xref: /linux/kernel/rcu/tree_plugin.h (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/gfp.h>
16 #include <linux/oom.h>
17 #include <linux/sched/debug.h>
18 #include <linux/smpboot.h>
19 #include <linux/sched/isolation.h>
20 #include <uapi/linux/sched/types.h>
21 #include "../time/tick-internal.h"
22 
23 #ifdef CONFIG_RCU_BOOST
24 #include "../locking/rtmutex_common.h"
25 #else /* #ifdef CONFIG_RCU_BOOST */
26 
27 /*
28  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
29  * all uses are in dead code.  Provide a definition to keep the compiler
30  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
31  * This probably needs to be excluded from -rt builds.
32  */
33 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
34 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
35 
36 #endif /* #else #ifdef CONFIG_RCU_BOOST */
37 
38 #ifdef CONFIG_RCU_NOCB_CPU
39 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
40 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
41 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
42 
43 /*
44  * Check the RCU kernel configuration parameters and print informative
45  * messages about anything out of the ordinary.
46  */
47 static void __init rcu_bootup_announce_oddness(void)
48 {
49 	if (IS_ENABLED(CONFIG_RCU_TRACE))
50 		pr_info("\tRCU event tracing is enabled.\n");
51 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
52 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
53 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
54 			RCU_FANOUT);
55 	if (rcu_fanout_exact)
56 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
57 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
58 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
59 	if (IS_ENABLED(CONFIG_PROVE_RCU))
60 		pr_info("\tRCU lockdep checking is enabled.\n");
61 	if (RCU_NUM_LVLS >= 4)
62 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
63 	if (RCU_FANOUT_LEAF != 16)
64 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
65 			RCU_FANOUT_LEAF);
66 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
67 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
68 			rcu_fanout_leaf);
69 	if (nr_cpu_ids != NR_CPUS)
70 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
71 #ifdef CONFIG_RCU_BOOST
72 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
73 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
74 #endif
75 	if (blimit != DEFAULT_RCU_BLIMIT)
76 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
77 	if (qhimark != DEFAULT_RCU_QHIMARK)
78 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
79 	if (qlowmark != DEFAULT_RCU_QLOMARK)
80 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
81 	if (jiffies_till_first_fqs != ULONG_MAX)
82 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
83 	if (jiffies_till_next_fqs != ULONG_MAX)
84 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
85 	if (jiffies_till_sched_qs != ULONG_MAX)
86 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
87 	if (rcu_kick_kthreads)
88 		pr_info("\tKick kthreads if too-long grace period.\n");
89 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
90 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
91 	if (gp_preinit_delay)
92 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
93 	if (gp_init_delay)
94 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
95 	if (gp_cleanup_delay)
96 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
97 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
98 		pr_info("\tRCU debug extended QS entry/exit.\n");
99 	rcupdate_announce_bootup_oddness();
100 }
101 
102 #ifdef CONFIG_PREEMPT_RCU
103 
104 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
105 static void rcu_read_unlock_special(struct task_struct *t);
106 
107 /*
108  * Tell them what RCU they are running.
109  */
110 static void __init rcu_bootup_announce(void)
111 {
112 	pr_info("Preemptible hierarchical RCU implementation.\n");
113 	rcu_bootup_announce_oddness();
114 }
115 
116 /* Flags for rcu_preempt_ctxt_queue() decision table. */
117 #define RCU_GP_TASKS	0x8
118 #define RCU_EXP_TASKS	0x4
119 #define RCU_GP_BLKD	0x2
120 #define RCU_EXP_BLKD	0x1
121 
122 /*
123  * Queues a task preempted within an RCU-preempt read-side critical
124  * section into the appropriate location within the ->blkd_tasks list,
125  * depending on the states of any ongoing normal and expedited grace
126  * periods.  The ->gp_tasks pointer indicates which element the normal
127  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
128  * indicates which element the expedited grace period is waiting on (again,
129  * NULL if none).  If a grace period is waiting on a given element in the
130  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
131  * adding a task to the tail of the list blocks any grace period that is
132  * already waiting on one of the elements.  In contrast, adding a task
133  * to the head of the list won't block any grace period that is already
134  * waiting on one of the elements.
135  *
136  * This queuing is imprecise, and can sometimes make an ongoing grace
137  * period wait for a task that is not strictly speaking blocking it.
138  * Given the choice, we needlessly block a normal grace period rather than
139  * blocking an expedited grace period.
140  *
141  * Note that an endless sequence of expedited grace periods still cannot
142  * indefinitely postpone a normal grace period.  Eventually, all of the
143  * fixed number of preempted tasks blocking the normal grace period that are
144  * not also blocking the expedited grace period will resume and complete
145  * their RCU read-side critical sections.  At that point, the ->gp_tasks
146  * pointer will equal the ->exp_tasks pointer, at which point the end of
147  * the corresponding expedited grace period will also be the end of the
148  * normal grace period.
149  */
150 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
151 	__releases(rnp->lock) /* But leaves rrupts disabled. */
152 {
153 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
154 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
155 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
156 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
157 	struct task_struct *t = current;
158 
159 	raw_lockdep_assert_held_rcu_node(rnp);
160 	WARN_ON_ONCE(rdp->mynode != rnp);
161 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
162 	/* RCU better not be waiting on newly onlined CPUs! */
163 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
164 		     rdp->grpmask);
165 
166 	/*
167 	 * Decide where to queue the newly blocked task.  In theory,
168 	 * this could be an if-statement.  In practice, when I tried
169 	 * that, it was quite messy.
170 	 */
171 	switch (blkd_state) {
172 	case 0:
173 	case                RCU_EXP_TASKS:
174 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
175 	case RCU_GP_TASKS:
176 	case RCU_GP_TASKS + RCU_EXP_TASKS:
177 
178 		/*
179 		 * Blocking neither GP, or first task blocking the normal
180 		 * GP but not blocking the already-waiting expedited GP.
181 		 * Queue at the head of the list to avoid unnecessarily
182 		 * blocking the already-waiting GPs.
183 		 */
184 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
185 		break;
186 
187 	case                                              RCU_EXP_BLKD:
188 	case                                RCU_GP_BLKD:
189 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
190 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
191 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
192 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
193 
194 		/*
195 		 * First task arriving that blocks either GP, or first task
196 		 * arriving that blocks the expedited GP (with the normal
197 		 * GP already waiting), or a task arriving that blocks
198 		 * both GPs with both GPs already waiting.  Queue at the
199 		 * tail of the list to avoid any GP waiting on any of the
200 		 * already queued tasks that are not blocking it.
201 		 */
202 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
203 		break;
204 
205 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
206 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
207 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
208 
209 		/*
210 		 * Second or subsequent task blocking the expedited GP.
211 		 * The task either does not block the normal GP, or is the
212 		 * first task blocking the normal GP.  Queue just after
213 		 * the first task blocking the expedited GP.
214 		 */
215 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
216 		break;
217 
218 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
219 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
220 
221 		/*
222 		 * Second or subsequent task blocking the normal GP.
223 		 * The task does not block the expedited GP. Queue just
224 		 * after the first task blocking the normal GP.
225 		 */
226 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
227 		break;
228 
229 	default:
230 
231 		/* Yet another exercise in excessive paranoia. */
232 		WARN_ON_ONCE(1);
233 		break;
234 	}
235 
236 	/*
237 	 * We have now queued the task.  If it was the first one to
238 	 * block either grace period, update the ->gp_tasks and/or
239 	 * ->exp_tasks pointers, respectively, to reference the newly
240 	 * blocked tasks.
241 	 */
242 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
243 		rnp->gp_tasks = &t->rcu_node_entry;
244 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
245 	}
246 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
247 		rnp->exp_tasks = &t->rcu_node_entry;
248 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
249 		     !(rnp->qsmask & rdp->grpmask));
250 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
251 		     !(rnp->expmask & rdp->grpmask));
252 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
253 
254 	/*
255 	 * Report the quiescent state for the expedited GP.  This expedited
256 	 * GP should not be able to end until we report, so there should be
257 	 * no need to check for a subsequent expedited GP.  (Though we are
258 	 * still in a quiescent state in any case.)
259 	 */
260 	if (blkd_state & RCU_EXP_BLKD && rdp->deferred_qs)
261 		rcu_report_exp_rdp(rdp);
262 	else
263 		WARN_ON_ONCE(rdp->deferred_qs);
264 }
265 
266 /*
267  * Record a preemptible-RCU quiescent state for the specified CPU.
268  * Note that this does not necessarily mean that the task currently running
269  * on the CPU is in a quiescent state:  Instead, it means that the current
270  * grace period need not wait on any RCU read-side critical section that
271  * starts later on this CPU.  It also means that if the current task is
272  * in an RCU read-side critical section, it has already added itself to
273  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
274  * current task, there might be any number of other tasks blocked while
275  * in an RCU read-side critical section.
276  *
277  * Callers to this function must disable preemption.
278  */
279 static void rcu_qs(void)
280 {
281 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
282 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
283 		trace_rcu_grace_period(TPS("rcu_preempt"),
284 				       __this_cpu_read(rcu_data.gp_seq),
285 				       TPS("cpuqs"));
286 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
287 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
288 		current->rcu_read_unlock_special.b.need_qs = false;
289 	}
290 }
291 
292 /*
293  * We have entered the scheduler, and the current task might soon be
294  * context-switched away from.  If this task is in an RCU read-side
295  * critical section, we will no longer be able to rely on the CPU to
296  * record that fact, so we enqueue the task on the blkd_tasks list.
297  * The task will dequeue itself when it exits the outermost enclosing
298  * RCU read-side critical section.  Therefore, the current grace period
299  * cannot be permitted to complete until the blkd_tasks list entries
300  * predating the current grace period drain, in other words, until
301  * rnp->gp_tasks becomes NULL.
302  *
303  * Caller must disable interrupts.
