1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 20 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 21 { 22 /* Race on early boot between thread creation and assignment */ 23 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 24 return true; 25 26 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 27 if (in_task()) 28 return true; 29 return false; 30 } 31 32 /* 33 * Offload callback processing from the boot-time-specified set of CPUs 34 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 35 * created that pull the callbacks from the corresponding CPU, wait for 36 * a grace period to elapse, and invoke the callbacks. These kthreads 37 * are organized into GP kthreads, which manage incoming callbacks, wait for 38 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 39 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 40 * do a wake_up() on their GP kthread when they insert a callback into any 41 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 42 * in which case each kthread actively polls its CPU. (Which isn't so great 43 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 44 * 45 * This is intended to be used in conjunction with Frederic Weisbecker's 46 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 47 * running CPU-bound user-mode computations. 48 * 49 * Offloading of callbacks can also be used as an energy-efficiency 50 * measure because CPUs with no RCU callbacks queued are more aggressive 51 * about entering dyntick-idle mode. 52 */ 53 54 55 /* 56 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 57 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 58 */ 59 static int __init rcu_nocb_setup(char *str) 60 { 61 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 62 if (*str == '=') { 63 if (cpulist_parse(++str, rcu_nocb_mask)) { 64 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 65 cpumask_setall(rcu_nocb_mask); 66 } 67 } 68 rcu_state.nocb_is_setup = true; 69 return 1; 70 } 71 __setup("rcu_nocbs", rcu_nocb_setup); 72 73 static int __init parse_rcu_nocb_poll(char *arg) 74 { 75 rcu_nocb_poll = true; 76 return 1; 77 } 78 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 79 80 /* 81 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 82 * After all, the main point of bypassing is to avoid lock contention 83 * on ->nocb_lock, which only can happen at high call_rcu() rates. 84 */ 85 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 86 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 87 88 /* 89 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 90 * lock isn't immediately available, perform minimal sanity check. 91 */ 92 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 93 __acquires(&rdp->nocb_bypass_lock) 94 { 95 lockdep_assert_irqs_disabled(); 96 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 97 return; 98 /* 99 * Contention expected only when local enqueue collide with 100 * remote flush from kthreads. 101 */ 102 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 103 raw_spin_lock(&rdp->nocb_bypass_lock); 104 } 105 106 /* 107 * Conditionally acquire the specified rcu_data structure's 108 * ->nocb_bypass_lock. 109 */ 110 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 111 { 112 lockdep_assert_irqs_disabled(); 113 return raw_spin_trylock(&rdp->nocb_bypass_lock); 114 } 115 116 /* 117 * Release the specified rcu_data structure's ->nocb_bypass_lock. 118 */ 119 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 120 __releases(&rdp->nocb_bypass_lock) 121 { 122 lockdep_assert_irqs_disabled(); 123 raw_spin_unlock(&rdp->nocb_bypass_lock); 124 } 125 126 /* 127 * Acquire the specified rcu_data structure's ->nocb_lock, but only 128 * if it corresponds to a no-CBs CPU. 129 */ 130 static void rcu_nocb_lock(struct rcu_data *rdp) 131 { 132 lockdep_assert_irqs_disabled(); 133 if (!rcu_rdp_is_offloaded(rdp)) 134 return; 135 raw_spin_lock(&rdp->nocb_lock); 136 } 137 138 /* 139 * Release the specified rcu_data structure's ->nocb_lock, but only 140 * if it corresponds to a no-CBs CPU. 141 */ 142 static void rcu_nocb_unlock(struct rcu_data *rdp) 143 { 144 if (rcu_rdp_is_offloaded(rdp)) { 145 lockdep_assert_irqs_disabled(); 146 raw_spin_unlock(&rdp->nocb_lock); 147 } 148 } 149 150 /* 151 * Release the specified rcu_data structure's ->nocb_lock and restore 152 * interrupts, but only if it corresponds to a no-CBs CPU. 153 */ 154 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 155 unsigned long flags) 156 { 157 if (rcu_rdp_is_offloaded(rdp)) { 158 lockdep_assert_irqs_disabled(); 159 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 160 } else { 161 local_irq_restore(flags); 162 } 163 } 164 165 /* Lockdep check that ->cblist may be safely accessed. */ 166 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 167 { 168 lockdep_assert_irqs_disabled(); 169 if (rcu_rdp_is_offloaded(rdp)) 170 lockdep_assert_held(&rdp->nocb_lock); 171 } 172 173 /* 174 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 175 * grace period. 176 */ 177 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 178 { 179 swake_up_all(sq); 180 } 181 182 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 183 { 184 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 185 } 186 187 static void rcu_init_one_nocb(struct rcu_node *rnp) 188 { 189 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 190 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 191 } 192 193 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 194 struct rcu_data *rdp, 195 bool force, unsigned long flags) 196 __releases(rdp_gp->nocb_gp_lock) 197 { 198 bool needwake = false; 199 200 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 201 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 202 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 203 TPS("AlreadyAwake")); 204 return false; 205 } 206 207 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 208 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 209 timer_delete(&rdp_gp->nocb_timer); 210 } 211 212 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 213 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 214 needwake = true; 215 } 216 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 217 if (needwake) { 218 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 219 swake_up_one(&rdp_gp->nocb_gp_wq); 220 } 221 222 return needwake; 223 } 224 225 /* 226 * Kick the GP kthread for this NOCB group. 