->next;
2162 			/* Wait for enqueuing to complete, if needed. */
2163 			while (next == NULL && &list->next != tail) {
2164 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2165 						    TPS("WaitQueue"));
2166 				schedule_timeout_interruptible(1);
2167 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2168 						    TPS("WokeQueue"));
2169 				next = list->next;
2170 			}
2171 			debug_rcu_head_unqueue(list);
2172 			local_bh_disable();
2173 			if (__rcu_reclaim(rdp->rsp->name, list))
2174 				cl++;
2175 			c++;
2176 			local_bh_enable();
2177 			cond_resched_rcu_qs();
2178 			list = next;
2179 		}
2180 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2181 		smp_mb__before_atomic();  /* _add after CB invocation. */
2182 		atomic_long_add(-c, &rdp->nocb_q_count);
2183 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2184 		rdp->n_nocbs_invoked += c;
2185 	}
2186 	return 0;
2187 }
2188 
2189 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2190 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2191 {
2192 	return READ_ONCE(rdp->nocb_defer_wakeup);
2193 }
2194 
2195 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2196 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2197 {
2198 	int ndw;
2199 
2200 	if (!rcu_nocb_need_deferred_wakeup(rdp))
2201 		return;
2202 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2203 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2204 	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2205 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2206 }
2207 
2208 void __init rcu_init_nohz(void)
2209 {
2210 	int cpu;
2211 	bool need_rcu_nocb_mask = true;
2212 	struct rcu_state *rsp;
2213 
2214 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2215 	need_rcu_nocb_mask = false;
2216 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2217 
2218 #if defined(CONFIG_NO_HZ_FULL)
2219 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2220 		need_rcu_nocb_mask = true;
2221 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2222 
2223 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2224 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2225 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2226 			return;
2227 		}
2228 		have_rcu_nocb_mask = true;
2229 	}
2230 	if (!have_rcu_nocb_mask)
2231 		return;
2232 
2233 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2234 	pr_info("\tOffload RCU callbacks from CPU 0\n");
2235 	cpumask_set_cpu(0, rcu_nocb_mask);
2236 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2237 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2238 	pr_info("\tOffload RCU callbacks from all CPUs\n");
2239 	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2240 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2241 #if defined(CONFIG_NO_HZ_FULL)
2242 	if (tick_nohz_full_running)
2243 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2244 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2245 
2246 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2247 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2248 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2249 			    rcu_nocb_mask);
2250 	}
2251 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2252 		cpumask_pr_args(rcu_nocb_mask));
2253 	if (rcu_nocb_poll)
2254 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2255 
2256 	for_each_rcu_flavor(rsp) {
2257 		for_each_cpu(cpu, rcu_nocb_mask)
2258 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2259 		rcu_organize_nocb_kthreads(rsp);
2260 	}
2261 }
2262 
2263 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2264 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2265 {
2266 	rdp->nocb_tail = &rdp->nocb_head;
2267 	init_swait_queue_head(&rdp->nocb_wq);
2268 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2269 }
2270 
2271 /*
2272  * If the specified CPU is a no-CBs CPU that does not already have its
2273  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2274  * brought online out of order, this can require re-organizing the
2275  * leader-follower relationships.
2276  */
2277 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2278 {
2279 	struct rcu_data *rdp;
2280 	struct rcu_data *rdp_last;
2281 	struct rcu_data *rdp_old_leader;
2282 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2283 	struct task_struct *t;
2284 
2285 	/*
2286 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2287 	 * then nothing to do.