304  */
305 void rcu_note_context_switch(bool preempt)
306 {
307 	struct task_struct *t = current;
308 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
309 	struct rcu_node *rnp;
310 
311 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
312 	trace_rcu_utilization(TPS("Start context switch"));
313 	lockdep_assert_irqs_disabled();
314 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
315 	if (t->rcu_read_lock_nesting > 0 &&
316 	    !t->rcu_read_unlock_special.b.blocked) {
317 
318 		/* Possibly blocking in an RCU read-side critical section. */
319 		rnp = rdp->mynode;
320 		raw_spin_lock_rcu_node(rnp);
321 		t->rcu_read_unlock_special.b.blocked = true;
322 		t->rcu_blocked_node = rnp;
323 
324 		/*
325 		 * Verify the CPU's sanity, trace the preemption, and
326 		 * then queue the task as required based on the states
327 		 * of any ongoing and expedited grace periods.
328 		 */
329 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
330 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
331 		trace_rcu_preempt_task(rcu_state.name,
332 				       t->pid,
333 				       (rnp->qsmask & rdp->grpmask)
334 				       ? rnp->gp_seq
335 				       : rcu_seq_snap(&rnp->gp_seq));
336 		rcu_preempt_ctxt_queue(rnp, rdp);
337 	} else if (t->rcu_read_lock_nesting < 0 &&
338 		   t->rcu_read_unlock_special.s) {
339 
340 		/*
341 		 * Complete exit from RCU read-side critical section on
342 		 * behalf of preempted instance of __rcu_read_unlock().
343 		 */
344 		rcu_read_unlock_special(t);
345 		rcu_preempt_deferred_qs(t);
346 	} else {
347 		rcu_preempt_deferred_qs(t);
348 	}
349 
350 	/*
351 	 * Either we were not in an RCU read-side critical section to
352 	 * begin with, or we have now recorded that critical section
353 	 * globally.  Either way, we can now note a quiescent state
354 	 * for this CPU.  Again, if we were in an RCU read-side critical
355 	 * section, and if that critical section was blocking the current
356 	 * grace period, then the fact that the task has been enqueued
357 	 * means that we continue to block the current grace period.
358 	 */
359 	rcu_qs();
360 	if (rdp->deferred_qs)
361 		rcu_report_exp_rdp(rdp);
362 	trace_rcu_utilization(TPS("End context switch"));
363 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
364 }
365 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
366 
367 /*
368  * Check for preempted RCU readers blocking the current grace period
369  * for the specified rcu_node structure.  If the caller needs a reliable
370  * answer, it must hold the rcu_node's ->lock.
371  */
372 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
373 {
374 	return rnp->gp_tasks != NULL;
375 }
376 
377 /* Bias and limit values for ->rcu_read_lock_nesting. */
378 #define RCU_NEST_BIAS INT_MAX
379 #define RCU_NEST_NMAX (-INT_MAX / 2)
380 #define RCU_NEST_PMAX (INT_MAX / 2)
381 
382 /*
383  * Preemptible RCU implementation for rcu_read_lock().
384  * Just increment ->rcu_read_lock_nesting, shared state will be updated
385  * if we block.
386  */
387 void __rcu_read_lock(void)
388 {
389 	current->rcu_read_lock_nesting++;
390 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
391 		WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
392 	barrier();  /* critical section after entry code. */
393 }
394 EXPORT_SYMBOL_GPL(__rcu_read_lock);
395 
396 /*
397  * Preemptible RCU implementation for rcu_read_unlock().
398  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
399  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
400  * invoke rcu_read_unlock_special() to clean up after a context switch
401  * in an RCU read-side critical section and other special cases.
402  */
403 void __rcu_read_unlock(void)
404 {
405 	struct task_struct *t = current;
406 
407 	if (t->rcu_read_lock_nesting != 1) {
408 		--t->rcu_read_lock_nesting;
409 	} else {
410 		barrier();  /* critical section before exit code. */
411 		t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
412 		barrier();  /* assign before ->rcu_read_unlock_special load */
413 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
414 			rcu_read_unlock_special(t);
415 		barrier();  /* ->rcu_read_unlock_special load before assign */
416 		t->rcu_read_lock_nesting = 0;
417 	}
418 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
419 		int rrln = t->rcu_read_lock_nesting;
420 
421 		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
422 	}
423 }
424 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
425 
426 /*
427  * Advance a ->blkd_tasks-list pointer to the next entry, instead
428  * returning NULL if at the end of the list.
429  */
430 static struct list_head *rcu_next_node_entry(struct task_struct *t,
431 					     struct rcu_node *rnp)
432 {
433 	struct list_head *np;
434 
435 	np = t->rcu_node_entry.next;
436 	if (np == &rnp->blkd_tasks)
437 		np = NULL;
438 	return np;
439 }
440 
441 /*
442  * Return true if the specified rcu_node structure has tasks that were
443  * preempted within an RCU read-side critical section.
444  */
445 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
446 {
447 	return !list_empty(&rnp->blkd_tasks);
448 }
449 
450 /*
451  * Report deferred quiescent states.  The deferral time can
452  * be quite short, for example, in the case of the call from
453  * rcu_read_unlock_special().
454  */
455 static void
456 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
457 {
458 	bool empty_exp;
459 	bool empty_norm;
460 	bool empty_exp_now;
461 	struct list_head *np;
462 	bool drop_boost_mutex = false;
463 	struct rcu_data *rdp;
464 	struct rcu_node *rnp;
465 	union rcu_special special;
466 
467 	/*
468 	 * If RCU core is waiting for this CPU to exit its critical section,
469 	 * report the fact that it has exited.  Because irqs are disabled,
470 	 * t->rcu_read_unlock_special cannot change.
471 	 */
472 	special = t->rcu_read_unlock_special;
473 	rdp = this_cpu_ptr(&rcu_data);
474 	if (!special.s && !rdp->deferred_qs) {
475 		local_irq_restore(flags);
476 		return;
477 	}
478 	if (special.b.need_qs) {
479 		rcu_qs();
480 		t->rcu_read_unlock_special.b.need_qs = false;
481 		if (!t->rcu_read_unlock_special.s && !rdp->deferred_qs) {
482 			local_irq_restore(flags);
483 			return;
484 		}
485 	}
486 
487 	/*
488 	 * Respond to a request by an expedited grace period for a
489 	 * quiescent state from this CPU.  Note that requests from
490 	 * tasks are handled when removing the task from the
491 	 * blocked-tasks list below.
492 	 */
493 	if (rdp->deferred_qs) {
494 		rcu_report_exp_rdp(rdp);
495 		if (!t->rcu_read_unlock_special.s) {
496 			local_irq_restore(flags);
497 			return;
498 		}
499 	}
500 
501 	/* Clean up if blocked during RCU read-side critical section. */
502 	if (special.b.blocked) {
503 		t->rcu_read_unlock_special.b.blocked = false;
504 
505 		/*
506 		 * Remove this task from the list it blocked on.  The task
507 		 * now remains queued on the rcu_node corresponding to the
508 		 * CPU it first blocked on, so there is no longer any need
509 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
510 		 */
511 		rnp = t->rcu_blocked_node;
512 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
513 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
514 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
515 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
516 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
517 			     (!empty_norm || rnp->qsmask));
518 		empty_exp = sync_rcu_preempt_exp_done(rnp);
519 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
520 		np = rcu_next_node_entry(t, rnp);
521 		list_del_init(&t->rcu_node_entry);
522 		t->rcu_blocked_node = NULL;
523 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
524 						rnp->gp_seq, t->pid);
525 		if (&t->rcu_node_entry == rnp->gp_tasks)
526 			rnp->gp_tasks = np;
527 		if (&t->rcu_node_entry == rnp->exp_tasks)
528 			rnp->exp_tasks = np;
529 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
530 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
531 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
532 			if (&t->rcu_node_entry == rnp->boost_tasks)
533 				rnp->boost_tasks = np;
534 		}
535 
536 		/*
537 		 * If this was the last task on the current list, and if
538 		 * we aren't waiting on any CPUs, report the quiescent state.
539 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
540 		 * so we must take a snapshot of the expedited state.
541 		 */
542 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
543 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
544 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
545 							 rnp->gp_seq,
546 							 0, rnp->qsmask,
547 							 rnp->level,
548 							 rnp->grplo,
549 							 rnp->grphi,
550 							 !!rnp->gp_tasks);
551 			rcu_report_unblock_qs_rnp(rnp, flags);
552 		} else {
553 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
554 		}
555 
556 		/* Unboost if we were boosted. */
557 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
558 			rt_mutex_futex_unlock(&rnp->boost_mtx);
559 
560 		/*
561 		 * If this was the last task on the expedited lists,
562 		 * then we need to report up the rcu_node hierarchy.
563 		 */
564 		if (!empty_exp && empty_exp_now)
565 			rcu_report_exp_rnp(rnp, true);
566 	} else {
567 		local_irq_restore(flags);
568 	}
569 }
570 
571 /*
572  * Is a deferred quiescent-state pending, and are we also not in
573  * an RCU read-side critical section?  It is the caller's responsibility
574  * to ensure it is otherwise safe to report any deferred quiescent
575  * states.  The reason for this is that it is safe to report a
576  * quiescent state during context switch even though preemption
577  * is disabled.  This function cannot be expected to understand these
578  * nuances, so the caller must handle them.
579  */
580 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
581 {
582 	return (__this_cpu_read(rcu_data.deferred_qs) ||
583 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
584 	       t->rcu_read_lock_nesting <= 0;
585 }
586 
587 /*
588  * Report a deferred quiescent state if needed and safe to do so.
589  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
590  * not being in an RCU read-side critical section.  The caller must
591  * evaluate safety in terms of interrupt, softirq, and preemption
592  * disabling.
593  */
594 static void rcu_preempt_deferred_qs(struct task_struct *t)
595 {
596 	unsigned long flags;
597 	bool couldrecurse = t->rcu_read_lock_nesting >= 0;
598 
599 	if (!rcu_preempt_need_deferred_qs(t))
600 		return;
601 	if (couldrecurse)
602 		t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
603 	local_irq_save(flags);
604 	rcu_preempt_deferred_qs_irqrestore(t, flags);
605 	if (couldrecurse)
606 		t->rcu_read_lock_nesting += RCU_NEST_BIAS;
607 }
608 
609 /*
610  * Handle special cases during rcu_read_unlock(), such as needing to
611  * notify RCU core processing or task having blocked during the RCU
612  * read-side critical section.
