1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * 10 * Author: Ingo Molnar <mingo@elte.hu> 11 * Paul E. McKenney <paulmck@linux.ibm.com> 12 */ 13 14 #include "../locking/rtmutex_common.h" 15 16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp) 17 { 18 /* 19 * In order to read the offloaded state of an rdp in a safe 20 * and stable way and prevent from its value to be changed 21 * under us, we must either hold the barrier mutex, the cpu 22 * hotplug lock (read or write) or the nocb lock. Local 23 * non-preemptible reads are also safe. NOCB kthreads and 24 * timers have their own means of synchronization against the 25 * offloaded state updaters. 26 */ 27 RCU_LOCKDEP_WARN( 28 !(lockdep_is_held(&rcu_state.barrier_mutex) || 29 (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) || 30 rcu_lockdep_is_held_nocb(rdp) || 31 (rdp == this_cpu_ptr(&rcu_data) && 32 !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) || 33 rcu_current_is_nocb_kthread(rdp)), 34 "Unsafe read of RCU_NOCB offloaded state" 35 ); 36 37 return rcu_segcblist_is_offloaded(&rdp->cblist); 38 } 39 40 /* 41 * Check the RCU kernel configuration parameters and print informative 42 * messages about anything out of the ordinary. 43 */ 44 static void __init rcu_bootup_announce_oddness(void) 45 { 46 if (IS_ENABLED(CONFIG_RCU_TRACE)) 47 pr_info("\tRCU event tracing is enabled.\n"); 48 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 49 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 50 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", 51 RCU_FANOUT); 52 if (rcu_fanout_exact) 53 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 54 if (IS_ENABLED(CONFIG_PROVE_RCU)) 55 pr_info("\tRCU lockdep checking is enabled.\n"); 56 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 57 pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n"); 58 if (RCU_NUM_LVLS >= 4) 59 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 60 if (RCU_FANOUT_LEAF != 16) 61 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 62 RCU_FANOUT_LEAF); 63 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 64 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", 65 rcu_fanout_leaf); 66 if (nr_cpu_ids != NR_CPUS) 67 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); 68 #ifdef CONFIG_RCU_BOOST 69 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", 70 kthread_prio, CONFIG_RCU_BOOST_DELAY); 71 #endif 72 if (blimit != DEFAULT_RCU_BLIMIT) 73 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); 74 if (qhimark != DEFAULT_RCU_QHIMARK) 75 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); 76 if (qlowmark != DEFAULT_RCU_QLOMARK) 77 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); 78 if (qovld != DEFAULT_RCU_QOVLD) 79 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); 80 if (jiffies_till_first_fqs != ULONG_MAX) 81 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); 82 if (jiffies_till_next_fqs != ULONG_MAX) 83 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); 84 if (jiffies_till_sched_qs != ULONG_MAX) 85 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); 86 if (rcu_kick_kthreads) 87 pr_info("\tKick kthreads if too-long grace period.\n"); 88 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) 89 pr_info("\tRCU callback double-/use-after-free debug is enabled.\n"); 90 if (gp_preinit_delay) 91 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); 92 if (gp_init_delay) 93 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); 94 if (gp_cleanup_delay) 95 pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay); 96 if (!use_softirq) 97 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); 98 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) 99 pr_info("\tRCU debug extended QS entry/exit.\n"); 100 rcupdate_announce_bootup_oddness(); 101 } 102 103 #ifdef CONFIG_PREEMPT_RCU 104 105 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); 106 static void rcu_read_unlock_special(struct task_struct *t); 107 108 /* 109 * Tell them what RCU they are running. 110 */ 111 static void __init rcu_bootup_announce(void) 112 { 113 pr_info("Preemptible hierarchical RCU implementation.\n"); 114 rcu_bootup_announce_oddness(); 115 } 116 117 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 118 #define RCU_GP_TASKS 0x8 119 #define RCU_EXP_TASKS 0x4 120 #define RCU_GP_BLKD 0x2 121 #define RCU_EXP_BLKD 0x1 122 123 /* 124 * Queues a task preempted within an RCU-preempt read-side critical 125 * section into the appropriate location within the ->blkd_tasks list, 126 * depending on the states of any ongoing normal and expedited grace 127 * periods. The ->gp_tasks pointer indicates which element the normal 128 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 129 * indicates which element the expedited grace period is waiting on (again, 130 * NULL if none). If a grace period is waiting on a given element in the 131 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 132 * adding a task to the tail of the list blocks any grace period that is 133 * already waiting on one of the elements. In contrast, adding a task 134 * to the head of the list won't block any grace period that is already 135 * waiting on one of the elements. 136 * 137 * This queuing is imprecise, and can sometimes make an ongoing grace 138 * period wait for a task that is not strictly speaking blocking it. 139 * Given the choice, we needlessly block a normal grace period rather than 140 * blocking an expedited grace period. 