1 /* 2 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 3 * Internal non-public definitions that provide either classic 4 * or preemptible semantics. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, you can access it online at 18 * http://www.gnu.org/licenses/gpl-2.0.html. 19 * 20 * Copyright Red Hat, 2009 21 * Copyright IBM Corporation, 2009 22 * 23 * Author: Ingo Molnar <mingo@elte.hu> 24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> 25 */ 26 27 #include <linux/delay.h> 28 #include <linux/gfp.h> 29 #include <linux/oom.h> 30 #include <linux/smpboot.h> 31 #include "../time/tick-internal.h" 32 33 #ifdef CONFIG_RCU_BOOST 34 35 #include "../locking/rtmutex_common.h" 36 37 /* 38 * Control variables for per-CPU and per-rcu_node kthreads. These 39 * handle all flavors of RCU. 40 */ 41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); 42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); 43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); 44 DEFINE_PER_CPU(char, rcu_cpu_has_work); 45 46 #else /* #ifdef CONFIG_RCU_BOOST */ 47 48 /* 49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST, 50 * all uses are in dead code. Provide a definition to keep the compiler 51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place. 52 * This probably needs to be excluded from -rt builds. 53 */ 54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; }) 55 56 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 57 58 #ifdef CONFIG_RCU_NOCB_CPU 59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 60 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */ 61 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ 63 64 /* 65 * Check the RCU kernel configuration parameters and print informative 66 * messages about anything out of the ordinary. 67 */ 68 static void __init rcu_bootup_announce_oddness(void) 69 { 70 if (IS_ENABLED(CONFIG_RCU_TRACE)) 71 pr_info("\tRCU debugfs-based tracing is enabled.\n"); 72 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || 73 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) 74 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n", 75 RCU_FANOUT); 76 if (rcu_fanout_exact) 77 pr_info("\tHierarchical RCU autobalancing is disabled.\n"); 78 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) 79 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); 80 if (IS_ENABLED(CONFIG_PROVE_RCU)) 81 pr_info("\tRCU lockdep checking is enabled.\n"); 82 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE)) 83 pr_info("\tRCU torture testing starts during boot.\n"); 84 if (RCU_NUM_LVLS >= 4) 85 pr_info("\tFour(or more)-level hierarchy is enabled.\n"); 86 if (RCU_FANOUT_LEAF != 16) 87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", 88 RCU_FANOUT_LEAF); 89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF) 90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf); 91 if (nr_cpu_ids != NR_CPUS) 92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids); 93 if (IS_ENABLED(CONFIG_RCU_BOOST)) 94 pr_info("\tRCU kthread priority: %d.\n", kthread_prio); 95 } 96 97 #ifdef CONFIG_PREEMPT_RCU 98 99 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu); 100 static struct rcu_state *const rcu_state_p = &rcu_preempt_state; 101 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data; 102 103 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 104 bool wake); 105 106 /* 107 * Tell them what RCU they are running. 108 */ 109 static void __init rcu_bootup_announce(void) 110 { 111 pr_info("Preemptible hierarchical RCU implementation.\n"); 112 rcu_bootup_announce_oddness(); 113 } 114 115 /* Flags for rcu_preempt_ctxt_queue() decision table. */ 116 #define RCU_GP_TASKS 0x8 117 #define RCU_EXP_TASKS 0x4 118 #define RCU_GP_BLKD 0x2 119 #define RCU_EXP_BLKD 0x1 120 121 /* 122 * Queues a task preempted within an RCU-preempt read-side critical 123 * section into the appropriate location within the ->blkd_tasks list, 124 * depending on the states of any ongoing normal and expedited grace 125 * periods. The ->gp_tasks pointer indicates which element the normal 126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer 127 * indicates which element the expedited grace period is waiting on (again, 128 * NULL if none). If a grace period is waiting on a given element in the 129 * ->blkd_tasks list, it also waits on all subsequent elements. Thus, 130 * adding a task to the tail of the list blocks any grace period that is 131 * already waiting on one of the elements. In contrast, adding a task 132 * to the head of the list won't block any grace period that is already 133 * waiting on one of the elements. 134 * 135 * This queuing is imprecise, and can sometimes make an ongoing grace 136 * period wait for a task that is not strictly speaking blocking it. 137 * Given the choice, we needlessly block a normal grace period rather than 138 * blocking an expedited grace period. 139 * 140 * Note that an endless sequence of expedited grace periods still cannot 141 * indefinitely postpone a normal grace period. Eventually, all of the 142 * fixed number of preempted tasks blocking the normal grace period that are 143 * not also blocking the expedited grace period will resume and complete 144 * their RCU read-side critical sections. At that point, the ->gp_tasks 145 * pointer will equal the ->exp_tasks pointer, at which point the end of 146 * the corresponding expedited grace period will also be the end of the 147 * normal grace period. 148 */ 149 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) 150 __releases(rnp->lock) /* But leaves rrupts disabled. */ 151 { 152 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + 153 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + 154 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + 155 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); 156 struct task_struct *t = current; 157 158 /* 159 * Decide where to queue the newly blocked task. In theory, 160 * this could be an if-statement. In practice, when I tried 161 * that, it was quite messy. 162 */ 163 switch (blkd_state) { 164 case 0: 165 case RCU_EXP_TASKS: 166 case RCU_EXP_TASKS + RCU_GP_BLKD: 167 case RCU_GP_TASKS: 168 case RCU_GP_TASKS + RCU_EXP_TASKS: 169 170 /* 171 * Blocking neither GP, or first task blocking the normal 172 * GP but not blocking the already-waiting expedited GP. 173 * Queue at the head of the list to avoid unnecessarily 174 * blocking the already-waiting GPs. 175 */ 176 list_add(&t->rcu_node_entry, &rnp->blkd_tasks); 177 break; 178 179 case RCU_EXP_BLKD: 180 case RCU_GP_BLKD: 181 case RCU_GP_BLKD + RCU_EXP_BLKD: 182 case RCU_GP_TASKS + RCU_EXP_BLKD: 183 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 184 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 185 186 /* 187 * First task arriving that blocks either GP, or first task 188 * arriving that blocks the expedited GP (with the normal 189 * GP already waiting), or a task arriving that blocks 190 * both GPs with both GPs already waiting. Queue at the 191 * tail of the list to avoid any GP waiting on any of the 192 * already queued tasks that are not blocking it. 193 */ 194 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); 195 break; 196 197 case RCU_EXP_TASKS + RCU_EXP_BLKD: 198 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: 199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD: 200 201 /* 202 * Second or subsequent task blocking the expedited GP. 203 * The task either does not block the normal GP, or is the 204 * first task blocking the normal GP. Queue just after 205 * the first task blocking the expedited GP. 206 */ 207 list_add(&t->rcu_node_entry, rnp->exp_tasks); 208 break; 209 210 case RCU_GP_TASKS + RCU_GP_BLKD: 211 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: 212 213 /* 214 * Second or subsequent task blocking the normal GP. 215 * The task does not block the expedited GP. Queue just 216 * after the first task blocking the normal GP. 217 */ 218 list_add(&t->rcu_node_entry, rnp->gp_tasks); 219 break; 220 221 default: 222 223 /* Yet another exercise in excessive paranoia. */ 224 WARN_ON_ONCE(1); 225 break; 226 } 227 228 /* 229 * We have now queued the task. If it was the first one to 230 * block either grace period, update the ->gp_tasks and/or 231 * ->exp_tasks pointers, respectively, to reference the newly 232 * blocked tasks. 233 */ 234 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) 235 rnp->gp_tasks = &t->rcu_node_entry; 236 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) 237 rnp->exp_tasks = &t->rcu_node_entry; 238 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ 239 240 /* 241 * Report the quiescent state for the expedited GP. This expedited 242 * GP should not be able to end until we report, so there should be 243 * no need to check for a subsequent expedited GP. (Though we are 244 * still in a quiescent state in any case.) 245 */ 246 if (blkd_state & RCU_EXP_BLKD && 247 t->rcu_read_unlock_special.b.exp_need_qs) { 248 t->rcu_read_unlock_special.b.exp_need_qs = false; 249 rcu_report_exp_rdp(rdp->rsp, rdp, true); 250 } else { 251 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs); 252 } 253 } 254 255 /* 256 * Record a preemptible-RCU quiescent state for the specified CPU. Note 257 * that this just means that the task currently running on the CPU is 258 * not in a quiescent state. There might be any number of tasks blocked 259 * while in an RCU read-side critical section. 260 * 261 * As with the other rcu_*_qs() functions, callers to this function 262 * must disable preemption. 263 */ 264 static void rcu_preempt_qs(void) 265 { 266 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) { 267 trace_rcu_grace_period(TPS("rcu_preempt"), 268 __this_cpu_read(rcu_data_p->gpnum), 269 TPS("cpuqs")); 270 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false); 271 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */ 272 current->rcu_read_unlock_special.b.need_qs = false; 273 } 274 } 275 276 /* 277 * We have entered the scheduler, and the current task might soon be 278 * context-switched away from. If this task is in an RCU read-side 279 * critical section, we will no longer be able to rely on the CPU to 280 * record that fact, so we enqueue the task on the blkd_tasks list. 281 * The task will dequeue itself when it exits the outermost enclosing 282 * RCU read-side critical section. Therefore, the current grace period 283 * cannot be permitted to complete until the blkd_tasks list entries 284 * predating the current grace period drain, in other words, until 285 * rnp->gp_tasks becomes NULL. 286 * 287 * Caller must disable interrupts. 288 */ 289 static void rcu_preempt_note_context_switch(void) 290 { 291 struct task_struct *t = current; 292 struct rcu_data *rdp; 293 struct rcu_node *rnp; 294 295 if (t->rcu_read_lock_nesting > 0 && 296 !t->rcu_read_unlock_special.b.blocked) { 297 298 /* Possibly blocking in an RCU read-side critical section. */ 299 rdp = this_cpu_ptr(rcu_state_p->rda); 300 rnp = rdp->mynode; 301 raw_spin_lock_rcu_node(rnp); 302 t->rcu_read_unlock_special.b.blocked = true; 303 t->rcu_blocked_node = rnp; 304 305 /* 306 * Verify the CPU's sanity, trace the preemption, and 307 * then queue the task as required based on the states 308 * of any ongoing and expedited grace periods. 309 */ 310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); 311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); 312 trace_rcu_preempt_task(rdp->rsp->name, 313 t->pid, 314 (rnp->qsmask & rdp->grpmask) 315 ? rnp->gpnum 316 : rnp->gpnum + 1); 317 rcu_preempt_ctxt_queue(rnp, rdp); 318 } else if (t->rcu_read_lock_nesting < 0 && 319 t->rcu_read_unlock_special.s) { 320 321 /* 322 * Complete exit from RCU read-side critical section on 323 * behalf of preempted instance of __rcu_read_unlock(). 324 */ 325 rcu_read_unlock_special(t); 326 } 327 328 /* 329 * Either we were not in an RCU read-side critical section to 330 * begin with, or we have now recorded that critical section 331 * globally. Either way, we can now note a quiescent state 332 * for this CPU. Again, if we were in an RCU read-side critical 333 * section, and if that critical section was blocking the current 334 * grace period, then the fact that the task has been enqueued 335 * means that we continue to block the current grace period. 