1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 1; 81 } 82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, perform minimal sanity check. 95 */ 96 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 97 __acquires(&rdp->nocb_bypass_lock) 98 { 99 lockdep_assert_irqs_disabled(); 100 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 101 return; 102 /* 103 * Contention expected only when local enqueue collide with 104 * remote flush from kthreads. 105 */ 106 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 107 raw_spin_lock(&rdp->nocb_bypass_lock); 108 } 109 110 /* 111 * Conditionally acquire the specified rcu_data structure's 112 * ->nocb_bypass_lock. 113 */ 114 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 115 { 116 lockdep_assert_irqs_disabled(); 117 return raw_spin_trylock(&rdp->nocb_bypass_lock); 118 } 119 120 /* 121 * Release the specified rcu_data structure's ->nocb_bypass_lock. 122 */ 123 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 124 __releases(&rdp->nocb_bypass_lock) 125 { 126 lockdep_assert_irqs_disabled(); 127 raw_spin_unlock(&rdp->nocb_bypass_lock); 128 } 129 130 /* 131 * Acquire the specified rcu_data structure's ->nocb_lock, but only 132 * if it corresponds to a no-CBs CPU. 133 */ 134 static void rcu_nocb_lock(struct rcu_data *rdp) 135 { 136 lockdep_assert_irqs_disabled(); 137 if (!rcu_rdp_is_offloaded(rdp)) 138 return; 139 raw_spin_lock(&rdp->nocb_lock); 140 } 141 142 /* 143 * Release the specified rcu_data structure's ->nocb_lock, but only 144 * if it corresponds to a no-CBs CPU. 145 */ 146 static void rcu_nocb_unlock(struct rcu_data *rdp) 147 { 148 if (rcu_rdp_is_offloaded(rdp)) { 149 lockdep_assert_irqs_disabled(); 150 raw_spin_unlock(&rdp->nocb_lock); 151 } 152 } 153 154 /* 155 * Release the specified rcu_data structure's ->nocb_lock and restore 156 * interrupts, but only if it corresponds to a no-CBs CPU. 157 */ 158 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 159 unsigned long flags) 160 { 161 if (rcu_rdp_is_offloaded(rdp)) { 162 lockdep_assert_irqs_disabled(); 163 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 164 } else { 165 local_irq_restore(flags); 166 } 167 } 168 169 /* Lockdep check that ->cblist may be safely accessed. */ 170 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 171 { 172 lockdep_assert_irqs_disabled(); 173 if (rcu_rdp_is_offloaded(rdp)) 174 lockdep_assert_held(&rdp->nocb_lock); 175 } 176 177 /* 178 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 179 * grace period. 180 */ 181 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 182 { 183 swake_up_all(sq); 184 } 185 186 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 187 { 188 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 189 } 190 191 static void rcu_init_one_nocb(struct rcu_node *rnp) 192 { 193 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 194 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 195 } 196 197 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 198 struct rcu_data *rdp, 199 bool force, unsigned long flags) 200 __releases(rdp_gp->nocb_gp_lock) 201 { 202 bool needwake = false; 203 204 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 205 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 206 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 207 TPS("AlreadyAwake")); 208 return false; 209 } 210 211 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 212 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 213 del_timer(&rdp_gp->nocb_timer); 214 } 215 216 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 217 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 218 needwake = true; 219 } 220 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 221 if (needwake) { 222 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 223 wake_up_process(rdp_gp->nocb_gp_kthread); 224 } 225 226 return needwake; 227 } 228 229 /* 230 * Kick the GP kthread for this NOCB group. 231 */ 232 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 233 { 234 unsigned long flags; 235 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 236 237 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 238 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 239 } 240 241 #ifdef CONFIG_RCU_LAZY 242 /* 243 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 244 * can elapse before lazy callbacks are flushed. Lazy callbacks 245 * could be flushed much earlier for a number of other reasons 246 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 247 * left unsubmitted to RCU after those many jiffies. 248 */ 249 #define LAZY_FLUSH_JIFFIES (10 * HZ) 250 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES; 251 252 // To be called only from test code. 253 void rcu_set_jiffies_lazy_flush(unsigned long jif) 254 { 255 jiffies_lazy_flush = jif; 256 } 257 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush); 258 259 unsigned long rcu_get_jiffies_lazy_flush(void) 260 { 261 return jiffies_lazy_flush; 262 } 263 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush); 264 #endif 265 266 /* 267 * Arrange to wake the GP kthread for this NOCB group at some future 268 * time when it is safe to do so. 269 */ 270 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 271 const char *reason) 272 { 273 unsigned long flags; 274 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 275 276 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 277 278 /* 279 * Bypass wakeup overrides previous deferments. In case of 280 * callback storms, no need to wake up too early. 281 */ 282 if (waketype == RCU_NOCB_WAKE_LAZY && 283 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 284 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush()); 285 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 286 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 287 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 288 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 289 } else { 290 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 291 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 292 if (rdp_gp->nocb_defer_wakeup < waketype) 293 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 294 } 295 296 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 297 298 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 299 } 300 301 /* 302 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 303 * However, if there is a callback to be enqueued and if ->nocb_bypass 304 * proves to be initially empty, just return false because the no-CB GP 305 * kthread may need to be awakened in this case. 306 * 307 * Return true if there was something to be flushed and it succeeded, otherwise 308 * false. 