141 * 142 * Note that an endless sequence of expedited grace periods still cannot 143 * indefinitely postpone a normal grace period. Eventually, all of the 144 * fixed number of preempted tasks blocking the normal grace period that are 145 * not also blocking the expedited grace period will resume and complete 146 * their RCU read-side critical sections. At that point, the ->gp_tasks 147 * pointer will equal the ->exp_tasks pointer, at which point the end of 148 * the corresponding expedited grace period will also be the end of the 149 * normal grace period. 150 */ 151 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 152 __releases(rnp->lock) /* But leaves rrupts disabled. */ 153 { 154 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 155 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 156 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 157 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 158 struct task_struct *t = current; 159 160 raw_lockdep_assert_held_rcu_node(rnp); 161 WARN_ON_ONCE(rdp->mynode != rnp); 162 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 163 /* RCU better not be waiting on newly onlined CPUs! */ 164 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & 165 rdp->grpmask); 166 167 /* 168 * Decide where to queue the newly blocked task. In theory, 169 * this could be an if-statement. In practice, when I tried 170 * that, it was quite messy. 171 */ 172 switch (blkd_state) { 173 case 0: 174 case RCU_EXP_TASKS: 175 case RCU_EXP_TASKS + RCU_GP_BLKD: 176 case RCU_GP_TASKS: 177 case RCU_GP_TASKS + RCU_EXP_TASKS: 178 179 /* 180 * Blocking neither GP, or first task blocking the normal 181 * GP but not blocking the already-waiting expedited GP. 182 * Queue at the head of the list to avoid unnecessarily 183 * blocking the already-waiting GPs. 184 */ 185 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 186 break; 187 188 case RCU_EXP_BLKD: 189 case RCU_GP_BLKD: 190 case RCU_GP_BLKD + RCU_EXP_BLKD: 191 case RCU_GP_TASKS + RCU_EXP_BLKD: 192 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 193 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 194 195 /* 196 * First task arriving that blocks either GP, or first task 197 * arriving that blocks the expedited GP (with the normal 198 * GP already waiting), or a task arriving that blocks 199 * both GPs with both GPs already waiting. Queue at the 200 * tail of the list to avoid any GP waiting on any of the 201 * already queued tasks that are not blocking it. 202 */ 203 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 204 break; 205 206 case RCU_EXP_TASKS + RCU_EXP_BLKD: 207 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 208 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 209 210 /* 211 * Second or subsequent task blocking the expedited GP. 212 * The task either does not block the normal GP, or is the 213 * first task blocking the normal GP. Queue just after 214 * the first task blocking the expedited GP. 215 */ 216 list_add(&t->rcu_node_entry, rnp->exp_tasks); 217 break; 218 219 case RCU_GP_TASKS + RCU_GP_BLKD: 220 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 221 222 /* 223 * Second or subsequent task blocking the normal GP. 224 * The task does not block the expedited GP. Queue just 225 * after the first task blocking the normal GP. 226 */ 227 list_add(&t->rcu_node_entry, rnp->gp_tasks); 228 break; 229 230 default: 231 232 /* Yet another exercise in excessive paranoia. */ 233 WARN_ON_ONCE(1); 234 break; 235 } 236 237 /* 238 * We have now queued the task. If it was the first one to 239 * block either grace period, update the ->gp_tasks and/or 240 * ->exp_tasks pointers, respectively, to reference the newly 241 * blocked tasks. 242 */ 243 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { 244 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); 245 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); 246 } 247 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 248 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry); 249 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != 250 !(rnp->qsmask & rdp->grpmask)); 251 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != 252 !(rnp->expmask & rdp->grpmask)); 253 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 254 255 /* 256 * Report the quiescent state for the expedited GP. This expedited 257 * GP should not be able to end until we report, so there should be 258 * no need to check for a subsequent expedited GP. (Though we are 259 * still in a quiescent state in any case.) 260 * 261 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change. 262 */ 263 if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp) 264 rcu_report_exp_rdp(rdp); 265 else 266 WARN_ON_ONCE(rdp->cpu_no_qs.b.exp); 267 } 268 269 /* 270 * Record a preemptible-RCU quiescent state for the specified CPU. 271 * Note that this does not necessarily mean that the task currently running 272 * on the CPU is in a quiescent state: Instead, it means that the current 273 * grace period need not wait on any RCU read-side critical section that 274 * starts later on this CPU. It also means that if the current task is 275 * in an RCU read-side critical section, it has already added itself to 276 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the 277 * current task, there might be any number of other tasks blocked while 278 * in an RCU read-side critical section. 279 * 280 * Unlike non-preemptible-RCU, quiescent state reports for expedited 281 * grace periods are handled separately via deferred quiescent states 282 * and context switch events. 283 * 284 * Callers to this function must disable preemption. 