2288 	 */
2289 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2290 		return;
2291 
2292 	/* If we didn't spawn the leader first, reorganize! */
2293 	rdp_old_leader = rdp_spawn->nocb_leader;
2294 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2295 		rdp_last = NULL;
2296 		rdp = rdp_old_leader;
2297 		do {
2298 			rdp->nocb_leader = rdp_spawn;
2299 			if (rdp_last && rdp != rdp_spawn)
2300 				rdp_last->nocb_next_follower = rdp;
2301 			if (rdp == rdp_spawn) {
2302 				rdp = rdp->nocb_next_follower;
2303 			} else {
2304 				rdp_last = rdp;
2305 				rdp = rdp->nocb_next_follower;
2306 				rdp_last->nocb_next_follower = NULL;
2307 			}
2308 		} while (rdp);
2309 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2310 	}
2311 
2312 	/* Spawn the kthread for this CPU and RCU flavor. */
2313 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2314 			"rcuo%c/%d", rsp->abbr, cpu);
2315 	BUG_ON(IS_ERR(t));
2316 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2317 }
2318 
2319 /*
2320  * If the specified CPU is a no-CBs CPU that does not already have its
2321  * rcuo kthreads, spawn them.
2322  */
2323 static void rcu_spawn_all_nocb_kthreads(int cpu)
2324 {
2325 	struct rcu_state *rsp;
2326 
2327 	if (rcu_scheduler_fully_active)
2328 		for_each_rcu_flavor(rsp)
2329 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2330 }
2331 
2332 /*
2333  * Once the scheduler is running, spawn rcuo kthreads for all online
2334  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2335  * non-boot CPUs come online -- if this changes, we will need to add
2336  * some mutual exclusion.
2337  */
2338 static void __init rcu_spawn_nocb_kthreads(void)
2339 {
2340 	int cpu;
2341 
2342 	for_each_online_cpu(cpu)
2343 		rcu_spawn_all_nocb_kthreads(cpu);
2344 }
2345 
2346 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2347 static int rcu_nocb_leader_stride = -1;
2348 module_param(rcu_nocb_leader_stride, int, 0444);
2349 
2350 /*
2351  * Initialize leader-follower relationships for all no-CBs CPU.
2352  */
2353 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2354 {
2355 	int cpu;
2356 	int ls = rcu_nocb_leader_stride;
2357 	int nl = 0;  /* Next leader. */
2358 	struct rcu_data *rdp;
2359 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2360 	struct rcu_data *rdp_prev = NULL;
2361 
2362 	if (!have_rcu_nocb_mask)
2363 		return;
2364 	if (ls == -1) {
2365 		ls = int_sqrt(nr_cpu_ids);
2366 		rcu_nocb_leader_stride = ls;
2367 	}
2368 
2369 	/*
2370 	 * Each pass through this loop sets up one rcu_data structure.
2371 	 * Should the corresponding CPU come online in the future, then
2372 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2373 	 */
2374 	for_each_cpu(cpu, rcu_nocb_mask) {
2375 		rdp = per_cpu_ptr(rsp->rda, cpu);
2376 		if (rdp->cpu >= nl) {
2377 			/* New leader, set up for followers & next leader. */
2378 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2379 			rdp->nocb_leader = rdp;
2380 			rdp_leader = rdp;
2381 		} else {
2382 			/* Another follower, link to previous leader. */
2383 			rdp->nocb_leader = rdp_leader;
2384 			rdp_prev->nocb_next_follower = rdp;
2385 		}
2386 		rdp_prev = rdp;
2387 	}
2388 }
2389 
2390 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2391 static bool init_nocb_callback_list(struct rcu_data *rdp)
2392 {
2393 	if (!rcu_is_nocb_cpu(rdp->cpu))
2394 		return false;
2395 
2396 	/* If there are early-boot callbacks, move them to nocb lists. */
2397 	if (rdp->nxtlist) {
2398 		rdp->nocb_head = rdp->nxtlist;
2399 		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2400 		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2401 		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2402 		rdp->nxtlist = NULL;
2403 		rdp->qlen = 0;
2404 		rdp->qlen_lazy = 0;
2405 	}
2406 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2407 	return true;
2408 }
2409 
2410 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2411 
2412 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2413 {
2414 	WARN_ON_ONCE(1); /* Should be dead code. */
2415 	return false;
2416 }
2417 
2418 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2419 {
2420 }
2421 
2422 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2423 {
2424 }
2425 
2426 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2427 {
2428 	return NULL;
2429 }
2430 
2431 static void rcu_init_one_nocb(struct rcu_node *rnp)
2432 {
2433 }
2434 
2435 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2436 			    bool lazy, unsigned long flags)
2437 {
2438 	return false;
2439 }
2440 
2441 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2442 						     struct rcu_data *rdp,
2443 						     unsigned long flags)
2444 {
2445 	return false;
2446 }
2447 
2448 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2449 {
2450 }
2451 
2452 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2453 {
2454 	return false;
2455 }
2456 
2457 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2458 {
2459 }
2460 
2461 static void rcu_spawn_all_nocb_kthreads(int cpu)
2462 {
2463 }
2464 
2465 static void __init rcu_spawn_nocb_kthreads(void)
2466 {
2467 }
2468 
2469 static bool init_nocb_callback_list(struct rcu_data *rdp)
2470 {
2471 	return false;
2472 }
2473 
2474 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2475 
2476 /*
2477  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2478  * arbitrarily long period of time with the scheduling-clock tick turned
2479  * off.  RCU will be paying attention to this CPU because it is in the
2480  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2481  * machine because the scheduling-clock tick has been disabled.  Therefore,
2482  * if an adaptive-ticks CPU is failing to respond to the current grace
2483  * period and has not be idle from an RCU perspective, kick it.