227 */ 228 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 229 { 230 unsigned long flags; 231 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 232 233 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 234 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 235 } 236 237 #ifdef CONFIG_RCU_LAZY 238 /* 239 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 240 * can elapse before lazy callbacks are flushed. Lazy callbacks 241 * could be flushed much earlier for a number of other reasons 242 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 243 * left unsubmitted to RCU after those many jiffies. 244 */ 245 #define LAZY_FLUSH_JIFFIES (10 * HZ) 246 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES; 247 248 // To be called only from test code. 249 void rcu_set_jiffies_lazy_flush(unsigned long jif) 250 { 251 jiffies_lazy_flush = jif; 252 } 253 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush); 254 255 unsigned long rcu_get_jiffies_lazy_flush(void) 256 { 257 return jiffies_lazy_flush; 258 } 259 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush); 260 #endif 261 262 /* 263 * Arrange to wake the GP kthread for this NOCB group at some future 264 * time when it is safe to do so. 265 */ 266 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 267 const char *reason) 268 { 269 unsigned long flags; 270 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 271 272 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 273 274 /* 275 * Bypass wakeup overrides previous deferments. In case of 276 * callback storms, no need to wake up too early. 277 */ 278 if (waketype == RCU_NOCB_WAKE_LAZY && 279 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 280 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush()); 281 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 282 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 283 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 284 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 285 } else { 286 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 287 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 288 if (rdp_gp->nocb_defer_wakeup < waketype) 289 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 290 } 291 292 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 293 294 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 295 } 296 297 /* 298 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 299 * However, if there is a callback to be enqueued and if ->nocb_bypass 300 * proves to be initially empty, just return false because the no-CB GP 301 * kthread may need to be awakened in this case. 302 * 303 * Return true if there was something to be flushed and it succeeded, otherwise 304 * false. 305 * 306 * Note that this function always returns true if rhp is NULL. 307 */ 308 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 309 unsigned long j, bool lazy) 310 { 311 struct rcu_cblist rcl; 312 struct rcu_head *rhp = rhp_in; 313 314 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 315 rcu_lockdep_assert_cblist_protected(rdp); 316 lockdep_assert_held(&rdp->nocb_bypass_lock); 317 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 318 raw_spin_unlock(&rdp->nocb_bypass_lock); 319 return false; 320 } 321 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 322 if (rhp) 323 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 324 325 /* 326 * If the new CB requested was a lazy one, queue it onto the main 327 * ->cblist so that we can take advantage of the grace-period that will 328 * happen regardless. But queue it onto the bypass list first so that 329 * the lazy CB is ordered with the existing CBs in the bypass list. 330 */ 331 if (lazy && rhp) { 332 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 333 rhp = NULL; 334 } 335 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 336 WRITE_ONCE(rdp->lazy_len, 0); 337 338 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 339 WRITE_ONCE(rdp->nocb_bypass_first, j); 340 rcu_nocb_bypass_unlock(rdp); 341 return true; 342 } 343 344 /* 345 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 346 * However, if there is a callback to be enqueued and if ->nocb_bypass 347 * proves to be initially empty, just return false because the no-CB GP 348 * kthread may need to be awakened in this case. 349 * 350 * Note that this function always returns true if rhp is NULL. 351 */ 352 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 353 unsigned long j, bool lazy) 354 { 355 if (!rcu_rdp_is_offloaded(rdp)) 356 return true; 357 rcu_lockdep_assert_cblist_protected(rdp); 358 rcu_nocb_bypass_lock(rdp); 359 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 360 } 361 362 /* 363 * If the ->nocb_bypass_lock is immediately available, flush the 364 * ->nocb_bypass queue into ->cblist. 365 */ 366 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 367 { 368 rcu_lockdep_assert_cblist_protected(rdp); 369 if (!rcu_rdp_is_offloaded(rdp) || 370 !rcu_nocb_bypass_trylock(rdp)) 371 return; 372 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 373 } 374 375 /* 376 * See whether it is appropriate to use the ->nocb_bypass list in order 377 * to control contention on ->nocb_lock. A limited number of direct 378 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 379 * is non-empty, further callbacks must be placed into ->nocb_bypass, 380 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 381 * back to direct use of ->cblist. However, ->nocb_bypass should not be 382 * used if ->cblist is empty, because otherwise callbacks can be stranded 383 * on ->nocb_bypass because we cannot count on the current CPU ever again 384 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 385 * non-empty, the corresponding no-CBs grace-period kthread must not be 386 * in an indefinite sleep state. 