336 */ 337 rcu_preempt_qs(); 338 } 339 340 /* 341 * Check for preempted RCU readers blocking the current grace period 342 * for the specified rcu_node structure. If the caller needs a reliable 343 * answer, it must hold the rcu_node's ->lock. 344 */ 345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 346 { 347 return rnp->gp_tasks != NULL; 348 } 349 350 /* 351 * Advance a ->blkd_tasks-list pointer to the next entry, instead 352 * returning NULL if at the end of the list. 353 */ 354 static struct list_head *rcu_next_node_entry(struct task_struct *t, 355 struct rcu_node *rnp) 356 { 357 struct list_head *np; 358 359 np = t->rcu_node_entry.next; 360 if (np == &rnp->blkd_tasks) 361 np = NULL; 362 return np; 363 } 364 365 /* 366 * Return true if the specified rcu_node structure has tasks that were 367 * preempted within an RCU read-side critical section. 368 */ 369 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 370 { 371 return !list_empty(&rnp->blkd_tasks); 372 } 373 374 /* 375 * Handle special cases during rcu_read_unlock(), such as needing to 376 * notify RCU core processing or task having blocked during the RCU 377 * read-side critical section. 378 */ 379 void rcu_read_unlock_special(struct task_struct *t) 380 { 381 bool empty_exp; 382 bool empty_norm; 383 bool empty_exp_now; 384 unsigned long flags; 385 struct list_head *np; 386 bool drop_boost_mutex = false; 387 struct rcu_data *rdp; 388 struct rcu_node *rnp; 389 union rcu_special special; 390 391 /* NMI handlers cannot block and cannot safely manipulate state. */ 392 if (in_nmi()) 393 return; 394 395 local_irq_save(flags); 396 397 /* 398 * If RCU core is waiting for this CPU to exit its critical section, 399 * report the fact that it has exited. Because irqs are disabled, 400 * t->rcu_read_unlock_special cannot change. 401 */ 402 special = t->rcu_read_unlock_special; 403 if (special.b.need_qs) { 404 rcu_preempt_qs(); 405 t->rcu_read_unlock_special.b.need_qs = false; 406 if (!t->rcu_read_unlock_special.s) { 407 local_irq_restore(flags); 408 return; 409 } 410 } 411 412 /* 413 * Respond to a request for an expedited grace period, but only if 414 * we were not preempted, meaning that we were running on the same 415 * CPU throughout. If we were preempted, the exp_need_qs flag 416 * would have been cleared at the time of the first preemption, 417 * and the quiescent state would be reported when we were dequeued. 418 */ 419 if (special.b.exp_need_qs) { 420 WARN_ON_ONCE(special.b.blocked); 421 t->rcu_read_unlock_special.b.exp_need_qs = false; 422 rdp = this_cpu_ptr(rcu_state_p->rda); 423 rcu_report_exp_rdp(rcu_state_p, rdp, true); 424 if (!t->rcu_read_unlock_special.s) { 425 local_irq_restore(flags); 426 return; 427 } 428 } 429 430 /* Hardware IRQ handlers cannot block, complain if they get here. */ 431 if (in_irq() || in_serving_softirq()) { 432 lockdep_rcu_suspicious(__FILE__, __LINE__, 433 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n"); 434 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n", 435 t->rcu_read_unlock_special.s, 436 t->rcu_read_unlock_special.b.blocked, 437 t->rcu_read_unlock_special.b.exp_need_qs, 438 t->rcu_read_unlock_special.b.need_qs); 439 local_irq_restore(flags); 440 return; 441 } 442 443 /* Clean up if blocked during RCU read-side critical section. */ 444 if (special.b.blocked) { 445 t->rcu_read_unlock_special.b.blocked = false; 446 447 /* 448 * Remove this task from the list it blocked on. The task 449 * now remains queued on the rcu_node corresponding to the 450 * CPU it first blocked on, so there is no longer any need 451 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia. 452 */ 453 rnp = t->rcu_blocked_node; 454 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 455 WARN_ON_ONCE(rnp != t->rcu_blocked_node); 456 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); 457 empty_exp = sync_rcu_preempt_exp_done(rnp); 458 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ 459 np = rcu_next_node_entry(t, rnp); 460 list_del_init(&t->rcu_node_entry); 461 t->rcu_blocked_node = NULL; 462 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), 463 rnp->gpnum, t->pid); 464 if (&t->rcu_node_entry == rnp->gp_tasks) 465 rnp->gp_tasks = np; 466 if (&t->rcu_node_entry == rnp->exp_tasks) 467 rnp->exp_tasks = np; 468 if (IS_ENABLED(CONFIG_RCU_BOOST)) { 469 if (&t->rcu_node_entry == rnp->boost_tasks) 470 rnp->boost_tasks = np; 471 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */ 472 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; 473 } 474 475 /* 476 * If this was the last task on the current list, and if 477 * we aren't waiting on any CPUs, report the quiescent state. 478 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, 479 * so we must take a snapshot of the expedited state. 480 */ 481 empty_exp_now = sync_rcu_preempt_exp_done(rnp); 482 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { 483 trace_rcu_quiescent_state_report(TPS("preempt_rcu"), 484 rnp->gpnum, 485 0, rnp->qsmask, 486 rnp->level, 487 rnp->grplo, 488 rnp->grphi, 489 !!rnp->gp_tasks); 490 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); 491 } else { 492 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 493 } 494 495 /* Unboost if we were boosted. */ 496 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) 497 rt_mutex_unlock(&rnp->boost_mtx); 498 499 /* 500 * If this was the last task on the expedited lists, 501 * then we need to report up the rcu_node hierarchy. 502 */ 503 if (!empty_exp && empty_exp_now) 504 rcu_report_exp_rnp(rcu_state_p, rnp, true); 505 } else { 506 local_irq_restore(flags); 507 } 508 } 509 510 /* 511 * Dump detailed information for all tasks blocking the current RCU 512 * grace period on the specified rcu_node structure. 513 */ 514 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) 515 { 516 unsigned long flags; 517 struct task_struct *t; 518 519 raw_spin_lock_irqsave_rcu_node(rnp, flags); 520 if (!rcu_preempt_blocked_readers_cgp(rnp)) { 521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 522 return; 523 } 524 t = list_entry(rnp->gp_tasks->prev, 525 struct task_struct, rcu_node_entry); 526 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) 527 sched_show_task(t); 528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 529 } 530 531 /* 532 * Dump detailed information for all tasks blocking the current RCU 533 * grace period. 534 */ 535 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 536 { 537 struct rcu_node *rnp = rcu_get_root(rsp); 538 539 rcu_print_detail_task_stall_rnp(rnp); 540 rcu_for_each_leaf_node(rsp, rnp) 541 rcu_print_detail_task_stall_rnp(rnp); 542 } 543 544 static void rcu_print_task_stall_begin(struct rcu_node *rnp) 545 { 546 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):", 547 rnp->level, rnp->grplo, rnp->grphi); 548 } 549 550 static void rcu_print_task_stall_end(void) 551 { 552 pr_cont("\n"); 553 } 554 555 /* 556 * Scan the current list of tasks blocked within RCU read-side critical 557 * sections, printing out the tid of each. 558 */ 559 static int rcu_print_task_stall(struct rcu_node *rnp) 560 { 561 struct task_struct *t; 562 int ndetected = 0; 563 564 if (!rcu_preempt_blocked_readers_cgp(rnp)) 565 return 0; 566 rcu_print_task_stall_begin(rnp); 567 t = list_entry(rnp->gp_tasks->prev, 568 struct task_struct, rcu_node_entry); 569 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 570 pr_cont(" P%d", t->pid); 571 ndetected++; 572 } 573 rcu_print_task_stall_end(); 574 return ndetected; 575 } 576 577 /* 578 * Scan the current list of tasks blocked within RCU read-side critical 579 * sections, printing out the tid of each that is blocking the current 580 * expedited grace period. 581 */ 582 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 583 { 584 struct task_struct *t; 585 int ndetected = 0; 586 587 if (!rnp->exp_tasks) 588 return 0; 589 t = list_entry(rnp->exp_tasks->prev, 590 struct task_struct, rcu_node_entry); 591 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { 592 pr_cont(" P%d", t->pid); 593 ndetected++; 594 } 595 return ndetected; 596 } 597 598 /* 599 * Check that the list of blocked tasks for the newly completed grace 600 * period is in fact empty. It is a serious bug to complete a grace 601 * period that still has RCU readers blocked! This function must be 602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock 603 * must be held by the caller. 604 * 605 * Also, if there are blocked tasks on the list, they automatically 606 * block the newly created grace period, so set up ->gp_tasks accordingly. 607 */ 608 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 609 { 610 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 611 if (rcu_preempt_has_tasks(rnp)) 612 rnp->gp_tasks = rnp->blkd_tasks.next; 613 WARN_ON_ONCE(rnp->qsmask); 614 } 615 616 /* 617 * Check for a quiescent state from the current CPU. When a task blocks, 618 * the task is recorded in the corresponding CPU's rcu_node structure, 619 * which is checked elsewhere. 620 * 621 * Caller must disable hard irqs. 622 */ 623 static void rcu_preempt_check_callbacks(void) 624 { 625 struct task_struct *t = current; 626 627 if (t->rcu_read_lock_nesting == 0) { 628 rcu_preempt_qs(); 629 return; 630 } 631 if (t->rcu_read_lock_nesting > 0 && 632 __this_cpu_read(rcu_data_p->core_needs_qs) && 633 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm)) 634 t->rcu_read_unlock_special.b.need_qs = true; 635 } 636 637 #ifdef CONFIG_RCU_BOOST 638 639 static void rcu_preempt_do_callbacks(void) 640 { 641 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p)); 642 } 643 644 #endif /* #ifdef CONFIG_RCU_BOOST */ 645 646 /* 647 * Queue a preemptible-RCU callback for invocation after a grace period. 648 */ 649 void call_rcu(struct rcu_head *head, rcu_callback_t func) 650 { 651 __call_rcu(head, func, rcu_state_p, -1, 0); 652 } 653 EXPORT_SYMBOL_GPL(call_rcu); 654 655 /** 656 * synchronize_rcu - wait until a grace period has elapsed. 657 * 658 * Control will return to the caller some time after a full grace 659 * period has elapsed, in other words after all currently executing RCU 660 * read-side critical sections have completed. Note, however, that 661 * upon return from synchronize_rcu(), the caller might well be executing 662 * concurrently with new RCU read-side critical sections that began while 663 * synchronize_rcu() was waiting. RCU read-side critical sections are 664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 665 * 666 * See the description of synchronize_sched() for more detailed information 667 * on memory ordering guarantees. 668 */ 669 void synchronize_rcu(void) 670 { 671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 672 lock_is_held(&rcu_lock_map) || 673 lock_is_held(&rcu_sched_lock_map), 674 "Illegal synchronize_rcu() in RCU read-side critical section"); 675 if (!rcu_scheduler_active) 676 return; 677 if (rcu_gp_is_expedited()) 678 synchronize_rcu_expedited(); 679 else 680 wait_rcu_gp(call_rcu); 681 } 682 EXPORT_SYMBOL_GPL(synchronize_rcu); 683 684 /* 685 * Remote handler for smp_call_function_single(). If there is an 686 * RCU read-side critical section in effect, request that the 687 * next rcu_read_unlock() record the quiescent state up the 688 * ->expmask fields in the rcu_node tree. Otherwise, immediately 689 * report the quiescent state. 690 */ 691 static void sync_rcu_exp_handler(void *info) 692 { 693 struct rcu_data *rdp; 694 struct rcu_state *rsp = info; 695 struct task_struct *t = current; 696 697 /* 698 * Within an RCU read-side critical section, request that the next 699 * rcu_read_unlock() report. Unless this RCU read-side critical 700 * section has already blocked, in which case it is already set 701 * up for the expedited grace period to wait on it. 702 */ 703 if (t->rcu_read_lock_nesting > 0 && 704 !t->rcu_read_unlock_special.b.blocked) { 705 t->rcu_read_unlock_special.b.exp_need_qs = true; 706 return; 707 } 708 709 /* 710 * We are either exiting an RCU read-side critical section (negative 711 * values of t->rcu_read_lock_nesting) or are not in one at all 712 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU 713 * read-side critical section that blocked before this expedited 714 * grace period started. Either way, we can immediately report 715 * the quiescent state. 716 */ 717 rdp = this_cpu_ptr(rsp->rda); 718 rcu_report_exp_rdp(rsp, rdp, true); 719 } 720 721 /** 722 * synchronize_rcu_expedited - Brute-force RCU grace period 723 * 724 * Wait for an RCU-preempt grace period, but expedite it. The basic 725 * idea is to IPI all non-idle non-nohz online CPUs. The IPI handler 726 * checks whether the CPU is in an RCU-preempt critical section, and 727 * if so, it sets a flag that causes the outermost rcu_read_unlock() 728 * to report the quiescent state. On the other hand, if the CPU is 729 * not in an RCU read-side critical section, the IPI handler reports 730 * the quiescent state immediately. 