285 */ 286 static void rcu_qs(void) 287 { 288 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); 289 if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) { 290 trace_rcu_grace_period(TPS("rcu_preempt"), 291 __this_cpu_read(rcu_data.gp_seq), 292 TPS("cpuqs")); 293 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 294 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ 295 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); 296 } 297 } 298 299 /* 300 * We have entered the scheduler, and the current task might soon be 301 * context-switched away from. If this task is in an RCU read-side 302 * critical section, we will no longer be able to rely on the CPU to 303 * record that fact, so we enqueue the task on the blkd_tasks list. 304 * The task will dequeue itself when it exits the outermost enclosing 305 * RCU read-side critical section. Therefore, the current grace period 306 * cannot be permitted to complete until the blkd_tasks list entries 307 * predating the current grace period drain, in other words, until 308 * rnp->gp_tasks becomes NULL. 309 * 310 * Caller must disable interrupts. 311 */ 312 void rcu_note_context_switch(bool preempt) 313 { 314 struct task_struct *t = current; 315 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 316 struct rcu_node *rnp; 317 318 trace_rcu_utilization(TPS("Start context switch")); 319 lockdep_assert_irqs_disabled(); 320 WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!"); 321 if (rcu_preempt_depth() > 0 && 322 !t->rcu_read_unlock_special.b.blocked) { 323 324 /* Possibly blocking in an RCU read-side critical section. */ 325 rnp = rdp->mynode; 326 raw_spin_lock_rcu_node(rnp); 327 t->rcu_read_unlock_special.b.blocked = true; 328 t->rcu_blocked_node = rnp; 329 330 /* 331 * Verify the CPU's sanity, trace the preemption, and 332 * then queue the task as required based on the states 333 * of any ongoing and expedited grace periods. 334 */ 335 WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp)); 336 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 337 trace_rcu_preempt_task(rcu_state.name, 338 t->pid, 339 (rnp->qsmask & rdp->grpmask) 340 ? rnp->gp_seq 341 : rcu_seq_snap(&rnp->gp_seq)); 342 rcu_preempt_ctxt_queue(rnp, rdp); 343 } else { 344 rcu_preempt_deferred_qs(t); 345 } 346 347 /* 348 * Either we were not in an RCU read-side critical section to 349 * begin with, or we have now recorded that critical section 350 * globally. Either way, we can now note a quiescent state 351 * for this CPU. Again, if we were in an RCU read-side critical 352 * section, and if that critical section was blocking the current 353 * grace period, then the fact that the task has been enqueued 354 * means that we continue to block the current grace period. 355 */ 356 rcu_qs(); 357 if (rdp->cpu_no_qs.b.exp) 358 rcu_report_exp_rdp(rdp); 359 rcu_tasks_qs(current, preempt); 360 trace_rcu_utilization(TPS("End context switch")); 361 } 362 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 363 364 /* 365 * Check for preempted RCU readers blocking the current grace period 366 * for the specified rcu_node structure. If the caller needs a reliable 367 * answer, it must hold the rcu_node's ->lock. 368 */ 369 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 370 { 371 return READ_ONCE(rnp->gp_tasks) != NULL; 372 } 373 374 /* limit value for ->rcu_read_lock_nesting. */ 375 #define RCU_NEST_PMAX (INT_MAX / 2) 376 377 static void rcu_preempt_read_enter(void) 378 { 379 WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1); 380 } 381 382 static int rcu_preempt_read_exit(void) 383 { 384 int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1; 385 386 WRITE_ONCE(current->rcu_read_lock_nesting, ret); 387 return ret; 388 } 389 390 static void rcu_preempt_depth_set(int val) 391 { 392 WRITE_ONCE(current->rcu_read_lock_nesting, val); 393 } 394 395 /* 396 * Preemptible RCU implementation for rcu_read_lock(). 397 * Just increment ->rcu_read_lock_nesting, shared state will be updated 398 * if we block. 399 */ 400 void __rcu_read_lock(void) 401 { 402 rcu_preempt_read_enter(); 403 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 404 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); 405 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread) 406 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true); 407 barrier(); /* critical section after entry code. */ 408 } 409 EXPORT_SYMBOL_GPL(__rcu_read_lock); 410 411 /* 412 * Preemptible RCU implementation for rcu_read_unlock(). 413 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost 414 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then 415 * invoke rcu_read_unlock_special() to clean up after a context switch 416 * in an RCU read-side critical section and other special cases. 417 */ 418 void __rcu_read_unlock(void) 419 { 420 struct task_struct *t = current; 421 422 barrier(); // critical section before exit code. 423 if (rcu_preempt_read_exit() == 0) { 424 barrier(); // critical-section exit before .s check. 425 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) 426 rcu_read_unlock_special(t); 427 } 428 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 429 int rrln = rcu_preempt_depth(); 430 431 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX); 432 } 433 } 434 EXPORT_SYMBOL_GPL(__rcu_read_unlock); 435 436 /* 437 * Advance a ->blkd_tasks-list pointer to the next entry, instead 438 * returning NULL if at the end of the list. 439 */ 440 static struct list_head *rcu_next_node_entry(struct task_struct *t, 441 struct rcu_node *rnp) 442 { 443 struct list_head *np; 444 445 np = t->rcu_node_entry.next; 446 if (np == &rnp->blkd_tasks) 447 np = NULL; 448 return np; 449 } 450 451 /* 452 * Return true if the specified rcu_node structure has tasks that were 453 * preempted within an RCU read-side critical section. 454 */ 455 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 456 { 457 return !list_empty(&rnp->blkd_tasks); 458 } 459 460 /* 461 * Report deferred quiescent states. The deferral time can 462 * be quite short, for example, in the case of the call from 463 * rcu_read_unlock_special(). 