xref: /linux/kernel/rcu/tree_nocb.h (revision cc74050f13e5f15de7835b96d633484dd6776f53)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <mingo@elte.hu>
12  *	   Paul E. McKenney <paulmck@linux.ibm.com>
13  *	   Frederic Weisbecker <frederic@kernel.org>
14  */
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 
20 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
21 {
22 	/* Race on early boot between thread creation and assignment */
23 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
24 		return true;
25 
26 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
27 		if (in_task())
28 			return true;
29 	return false;
30 }
31 
32 /*
33  * Offload callback processing from the boot-time-specified set of CPUs
34  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
35  * created that pull the callbacks from the corresponding CPU, wait for
36  * a grace period to elapse, and invoke the callbacks.  These kthreads
37  * are organized into GP kthreads, which manage incoming callbacks, wait for
38  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
39  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
40  * do a wake_up() on their GP kthread when they insert a callback into any
41  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
42  * in which case each kthread actively polls its CPU.  (Which isn't so great
43  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
44  *
45  * This is intended to be used in conjunction with Frederic Weisbecker's
46  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
47  * running CPU-bound user-mode computations.
48  *
49  * Offloading of callbacks can also be used as an energy-efficiency
50  * measure because CPUs with no RCU callbacks queued are more aggressive
51  * about entering dyntick-idle mode.
52  */
53 
54 
55 /*
56  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
57  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
58  */
59 static int __init rcu_nocb_setup(char *str)
60 {
61 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
62 	if (*str == '=') {
63 		if (cpulist_parse(++str, rcu_nocb_mask)) {
64 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
65 			cpumask_setall(rcu_nocb_mask);
66 		}
67 	}
68 	rcu_state.nocb_is_setup = true;
69 	return 1;
70 }
71 __setup("rcu_nocbs", rcu_nocb_setup);
72 
73 static int __init parse_rcu_nocb_poll(char *arg)
74 {
75 	rcu_nocb_poll = true;
76 	return 1;
77 }
78 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
79 
80 /*
81  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
82  * After all, the main point of bypassing is to avoid lock contention
83  * on ->nocb_lock, which only can happen at high call_rcu() rates.
84  */
85 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
86 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
87 
88 /*
89  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
90  * lock isn't immediately available, perform minimal sanity check.
91  */
92 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
93 	__acquires(&rdp->nocb_bypass_lock)
94 {
95 	lockdep_assert_irqs_disabled();
96 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
97 		return;
98 	/*
99 	 * Contention expected only when local enqueue collide with
100 	 * remote flush from kthreads.
101 	 */
102 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
103 	raw_spin_lock(&rdp->nocb_bypass_lock);
104 }
105 
106 /*
107  * Conditionally acquire the specified rcu_data structure's
108  * ->nocb_bypass_lock.
109  */
110 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
111 {
112 	lockdep_assert_irqs_disabled();
113 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
114 }
115 
116 /*
117  * Release the specified rcu_data structure's ->nocb_bypass_lock.
118  */
119 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
120 	__releases(&rdp->nocb_bypass_lock)
121 {
122 	lockdep_assert_irqs_disabled();
123 	raw_spin_unlock(&rdp->nocb_bypass_lock);
124 }
125 
126 /*
127  * Acquire the specified rcu_data structure's ->nocb_lock, but only
128  * if it corresponds to a no-CBs CPU.
129  */
130 static void rcu_nocb_lock(struct rcu_data *rdp)
131 {
132 	lockdep_assert_irqs_disabled();
133 	if (!rcu_rdp_is_offloaded(rdp))
134 		return;
135 	raw_spin_lock(&rdp->nocb_lock);
136 }
137 
138 /*
139  * Release the specified rcu_data structure's ->nocb_lock, but only
140  * if it corresponds to a no-CBs CPU.
141  */
142 static void rcu_nocb_unlock(struct rcu_data *rdp)
143 {
144 	if (rcu_rdp_is_offloaded(rdp)) {
145 		lockdep_assert_irqs_disabled();
146 		raw_spin_unlock(&rdp->nocb_lock);
147 	}
148 }
149 
150 /*
151  * Release the specified rcu_data structure's ->nocb_lock and restore
152  * interrupts, but only if it corresponds to a no-CBs CPU.
153  */
154 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
155 				       unsigned long flags)
156 {
157 	if (rcu_rdp_is_offloaded(rdp)) {
158 		lockdep_assert_irqs_disabled();
159 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
160 	} else {
161 		local_irq_restore(flags);
162 	}
163 }
164 
165 /* Lockdep check that ->cblist may be safely accessed. */
166 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
167 {
168 	lockdep_assert_irqs_disabled();
169 	if (rcu_rdp_is_offloaded(rdp))
170 		lockdep_assert_held(&rdp->nocb_lock);
171 }
172 
173 /*
174  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
175  * grace period.
176  */
177 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
178 {
179 	swake_up_all(sq);
180 }
181 
182 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
183 {
184 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
185 }
186 
187 static void rcu_init_one_nocb(struct rcu_node *rnp)
188 {
189 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
190 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
191 }
192 
193 /* Clear any pending deferred wakeup timer (nocb_gp_lock must be held). */
194 static void nocb_defer_wakeup_cancel(struct rcu_data *rdp_gp)
195 {
196 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
197 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
198 		timer_delete(&rdp_gp->nocb_timer);
199 	}
200 }
201 
202 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
203 			   struct rcu_data *rdp,
204 			   unsigned long flags)
205 	__releases(rdp_gp->nocb_gp_lock)
206 {
207 	bool needwake = false;
208 
209 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
210 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
211 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
212 				    TPS("AlreadyAwake"));
213 		return false;
214 	}
215 
216 	nocb_defer_wakeup_cancel(rdp_gp);
217 
218 	if (READ_ONCE(rdp_gp->nocb_gp_sleep)) {
219 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
220 		needwake = true;
221 	}
222 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
223 	if (needwake) {
224 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
225 		swake_up_one(&rdp_gp->nocb_gp_wq);
226 	}
227 
228 	return needwake;
229 }
230 
231 /*
232  * Kick the GP kthread for this NOCB group.
233  */
234 static bool wake_nocb_gp(struct rcu_data *rdp)
235 {
236 	unsigned long flags;
237 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
238 
239 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
240 	return __wake_nocb_gp(rdp_gp, rdp, flags);
241 }
242 
243 #ifdef CONFIG_RCU_LAZY
244 /*
245  * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
246  * can elapse before lazy callbacks are flushed. Lazy callbacks
247  * could be flushed much earlier for a number of other reasons
248  * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
249  * left unsubmitted to RCU after those many jiffies.