613  */
614 static void rcu_read_unlock_special(struct task_struct *t)
615 {
616 	unsigned long flags;
617 	bool preempt_bh_were_disabled =
618 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
619 	bool irqs_were_disabled;
620 
621 	/* NMI handlers cannot block and cannot safely manipulate state. */
622 	if (in_nmi())
623 		return;
624 
625 	local_irq_save(flags);
626 	irqs_were_disabled = irqs_disabled_flags(flags);
627 	if (preempt_bh_were_disabled || irqs_were_disabled) {
628 		WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
629 		/* Need to defer quiescent state until everything is enabled. */
630 		if (irqs_were_disabled) {
631 			/* Enabling irqs does not reschedule, so... */
632 			raise_softirq_irqoff(RCU_SOFTIRQ);
633 		} else {
634 			/* Enabling BH or preempt does reschedule, so... */
635 			set_tsk_need_resched(current);
636 			set_preempt_need_resched();
637 		}
638 		local_irq_restore(flags);
639 		return;
640 	}
641 	WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
642 	rcu_preempt_deferred_qs_irqrestore(t, flags);
643 }
644 
645 /*
646  * Dump detailed information for all tasks blocking the current RCU
647  * grace period on the specified rcu_node structure.
648  */
649 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
650 {
651 	unsigned long flags;
652 	struct task_struct *t;
653 
654 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
655 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
656 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
657 		return;
658 	}
659 	t = list_entry(rnp->gp_tasks->prev,
660 		       struct task_struct, rcu_node_entry);
661 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
662 		/*
663 		 * We could be printing a lot while holding a spinlock.
664 		 * Avoid triggering hard lockup.
665 		 */
666 		touch_nmi_watchdog();
667 		sched_show_task(t);
668 	}
669 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
670 }
671 
672 /*
673  * Dump detailed information for all tasks blocking the current RCU
674  * grace period.
675  */
676 static void rcu_print_detail_task_stall(void)
677 {
678 	struct rcu_node *rnp = rcu_get_root();
679 
680 	rcu_print_detail_task_stall_rnp(rnp);
681 	rcu_for_each_leaf_node(rnp)
682 		rcu_print_detail_task_stall_rnp(rnp);
683 }
684 
685 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
686 {
687 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
688 	       rnp->level, rnp->grplo, rnp->grphi);
689 }
690 
691 static void rcu_print_task_stall_end(void)
692 {
693 	pr_cont("\n");
694 }
695 
696 /*
697  * Scan the current list of tasks blocked within RCU read-side critical
698  * sections, printing out the tid of each.
699  */
700 static int rcu_print_task_stall(struct rcu_node *rnp)
701 {
702 	struct task_struct *t;
703 	int ndetected = 0;
704 
705 	if (!rcu_preempt_blocked_readers_cgp(rnp))
706 		return 0;
707 	rcu_print_task_stall_begin(rnp);
708 	t = list_entry(rnp->gp_tasks->prev,
709 		       struct task_struct, rcu_node_entry);
710 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
711 		pr_cont(" P%d", t->pid);
712 		ndetected++;
713 	}
714 	rcu_print_task_stall_end();
715 	return ndetected;
716 }
717 
718 /*
719  * Scan the current list of tasks blocked within RCU read-side critical
720  * sections, printing out the tid of each that is blocking the current
721  * expedited grace period.
722  */
723 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
724 {
725 	struct task_struct *t;
726 	int ndetected = 0;
727 
728 	if (!rnp->exp_tasks)
729 		return 0;
730 	t = list_entry(rnp->exp_tasks->prev,
731 		       struct task_struct, rcu_node_entry);
732 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
733 		pr_cont(" P%d", t->pid);
734 		ndetected++;
735 	}
736 	return ndetected;
737 }
738 
739 /*
740  * Check that the list of blocked tasks for the newly completed grace
741  * period is in fact empty.  It is a serious bug to complete a grace
742  * period that still has RCU readers blocked!  This function must be
743  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
744  * must be held by the caller.
745  *
746  * Also, if there are blocked tasks on the list, they automatically
747  * block the newly created grace period, so set up ->gp_tasks accordingly.
748  */
749 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
750 {
751 	struct task_struct *t;
752 
753 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
754 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
755 		dump_blkd_tasks(rnp, 10);
756 	if (rcu_preempt_has_tasks(rnp) &&
757 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
758 		rnp->gp_tasks = rnp->blkd_tasks.next;
759 		t = container_of(rnp->gp_tasks, struct task_struct,
760 				 rcu_node_entry);
761 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
762 						rnp->gp_seq, t->pid);
763 	}
764 	WARN_ON_ONCE(rnp->qsmask);
765 }
766 
767 /*
768  * Check for a quiescent state from the current CPU, including voluntary
769  * context switches for Tasks RCU.  When a task blocks, the task is
770  * recorded in the corresponding CPU's rcu_node structure, which is checked
771  * elsewhere, hence this function need only check for quiescent states
772  * related to the current CPU, not to those related to tasks.
773  */
774 static void rcu_flavor_sched_clock_irq(int user)
775 {
776 	struct task_struct *t = current;
777 
778 	if (user || rcu_is_cpu_rrupt_from_idle()) {
779 		rcu_note_voluntary_context_switch(current);
780 	}
781 	if (t->rcu_read_lock_nesting > 0 ||
782 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
783 		/* No QS, force context switch if deferred. */
784 		if (rcu_preempt_need_deferred_qs(t)) {
785 			set_tsk_need_resched(t);
786 			set_preempt_need_resched();
787 		}
788 	} else if (rcu_preempt_need_deferred_qs(t)) {
789 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
790 		return;
791 	} else if (!t->rcu_read_lock_nesting) {
792 		rcu_qs(); /* Report immediate QS. */
793 		return;
794 	}
795 
796 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
797 	if (t->rcu_read_lock_nesting > 0 &&
798 	    __this_cpu_read(rcu_data.core_needs_qs) &&
799 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
800 	    !t->rcu_read_unlock_special.b.need_qs &&
801 	    time_after(jiffies, rcu_state.gp_start + HZ))
802 		t->rcu_read_unlock_special.b.need_qs = true;
803 }
804 
805 /*
806  * Check for a task exiting while in a preemptible-RCU read-side
807  * critical section, clean up if so.  No need to issue warnings,
808  * as debug_check_no_locks_held() already does this if lockdep
809  * is enabled.
810  */
811 void exit_rcu(void)
812 {
813 	struct task_struct *t = current;
814 
815 	if (likely(list_empty(&current->rcu_node_entry)))
816 		return;
817 	t->rcu_read_lock_nesting = 1;
818 	barrier();
819 	t->rcu_read_unlock_special.b.blocked = true;
820 	__rcu_read_unlock();
821 	rcu_preempt_deferred_qs(current);
822 }
823 
824 /*
825  * Dump the blocked-tasks state, but limit the list dump to the
826  * specified number of elements.
827  */
828 static void
829 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
830 {
831 	int cpu;
832 	int i;
833 	struct list_head *lhp;
834 	bool onl;
835 	struct rcu_data *rdp;
836 	struct rcu_node *rnp1;
837 
838 	raw_lockdep_assert_held_rcu_node(rnp);
839 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
840 		__func__, rnp->grplo, rnp->grphi, rnp->level,
841 		(long)rnp->gp_seq, (long)rnp->completedqs);
842 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
843 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
844 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
845 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
846 		__func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
847 	pr_info("%s: ->blkd_tasks", __func__);
848 	i = 0;
849 	list_for_each(lhp, &rnp->blkd_tasks) {
850 		pr_cont(" %p", lhp);
851 		if (++i >= 10)
852 			break;
853 	}
854 	pr_cont("\n");
855 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
856 		rdp = per_cpu_ptr(&rcu_data, cpu);
857 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
858 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
859 			cpu, ".o"[onl],
860 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
861 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
862 	}
863 }
864 
865 #else /* #ifdef CONFIG_PREEMPT_RCU */
866 
867 /*
868  * Tell them what RCU they are running.
869  */
870 static void __init rcu_bootup_announce(void)
871 {
872 	pr_info("Hierarchical RCU implementation.\n");
873 	rcu_bootup_announce_oddness();
874 }
875 
876 /*
877  * Note a quiescent state for PREEMPT=n.  Because we do not need to know
878  * how many quiescent states passed, just if there was at least one since
879  * the start of the grace period, this just sets a flag.  The caller must
880  * have disabled preemption.
881  */
882 static void rcu_qs(void)
883 {
884 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
885 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
886 		return;
887 	trace_rcu_grace_period(TPS("rcu_sched"),
888 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
889 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
890 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
891 		return;
892 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
893 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
894 }
895 
896 /*
897  * Register an urgently needed quiescent state.  If there is an
898  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
899  * dyntick-idle quiescent state visible to other CPUs, which will in
900  * some cases serve for expedited as well as normal grace periods.
901  * Either way, register a lightweight quiescent state.
902  *
903  * The barrier() calls are redundant in the common case when this is
904  * called externally, but just in case this is called from within this
905  * file.
906  *
907  */
908 void rcu_all_qs(void)
909 {
910 	unsigned long flags;
911 
912 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
913 		return;
914 	preempt_disable();
915 	/* Load rcu_urgent_qs before other flags. */
916 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
917 		preempt_enable();
918 		return;
919 	}
920 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
921 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
922 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
923 		local_irq_save(flags);
924 		rcu_momentary_dyntick_idle();
925 		local_irq_restore(flags);
926 	}
927 	rcu_qs();
928 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
929 	preempt_enable();
930 }
931 EXPORT_SYMBOL_GPL(rcu_all_qs);
932 
933 /*
934  * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
935  */
936 void rcu_note_context_switch(bool preempt)
937 {
938 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
939 	trace_rcu_utilization(TPS("Start context switch"));
940 	rcu_qs();
941 	/* Load rcu_urgent_qs before other flags. */
942 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
943 		goto out;
944 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
945 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
946 		rcu_momentary_dyntick_idle();
947 	if (!preempt)
948 		rcu_tasks_qs(current);
949 out:
950 	trace_rcu_utilization(TPS("End context switch"));
951 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
952 }
953 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
954 
955 /*
956  * Because preemptible RCU does not exist, there are never any preempted
957  * RCU readers.