309 * 310 * Note that this function always returns true if rhp is NULL. 311 */ 312 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 313 unsigned long j, bool lazy) 314 { 315 struct rcu_cblist rcl; 316 struct rcu_head *rhp = rhp_in; 317 318 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 319 rcu_lockdep_assert_cblist_protected(rdp); 320 lockdep_assert_held(&rdp->nocb_bypass_lock); 321 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 322 raw_spin_unlock(&rdp->nocb_bypass_lock); 323 return false; 324 } 325 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 326 if (rhp) 327 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 328 329 /* 330 * If the new CB requested was a lazy one, queue it onto the main 331 * ->cblist so that we can take advantage of the grace-period that will 332 * happen regardless. But queue it onto the bypass list first so that 333 * the lazy CB is ordered with the existing CBs in the bypass list. 334 */ 335 if (lazy && rhp) { 336 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 337 rhp = NULL; 338 } 339 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 340 WRITE_ONCE(rdp->lazy_len, 0); 341 342 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 343 WRITE_ONCE(rdp->nocb_bypass_first, j); 344 rcu_nocb_bypass_unlock(rdp); 345 return true; 346 } 347 348 /* 349 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 350 * However, if there is a callback to be enqueued and if ->nocb_bypass 351 * proves to be initially empty, just return false because the no-CB GP 352 * kthread may need to be awakened in this case. 353 * 354 * Note that this function always returns true if rhp is NULL. 355 */ 356 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 357 unsigned long j, bool lazy) 358 { 359 if (!rcu_rdp_is_offloaded(rdp)) 360 return true; 361 rcu_lockdep_assert_cblist_protected(rdp); 362 rcu_nocb_bypass_lock(rdp); 363 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 364 } 365 366 /* 367 * If the ->nocb_bypass_lock is immediately available, flush the 368 * ->nocb_bypass queue into ->cblist. 369 */ 370 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 371 { 372 rcu_lockdep_assert_cblist_protected(rdp); 373 if (!rcu_rdp_is_offloaded(rdp) || 374 !rcu_nocb_bypass_trylock(rdp)) 375 return; 376 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 377 } 378 379 /* 380 * See whether it is appropriate to use the ->nocb_bypass list in order 381 * to control contention on ->nocb_lock. A limited number of direct 382 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 383 * is non-empty, further callbacks must be placed into ->nocb_bypass, 384 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 385 * back to direct use of ->cblist. However, ->nocb_bypass should not be 386 * used if ->cblist is empty, because otherwise callbacks can be stranded 387 * on ->nocb_bypass because we cannot count on the current CPU ever again 388 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 389 * non-empty, the corresponding no-CBs grace-period kthread must not be 390 * in an indefinite sleep state. 391 * 392 * Finally, it is not permitted to use the bypass during early boot, 393 * as doing so would confuse the auto-initialization code. Besides 394 * which, there is no point in worrying about lock contention while 395 * there is only one CPU in operation. 396 */ 397 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 398 bool *was_alldone, unsigned long flags, 399 bool lazy) 400 { 401 unsigned long c; 402 unsigned long cur_gp_seq; 403 unsigned long j = jiffies; 404 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 405 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 406 407 lockdep_assert_irqs_disabled(); 408 409 // Pure softirq/rcuc based processing: no bypassing, no 410 // locking. 411 if (!rcu_rdp_is_offloaded(rdp)) { 412 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 413 return false; 414 } 415 416 // In the process of (de-)offloading: no bypassing, but 417 // locking. 418 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 419 rcu_nocb_lock(rdp); 420 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 421 return false; /* Not offloaded, no bypassing. */ 422 } 423 424 // Don't use ->nocb_bypass during early boot. 425 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 426 rcu_nocb_lock(rdp); 427 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 428 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 429 return false; 430 } 431 432 // If we have advanced to a new jiffy, reset counts to allow 433 // moving back from ->nocb_bypass to ->cblist. 434 if (j == rdp->nocb_nobypass_last) { 435 c = rdp->nocb_nobypass_count + 1; 436 } else { 437 WRITE_ONCE(rdp->nocb_nobypass_last, j); 438 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 439 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 440 nocb_nobypass_lim_per_jiffy)) 441 c = 0; 442 else if (c > nocb_nobypass_lim_per_jiffy) 443 c = nocb_nobypass_lim_per_jiffy; 444 } 445 WRITE_ONCE(rdp->nocb_nobypass_count, c); 446 447 // If there hasn't yet been all that many ->cblist enqueues 448 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 449 // ->nocb_bypass first. 450 // Lazy CBs throttle this back and do immediate bypass queuing. 451 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 452 rcu_nocb_lock(rdp); 453 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 454 if (*was_alldone) 455 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 456 TPS("FirstQ")); 457 458 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 459 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 460 return false; // Caller must enqueue the callback. 461 } 462 463 // If ->nocb_bypass has been used too long or is too full, 464 // flush ->nocb_bypass to ->cblist. 465 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 466 (ncbs && bypass_is_lazy && 467 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) || 468 ncbs >= qhimark) { 469 rcu_nocb_lock(rdp); 470 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 471 472 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 473 if (*was_alldone) 474 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 475 TPS("FirstQ")); 476 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 477 return false; // Caller must enqueue the callback. 478 } 479 if (j != rdp->nocb_gp_adv_time && 480 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 481 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 482 rcu_advance_cbs_nowake(rdp->mynode, rdp); 483 rdp->nocb_gp_adv_time = j; 484 } 485 486 // The flush succeeded and we moved CBs into the regular list. 487 // Don't wait for the wake up timer as it may be too far ahead. 488 // Wake up the GP thread now instead, if the cblist was empty. 489 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 490 491 return true; // Callback already enqueued. 