250  */
251 #define LAZY_FLUSH_JIFFIES (10 * HZ)
252 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
253 
254 // To be called only from test code.
255 void rcu_set_jiffies_lazy_flush(unsigned long jif)
256 {
257 	jiffies_lazy_flush = jif;
258 }
259 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
260 
261 unsigned long rcu_get_jiffies_lazy_flush(void)
262 {
263 	return jiffies_lazy_flush;
264 }
265 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
266 #endif
267 
268 /*
269  * Arrange to wake the GP kthread for this NOCB group at some future
270  * time when it is safe to do so.
271  */
272 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
273 			       const char *reason)
274 {
275 	unsigned long flags;
276 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
277 
278 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
279 
280 	/*
281 	 * Bypass wakeup overrides previous deferments. In case of
282 	 * callback storms, no need to wake up too early.
283 	 */
284 	if (waketype == RCU_NOCB_WAKE_LAZY &&
285 	    rdp_gp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
286 		mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
287 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
288 	} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
289 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
290 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
291 	} else {
292 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
293 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
294 		if (rdp_gp->nocb_defer_wakeup < waketype)
295 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
296 	}
297 
298 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
299 
300 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
301 }
302 
303 /*
304  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
305  * However, if there is a callback to be enqueued and if ->nocb_bypass
306  * proves to be initially empty, just return false because the no-CB GP
307  * kthread may need to be awakened in this case.
308  *
309  * Return true if there was something to be flushed and it succeeded, otherwise
310  * false.
311  *
312  * Note that this function always returns true if rhp is NULL.
313  */
314 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
315 				     unsigned long j, bool lazy)
316 {
317 	struct rcu_cblist rcl;
318 	struct rcu_head *rhp = rhp_in;
319 
320 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
321 	rcu_lockdep_assert_cblist_protected(rdp);
322 	lockdep_assert_held(&rdp->nocb_bypass_lock);
323 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
324 		raw_spin_unlock(&rdp->nocb_bypass_lock);
325 		return false;
326 	}
327 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
328 	if (rhp)
329 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
330 
331 	/*
332 	 * If the new CB requested was a lazy one, queue it onto the main
333 	 * ->cblist so that we can take advantage of the grace-period that will
334 	 * happen regardless. But queue it onto the bypass list first so that
335 	 * the lazy CB is ordered with the existing CBs in the bypass list.
336 	 */
337 	if (lazy && rhp) {
338 		rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
339 		rhp = NULL;
340 	}
341 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
342 	WRITE_ONCE(rdp->lazy_len, 0);
343 
344 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
345 	WRITE_ONCE(rdp->nocb_bypass_first, j);
346 	rcu_nocb_bypass_unlock(rdp);
347 	return true;
348 }
349 
350 /*
351  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
352  * However, if there is a callback to be enqueued and if ->nocb_bypass
353  * proves to be initially empty, just return false because the no-CB GP
354  * kthread may need to be awakened in this case.
355  *
356  * Note that this function always returns true if rhp is NULL.
357  */
358 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
359 				  unsigned long j, bool lazy)
360 {
361 	if (!rcu_rdp_is_offloaded(rdp))
362 		return true;
363 	rcu_lockdep_assert_cblist_protected(rdp);
364 	rcu_nocb_bypass_lock(rdp);
365 	return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
366 }
367 
368 /*
369  * If the ->nocb_bypass_lock is immediately available, flush the
370  * ->nocb_bypass queue into ->cblist.
371  */
372 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
373 {
374 	rcu_lockdep_assert_cblist_protected(rdp);
375 	if (!rcu_rdp_is_offloaded(rdp) ||
376 	    !rcu_nocb_bypass_trylock(rdp))
377 		return;
378 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
379 }
380 
381 /*
382  * See whether it is appropriate to use the ->nocb_bypass list in order
383  * to control contention on ->nocb_lock.  A limited number of direct
384  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
385  * is non-empty, further callbacks must be placed into ->nocb_bypass,
386  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
387  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
388  * used if ->cblist is empty, because otherwise callbacks can be stranded
389  * on ->nocb_bypass because we cannot count on the current CPU ever again
390  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
391  * non-empty, the corresponding no-CBs grace-period kthread must not be
392  * in an indefinite sleep state.
393  *
394  * Finally, it is not permitted to use the bypass during early boot,
395  * as doing so would confuse the auto-initialization code.  Besides
396  * which, there is no point in worrying about lock contention while
397  * there is only one CPU in operation.
398  */
399 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
400 				bool *was_alldone, unsigned long flags,
401 				bool lazy)
402 {
403 	unsigned long c;
404 	unsigned long cur_gp_seq;
405 	unsigned long j = jiffies;
406 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
407 	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
408 
409 	lockdep_assert_irqs_disabled();
410 
411 	// Pure softirq/rcuc based processing: no bypassing, no
412 	// locking.
413 	if (!rcu_rdp_is_offloaded(rdp)) {
414 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
415 		return false;
416 	}
417 
418 	// Don't use ->nocb_bypass during early boot.
419 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
420 		rcu_nocb_lock(rdp);
421 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
422 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
423 		return false;
424 	}
425 
426 	// If we have advanced to a new jiffy, reset counts to allow
427 	// moving back from ->nocb_bypass to ->cblist.
428 	if (j == rdp->nocb_nobypass_last) {
429 		c = rdp->nocb_nobypass_count + 1;
430 	} else {
431 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
432 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
433 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
434 				 nocb_nobypass_lim_per_jiffy))
435 			c = 0;
436 		else if (c > nocb_nobypass_lim_per_jiffy)
437 			c = nocb_nobypass_lim_per_jiffy;
438 	}
439 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
440 
441 	// If there hasn't yet been all that many ->cblist enqueues
442 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
443 	// ->nocb_bypass first.
444 	// Lazy CBs throttle this back and do immediate bypass queuing.
445 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
446 		rcu_nocb_lock(rdp);
447 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
448 		if (*was_alldone)
449 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
450 					    TPS("FirstQ"));
451 
452 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
453 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
454 		return false; // Caller must enqueue the callback.
455 	}
456 
457 	// If ->nocb_bypass has been used too long or is too full,
458 	// flush ->nocb_bypass to ->cblist.