731 * 732 * Although this is a greate improvement over previous expedited 733 * implementations, it is still unfriendly to real-time workloads, so is 734 * thus not recommended for any sort of common-case code. In fact, if 735 * you are using synchronize_rcu_expedited() in a loop, please restructure 736 * your code to batch your updates, and then Use a single synchronize_rcu() 737 * instead. 738 */ 739 void synchronize_rcu_expedited(void) 740 { 741 struct rcu_state *rsp = rcu_state_p; 742 unsigned long s; 743 744 /* If expedited grace periods are prohibited, fall back to normal. */ 745 if (rcu_gp_is_normal()) { 746 wait_rcu_gp(call_rcu); 747 return; 748 } 749 750 s = rcu_exp_gp_seq_snap(rsp); 751 if (exp_funnel_lock(rsp, s)) 752 return; /* Someone else did our work for us. */ 753 754 /* Initialize the rcu_node tree in preparation for the wait. */ 755 sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler); 756 757 /* Wait for ->blkd_tasks lists to drain, then wake everyone up. */ 758 rcu_exp_wait_wake(rsp, s); 759 } 760 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 761 762 /** 763 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 764 * 765 * Note that this primitive does not necessarily wait for an RCU grace period 766 * to complete. For example, if there are no RCU callbacks queued anywhere 767 * in the system, then rcu_barrier() is within its rights to return 768 * immediately, without waiting for anything, much less an RCU grace period. 769 */ 770 void rcu_barrier(void) 771 { 772 _rcu_barrier(rcu_state_p); 773 } 774 EXPORT_SYMBOL_GPL(rcu_barrier); 775 776 /* 777 * Initialize preemptible RCU's state structures. 778 */ 779 static void __init __rcu_init_preempt(void) 780 { 781 rcu_init_one(rcu_state_p); 782 } 783 784 /* 785 * Check for a task exiting while in a preemptible-RCU read-side 786 * critical section, clean up if so. No need to issue warnings, 787 * as debug_check_no_locks_held() already does this if lockdep 788 * is enabled. 789 */ 790 void exit_rcu(void) 791 { 792 struct task_struct *t = current; 793 794 if (likely(list_empty(¤t->rcu_node_entry))) 795 return; 796 t->rcu_read_lock_nesting = 1; 797 barrier(); 798 t->rcu_read_unlock_special.b.blocked = true; 799 __rcu_read_unlock(); 800 } 801 802 #else /* #ifdef CONFIG_PREEMPT_RCU */ 803 804 static struct rcu_state *const rcu_state_p = &rcu_sched_state; 805 806 /* 807 * Tell them what RCU they are running. 808 */ 809 static void __init rcu_bootup_announce(void) 810 { 811 pr_info("Hierarchical RCU implementation.\n"); 812 rcu_bootup_announce_oddness(); 813 } 814 815 /* 816 * Because preemptible RCU does not exist, we never have to check for 817 * CPUs being in quiescent states. 818 */ 819 static void rcu_preempt_note_context_switch(void) 820 { 821 } 822 823 /* 824 * Because preemptible RCU does not exist, there are never any preempted 825 * RCU readers. 826 */ 827 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) 828 { 829 return 0; 830 } 831 832 /* 833 * Because there is no preemptible RCU, there can be no readers blocked. 834 */ 835 static bool rcu_preempt_has_tasks(struct rcu_node *rnp) 836 { 837 return false; 838 } 839 840 /* 841 * Because preemptible RCU does not exist, we never have to check for 842 * tasks blocked within RCU read-side critical sections. 843 */ 844 static void rcu_print_detail_task_stall(struct rcu_state *rsp) 845 { 846 } 847 848 /* 849 * Because preemptible RCU does not exist, we never have to check for 850 * tasks blocked within RCU read-side critical sections. 851 */ 852 static int rcu_print_task_stall(struct rcu_node *rnp) 853 { 854 return 0; 855 } 856 857 /* 858 * Because preemptible RCU does not exist, we never have to check for 859 * tasks blocked within RCU read-side critical sections that are 860 * blocking the current expedited grace period. 861 */ 862 static int rcu_print_task_exp_stall(struct rcu_node *rnp) 863 { 864 return 0; 865 } 866 867 /* 868 * Because there is no preemptible RCU, there can be no readers blocked, 869 * so there is no need to check for blocked tasks. So check only for 870 * bogus qsmask values. 871 */ 872 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) 873 { 874 WARN_ON_ONCE(rnp->qsmask); 875 } 876 877 /* 878 * Because preemptible RCU does not exist, it never has any callbacks 879 * to check. 880 */ 881 static void rcu_preempt_check_callbacks(void) 882 { 883 } 884 885 /* 886 * Wait for an rcu-preempt grace period, but make it happen quickly. 887 * But because preemptible RCU does not exist, map to rcu-sched. 888 */ 889 void synchronize_rcu_expedited(void) 890 { 891 synchronize_sched_expedited(); 892 } 893 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited); 894 895 /* 896 * Because preemptible RCU does not exist, rcu_barrier() is just 897 * another name for rcu_barrier_sched(). 898 */ 899 void rcu_barrier(void) 900 { 901 rcu_barrier_sched(); 902 } 903 EXPORT_SYMBOL_GPL(rcu_barrier); 904 905 /* 906 * Because preemptible RCU does not exist, it need not be initialized. 907 */ 908 static void __init __rcu_init_preempt(void) 909 { 910 } 911 912 /* 913 * Because preemptible RCU does not exist, tasks cannot possibly exit 914 * while in preemptible RCU read-side critical sections. 915 */ 916 void exit_rcu(void) 917 { 918 } 919 920 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 921 922 #ifdef CONFIG_RCU_BOOST 923 924 #include "../locking/rtmutex_common.h" 925 926 #ifdef CONFIG_RCU_TRACE 927 928 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 929 { 930 if (!rcu_preempt_has_tasks(rnp)) 931 rnp->n_balk_blkd_tasks++; 932 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL) 933 rnp->n_balk_exp_gp_tasks++; 934 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL) 935 rnp->n_balk_boost_tasks++; 936 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0) 937 rnp->n_balk_notblocked++; 938 else if (rnp->gp_tasks != NULL && 939 ULONG_CMP_LT(jiffies, rnp->boost_time)) 940 rnp->n_balk_notyet++; 941 else 942 rnp->n_balk_nos++; 943 } 944 945 #else /* #ifdef CONFIG_RCU_TRACE */ 946 947 static void rcu_initiate_boost_trace(struct rcu_node *rnp) 948 { 949 } 950 951 #endif /* #else #ifdef CONFIG_RCU_TRACE */ 952 953 static void rcu_wake_cond(struct task_struct *t, int status) 954 { 955 /* 956 * If the thread is yielding, only wake it when this 957 * is invoked from idle 958 */ 959 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current)) 960 wake_up_process(t); 961 } 962 963 /* 964 * Carry out RCU priority boosting on the task indicated by ->exp_tasks 965 * or ->boost_tasks, advancing the pointer to the next task in the 966 * ->blkd_tasks list. 967 * 968 * Note that irqs must be enabled: boosting the task can block. 969 * Returns 1 if there are more tasks needing to be boosted. 970 */ 971 static int rcu_boost(struct rcu_node *rnp) 972 { 973 unsigned long flags; 974 struct task_struct *t; 975 struct list_head *tb; 976 977 if (READ_ONCE(rnp->exp_tasks) == NULL && 978 READ_ONCE(rnp->boost_tasks) == NULL) 979 return 0; /* Nothing left to boost. */ 980 981 raw_spin_lock_irqsave_rcu_node(rnp, flags); 982 983 /* 984 * Recheck under the lock: all tasks in need of boosting 985 * might exit their RCU read-side critical sections on their own. 986 */ 987 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { 988 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 989 return 0; 990 } 991 992 /* 993 * Preferentially boost tasks blocking expedited grace periods. 994 * This cannot starve the normal grace periods because a second 995 * expedited grace period must boost all blocked tasks, including 996 * those blocking the pre-existing normal grace period. 997 */ 998 if (rnp->exp_tasks != NULL) { 999 tb = rnp->exp_tasks; 1000 rnp->n_exp_boosts++; 1001 } else { 1002 tb = rnp->boost_tasks; 1003 rnp->n_normal_boosts++; 1004 } 1005 rnp->n_tasks_boosted++; 1006 1007 /* 1008 * We boost task t by manufacturing an rt_mutex that appears to 1009 * be held by task t. We leave a pointer to that rt_mutex where 1010 * task t can find it, and task t will release the mutex when it 1011 * exits its outermost RCU read-side critical section. Then 1012 * simply acquiring this artificial rt_mutex will boost task 1013 * t's priority. (Thanks to tglx for suggesting this approach!) 1014 * 1015 * Note that task t must acquire rnp->lock to remove itself from 1016 * the ->blkd_tasks list, which it will do from exit() if from 1017 * nowhere else. We therefore are guaranteed that task t will 1018 * stay around at least until we drop rnp->lock. Note that 1019 * rnp->lock also resolves races between our priority boosting 1020 * and task t's exiting its outermost RCU read-side critical 1021 * section. 1022 */ 1023 t = container_of(tb, struct task_struct, rcu_node_entry); 1024 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); 1025 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1026 /* Lock only for side effect: boosts task t's priority. */ 1027 rt_mutex_lock(&rnp->boost_mtx); 1028 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ 1029 1030 return READ_ONCE(rnp->exp_tasks) != NULL || 1031 READ_ONCE(rnp->boost_tasks) != NULL; 1032 } 1033 1034 /* 1035 * Priority-boosting kthread, one per leaf rcu_node. 1036 */ 1037 static int rcu_boost_kthread(void *arg) 1038 { 1039 struct rcu_node *rnp = (struct rcu_node *)arg; 1040 int spincnt = 0; 1041 int more2boost; 1042 1043 trace_rcu_utilization(TPS("Start boost kthread@init")); 1044 for (;;) { 1045 rnp->boost_kthread_status = RCU_KTHREAD_WAITING; 1046 trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); 1047 rcu_wait(rnp->boost_tasks || rnp->exp_tasks); 1048 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); 1049 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING; 1050 more2boost = rcu_boost(rnp); 1051 if (more2boost) 1052 spincnt++; 1053 else 1054 spincnt = 0; 1055 if (spincnt > 10) { 1056 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING; 1057 trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); 1058 schedule_timeout_interruptible(2); 1059 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); 1060 spincnt = 0; 1061 } 1062 } 1063 /* NOTREACHED */ 1064 trace_rcu_utilization(TPS("End boost kthread@notreached")); 1065 return 0; 1066 } 1067 1068 /* 1069 * Check to see if it is time to start boosting RCU readers that are 1070 * blocking the current grace period, and, if so, tell the per-rcu_node 1071 * kthread to start boosting them. If there is an expedited grace 1072 * period in progress, it is always time to boost. 1073 * 1074 * The caller must hold rnp->lock, which this function releases. 1075 * The ->boost_kthread_task is immortal, so we don't need to worry 1076 * about it going away. 1077 */ 1078 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1079 __releases(rnp->lock) 1080 { 1081 struct task_struct *t; 1082 1083 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { 1084 rnp->n_balk_exp_gp_tasks++; 1085 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1086 return; 1087 } 1088 if (rnp->exp_tasks != NULL || 1089 (rnp->gp_tasks != NULL && 1090 rnp->boost_tasks == NULL && 1091 rnp->qsmask == 0 && 1092 ULONG_CMP_GE(jiffies, rnp->boost_time))) { 1093 if (rnp->exp_tasks == NULL) 1094 rnp->boost_tasks = rnp->gp_tasks; 1095 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1096 t = rnp->boost_kthread_task; 1097 if (t) 1098 rcu_wake_cond(t, rnp->boost_kthread_status); 1099 } else { 1100 rcu_initiate_boost_trace(rnp); 1101 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1102 } 1103 } 1104 1105 /* 1106 * Wake up the per-CPU kthread to invoke RCU callbacks. 1107 */ 1108 static void invoke_rcu_callbacks_kthread(void) 1109 { 1110 unsigned long flags; 1111 1112 local_irq_save(flags); 1113 __this_cpu_write(rcu_cpu_has_work, 1); 1114 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL && 1115 current != __this_cpu_read(rcu_cpu_kthread_task)) { 1116 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task), 1117 __this_cpu_read(rcu_cpu_kthread_status)); 1118 } 1119 local_irq_restore(flags); 1120 } 1121 1122 /* 1123 * Is the current CPU running the RCU-callbacks kthread? 1124 * Caller must have preemption disabled. 1125 */ 1126 static bool rcu_is_callbacks_kthread(void) 1127 { 1128 return __this_cpu_read(rcu_cpu_kthread_task) == current; 1129 } 1130 1131 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) 1132 1133 /* 1134 * Do priority-boost accounting for the start of a new grace period. 