958  */
959 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
960 {
961 	return 0;
962 }
963 
964 /*
965  * Because there is no preemptible RCU, there can be no readers blocked.
966  */
967 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
968 {
969 	return false;
970 }
971 
972 /*
973  * Because there is no preemptible RCU, there can be no deferred quiescent
974  * states.
975  */
976 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
977 {
978 	return false;
979 }
980 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
981 
982 /*
983  * Because preemptible RCU does not exist, we never have to check for
984  * tasks blocked within RCU read-side critical sections.
985  */
986 static void rcu_print_detail_task_stall(void)
987 {
988 }
989 
990 /*
991  * Because preemptible RCU does not exist, we never have to check for
992  * tasks blocked within RCU read-side critical sections.
993  */
994 static int rcu_print_task_stall(struct rcu_node *rnp)
995 {
996 	return 0;
997 }
998 
999 /*
1000  * Because preemptible RCU does not exist, we never have to check for
1001  * tasks blocked within RCU read-side critical sections that are
1002  * blocking the current expedited grace period.
1003  */
1004 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
1005 {
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Because there is no preemptible RCU, there can be no readers blocked,
1011  * so there is no need to check for blocked tasks.  So check only for
1012  * bogus qsmask values.
1013  */
1014 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1015 {
1016 	WARN_ON_ONCE(rnp->qsmask);
1017 }
1018 
1019 /*
1020  * Check to see if this CPU is in a non-context-switch quiescent state,
1021  * namely user mode and idle loop.
1022  */
1023 static void rcu_flavor_sched_clock_irq(int user)
1024 {
1025 	if (user || rcu_is_cpu_rrupt_from_idle()) {
1026 
1027 		/*
1028 		 * Get here if this CPU took its interrupt from user
1029 		 * mode or from the idle loop, and if this is not a
1030 		 * nested interrupt.  In this case, the CPU is in
1031 		 * a quiescent state, so note it.
1032 		 *
1033 		 * No memory barrier is required here because rcu_qs()
1034 		 * references only CPU-local variables that other CPUs
1035 		 * neither access nor modify, at least not while the
1036 		 * corresponding CPU is online.
1037 		 */
1038 
1039 		rcu_qs();
1040 	}
1041 }
1042 
1043 /*
1044  * Because preemptible RCU does not exist, tasks cannot possibly exit
1045  * while in preemptible RCU read-side critical sections.
1046  */
1047 void exit_rcu(void)
1048 {
1049 }
1050 
1051 /*
1052  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1053  */
1054 static void
1055 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1056 {
1057 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1058 }
1059 
1060 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1061 
1062 #ifdef CONFIG_RCU_BOOST
1063 
1064 static void rcu_wake_cond(struct task_struct *t, int status)
1065 {
1066 	/*
1067 	 * If the thread is yielding, only wake it when this
1068 	 * is invoked from idle
1069 	 */
1070 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1071 		wake_up_process(t);
1072 }
1073 
1074 /*
1075  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1076  * or ->boost_tasks, advancing the pointer to the next task in the
1077  * ->blkd_tasks list.
1078  *
1079  * Note that irqs must be enabled: boosting the task can block.
1080  * Returns 1 if there are more tasks needing to be boosted.
1081  */
1082 static int rcu_boost(struct rcu_node *rnp)
1083 {
1084 	unsigned long flags;
1085 	struct task_struct *t;
1086 	struct list_head *tb;
1087 
1088 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1089 	    READ_ONCE(rnp->boost_tasks) == NULL)
1090 		return 0;  /* Nothing left to boost. */
1091 
1092 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1093 
1094 	/*
1095 	 * Recheck under the lock: all tasks in need of boosting
1096 	 * might exit their RCU read-side critical sections on their own.
1097 	 */
1098 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1099 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1100 		return 0;
1101 	}
1102 
1103 	/*
1104 	 * Preferentially boost tasks blocking expedited grace periods.
1105 	 * This cannot starve the normal grace periods because a second
1106 	 * expedited grace period must boost all blocked tasks, including
1107 	 * those blocking the pre-existing normal grace period.
1108 	 */
1109 	if (rnp->exp_tasks != NULL)
1110 		tb = rnp->exp_tasks;
1111 	else
1112 		tb = rnp->boost_tasks;
1113 
1114 	/*
1115 	 * We boost task t by manufacturing an rt_mutex that appears to
1116 	 * be held by task t.  We leave a pointer to that rt_mutex where
1117 	 * task t can find it, and task t will release the mutex when it
1118 	 * exits its outermost RCU read-side critical section.  Then
1119 	 * simply acquiring this artificial rt_mutex will boost task
1120 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1121 	 *
1122 	 * Note that task t must acquire rnp->lock to remove itself from
1123 	 * the ->blkd_tasks list, which it will do from exit() if from
1124 	 * nowhere else.  We therefore are guaranteed that task t will
1125 	 * stay around at least until we drop rnp->lock.  Note that
1126 	 * rnp->lock also resolves races between our priority boosting
1127 	 * and task t's exiting its outermost RCU read-side critical
1128 	 * section.
1129 	 */
1130 	t = container_of(tb, struct task_struct, rcu_node_entry);
1131 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1132 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1133 	/* Lock only for side effect: boosts task t's priority. */
1134 	rt_mutex_lock(&rnp->boost_mtx);
1135 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1136 
1137 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1138 	       READ_ONCE(rnp->boost_tasks) != NULL;
1139 }
1140 
1141 /*
1142  * Priority-boosting kthread, one per leaf rcu_node.
1143  */
1144 static int rcu_boost_kthread(void *arg)
1145 {
1146 	struct rcu_node *rnp = (struct rcu_node *)arg;
1147 	int spincnt = 0;
1148 	int more2boost;
1149 
1150 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1151 	for (;;) {
1152 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1153 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1154 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1155 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1156 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1157 		more2boost = rcu_boost(rnp);
1158 		if (more2boost)
1159 			spincnt++;
1160 		else
1161 			spincnt = 0;
1162 		if (spincnt > 10) {
1163 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1164 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1165 			schedule_timeout_interruptible(2);
1166 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1167 			spincnt = 0;
1168 		}
1169 	}
1170 	/* NOTREACHED */
1171 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Check to see if it is time to start boosting RCU readers that are
1177  * blocking the current grace period, and, if so, tell the per-rcu_node
1178  * kthread to start boosting them.  If there is an expedited grace
1179  * period in progress, it is always time to boost.
1180  *
1181  * The caller must hold rnp->lock, which this function releases.
1182  * The ->boost_kthread_task is immortal, so we don't need to worry
1183  * about it going away.
1184  */
1185 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1186 	__releases(rnp->lock)
1187 {
1188 	struct task_struct *t;
1189 
1190 	raw_lockdep_assert_held_rcu_node(rnp);
1191 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1192 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1193 		return;
1194 	}
1195 	if (rnp->exp_tasks != NULL ||
1196 	    (rnp->gp_tasks != NULL &&
1197 	     rnp->boost_tasks == NULL &&
1198 	     rnp->qsmask == 0 &&
1199 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1200 		if (rnp->exp_tasks == NULL)
1201 			rnp->boost_tasks = rnp->gp_tasks;
1202 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1203 		t = rnp->boost_kthread_task;
1204 		if (t)
1205 			rcu_wake_cond(t, rnp->boost_kthread_status);
1206 	} else {
1207 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1208 	}
1209 }
1210 
1211 /*
1212  * Wake up the per-CPU kthread to invoke RCU callbacks.
1213  */
1214 static void invoke_rcu_callbacks_kthread(void)
1215 {
1216 	unsigned long flags;
1217 
1218 	local_irq_save(flags);
1219 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
1220 	if (__this_cpu_read(rcu_data.rcu_cpu_kthread_task) != NULL &&
1221 	    current != __this_cpu_read(rcu_data.rcu_cpu_kthread_task)) {
1222 		rcu_wake_cond(__this_cpu_read(rcu_data.rcu_cpu_kthread_task),
1223 			      __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
1224 	}
1225 	local_irq_restore(flags);
1226 }
1227 
1228 /*
1229  * Is the current CPU running the RCU-callbacks kthread?
1230  * Caller must have preemption disabled.
1231  */
1232 static bool rcu_is_callbacks_kthread(void)
1233 {
1234 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1235 }
1236 
1237 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1238 
1239 /*
1240  * Do priority-boost accounting for the start of a new grace period.
1241  */
1242 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1243 {
1244 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1245 }
1246 
1247 /*
1248  * Create an RCU-boost kthread for the specified node if one does not
1249  * already exist.  We only create this kthread for preemptible RCU.
1250  * Returns zero if all is well, a negated errno otherwise.
1251  */
1252 static int rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1253 {
1254 	int rnp_index = rnp - rcu_get_root();
1255 	unsigned long flags;
1256 	struct sched_param sp;
1257 	struct task_struct *t;
1258 
1259 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1260 		return 0;
1261 
1262 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1263 		return 0;
1264 
1265 	rcu_state.boost = 1;
1266 	if (rnp->boost_kthread_task != NULL)
1267 		return 0;
1268 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1269 			   "rcub/%d", rnp_index);
1270 	if (IS_ERR(t))
1271 		return PTR_ERR(t);
1272 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1273 	rnp->boost_kthread_task = t;
1274 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1275 	sp.sched_priority = kthread_prio;
1276 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1277 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1278 	return 0;
1279 }
1280 
1281 static void rcu_cpu_kthread_setup(unsigned int cpu)
1282 {
1283 	struct sched_param sp;
1284 
1285 	sp.sched_priority = kthread_prio;
1286 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1287 }
1288 
1289 static void rcu_cpu_kthread_park(unsigned int cpu)
1290 {
1291 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1292 }
1293 
1294 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1295 {
1296 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
1297 }
1298 
1299 /*
1300  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
1301  * the RCU softirq used in configurations of RCU that do not support RCU
1302  * priority boosting.