492 } 493 494 // We need to use the bypass. 495 rcu_nocb_bypass_lock(rdp); 496 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 497 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 498 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 499 500 if (lazy) 501 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 502 503 if (!ncbs) { 504 WRITE_ONCE(rdp->nocb_bypass_first, j); 505 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 506 } 507 rcu_nocb_bypass_unlock(rdp); 508 smp_mb(); /* Order enqueue before wake. */ 509 // A wake up of the grace period kthread or timer adjustment 510 // needs to be done only if: 511 // 1. Bypass list was fully empty before (this is the first 512 // bypass list entry), or: 513 // 2. Both of these conditions are met: 514 // a. The bypass list previously had only lazy CBs, and: 515 // b. The new CB is non-lazy. 516 if (!ncbs || (bypass_is_lazy && !lazy)) { 517 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 518 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 519 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 520 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 521 TPS("FirstBQwake")); 522 __call_rcu_nocb_wake(rdp, true, flags); 523 } else { 524 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 525 TPS("FirstBQnoWake")); 526 rcu_nocb_unlock(rdp); 527 } 528 } 529 return true; // Callback already enqueued. 530 } 531 532 /* 533 * Awaken the no-CBs grace-period kthread if needed, either due to it 534 * legitimately being asleep or due to overload conditions. 535 * 536 * If warranted, also wake up the kthread servicing this CPUs queues. 537 */ 538 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 539 unsigned long flags) 540 __releases(rdp->nocb_lock) 541 { 542 long bypass_len; 543 unsigned long cur_gp_seq; 544 unsigned long j; 545 long lazy_len; 546 long len; 547 struct task_struct *t; 548 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 549 550 // If we are being polled or there is no kthread, just leave. 551 t = READ_ONCE(rdp->nocb_gp_kthread); 552 if (rcu_nocb_poll || !t) { 553 rcu_nocb_unlock(rdp); 554 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 555 TPS("WakeNotPoll")); 556 return; 557 } 558 // Need to actually to a wakeup. 559 len = rcu_segcblist_n_cbs(&rdp->cblist); 560 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 561 lazy_len = READ_ONCE(rdp->lazy_len); 562 if (was_alldone) { 563 rdp->qlen_last_fqs_check = len; 564 // Only lazy CBs in bypass list 565 if (lazy_len && bypass_len == lazy_len) { 566 rcu_nocb_unlock(rdp); 567 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 568 TPS("WakeLazy")); 569 } else if (!irqs_disabled_flags(flags)) { 570 /* ... if queue was empty ... */ 571 rcu_nocb_unlock(rdp); 572 wake_nocb_gp(rdp, false); 573 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 574 TPS("WakeEmpty")); 575 } else { 576 rcu_nocb_unlock(rdp); 577 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 578 TPS("WakeEmptyIsDeferred")); 579 } 580 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 581 /* ... or if many callbacks queued. */ 582 rdp->qlen_last_fqs_check = len; 583 j = jiffies; 584 if (j != rdp->nocb_gp_adv_time && 585 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 586 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 587 rcu_advance_cbs_nowake(rdp->mynode, rdp); 588 rdp->nocb_gp_adv_time = j; 589 } 590 smp_mb(); /* Enqueue before timer_pending(). */ 591 if ((rdp->nocb_cb_sleep || 592 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 593 !timer_pending(&rdp_gp->nocb_timer)) { 594 rcu_nocb_unlock(rdp); 595 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 596 TPS("WakeOvfIsDeferred")); 597 } else { 598 rcu_nocb_unlock(rdp); 599 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 600 } 601 } else { 602 rcu_nocb_unlock(rdp); 603 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 604 } 605 } 606 607 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 608 rcu_callback_t func, unsigned long flags, bool lazy) 609 { 610 bool was_alldone; 611 612 if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) { 613 /* Not enqueued on bypass but locked, do regular enqueue */ 614 rcutree_enqueue(rdp, head, func); 615 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 616 } 617 } 618 619 static int nocb_gp_toggle_rdp(struct rcu_data *rdp) 620 { 621 struct rcu_segcblist *cblist = &rdp->cblist; 622 unsigned long flags; 623 int ret; 624 625 rcu_nocb_lock_irqsave(rdp, flags); 626 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 627 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 628 /* 629 * Offloading. Set our flag and notify the offload worker. 630 * We will handle this rdp until it ever gets de-offloaded. 631 */ 632 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 633 ret = 1; 634 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 635 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 636 /* 637 * De-offloading. Clear our flag and notify the de-offload worker. 638 * We will ignore this rdp until it ever gets re-offloaded. 639 */ 640 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 641 ret = 0; 642 } else { 643 WARN_ON_ONCE(1); 644 ret = -1; 645 } 646 647 rcu_nocb_unlock_irqrestore(rdp, flags); 648 649 return ret; 650 } 651 652 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 653 { 654 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 655 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 656 !READ_ONCE(my_rdp->nocb_gp_sleep)); 657 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 658 } 659 660 /* 661 * No-CBs GP kthreads come here to wait for additional callbacks to show up 662 * or for grace periods to end. 663 */ 664 static void nocb_gp_wait(struct rcu_data *my_rdp) 665 { 666 bool bypass = false; 667 int __maybe_unused cpu = my_rdp->cpu; 668 unsigned long cur_gp_seq; 669 unsigned long flags; 670 bool gotcbs = false; 671 unsigned long j = jiffies; 672 bool lazy = false; 673 bool needwait_gp = false; // This prevents actual uninitialized use. 674 bool needwake; 675 bool needwake_gp; 676 struct rcu_data *rdp, *rdp_toggling = NULL; 677 struct rcu_node *rnp; 678 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 679 bool wasempty = false; 680 681 /* 682 * Each pass through the following loop checks for CBs and for the 683 * nearest grace period (if any) to wait for next. The CB kthreads 684 * and the global grace-period kthread are awakened if needed. 