1135 */ 1136 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1137 { 1138 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; 1139 } 1140 1141 /* 1142 * Create an RCU-boost kthread for the specified node if one does not 1143 * already exist. We only create this kthread for preemptible RCU. 1144 * Returns zero if all is well, a negated errno otherwise. 1145 */ 1146 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, 1147 struct rcu_node *rnp) 1148 { 1149 int rnp_index = rnp - &rsp->node[0]; 1150 unsigned long flags; 1151 struct sched_param sp; 1152 struct task_struct *t; 1153 1154 if (rcu_state_p != rsp) 1155 return 0; 1156 1157 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) 1158 return 0; 1159 1160 rsp->boost = 1; 1161 if (rnp->boost_kthread_task != NULL) 1162 return 0; 1163 t = kthread_create(rcu_boost_kthread, (void *)rnp, 1164 "rcub/%d", rnp_index); 1165 if (IS_ERR(t)) 1166 return PTR_ERR(t); 1167 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1168 rnp->boost_kthread_task = t; 1169 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1170 sp.sched_priority = kthread_prio; 1171 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1172 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ 1173 return 0; 1174 } 1175 1176 static void rcu_kthread_do_work(void) 1177 { 1178 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data)); 1179 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data)); 1180 rcu_preempt_do_callbacks(); 1181 } 1182 1183 static void rcu_cpu_kthread_setup(unsigned int cpu) 1184 { 1185 struct sched_param sp; 1186 1187 sp.sched_priority = kthread_prio; 1188 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); 1189 } 1190 1191 static void rcu_cpu_kthread_park(unsigned int cpu) 1192 { 1193 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 1194 } 1195 1196 static int rcu_cpu_kthread_should_run(unsigned int cpu) 1197 { 1198 return __this_cpu_read(rcu_cpu_has_work); 1199 } 1200 1201 /* 1202 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the 1203 * RCU softirq used in flavors and configurations of RCU that do not 1204 * support RCU priority boosting. 1205 */ 1206 static void rcu_cpu_kthread(unsigned int cpu) 1207 { 1208 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status); 1209 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work); 1210 int spincnt; 1211 1212 for (spincnt = 0; spincnt < 10; spincnt++) { 1213 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 1214 local_bh_disable(); 1215 *statusp = RCU_KTHREAD_RUNNING; 1216 this_cpu_inc(rcu_cpu_kthread_loops); 1217 local_irq_disable(); 1218 work = *workp; 1219 *workp = 0; 1220 local_irq_enable(); 1221 if (work) 1222 rcu_kthread_do_work(); 1223 local_bh_enable(); 1224 if (*workp == 0) { 1225 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 1226 *statusp = RCU_KTHREAD_WAITING; 1227 return; 1228 } 1229 } 1230 *statusp = RCU_KTHREAD_YIELDING; 1231 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 1232 schedule_timeout_interruptible(2); 1233 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 1234 *statusp = RCU_KTHREAD_WAITING; 1235 } 1236 1237 /* 1238 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 1239 * served by the rcu_node in question. The CPU hotplug lock is still 1240 * held, so the value of rnp->qsmaskinit will be stable. 1241 * 1242 * We don't include outgoingcpu in the affinity set, use -1 if there is 1243 * no outgoing CPU. If there are no CPUs left in the affinity set, 1244 * this function allows the kthread to execute on any CPU. 1245 */ 1246 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1247 { 1248 struct task_struct *t = rnp->boost_kthread_task; 1249 unsigned long mask = rcu_rnp_online_cpus(rnp); 1250 cpumask_var_t cm; 1251 int cpu; 1252 1253 if (!t) 1254 return; 1255 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 1256 return; 1257 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) 1258 if ((mask & 0x1) && cpu != outgoingcpu) 1259 cpumask_set_cpu(cpu, cm); 1260 if (cpumask_weight(cm) == 0) 1261 cpumask_setall(cm); 1262 set_cpus_allowed_ptr(t, cm); 1263 free_cpumask_var(cm); 1264 } 1265 1266 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 1267 .store = &rcu_cpu_kthread_task, 1268 .thread_should_run = rcu_cpu_kthread_should_run, 1269 .thread_fn = rcu_cpu_kthread, 1270 .thread_comm = "rcuc/%u", 1271 .setup = rcu_cpu_kthread_setup, 1272 .park = rcu_cpu_kthread_park, 1273 }; 1274 1275 /* 1276 * Spawn boost kthreads -- called as soon as the scheduler is running. 1277 */ 1278 static void __init rcu_spawn_boost_kthreads(void) 1279 { 1280 struct rcu_node *rnp; 1281 int cpu; 1282 1283 for_each_possible_cpu(cpu) 1284 per_cpu(rcu_cpu_has_work, cpu) = 0; 1285 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec)); 1286 rcu_for_each_leaf_node(rcu_state_p, rnp) 1287 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1288 } 1289 1290 static void rcu_prepare_kthreads(int cpu) 1291 { 1292 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 1293 struct rcu_node *rnp = rdp->mynode; 1294 1295 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ 1296 if (rcu_scheduler_fully_active) 1297 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp); 1298 } 1299 1300 #else /* #ifdef CONFIG_RCU_BOOST */ 1301 1302 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) 1303 __releases(rnp->lock) 1304 { 1305 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1306 } 1307 1308 static void invoke_rcu_callbacks_kthread(void) 1309 { 1310 WARN_ON_ONCE(1); 1311 } 1312 1313 static bool rcu_is_callbacks_kthread(void) 1314 { 1315 return false; 1316 } 1317 1318 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) 1319 { 1320 } 1321 1322 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) 1323 { 1324 } 1325 1326 static void __init rcu_spawn_boost_kthreads(void) 1327 { 1328 } 1329 1330 static void rcu_prepare_kthreads(int cpu) 1331 { 1332 } 1333 1334 #endif /* #else #ifdef CONFIG_RCU_BOOST */ 1335 1336 #if !defined(CONFIG_RCU_FAST_NO_HZ) 1337 1338 /* 1339 * Check to see if any future RCU-related work will need to be done 1340 * by the current CPU, even if none need be done immediately, returning 1341 * 1 if so. This function is part of the RCU implementation; it is -not- 1342 * an exported member of the RCU API. 1343 * 1344 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs 1345 * any flavor of RCU. 1346 */ 1347 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1348 { 1349 *nextevt = KTIME_MAX; 1350 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) 1351 ? 0 : rcu_cpu_has_callbacks(NULL); 1352 } 1353 1354 /* 1355 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up 1356 * after it. 1357 */ 1358 static void rcu_cleanup_after_idle(void) 1359 { 1360 } 1361 1362 /* 1363 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, 1364 * is nothing. 1365 */ 1366 static void rcu_prepare_for_idle(void) 1367 { 1368 } 1369 1370 /* 1371 * Don't bother keeping a running count of the number of RCU callbacks 1372 * posted because CONFIG_RCU_FAST_NO_HZ=n. 1373 */ 1374 static void rcu_idle_count_callbacks_posted(void) 1375 { 1376 } 1377 1378 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1379 1380 /* 1381 * This code is invoked when a CPU goes idle, at which point we want 1382 * to have the CPU do everything required for RCU so that it can enter 1383 * the energy-efficient dyntick-idle mode. This is handled by a 1384 * state machine implemented by rcu_prepare_for_idle() below. 1385 * 1386 * The following three proprocessor symbols control this state machine: 1387 * 1388 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted 1389 * to sleep in dyntick-idle mode with RCU callbacks pending. This 1390 * is sized to be roughly one RCU grace period. Those energy-efficiency 1391 * benchmarkers who might otherwise be tempted to set this to a large 1392 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your 1393 * system. And if you are -that- concerned about energy efficiency, 1394 * just power the system down and be done with it! 1395 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is 1396 * permitted to sleep in dyntick-idle mode with only lazy RCU 1397 * callbacks pending. Setting this too high can OOM your system. 1398 * 1399 * The values below work well in practice. If future workloads require 1400 * adjustment, they can be converted into kernel config parameters, though 1401 * making the state machine smarter might be a better option. 1402 */ 1403 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */ 1404 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */ 1405 1406 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; 1407 module_param(rcu_idle_gp_delay, int, 0644); 1408 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY; 1409 module_param(rcu_idle_lazy_gp_delay, int, 0644); 1410 1411 /* 1412 * Try to advance callbacks for all flavors of RCU on the current CPU, but 1413 * only if it has been awhile since the last time we did so. Afterwards, 1414 * if there are any callbacks ready for immediate invocation, return true. 1415 */ 1416 static bool __maybe_unused rcu_try_advance_all_cbs(void) 1417 { 1418 bool cbs_ready = false; 1419 struct rcu_data *rdp; 1420 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1421 struct rcu_node *rnp; 1422 struct rcu_state *rsp; 1423 1424 /* Exit early if we advanced recently. */ 1425 if (jiffies == rdtp->last_advance_all) 1426 return false; 1427 rdtp->last_advance_all = jiffies; 1428 1429 for_each_rcu_flavor(rsp) { 1430 rdp = this_cpu_ptr(rsp->rda); 1431 rnp = rdp->mynode; 1432 1433 /* 1434 * Don't bother checking unless a grace period has 1435 * completed since we last checked and there are 1436 * callbacks not yet ready to invoke. 1437 */ 1438 if ((rdp->completed != rnp->completed || 1439 unlikely(READ_ONCE(rdp->gpwrap))) && 1440 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL]) 1441 note_gp_changes(rsp, rdp); 1442 1443 if (cpu_has_callbacks_ready_to_invoke(rdp)) 1444 cbs_ready = true; 1445 } 1446 return cbs_ready; 1447 } 1448 1449 /* 1450 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready 1451 * to invoke. If the CPU has callbacks, try to advance them. Tell the 1452 * caller to set the timeout based on whether or not there are non-lazy 1453 * callbacks. 1454 * 1455 * The caller must have disabled interrupts. 1456 */ 1457 int rcu_needs_cpu(u64 basemono, u64 *nextevt) 1458 { 1459 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1460 unsigned long dj; 1461 1462 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) { 1463 *nextevt = KTIME_MAX; 1464 return 0; 1465 } 1466 1467 /* Snapshot to detect later posting of non-lazy callback. */ 1468 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1469 1470 /* If no callbacks, RCU doesn't need the CPU. */ 1471 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) { 1472 *nextevt = KTIME_MAX; 1473 return 0; 1474 } 1475 1476 /* Attempt to advance callbacks. */ 1477 if (rcu_try_advance_all_cbs()) { 1478 /* Some ready to invoke, so initiate later invocation. */ 1479 invoke_rcu_core(); 1480 return 1; 1481 } 1482 rdtp->last_accelerate = jiffies; 1483 1484 /* Request timer delay depending on laziness, and round. */ 1485 if (!rdtp->all_lazy) { 1486 dj = round_up(rcu_idle_gp_delay + jiffies, 1487 rcu_idle_gp_delay) - jiffies; 1488 } else { 1489 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies; 1490 } 1491 *nextevt = basemono + dj * TICK_NSEC; 1492 return 0; 1493 } 1494 1495 /* 1496 * Prepare a CPU for idle from an RCU perspective. The first major task 1497 * is to sense whether nohz mode has been enabled or disabled via sysfs. 1498 * The second major task is to check to see if a non-lazy callback has 1499 * arrived at a CPU that previously had only lazy callbacks. The third 1500 * major task is to accelerate (that is, assign grace-period numbers to) 1501 * any recently arrived callbacks. 1502 * 1503 * The caller must have disabled interrupts. 