459 	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
460 	    (ncbs &&  bypass_is_lazy &&
461 	     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
462 	    ncbs >= qhimark) {
463 		rcu_nocb_lock(rdp);
464 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
465 
466 		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
467 			if (*was_alldone)
468 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
469 						    TPS("FirstQ"));
470 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
471 			return false; // Caller must enqueue the callback.
472 		}
473 		if (j != rdp->nocb_gp_adv_time &&
474 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
475 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
476 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
477 			rdp->nocb_gp_adv_time = j;
478 		}
479 
480 		// The flush succeeded and we moved CBs into the regular list.
481 		// Don't wait for the wake up timer as it may be too far ahead.
482 		// Wake up the GP thread now instead, if the cblist was empty.
483 		__call_rcu_nocb_wake(rdp, *was_alldone, flags);
484 
485 		return true; // Callback already enqueued.
486 	}
487 
488 	// We need to use the bypass.
489 	rcu_nocb_bypass_lock(rdp);
490 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
491 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
492 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
493 
494 	if (lazy)
495 		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
496 
497 	if (!ncbs) {
498 		WRITE_ONCE(rdp->nocb_bypass_first, j);
499 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
500 	}
501 	rcu_nocb_bypass_unlock(rdp);
502 
503 	// A wake up of the grace period kthread or timer adjustment
504 	// needs to be done only if:
505 	// 1. Bypass list was fully empty before (this is the first
506 	//    bypass list entry), or:
507 	// 2. Both of these conditions are met:
508 	//    a. The bypass list previously had only lazy CBs, and:
509 	//    b. The new CB is non-lazy.
510 	if (!ncbs || (bypass_is_lazy && !lazy)) {
511 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
512 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
513 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
514 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
515 					    TPS("FirstBQwake"));
516 			__call_rcu_nocb_wake(rdp, true, flags);
517 		} else {
518 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
519 					    TPS("FirstBQnoWake"));
520 			rcu_nocb_unlock(rdp);
521 		}
522 	}
523 	return true; // Callback already enqueued.
524 }
525 
526 /*
527  * Awaken the no-CBs grace-period kthread if needed due to it legitimately
528  * being asleep.
529  */
530 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
531 				 unsigned long flags)
532 				 __releases(rdp->nocb_lock)
533 {
534 	long bypass_len;
535 	long lazy_len;
536 	long len;
537 	struct task_struct *t;
538 
539 	// If we are being polled or there is no kthread, just leave.
540 	t = READ_ONCE(rdp->nocb_gp_kthread);
541 	if (rcu_nocb_poll || !t) {
542 		rcu_nocb_unlock(rdp);
543 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
544 				    TPS("WakeNotPoll"));
545 		return;
546 	}
547 	// Need to actually to a wakeup.
548 	len = rcu_segcblist_n_cbs(&rdp->cblist);
549 	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
550 	lazy_len = READ_ONCE(rdp->lazy_len);
551 	if (was_alldone) {
552 		rdp->qlen_last_fqs_check = len;
553 		rcu_nocb_unlock(rdp);
554 		// Only lazy CBs in bypass list
555 		if (lazy_len && bypass_len == lazy_len) {
556 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
557 					   TPS("WakeLazy"));
558 		} else if (!irqs_disabled_flags(flags)) {
559 			/* ... if queue was empty ... */
560 			wake_nocb_gp(rdp);
561 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
562 					    TPS("WakeEmpty"));
563 		} else {
564 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
565 					   TPS("WakeEmptyIsDeferred"));
566 		}
567 
568 		return;
569 	}
570 
571 	rcu_nocb_unlock(rdp);
572 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
573 }
574 
575 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
576 			  rcu_callback_t func, unsigned long flags, bool lazy)
577 {
578 	bool was_alldone;
579 
580 	if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
581 		/* Not enqueued on bypass but locked, do regular enqueue */
582 		rcutree_enqueue(rdp, head, func);
583 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
584 	}
585 }
586 
587 static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp)
588 {
589 	struct rcu_segcblist *cblist = &rdp->cblist;
590 	unsigned long flags;
591 
592 	/*
593 	 * Locking orders future de-offloaded callbacks enqueue against previous
594 	 * handling of this rdp. Ie: Make sure rcuog is done with this rdp before
595 	 * deoffloaded callbacks can be enqueued.
596 	 */
597 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
598 	if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
599 		/*
600 		 * Offloading. Set our flag and notify the offload worker.
601 		 * We will handle this rdp until it ever gets de-offloaded.
602 		 */
603 		list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
604 		rcu_segcblist_set_flags(cblist, SEGCBLIST_OFFLOADED);
605 	} else {
606 		/*
607 		 * De-offloading. Clear our flag and notify the de-offload worker.
608 		 * We will ignore this rdp until it ever gets re-offloaded.
609 		 */
610 		list_del(&rdp->nocb_entry_rdp);
611 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_OFFLOADED);
612 	}
613 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
614 }
615 
616 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
617 {
618 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
619 	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
620 					!READ_ONCE(my_rdp->nocb_gp_sleep));
621 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
622 }
623 
624 /*
625  * No-CBs GP kthreads come here to wait for additional callbacks to show up
626  * or for grace periods to end.
627  */
628 static void nocb_gp_wait(struct rcu_data *my_rdp)
629 {
630 	bool bypass = false;
631 	int __maybe_unused cpu = my_rdp->cpu;
632 	unsigned long cur_gp_seq;
633 	unsigned long flags;
634 	bool gotcbs = false;
635 	unsigned long j = jiffies;
636 	bool lazy = false;
637 	bool needwait_gp = false; // This prevents actual uninitialized use.
638 	bool needwake;
639 	bool needwake_gp;
640 	struct rcu_data *rdp, *rdp_toggling = NULL;
641 	struct rcu_node *rnp;
642 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
643 	bool wasempty = false;
644 
645 	/*
646 	 * Each pass through the following loop checks for CBs and for the
647 	 * nearest grace period (if any) to wait for next.  The CB kthreads
648 	 * and the global grace-period kthread are awakened if needed.