685 */ 686 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 687 /* 688 * An rcu_data structure is removed from the list after its 689 * CPU is de-offloaded and added to the list before that CPU is 690 * (re-)offloaded. If the following loop happens to be referencing 691 * that rcu_data structure during the time that the corresponding 692 * CPU is de-offloaded and then immediately re-offloaded, this 693 * loop's rdp pointer will be carried to the end of the list by 694 * the resulting pair of list operations. This can cause the loop 695 * to skip over some of the rcu_data structures that were supposed 696 * to have been scanned. Fortunately a new iteration through the 697 * entire loop is forced after a given CPU's rcu_data structure 698 * is added to the list, so the skipped-over rcu_data structures 699 * won't be ignored for long. 700 */ 701 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 702 long bypass_ncbs; 703 bool flush_bypass = false; 704 long lazy_ncbs; 705 706 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 707 rcu_nocb_lock_irqsave(rdp, flags); 708 lockdep_assert_held(&rdp->nocb_lock); 709 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 710 lazy_ncbs = READ_ONCE(rdp->lazy_len); 711 712 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 713 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) || 714 bypass_ncbs > 2 * qhimark)) { 715 flush_bypass = true; 716 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 717 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 718 bypass_ncbs > 2 * qhimark)) { 719 flush_bypass = true; 720 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 721 rcu_nocb_unlock_irqrestore(rdp, flags); 722 continue; /* No callbacks here, try next. */ 723 } 724 725 if (flush_bypass) { 726 // Bypass full or old, so flush it. 727 (void)rcu_nocb_try_flush_bypass(rdp, j); 728 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 729 lazy_ncbs = READ_ONCE(rdp->lazy_len); 730 } 731 732 if (bypass_ncbs) { 733 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 734 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 735 if (bypass_ncbs == lazy_ncbs) 736 lazy = true; 737 else 738 bypass = true; 739 } 740 rnp = rdp->mynode; 741 742 // Advance callbacks if helpful and low contention. 743 needwake_gp = false; 744 if (!rcu_segcblist_restempty(&rdp->cblist, 745 RCU_NEXT_READY_TAIL) || 746 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 747 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 748 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 749 needwake_gp = rcu_advance_cbs(rnp, rdp); 750 wasempty = rcu_segcblist_restempty(&rdp->cblist, 751 RCU_NEXT_READY_TAIL); 752 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 753 } 754 // Need to wait on some grace period? 755 WARN_ON_ONCE(wasempty && 756 !rcu_segcblist_restempty(&rdp->cblist, 757 RCU_NEXT_READY_TAIL)); 758 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 759 if (!needwait_gp || 760 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 761 wait_gp_seq = cur_gp_seq; 762 needwait_gp = true; 763 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 764 TPS("NeedWaitGP")); 765 } 766 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 767 needwake = rdp->nocb_cb_sleep; 768 WRITE_ONCE(rdp->nocb_cb_sleep, false); 769 } else { 770 needwake = false; 771 } 772 rcu_nocb_unlock_irqrestore(rdp, flags); 773 if (needwake) { 774 swake_up_one(&rdp->nocb_cb_wq); 775 gotcbs = true; 776 } 777 if (needwake_gp) 778 rcu_gp_kthread_wake(); 779 } 780 781 my_rdp->nocb_gp_bypass = bypass; 782 my_rdp->nocb_gp_gp = needwait_gp; 783 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 784 785 // At least one child with non-empty ->nocb_bypass, so set 786 // timer in order to avoid stranding its callbacks. 787 if (!rcu_nocb_poll) { 788 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 789 if (lazy && !bypass) { 790 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 791 TPS("WakeLazyIsDeferred")); 792 // Otherwise add a deferred bypass wake up. 793 } else if (bypass) { 794 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 795 TPS("WakeBypassIsDeferred")); 796 } 797 } 798 799 if (rcu_nocb_poll) { 800 /* Polling, so trace if first poll in the series. */ 801 if (gotcbs) 802 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 803 if (list_empty(&my_rdp->nocb_head_rdp)) { 804 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 805 if (!my_rdp->nocb_toggling_rdp) 806 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 807 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 808 /* Wait for any offloading rdp */ 809 nocb_gp_sleep(my_rdp, cpu); 810 } else { 811 schedule_timeout_idle(1); 812 } 813 } else if (!needwait_gp) { 814 /* Wait for callbacks to appear. */ 815 nocb_gp_sleep(my_rdp, cpu); 816 } else { 817 rnp = my_rdp->mynode; 818 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 819 swait_event_interruptible_exclusive( 820 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 821 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 822 !READ_ONCE(my_rdp->nocb_gp_sleep)); 823 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 824 } 825 826 if (!rcu_nocb_poll) { 827 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 828 // (De-)queue an rdp to/from the group if its nocb state is changing 829 rdp_toggling = my_rdp->nocb_toggling_rdp; 830 if (rdp_toggling) 831 my_rdp->nocb_toggling_rdp = NULL; 832 833 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 834 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 835 del_timer(&my_rdp->nocb_timer); 836 } 837 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 838 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 839 } else { 840 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 841 if (rdp_toggling) { 842 /* 843 * Paranoid locking to make sure nocb_toggling_rdp is well 844 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 845 * race with another round of nocb toggling for this rdp. 846 * Nocb locking should prevent from that already but we stick 847 * to paranoia, especially in rare path. 848 */ 849 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 850 my_rdp->nocb_toggling_rdp = NULL; 851 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 852 } 853 } 854 855 if (rdp_toggling) { 856 int ret; 857 858 ret = nocb_gp_toggle_rdp(rdp_toggling); 859 if (ret == 1) 860 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 861 else if (ret == 0) 862 list_del(&rdp_toggling->nocb_entry_rdp); 863 864 swake_up_one(&rdp_toggling->nocb_state_wq); 865 } 866 867 my_rdp->nocb_gp_seq = -1; 868 WARN_ON(signal_pending(current)); 869 } 870 871 /* 872 * No-CBs grace-period-wait kthread. There is one of these per group 873 * of CPUs, but only once at least one CPU in that group has come online 874 * at least once since boot. This kthread checks for newly posted 875 * callbacks from any of the CPUs it is responsible for, waits for a 876 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 877 * that then have callback-invocation work to do. 878 */ 879 static int rcu_nocb_gp_kthread(void *arg) 880 { 881 struct rcu_data *rdp = arg; 882 883 for (;;) { 884 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 885 nocb_gp_wait(rdp); 886 cond_resched_tasks_rcu_qs(); 887 } 888 return 0; 889 } 890 891 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 892 { 893 return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park(); 894 } 895 896 /* 897 * Invoke any ready callbacks from the corresponding no-CBs CPU, 898 * then, if there are no more, wait for more to appear. 