2484  */
2485 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2486 {
2487 #ifdef CONFIG_NO_HZ_FULL
2488 	if (tick_nohz_full_cpu(cpu))
2489 		smp_send_reschedule(cpu);
2490 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2491 }
2492 
2493 
2494 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2495 
2496 static int full_sysidle_state;		/* Current system-idle state. */
2497 #define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2498 #define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2499 #define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2500 #define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2501 #define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2502 
2503 /*
2504  * Invoked to note exit from irq or task transition to idle.  Note that
2505  * usermode execution does -not- count as idle here!  After all, we want
2506  * to detect full-system idle states, not RCU quiescent states and grace
2507  * periods.  The caller must have disabled interrupts.
2508  */
2509 static void rcu_sysidle_enter(int irq)
2510 {
2511 	unsigned long j;
2512 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2513 
2514 	/* If there are no nohz_full= CPUs, no need to track this. */
2515 	if (!tick_nohz_full_enabled())
2516 		return;
2517 
2518 	/* Adjust nesting, check for fully idle. */
2519 	if (irq) {
2520 		rdtp->dynticks_idle_nesting--;
2521 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2522 		if (rdtp->dynticks_idle_nesting != 0)
2523 			return;  /* Still not fully idle. */
2524 	} else {
2525 		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2526 		    DYNTICK_TASK_NEST_VALUE) {
2527 			rdtp->dynticks_idle_nesting = 0;
2528 		} else {
2529 			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2530 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2531 			return;  /* Still not fully idle. */
2532 		}
2533 	}
2534 
2535 	/* Record start of fully idle period. */
2536 	j = jiffies;
2537 	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2538 	smp_mb__before_atomic();
2539 	atomic_inc(&rdtp->dynticks_idle);
2540 	smp_mb__after_atomic();
2541 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2542 }
2543 
2544 /*
2545  * Unconditionally force exit from full system-idle state.  This is
2546  * invoked when a normal CPU exits idle, but must be called separately
2547  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2548  * is that the timekeeping CPU is permitted to take scheduling-clock
2549  * interrupts while the system is in system-idle state, and of course
2550  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2551  * interrupt from any other type of interrupt.
2552  */
2553 void rcu_sysidle_force_exit(void)
2554 {
2555 	int oldstate = READ_ONCE(full_sysidle_state);
2556 	int newoldstate;
2557 
2558 	/*
2559 	 * Each pass through the following loop attempts to exit full
2560 	 * system-idle state.  If contention proves to be a problem,
2561 	 * a trylock-based contention tree could be used here.