649 	 */
650 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
651 	/*
652 	 * An rcu_data structure is removed from the list after its
653 	 * CPU is de-offloaded and added to the list before that CPU is
654 	 * (re-)offloaded.  If the following loop happens to be referencing
655 	 * that rcu_data structure during the time that the corresponding
656 	 * CPU is de-offloaded and then immediately re-offloaded, this
657 	 * loop's rdp pointer will be carried to the end of the list by
658 	 * the resulting pair of list operations.  This can cause the loop
659 	 * to skip over some of the rcu_data structures that were supposed
660 	 * to have been scanned.  Fortunately a new iteration through the
661 	 * entire loop is forced after a given CPU's rcu_data structure
662 	 * is added to the list, so the skipped-over rcu_data structures
663 	 * won't be ignored for long.
664 	 */
665 	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
666 		long bypass_ncbs;
667 		bool flush_bypass = false;
668 		long lazy_ncbs;
669 
670 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
671 		rcu_nocb_lock_irqsave(rdp, flags);
672 		lockdep_assert_held(&rdp->nocb_lock);
673 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
674 		lazy_ncbs = READ_ONCE(rdp->lazy_len);
675 
676 		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
677 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
678 		     bypass_ncbs > 2 * qhimark)) {
679 			flush_bypass = true;
680 		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
681 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
682 		     bypass_ncbs > 2 * qhimark)) {
683 			flush_bypass = true;
684 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
685 			rcu_nocb_unlock_irqrestore(rdp, flags);
686 			continue; /* No callbacks here, try next. */
687 		}
688 
689 		if (flush_bypass) {
690 			// Bypass full or old, so flush it.
691 			(void)rcu_nocb_try_flush_bypass(rdp, j);
692 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
693 			lazy_ncbs = READ_ONCE(rdp->lazy_len);
694 		}
695 
696 		if (bypass_ncbs) {
697 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
698 					    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
699 			if (bypass_ncbs == lazy_ncbs)
700 				lazy = true;
701 			else
702 				bypass = true;
703 		}
704 		rnp = rdp->mynode;
705 
706 		// Advance callbacks if helpful and low contention.
707 		needwake_gp = false;
708 		if (!rcu_segcblist_restempty(&rdp->cblist,
709 					     RCU_NEXT_READY_TAIL) ||
710 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
711 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
712 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
713 			needwake_gp = rcu_advance_cbs(rnp, rdp);
714 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
715 							   RCU_NEXT_READY_TAIL);
716 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
717 		}
718 		// Need to wait on some grace period?
719 		WARN_ON_ONCE(wasempty &&
720 			     !rcu_segcblist_restempty(&rdp->cblist,
721 						      RCU_NEXT_READY_TAIL));
722 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
723 			if (!needwait_gp ||
724 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
725 				wait_gp_seq = cur_gp_seq;
726 			needwait_gp = true;
727 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
728 					    TPS("NeedWaitGP"));
729 		}
730 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
731 			needwake = rdp->nocb_cb_sleep;
732 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
733 		} else {
734 			needwake = false;
735 		}
736 		rcu_nocb_unlock_irqrestore(rdp, flags);
737 		if (needwake) {
738 			swake_up_one(&rdp->nocb_cb_wq);
739 			gotcbs = true;
740 		}
741 		if (needwake_gp)
742 			rcu_gp_kthread_wake();
743 	}
744 
745 	my_rdp->nocb_gp_bypass = bypass;
746 	my_rdp->nocb_gp_gp = needwait_gp;
747 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
748 
749 	// At least one child with non-empty ->nocb_bypass, so set
750 	// timer in order to avoid stranding its callbacks.
751 	if (!rcu_nocb_poll) {
752 		// If bypass list only has lazy CBs. Add a deferred lazy wake up.
753 		if (lazy && !bypass) {
754 			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
755 					TPS("WakeLazyIsDeferred"));
756 		// Otherwise add a deferred bypass wake up.
757 		} else if (bypass) {
758 			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
759 					TPS("WakeBypassIsDeferred"));
760 		}
761 	}
762 
763 	if (rcu_nocb_poll) {
764 		/* Polling, so trace if first poll in the series. */
765 		if (gotcbs)
766 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
767 		if (list_empty(&my_rdp->nocb_head_rdp)) {
768 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
769 			if (!my_rdp->nocb_toggling_rdp)
770 				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
771 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
772 			/* Wait for any offloading rdp */
773 			nocb_gp_sleep(my_rdp, cpu);
774 		} else {
775 			schedule_timeout_idle(1);
776 		}
777 	} else if (!needwait_gp) {
778 		/* Wait for callbacks to appear. */
779 		nocb_gp_sleep(my_rdp, cpu);
780 	} else {
781 		rnp = my_rdp->mynode;
782 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
783 		swait_event_interruptible_exclusive(
784 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
785 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
786 			!READ_ONCE(my_rdp->nocb_gp_sleep));
787 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
788 	}
789 
790 	if (!rcu_nocb_poll) {
791 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
792 		// (De-)queue an rdp to/from the group if its nocb state is changing
793 		rdp_toggling = my_rdp->nocb_toggling_rdp;
794 		if (rdp_toggling)
795 			my_rdp->nocb_toggling_rdp = NULL;
796 
797 		nocb_defer_wakeup_cancel(my_rdp);
798 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
799 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
800 	} else {
801 		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
802 		if (rdp_toggling) {
803 			/*
804 			 * Paranoid locking to make sure nocb_toggling_rdp is well
805 			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
806 			 * race with another round of nocb toggling for this rdp.
807 			 * Nocb locking should prevent from that already but we stick
808 			 * to paranoia, especially in rare path.
809 			 */
810 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
811 			my_rdp->nocb_toggling_rdp = NULL;
812 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
813 		}
814 	}
815 
816 	if (rdp_toggling) {
817 		nocb_gp_toggle_rdp(my_rdp, rdp_toggling);
818 		swake_up_one(&rdp_toggling->nocb_state_wq);
819 	}
820 
821 	my_rdp->nocb_gp_seq = -1;
822 	WARN_ON(signal_pending(current));
823 }
824 
825 /*
826  * No-CBs grace-period-wait kthread.  There is one of these per group
827  * of CPUs, but only once at least one CPU in that group has come online
828  * at least once since boot.  This kthread checks for newly posted
829  * callbacks from any of the CPUs it is responsible for, waits for a
830  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
831  * that then have callback-invocation work to do.
832  */
833 static int rcu_nocb_gp_kthread(void *arg)
834 {
835 	struct rcu_data *rdp = arg;
836 
837 	for (;;) {
838 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
839 		nocb_gp_wait(rdp);
840 		cond_resched_tasks_rcu_qs();
841 	}
842 	return 0;
843 }
844 
845 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
846 {
847 	return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park();
848 }
849 
850 /*
851  * Invoke any ready callbacks from the corresponding no-CBs CPU,
852  * then, if there are no more, wait for more to appear.