464 */ 465 static notrace void 466 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) 467 { 468 bool empty_exp; 469 bool empty_norm; 470 bool empty_exp_now; 471 struct list_head *np; 472 bool drop_boost_mutex = false; 473 struct rcu_data *rdp; 474 struct rcu_node *rnp; 475 union rcu_special special; 476 477 /* 478 * If RCU core is waiting for this CPU to exit its critical section, 479 * report the fact that it has exited. Because irqs are disabled, 480 * t->rcu_read_unlock_special cannot change. 481 */ 482 special = t->rcu_read_unlock_special; 483 rdp = this_cpu_ptr(&rcu_data); 484 if (!special.s && !rdp->cpu_no_qs.b.exp) { 485 local_irq_restore(flags); 486 return; 487 } 488 t->rcu_read_unlock_special.s = 0; 489 if (special.b.need_qs) { 490 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 491 rdp->cpu_no_qs.b.norm = false; 492 rcu_report_qs_rdp(rdp); 493 udelay(rcu_unlock_delay); 494 } else { 495 rcu_qs(); 496 } 497 } 498 499 /* 500 * Respond to a request by an expedited grace period for a 501 * quiescent state from this CPU. Note that requests from 502 * tasks are handled when removing the task from the 503 * blocked-tasks list below. 504 */ 505 if (rdp->cpu_no_qs.b.exp) 506 rcu_report_exp_rdp(rdp); 507 508 /* Clean up if blocked during RCU read-side critical section. */ 509 if (special.b.blocked) { 510 511 /* 512 * Remove this task from the list it blocked on. The task 513 * now remains queued on the rcu_node corresponding to the 514 * CPU it first blocked on, so there is no longer any need 515 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 516 */ 517 rnp = t->rcu_blocked_node; 518 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 519 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 520 WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); 521 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 522 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && 523 (!empty_norm || rnp->qsmask)); 524 empty_exp = sync_rcu_exp_done(rnp); 525 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 526 np = rcu_next_node_entry(t, rnp); 527 list_del_init(&t->rcu_node_entry); 528 t->rcu_blocked_node = NULL; 529 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 530 rnp->gp_seq, t->pid); 531 if (&t->rcu_node_entry == rnp->gp_tasks) 532 WRITE_ONCE(rnp->gp_tasks, np); 533 if (&t->rcu_node_entry == rnp->exp_tasks) 534 WRITE_ONCE(rnp->exp_tasks, np); 535 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 536 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 537 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t; 538 if (&t->rcu_node_entry == rnp->boost_tasks) 539 WRITE_ONCE(rnp->boost_tasks, np); 540 } 541 542 /* 543 * If this was the last task on the current list, and if 544 * we aren't waiting on any CPUs, report the quiescent state. 545 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 546 * so we must take a snapshot of the expedited state. 547 */ 548 empty_exp_now = sync_rcu_exp_done(rnp); 549 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 550 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 551 rnp->gp_seq, 552 0, rnp->qsmask, 553 rnp->level, 554 rnp->grplo, 555 rnp->grphi, 556 !!rnp->gp_tasks); 557 rcu_report_unblock_qs_rnp(rnp, flags); 558 } else { 559 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 560 } 561 562 /* 563 * If this was the last task on the expedited lists, 564 * then we need to report up the rcu_node hierarchy. 565 */ 566 if (!empty_exp && empty_exp_now) 567 rcu_report_exp_rnp(rnp, true); 568 569 /* Unboost if we were boosted. */ 570 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 571 rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex); 572 } else { 573 local_irq_restore(flags); 574 } 575 } 576 577 /* 578 * Is a deferred quiescent-state pending, and are we also not in 579 * an RCU read-side critical section? It is the caller's responsibility 580 * to ensure it is otherwise safe to report any deferred quiescent 581 * states. The reason for this is that it is safe to report a 582 * quiescent state during context switch even though preemption 583 * is disabled. This function cannot be expected to understand these 584 * nuances, so the caller must handle them. 585 */ 586 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t) 587 { 588 return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) || 589 READ_ONCE(t->rcu_read_unlock_special.s)) && 590 rcu_preempt_depth() == 0; 591 } 592 593 /* 594 * Report a deferred quiescent state if needed and safe to do so. 595 * As with rcu_preempt_need_deferred_qs(), "safe" involves only 596 * not being in an RCU read-side critical section. The caller must 597 * evaluate safety in terms of interrupt, softirq, and preemption 598 * disabling. 599 */ 600 notrace void rcu_preempt_deferred_qs(struct task_struct *t) 601 { 602 unsigned long flags; 603 604 if (!rcu_preempt_need_deferred_qs(t)) 605 return; 606 local_irq_save(flags); 607 rcu_preempt_deferred_qs_irqrestore(t, flags); 608 } 609 610 /* 611 * Minimal handler to give the scheduler a chance to re-evaluate. 612 */ 613 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) 614 { 615 struct rcu_data *rdp; 616 617 rdp = container_of(iwp, struct rcu_data, defer_qs_iw); 618 rdp->defer_qs_iw_pending = false; 619 } 620 621 /* 622 * Handle special cases during rcu_read_unlock(), such as needing to 623 * notify RCU core processing or task having blocked during the RCU 624 * read-side critical section. 