387 * 388 * Finally, it is not permitted to use the bypass during early boot, 389 * as doing so would confuse the auto-initialization code. Besides 390 * which, there is no point in worrying about lock contention while 391 * there is only one CPU in operation. 392 */ 393 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 394 bool *was_alldone, unsigned long flags, 395 bool lazy) 396 { 397 unsigned long c; 398 unsigned long cur_gp_seq; 399 unsigned long j = jiffies; 400 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 401 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 402 403 lockdep_assert_irqs_disabled(); 404 405 // Pure softirq/rcuc based processing: no bypassing, no 406 // locking. 407 if (!rcu_rdp_is_offloaded(rdp)) { 408 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 409 return false; 410 } 411 412 // Don't use ->nocb_bypass during early boot. 413 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 414 rcu_nocb_lock(rdp); 415 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 416 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 417 return false; 418 } 419 420 // If we have advanced to a new jiffy, reset counts to allow 421 // moving back from ->nocb_bypass to ->cblist. 422 if (j == rdp->nocb_nobypass_last) { 423 c = rdp->nocb_nobypass_count + 1; 424 } else { 425 WRITE_ONCE(rdp->nocb_nobypass_last, j); 426 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 427 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 428 nocb_nobypass_lim_per_jiffy)) 429 c = 0; 430 else if (c > nocb_nobypass_lim_per_jiffy) 431 c = nocb_nobypass_lim_per_jiffy; 432 } 433 WRITE_ONCE(rdp->nocb_nobypass_count, c); 434 435 // If there hasn't yet been all that many ->cblist enqueues 436 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 437 // ->nocb_bypass first. 438 // Lazy CBs throttle this back and do immediate bypass queuing. 439 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 440 rcu_nocb_lock(rdp); 441 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 442 if (*was_alldone) 443 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 444 TPS("FirstQ")); 445 446 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 447 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 448 return false; // Caller must enqueue the callback. 449 } 450 451 // If ->nocb_bypass has been used too long or is too full, 452 // flush ->nocb_bypass to ->cblist. 453 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 454 (ncbs && bypass_is_lazy && 455 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) || 456 ncbs >= qhimark) { 457 rcu_nocb_lock(rdp); 458 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 459 460 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 461 if (*was_alldone) 462 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 463 TPS("FirstQ")); 464 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 465 return false; // Caller must enqueue the callback. 466 } 467 if (j != rdp->nocb_gp_adv_time && 468 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 469 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 470 rcu_advance_cbs_nowake(rdp->mynode, rdp); 471 rdp->nocb_gp_adv_time = j; 472 } 473 474 // The flush succeeded and we moved CBs into the regular list. 475 // Don't wait for the wake up timer as it may be too far ahead. 476 // Wake up the GP thread now instead, if the cblist was empty. 477 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 478 479 return true; // Callback already enqueued. 480 } 481 482 // We need to use the bypass. 483 rcu_nocb_bypass_lock(rdp); 484 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 485 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 486 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 487 488 if (lazy) 489 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 490 491 if (!ncbs) { 492 WRITE_ONCE(rdp->nocb_bypass_first, j); 493 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 494 } 495 rcu_nocb_bypass_unlock(rdp); 496 497 // A wake up of the grace period kthread or timer adjustment 498 // needs to be done only if: 499 // 1. Bypass list was fully empty before (this is the first 500 // bypass list entry), or: 501 // 2. Both of these conditions are met: 502 // a. The bypass list previously had only lazy CBs, and: 503 // b. The new CB is non-lazy. 504 if (!ncbs || (bypass_is_lazy && !lazy)) { 505 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 506 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 507 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 508 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 509 TPS("FirstBQwake")); 510 __call_rcu_nocb_wake(rdp, true, flags); 511 } else { 512 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 513 TPS("FirstBQnoWake")); 514 rcu_nocb_unlock(rdp); 515 } 516 } 517 return true; // Callback already enqueued. 518 } 519 520 /* 521 * Awaken the no-CBs grace-period kthread if needed, either due to it 522 * legitimately being asleep or due to overload conditions. 523 * 524 * If warranted, also wake up the kthread servicing this CPUs queues. 525 */ 526 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 527 unsigned long flags) 528 __releases(rdp->nocb_lock) 529 { 530 long bypass_len; 531 unsigned long cur_gp_seq; 532 unsigned long j; 533 long lazy_len; 534 long len; 535 struct task_struct *t; 536 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 537 538 // If we are being polled or there is no kthread, just leave. 539 t = READ_ONCE(rdp->nocb_gp_kthread); 540 if (rcu_nocb_poll || !t) { 541 rcu_nocb_unlock(rdp); 542 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 543 TPS("WakeNotPoll")); 544 return; 545 } 546 // Need to actually to a wakeup. 