899 */ 900 static void nocb_cb_wait(struct rcu_data *rdp) 901 { 902 struct rcu_segcblist *cblist = &rdp->cblist; 903 unsigned long cur_gp_seq; 904 unsigned long flags; 905 bool needwake_gp = false; 906 struct rcu_node *rnp = rdp->mynode; 907 908 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 909 nocb_cb_wait_cond(rdp)); 910 if (kthread_should_park()) { 911 kthread_parkme(); 912 } else if (READ_ONCE(rdp->nocb_cb_sleep)) { 913 WARN_ON(signal_pending(current)); 914 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 915 } 916 917 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 918 919 local_irq_save(flags); 920 rcu_momentary_dyntick_idle(); 921 local_irq_restore(flags); 922 /* 923 * Disable BH to provide the expected environment. Also, when 924 * transitioning to/from NOCB mode, a self-requeuing callback might 925 * be invoked from softirq. A short grace period could cause both 926 * instances of this callback would execute concurrently. 927 */ 928 local_bh_disable(); 929 rcu_do_batch(rdp); 930 local_bh_enable(); 931 lockdep_assert_irqs_enabled(); 932 rcu_nocb_lock_irqsave(rdp, flags); 933 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 934 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 935 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 936 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 937 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 938 } 939 940 if (!rcu_segcblist_ready_cbs(cblist)) { 941 WRITE_ONCE(rdp->nocb_cb_sleep, true); 942 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 943 } else { 944 WRITE_ONCE(rdp->nocb_cb_sleep, false); 945 } 946 947 rcu_nocb_unlock_irqrestore(rdp, flags); 948 if (needwake_gp) 949 rcu_gp_kthread_wake(); 950 } 951 952 /* 953 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 954 * nocb_cb_wait() to do the dirty work. 955 */ 956 static int rcu_nocb_cb_kthread(void *arg) 957 { 958 struct rcu_data *rdp = arg; 959 960 // Each pass through this loop does one callback batch, and, 961 // if there are no more ready callbacks, waits for them. 962 for (;;) { 963 nocb_cb_wait(rdp); 964 cond_resched_tasks_rcu_qs(); 965 } 966 return 0; 967 } 968 969 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 970 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 971 { 972 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 973 } 974 975 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 976 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 977 struct rcu_data *rdp, int level, 978 unsigned long flags) 979 __releases(rdp_gp->nocb_gp_lock) 980 { 981 int ndw; 982 int ret; 983 984 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 985 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 986 return false; 987 } 988 989 ndw = rdp_gp->nocb_defer_wakeup; 990 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 991 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 992 993 return ret; 994 } 995 996 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 997 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 998 { 999 unsigned long flags; 1000 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 1001 1002 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 1003 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1004 1005 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 1006 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1007 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 1008 } 1009 1010 /* 1011 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1012 * This means we do an inexact common-case check. Note that if 1013 * we miss, ->nocb_timer will eventually clean things up. 1014 */ 1015 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1016 { 1017 unsigned long flags; 1018 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1019 1020 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1021 return false; 1022 1023 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1024 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1025 } 1026 1027 void rcu_nocb_flush_deferred_wakeup(void) 1028 { 1029 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1030 } 1031 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1032 1033 static int rdp_offload_toggle(struct rcu_data *rdp, 1034 bool offload, unsigned long flags) 1035 __releases(rdp->nocb_lock) 1036 { 1037 struct rcu_segcblist *cblist = &rdp->cblist; 1038 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1039 bool wake_gp = false; 1040 1041 rcu_segcblist_offload(cblist, offload); 1042 rcu_nocb_unlock_irqrestore(rdp, flags); 1043 1044 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1045 // Queue this rdp for add/del to/from the list to iterate on rcuog 1046 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1047 if (rdp_gp->nocb_gp_sleep) { 1048 rdp_gp->nocb_gp_sleep = false; 1049 wake_gp = true; 1050 } 1051 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1052 1053 return wake_gp; 1054 } 1055 1056 static long rcu_nocb_rdp_deoffload(void *arg) 1057 { 1058 struct rcu_data *rdp = arg; 1059 struct rcu_segcblist *cblist = &rdp->cblist; 1060 unsigned long flags; 1061 int wake_gp; 1062 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1063 1064 /* 1065 * rcu_nocb_rdp_deoffload() may be called directly if 1066 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1067 * is not online yet. 1068 */ 1069 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1070 1071 pr_info("De-offloading %d\n", rdp->cpu); 1072 1073 rcu_nocb_lock_irqsave(rdp, flags); 1074 /* 1075 * Flush once and for all now. This suffices because we are 1076 * running on the target CPU holding ->nocb_lock (thus having 1077 * interrupts disabled), and because rdp_offload_toggle() 1078 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1079 * Thus future calls to rcu_segcblist_completely_offloaded() will 1080 * return false, which means that future calls to rcu_nocb_try_bypass() 1081 * will refuse to put anything into the bypass. 