625 */ 626 static void rcu_read_unlock_special(struct task_struct *t) 627 { 628 unsigned long flags; 629 bool irqs_were_disabled; 630 bool preempt_bh_were_disabled = 631 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); 632 633 /* NMI handlers cannot block and cannot safely manipulate state. */ 634 if (in_nmi()) 635 return; 636 637 local_irq_save(flags); 638 irqs_were_disabled = irqs_disabled_flags(flags); 639 if (preempt_bh_were_disabled || irqs_were_disabled) { 640 bool expboost; // Expedited GP in flight or possible boosting. 641 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 642 struct rcu_node *rnp = rdp->mynode; 643 644 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) || 645 (rdp->grpmask & READ_ONCE(rnp->expmask)) || 646 (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && 647 ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) || 648 (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled && 649 t->rcu_blocked_node); 650 // Need to defer quiescent state until everything is enabled. 651 if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) { 652 // Using softirq, safe to awaken, and either the 653 // wakeup is free or there is either an expedited 654 // GP in flight or a potential need to deboost. 655 raise_softirq_irqoff(RCU_SOFTIRQ); 656 } else { 657 // Enabling BH or preempt does reschedule, so... 658 // Also if no expediting and no possible deboosting, 659 // slow is OK. Plus nohz_full CPUs eventually get 660 // tick enabled. 661 set_tsk_need_resched(current); 662 set_preempt_need_resched(); 663 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && 664 expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) { 665 // Get scheduler to re-evaluate and call hooks. 666 // If !IRQ_WORK, FQS scan will eventually IPI. 667 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && 668 IS_ENABLED(CONFIG_PREEMPT_RT)) 669 rdp->defer_qs_iw = IRQ_WORK_INIT_HARD( 670 rcu_preempt_deferred_qs_handler); 671 else 672 init_irq_work(&rdp->defer_qs_iw, 673 rcu_preempt_deferred_qs_handler); 674 rdp->defer_qs_iw_pending = true; 675 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); 676 } 677 } 678 local_irq_restore(flags); 679 return; 680 } 681 rcu_preempt_deferred_qs_irqrestore(t, flags); 682 } 683 684 /* 685 * Check that the list of blocked tasks for the newly completed grace 686 * period is in fact empty. It is a serious bug to complete a grace 687 * period that still has RCU readers blocked! This function must be 688 * invoked -before- updating this rnp's ->gp_seq. 689 * 690 * Also, if there are blocked tasks on the list, they automatically 691 * block the newly created grace period, so set up ->gp_tasks accordingly. 692 */ 693 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 694 { 695 struct task_struct *t; 696 697 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); 698 raw_lockdep_assert_held_rcu_node(rnp); 699 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 700 dump_blkd_tasks(rnp, 10); 701 if (rcu_preempt_has_tasks(rnp) && 702 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { 703 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); 704 t = container_of(rnp->gp_tasks, struct task_struct, 705 rcu_node_entry); 706 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), 707 rnp->gp_seq, t->pid); 708 } 709 WARN_ON_ONCE(rnp->qsmask); 710 } 711 712 /* 713 * Check for a quiescent state from the current CPU, including voluntary 714 * context switches for Tasks RCU. When a task blocks, the task is 715 * recorded in the corresponding CPU's rcu_node structure, which is checked 716 * elsewhere, hence this function need only check for quiescent states 717 * related to the current CPU, not to those related to tasks. 718 */ 719 static void rcu_flavor_sched_clock_irq(int user) 720 { 721 struct task_struct *t = current; 722 723 lockdep_assert_irqs_disabled(); 724 if (rcu_preempt_depth() > 0 || 725 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { 726 /* No QS, force context switch if deferred. */ 727 if (rcu_preempt_need_deferred_qs(t)) { 728 set_tsk_need_resched(t); 729 set_preempt_need_resched(); 730 } 731 } else if (rcu_preempt_need_deferred_qs(t)) { 732 rcu_preempt_deferred_qs(t); /* Report deferred QS. */ 733 return; 734 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) { 735 rcu_qs(); /* Report immediate QS. */ 736 return; 737 } 738 739 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */ 740 if (rcu_preempt_depth() > 0 && 741 __this_cpu_read(rcu_data.core_needs_qs) && 742 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && 743 !t->rcu_read_unlock_special.b.need_qs && 744 time_after(jiffies, rcu_state.gp_start + HZ)) 745 t->rcu_read_unlock_special.b.need_qs = true; 746 } 747 748 /* 749 * Check for a task exiting while in a preemptible-RCU read-side 750 * critical section, clean up if so. No need to issue warnings, as 751 * debug_check_no_locks_held() already does this if lockdep is enabled. 752 * Besides, if this function does anything other than just immediately 753 * return, there was a bug of some sort. Spewing warnings from this 754 * function is like as not to simply obscure important prior warnings. 755 */ 756 void exit_rcu(void) 757 { 758 struct task_struct *t = current; 759 760 if (unlikely(!list_empty(¤t->rcu_node_entry))) { 761 rcu_preempt_depth_set(1); 762 barrier(); 763 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); 764 } else if (unlikely(rcu_preempt_depth())) { 765 rcu_preempt_depth_set(1); 766 } else { 767 return; 768 } 769 __rcu_read_unlock(); 770 rcu_preempt_deferred_qs(current); 771 } 772 773 /* 774 * Dump the blocked-tasks state, but limit the list dump to the 775 * specified number of elements. 