547 len = rcu_segcblist_n_cbs(&rdp->cblist); 548 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 549 lazy_len = READ_ONCE(rdp->lazy_len); 550 if (was_alldone) { 551 rdp->qlen_last_fqs_check = len; 552 // Only lazy CBs in bypass list 553 if (lazy_len && bypass_len == lazy_len) { 554 rcu_nocb_unlock(rdp); 555 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 556 TPS("WakeLazy")); 557 } else if (!irqs_disabled_flags(flags)) { 558 /* ... if queue was empty ... */ 559 rcu_nocb_unlock(rdp); 560 wake_nocb_gp(rdp, false); 561 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 562 TPS("WakeEmpty")); 563 } else { 564 rcu_nocb_unlock(rdp); 565 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 566 TPS("WakeEmptyIsDeferred")); 567 } 568 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 569 /* ... or if many callbacks queued. */ 570 rdp->qlen_last_fqs_check = len; 571 j = jiffies; 572 if (j != rdp->nocb_gp_adv_time && 573 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 574 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 575 rcu_advance_cbs_nowake(rdp->mynode, rdp); 576 rdp->nocb_gp_adv_time = j; 577 } 578 smp_mb(); /* Enqueue before timer_pending(). */ 579 if ((rdp->nocb_cb_sleep || 580 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 581 !timer_pending(&rdp_gp->nocb_timer)) { 582 rcu_nocb_unlock(rdp); 583 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 584 TPS("WakeOvfIsDeferred")); 585 } else { 586 rcu_nocb_unlock(rdp); 587 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 588 } 589 } else { 590 rcu_nocb_unlock(rdp); 591 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 592 } 593 } 594 595 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 596 rcu_callback_t func, unsigned long flags, bool lazy) 597 { 598 bool was_alldone; 599 600 if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) { 601 /* Not enqueued on bypass but locked, do regular enqueue */ 602 rcutree_enqueue(rdp, head, func); 603 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 604 } 605 } 606 607 static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp) 608 { 609 struct rcu_segcblist *cblist = &rdp->cblist; 610 unsigned long flags; 611 612 /* 613 * Locking orders future de-offloaded callbacks enqueue against previous 614 * handling of this rdp. Ie: Make sure rcuog is done with this rdp before 615 * deoffloaded callbacks can be enqueued. 616 */ 617 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 618 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 619 /* 620 * Offloading. Set our flag and notify the offload worker. 621 * We will handle this rdp until it ever gets de-offloaded. 622 */ 623 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 624 rcu_segcblist_set_flags(cblist, SEGCBLIST_OFFLOADED); 625 } else { 626 /* 627 * De-offloading. Clear our flag and notify the de-offload worker. 628 * We will ignore this rdp until it ever gets re-offloaded. 629 */ 630 list_del(&rdp->nocb_entry_rdp); 631 rcu_segcblist_clear_flags(cblist, SEGCBLIST_OFFLOADED); 632 } 633 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 634 } 635 636 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 637 { 638 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 639 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 640 !READ_ONCE(my_rdp->nocb_gp_sleep)); 641 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 642 } 643 644 /* 645 * No-CBs GP kthreads come here to wait for additional callbacks to show up 646 * or for grace periods to end. 647 */ 648 static void nocb_gp_wait(struct rcu_data *my_rdp) 649 { 650 bool bypass = false; 651 int __maybe_unused cpu = my_rdp->cpu; 652 unsigned long cur_gp_seq; 653 unsigned long flags; 654 bool gotcbs = false; 655 unsigned long j = jiffies; 656 bool lazy = false; 657 bool needwait_gp = false; // This prevents actual uninitialized use. 658 bool needwake; 659 bool needwake_gp; 660 struct rcu_data *rdp, *rdp_toggling = NULL; 661 struct rcu_node *rnp; 662 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 663 bool wasempty = false; 664 665 /* 666 * Each pass through the following loop checks for CBs and for the 667 * nearest grace period (if any) to wait for next. The CB kthreads 668 * and the global grace-period kthread are awakened if needed. 669 */ 670 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 671 /* 672 * An rcu_data structure is removed from the list after its 673 * CPU is de-offloaded and added to the list before that CPU is 674 * (re-)offloaded. If the following loop happens to be referencing 675 * that rcu_data structure during the time that the corresponding 676 * CPU is de-offloaded and then immediately re-offloaded, this 677 * loop's rdp pointer will be carried to the end of the list by 678 * the resulting pair of list operations. This can cause the loop 679 * to skip over some of the rcu_data structures that were supposed 680 * to have been scanned. Fortunately a new iteration through the 681 * entire loop is forced after a given CPU's rcu_data structure 682 * is added to the list, so the skipped-over rcu_data structures 683 * won't be ignored for long. 684 */ 685 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 686 long bypass_ncbs; 687 bool flush_bypass = false; 688 long lazy_ncbs; 689 690 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 691 rcu_nocb_lock_irqsave(rdp, flags); 692 lockdep_assert_held(&rdp->nocb_lock); 693 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 694 lazy_ncbs = READ_ONCE(rdp->lazy_len); 695 696 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 697 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) || 698 bypass_ncbs > 2 * qhimark)) { 699 flush_bypass = true; 700 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 701 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 702 bypass_ncbs > 2 * qhimark)) { 703 flush_bypass = true; 704 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 705 rcu_nocb_unlock_irqrestore(rdp, flags); 706 continue; /* No callbacks here, try next. */ 707 } 708 709 if (flush_bypass) { 710 // Bypass full or old, so flush it. 711 (void)rcu_nocb_try_flush_bypass(rdp, j); 712 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 713 lazy_ncbs = READ_ONCE(rdp->lazy_len); 714 } 715 716 if (bypass_ncbs) { 717 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 718 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 719 if (bypass_ncbs == lazy_ncbs) 720 lazy = true; 721 else 722 bypass = true; 723 } 724 rnp = rdp->mynode; 725 726 // Advance callbacks if helpful and low contention. 