853  */
854 static void nocb_cb_wait(struct rcu_data *rdp)
855 {
856 	struct rcu_segcblist *cblist = &rdp->cblist;
857 	unsigned long cur_gp_seq;
858 	unsigned long flags;
859 	bool needwake_gp = false;
860 	struct rcu_node *rnp = rdp->mynode;
861 
862 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
863 					    nocb_cb_wait_cond(rdp));
864 	if (kthread_should_park()) {
865 		/*
866 		 * kthread_park() must be preceded by an rcu_barrier().
867 		 * But yet another rcu_barrier() might have sneaked in between
868 		 * the barrier callback execution and the callbacks counter
869 		 * decrement.
870 		 */
871 		if (rdp->nocb_cb_sleep) {
872 			rcu_nocb_lock_irqsave(rdp, flags);
873 			WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
874 			rcu_nocb_unlock_irqrestore(rdp, flags);
875 			kthread_parkme();
876 		}
877 	} else if (READ_ONCE(rdp->nocb_cb_sleep)) {
878 		WARN_ON(signal_pending(current));
879 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
880 	}
881 
882 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
883 
884 	local_irq_save(flags);
885 	rcu_momentary_eqs();
886 	local_irq_restore(flags);
887 	/*
888 	 * Disable BH to provide the expected environment.  Also, when
889 	 * transitioning to/from NOCB mode, a self-requeuing callback might
890 	 * be invoked from softirq.  A short grace period could cause both
891 	 * instances of this callback would execute concurrently.
892 	 */
893 	local_bh_disable();
894 	rcu_do_batch(rdp);
895 	local_bh_enable();
896 	lockdep_assert_irqs_enabled();
897 	rcu_nocb_lock_irqsave(rdp, flags);
898 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
899 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
900 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
901 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
902 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
903 	}
904 
905 	if (!rcu_segcblist_ready_cbs(cblist)) {
906 		WRITE_ONCE(rdp->nocb_cb_sleep, true);
907 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
908 	} else {
909 		WRITE_ONCE(rdp->nocb_cb_sleep, false);
910 	}
911 
912 	rcu_nocb_unlock_irqrestore(rdp, flags);
913 	if (needwake_gp)
914 		rcu_gp_kthread_wake();
915 }
916 
917 /*
918  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
919  * nocb_cb_wait() to do the dirty work.
920  */
921 static int rcu_nocb_cb_kthread(void *arg)
922 {
923 	struct rcu_data *rdp = arg;
924 
925 	// Each pass through this loop does one callback batch, and,
926 	// if there are no more ready callbacks, waits for them.
927 	for (;;) {
928 		nocb_cb_wait(rdp);
929 		cond_resched_tasks_rcu_qs();
930 	}
931 	return 0;
932 }
933 
934 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
935 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
936 {
937 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
938 }
939 
940 /* Do a deferred wakeup of rcu_nocb_kthread(). */
941 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
942 					   struct rcu_data *rdp, int level,
943 					   unsigned long flags)
944 	__releases(rdp_gp->nocb_gp_lock)
945 {
946 	int ret;
947 
948 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
949 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
950 		return false;
951 	}
952 
953 	ret = __wake_nocb_gp(rdp_gp, rdp, flags);
954 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
955 
956 	return ret;
957 }
958 
959 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
960 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
961 {
962 	unsigned long flags;
963 	struct rcu_data *rdp = timer_container_of(rdp, t, nocb_timer);
964 
965 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
966 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
967 
968 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
969 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
970 }
971 
972 /*
973  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
974  * This means we do an inexact common-case check.  Note that if
975  * we miss, ->nocb_timer will eventually clean things up.
976  */
977 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
978 {
979 	unsigned long flags;
980 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
981 
982 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
983 		return false;
984 
985 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
986 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
987 }
988 
989 void rcu_nocb_flush_deferred_wakeup(void)
990 {
991 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
992 }
993 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
994 
995 static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp)
996 {
997 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
998 	bool wake_gp = false;
999 	unsigned long flags;
1000 
1001 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1002 	// Queue this rdp for add/del to/from the list to iterate on rcuog
1003 	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1004 	if (rdp_gp->nocb_gp_sleep) {
1005 		rdp_gp->nocb_gp_sleep = false;
1006 		wake_gp = true;
1007 	}
1008 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1009 
1010 	return wake_gp;
1011 }
1012 
1013 static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp)
1014 {
1015 	unsigned long flags;
1016 	bool ret;
1017 
1018 	/*
1019 	 * Locking makes sure rcuog is done handling this rdp before deoffloaded
1020 	 * enqueue can happen. Also it keeps the SEGCBLIST_OFFLOADED flag stable
1021 	 * while the ->nocb_lock is held.
1022 	 */
1023 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1024 	ret = !rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1025 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1026 
1027 	return ret;
1028 }
1029 
1030 static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp)
1031 {
1032 	unsigned long flags;
1033 	int wake_gp;
1034 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1035 
1036 	/* CPU must be offline, unless it's early boot */
1037 	WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id());
1038 
1039 	pr_info("De-offloading %d\n", rdp->cpu);
1040 
1041 	/* Flush all callbacks from segcblist and bypass */
1042 	rcu_barrier();
1043 
1044 	/*
1045 	 * Make sure the rcuoc kthread isn't in the middle of a nocb locked
1046 	 * sequence while offloading is deactivated, along with nocb locking.
1047 	 */
1048 	if (rdp->nocb_cb_kthread)
1049 		kthread_park(rdp->nocb_cb_kthread);
1050 
1051 	rcu_nocb_lock_irqsave(rdp, flags);
1052 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1053 	WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1054 	rcu_nocb_unlock_irqrestore(rdp, flags);
1055 
1056 	wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1057 
1058 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1059 
1060 	if (rdp_gp->nocb_gp_kthread) {
1061 		if (wake_gp)
1062 			wake_up_process(rdp_gp->nocb_gp_kthread);
1063 
1064 		swait_event_exclusive(rdp->nocb_state_wq,
1065 				      rcu_nocb_rdp_deoffload_wait_cond(rdp));
1066 	} else {
1067 		/*
1068 		 * No kthread to clear the flags for us or remove the rdp from the nocb list
1069 		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1070 		 * but we stick to paranoia in this rare path.