776 */ 777 static void 778 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 779 { 780 int cpu; 781 int i; 782 struct list_head *lhp; 783 struct rcu_data *rdp; 784 struct rcu_node *rnp1; 785 786 raw_lockdep_assert_held_rcu_node(rnp); 787 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 788 __func__, rnp->grplo, rnp->grphi, rnp->level, 789 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); 790 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 791 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", 792 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); 793 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", 794 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks), 795 READ_ONCE(rnp->exp_tasks)); 796 pr_info("%s: ->blkd_tasks", __func__); 797 i = 0; 798 list_for_each(lhp, &rnp->blkd_tasks) { 799 pr_cont(" %p", lhp); 800 if (++i >= ncheck) 801 break; 802 } 803 pr_cont("\n"); 804 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 805 rdp = per_cpu_ptr(&rcu_data, cpu); 806 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", 807 cpu, ".o"[rcu_rdp_cpu_online(rdp)], 808 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 809 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 810 } 811 } 812 813 #else /* #ifdef CONFIG_PREEMPT_RCU */ 814 815 /* 816 * If strict grace periods are enabled, and if the calling 817 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately 818 * report that quiescent state and, if requested, spin for a bit. 819 */ 820 void rcu_read_unlock_strict(void) 821 { 822 struct rcu_data *rdp; 823 824 if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread) 825 return; 826 rdp = this_cpu_ptr(&rcu_data); 827 rdp->cpu_no_qs.b.norm = false; 828 rcu_report_qs_rdp(rdp); 829 udelay(rcu_unlock_delay); 830 } 831 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict); 832 833 /* 834 * Tell them what RCU they are running. 835 */ 836 static void __init rcu_bootup_announce(void) 837 { 838 pr_info("Hierarchical RCU implementation.\n"); 839 rcu_bootup_announce_oddness(); 840 } 841 842 /* 843 * Note a quiescent state for PREEMPTION=n. Because we do not need to know 844 * how many quiescent states passed, just if there was at least one since 845 * the start of the grace period, this just sets a flag. The caller must 846 * have disabled preemption. 847 */ 848 static void rcu_qs(void) 849 { 850 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); 851 if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) 852 return; 853 trace_rcu_grace_period(TPS("rcu_sched"), 854 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); 855 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); 856 if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) 857 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 858 } 859 860 /* 861 * Register an urgently needed quiescent state. If there is an 862 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 863 * dyntick-idle quiescent state visible to other CPUs, which will in 864 * some cases serve for expedited as well as normal grace periods. 865 * Either way, register a lightweight quiescent state. 866 */ 867 void rcu_all_qs(void) 868 { 869 unsigned long flags; 870 871 if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) 872 return; 873 preempt_disable(); // For CONFIG_PREEMPT_COUNT=y kernels 874 /* Load rcu_urgent_qs before other flags. */ 875 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 876 preempt_enable(); 877 return; 878 } 879 this_cpu_write(rcu_data.rcu_urgent_qs, false); 880 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { 881 local_irq_save(flags); 882 rcu_momentary_dyntick_idle(); 883 local_irq_restore(flags); 884 } 885 rcu_qs(); 886 preempt_enable(); 887 } 888 EXPORT_SYMBOL_GPL(rcu_all_qs); 889 890 /* 891 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. 892 */ 893 void rcu_note_context_switch(bool preempt) 894 { 895 trace_rcu_utilization(TPS("Start context switch")); 896 rcu_qs(); 897 /* Load rcu_urgent_qs before other flags. */ 898 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) 899 goto out; 900 this_cpu_write(rcu_data.rcu_urgent_qs, false); 901 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) 902 rcu_momentary_dyntick_idle(); 903 out: 904 rcu_tasks_qs(current, preempt); 905 trace_rcu_utilization(TPS("End context switch")); 906 } 907 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 908 909 /* 910 * Because preemptible RCU does not exist, there are never any preempted 911 * RCU readers. 912 */ 913 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 914 { 915 return 0; 916 } 917 918 /* 919 * Because there is no preemptible RCU, there can be no readers blocked. 920 */ 921 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 922 { 923 return false; 924 } 925 926 /* 927 * Because there is no preemptible RCU, there can be no deferred quiescent 928 * states. 929 */ 930 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t) 931 { 932 return false; 933 } 934 935 // Except that we do need to respond to a request by an expedited 936 // grace period for a quiescent state from this CPU. Note that in 937 // non-preemptible kernels, there can be no context switches within RCU 938 // read-side critical sections, which in turn means that the leaf rcu_node 939 // structure's blocked-tasks list is always empty. is therefore no need to 940 // actually check it. Instead, a quiescent state from this CPU suffices, 941 // and this function is only called from such a quiescent state. 942 notrace void rcu_preempt_deferred_qs(struct task_struct *t) 943 { 944 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 945 946 if (READ_ONCE(rdp->cpu_no_qs.b.exp)) 947 rcu_report_exp_rdp(rdp); 948 } 949 950 /* 951 * Because there is no preemptible RCU, there can be no readers blocked, 952 * so there is no need to check for blocked tasks. So check only for 953 * bogus qsmask values. 