2562 	 */
2563 	while (oldstate > RCU_SYSIDLE_SHORT) {
2564 		newoldstate = cmpxchg(&full_sysidle_state,
2565 				      oldstate, RCU_SYSIDLE_NOT);
2566 		if (oldstate == newoldstate &&
2567 		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2568 			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2569 			return; /* We cleared it, done! */
2570 		}
2571 		oldstate = newoldstate;
2572 	}
2573 	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2574 }
2575 
2576 /*
2577  * Invoked to note entry to irq or task transition from idle.  Note that
2578  * usermode execution does -not- count as idle here!  The caller must
2579  * have disabled interrupts.
2580  */
2581 static void rcu_sysidle_exit(int irq)
2582 {
2583 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2584 
2585 	/* If there are no nohz_full= CPUs, no need to track this. */
2586 	if (!tick_nohz_full_enabled())
2587 		return;
2588 
2589 	/* Adjust nesting, check for already non-idle. */
2590 	if (irq) {
2591 		rdtp->dynticks_idle_nesting++;
2592 		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2593 		if (rdtp->dynticks_idle_nesting != 1)
2594 			return; /* Already non-idle. */
2595 	} else {
2596 		/*
2597 		 * Allow for irq misnesting.  Yes, it really is possible
2598 		 * to enter an irq handler then never leave it, and maybe
2599 		 * also vice versa.  Handle both possibilities.
2600 		 */
2601 		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2602 			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2603 			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2604 			return; /* Already non-idle. */
2605 		} else {
2606 			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2607 		}
2608 	}
2609 
2610 	/* Record end of idle period. */
2611 	smp_mb__before_atomic();
2612 	atomic_inc(&rdtp->dynticks_idle);
2613 	smp_mb__after_atomic();
2614 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2615 
2616 	/*
2617 	 * If we are the timekeeping CPU, we are permitted to be non-idle
2618 	 * during a system-idle state.  This must be the case, because
2619 	 * the timekeeping CPU has to take scheduling-clock interrupts
2620 	 * during the time that the system is transitioning to full
2621 	 * system-idle state.  This means that the timekeeping CPU must
2622 	 * invoke rcu_sysidle_force_exit() directly if it does anything
2623 	 * more than take a scheduling-clock interrupt.
2624 	 */
2625 	if (smp_processor_id() == tick_do_timer_cpu)
2626 		return;
2627 
2628 	/* Update system-idle state: We are clearly no longer fully idle! */
2629 	rcu_sysidle_force_exit();
2630 }
2631 
2632 /*
2633  * Check to see if the current CPU is idle.  Note that usermode execution
2634  * does not count as idle.  The caller must have disabled interrupts,
2635  * and must be running on tick_do_timer_cpu.
2636  */
2637 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2638 				  unsigned long *maxj)
2639 {
2640 	int cur;
2641 	unsigned long j;
2642 	struct rcu_dynticks *rdtp = rdp->dynticks;
2643 
2644 	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2645 	if (!tick_nohz_full_enabled())
2646 		return;
2647 
2648 	/*
2649 	 * If some other CPU has already reported non-idle, if this is
2650 	 * not the flavor of RCU that tracks sysidle state, or if this
2651 	 * is an offline or the timekeeping CPU, nothing to do.
2652 	 */
2653 	if (!*isidle || rdp->rsp != rcu_state_p ||
2654 	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2655 		return;
2656 	/* Verify affinity of current kthread. */
2657 	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2658 
2659 	/* Pick up current idle and NMI-nesting counter and check. */
2660 	cur = atomic_read(&rdtp->dynticks_idle);
2661 	if (cur & 0x1) {
2662 		*isidle = false; /* We are not idle! */
2663 		return;
2664 	}
2665 	smp_mb(); /* Read counters before timestamps. */
2666 
2667 	/* Pick up timestamps. */
2668 	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2669 	/* If this CPU entered idle more recently, update maxj timestamp. */
2670 	if (ULONG_CMP_LT(*maxj, j))
2671 		*maxj = j;
2672 }
2673 
2674 /*
2675  * Is this the flavor of RCU that is handling full-system idle?
2676  */
2677 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2678 {
2679 	return rsp == rcu_state_p;
2680 }
2681 
2682 /*
2683  * Return a delay in jiffies based on the number of CPUs, rcu_node
2684  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2685  * systems more time to transition to full-idle state in order to
2686  * avoid the cache thrashing that otherwise occur on the state variable.