1504 */ 1505 static void rcu_prepare_for_idle(void) 1506 { 1507 bool needwake; 1508 struct rcu_data *rdp; 1509 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1510 struct rcu_node *rnp; 1511 struct rcu_state *rsp; 1512 int tne; 1513 1514 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1515 rcu_is_nocb_cpu(smp_processor_id())) 1516 return; 1517 1518 /* Handle nohz enablement switches conservatively. */ 1519 tne = READ_ONCE(tick_nohz_active); 1520 if (tne != rdtp->tick_nohz_enabled_snap) { 1521 if (rcu_cpu_has_callbacks(NULL)) 1522 invoke_rcu_core(); /* force nohz to see update. */ 1523 rdtp->tick_nohz_enabled_snap = tne; 1524 return; 1525 } 1526 if (!tne) 1527 return; 1528 1529 /* 1530 * If a non-lazy callback arrived at a CPU having only lazy 1531 * callbacks, invoke RCU core for the side-effect of recalculating 1532 * idle duration on re-entry to idle. 1533 */ 1534 if (rdtp->all_lazy && 1535 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) { 1536 rdtp->all_lazy = false; 1537 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted; 1538 invoke_rcu_core(); 1539 return; 1540 } 1541 1542 /* 1543 * If we have not yet accelerated this jiffy, accelerate all 1544 * callbacks on this CPU. 1545 */ 1546 if (rdtp->last_accelerate == jiffies) 1547 return; 1548 rdtp->last_accelerate = jiffies; 1549 for_each_rcu_flavor(rsp) { 1550 rdp = this_cpu_ptr(rsp->rda); 1551 if (!*rdp->nxttail[RCU_DONE_TAIL]) 1552 continue; 1553 rnp = rdp->mynode; 1554 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1555 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1556 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1557 if (needwake) 1558 rcu_gp_kthread_wake(rsp); 1559 } 1560 } 1561 1562 /* 1563 * Clean up for exit from idle. Attempt to advance callbacks based on 1564 * any grace periods that elapsed while the CPU was idle, and if any 1565 * callbacks are now ready to invoke, initiate invocation. 1566 */ 1567 static void rcu_cleanup_after_idle(void) 1568 { 1569 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) || 1570 rcu_is_nocb_cpu(smp_processor_id())) 1571 return; 1572 if (rcu_try_advance_all_cbs()) 1573 invoke_rcu_core(); 1574 } 1575 1576 /* 1577 * Keep a running count of the number of non-lazy callbacks posted 1578 * on this CPU. This running counter (which is never decremented) allows 1579 * rcu_prepare_for_idle() to detect when something out of the idle loop 1580 * posts a callback, even if an equal number of callbacks are invoked. 1581 * Of course, callbacks should only be posted from within a trace event 1582 * designed to be called from idle or from within RCU_NONIDLE(). 1583 */ 1584 static void rcu_idle_count_callbacks_posted(void) 1585 { 1586 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1); 1587 } 1588 1589 /* 1590 * Data for flushing lazy RCU callbacks at OOM time. 1591 */ 1592 static atomic_t oom_callback_count; 1593 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq); 1594 1595 /* 1596 * RCU OOM callback -- decrement the outstanding count and deliver the 1597 * wake-up if we are the last one. 1598 */ 1599 static void rcu_oom_callback(struct rcu_head *rhp) 1600 { 1601 if (atomic_dec_and_test(&oom_callback_count)) 1602 wake_up(&oom_callback_wq); 1603 } 1604 1605 /* 1606 * Post an rcu_oom_notify callback on the current CPU if it has at 1607 * least one lazy callback. This will unnecessarily post callbacks 1608 * to CPUs that already have a non-lazy callback at the end of their 1609 * callback list, but this is an infrequent operation, so accept some 1610 * extra overhead to keep things simple. 1611 */ 1612 static void rcu_oom_notify_cpu(void *unused) 1613 { 1614 struct rcu_state *rsp; 1615 struct rcu_data *rdp; 1616 1617 for_each_rcu_flavor(rsp) { 1618 rdp = raw_cpu_ptr(rsp->rda); 1619 if (rdp->qlen_lazy != 0) { 1620 atomic_inc(&oom_callback_count); 1621 rsp->call(&rdp->oom_head, rcu_oom_callback); 1622 } 1623 } 1624 } 1625 1626 /* 1627 * If low on memory, ensure that each CPU has a non-lazy callback. 1628 * This will wake up CPUs that have only lazy callbacks, in turn 1629 * ensuring that they free up the corresponding memory in a timely manner. 1630 * Because an uncertain amount of memory will be freed in some uncertain 1631 * timeframe, we do not claim to have freed anything. 1632 */ 1633 static int rcu_oom_notify(struct notifier_block *self, 1634 unsigned long notused, void *nfreed) 1635 { 1636 int cpu; 1637 1638 /* Wait for callbacks from earlier instance to complete. */ 1639 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0); 1640 smp_mb(); /* Ensure callback reuse happens after callback invocation. */ 1641 1642 /* 1643 * Prevent premature wakeup: ensure that all increments happen 1644 * before there is a chance of the counter reaching zero. 1645 */ 1646 atomic_set(&oom_callback_count, 1); 1647 1648 for_each_online_cpu(cpu) { 1649 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1); 1650 cond_resched_rcu_qs(); 1651 } 1652 1653 /* Unconditionally decrement: no need to wake ourselves up. */ 1654 atomic_dec(&oom_callback_count); 1655 1656 return NOTIFY_OK; 1657 } 1658 1659 static struct notifier_block rcu_oom_nb = { 1660 .notifier_call = rcu_oom_notify 1661 }; 1662 1663 static int __init rcu_register_oom_notifier(void) 1664 { 1665 register_oom_notifier(&rcu_oom_nb); 1666 return 0; 1667 } 1668 early_initcall(rcu_register_oom_notifier); 1669 1670 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ 1671 1672 #ifdef CONFIG_RCU_FAST_NO_HZ 1673 1674 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1675 { 1676 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 1677 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap; 1678 1679 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c", 1680 rdtp->last_accelerate & 0xffff, jiffies & 0xffff, 1681 ulong2long(nlpd), 1682 rdtp->all_lazy ? 'L' : '.', 1683 rdtp->tick_nohz_enabled_snap ? '.' : 'D'); 1684 } 1685 1686 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */ 1687 1688 static void print_cpu_stall_fast_no_hz(char *cp, int cpu) 1689 { 1690 *cp = '\0'; 1691 } 1692 1693 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */ 1694 1695 /* Initiate the stall-info list. */ 1696 static void print_cpu_stall_info_begin(void) 1697 { 1698 pr_cont("\n"); 1699 } 1700 1701 /* 1702 * Print out diagnostic information for the specified stalled CPU. 1703 * 1704 * If the specified CPU is aware of the current RCU grace period 1705 * (flavor specified by rsp), then print the number of scheduling 1706 * clock interrupts the CPU has taken during the time that it has 1707 * been aware. Otherwise, print the number of RCU grace periods 1708 * that this CPU is ignorant of, for example, "1" if the CPU was 1709 * aware of the previous grace period. 1710 * 1711 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info. 1712 */ 1713 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu) 1714 { 1715 char fast_no_hz[72]; 1716 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1717 struct rcu_dynticks *rdtp = rdp->dynticks; 1718 char *ticks_title; 1719 unsigned long ticks_value; 1720 1721 if (rsp->gpnum == rdp->gpnum) { 1722 ticks_title = "ticks this GP"; 1723 ticks_value = rdp->ticks_this_gp; 1724 } else { 1725 ticks_title = "GPs behind"; 1726 ticks_value = rsp->gpnum - rdp->gpnum; 1727 } 1728 print_cpu_stall_fast_no_hz(fast_no_hz, cpu); 1729 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n", 1730 cpu, 1731 "O."[!!cpu_online(cpu)], 1732 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)], 1733 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)], 1734 ticks_value, ticks_title, 1735 atomic_read(&rdtp->dynticks) & 0xfff, 1736 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting, 1737 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu), 1738 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart, 1739 fast_no_hz); 1740 } 1741 1742 /* Terminate the stall-info list. */ 1743 static void print_cpu_stall_info_end(void) 1744 { 1745 pr_err("\t"); 1746 } 1747 1748 /* Zero ->ticks_this_gp for all flavors of RCU. */ 1749 static void zero_cpu_stall_ticks(struct rcu_data *rdp) 1750 { 1751 rdp->ticks_this_gp = 0; 1752 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id()); 1753 } 1754 1755 /* Increment ->ticks_this_gp for all flavors of RCU. */ 1756 static void increment_cpu_stall_ticks(void) 1757 { 1758 struct rcu_state *rsp; 1759 1760 for_each_rcu_flavor(rsp) 1761 raw_cpu_inc(rsp->rda->ticks_this_gp); 1762 } 1763 1764 #ifdef CONFIG_RCU_NOCB_CPU 1765 1766 /* 1767 * Offload callback processing from the boot-time-specified set of CPUs 1768 * specified by rcu_nocb_mask. For each CPU in the set, there is a 1769 * kthread created that pulls the callbacks from the corresponding CPU, 1770 * waits for a grace period to elapse, and invokes the callbacks. 1771 * The no-CBs CPUs do a wake_up() on their kthread when they insert 1772 * a callback into any empty list, unless the rcu_nocb_poll boot parameter 1773 * has been specified, in which case each kthread actively polls its 1774 * CPU. (Which isn't so great for energy efficiency, but which does 1775 * reduce RCU's overhead on that CPU.) 1776 * 1777 * This is intended to be used in conjunction with Frederic Weisbecker's 1778 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 1779 * running CPU-bound user-mode computations. 1780 * 1781 * Offloading of callback processing could also in theory be used as 1782 * an energy-efficiency measure because CPUs with no RCU callbacks 1783 * queued are more aggressive about entering dyntick-idle mode. 1784 */ 1785 1786 1787 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */ 1788 static int __init rcu_nocb_setup(char *str) 1789 { 1790 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 1791 have_rcu_nocb_mask = true; 1792 cpulist_parse(str, rcu_nocb_mask); 1793 return 1; 1794 } 1795 __setup("rcu_nocbs=", rcu_nocb_setup); 1796 1797 static int __init parse_rcu_nocb_poll(char *arg) 1798 { 1799 rcu_nocb_poll = 1; 1800 return 0; 1801 } 1802 early_param("rcu_nocb_poll", parse_rcu_nocb_poll); 1803 1804 /* 1805 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 1806 * grace period. 1807 */ 1808 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1809 { 1810 swake_up_all(sq); 1811 } 1812 1813 /* 1814 * Set the root rcu_node structure's ->need_future_gp field 1815 * based on the sum of those of all rcu_node structures. This does 1816 * double-count the root rcu_node structure's requests, but this 1817 * is necessary to handle the possibility of a rcu_nocb_kthread() 1818 * having awakened during the time that the rcu_node structures 1819 * were being updated for the end of the previous grace period. 1820 */ 1821 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 1822 { 1823 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq; 1824 } 1825 1826 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1827 { 1828 return &rnp->nocb_gp_wq[rnp->completed & 0x1]; 1829 } 1830 1831 static void rcu_init_one_nocb(struct rcu_node *rnp) 1832 { 1833 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 1834 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 1835 } 1836 1837 #ifndef CONFIG_RCU_NOCB_CPU_ALL 1838 /* Is the specified CPU a no-CBs CPU? */ 1839 bool rcu_is_nocb_cpu(int cpu) 1840 { 1841 if (have_rcu_nocb_mask) 1842 return cpumask_test_cpu(cpu, rcu_nocb_mask); 1843 return false; 1844 } 1845 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */ 1846 1847 /* 1848 * Kick the leader kthread for this NOCB group. 1849 */ 1850 static void wake_nocb_leader(struct rcu_data *rdp, bool force) 1851 { 1852 struct rcu_data *rdp_leader = rdp->nocb_leader; 1853 1854 if (!READ_ONCE(rdp_leader->nocb_kthread)) 1855 return; 1856 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) { 1857 /* Prior smp_mb__after_atomic() orders against prior enqueue. */ 1858 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false); 1859 swake_up(&rdp_leader->nocb_wq); 1860 } 1861 } 1862 1863 /* 1864 * Does the specified CPU need an RCU callback for the specified flavor 1865 * of rcu_barrier()? 1866 */ 1867 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 1868 { 1869 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 1870 unsigned long ret; 1871 #ifdef CONFIG_PROVE_RCU 1872 struct rcu_head *rhp; 1873 #endif /* #ifdef CONFIG_PROVE_RCU */ 1874 1875 /* 1876 * Check count of all no-CBs callbacks awaiting invocation. 1877 * There needs to be a barrier before this function is called, 1878 * but associated with a prior determination that no more 1879 * callbacks would be posted. In the worst case, the first 1880 * barrier in _rcu_barrier() suffices (but the caller cannot 1881 * necessarily rely on this, not a substitute for the caller 1882 * getting the concurrency design right!). There must also be 1883 * a barrier between the following load an posting of a callback 1884 * (if a callback is in fact needed). This is associated with an 1885 * atomic_inc() in the caller. 