1082 */ 1083 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1084 /* 1085 * Start with invoking rcu_core() early. This way if the current thread 1086 * happens to preempt an ongoing call to rcu_core() in the middle, 1087 * leaving some work dismissed because rcu_core() still thinks the rdp is 1088 * completely offloaded, we are guaranteed a nearby future instance of 1089 * rcu_core() to catch up. 1090 */ 1091 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1092 invoke_rcu_core(); 1093 wake_gp = rdp_offload_toggle(rdp, false, flags); 1094 1095 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1096 if (rdp_gp->nocb_gp_kthread) { 1097 if (wake_gp) 1098 wake_up_process(rdp_gp->nocb_gp_kthread); 1099 1100 swait_event_exclusive(rdp->nocb_state_wq, 1101 !rcu_segcblist_test_flags(cblist, 1102 SEGCBLIST_KTHREAD_GP)); 1103 if (rdp->nocb_cb_kthread) 1104 kthread_park(rdp->nocb_cb_kthread); 1105 } else { 1106 /* 1107 * No kthread to clear the flags for us or remove the rdp from the nocb list 1108 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1109 * but we stick to paranoia in this rare path. 1110 */ 1111 rcu_nocb_lock_irqsave(rdp, flags); 1112 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP); 1113 rcu_nocb_unlock_irqrestore(rdp, flags); 1114 1115 list_del(&rdp->nocb_entry_rdp); 1116 } 1117 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1118 1119 /* 1120 * Lock one last time to acquire latest callback updates from kthreads 1121 * so we can later handle callbacks locally without locking. 1122 */ 1123 rcu_nocb_lock_irqsave(rdp, flags); 1124 /* 1125 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1126 * lock is released but how about being paranoid for once? 1127 */ 1128 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1129 /* 1130 * Without SEGCBLIST_LOCKING, we can't use 1131 * rcu_nocb_unlock_irqrestore() anymore. 1132 */ 1133 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1134 1135 /* Sanity check */ 1136 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1137 1138 1139 return 0; 1140 } 1141 1142 int rcu_nocb_cpu_deoffload(int cpu) 1143 { 1144 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1145 int ret = 0; 1146 1147 cpus_read_lock(); 1148 mutex_lock(&rcu_state.barrier_mutex); 1149 if (rcu_rdp_is_offloaded(rdp)) { 1150 if (cpu_online(cpu)) { 1151 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1152 if (!ret) 1153 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1154 } else { 1155 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1156 ret = -EINVAL; 1157 } 1158 } 1159 mutex_unlock(&rcu_state.barrier_mutex); 1160 cpus_read_unlock(); 1161 1162 return ret; 1163 } 1164 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1165 1166 static long rcu_nocb_rdp_offload(void *arg) 1167 { 1168 struct rcu_data *rdp = arg; 1169 struct rcu_segcblist *cblist = &rdp->cblist; 1170 unsigned long flags; 1171 int wake_gp; 1172 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1173 1174 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1175 /* 1176 * For now we only support re-offload, ie: the rdp must have been 1177 * offloaded on boot first. 1178 */ 1179 if (!rdp->nocb_gp_rdp) 1180 return -EINVAL; 1181 1182 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1183 return -EINVAL; 1184 1185 pr_info("Offloading %d\n", rdp->cpu); 1186 1187 /* 1188 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1189 * is set. 1190 */ 1191 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1192 1193 /* 1194 * We didn't take the nocb lock while working on the 1195 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1196 * Every modifications that have been done previously on 1197 * rdp->cblist must be visible remotely by the nocb kthreads 1198 * upon wake up after reading the cblist flags. 1199 * 1200 * The layout against nocb_lock enforces that ordering: 1201 * 1202 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1203 * ------------------------- ---------------------------- 1204 * WRITE callbacks rcu_nocb_lock() 1205 * rcu_nocb_lock() READ flags 1206 * WRITE flags READ callbacks 1207 * rcu_nocb_unlock() rcu_nocb_unlock() 1208 */ 1209 wake_gp = rdp_offload_toggle(rdp, true, flags); 1210 if (wake_gp) 1211 wake_up_process(rdp_gp->nocb_gp_kthread); 1212 1213 kthread_unpark(rdp->nocb_cb_kthread); 1214 1215 swait_event_exclusive(rdp->nocb_state_wq, 1216 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1217 1218 /* 1219 * All kthreads are ready to work, we can finally relieve rcu_core() and 1220 * enable nocb bypass. 1221 */ 1222 rcu_nocb_lock_irqsave(rdp, flags); 1223 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1224 rcu_nocb_unlock_irqrestore(rdp, flags); 1225 1226 return 0; 1227 } 1228 1229 int rcu_nocb_cpu_offload(int cpu) 1230 { 1231 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1232 int ret = 0; 1233 1234 cpus_read_lock(); 1235 mutex_lock(&rcu_state.barrier_mutex); 1236 if (!rcu_rdp_is_offloaded(rdp)) { 1237 if (cpu_online(cpu)) { 1238 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1239 if (!ret) 1240 cpumask_set_cpu(cpu, rcu_nocb_mask); 1241 } else { 1242 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1243 ret = -EINVAL; 1244 } 1245 } 1246 mutex_unlock(&rcu_state.barrier_mutex); 1247 cpus_read_unlock(); 1248 1249 return ret; 1250 } 1251 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1252 1253 #ifdef CONFIG_RCU_LAZY 1254 static unsigned long 1255 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1256 { 1257 int cpu; 1258 unsigned long count = 0; 1259 1260 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1261 return 0; 1262 1263 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1264 if (!mutex_trylock(&rcu_state.barrier_mutex)) 1265 return 0; 1266 1267 /* Snapshot count of all CPUs */ 1268 for_each_cpu(cpu, rcu_nocb_mask) { 1269 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1270 1271 count += READ_ONCE(rdp->lazy_len); 1272 } 1273 1274 mutex_unlock(&rcu_state.barrier_mutex); 1275 1276 return count ? count : SHRINK_EMPTY; 1277 } 1278 1279 static unsigned long 1280 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1281 { 1282 int cpu; 1283 unsigned long flags; 1284 unsigned long count = 0; 1285 1286 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1287 return 0; 1288 /* 1289 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1290 * may be ignored or imbalanced. 1291 */ 1292 if (!mutex_trylock(&rcu_state.barrier_mutex)) { 1293 /* 1294 * But really don't insist if barrier_mutex is contended since we 1295 * can't guarantee that it will never engage in a dependency 1296 * chain involving memory allocation. The lock is seldom contended 1297 * anyway. 1298 */ 1299 return 0; 1300 } 1301 1302 /* Snapshot count of all CPUs */ 1303 for_each_cpu(cpu, rcu_nocb_mask) { 1304 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1305 int _count; 1306 1307 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1308 continue; 1309 1310 if (!READ_ONCE(rdp->lazy_len)) 1311 continue; 1312 1313 rcu_nocb_lock_irqsave(rdp, flags); 1314 /* 1315 * Recheck under the nocb lock. Since we are not holding the bypass 1316 * lock we may still race with increments from the enqueuer but still 1317 * we know for sure if there is at least one lazy callback. 