1303  */
1304 static void rcu_cpu_kthread(unsigned int cpu)
1305 {
1306 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
1307 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
1308 	int spincnt;
1309 
1310 	for (spincnt = 0; spincnt < 10; spincnt++) {
1311 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1312 		local_bh_disable();
1313 		*statusp = RCU_KTHREAD_RUNNING;
1314 		local_irq_disable();
1315 		work = *workp;
1316 		*workp = 0;
1317 		local_irq_enable();
1318 		if (work)
1319 			rcu_do_batch(this_cpu_ptr(&rcu_data));
1320 		local_bh_enable();
1321 		if (*workp == 0) {
1322 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1323 			*statusp = RCU_KTHREAD_WAITING;
1324 			return;
1325 		}
1326 	}
1327 	*statusp = RCU_KTHREAD_YIELDING;
1328 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1329 	schedule_timeout_interruptible(2);
1330 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1331 	*statusp = RCU_KTHREAD_WAITING;
1332 }
1333 
1334 /*
1335  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1336  * served by the rcu_node in question.  The CPU hotplug lock is still
1337  * held, so the value of rnp->qsmaskinit will be stable.
1338  *
1339  * We don't include outgoingcpu in the affinity set, use -1 if there is
1340  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1341  * this function allows the kthread to execute on any CPU.
1342  */
1343 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1344 {
1345 	struct task_struct *t = rnp->boost_kthread_task;
1346 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1347 	cpumask_var_t cm;
1348 	int cpu;
1349 
1350 	if (!t)
1351 		return;
1352 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1353 		return;
1354 	for_each_leaf_node_possible_cpu(rnp, cpu)
1355 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1356 		    cpu != outgoingcpu)
1357 			cpumask_set_cpu(cpu, cm);
1358 	if (cpumask_weight(cm) == 0)
1359 		cpumask_setall(cm);
1360 	set_cpus_allowed_ptr(t, cm);
1361 	free_cpumask_var(cm);
1362 }
1363 
1364 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1365 	.store			= &rcu_data.rcu_cpu_kthread_task,
1366 	.thread_should_run	= rcu_cpu_kthread_should_run,
1367 	.thread_fn		= rcu_cpu_kthread,
1368 	.thread_comm		= "rcuc/%u",
1369 	.setup			= rcu_cpu_kthread_setup,
1370 	.park			= rcu_cpu_kthread_park,
1371 };
1372 
1373 /*
1374  * Spawn boost kthreads -- called as soon as the scheduler is running.
1375  */
1376 static void __init rcu_spawn_boost_kthreads(void)
1377 {
1378 	struct rcu_node *rnp;
1379 	int cpu;
1380 
1381 	for_each_possible_cpu(cpu)
1382 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
1383 	if (WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), "%s: Could not start rcub kthread, OOM is now expected behavior\n", __func__))
1384 		return;
1385 	rcu_for_each_leaf_node(rnp)
1386 		(void)rcu_spawn_one_boost_kthread(rnp);
1387 }
1388 
1389 static void rcu_prepare_kthreads(int cpu)
1390 {
1391 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1392 	struct rcu_node *rnp = rdp->mynode;
1393 
1394 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1395 	if (rcu_scheduler_fully_active)
1396 		(void)rcu_spawn_one_boost_kthread(rnp);
1397 }
1398 
1399 #else /* #ifdef CONFIG_RCU_BOOST */
1400 
1401 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1402 	__releases(rnp->lock)
1403 {
1404 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1405 }
1406 
1407 static void invoke_rcu_callbacks_kthread(void)
1408 {
1409 	WARN_ON_ONCE(1);
1410 }
1411 
1412 static bool rcu_is_callbacks_kthread(void)
1413 {
1414 	return false;
1415 }
1416 
1417 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1418 {
1419 }
1420 
1421 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1422 {
1423 }
1424 
1425 static void __init rcu_spawn_boost_kthreads(void)
1426 {
1427 }
1428 
1429 static void rcu_prepare_kthreads(int cpu)
1430 {
1431 }
1432 
1433 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1434 
1435 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1436 
1437 /*
1438  * Check to see if any future RCU-related work will need to be done
1439  * by the current CPU, even if none need be done immediately, returning
1440  * 1 if so.  This function is part of the RCU implementation; it is -not-
1441  * an exported member of the RCU API.
1442  *
1443  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1444  * CPU has RCU callbacks queued.
1445  */
1446 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1447 {
1448 	*nextevt = KTIME_MAX;
1449 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist);
1450 }
1451 
1452 /*
1453  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1454  * after it.
1455  */
1456 static void rcu_cleanup_after_idle(void)
1457 {
1458 }
1459 
1460 /*
1461  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1462  * is nothing.
1463  */
1464 static void rcu_prepare_for_idle(void)
1465 {
1466 }
1467 
1468 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1469 
1470 /*
1471  * This code is invoked when a CPU goes idle, at which point we want
1472  * to have the CPU do everything required for RCU so that it can enter
1473  * the energy-efficient dyntick-idle mode.  This is handled by a
1474  * state machine implemented by rcu_prepare_for_idle() below.
1475  *
1476  * The following three proprocessor symbols control this state machine:
1477  *
1478  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1479  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1480  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1481  *	benchmarkers who might otherwise be tempted to set this to a large
1482  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1483  *	system.  And if you are -that- concerned about energy efficiency,
1484  *	just power the system down and be done with it!
1485  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1486  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1487  *	callbacks pending.  Setting this too high can OOM your system.
1488  *
1489  * The values below work well in practice.  If future workloads require
1490  * adjustment, they can be converted into kernel config parameters, though
1491  * making the state machine smarter might be a better option.
1492  */
1493 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1494 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1495 
1496 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1497 module_param(rcu_idle_gp_delay, int, 0644);
1498 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1499 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1500 
1501 /*
1502  * Try to advance callbacks on the current CPU, but only if it has been
1503  * awhile since the last time we did so.  Afterwards, if there are any
1504  * callbacks ready for immediate invocation, return true.
1505  */
1506 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1507 {
1508 	bool cbs_ready = false;
1509 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1510 	struct rcu_node *rnp;
1511 
1512 	/* Exit early if we advanced recently. */
1513 	if (jiffies == rdp->last_advance_all)
1514 		return false;
1515 	rdp->last_advance_all = jiffies;
1516 
1517 	rnp = rdp->mynode;
1518 
1519 	/*
1520 	 * Don't bother checking unless a grace period has
1521 	 * completed since we last checked and there are
1522 	 * callbacks not yet ready to invoke.
1523 	 */
1524 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1525 				  rcu_seq_current(&rnp->gp_seq)) ||
1526 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1527 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1528 		note_gp_changes(rdp);
1529 
1530 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1531 		cbs_ready = true;
1532 	return cbs_ready;
1533 }
1534 
1535 /*
1536  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1537  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1538  * caller to set the timeout based on whether or not there are non-lazy
1539  * callbacks.
1540  *
1541  * The caller must have disabled interrupts.
1542  */
1543 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1544 {
1545 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1546 	unsigned long dj;
1547 
1548 	lockdep_assert_irqs_disabled();
1549 
1550 	/* If no callbacks, RCU doesn't need the CPU. */
1551 	if (rcu_segcblist_empty(&rdp->cblist)) {
1552 		*nextevt = KTIME_MAX;
1553 		return 0;
1554 	}
1555 
1556 	/* Attempt to advance callbacks. */
1557 	if (rcu_try_advance_all_cbs()) {
1558 		/* Some ready to invoke, so initiate later invocation. */
1559 		invoke_rcu_core();
1560 		return 1;
1561 	}
1562 	rdp->last_accelerate = jiffies;
1563 
1564 	/* Request timer delay depending on laziness, and round. */
1565 	rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1566 	if (rdp->all_lazy) {
1567 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1568 	} else {
1569 		dj = round_up(rcu_idle_gp_delay + jiffies,
1570 			       rcu_idle_gp_delay) - jiffies;
1571 	}
1572 	*nextevt = basemono + dj * TICK_NSEC;
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Prepare a CPU for idle from an RCU perspective.  The first major task
1578  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1579  * The second major task is to check to see if a non-lazy callback has
1580  * arrived at a CPU that previously had only lazy callbacks.  The third
1581  * major task is to accelerate (that is, assign grace-period numbers to)
1582  * any recently arrived callbacks.
1583  *
1584  * The caller must have disabled interrupts.
1585  */
1586 static void rcu_prepare_for_idle(void)
1587 {
1588 	bool needwake;
1589 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1590 	struct rcu_node *rnp;
1591 	int tne;
1592 
1593 	lockdep_assert_irqs_disabled();
1594 	if (rcu_is_nocb_cpu(smp_processor_id()))
1595 		return;
1596 
1597 	/* Handle nohz enablement switches conservatively. */
1598 	tne = READ_ONCE(tick_nohz_active);
1599 	if (tne != rdp->tick_nohz_enabled_snap) {
1600 		if (!rcu_segcblist_empty(&rdp->cblist))
1601 			invoke_rcu_core(); /* force nohz to see update. */
1602 		rdp->tick_nohz_enabled_snap = tne;
1603 		return;
1604 	}
1605 	if (!tne)
1606 		return;
1607 
1608 	/*
1609 	 * If a non-lazy callback arrived at a CPU having only lazy
1610 	 * callbacks, invoke RCU core for the side-effect of recalculating
1611 	 * idle duration on re-entry to idle.
1612 	 */
1613 	if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1614 		rdp->all_lazy = false;
1615 		invoke_rcu_core();
1616 		return;
1617 	}
1618 
1619 	/*
1620 	 * If we have not yet accelerated this jiffy, accelerate all
1621 	 * callbacks on this CPU.