1071 		 */
1072 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1073 		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1074 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1075 
1076 		list_del(&rdp->nocb_entry_rdp);
1077 	}
1078 
1079 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1080 
1081 	return 0;
1082 }
1083 
1084 int rcu_nocb_cpu_deoffload(int cpu)
1085 {
1086 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1087 	int ret = 0;
1088 
1089 	cpus_read_lock();
1090 	mutex_lock(&rcu_state.nocb_mutex);
1091 	if (rcu_rdp_is_offloaded(rdp)) {
1092 		if (!cpu_online(cpu)) {
1093 			ret = rcu_nocb_rdp_deoffload(rdp);
1094 			if (!ret)
1095 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1096 		} else {
1097 			pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu);
1098 			ret = -EINVAL;
1099 		}
1100 	}
1101 	mutex_unlock(&rcu_state.nocb_mutex);
1102 	cpus_read_unlock();
1103 
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1107 
1108 static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp)
1109 {
1110 	unsigned long flags;
1111 	bool ret;
1112 
1113 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1114 	ret = rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1115 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1116 
1117 	return ret;
1118 }
1119 
1120 static int rcu_nocb_rdp_offload(struct rcu_data *rdp)
1121 {
1122 	int wake_gp;
1123 
1124 	WARN_ON_ONCE(cpu_online(rdp->cpu));
1125 	/*
1126 	 * For now we only support re-offload, ie: the rdp must have been
1127 	 * offloaded on boot first.
1128 	 */
1129 	if (!rdp->nocb_gp_rdp)
1130 		return -EINVAL;
1131 
1132 	if (WARN_ON_ONCE(!rdp->nocb_gp_kthread))
1133 		return -EINVAL;
1134 
1135 	pr_info("Offloading %d\n", rdp->cpu);
1136 
1137 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1138 	WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
1139 
1140 	wake_gp = rcu_nocb_queue_toggle_rdp(rdp);
1141 	if (wake_gp)
1142 		wake_up_process(rdp->nocb_gp_kthread);
1143 
1144 	swait_event_exclusive(rdp->nocb_state_wq,
1145 			      rcu_nocb_rdp_offload_wait_cond(rdp));
1146 
1147 	kthread_unpark(rdp->nocb_cb_kthread);
1148 
1149 	return 0;
1150 }
1151 
1152 int rcu_nocb_cpu_offload(int cpu)
1153 {
1154 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1155 	int ret = 0;
1156 
1157 	cpus_read_lock();
1158 	mutex_lock(&rcu_state.nocb_mutex);
1159 	if (!rcu_rdp_is_offloaded(rdp)) {
1160 		if (!cpu_online(cpu)) {
1161 			ret = rcu_nocb_rdp_offload(rdp);
1162 			if (!ret)
1163 				cpumask_set_cpu(cpu, rcu_nocb_mask);
1164 		} else {
1165 			pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu);
1166 			ret = -EINVAL;
1167 		}
1168 	}
1169 	mutex_unlock(&rcu_state.nocb_mutex);
1170 	cpus_read_unlock();
1171 
1172 	return ret;
1173 }
1174 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1175 
1176 #ifdef CONFIG_RCU_LAZY
1177 static unsigned long
1178 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1179 {
1180 	int cpu;
1181 	unsigned long count = 0;
1182 
1183 	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1184 		return 0;
1185 
1186 	/*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1187 	if (!mutex_trylock(&rcu_state.nocb_mutex))
1188 		return 0;
1189 
1190 	/* Snapshot count of all CPUs */
1191 	for_each_cpu(cpu, rcu_nocb_mask) {
1192 		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1193 
1194 		count +=  READ_ONCE(rdp->lazy_len);
1195 	}
1196 
1197 	mutex_unlock(&rcu_state.nocb_mutex);
1198 
1199 	return count ? count : SHRINK_EMPTY;
1200 }
1201 
1202 static unsigned long
1203 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1204 {
1205 	int cpu;
1206 	unsigned long flags;
1207 	unsigned long count = 0;
1208 
1209 	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1210 		return 0;
1211 	/*
1212 	 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1213 	 * may be ignored or imbalanced.
1214 	 */
1215 	if (!mutex_trylock(&rcu_state.nocb_mutex)) {
1216 		/*
1217 		 * But really don't insist if nocb_mutex is contended since we
1218 		 * can't guarantee that it will never engage in a dependency
1219 		 * chain involving memory allocation. The lock is seldom contended
1220 		 * anyway.
1221 		 */
1222 		return 0;
1223 	}
1224 
1225 	/* Snapshot count of all CPUs */
1226 	for_each_cpu(cpu, rcu_nocb_mask) {
1227 		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1228 		int _count;
1229 
1230 		if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1231 			continue;
1232 
1233 		if (!READ_ONCE(rdp->lazy_len))
1234 			continue;
1235 
1236 		rcu_nocb_lock_irqsave(rdp, flags);
1237 		/*
1238 		 * Recheck under the nocb lock. Since we are not holding the bypass
1239 		 * lock we may still race with increments from the enqueuer but still
1240 		 * we know for sure if there is at least one lazy callback.