1886 */ 1887 ret = atomic_long_read(&rdp->nocb_q_count); 1888 1889 #ifdef CONFIG_PROVE_RCU 1890 rhp = READ_ONCE(rdp->nocb_head); 1891 if (!rhp) 1892 rhp = READ_ONCE(rdp->nocb_gp_head); 1893 if (!rhp) 1894 rhp = READ_ONCE(rdp->nocb_follower_head); 1895 1896 /* Having no rcuo kthread but CBs after scheduler starts is bad! */ 1897 if (!READ_ONCE(rdp->nocb_kthread) && rhp && 1898 rcu_scheduler_fully_active) { 1899 /* RCU callback enqueued before CPU first came online??? */ 1900 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n", 1901 cpu, rhp->func); 1902 WARN_ON_ONCE(1); 1903 } 1904 #endif /* #ifdef CONFIG_PROVE_RCU */ 1905 1906 return !!ret; 1907 } 1908 1909 /* 1910 * Enqueue the specified string of rcu_head structures onto the specified 1911 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the 1912 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy 1913 * counts are supplied by rhcount and rhcount_lazy. 1914 * 1915 * If warranted, also wake up the kthread servicing this CPUs queues. 1916 */ 1917 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp, 1918 struct rcu_head *rhp, 1919 struct rcu_head **rhtp, 1920 int rhcount, int rhcount_lazy, 1921 unsigned long flags) 1922 { 1923 int len; 1924 struct rcu_head **old_rhpp; 1925 struct task_struct *t; 1926 1927 /* Enqueue the callback on the nocb list and update counts. */ 1928 atomic_long_add(rhcount, &rdp->nocb_q_count); 1929 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */ 1930 old_rhpp = xchg(&rdp->nocb_tail, rhtp); 1931 WRITE_ONCE(*old_rhpp, rhp); 1932 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy); 1933 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */ 1934 1935 /* If we are not being polled and there is a kthread, awaken it ... */ 1936 t = READ_ONCE(rdp->nocb_kthread); 1937 if (rcu_nocb_poll || !t) { 1938 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1939 TPS("WakeNotPoll")); 1940 return; 1941 } 1942 len = atomic_long_read(&rdp->nocb_q_count); 1943 if (old_rhpp == &rdp->nocb_head) { 1944 if (!irqs_disabled_flags(flags)) { 1945 /* ... if queue was empty ... */ 1946 wake_nocb_leader(rdp, false); 1947 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1948 TPS("WakeEmpty")); 1949 } else { 1950 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE; 1951 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1952 TPS("WakeEmptyIsDeferred")); 1953 } 1954 rdp->qlen_last_fqs_check = 0; 1955 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 1956 /* ... or if many callbacks queued. */ 1957 if (!irqs_disabled_flags(flags)) { 1958 wake_nocb_leader(rdp, true); 1959 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1960 TPS("WakeOvf")); 1961 } else { 1962 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE; 1963 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 1964 TPS("WakeOvfIsDeferred")); 1965 } 1966 rdp->qlen_last_fqs_check = LONG_MAX / 2; 1967 } else { 1968 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot")); 1969 } 1970 return; 1971 } 1972 1973 /* 1974 * This is a helper for __call_rcu(), which invokes this when the normal 1975 * callback queue is inoperable. If this is not a no-CBs CPU, this 1976 * function returns failure back to __call_rcu(), which can complain 1977 * appropriately. 1978 * 1979 * Otherwise, this function queues the callback where the corresponding 1980 * "rcuo" kthread can find it. 1981 */ 1982 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 1983 bool lazy, unsigned long flags) 1984 { 1985 1986 if (!rcu_is_nocb_cpu(rdp->cpu)) 1987 return false; 1988 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags); 1989 if (__is_kfree_rcu_offset((unsigned long)rhp->func)) 1990 trace_rcu_kfree_callback(rdp->rsp->name, rhp, 1991 (unsigned long)rhp->func, 1992 -atomic_long_read(&rdp->nocb_q_count_lazy), 1993 -atomic_long_read(&rdp->nocb_q_count)); 1994 else 1995 trace_rcu_callback(rdp->rsp->name, rhp, 1996 -atomic_long_read(&rdp->nocb_q_count_lazy), 1997 -atomic_long_read(&rdp->nocb_q_count)); 1998 1999 /* 2000 * If called from an extended quiescent state with interrupts 2001 * disabled, invoke the RCU core in order to allow the idle-entry 2002 * deferred-wakeup check to function. 2003 */ 2004 if (irqs_disabled_flags(flags) && 2005 !rcu_is_watching() && 2006 cpu_online(smp_processor_id())) 2007 invoke_rcu_core(); 2008 2009 return true; 2010 } 2011 2012 /* 2013 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is 2014 * not a no-CBs CPU. 2015 */ 2016 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2017 struct rcu_data *rdp, 2018 unsigned long flags) 2019 { 2020 long ql = rsp->qlen; 2021 long qll = rsp->qlen_lazy; 2022 2023 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */ 2024 if (!rcu_is_nocb_cpu(smp_processor_id())) 2025 return false; 2026 rsp->qlen = 0; 2027 rsp->qlen_lazy = 0; 2028 2029 /* First, enqueue the donelist, if any. This preserves CB ordering. */ 2030 if (rsp->orphan_donelist != NULL) { 2031 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist, 2032 rsp->orphan_donetail, ql, qll, flags); 2033 ql = qll = 0; 2034 rsp->orphan_donelist = NULL; 2035 rsp->orphan_donetail = &rsp->orphan_donelist; 2036 } 2037 if (rsp->orphan_nxtlist != NULL) { 2038 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist, 2039 rsp->orphan_nxttail, ql, qll, flags); 2040 ql = qll = 0; 2041 rsp->orphan_nxtlist = NULL; 2042 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2043 } 2044 return true; 2045 } 2046 2047 /* 2048 * If necessary, kick off a new grace period, and either way wait 2049 * for a subsequent grace period to complete. 2050 */ 2051 static void rcu_nocb_wait_gp(struct rcu_data *rdp) 2052 { 2053 unsigned long c; 2054 bool d; 2055 unsigned long flags; 2056 bool needwake; 2057 struct rcu_node *rnp = rdp->mynode; 2058 2059 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2060 needwake = rcu_start_future_gp(rnp, rdp, &c); 2061 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2062 if (needwake) 2063 rcu_gp_kthread_wake(rdp->rsp); 2064 2065 /* 2066 * Wait for the grace period. Do so interruptibly to avoid messing 2067 * up the load average. 2068 */ 2069 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait")); 2070 for (;;) { 2071 swait_event_interruptible( 2072 rnp->nocb_gp_wq[c & 0x1], 2073 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c))); 2074 if (likely(d)) 2075 break; 2076 WARN_ON(signal_pending(current)); 2077 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait")); 2078 } 2079 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait")); 2080 smp_mb(); /* Ensure that CB invocation happens after GP end. */ 2081 } 2082 2083 /* 2084 * Leaders come here to wait for additional callbacks to show up. 2085 * This function does not return until callbacks appear. 2086 */ 2087 static void nocb_leader_wait(struct rcu_data *my_rdp) 2088 { 2089 bool firsttime = true; 2090 bool gotcbs; 2091 struct rcu_data *rdp; 2092 struct rcu_head **tail; 2093 2094 wait_again: 2095 2096 /* Wait for callbacks to appear. */ 2097 if (!rcu_nocb_poll) { 2098 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep"); 2099 swait_event_interruptible(my_rdp->nocb_wq, 2100 !READ_ONCE(my_rdp->nocb_leader_sleep)); 2101 /* Memory barrier handled by smp_mb() calls below and repoll. */ 2102 } else if (firsttime) { 2103 firsttime = false; /* Don't drown trace log with "Poll"! */ 2104 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll"); 2105 } 2106 2107 /* 2108 * Each pass through the following loop checks a follower for CBs. 2109 * We are our own first follower. Any CBs found are moved to 2110 * nocb_gp_head, where they await a grace period. 2111 */ 2112 gotcbs = false; 2113 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2114 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head); 2115 if (!rdp->nocb_gp_head) 2116 continue; /* No CBs here, try next follower. */ 2117 2118 /* Move callbacks to wait-for-GP list, which is empty. */ 2119 WRITE_ONCE(rdp->nocb_head, NULL); 2120 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head); 2121 gotcbs = true; 2122 } 2123 2124 /* 2125 * If there were no callbacks, sleep a bit, rescan after a 2126 * memory barrier, and go retry. 2127 */ 2128 if (unlikely(!gotcbs)) { 2129 if (!rcu_nocb_poll) 2130 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, 2131 "WokeEmpty"); 2132 WARN_ON(signal_pending(current)); 2133 schedule_timeout_interruptible(1); 2134 2135 /* Rescan in case we were a victim of memory ordering. */ 2136 my_rdp->nocb_leader_sleep = true; 2137 smp_mb(); /* Ensure _sleep true before scan. */ 2138 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) 2139 if (READ_ONCE(rdp->nocb_head)) { 2140 /* Found CB, so short-circuit next wait. */ 2141 my_rdp->nocb_leader_sleep = false; 2142 break; 2143 } 2144 goto wait_again; 2145 } 2146 2147 /* Wait for one grace period. */ 2148 rcu_nocb_wait_gp(my_rdp); 2149 2150 /* 2151 * We left ->nocb_leader_sleep unset to reduce cache thrashing. 2152 * We set it now, but recheck for new callbacks while 2153 * traversing our follower list. 2154 */ 2155 my_rdp->nocb_leader_sleep = true; 2156 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */ 2157 2158 /* Each pass through the following loop wakes a follower, if needed. */ 2159 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) { 2160 if (READ_ONCE(rdp->nocb_head)) 2161 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/ 2162 if (!rdp->nocb_gp_head) 2163 continue; /* No CBs, so no need to wake follower. */ 2164 2165 /* Append callbacks to follower's "done" list. */ 2166 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail); 2167 *tail = rdp->nocb_gp_head; 2168 smp_mb__after_atomic(); /* Store *tail before wakeup. */ 2169 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) { 2170 /* 2171 * List was empty, wake up the follower. 2172 * Memory barriers supplied by atomic_long_add(). 2173 */ 2174 swake_up(&rdp->nocb_wq); 2175 } 2176 } 2177 2178 /* If we (the leader) don't have CBs, go wait some more. */ 2179 if (!my_rdp->nocb_follower_head) 2180 goto wait_again; 2181 } 2182 2183 /* 2184 * Followers come here to wait for additional callbacks to show up. 2185 * This function does not return until callbacks appear. 2186 */ 2187 static void nocb_follower_wait(struct rcu_data *rdp) 2188 { 2189 bool firsttime = true; 2190 2191 for (;;) { 2192 if (!rcu_nocb_poll) { 2193 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2194 "FollowerSleep"); 2195 swait_event_interruptible(rdp->nocb_wq, 2196 READ_ONCE(rdp->nocb_follower_head)); 2197 } else if (firsttime) { 2198 /* Don't drown trace log with "Poll"! */ 2199 firsttime = false; 2200 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll"); 2201 } 2202 if (smp_load_acquire(&rdp->nocb_follower_head)) { 2203 /* ^^^ Ensure CB invocation follows _head test. */ 2204 return; 2205 } 2206 if (!rcu_nocb_poll) 2207 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2208 "WokeEmpty"); 2209 WARN_ON(signal_pending(current)); 2210 schedule_timeout_interruptible(1); 2211 } 2212 } 2213 2214 /* 2215 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes 2216 * callbacks queued by the corresponding no-CBs CPU, however, there is 2217 * an optional leader-follower relationship so that the grace-period 2218 * kthreads don't have to do quite so many wakeups. 