1622 	 */
1623 	if (rdp->last_accelerate == jiffies)
1624 		return;
1625 	rdp->last_accelerate = jiffies;
1626 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1627 		rnp = rdp->mynode;
1628 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1629 		needwake = rcu_accelerate_cbs(rnp, rdp);
1630 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1631 		if (needwake)
1632 			rcu_gp_kthread_wake();
1633 	}
1634 }
1635 
1636 /*
1637  * Clean up for exit from idle.  Attempt to advance callbacks based on
1638  * any grace periods that elapsed while the CPU was idle, and if any
1639  * callbacks are now ready to invoke, initiate invocation.
1640  */
1641 static void rcu_cleanup_after_idle(void)
1642 {
1643 	lockdep_assert_irqs_disabled();
1644 	if (rcu_is_nocb_cpu(smp_processor_id()))
1645 		return;
1646 	if (rcu_try_advance_all_cbs())
1647 		invoke_rcu_core();
1648 }
1649 
1650 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1651 
1652 #ifdef CONFIG_RCU_FAST_NO_HZ
1653 
1654 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1655 {
1656 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
1657 
1658 	sprintf(cp, "last_accelerate: %04lx/%04lx, Nonlazy posted: %c%c%c",
1659 		rdp->last_accelerate & 0xffff, jiffies & 0xffff,
1660 		".l"[rdp->all_lazy],
1661 		".L"[!rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)],
1662 		".D"[!rdp->tick_nohz_enabled_snap]);
1663 }
1664 
1665 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1666 
1667 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1668 {
1669 	*cp = '\0';
1670 }
1671 
1672 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1673 
1674 /* Initiate the stall-info list. */
1675 static void print_cpu_stall_info_begin(void)
1676 {
1677 	pr_cont("\n");
1678 }
1679 
1680 /*
1681  * Print out diagnostic information for the specified stalled CPU.
1682  *
1683  * If the specified CPU is aware of the current RCU grace period, then
1684  * print the number of scheduling clock interrupts the CPU has taken
1685  * during the time that it has been aware.  Otherwise, print the number
1686  * of RCU grace periods that this CPU is ignorant of, for example, "1"
1687  * if the CPU was aware of the previous grace period.
1688  *
1689  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1690  */
1691 static void print_cpu_stall_info(int cpu)
1692 {
1693 	unsigned long delta;
1694 	char fast_no_hz[72];
1695 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1696 	char *ticks_title;
1697 	unsigned long ticks_value;
1698 
1699 	/*
1700 	 * We could be printing a lot while holding a spinlock.  Avoid
1701 	 * triggering hard lockup.
1702 	 */
1703 	touch_nmi_watchdog();
1704 
1705 	ticks_value = rcu_seq_ctr(rcu_state.gp_seq - rdp->gp_seq);
1706 	if (ticks_value) {
1707 		ticks_title = "GPs behind";
1708 	} else {
1709 		ticks_title = "ticks this GP";
1710 		ticks_value = rdp->ticks_this_gp;
1711 	}
1712 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1713 	delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq);
1714 	pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
1715 	       cpu,
1716 	       "O."[!!cpu_online(cpu)],
1717 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1718 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1719 	       !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1720 			rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1721 				"!."[!delta],
1722 	       ticks_value, ticks_title,
1723 	       rcu_dynticks_snap(rdp) & 0xfff,
1724 	       rdp->dynticks_nesting, rdp->dynticks_nmi_nesting,
1725 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1726 	       READ_ONCE(rcu_state.n_force_qs) - rcu_state.n_force_qs_gpstart,
1727 	       fast_no_hz);
1728 }
1729 
1730 /* Terminate the stall-info list. */
1731 static void print_cpu_stall_info_end(void)
1732 {
1733 	pr_err("\t");
1734 }
1735 
1736 /* Zero ->ticks_this_gp and snapshot the number of RCU softirq handlers. */
1737 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1738 {
1739 	rdp->ticks_this_gp = 0;
1740 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1741 	WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1742 }
1743 
1744 #ifdef CONFIG_RCU_NOCB_CPU
1745 
1746 /*
1747  * Offload callback processing from the boot-time-specified set of CPUs
1748  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1749  * created that pull the callbacks from the corresponding CPU, wait for
1750  * a grace period to elapse, and invoke the callbacks.  These kthreads
1751  * are organized into leaders, which manage incoming callbacks, wait for
1752  * grace periods, and awaken followers, and the followers, which only
1753  * invoke callbacks.  Each leader is its own follower.  The no-CBs CPUs
1754  * do a wake_up() on their kthread when they insert a callback into any
1755  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1756  * in which case each kthread actively polls its CPU.  (Which isn't so great
1757  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1758  *
1759  * This is intended to be used in conjunction with Frederic Weisbecker's
1760  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1761  * running CPU-bound user-mode computations.
1762  *
1763  * Offloading of callbacks can also be used as an energy-efficiency
1764  * measure because CPUs with no RCU callbacks queued are more aggressive
1765  * about entering dyntick-idle mode.
1766  */
1767 
1768 
1769 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1770 static int __init rcu_nocb_setup(char *str)
1771 {
1772 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1773 	cpulist_parse(str, rcu_nocb_mask);
1774 	return 1;
1775 }
1776 __setup("rcu_nocbs=", rcu_nocb_setup);
1777 
1778 static int __init parse_rcu_nocb_poll(char *arg)
1779 {
1780 	rcu_nocb_poll = true;
1781 	return 0;
1782 }
1783 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1784 
1785 /*
1786  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1787  * grace period.
1788  */
1789 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1790 {
1791 	swake_up_all(sq);
1792 }
1793 
1794 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1795 {
1796 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1797 }
1798 
1799 static void rcu_init_one_nocb(struct rcu_node *rnp)
1800 {
1801 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1802 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1803 }
1804 
1805 /* Is the specified CPU a no-CBs CPU? */
1806 bool rcu_is_nocb_cpu(int cpu)
1807 {
1808 	if (cpumask_available(rcu_nocb_mask))
1809 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1810 	return false;
1811 }
1812 
1813 /*
1814  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1815  * and this function releases it.
1816  */
1817 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1818 			       unsigned long flags)
1819 	__releases(rdp->nocb_lock)
1820 {
1821 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1822 
1823 	lockdep_assert_held(&rdp->nocb_lock);
1824 	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1825 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1826 		return;
1827 	}
1828 	if (rdp_leader->nocb_leader_sleep || force) {
1829 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1830 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1831 		del_timer(&rdp->nocb_timer);
1832 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1833 		smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1834 		swake_up_one(&rdp_leader->nocb_wq);
1835 	} else {
1836 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1837 	}
1838 }
1839 
1840 /*
1841  * Kick the leader kthread for this NOCB group, but caller has not
1842  * acquired locks.
1843  */
1844 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1845 {
1846 	unsigned long flags;
1847 
1848 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1849 	__wake_nocb_leader(rdp, force, flags);
1850 }
1851 
1852 /*
1853  * Arrange to wake the leader kthread for this NOCB group at some
1854  * future time when it is safe to do so.
1855  */
1856 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1857 				   const char *reason)
1858 {
1859 	unsigned long flags;
1860 
1861 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1862 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1863 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1864 	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1865 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1866 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1867 }
1868 
1869 /* Does rcu_barrier need to queue an RCU callback on the specified CPU?  */
1870 static bool rcu_nocb_cpu_needs_barrier(int cpu)
1871 {
1872 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1873 	unsigned long ret;
1874 #ifdef CONFIG_PROVE_RCU
1875 	struct rcu_head *rhp;
1876 #endif /* #ifdef CONFIG_PROVE_RCU */
1877 
1878 	/*
1879 	 * Check count of all no-CBs callbacks awaiting invocation.
1880 	 * There needs to be a barrier before this function is called,
1881 	 * but associated with a prior determination that no more
1882 	 * callbacks would be posted.  In the worst case, the first
1883 	 * barrier in rcu_barrier() suffices (but the caller cannot
1884 	 * necessarily rely on this, not a substitute for the caller
1885 	 * getting the concurrency design right!).  There must also be a
1886 	 * barrier between the following load and posting of a callback
1887 	 * (if a callback is in fact needed).  This is associated with an
1888 	 * atomic_inc() in the caller.
1889 	 */
1890 	ret = rcu_get_n_cbs_nocb_cpu(rdp);
1891 
1892 #ifdef CONFIG_PROVE_RCU
1893 	rhp = READ_ONCE(rdp->nocb_head);
1894 	if (!rhp)
1895 		rhp = READ_ONCE(rdp->nocb_gp_head);
1896 	if (!rhp)
1897 		rhp = READ_ONCE(rdp->nocb_follower_head);
1898 
1899 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1900 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1901 	    rcu_scheduler_fully_active) {
1902 		/* RCU callback enqueued before CPU first came online??? */
1903 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1904 		       cpu, rhp->func);
1905 		WARN_ON_ONCE(1);
1906 	}
1907 #endif /* #ifdef CONFIG_PROVE_RCU */
1908 
1909 	return !!ret;
1910 }
1911 
1912 /*
1913  * Enqueue the specified string of rcu_head structures onto the specified
1914  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1915  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1916  * counts are supplied by rhcount and rhcount_lazy.
1917  *
1918  * If warranted, also wake up the kthread servicing this CPUs queues.