954 */ 955 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 956 { 957 WARN_ON_ONCE(rnp->qsmask); 958 } 959 960 /* 961 * Check to see if this CPU is in a non-context-switch quiescent state, 962 * namely user mode and idle loop. 963 */ 964 static void rcu_flavor_sched_clock_irq(int user) 965 { 966 if (user || rcu_is_cpu_rrupt_from_idle()) { 967 968 /* 969 * Get here if this CPU took its interrupt from user 970 * mode or from the idle loop, and if this is not a 971 * nested interrupt. In this case, the CPU is in 972 * a quiescent state, so note it. 973 * 974 * No memory barrier is required here because rcu_qs() 975 * references only CPU-local variables that other CPUs 976 * neither access nor modify, at least not while the 977 * corresponding CPU is online. 978 */ 979 rcu_qs(); 980 } 981 } 982 983 /* 984 * Because preemptible RCU does not exist, tasks cannot possibly exit 985 * while in preemptible RCU read-side critical sections. 986 */ 987 void exit_rcu(void) 988 { 989 } 990 991 /* 992 * Dump the guaranteed-empty blocked-tasks state. Trust but verify. 993 */ 994 static void 995 dump_blkd_tasks(struct rcu_node *rnp, int ncheck) 996 { 997 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); 998 } 999 1000 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 1001 1002 /* 1003 * If boosting, set rcuc kthreads to realtime priority. 1004 */ 1005 static void rcu_cpu_kthread_setup(unsigned int cpu) 1006 { 1007 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1008 #ifdef CONFIG_RCU_BOOST 1009 struct sched_param sp; 1010 1011 sp.sched_priority = kthread_prio; 1012 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1013 #endif /* #ifdef CONFIG_RCU_BOOST */ 1014 1015 WRITE_ONCE(rdp->rcuc_activity, jiffies); 1016 } 1017 1018 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp) 1019 { 1020 #ifdef CONFIG_RCU_NOCB_CPU 1021 return rdp->nocb_cb_kthread == current; 1022 #else 1023 return false; 1024 #endif 1025 } 1026 1027 /* 1028 * Is the current CPU running the RCU-callbacks kthread? 1029 * Caller must have preemption disabled. 1030 */ 1031 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp) 1032 { 1033 return rdp->rcu_cpu_kthread_task == current || 1034 rcu_is_callbacks_nocb_kthread(rdp); 1035 } 1036 1037 #ifdef CONFIG_RCU_BOOST 1038 1039 /* 1040 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 1041 * or ->boost_tasks, advancing the pointer to the next task in the 1042 * ->blkd_tasks list. 1043 * 1044 * Note that irqs must be enabled: boosting the task can block. 1045 * Returns 1 if there are more tasks needing to be boosted. 1046 */ 1047 static int rcu_boost(struct rcu_node *rnp) 1048 { 1049 unsigned long flags; 1050 struct task_struct *t; 1051 struct list_head *tb; 1052 1053 if (READ_ONCE(rnp->exp_tasks) == NULL && 1054 READ_ONCE(rnp->boost_tasks) == NULL) 1055 return 0; /* Nothing left to boost. */ 1056 1057 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1058 1059 /* 1060 * Recheck under the lock: all tasks in need of boosting 1061 * might exit their RCU read-side critical sections on their own. 1062 */ 1063 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 1064 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1065 return 0; 1066 } 1067 1068 /* 1069 * Preferentially boost tasks blocking expedited grace periods. 1070 * This cannot starve the normal grace periods because a second 1071 * expedited grace period must boost all blocked tasks, including 1072 * those blocking the pre-existing normal grace period. 1073 */ 1074 if (rnp->exp_tasks != NULL) 1075 tb = rnp->exp_tasks; 1076 else 1077 tb = rnp->boost_tasks; 1078 1079 /* 1080 * We boost task t by manufacturing an rt_mutex that appears to 1081 * be held by task t. We leave a pointer to that rt_mutex where 1082 * task t can find it, and task t will release the mutex when it 1083 * exits its outermost RCU read-side critical section. Then 1084 * simply acquiring this artificial rt_mutex will boost task 1085 * t's priority. (Thanks to tglx for suggesting this approach!) 1086 * 1087 * Note that task t must acquire rnp->lock to remove itself from 1088 * the ->blkd_tasks list, which it will do from exit() if from 1089 * nowhere else. We therefore are guaranteed that task t will 1090 * stay around at least until we drop rnp->lock. Note that 1091 * rnp->lock also resolves races between our priority boosting 1092 * and task t's exiting its outermost RCU read-side critical 1093 * section. 1094 */ 1095 t = container_of(tb, struct task_struct, rcu_node_entry); 1096 rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t); 1097 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1098 /* Lock only for side effect: boosts task t's priority. */ 1099 rt_mutex_lock(&rnp->boost_mtx); 1100 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1101 rnp->n_boosts++; 1102 1103 return READ_ONCE(rnp->exp_tasks) != NULL || 1104 READ_ONCE(rnp->boost_tasks) != NULL; 1105 } 1106 1107 /* 1108 * Priority-boosting kthread, one per leaf rcu_node. 1109 */ 1110 static int rcu_boost_kthread(void *arg) 1111 { 1112 struct rcu_node *rnp = (struct rcu_node *)arg; 1113 int spincnt = 0; 1114 int more2boost; 1115 1116 trace_rcu_utilization(TPS("Start boost kthread@init")); 1117 for (;;) { 1118 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); 1119 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1120 rcu_wait(READ_ONCE(rnp->boost_tasks) || 1121 READ_ONCE(rnp->exp_tasks)); 1122 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1123 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); 1124 more2boost = rcu_boost(rnp); 1125 if (more2boost) 1126 spincnt++; 1127 else 1128 spincnt = 0; 1129 if (spincnt > 10) { 1130 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); 1131 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1132 schedule_timeout_idle(2); 1133 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1134 spincnt = 0; 1135 } 1136 } 1137 /* NOTREACHED */ 1138 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1139 return 0; 1140 } 1141 1142 /* 1143 * Check to see if it is time to start boosting RCU readers that are 1144 * blocking the current grace period, and, if so, tell the per-rcu_node 1145 * kthread to start boosting them. If there is an expedited grace 1146 * period in progress, it is always time to boost. 