2219 */ 2220 static int rcu_nocb_kthread(void *arg) 2221 { 2222 int c, cl; 2223 struct rcu_head *list; 2224 struct rcu_head *next; 2225 struct rcu_head **tail; 2226 struct rcu_data *rdp = arg; 2227 2228 /* Each pass through this loop invokes one batch of callbacks */ 2229 for (;;) { 2230 /* Wait for callbacks. */ 2231 if (rdp->nocb_leader == rdp) 2232 nocb_leader_wait(rdp); 2233 else 2234 nocb_follower_wait(rdp); 2235 2236 /* Pull the ready-to-invoke callbacks onto local list. */ 2237 list = READ_ONCE(rdp->nocb_follower_head); 2238 BUG_ON(!list); 2239 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty"); 2240 WRITE_ONCE(rdp->nocb_follower_head, NULL); 2241 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head); 2242 2243 /* Each pass through the following loop invokes a callback. */ 2244 trace_rcu_batch_start(rdp->rsp->name, 2245 atomic_long_read(&rdp->nocb_q_count_lazy), 2246 atomic_long_read(&rdp->nocb_q_count), -1); 2247 c = cl = 0; 2248 while (list) { 2249 next = list->next; 2250 /* Wait for enqueuing to complete, if needed. */ 2251 while (next == NULL && &list->next != tail) { 2252 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2253 TPS("WaitQueue")); 2254 schedule_timeout_interruptible(1); 2255 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, 2256 TPS("WokeQueue")); 2257 next = list->next; 2258 } 2259 debug_rcu_head_unqueue(list); 2260 local_bh_disable(); 2261 if (__rcu_reclaim(rdp->rsp->name, list)) 2262 cl++; 2263 c++; 2264 local_bh_enable(); 2265 list = next; 2266 } 2267 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1); 2268 smp_mb__before_atomic(); /* _add after CB invocation. */ 2269 atomic_long_add(-c, &rdp->nocb_q_count); 2270 atomic_long_add(-cl, &rdp->nocb_q_count_lazy); 2271 rdp->n_nocbs_invoked += c; 2272 } 2273 return 0; 2274 } 2275 2276 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 2277 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2278 { 2279 return READ_ONCE(rdp->nocb_defer_wakeup); 2280 } 2281 2282 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 2283 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2284 { 2285 int ndw; 2286 2287 if (!rcu_nocb_need_deferred_wakeup(rdp)) 2288 return; 2289 ndw = READ_ONCE(rdp->nocb_defer_wakeup); 2290 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT); 2291 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE); 2292 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake")); 2293 } 2294 2295 void __init rcu_init_nohz(void) 2296 { 2297 int cpu; 2298 bool need_rcu_nocb_mask = true; 2299 struct rcu_state *rsp; 2300 2301 #ifdef CONFIG_RCU_NOCB_CPU_NONE 2302 need_rcu_nocb_mask = false; 2303 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */ 2304 2305 #if defined(CONFIG_NO_HZ_FULL) 2306 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) 2307 need_rcu_nocb_mask = true; 2308 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2309 2310 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) { 2311 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 2312 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 2313 return; 2314 } 2315 have_rcu_nocb_mask = true; 2316 } 2317 if (!have_rcu_nocb_mask) 2318 return; 2319 2320 #ifdef CONFIG_RCU_NOCB_CPU_ZERO 2321 pr_info("\tOffload RCU callbacks from CPU 0\n"); 2322 cpumask_set_cpu(0, rcu_nocb_mask); 2323 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */ 2324 #ifdef CONFIG_RCU_NOCB_CPU_ALL 2325 pr_info("\tOffload RCU callbacks from all CPUs\n"); 2326 cpumask_copy(rcu_nocb_mask, cpu_possible_mask); 2327 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */ 2328 #if defined(CONFIG_NO_HZ_FULL) 2329 if (tick_nohz_full_running) 2330 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); 2331 #endif /* #if defined(CONFIG_NO_HZ_FULL) */ 2332 2333 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 2334 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n"); 2335 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 2336 rcu_nocb_mask); 2337 } 2338 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 2339 cpumask_pr_args(rcu_nocb_mask)); 2340 if (rcu_nocb_poll) 2341 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 2342 2343 for_each_rcu_flavor(rsp) { 2344 for_each_cpu(cpu, rcu_nocb_mask) 2345 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu)); 2346 rcu_organize_nocb_kthreads(rsp); 2347 } 2348 } 2349 2350 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 2351 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2352 { 2353 rdp->nocb_tail = &rdp->nocb_head; 2354 init_swait_queue_head(&rdp->nocb_wq); 2355 rdp->nocb_follower_tail = &rdp->nocb_follower_head; 2356 } 2357 2358 /* 2359 * If the specified CPU is a no-CBs CPU that does not already have its 2360 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are 2361 * brought online out of order, this can require re-organizing the 2362 * leader-follower relationships. 2363 */ 2364 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu) 2365 { 2366 struct rcu_data *rdp; 2367 struct rcu_data *rdp_last; 2368 struct rcu_data *rdp_old_leader; 2369 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu); 2370 struct task_struct *t; 2371 2372 /* 2373 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, 2374 * then nothing to do. 2375 */ 2376 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread) 2377 return; 2378 2379 /* If we didn't spawn the leader first, reorganize! */ 2380 rdp_old_leader = rdp_spawn->nocb_leader; 2381 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) { 2382 rdp_last = NULL; 2383 rdp = rdp_old_leader; 2384 do { 2385 rdp->nocb_leader = rdp_spawn; 2386 if (rdp_last && rdp != rdp_spawn) 2387 rdp_last->nocb_next_follower = rdp; 2388 if (rdp == rdp_spawn) { 2389 rdp = rdp->nocb_next_follower; 2390 } else { 2391 rdp_last = rdp; 2392 rdp = rdp->nocb_next_follower; 2393 rdp_last->nocb_next_follower = NULL; 2394 } 2395 } while (rdp); 2396 rdp_spawn->nocb_next_follower = rdp_old_leader; 2397 } 2398 2399 /* Spawn the kthread for this CPU and RCU flavor. */ 2400 t = kthread_run(rcu_nocb_kthread, rdp_spawn, 2401 "rcuo%c/%d", rsp->abbr, cpu); 2402 BUG_ON(IS_ERR(t)); 2403 WRITE_ONCE(rdp_spawn->nocb_kthread, t); 2404 } 2405 2406 /* 2407 * If the specified CPU is a no-CBs CPU that does not already have its 2408 * rcuo kthreads, spawn them. 2409 */ 2410 static void rcu_spawn_all_nocb_kthreads(int cpu) 2411 { 2412 struct rcu_state *rsp; 2413 2414 if (rcu_scheduler_fully_active) 2415 for_each_rcu_flavor(rsp) 2416 rcu_spawn_one_nocb_kthread(rsp, cpu); 2417 } 2418 2419 /* 2420 * Once the scheduler is running, spawn rcuo kthreads for all online 2421 * no-CBs CPUs. This assumes that the early_initcall()s happen before 2422 * non-boot CPUs come online -- if this changes, we will need to add 2423 * some mutual exclusion. 2424 */ 2425 static void __init rcu_spawn_nocb_kthreads(void) 2426 { 2427 int cpu; 2428 2429 for_each_online_cpu(cpu) 2430 rcu_spawn_all_nocb_kthreads(cpu); 2431 } 2432 2433 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */ 2434 static int rcu_nocb_leader_stride = -1; 2435 module_param(rcu_nocb_leader_stride, int, 0444); 2436 2437 /* 2438 * Initialize leader-follower relationships for all no-CBs CPU. 2439 */ 2440 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp) 2441 { 2442 int cpu; 2443 int ls = rcu_nocb_leader_stride; 2444 int nl = 0; /* Next leader. */ 2445 struct rcu_data *rdp; 2446 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */ 2447 struct rcu_data *rdp_prev = NULL; 2448 2449 if (!have_rcu_nocb_mask) 2450 return; 2451 if (ls == -1) { 2452 ls = int_sqrt(nr_cpu_ids); 2453 rcu_nocb_leader_stride = ls; 2454 } 2455 2456 /* 2457 * Each pass through this loop sets up one rcu_data structure and 2458 * spawns one rcu_nocb_kthread(). 2459 */ 2460 for_each_cpu(cpu, rcu_nocb_mask) { 2461 rdp = per_cpu_ptr(rsp->rda, cpu); 2462 if (rdp->cpu >= nl) { 2463 /* New leader, set up for followers & next leader. */ 2464 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 2465 rdp->nocb_leader = rdp; 2466 rdp_leader = rdp; 2467 } else { 2468 /* Another follower, link to previous leader. */ 2469 rdp->nocb_leader = rdp_leader; 2470 rdp_prev->nocb_next_follower = rdp; 2471 } 2472 rdp_prev = rdp; 2473 } 2474 } 2475 2476 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */ 2477 static bool init_nocb_callback_list(struct rcu_data *rdp) 2478 { 2479 if (!rcu_is_nocb_cpu(rdp->cpu)) 2480 return false; 2481 2482 /* If there are early-boot callbacks, move them to nocb lists. */ 2483 if (rdp->nxtlist) { 2484 rdp->nocb_head = rdp->nxtlist; 2485 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL]; 2486 atomic_long_set(&rdp->nocb_q_count, rdp->qlen); 2487 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy); 2488 rdp->nxtlist = NULL; 2489 rdp->qlen = 0; 2490 rdp->qlen_lazy = 0; 2491 } 2492 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2493 return true; 2494 } 2495 2496 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 2497 2498 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu) 2499 { 2500 WARN_ON_ONCE(1); /* Should be dead code. */ 2501 return false; 2502 } 2503 2504 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 2505 { 2506 } 2507 2508 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq) 2509 { 2510 } 2511 2512 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 2513 { 2514 return NULL; 2515 } 2516 2517 static void rcu_init_one_nocb(struct rcu_node *rnp) 2518 { 2519 } 2520 2521 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp, 2522 bool lazy, unsigned long flags) 2523 { 2524 return false; 2525 } 2526 2527 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp, 2528 struct rcu_data *rdp, 2529 unsigned long flags) 2530 { 2531 return false; 2532 } 2533 2534 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 2535 { 2536 } 2537 2538 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) 2539 { 2540 return false; 2541 } 2542 2543 static void do_nocb_deferred_wakeup(struct rcu_data *rdp) 2544 { 2545 } 2546 2547 static void rcu_spawn_all_nocb_kthreads(int cpu) 2548 { 2549 } 2550 2551 static void __init rcu_spawn_nocb_kthreads(void) 2552 { 2553 } 2554 2555 static bool init_nocb_callback_list(struct rcu_data *rdp) 2556 { 2557 return false; 2558 } 2559 2560 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 2561 2562 /* 2563 * An adaptive-ticks CPU can potentially execute in kernel mode for an 2564 * arbitrarily long period of time with the scheduling-clock tick turned 2565 * off. RCU will be paying attention to this CPU because it is in the 2566 * kernel, but the CPU cannot be guaranteed to be executing the RCU state 2567 * machine because the scheduling-clock tick has been disabled. Therefore, 2568 * if an adaptive-ticks CPU is failing to respond to the current grace 2569 * period and has not be idle from an RCU perspective, kick it. 2570 */ 2571 static void __maybe_unused rcu_kick_nohz_cpu(int cpu) 2572 { 2573 #ifdef CONFIG_NO_HZ_FULL 2574 if (tick_nohz_full_cpu(cpu)) 2575 smp_send_reschedule(cpu); 2576 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 2577 } 2578 2579 2580 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 2581 2582 static int full_sysidle_state; /* Current system-idle state. */ 2583 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */ 2584 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */ 2585 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */ 2586 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */ 2587 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */ 2588 2589 /* 2590 * Invoked to note exit from irq or task transition to idle. Note that 2591 * usermode execution does -not- count as idle here! After all, we want 2592 * to detect full-system idle states, not RCU quiescent states and grace 2593 * periods. The caller must have disabled interrupts. 2594 */ 2595 static void rcu_sysidle_enter(int irq) 2596 { 2597 unsigned long j; 2598 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2599 2600 /* If there are no nohz_full= CPUs, no need to track this. */ 2601 if (!tick_nohz_full_enabled()) 2602 return; 2603 2604 /* Adjust nesting, check for fully idle. */ 2605 if (irq) { 2606 rdtp->dynticks_idle_nesting--; 2607 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2608 if (rdtp->dynticks_idle_nesting != 0) 2609 return; /* Still not fully idle. */ 2610 } else { 2611 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) == 2612 DYNTICK_TASK_NEST_VALUE) { 2613 rdtp->dynticks_idle_nesting = 0; 2614 } else { 2615 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE; 2616 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0); 2617 return; /* Still not fully idle. */ 2618 } 2619 } 2620 2621 /* Record start of fully idle period. */ 2622 j = jiffies; 2623 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j); 2624 smp_mb__before_atomic(); 2625 atomic_inc(&rdtp->dynticks_idle); 2626 smp_mb__after_atomic(); 2627 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1); 2628 } 2629 2630 /* 2631 * Unconditionally force exit from full system-idle state. This is 2632 * invoked when a normal CPU exits idle, but must be called separately 2633 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this 2634 * is that the timekeeping CPU is permitted to take scheduling-clock 2635 * interrupts while the system is in system-idle state, and of course 2636 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock 2637 * interrupt from any other type of interrupt. 2638 */ 2639 void rcu_sysidle_force_exit(void) 2640 { 2641 int oldstate = READ_ONCE(full_sysidle_state); 2642 int newoldstate; 2643 2644 /* 2645 * Each pass through the following loop attempts to exit full 2646 * system-idle state. If contention proves to be a problem, 2647 * a trylock-based contention tree could be used here. 2648 */ 2649 while (oldstate > RCU_SYSIDLE_SHORT) { 2650 newoldstate = cmpxchg(&full_sysidle_state, 2651 oldstate, RCU_SYSIDLE_NOT); 2652 if (oldstate == newoldstate && 2653 oldstate == RCU_SYSIDLE_FULL_NOTED) { 2654 rcu_kick_nohz_cpu(tick_do_timer_cpu); 2655 return; /* We cleared it, done! */ 2656 } 2657 oldstate = newoldstate; 2658 } 2659 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */ 2660 } 2661 2662 /* 2663 * Invoked to note entry to irq or task transition from idle. Note that 2664 * usermode execution does -not- count as idle here! The caller must 2665 * have disabled interrupts. 