1318 */ 1319 _count = READ_ONCE(rdp->lazy_len); 1320 if (!_count) { 1321 rcu_nocb_unlock_irqrestore(rdp, flags); 1322 continue; 1323 } 1324 rcu_nocb_try_flush_bypass(rdp, jiffies); 1325 rcu_nocb_unlock_irqrestore(rdp, flags); 1326 wake_nocb_gp(rdp, false); 1327 sc->nr_to_scan -= _count; 1328 count += _count; 1329 if (sc->nr_to_scan <= 0) 1330 break; 1331 } 1332 1333 mutex_unlock(&rcu_state.barrier_mutex); 1334 1335 return count ? count : SHRINK_STOP; 1336 } 1337 #endif // #ifdef CONFIG_RCU_LAZY 1338 1339 void __init rcu_init_nohz(void) 1340 { 1341 int cpu; 1342 struct rcu_data *rdp; 1343 const struct cpumask *cpumask = NULL; 1344 struct shrinker * __maybe_unused lazy_rcu_shrinker; 1345 1346 #if defined(CONFIG_NO_HZ_FULL) 1347 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1348 cpumask = tick_nohz_full_mask; 1349 #endif 1350 1351 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1352 !rcu_state.nocb_is_setup && !cpumask) 1353 cpumask = cpu_possible_mask; 1354 1355 if (cpumask) { 1356 if (!cpumask_available(rcu_nocb_mask)) { 1357 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1358 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1359 return; 1360 } 1361 } 1362 1363 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1364 rcu_state.nocb_is_setup = true; 1365 } 1366 1367 if (!rcu_state.nocb_is_setup) 1368 return; 1369 1370 #ifdef CONFIG_RCU_LAZY 1371 lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy"); 1372 if (!lazy_rcu_shrinker) { 1373 pr_err("Failed to allocate lazy_rcu shrinker!\n"); 1374 } else { 1375 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count; 1376 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan; 1377 1378 shrinker_register(lazy_rcu_shrinker); 1379 } 1380 #endif // #ifdef CONFIG_RCU_LAZY 1381 1382 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1383 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1384 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1385 rcu_nocb_mask); 1386 } 1387 if (cpumask_empty(rcu_nocb_mask)) 1388 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1389 else 1390 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1391 cpumask_pr_args(rcu_nocb_mask)); 1392 if (rcu_nocb_poll) 1393 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1394 1395 for_each_cpu(cpu, rcu_nocb_mask) { 1396 rdp = per_cpu_ptr(&rcu_data, cpu); 1397 if (rcu_segcblist_empty(&rdp->cblist)) 1398 rcu_segcblist_init(&rdp->cblist); 1399 rcu_segcblist_offload(&rdp->cblist, true); 1400 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP); 1401 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1402 } 1403 rcu_organize_nocb_kthreads(); 1404 } 1405 1406 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1407 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1408 { 1409 init_swait_queue_head(&rdp->nocb_cb_wq); 1410 init_swait_queue_head(&rdp->nocb_gp_wq); 1411 init_swait_queue_head(&rdp->nocb_state_wq); 1412 raw_spin_lock_init(&rdp->nocb_lock); 1413 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1414 raw_spin_lock_init(&rdp->nocb_gp_lock); 1415 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1416 rcu_cblist_init(&rdp->nocb_bypass); 1417 WRITE_ONCE(rdp->lazy_len, 0); 1418 mutex_init(&rdp->nocb_gp_kthread_mutex); 1419 } 1420 1421 /* 1422 * If the specified CPU is a no-CBs CPU that does not already have its 1423 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1424 * for this CPU's group has not yet been created, spawn it as well. 1425 */ 1426 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1427 { 1428 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1429 struct rcu_data *rdp_gp; 1430 struct task_struct *t; 1431 struct sched_param sp; 1432 1433 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1434 return; 1435 1436 /* If there already is an rcuo kthread, then nothing to do. */ 1437 if (rdp->nocb_cb_kthread) 1438 return; 1439 1440 /* If we didn't spawn the GP kthread first, reorganize! */ 1441 sp.sched_priority = kthread_prio; 1442 rdp_gp = rdp->nocb_gp_rdp; 1443 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1444 if (!rdp_gp->nocb_gp_kthread) { 1445 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1446 "rcuog/%d", rdp_gp->cpu); 1447 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1448 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1449 goto end; 1450 } 1451 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1452 if (kthread_prio) 1453 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1454 } 1455 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1456 1457 /* Spawn the kthread for this CPU. */ 1458 t = kthread_create(rcu_nocb_cb_kthread, rdp, 1459 "rcuo%c/%d", rcu_state.abbr, cpu); 1460 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1461 goto end; 1462 1463 if (rcu_rdp_is_offloaded(rdp)) 1464 wake_up_process(t); 1465 else 1466 kthread_park(t); 1467 1468 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1469 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1470 1471 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1472 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1473 return; 1474 end: 1475 mutex_lock(&rcu_state.barrier_mutex); 1476 if (rcu_rdp_is_offloaded(rdp)) { 1477 rcu_nocb_rdp_deoffload(rdp); 1478 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1479 } 1480 mutex_unlock(&rcu_state.barrier_mutex); 1481 } 1482 1483 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1484 static int rcu_nocb_gp_stride = -1; 1485 module_param(rcu_nocb_gp_stride, int, 0444); 1486 1487 /* 1488 * Initialize GP-CB relationships for all no-CBs CPU. 1489 */ 1490 static void __init rcu_organize_nocb_kthreads(void) 1491 { 1492 int cpu; 1493 bool firsttime = true; 1494 bool gotnocbs = false; 1495 bool gotnocbscbs = true; 1496 int ls = rcu_nocb_gp_stride; 1497 int nl = 0; /* Next GP kthread. */ 1498 struct rcu_data *rdp; 1499 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1500 1501 if (!cpumask_available(rcu_nocb_mask)) 1502 return; 1503 if (ls == -1) { 1504 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1505 rcu_nocb_gp_stride = ls; 1506 } 1507 1508 /* 1509 * Each pass through this loop sets up one rcu_data structure. 