1147 * 1148 * The caller must hold rnp->lock, which this function releases. 1149 * The ->boost_kthread_task is immortal, so we don't need to worry 1150 * about it going away. 1151 */ 1152 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1153 __releases(rnp->lock) 1154 { 1155 raw_lockdep_assert_held_rcu_node(rnp); 1156 if (!rnp->boost_kthread_task || 1157 (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) { 1158 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1159 return; 1160 } 1161 if (rnp->exp_tasks != NULL || 1162 (rnp->gp_tasks != NULL && 1163 rnp->boost_tasks == NULL && 1164 rnp->qsmask == 0 && 1165 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld || 1166 IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) { 1167 if (rnp->exp_tasks == NULL) 1168 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks); 1169 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1170 rcu_wake_cond(rnp->boost_kthread_task, 1171 READ_ONCE(rnp->boost_kthread_status)); 1172 } else { 1173 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1174 } 1175 } 1176 1177 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1178 1179 /* 1180 * Do priority-boost accounting for the start of a new grace period. 1181 */ 1182 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1183 { 1184 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1185 } 1186 1187 /* 1188 * Create an RCU-boost kthread for the specified node if one does not 1189 * already exist. We only create this kthread for preemptible RCU. 1190 */ 1191 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1192 { 1193 unsigned long flags; 1194 int rnp_index = rnp - rcu_get_root(); 1195 struct sched_param sp; 1196 struct task_struct *t; 1197 1198 mutex_lock(&rnp->boost_kthread_mutex); 1199 if (rnp->boost_kthread_task || !rcu_scheduler_fully_active) 1200 goto out; 1201 1202 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1203 "rcub/%d", rnp_index); 1204 if (WARN_ON_ONCE(IS_ERR(t))) 1205 goto out; 1206 1207 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1208 rnp->boost_kthread_task = t; 1209 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1210 sp.sched_priority = kthread_prio; 1211 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1212 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1213 1214 out: 1215 mutex_unlock(&rnp->boost_kthread_mutex); 1216 } 1217 1218 /* 1219 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1220 * served by the rcu_node in question. The CPU hotplug lock is still 1221 * held, so the value of rnp->qsmaskinit will be stable. 1222 * 1223 * We don't include outgoingcpu in the affinity set, use -1 if there is 1224 * no outgoing CPU. If there are no CPUs left in the affinity set, 1225 * this function allows the kthread to execute on any CPU. 1226 * 1227 * Any future concurrent calls are serialized via ->boost_kthread_mutex. 1228 */ 1229 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1230 { 1231 struct task_struct *t = rnp->boost_kthread_task; 1232 unsigned long mask; 1233 cpumask_var_t cm; 1234 int cpu; 1235 1236 if (!t) 1237 return; 1238 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1239 return; 1240 mutex_lock(&rnp->boost_kthread_mutex); 1241 mask = rcu_rnp_online_cpus(rnp); 1242 for_each_leaf_node_possible_cpu(rnp, cpu) 1243 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 1244 cpu != outgoingcpu) 1245 cpumask_set_cpu(cpu, cm); 1246 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); 1247 if (cpumask_empty(cm)) { 1248 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); 1249 if (outgoingcpu >= 0) 1250 cpumask_clear_cpu(outgoingcpu, cm); 1251 } 1252 set_cpus_allowed_ptr(t, cm); 1253 mutex_unlock(&rnp->boost_kthread_mutex); 1254 free_cpumask_var(cm); 1255 } 1256 1257 #else /* #ifdef CONFIG_RCU_BOOST */ 1258 1259 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1260 __releases(rnp->lock) 1261 { 1262 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1263 } 1264 1265 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1266 { 1267 } 1268 1269 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) 1270 { 1271 } 1272 1273 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1274 { 1275 } 1276 1277 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1278 1279 /* 1280 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 1281 * grace-period kthread will do force_quiescent_state() processing? 1282 * The idea is to avoid waking up RCU core processing on such a 1283 * CPU unless the grace period has extended for too long. 1284 * 1285 * This code relies on the fact that all NO_HZ_FULL CPUs are also 1286 * RCU_NOCB_CPU CPUs. 1287 */ 1288 static bool rcu_nohz_full_cpu(void) 1289 { 1290 #ifdef CONFIG_NO_HZ_FULL 1291 if (tick_nohz_full_cpu(smp_processor_id()) && 1292 (!rcu_gp_in_progress() || 1293 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) 1294 return true; 1295 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 1296 return false; 1297 } 1298 1299 /* 1300 * Bind the RCU grace-period kthreads to the housekeeping CPU. 1301 */ 1302 static void rcu_bind_gp_kthread(void) 1303 { 1304 if (!tick_nohz_full_enabled()) 1305 return; 1306 housekeeping_affine(current, HK_TYPE_RCU); 1307 } 1308