2666 */ 2667 static void rcu_sysidle_exit(int irq) 2668 { 2669 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 2670 2671 /* If there are no nohz_full= CPUs, no need to track this. */ 2672 if (!tick_nohz_full_enabled()) 2673 return; 2674 2675 /* Adjust nesting, check for already non-idle. */ 2676 if (irq) { 2677 rdtp->dynticks_idle_nesting++; 2678 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2679 if (rdtp->dynticks_idle_nesting != 1) 2680 return; /* Already non-idle. */ 2681 } else { 2682 /* 2683 * Allow for irq misnesting. Yes, it really is possible 2684 * to enter an irq handler then never leave it, and maybe 2685 * also vice versa. Handle both possibilities. 2686 */ 2687 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) { 2688 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE; 2689 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0); 2690 return; /* Already non-idle. */ 2691 } else { 2692 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE; 2693 } 2694 } 2695 2696 /* Record end of idle period. */ 2697 smp_mb__before_atomic(); 2698 atomic_inc(&rdtp->dynticks_idle); 2699 smp_mb__after_atomic(); 2700 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1)); 2701 2702 /* 2703 * If we are the timekeeping CPU, we are permitted to be non-idle 2704 * during a system-idle state. This must be the case, because 2705 * the timekeeping CPU has to take scheduling-clock interrupts 2706 * during the time that the system is transitioning to full 2707 * system-idle state. This means that the timekeeping CPU must 2708 * invoke rcu_sysidle_force_exit() directly if it does anything 2709 * more than take a scheduling-clock interrupt. 2710 */ 2711 if (smp_processor_id() == tick_do_timer_cpu) 2712 return; 2713 2714 /* Update system-idle state: We are clearly no longer fully idle! */ 2715 rcu_sysidle_force_exit(); 2716 } 2717 2718 /* 2719 * Check to see if the current CPU is idle. Note that usermode execution 2720 * does not count as idle. The caller must have disabled interrupts, 2721 * and must be running on tick_do_timer_cpu. 2722 */ 2723 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2724 unsigned long *maxj) 2725 { 2726 int cur; 2727 unsigned long j; 2728 struct rcu_dynticks *rdtp = rdp->dynticks; 2729 2730 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */ 2731 if (!tick_nohz_full_enabled()) 2732 return; 2733 2734 /* 2735 * If some other CPU has already reported non-idle, if this is 2736 * not the flavor of RCU that tracks sysidle state, or if this 2737 * is an offline or the timekeeping CPU, nothing to do. 2738 */ 2739 if (!*isidle || rdp->rsp != rcu_state_p || 2740 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu) 2741 return; 2742 /* Verify affinity of current kthread. */ 2743 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu); 2744 2745 /* Pick up current idle and NMI-nesting counter and check. */ 2746 cur = atomic_read(&rdtp->dynticks_idle); 2747 if (cur & 0x1) { 2748 *isidle = false; /* We are not idle! */ 2749 return; 2750 } 2751 smp_mb(); /* Read counters before timestamps. */ 2752 2753 /* Pick up timestamps. */ 2754 j = READ_ONCE(rdtp->dynticks_idle_jiffies); 2755 /* If this CPU entered idle more recently, update maxj timestamp. */ 2756 if (ULONG_CMP_LT(*maxj, j)) 2757 *maxj = j; 2758 } 2759 2760 /* 2761 * Is this the flavor of RCU that is handling full-system idle? 2762 */ 2763 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2764 { 2765 return rsp == rcu_state_p; 2766 } 2767 2768 /* 2769 * Return a delay in jiffies based on the number of CPUs, rcu_node 2770 * leaf fanout, and jiffies tick rate. The idea is to allow larger 2771 * systems more time to transition to full-idle state in order to 2772 * avoid the cache thrashing that otherwise occur on the state variable. 2773 * Really small systems (less than a couple of tens of CPUs) should 2774 * instead use a single global atomically incremented counter, and later 2775 * versions of this will automatically reconfigure themselves accordingly. 2776 */ 2777 static unsigned long rcu_sysidle_delay(void) 2778 { 2779 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2780 return 0; 2781 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000); 2782 } 2783 2784 /* 2785 * Advance the full-system-idle state. This is invoked when all of 2786 * the non-timekeeping CPUs are idle. 2787 */ 2788 static void rcu_sysidle(unsigned long j) 2789 { 2790 /* Check the current state. */ 2791 switch (READ_ONCE(full_sysidle_state)) { 2792 case RCU_SYSIDLE_NOT: 2793 2794 /* First time all are idle, so note a short idle period. */ 2795 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT); 2796 break; 2797 2798 case RCU_SYSIDLE_SHORT: 2799 2800 /* 2801 * Idle for a bit, time to advance to next state? 2802 * cmpxchg failure means race with non-idle, let them win. 2803 */ 2804 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2805 (void)cmpxchg(&full_sysidle_state, 2806 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG); 2807 break; 2808 2809 case RCU_SYSIDLE_LONG: 2810 2811 /* 2812 * Do an additional check pass before advancing to full. 2813 * cmpxchg failure means race with non-idle, let them win. 2814 */ 2815 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay())) 2816 (void)cmpxchg(&full_sysidle_state, 2817 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL); 2818 break; 2819 2820 default: 2821 break; 2822 } 2823 } 2824 2825 /* 2826 * Found a non-idle non-timekeeping CPU, so kick the system-idle state 2827 * back to the beginning. 2828 */ 2829 static void rcu_sysidle_cancel(void) 2830 { 2831 smp_mb(); 2832 if (full_sysidle_state > RCU_SYSIDLE_SHORT) 2833 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT); 2834 } 2835 2836 /* 2837 * Update the sysidle state based on the results of a force-quiescent-state 2838 * scan of the CPUs' dyntick-idle state. 2839 */ 2840 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle, 2841 unsigned long maxj, bool gpkt) 2842 { 2843 if (rsp != rcu_state_p) 2844 return; /* Wrong flavor, ignore. */ 2845 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) 2846 return; /* Running state machine from timekeeping CPU. */ 2847 if (isidle) 2848 rcu_sysidle(maxj); /* More idle! */ 2849 else 2850 rcu_sysidle_cancel(); /* Idle is over. */ 2851 } 2852 2853 /* 2854 * Wrapper for rcu_sysidle_report() when called from the grace-period 2855 * kthread's context. 2856 */ 2857 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2858 unsigned long maxj) 2859 { 2860 /* If there are no nohz_full= CPUs, no need to track this. */ 2861 if (!tick_nohz_full_enabled()) 2862 return; 2863 2864 rcu_sysidle_report(rsp, isidle, maxj, true); 2865 } 2866 2867 /* Callback and function for forcing an RCU grace period. */ 2868 struct rcu_sysidle_head { 2869 struct rcu_head rh; 2870 int inuse; 2871 }; 2872 2873 static void rcu_sysidle_cb(struct rcu_head *rhp) 2874 { 2875 struct rcu_sysidle_head *rshp; 2876 2877 /* 2878 * The following memory barrier is needed to replace the 2879 * memory barriers that would normally be in the memory 2880 * allocator. 2881 */ 2882 smp_mb(); /* grace period precedes setting inuse. */ 2883 2884 rshp = container_of(rhp, struct rcu_sysidle_head, rh); 2885 WRITE_ONCE(rshp->inuse, 0); 2886 } 2887 2888 /* 2889 * Check to see if the system is fully idle, other than the timekeeping CPU. 2890 * The caller must have disabled interrupts. This is not intended to be 2891 * called unless tick_nohz_full_enabled(). 2892 */ 2893 bool rcu_sys_is_idle(void) 2894 { 2895 static struct rcu_sysidle_head rsh; 2896 int rss = READ_ONCE(full_sysidle_state); 2897 2898 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu)) 2899 return false; 2900 2901 /* Handle small-system case by doing a full scan of CPUs. */ 2902 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) { 2903 int oldrss = rss - 1; 2904 2905 /* 2906 * One pass to advance to each state up to _FULL. 2907 * Give up if any pass fails to advance the state. 2908 */ 2909 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) { 2910 int cpu; 2911 bool isidle = true; 2912 unsigned long maxj = jiffies - ULONG_MAX / 4; 2913 struct rcu_data *rdp; 2914 2915 /* Scan all the CPUs looking for nonidle CPUs. */ 2916 for_each_possible_cpu(cpu) { 2917 rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 2918 rcu_sysidle_check_cpu(rdp, &isidle, &maxj); 2919 if (!isidle) 2920 break; 2921 } 2922 rcu_sysidle_report(rcu_state_p, isidle, maxj, false); 2923 oldrss = rss; 2924 rss = READ_ONCE(full_sysidle_state); 2925 } 2926 } 2927 2928 /* If this is the first observation of an idle period, record it. */ 2929 if (rss == RCU_SYSIDLE_FULL) { 2930 rss = cmpxchg(&full_sysidle_state, 2931 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED); 2932 return rss == RCU_SYSIDLE_FULL; 2933 } 2934 2935 smp_mb(); /* ensure rss load happens before later caller actions. */ 2936 2937 /* If already fully idle, tell the caller (in case of races). */ 2938 if (rss == RCU_SYSIDLE_FULL_NOTED) 2939 return true; 2940 2941 /* 2942 * If we aren't there yet, and a grace period is not in flight, 2943 * initiate a grace period. Either way, tell the caller that 2944 * we are not there yet. We use an xchg() rather than an assignment 2945 * to make up for the memory barriers that would otherwise be 2946 * provided by the memory allocator. 2947 */ 2948 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL && 2949 !rcu_gp_in_progress(rcu_state_p) && 2950 !rsh.inuse && xchg(&rsh.inuse, 1) == 0) 2951 call_rcu(&rsh.rh, rcu_sysidle_cb); 2952 return false; 2953 } 2954 2955 /* 2956 * Initialize dynticks sysidle state for CPUs coming online. 2957 */ 2958 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2959 { 2960 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE; 2961 } 2962 2963 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2964 2965 static void rcu_sysidle_enter(int irq) 2966 { 2967 } 2968 2969 static void rcu_sysidle_exit(int irq) 2970 { 2971 } 2972 2973 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle, 2974 unsigned long *maxj) 2975 { 2976 } 2977 2978 static bool is_sysidle_rcu_state(struct rcu_state *rsp) 2979 { 2980 return false; 2981 } 2982 2983 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle, 2984 unsigned long maxj) 2985 { 2986 } 2987 2988 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp) 2989 { 2990 } 2991 2992 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 2993 2994 /* 2995 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the 2996 * grace-period kthread will do force_quiescent_state() processing? 2997 * The idea is to avoid waking up RCU core processing on such a 2998 * CPU unless the grace period has extended for too long. 2999 * 3000 * This code relies on the fact that all NO_HZ_FULL CPUs are also 3001 * CONFIG_RCU_NOCB_CPU CPUs. 3002 */ 3003 static bool rcu_nohz_full_cpu(struct rcu_state *rsp) 3004 { 3005 #ifdef CONFIG_NO_HZ_FULL 3006 if (tick_nohz_full_cpu(smp_processor_id()) && 3007 (!rcu_gp_in_progress(rsp) || 3008 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ))) 3009 return true; 3010 #endif /* #ifdef CONFIG_NO_HZ_FULL */ 3011 return false; 3012 } 3013 3014 /* 3015 * Bind the grace-period kthread for the sysidle flavor of RCU to the 3016 * timekeeping CPU. 3017 */ 3018 static void rcu_bind_gp_kthread(void) 3019 { 3020 int __maybe_unused cpu; 3021 3022 if (!tick_nohz_full_enabled()) 3023 return; 3024 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 3025 cpu = tick_do_timer_cpu; 3026 if (cpu >= 0 && cpu < nr_cpu_ids) 3027 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 3028 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3029 housekeeping_affine(current); 3030 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 3031 } 3032 3033 /* Record the current task on dyntick-idle entry. */ 3034 static void rcu_dynticks_task_enter(void) 3035 { 3036 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3037 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 3038 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3039 } 3040 3041 /* Record no current task on dyntick-idle exit. */ 3042 static void rcu_dynticks_task_exit(void) 3043 { 3044 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 3045 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 3046 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 3047 } 3048