1241 		 */
1242 		_count = READ_ONCE(rdp->lazy_len);
1243 		if (!_count) {
1244 			rcu_nocb_unlock_irqrestore(rdp, flags);
1245 			continue;
1246 		}
1247 		rcu_nocb_try_flush_bypass(rdp, jiffies);
1248 		rcu_nocb_unlock_irqrestore(rdp, flags);
1249 		wake_nocb_gp(rdp);
1250 		sc->nr_to_scan -= _count;
1251 		count += _count;
1252 		if (sc->nr_to_scan <= 0)
1253 			break;
1254 	}
1255 
1256 	mutex_unlock(&rcu_state.nocb_mutex);
1257 
1258 	return count ? count : SHRINK_STOP;
1259 }
1260 #endif // #ifdef CONFIG_RCU_LAZY
1261 
1262 void __init rcu_init_nohz(void)
1263 {
1264 	int cpu;
1265 	struct rcu_data *rdp;
1266 	const struct cpumask *cpumask = NULL;
1267 	struct shrinker * __maybe_unused lazy_rcu_shrinker;
1268 
1269 #if defined(CONFIG_NO_HZ_FULL)
1270 	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1271 		cpumask = tick_nohz_full_mask;
1272 #endif
1273 
1274 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1275 	    !rcu_state.nocb_is_setup && !cpumask)
1276 		cpumask = cpu_possible_mask;
1277 
1278 	if (cpumask) {
1279 		if (!cpumask_available(rcu_nocb_mask)) {
1280 			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1281 				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1282 				return;
1283 			}
1284 		}
1285 
1286 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1287 		rcu_state.nocb_is_setup = true;
1288 	}
1289 
1290 	if (!rcu_state.nocb_is_setup)
1291 		return;
1292 
1293 #ifdef CONFIG_RCU_LAZY
1294 	lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1295 	if (!lazy_rcu_shrinker) {
1296 		pr_err("Failed to allocate lazy_rcu shrinker!\n");
1297 	} else {
1298 		lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1299 		lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1300 
1301 		shrinker_register(lazy_rcu_shrinker);
1302 	}
1303 #endif // #ifdef CONFIG_RCU_LAZY
1304 
1305 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1306 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1307 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1308 			    rcu_nocb_mask);
1309 	}
1310 	if (cpumask_empty(rcu_nocb_mask))
1311 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1312 	else
1313 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1314 			cpumask_pr_args(rcu_nocb_mask));
1315 	if (rcu_nocb_poll)
1316 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1317 
1318 	for_each_cpu(cpu, rcu_nocb_mask) {
1319 		rdp = per_cpu_ptr(&rcu_data, cpu);
1320 		if (rcu_segcblist_empty(&rdp->cblist))
1321 			rcu_segcblist_init(&rdp->cblist);
1322 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_OFFLOADED);
1323 	}
1324 	rcu_organize_nocb_kthreads();
1325 }
1326 
1327 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1328 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1329 {
1330 	init_swait_queue_head(&rdp->nocb_cb_wq);
1331 	init_swait_queue_head(&rdp->nocb_gp_wq);
1332 	init_swait_queue_head(&rdp->nocb_state_wq);
1333 	raw_spin_lock_init(&rdp->nocb_lock);
1334 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1335 	raw_spin_lock_init(&rdp->nocb_gp_lock);
1336 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1337 	rcu_cblist_init(&rdp->nocb_bypass);
1338 	WRITE_ONCE(rdp->lazy_len, 0);
1339 	mutex_init(&rdp->nocb_gp_kthread_mutex);
1340 }
1341 
1342 /*
1343  * If the specified CPU is a no-CBs CPU that does not already have its
1344  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1345  * for this CPU's group has not yet been created, spawn it as well.
1346  */
1347 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1348 {
1349 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1350 	struct rcu_data *rdp_gp;
1351 	struct task_struct *t;
1352 	struct sched_param sp;
1353 
1354 	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1355 		return;
1356 
1357 	/* If there already is an rcuo kthread, then nothing to do. */
1358 	if (rdp->nocb_cb_kthread)
1359 		return;
1360 
1361 	/* If we didn't spawn the GP kthread first, reorganize! */
1362 	sp.sched_priority = kthread_prio;
1363 	rdp_gp = rdp->nocb_gp_rdp;
1364 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1365 	if (!rdp_gp->nocb_gp_kthread) {
1366 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1367 				"rcuog/%d", rdp_gp->cpu);
1368 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1369 			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1370 			goto err;
1371 		}
1372 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1373 		if (kthread_prio)
1374 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1375 	}
1376 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1377 
1378 	/* Spawn the kthread for this CPU. */
1379 	t = kthread_create(rcu_nocb_cb_kthread, rdp,
1380 			   "rcuo%c/%d", rcu_state.abbr, cpu);
1381 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1382 		goto err;
1383 
1384 	if (rcu_rdp_is_offloaded(rdp))
1385 		wake_up_process(t);
1386 	else
1387 		kthread_park(t);
1388 
1389 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1390 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1391 
1392 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1393 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1394 	return;
1395 
1396 err:
1397 	/*
1398 	 * No need to protect against concurrent rcu_barrier()
1399 	 * because the number of callbacks should be 0 for a non-boot CPU,
1400 	 * therefore rcu_barrier() shouldn't even try to grab the nocb_lock.
1401 	 * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker.
1402 	 */
1403 	WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist));
1404 	mutex_lock(&rcu_state.nocb_mutex);
1405 	if (rcu_rdp_is_offloaded(rdp)) {
1406 		rcu_nocb_rdp_deoffload(rdp);
1407 		cpumask_clear_cpu(cpu, rcu_nocb_mask);
1408 	}
1409 	mutex_unlock(&rcu_state.nocb_mutex);
1410 }
1411 
1412 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1413 static int rcu_nocb_gp_stride = -1;
1414 module_param(rcu_nocb_gp_stride, int, 0444);
1415 
1416 /*
1417  * Initialize GP-CB relationships for all no-CBs CPU.
1418  */
1419 static void __init rcu_organize_nocb_kthreads(void)
1420 {
1421 	int cpu;
1422 	bool firsttime = true;
1423 	bool gotnocbs = false;
1424 	bool gotnocbscbs = true;
1425 	int ls = rcu_nocb_gp_stride;
1426 	int nl = 0;  /* Next GP kthread. */
1427 	struct rcu_data *rdp;
1428 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1429 
1430 	if (!cpumask_available(rcu_nocb_mask))
1431 		return;
1432 	if (ls == -1) {
1433 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1434 		rcu_nocb_gp_stride = ls;
1435 	}
1436 
1437 	/*
1438 	 * Each pass through this loop sets up one rcu_data structure.
1439 	 * Should the corresponding CPU come online in the future, then
1440 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1441 	 */
1442 	for_each_possible_cpu(cpu) {
1443 		rdp = per_cpu_ptr(&rcu_data, cpu);
1444 		if (rdp->cpu >= nl) {
1445 			/* New GP kthread, set up for CBs & next GP. */
1446 			gotnocbs = true;
1447 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1448 			rdp_gp = rdp;
1449 			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1450 			if (dump_tree) {
1451 				if (!firsttime)
1452 					pr_cont("%s\n", gotnocbscbs
1453 							? "" : " (self only)");
1454 				gotnocbscbs = false;
1455 				firsttime = false;
1456 				pr_alert("%s: No-CB GP kthread CPU %d:",
1457 					 __func__, cpu);
1458 			}
1459 		} else {
1460 			/* Another CB kthread, link to previous GP kthread. */
1461 			gotnocbscbs = true;
1462 			if (dump_tree)
1463 				pr_cont(" %d", cpu);
1464 		}
1465 		rdp->nocb_gp_rdp = rdp_gp;
1466 		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1467 			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1468 	}
1469 	if (gotnocbs && dump_tree)
1470 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1471 }
1472 
1473 /*
1474  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1475  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1476  */
1477 void rcu_bind_current_to_nocb(void)
1478 {
1479 	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1480 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1481 }
1482 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1483 
1484 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1485 #ifdef CONFIG_SMP
1486 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1487 {
1488 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1489 }
1490 #else // #ifdef CONFIG_SMP
1491 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1492 {
1493 	return "";
1494 }
1495 #endif // #else #ifdef CONFIG_SMP
1496 
1497 /*
1498  * Dump out nocb grace-period kthread state for the specified rcu_data
1499  * structure.