2687  * Really small systems (less than a couple of tens of CPUs) should
2688  * instead use a single global atomically incremented counter, and later
2689  * versions of this will automatically reconfigure themselves accordingly.
2690  */
2691 static unsigned long rcu_sysidle_delay(void)
2692 {
2693 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2694 		return 0;
2695 	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2696 }
2697 
2698 /*
2699  * Advance the full-system-idle state.  This is invoked when all of
2700  * the non-timekeeping CPUs are idle.
2701  */
2702 static void rcu_sysidle(unsigned long j)
2703 {
2704 	/* Check the current state. */
2705 	switch (READ_ONCE(full_sysidle_state)) {
2706 	case RCU_SYSIDLE_NOT:
2707 
2708 		/* First time all are idle, so note a short idle period. */
2709 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2710 		break;
2711 
2712 	case RCU_SYSIDLE_SHORT:
2713 
2714 		/*
2715 		 * Idle for a bit, time to advance to next state?
2716 		 * cmpxchg failure means race with non-idle, let them win.
2717 		 */
2718 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2719 			(void)cmpxchg(&full_sysidle_state,
2720 				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2721 		break;
2722 
2723 	case RCU_SYSIDLE_LONG:
2724 
2725 		/*
2726 		 * Do an additional check pass before advancing to full.
2727 		 * cmpxchg failure means race with non-idle, let them win.
2728 		 */
2729 		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2730 			(void)cmpxchg(&full_sysidle_state,
2731 				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2732 		break;
2733 
2734 	default:
2735 		break;
2736 	}
2737 }
2738 
2739 /*
2740  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2741  * back to the beginning.
2742  */
2743 static void rcu_sysidle_cancel(void)
2744 {
2745 	smp_mb();
2746 	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2747 		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2748 }
2749 
2750 /*
2751  * Update the sysidle state based on the results of a force-quiescent-state
2752  * scan of the CPUs' dyntick-idle state.
2753  */
2754 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2755 			       unsigned long maxj, bool gpkt)
2756 {
2757 	if (rsp != rcu_state_p)
2758 		return;  /* Wrong flavor, ignore. */
2759 	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2760 		return;  /* Running state machine from timekeeping CPU. */
2761 	if (isidle)
2762 		rcu_sysidle(maxj);    /* More idle! */
2763 	else
2764 		rcu_sysidle_cancel(); /* Idle is over. */
2765 }
2766 
2767 /*
2768  * Wrapper for rcu_sysidle_report() when called from the grace-period
2769  * kthread's context.
2770  */
2771 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2772 				  unsigned long maxj)
2773 {
2774 	/* If there are no nohz_full= CPUs, no need to track this. */
2775 	if (!tick_nohz_full_enabled())
2776 		return;
2777 
2778 	rcu_sysidle_report(rsp, isidle, maxj, true);
2779 }
2780 
2781 /* Callback and function for forcing an RCU grace period. */
2782 struct rcu_sysidle_head {
2783 	struct rcu_head rh;
2784 	int inuse;
2785 };
2786 
2787 static void rcu_sysidle_cb(struct rcu_head *rhp)
2788 {
2789 	struct rcu_sysidle_head *rshp;
2790 
2791 	/*
2792 	 * The following memory barrier is needed to replace the
2793 	 * memory barriers that would normally be in the memory
2794 	 * allocator.
2795 	 */
2796 	smp_mb();  /* grace period precedes setting inuse. */
2797 
2798 	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2799 	WRITE_ONCE(rshp->inuse, 0);
2800 }
2801 
2802 /*
2803  * Check to see if the system is fully idle, other than the timekeeping CPU.
2804  * The caller must have disabled interrupts.  This is not intended to be
2805  * called unless tick_nohz_full_enabled().