1919  */
1920 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1921 				    struct rcu_head *rhp,
1922 				    struct rcu_head **rhtp,
1923 				    int rhcount, int rhcount_lazy,
1924 				    unsigned long flags)
1925 {
1926 	int len;
1927 	struct rcu_head **old_rhpp;
1928 	struct task_struct *t;
1929 
1930 	/* Enqueue the callback on the nocb list and update counts. */
1931 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1932 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1933 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1934 	WRITE_ONCE(*old_rhpp, rhp);
1935 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1936 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1937 
1938 	/* If we are not being polled and there is a kthread, awaken it ... */
1939 	t = READ_ONCE(rdp->nocb_kthread);
1940 	if (rcu_nocb_poll || !t) {
1941 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1942 				    TPS("WakeNotPoll"));
1943 		return;
1944 	}
1945 	len = rcu_get_n_cbs_nocb_cpu(rdp);
1946 	if (old_rhpp == &rdp->nocb_head) {
1947 		if (!irqs_disabled_flags(flags)) {
1948 			/* ... if queue was empty ... */
1949 			wake_nocb_leader(rdp, false);
1950 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1951 					    TPS("WakeEmpty"));
1952 		} else {
1953 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1954 					       TPS("WakeEmptyIsDeferred"));
1955 		}
1956 		rdp->qlen_last_fqs_check = 0;
1957 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1958 		/* ... or if many callbacks queued. */
1959 		if (!irqs_disabled_flags(flags)) {
1960 			wake_nocb_leader(rdp, true);
1961 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1962 					    TPS("WakeOvf"));
1963 		} else {
1964 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
1965 					       TPS("WakeOvfIsDeferred"));
1966 		}
1967 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1968 	} else {
1969 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1970 	}
1971 	return;
1972 }
1973 
1974 /*
1975  * This is a helper for __call_rcu(), which invokes this when the normal
1976  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1977  * function returns failure back to __call_rcu(), which can complain
1978  * appropriately.
1979  *
1980  * Otherwise, this function queues the callback where the corresponding
1981  * "rcuo" kthread can find it.
1982  */
1983 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1984 			    bool lazy, unsigned long flags)
1985 {
1986 
1987 	if (!rcu_is_nocb_cpu(rdp->cpu))
1988 		return false;
1989 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1990 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1991 		trace_rcu_kfree_callback(rcu_state.name, rhp,
1992 					 (unsigned long)rhp->func,
1993 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1994 					 -rcu_get_n_cbs_nocb_cpu(rdp));
1995 	else
1996 		trace_rcu_callback(rcu_state.name, rhp,
1997 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1998 				   -rcu_get_n_cbs_nocb_cpu(rdp));
1999 
2000 	/*
2001 	 * If called from an extended quiescent state with interrupts
2002 	 * disabled, invoke the RCU core in order to allow the idle-entry
2003 	 * deferred-wakeup check to function.
2004 	 */
2005 	if (irqs_disabled_flags(flags) &&
2006 	    !rcu_is_watching() &&
2007 	    cpu_online(smp_processor_id()))
2008 		invoke_rcu_core();
2009 
2010 	return true;
2011 }
2012 
2013 /*
2014  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2015  * not a no-CBs CPU.
2016  */
2017 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2018 						     struct rcu_data *rdp,
2019 						     unsigned long flags)
2020 {
2021 	lockdep_assert_irqs_disabled();
2022 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2023 		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2024 	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2025 				rcu_segcblist_tail(&rdp->cblist),
2026 				rcu_segcblist_n_cbs(&rdp->cblist),
2027 				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2028 	rcu_segcblist_init(&rdp->cblist);
2029 	rcu_segcblist_disable(&rdp->cblist);
2030 	return true;
2031 }
2032 
2033 /*
2034  * If necessary, kick off a new grace period, and either way wait
2035  * for a subsequent grace period to complete.
2036  */
2037 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2038 {
2039 	unsigned long c;
2040 	bool d;
2041 	unsigned long flags;
2042 	bool needwake;
2043 	struct rcu_node *rnp = rdp->mynode;
2044 
2045 	local_irq_save(flags);
2046 	c = rcu_seq_snap(&rcu_state.gp_seq);
2047 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
2048 		local_irq_restore(flags);
2049 	} else {
2050 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2051 		needwake = rcu_start_this_gp(rnp, rdp, c);
2052 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2053 		if (needwake)
2054 			rcu_gp_kthread_wake();
2055 	}
2056 
2057 	/*
2058 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2059 	 * up the load average.
2060 	 */
2061 	trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
2062 	for (;;) {
2063 		swait_event_interruptible_exclusive(
2064 			rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
2065 			(d = rcu_seq_done(&rnp->gp_seq, c)));
2066 		if (likely(d))
2067 			break;
2068 		WARN_ON(signal_pending(current));
2069 		trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
2070 	}
2071 	trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
2072 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2073 }
2074 
2075 /*
2076  * Leaders come here to wait for additional callbacks to show up.
2077  * This function does not return until callbacks appear.
2078  */
2079 static void nocb_leader_wait(struct rcu_data *my_rdp)
2080 {
2081 	bool firsttime = true;
2082 	unsigned long flags;
2083 	bool gotcbs;
2084 	struct rcu_data *rdp;
2085 	struct rcu_head **tail;
2086 
2087 wait_again:
2088 
2089 	/* Wait for callbacks to appear. */
2090 	if (!rcu_nocb_poll) {
2091 		trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Sleep"));
2092 		swait_event_interruptible_exclusive(my_rdp->nocb_wq,
2093 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2094 		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2095 		my_rdp->nocb_leader_sleep = true;
2096 		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2097 		del_timer(&my_rdp->nocb_timer);
2098 		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2099 	} else if (firsttime) {
2100 		firsttime = false; /* Don't drown trace log with "Poll"! */
2101 		trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Poll"));
2102 	}
2103 
2104 	/*
2105 	 * Each pass through the following loop checks a follower for CBs.
2106 	 * We are our own first follower.  Any CBs found are moved to
2107 	 * nocb_gp_head, where they await a grace period.
2108 	 */
2109 	gotcbs = false;
2110 	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2111 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2112 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2113 		if (!rdp->nocb_gp_head)
2114 			continue;  /* No CBs here, try next follower. */
2115 
2116 		/* Move callbacks to wait-for-GP list, which is empty. */
2117 		WRITE_ONCE(rdp->nocb_head, NULL);
2118 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2119 		gotcbs = true;
2120 	}
2121 
2122 	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2123 	if (unlikely(!gotcbs)) {
2124 		WARN_ON(signal_pending(current));
2125 		if (rcu_nocb_poll) {
2126 			schedule_timeout_interruptible(1);
2127 		} else {
2128 			trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu,
2129 					    TPS("WokeEmpty"));
2130 		}
2131 		goto wait_again;
2132 	}
2133 
2134 	/* Wait for one grace period. */
2135 	rcu_nocb_wait_gp(my_rdp);
2136 
2137 	/* Each pass through the following loop wakes a follower, if needed. */
2138 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2139 		if (!rcu_nocb_poll &&
2140 		    READ_ONCE(rdp->nocb_head) &&
2141 		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2142 			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2143 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2144 			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2145 		}
2146 		if (!rdp->nocb_gp_head)
2147 			continue; /* No CBs, so no need to wake follower. */
2148 
2149 		/* Append callbacks to follower's "done" list. */
2150 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2151 		tail = rdp->nocb_follower_tail;
2152 		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2153 		*tail = rdp->nocb_gp_head;
2154 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2155 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2156 			/* List was empty, so wake up the follower.  */
2157 			swake_up_one(&rdp->nocb_wq);
2158 		}
2159 	}
2160 
2161 	/* If we (the leader) don't have CBs, go wait some more. */
2162 	if (!my_rdp->nocb_follower_head)
2163 		goto wait_again;
2164 }
2165 
2166 /*
2167  * Followers come here to wait for additional callbacks to show up.
2168  * This function does not return until callbacks appear.
2169  */
2170 static void nocb_follower_wait(struct rcu_data *rdp)
2171 {
2172 	for (;;) {
2173 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FollowerSleep"));
2174 		swait_event_interruptible_exclusive(rdp->nocb_wq,
2175 					 READ_ONCE(rdp->nocb_follower_head));
2176 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2177 			/* ^^^ Ensure CB invocation follows _head test. */
2178 			return;
2179 		}
2180 		WARN_ON(signal_pending(current));
2181 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2182 	}
2183 }
2184 
2185 /*
2186  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2187  * callbacks queued by the corresponding no-CBs CPU, however, there is
2188  * an optional leader-follower relationship so that the grace-period
2189  * kthreads don't have to do quite so many wakeups.
2190  */
2191 static int rcu_nocb_kthread(void *arg)
2192 {
2193 	int c, cl;
2194 	unsigned long flags;
2195 	struct rcu_head *list;
2196 	struct rcu_head *next;
2197 	struct rcu_head **tail;
2198 	struct rcu_data *rdp = arg;
2199 
2200 	/* Each pass through this loop invokes one batch of callbacks */
2201 	for (;;) {
2202 		/* Wait for callbacks. */
2203 		if (rdp->nocb_leader == rdp)
2204 			nocb_leader_wait(rdp);
2205 		else
2206 			nocb_follower_wait(rdp);
2207 
2208 		/* Pull the ready-to-invoke callbacks onto local list. */
2209 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2210 		list = rdp->nocb_follower_head;
2211 		rdp->nocb_follower_head = NULL;
2212 		tail = rdp->nocb_follower_tail;
2213 		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2214 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2215 		if (WARN_ON_ONCE(!list))
2216 			continue;
2217 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeNonEmpty"));
2218 
2219 		/* Each pass through the following loop invokes a callback. */
2220 		trace_rcu_batch_start(rcu_state.name,
2221 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2222 				      rcu_get_n_cbs_nocb_cpu(rdp), -1);
2223 		c = cl = 0;
2224 		while (list) {
2225 			next = list->next;
2226 			/* Wait for enqueuing to complete, if needed. */
2227 			while (next == NULL && &list->next != tail) {
2228 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2229 						    TPS("WaitQueue"));
2230 				schedule_timeout_interruptible(1);
2231 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2232 						    TPS("WokeQueue"));
2233 				next = list->next;
2234 			}
2235 			debug_rcu_head_unqueue(list);
2236 			local_bh_disable();
2237 			if (__rcu_reclaim(rcu_state.name, list))
2238 				cl++;
2239 			c++;
2240 			local_bh_enable();
2241 			cond_resched_tasks_rcu_qs();
2242 			list = next;
2243 		}
2244 		trace_rcu_batch_end(rcu_state.name, c, !!list, 0, 0, 1);
2245 		smp_mb__before_atomic();  /* _add after CB invocation. */
2246 		atomic_long_add(-c, &rdp->nocb_q_count);
2247 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2248 	}
2249 	return 0;
2250 }
2251 
2252 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2253 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2254 {
2255 	return READ_ONCE(rdp->nocb_defer_wakeup);
2256 }
2257 
2258 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2259 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2260 {
2261 	unsigned long flags;
2262 	int ndw;
2263 
2264 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2265 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2266 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2267 		return;
2268 	}
2269 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2270 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2271 	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2272 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2273 }
2274 
2275 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2276 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2277 {
2278 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2279 
2280 	do_nocb_deferred_wakeup_common(rdp);
2281 }
2282 
2283 /*
2284  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2285  * This means we do an inexact common-case check.  Note that if
2286  * we miss, ->nocb_timer will eventually clean things up.