1500  */
1501 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1502 {
1503 	struct rcu_node *rnp = rdp->mynode;
1504 
1505 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1506 		rdp->cpu,
1507 		"kK"[!!rdp->nocb_gp_kthread],
1508 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1509 		"dD"[!!rdp->nocb_defer_wakeup],
1510 		"tT"[timer_pending(&rdp->nocb_timer)],
1511 		"sS"[!!rdp->nocb_gp_sleep],
1512 		".W"[swait_active(&rdp->nocb_gp_wq)],
1513 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1514 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1515 		".B"[!!rdp->nocb_gp_bypass],
1516 		".G"[!!rdp->nocb_gp_gp],
1517 		(long)rdp->nocb_gp_seq,
1518 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1519 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1520 		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1521 		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1522 }
1523 
1524 /* Dump out nocb kthread state for the specified rcu_data structure. */
1525 static void show_rcu_nocb_state(struct rcu_data *rdp)
1526 {
1527 	char bufd[22];
1528 	char bufw[45];
1529 	char bufr[45];
1530 	char bufn[22];
1531 	char bufb[22];
1532 	struct rcu_data *nocb_next_rdp;
1533 	struct rcu_segcblist *rsclp = &rdp->cblist;
1534 	bool waslocked;
1535 	bool wassleep;
1536 
1537 	if (rdp->nocb_gp_rdp == rdp)
1538 		show_rcu_nocb_gp_state(rdp);
1539 
1540 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1541 		return;
1542 
1543 	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1544 					      &rdp->nocb_entry_rdp,
1545 					      typeof(*rdp),
1546 					      nocb_entry_rdp);
1547 
1548 	sprintf(bufd, "%ld", rsclp->seglen[RCU_DONE_TAIL]);
1549 	sprintf(bufw, "%ld(%ld)", rsclp->seglen[RCU_WAIT_TAIL], rsclp->gp_seq[RCU_WAIT_TAIL]);
1550 	sprintf(bufr, "%ld(%ld)", rsclp->seglen[RCU_NEXT_READY_TAIL],
1551 		      rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1552 	sprintf(bufn, "%ld", rsclp->seglen[RCU_NEXT_TAIL]);
1553 	sprintf(bufb, "%ld", rcu_cblist_n_cbs(&rdp->nocb_bypass));
1554 	pr_info("   CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%s%c%s%c%s%c%s%c%s q%ld %c CPU %d%s\n",
1555 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1556 		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1557 		"kK"[!!rdp->nocb_cb_kthread],
1558 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1559 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1560 		"sS"[!!rdp->nocb_cb_sleep],
1561 		".W"[swait_active(&rdp->nocb_cb_wq)],
1562 		jiffies - rdp->nocb_bypass_first,
1563 		jiffies - rdp->nocb_nobypass_last,
1564 		rdp->nocb_nobypass_count,
1565 		".D"[rcu_segcblist_ready_cbs(rsclp)],
1566 		rcu_segcblist_segempty(rsclp, RCU_DONE_TAIL) ? "" : bufd,
1567 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1568 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1569 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1570 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1571 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1572 		rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL) ? "" : bufn,
1573 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1574 		!rcu_cblist_n_cbs(&rdp->nocb_bypass) ? "" : bufb,
1575 		rcu_segcblist_n_cbs(&rdp->cblist),
1576 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1577 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1578 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1579 
1580 	/* It is OK for GP kthreads to have GP state. */
1581 	if (rdp->nocb_gp_rdp == rdp)
1582 		return;
1583 
1584 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1585 	wassleep = swait_active(&rdp->nocb_gp_wq);
1586 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1587 		return;  /* Nothing untoward. */
1588 
1589 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1590 		"lL"[waslocked],
1591 		"dD"[!!rdp->nocb_defer_wakeup],
1592 		"sS"[!!rdp->nocb_gp_sleep],
1593 		".W"[wassleep]);
1594 }
1595 
1596 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1597 
1598 /* No ->nocb_lock to acquire.  */
1599 static void rcu_nocb_lock(struct rcu_data *rdp)
1600 {
1601 }
1602 
1603 /* No ->nocb_lock to release.  */
1604 static void rcu_nocb_unlock(struct rcu_data *rdp)
1605 {
1606 }
1607 
1608 /* No ->nocb_lock to release.  */
1609 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1610 				       unsigned long flags)
1611 {
1612 	local_irq_restore(flags);
1613 }
1614 
1615 /* Lockdep check that ->cblist may be safely accessed. */
1616 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1617 {
1618 	lockdep_assert_irqs_disabled();
1619 }
1620 
1621 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1622 {
1623 }
1624 
1625 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1626 {
1627 	return NULL;
1628 }
1629 
1630 static void rcu_init_one_nocb(struct rcu_node *rnp)
1631 {
1632 }
1633 
1634 static bool wake_nocb_gp(struct rcu_data *rdp)
1635 {
1636 	return false;
1637 }
1638 
1639 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1640 				  unsigned long j, bool lazy)
1641 {
1642 	return true;
1643 }
1644 
1645 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1646 			  rcu_callback_t func, unsigned long flags, bool lazy)
1647 {
1648 	WARN_ON_ONCE(1);  /* Should be dead code! */
1649 }
1650 
1651 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1652 				 unsigned long flags)
1653 {
1654 	WARN_ON_ONCE(1);  /* Should be dead code! */
1655 }
1656 
1657 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1658 {
1659 }
1660 
1661 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1662 {
1663 	return false;
1664 }
1665 
1666 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1667 {
1668 	return false;
1669 }
1670 
1671 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1672 {
1673 }
1674 
1675 static void show_rcu_nocb_state(struct rcu_data *rdp)
1676 {
1677 }
1678 
1679 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1680