727 needwake_gp = false; 728 if (!rcu_segcblist_restempty(&rdp->cblist, 729 RCU_NEXT_READY_TAIL) || 730 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 731 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 732 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 733 needwake_gp = rcu_advance_cbs(rnp, rdp); 734 wasempty = rcu_segcblist_restempty(&rdp->cblist, 735 RCU_NEXT_READY_TAIL); 736 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 737 } 738 // Need to wait on some grace period? 739 WARN_ON_ONCE(wasempty && 740 !rcu_segcblist_restempty(&rdp->cblist, 741 RCU_NEXT_READY_TAIL)); 742 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 743 if (!needwait_gp || 744 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 745 wait_gp_seq = cur_gp_seq; 746 needwait_gp = true; 747 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 748 TPS("NeedWaitGP")); 749 } 750 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 751 needwake = rdp->nocb_cb_sleep; 752 WRITE_ONCE(rdp->nocb_cb_sleep, false); 753 } else { 754 needwake = false; 755 } 756 rcu_nocb_unlock_irqrestore(rdp, flags); 757 if (needwake) { 758 swake_up_one(&rdp->nocb_cb_wq); 759 gotcbs = true; 760 } 761 if (needwake_gp) 762 rcu_gp_kthread_wake(); 763 } 764 765 my_rdp->nocb_gp_bypass = bypass; 766 my_rdp->nocb_gp_gp = needwait_gp; 767 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 768 769 // At least one child with non-empty ->nocb_bypass, so set 770 // timer in order to avoid stranding its callbacks. 771 if (!rcu_nocb_poll) { 772 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 773 if (lazy && !bypass) { 774 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 775 TPS("WakeLazyIsDeferred")); 776 // Otherwise add a deferred bypass wake up. 777 } else if (bypass) { 778 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 779 TPS("WakeBypassIsDeferred")); 780 } 781 } 782 783 if (rcu_nocb_poll) { 784 /* Polling, so trace if first poll in the series. */ 785 if (gotcbs) 786 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 787 if (list_empty(&my_rdp->nocb_head_rdp)) { 788 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 789 if (!my_rdp->nocb_toggling_rdp) 790 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 791 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 792 /* Wait for any offloading rdp */ 793 nocb_gp_sleep(my_rdp, cpu); 794 } else { 795 schedule_timeout_idle(1); 796 } 797 } else if (!needwait_gp) { 798 /* Wait for callbacks to appear. */ 799 nocb_gp_sleep(my_rdp, cpu); 800 } else { 801 rnp = my_rdp->mynode; 802 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 803 swait_event_interruptible_exclusive( 804 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 805 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 806 !READ_ONCE(my_rdp->nocb_gp_sleep)); 807 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 808 } 809 810 if (!rcu_nocb_poll) { 811 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 812 // (De-)queue an rdp to/from the group if its nocb state is changing 813 rdp_toggling = my_rdp->nocb_toggling_rdp; 814 if (rdp_toggling) 815 my_rdp->nocb_toggling_rdp = NULL; 816 817 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 818 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 819 timer_delete(&my_rdp->nocb_timer); 820 } 821 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 822 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 823 } else { 824 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 825 if (rdp_toggling) { 826 /* 827 * Paranoid locking to make sure nocb_toggling_rdp is well 828 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 829 * race with another round of nocb toggling for this rdp. 830 * Nocb locking should prevent from that already but we stick 831 * to paranoia, especially in rare path. 832 */ 833 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 834 my_rdp->nocb_toggling_rdp = NULL; 835 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 836 } 837 } 838 839 if (rdp_toggling) { 840 nocb_gp_toggle_rdp(my_rdp, rdp_toggling); 841 swake_up_one(&rdp_toggling->nocb_state_wq); 842 } 843 844 my_rdp->nocb_gp_seq = -1; 845 WARN_ON(signal_pending(current)); 846 } 847 848 /* 849 * No-CBs grace-period-wait kthread. There is one of these per group 850 * of CPUs, but only once at least one CPU in that group has come online 851 * at least once since boot. This kthread checks for newly posted 852 * callbacks from any of the CPUs it is responsible for, waits for a 853 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 854 * that then have callback-invocation work to do. 855 */ 856 static int rcu_nocb_gp_kthread(void *arg) 857 { 858 struct rcu_data *rdp = arg; 859 860 for (;;) { 861 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 862 nocb_gp_wait(rdp); 863 cond_resched_tasks_rcu_qs(); 864 } 865 return 0; 866 } 867 868 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 869 { 870 return !READ_ONCE(rdp->nocb_cb_sleep) || kthread_should_park(); 871 } 872 873 /* 874 * Invoke any ready callbacks from the corresponding no-CBs CPU, 875 * then, if there are no more, wait for more to appear. 876 */ 877 static void nocb_cb_wait(struct rcu_data *rdp) 878 { 879 struct rcu_segcblist *cblist = &rdp->cblist; 880 unsigned long cur_gp_seq; 881 unsigned long flags; 882 bool needwake_gp = false; 883 struct rcu_node *rnp = rdp->mynode; 884 885 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 886 nocb_cb_wait_cond(rdp)); 887 if (kthread_should_park()) { 888 /* 889 * kthread_park() must be preceded by an rcu_barrier(). 