2806  */
2807 bool rcu_sys_is_idle(void)
2808 {
2809 	static struct rcu_sysidle_head rsh;
2810 	int rss = READ_ONCE(full_sysidle_state);
2811 
2812 	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2813 		return false;
2814 
2815 	/* Handle small-system case by doing a full scan of CPUs. */
2816 	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2817 		int oldrss = rss - 1;
2818 
2819 		/*
2820 		 * One pass to advance to each state up to _FULL.
2821 		 * Give up if any pass fails to advance the state.
2822 		 */
2823 		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2824 			int cpu;
2825 			bool isidle = true;
2826 			unsigned long maxj = jiffies - ULONG_MAX / 4;
2827 			struct rcu_data *rdp;
2828 
2829 			/* Scan all the CPUs looking for nonidle CPUs. */
2830 			for_each_possible_cpu(cpu) {
2831 				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2832 				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2833 				if (!isidle)
2834 					break;
2835 			}
2836 			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2837 			oldrss = rss;
2838 			rss = READ_ONCE(full_sysidle_state);
2839 		}
2840 	}
2841 
2842 	/* If this is the first observation of an idle period, record it. */
2843 	if (rss == RCU_SYSIDLE_FULL) {
2844 		rss = cmpxchg(&full_sysidle_state,
2845 			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2846 		return rss == RCU_SYSIDLE_FULL;
2847 	}
2848 
2849 	smp_mb(); /* ensure rss load happens before later caller actions. */
2850 
2851 	/* If already fully idle, tell the caller (in case of races). */
2852 	if (rss == RCU_SYSIDLE_FULL_NOTED)
2853 		return true;
2854 
2855 	/*
2856 	 * If we aren't there yet, and a grace period is not in flight,
2857 	 * initiate a grace period.  Either way, tell the caller that
2858 	 * we are not there yet.  We use an xchg() rather than an assignment
2859 	 * to make up for the memory barriers that would otherwise be
2860 	 * provided by the memory allocator.
2861 	 */
2862 	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2863 	    !rcu_gp_in_progress(rcu_state_p) &&
2864 	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2865 		call_rcu(&rsh.rh, rcu_sysidle_cb);
2866 	return false;
2867 }
2868 
2869 /*
2870  * Initialize dynticks sysidle state for CPUs coming online.
2871  */
2872 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2873 {
2874 	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2875 }
2876 
2877 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2878 
2879 static void rcu_sysidle_enter(int irq)
2880 {
2881 }
2882 
2883 static void rcu_sysidle_exit(int irq)
2884 {
2885 }
2886 
2887 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2888 				  unsigned long *maxj)
2889 {
2890 }
2891 
2892 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2893 {
2894 	return false;
2895 }
2896 
2897 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2898 				  unsigned long maxj)
2899 {
2900 }
2901 
2902 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2903 {
2904 }
2905 
2906 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2907 
2908 /*
2909  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2910  * grace-period kthread will do force_quiescent_state() processing?
2911  * The idea is to avoid waking up RCU core processing on such a
2912  * CPU unless the grace period has extended for too long.
2913  *
2914  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2915  * CONFIG_RCU_NOCB_CPU CPUs.
2916  */
2917 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2918 {
2919 #ifdef CONFIG_NO_HZ_FULL
2920 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2921 	    (!rcu_gp_in_progress(rsp) ||
2922 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2923 		return true;
2924 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2925 	return false;
2926 }
2927 
2928 /*
2929  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2930  * timekeeping CPU.
2931  */
2932 static void rcu_bind_gp_kthread(void)
2933 {
2934 	int __maybe_unused cpu;
2935 
2936 	if (!tick_nohz_full_enabled())
2937 		return;
2938 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2939 	cpu = tick_do_timer_cpu;
2940 	if (cpu >= 0 && cpu < nr_cpu_ids)
2941 		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2942 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2943 	housekeeping_affine(current);
2944 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2945 }
2946 
2947 /* Record the current task on dyntick-idle entry. */
2948 static void rcu_dynticks_task_enter(void)
2949 {
2950 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2951 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2952 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2953 }
2954 
2955 /* Record no current task on dyntick-idle exit. */
2956 static void rcu_dynticks_task_exit(void)
2957 {
2958 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2959 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2960 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2961 }
2962