2287  */
2288 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2289 {
2290 	if (rcu_nocb_need_deferred_wakeup(rdp))
2291 		do_nocb_deferred_wakeup_common(rdp);
2292 }
2293 
2294 void __init rcu_init_nohz(void)
2295 {
2296 	int cpu;
2297 	bool need_rcu_nocb_mask = false;
2298 
2299 #if defined(CONFIG_NO_HZ_FULL)
2300 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2301 		need_rcu_nocb_mask = true;
2302 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2303 
2304 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2305 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2306 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2307 			return;
2308 		}
2309 	}
2310 	if (!cpumask_available(rcu_nocb_mask))
2311 		return;
2312 
2313 #if defined(CONFIG_NO_HZ_FULL)
2314 	if (tick_nohz_full_running)
2315 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2316 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2317 
2318 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2319 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2320 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2321 			    rcu_nocb_mask);
2322 	}
2323 	if (cpumask_empty(rcu_nocb_mask))
2324 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2325 	else
2326 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2327 			cpumask_pr_args(rcu_nocb_mask));
2328 	if (rcu_nocb_poll)
2329 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2330 
2331 	for_each_cpu(cpu, rcu_nocb_mask)
2332 		init_nocb_callback_list(per_cpu_ptr(&rcu_data, cpu));
2333 	rcu_organize_nocb_kthreads();
2334 }
2335 
2336 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2337 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2338 {
2339 	rdp->nocb_tail = &rdp->nocb_head;
2340 	init_swait_queue_head(&rdp->nocb_wq);
2341 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2342 	raw_spin_lock_init(&rdp->nocb_lock);
2343 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2344 }
2345 
2346 /*
2347  * If the specified CPU is a no-CBs CPU that does not already have its
2348  * rcuo kthread, spawn it.  If the CPUs are brought online out of order,
2349  * this can require re-organizing the leader-follower relationships.
2350  */
2351 static void rcu_spawn_one_nocb_kthread(int cpu)
2352 {
2353 	struct rcu_data *rdp;
2354 	struct rcu_data *rdp_last;
2355 	struct rcu_data *rdp_old_leader;
2356 	struct rcu_data *rdp_spawn = per_cpu_ptr(&rcu_data, cpu);
2357 	struct task_struct *t;
2358 
2359 	/*
2360 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2361 	 * then nothing to do.
2362 	 */
2363 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2364 		return;
2365 
2366 	/* If we didn't spawn the leader first, reorganize! */
2367 	rdp_old_leader = rdp_spawn->nocb_leader;
2368 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2369 		rdp_last = NULL;
2370 		rdp = rdp_old_leader;
2371 		do {
2372 			rdp->nocb_leader = rdp_spawn;
2373 			if (rdp_last && rdp != rdp_spawn)
2374 				rdp_last->nocb_next_follower = rdp;
2375 			if (rdp == rdp_spawn) {
2376 				rdp = rdp->nocb_next_follower;
2377 			} else {
2378 				rdp_last = rdp;
2379 				rdp = rdp->nocb_next_follower;
2380 				rdp_last->nocb_next_follower = NULL;
2381 			}
2382 		} while (rdp);
2383 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2384 	}
2385 
2386 	/* Spawn the kthread for this CPU. */
2387 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2388 			"rcuo%c/%d", rcu_state.abbr, cpu);
2389 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo kthread, OOM is now expected behavior\n", __func__))
2390 		return;
2391 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2392 }
2393 
2394 /*
2395  * If the specified CPU is a no-CBs CPU that does not already have its
2396  * rcuo kthread, spawn it.
2397  */
2398 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2399 {
2400 	if (rcu_scheduler_fully_active)
2401 		rcu_spawn_one_nocb_kthread(cpu);
2402 }
2403 
2404 /*
2405  * Once the scheduler is running, spawn rcuo kthreads for all online
2406  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2407  * non-boot CPUs come online -- if this changes, we will need to add
2408  * some mutual exclusion.
2409  */
2410 static void __init rcu_spawn_nocb_kthreads(void)
2411 {
2412 	int cpu;
2413 
2414 	for_each_online_cpu(cpu)
2415 		rcu_spawn_cpu_nocb_kthread(cpu);
2416 }
2417 
2418 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2419 static int rcu_nocb_leader_stride = -1;
2420 module_param(rcu_nocb_leader_stride, int, 0444);
2421 
2422 /*
2423  * Initialize leader-follower relationships for all no-CBs CPU.
2424  */
2425 static void __init rcu_organize_nocb_kthreads(void)
2426 {
2427 	int cpu;
2428 	int ls = rcu_nocb_leader_stride;
2429 	int nl = 0;  /* Next leader. */
2430 	struct rcu_data *rdp;
2431 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2432 	struct rcu_data *rdp_prev = NULL;
2433 
2434 	if (!cpumask_available(rcu_nocb_mask))
2435 		return;
2436 	if (ls == -1) {
2437 		ls = int_sqrt(nr_cpu_ids);
2438 		rcu_nocb_leader_stride = ls;
2439 	}
2440 
2441 	/*
2442 	 * Each pass through this loop sets up one rcu_data structure.
2443 	 * Should the corresponding CPU come online in the future, then
2444 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2445 	 */
2446 	for_each_cpu(cpu, rcu_nocb_mask) {
2447 		rdp = per_cpu_ptr(&rcu_data, cpu);
2448 		if (rdp->cpu >= nl) {
2449 			/* New leader, set up for followers & next leader. */
2450 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2451 			rdp->nocb_leader = rdp;
2452 			rdp_leader = rdp;
2453 		} else {
2454 			/* Another follower, link to previous leader. */
2455 			rdp->nocb_leader = rdp_leader;
2456 			rdp_prev->nocb_next_follower = rdp;
2457 		}
2458 		rdp_prev = rdp;
2459 	}
2460 }
2461 
2462 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2463 static bool init_nocb_callback_list(struct rcu_data *rdp)
2464 {
2465 	if (!rcu_is_nocb_cpu(rdp->cpu))
2466 		return false;
2467 
2468 	/* If there are early-boot callbacks, move them to nocb lists. */
2469 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2470 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2471 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2472 		atomic_long_set(&rdp->nocb_q_count,
2473 				rcu_segcblist_n_cbs(&rdp->cblist));
2474 		atomic_long_set(&rdp->nocb_q_count_lazy,
2475 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2476 		rcu_segcblist_init(&rdp->cblist);
2477 	}
2478 	rcu_segcblist_disable(&rdp->cblist);
2479 	return true;
2480 }
2481 
2482 /*
2483  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2484  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2485  */
2486 void rcu_bind_current_to_nocb(void)
2487 {
2488 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2489 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2490 }
2491 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2492 
2493 /*
2494  * Return the number of RCU callbacks still queued from the specified
2495  * CPU, which must be a nocbs CPU.
2496  */
2497 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp)
2498 {
2499 	return atomic_long_read(&rdp->nocb_q_count);
2500 }
2501 
2502 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2503 
2504 static bool rcu_nocb_cpu_needs_barrier(int cpu)
2505 {
2506 	WARN_ON_ONCE(1); /* Should be dead code. */
2507 	return false;
2508 }
2509 
2510 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2511 {
2512 }
2513 
2514 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2515 {
2516 	return NULL;
2517 }
2518 
2519 static void rcu_init_one_nocb(struct rcu_node *rnp)
2520 {
2521 }
2522 
2523 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2524 			    bool lazy, unsigned long flags)
2525 {
2526 	return false;
2527 }
2528 
2529 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2530 						     struct rcu_data *rdp,
2531 						     unsigned long flags)
2532 {
2533 	return false;
2534 }
2535 
2536 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2537 {
2538 }
2539 
2540 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2541 {
2542 	return false;
2543 }
2544 
2545 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2546 {
2547 }
2548 
2549 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2550 {
2551 }
2552 
2553 static void __init rcu_spawn_nocb_kthreads(void)
2554 {
2555 }
2556 
2557 static bool init_nocb_callback_list(struct rcu_data *rdp)
2558 {
2559 	return false;
2560 }
2561 
2562 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp)
2563 {
2564 	return 0;
2565 }
2566 
2567 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2568 
2569 /*
2570  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2571  * grace-period kthread will do force_quiescent_state() processing?
2572  * The idea is to avoid waking up RCU core processing on such a
2573  * CPU unless the grace period has extended for too long.
2574  *
2575  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2576  * CONFIG_RCU_NOCB_CPU CPUs.
2577  */
2578 static bool rcu_nohz_full_cpu(void)
2579 {
2580 #ifdef CONFIG_NO_HZ_FULL
2581 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2582 	    (!rcu_gp_in_progress() ||
2583 	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2584 		return true;
2585 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2586 	return false;
2587 }
2588 
2589 /*
2590  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2591  */
2592 static void rcu_bind_gp_kthread(void)
2593 {
2594 	if (!tick_nohz_full_enabled())
2595 		return;
2596 	housekeeping_affine(current, HK_FLAG_RCU);
2597 }
2598 
2599 /* Record the current task on dyntick-idle entry. */
2600 static void rcu_dynticks_task_enter(void)
2601 {
2602 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2603 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2604 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2605 }
2606 
2607 /* Record no current task on dyntick-idle exit. */
2608 static void rcu_dynticks_task_exit(void)
2609 {
2610 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2611 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2612 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2613 }
2614