890 * But yet another rcu_barrier() might have sneaked in between 891 * the barrier callback execution and the callbacks counter 892 * decrement. 893 */ 894 if (rdp->nocb_cb_sleep) { 895 rcu_nocb_lock_irqsave(rdp, flags); 896 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist)); 897 rcu_nocb_unlock_irqrestore(rdp, flags); 898 kthread_parkme(); 899 } 900 } else if (READ_ONCE(rdp->nocb_cb_sleep)) { 901 WARN_ON(signal_pending(current)); 902 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 903 } 904 905 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 906 907 local_irq_save(flags); 908 rcu_momentary_eqs(); 909 local_irq_restore(flags); 910 /* 911 * Disable BH to provide the expected environment. Also, when 912 * transitioning to/from NOCB mode, a self-requeuing callback might 913 * be invoked from softirq. A short grace period could cause both 914 * instances of this callback would execute concurrently. 915 */ 916 local_bh_disable(); 917 rcu_do_batch(rdp); 918 local_bh_enable(); 919 lockdep_assert_irqs_enabled(); 920 rcu_nocb_lock_irqsave(rdp, flags); 921 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 922 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 923 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 924 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 925 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 926 } 927 928 if (!rcu_segcblist_ready_cbs(cblist)) { 929 WRITE_ONCE(rdp->nocb_cb_sleep, true); 930 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 931 } else { 932 WRITE_ONCE(rdp->nocb_cb_sleep, false); 933 } 934 935 rcu_nocb_unlock_irqrestore(rdp, flags); 936 if (needwake_gp) 937 rcu_gp_kthread_wake(); 938 } 939 940 /* 941 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 942 * nocb_cb_wait() to do the dirty work. 943 */ 944 static int rcu_nocb_cb_kthread(void *arg) 945 { 946 struct rcu_data *rdp = arg; 947 948 // Each pass through this loop does one callback batch, and, 949 // if there are no more ready callbacks, waits for them. 950 for (;;) { 951 nocb_cb_wait(rdp); 952 cond_resched_tasks_rcu_qs(); 953 } 954 return 0; 955 } 956 957 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 958 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 959 { 960 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 961 } 962 963 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 964 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 965 struct rcu_data *rdp, int level, 966 unsigned long flags) 967 __releases(rdp_gp->nocb_gp_lock) 968 { 969 int ndw; 970 int ret; 971 972 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 973 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 974 return false; 975 } 976 977 ndw = rdp_gp->nocb_defer_wakeup; 978 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 979 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 980 981 return ret; 982 } 983 984 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 985 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 986 { 987 unsigned long flags; 988 struct rcu_data *rdp = timer_container_of(rdp, t, nocb_timer); 989 990 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 991 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 992 993 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 994 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 995 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 996 } 997 998 /* 999 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1000 * This means we do an inexact common-case check. Note that if 1001 * we miss, ->nocb_timer will eventually clean things up. 1002 */ 1003 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1004 { 1005 unsigned long flags; 1006 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1007 1008 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1009 return false; 1010 1011 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1012 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1013 } 1014 1015 void rcu_nocb_flush_deferred_wakeup(void) 1016 { 1017 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1018 } 1019 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1020 1021 static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp) 1022 { 1023 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1024 bool wake_gp = false; 1025 unsigned long flags; 1026 1027 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1028 // Queue this rdp for add/del to/from the list to iterate on rcuog 1029 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1030 if (rdp_gp->nocb_gp_sleep) { 1031 rdp_gp->nocb_gp_sleep = false; 1032 wake_gp = true; 1033 } 1034 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1035 1036 return wake_gp; 1037 } 1038 1039 static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp) 1040 { 1041 unsigned long flags; 1042 bool ret; 1043 1044 /* 1045 * Locking makes sure rcuog is done handling this rdp before deoffloaded 1046 * enqueue can happen. Also it keeps the SEGCBLIST_OFFLOADED flag stable 1047 * while the ->nocb_lock is held. 1048 */ 1049 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1050 ret = !rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED); 1051 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1052 1053 return ret; 1054 } 1055 1056 static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp) 1057 { 1058 unsigned long flags; 1059 int wake_gp; 1060 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1061 1062 /* CPU must be offline, unless it's early boot */ 1063 WARN_ON_ONCE(cpu_online(rdp->cpu) && rdp->cpu != raw_smp_processor_id()); 1064 1065 pr_info("De-offloading %d\n", rdp->cpu); 1066 1067 /* Flush all callbacks from segcblist and bypass */ 1068 rcu_barrier(); 1069 1070 /* 1071 * Make sure the rcuoc kthread isn't in the middle of a nocb locked 1072 * sequence while offloading is deactivated, along with nocb locking. 