1510 * Should the corresponding CPU come online in the future, then 1511 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1512 */ 1513 for_each_possible_cpu(cpu) { 1514 rdp = per_cpu_ptr(&rcu_data, cpu); 1515 if (rdp->cpu >= nl) { 1516 /* New GP kthread, set up for CBs & next GP. */ 1517 gotnocbs = true; 1518 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1519 rdp_gp = rdp; 1520 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1521 if (dump_tree) { 1522 if (!firsttime) 1523 pr_cont("%s\n", gotnocbscbs 1524 ? "" : " (self only)"); 1525 gotnocbscbs = false; 1526 firsttime = false; 1527 pr_alert("%s: No-CB GP kthread CPU %d:", 1528 __func__, cpu); 1529 } 1530 } else { 1531 /* Another CB kthread, link to previous GP kthread. */ 1532 gotnocbscbs = true; 1533 if (dump_tree) 1534 pr_cont(" %d", cpu); 1535 } 1536 rdp->nocb_gp_rdp = rdp_gp; 1537 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1538 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1539 } 1540 if (gotnocbs && dump_tree) 1541 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1542 } 1543 1544 /* 1545 * Bind the current task to the offloaded CPUs. If there are no offloaded 1546 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1547 */ 1548 void rcu_bind_current_to_nocb(void) 1549 { 1550 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1551 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1552 } 1553 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1554 1555 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1556 #ifdef CONFIG_SMP 1557 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1558 { 1559 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1560 } 1561 #else // #ifdef CONFIG_SMP 1562 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1563 { 1564 return ""; 1565 } 1566 #endif // #else #ifdef CONFIG_SMP 1567 1568 /* 1569 * Dump out nocb grace-period kthread state for the specified rcu_data 1570 * structure. 1571 */ 1572 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1573 { 1574 struct rcu_node *rnp = rdp->mynode; 1575 1576 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1577 rdp->cpu, 1578 "kK"[!!rdp->nocb_gp_kthread], 1579 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1580 "dD"[!!rdp->nocb_defer_wakeup], 1581 "tT"[timer_pending(&rdp->nocb_timer)], 1582 "sS"[!!rdp->nocb_gp_sleep], 1583 ".W"[swait_active(&rdp->nocb_gp_wq)], 1584 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1585 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1586 ".B"[!!rdp->nocb_gp_bypass], 1587 ".G"[!!rdp->nocb_gp_gp], 1588 (long)rdp->nocb_gp_seq, 1589 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1590 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1591 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1592 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1593 } 1594 1595 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1596 static void show_rcu_nocb_state(struct rcu_data *rdp) 1597 { 1598 char bufw[20]; 1599 char bufr[20]; 1600 struct rcu_data *nocb_next_rdp; 1601 struct rcu_segcblist *rsclp = &rdp->cblist; 1602 bool waslocked; 1603 bool wassleep; 1604 1605 if (rdp->nocb_gp_rdp == rdp) 1606 show_rcu_nocb_gp_state(rdp); 1607 1608 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1609 &rdp->nocb_entry_rdp, 1610 typeof(*rdp), 1611 nocb_entry_rdp); 1612 1613 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1614 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1615 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1616 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1617 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1618 "kK"[!!rdp->nocb_cb_kthread], 1619 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1620 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1621 "sS"[!!rdp->nocb_cb_sleep], 1622 ".W"[swait_active(&rdp->nocb_cb_wq)], 1623 jiffies - rdp->nocb_bypass_first, 1624 jiffies - rdp->nocb_nobypass_last, 1625 rdp->nocb_nobypass_count, 1626 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1627 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1628 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1629 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1630 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1631 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1632 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1633 rcu_segcblist_n_cbs(&rdp->cblist), 1634 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1635 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1636 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1637 1638 /* It is OK for GP kthreads to have GP state. */ 1639 if (rdp->nocb_gp_rdp == rdp) 1640 return; 1641 1642 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1643 wassleep = swait_active(&rdp->nocb_gp_wq); 1644 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1645 return; /* Nothing untoward. */ 1646 1647 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1648 "lL"[waslocked], 1649 "dD"[!!rdp->nocb_defer_wakeup], 1650 "sS"[!!rdp->nocb_gp_sleep], 1651 ".W"[wassleep]); 1652 } 1653 1654 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1655 1656 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1657 { 1658 return 0; 1659 } 1660 1661 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1662 { 1663 return false; 1664 } 1665 1666 /* No ->nocb_lock to acquire. */ 1667 static void rcu_nocb_lock(struct rcu_data *rdp) 1668 { 1669 } 1670 1671 /* No ->nocb_lock to release. */ 1672 static void rcu_nocb_unlock(struct rcu_data *rdp) 1673 { 1674 } 1675 1676 /* No ->nocb_lock to release. */ 1677 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1678 unsigned long flags) 1679 { 1680 local_irq_restore(flags); 1681 } 1682 1683 /* Lockdep check that ->cblist may be safely accessed. */ 1684 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1685 { 1686 lockdep_assert_irqs_disabled(); 1687 } 1688 1689 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1690 { 1691 } 1692 1693 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1694 { 1695 return NULL; 1696 } 1697 1698 static void rcu_init_one_nocb(struct rcu_node *rnp) 1699 { 1700 } 1701 1702 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1703 { 1704 return false; 1705 } 1706 1707 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1708 unsigned long j, bool lazy) 1709 { 1710 return true; 1711 } 1712 1713 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 1714 rcu_callback_t func, unsigned long flags, bool lazy) 1715 { 1716 WARN_ON_ONCE(1); /* Should be dead code! */ 1717 } 1718 1719 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1720 unsigned long flags) 1721 { 1722 WARN_ON_ONCE(1); /* Should be dead code! */ 1723 } 1724 1725 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1726 { 1727 } 1728 1729 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1730 { 1731 return false; 1732 } 1733 1734 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1735 { 1736 return false; 1737 } 1738 1739 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1740 { 1741 } 1742 1743 static void show_rcu_nocb_state(struct rcu_data *rdp) 1744 { 1745 } 1746 1747 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1748