1073 */ 1074 if (rdp->nocb_cb_kthread) 1075 kthread_park(rdp->nocb_cb_kthread); 1076 1077 rcu_nocb_lock_irqsave(rdp, flags); 1078 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1079 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist)); 1080 rcu_nocb_unlock_irqrestore(rdp, flags); 1081 1082 wake_gp = rcu_nocb_queue_toggle_rdp(rdp); 1083 1084 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1085 1086 if (rdp_gp->nocb_gp_kthread) { 1087 if (wake_gp) 1088 wake_up_process(rdp_gp->nocb_gp_kthread); 1089 1090 swait_event_exclusive(rdp->nocb_state_wq, 1091 rcu_nocb_rdp_deoffload_wait_cond(rdp)); 1092 } else { 1093 /* 1094 * No kthread to clear the flags for us or remove the rdp from the nocb list 1095 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1096 * but we stick to paranoia in this rare path. 1097 */ 1098 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1099 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_OFFLOADED); 1100 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1101 1102 list_del(&rdp->nocb_entry_rdp); 1103 } 1104 1105 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1106 1107 return 0; 1108 } 1109 1110 int rcu_nocb_cpu_deoffload(int cpu) 1111 { 1112 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1113 int ret = 0; 1114 1115 cpus_read_lock(); 1116 mutex_lock(&rcu_state.nocb_mutex); 1117 if (rcu_rdp_is_offloaded(rdp)) { 1118 if (!cpu_online(cpu)) { 1119 ret = rcu_nocb_rdp_deoffload(rdp); 1120 if (!ret) 1121 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1122 } else { 1123 pr_info("NOCB: Cannot CB-deoffload online CPU %d\n", rdp->cpu); 1124 ret = -EINVAL; 1125 } 1126 } 1127 mutex_unlock(&rcu_state.nocb_mutex); 1128 cpus_read_unlock(); 1129 1130 return ret; 1131 } 1132 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1133 1134 static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp) 1135 { 1136 unsigned long flags; 1137 bool ret; 1138 1139 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1140 ret = rcu_segcblist_test_flags(&rdp->cblist, SEGCBLIST_OFFLOADED); 1141 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1142 1143 return ret; 1144 } 1145 1146 static int rcu_nocb_rdp_offload(struct rcu_data *rdp) 1147 { 1148 int wake_gp; 1149 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1150 1151 WARN_ON_ONCE(cpu_online(rdp->cpu)); 1152 /* 1153 * For now we only support re-offload, ie: the rdp must have been 1154 * offloaded on boot first. 1155 */ 1156 if (!rdp->nocb_gp_rdp) 1157 return -EINVAL; 1158 1159 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1160 return -EINVAL; 1161 1162 pr_info("Offloading %d\n", rdp->cpu); 1163 1164 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1165 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist)); 1166 1167 wake_gp = rcu_nocb_queue_toggle_rdp(rdp); 1168 if (wake_gp) 1169 wake_up_process(rdp_gp->nocb_gp_kthread); 1170 1171 swait_event_exclusive(rdp->nocb_state_wq, 1172 rcu_nocb_rdp_offload_wait_cond(rdp)); 1173 1174 kthread_unpark(rdp->nocb_cb_kthread); 1175 1176 return 0; 1177 } 1178 1179 int rcu_nocb_cpu_offload(int cpu) 1180 { 1181 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1182 int ret = 0; 1183 1184 cpus_read_lock(); 1185 mutex_lock(&rcu_state.nocb_mutex); 1186 if (!rcu_rdp_is_offloaded(rdp)) { 1187 if (!cpu_online(cpu)) { 1188 ret = rcu_nocb_rdp_offload(rdp); 1189 if (!ret) 1190 cpumask_set_cpu(cpu, rcu_nocb_mask); 1191 } else { 1192 pr_info("NOCB: Cannot CB-offload online CPU %d\n", rdp->cpu); 1193 ret = -EINVAL; 1194 } 1195 } 1196 mutex_unlock(&rcu_state.nocb_mutex); 1197 cpus_read_unlock(); 1198 1199 return ret; 1200 } 1201 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1202 1203 #ifdef CONFIG_RCU_LAZY 1204 static unsigned long 1205 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1206 { 1207 int cpu; 1208 unsigned long count = 0; 1209 1210 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1211 return 0; 1212 1213 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1214 if (!mutex_trylock(&rcu_state.nocb_mutex)) 1215 return 0; 1216 1217 /* Snapshot count of all CPUs */ 1218 for_each_cpu(cpu, rcu_nocb_mask) { 1219 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1220 1221 count += READ_ONCE(rdp->lazy_len); 1222 } 1223 1224 mutex_unlock(&rcu_state.nocb_mutex); 1225 1226 return count ? count : SHRINK_EMPTY; 1227 } 1228 1229 static unsigned long 1230 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1231 { 1232 int cpu; 1233 unsigned long flags; 1234 unsigned long count = 0; 1235 1236 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1237 return 0; 1238 /* 1239 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1240 * may be ignored or imbalanced. 1241 */ 1242 if (!mutex_trylock(&rcu_state.nocb_mutex)) { 1243 /* 1244 * But really don't insist if nocb_mutex is contended since we 1245 * can't guarantee that it will never engage in a dependency 1246 * chain involving memory allocation. The lock is seldom contended 1247 * anyway. 1248 */ 1249 return 0; 1250 } 1251 1252 /* Snapshot count of all CPUs */ 1253 for_each_cpu(cpu, rcu_nocb_mask) { 1254 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1255 int _count; 1256 1257 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1258 continue; 1259 1260 if (!READ_ONCE(rdp->lazy_len)) 1261 continue; 1262 1263 rcu_nocb_lock_irqsave(rdp, flags); 1264 /* 1265 * Recheck under the nocb lock. Since we are not holding the bypass 1266 * lock we may still race with increments from the enqueuer but still 1267 * we know for sure if there is at least one lazy callback. 1268 */ 1269 _count = READ_ONCE(rdp->lazy_len); 1270 if (!_count) { 1271 rcu_nocb_unlock_irqrestore(rdp, flags); 1272 continue; 1273 } 1274 rcu_nocb_try_flush_bypass(rdp, jiffies); 1275 rcu_nocb_unlock_irqrestore(rdp, flags); 1276 wake_nocb_gp(rdp, false); 1277 sc->nr_to_scan -= _count; 1278 count += _count; 1279 if (sc->nr_to_scan <= 0) 1280 break; 1281 } 1282 1283 mutex_unlock(&rcu_state.nocb_mutex); 1284 1285 return count ? count : SHRINK_STOP; 1286 } 1287 #endif // #ifdef CONFIG_RCU_LAZY 1288 1289 void __init rcu_init_nohz(void) 1290 { 1291 int cpu; 1292 struct rcu_data *rdp; 1293 const struct cpumask *cpumask = NULL; 1294 struct shrinker * __maybe_unused lazy_rcu_shrinker; 1295 1296 #if defined(CONFIG_NO_HZ_FULL) 1297 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1298 cpumask = tick_nohz_full_mask; 1299 #endif 1300 1301 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1302 !rcu_state.nocb_is_setup && !cpumask) 1303 cpumask = cpu_possible_mask; 1304 1305 if (cpumask) { 1306 if (!cpumask_available(rcu_nocb_mask)) { 1307 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1308 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1309 return; 1310 } 1311 } 1312 1313 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1314 rcu_state.nocb_is_setup = true; 1315 } 1316 1317 if (!rcu_state.nocb_is_setup) 1318 return; 1319 1320 #ifdef CONFIG_RCU_LAZY 1321 lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy"); 1322 if (!lazy_rcu_shrinker) { 1323 pr_err("Failed to allocate lazy_rcu shrinker!\n"); 1324 } else { 1325 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count; 1326 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan; 1327 1328 shrinker_register(lazy_rcu_shrinker); 1329 } 1330 #endif // #ifdef CONFIG_RCU_LAZY 1331 1332 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1333 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1334 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1335 rcu_nocb_mask); 1336 } 1337 if (cpumask_empty(rcu_nocb_mask)) 1338 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1339 else 1340 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1341 cpumask_pr_args(rcu_nocb_mask)); 1342 if (rcu_nocb_poll) 1343 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1344 1345 for_each_cpu(cpu, rcu_nocb_mask) { 1346 rdp = per_cpu_ptr(&rcu_data, cpu); 1347 if (rcu_segcblist_empty(&rdp->cblist)) 1348 rcu_segcblist_init(&rdp->cblist); 1349 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_OFFLOADED); 1350 } 1351 rcu_organize_nocb_kthreads(); 1352 } 1353 1354 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1355 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1356 { 1357 init_swait_queue_head(&rdp->nocb_cb_wq); 1358 init_swait_queue_head(&rdp->nocb_gp_wq); 1359 init_swait_queue_head(&rdp->nocb_state_wq); 1360 raw_spin_lock_init(&rdp->nocb_lock); 1361 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1362 raw_spin_lock_init(&rdp->nocb_gp_lock); 1363 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1364 rcu_cblist_init(&rdp->nocb_bypass); 1365 WRITE_ONCE(rdp->lazy_len, 0); 1366 mutex_init(&rdp->nocb_gp_kthread_mutex); 1367 } 1368 1369 /* 1370 * If the specified CPU is a no-CBs CPU that does not already have its 1371 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1372 * for this CPU's group has not yet been created, spawn it as well. 1373 */ 1374 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1375 { 1376 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1377 struct rcu_data *rdp_gp; 1378 struct task_struct *t; 1379 struct sched_param sp; 1380 1381 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1382 return; 1383 1384 /* If there already is an rcuo kthread, then nothing to do. */ 1385 if (rdp->nocb_cb_kthread) 1386 return; 1387 1388 /* If we didn't spawn the GP kthread first, reorganize! */ 1389 sp.sched_priority = kthread_prio; 1390 rdp_gp = rdp->nocb_gp_rdp; 1391 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1392 if (!rdp_gp->nocb_gp_kthread) { 1393 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1394 "rcuog/%d", rdp_gp->cpu); 1395 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1396 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1397 goto err; 1398 } 1399 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1400 if (kthread_prio) 1401 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1402 } 1403 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1404 1405 /* Spawn the kthread for this CPU. */ 1406 t = kthread_create(rcu_nocb_cb_kthread, rdp, 1407 "rcuo%c/%d", rcu_state.abbr, cpu); 1408 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1409 goto err; 1410 1411 if (rcu_rdp_is_offloaded(rdp)) 1412 wake_up_process(t); 1413 else 1414 kthread_park(t); 1415 1416 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1417 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1418 1419 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1420 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1421 return; 1422 1423 err: 1424 /* 1425 * No need to protect against concurrent rcu_barrier() 1426 * because the number of callbacks should be 0 for a non-boot CPU, 1427 * therefore rcu_barrier() shouldn't even try to grab the nocb_lock. 1428 * But hold nocb_mutex to avoid nocb_lock imbalance from shrinker. 1429 */ 1430 WARN_ON_ONCE(system_state > SYSTEM_BOOTING && rcu_segcblist_n_cbs(&rdp->cblist)); 1431 mutex_lock(&rcu_state.nocb_mutex); 1432 if (rcu_rdp_is_offloaded(rdp)) { 1433 rcu_nocb_rdp_deoffload(rdp); 1434 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1435 } 1436 mutex_unlock(&rcu_state.nocb_mutex); 1437 } 1438 1439 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1440 static int rcu_nocb_gp_stride = -1; 1441 module_param(rcu_nocb_gp_stride, int, 0444); 1442 1443 /* 1444 * Initialize GP-CB relationships for all no-CBs CPU. 1445 */ 1446 static void __init rcu_organize_nocb_kthreads(void) 1447 { 1448 int cpu; 1449 bool firsttime = true; 1450 bool gotnocbs = false; 1451 bool gotnocbscbs = true; 1452 int ls = rcu_nocb_gp_stride; 1453 int nl = 0; /* Next GP kthread. */ 1454 struct rcu_data *rdp; 1455 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1456 1457 if (!cpumask_available(rcu_nocb_mask)) 1458 return; 1459 if (ls == -1) { 1460 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1461 rcu_nocb_gp_stride = ls; 1462 } 1463 1464 /* 1465 * Each pass through this loop sets up one rcu_data structure. 1466 * Should the corresponding CPU come online in the future, then 1467 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1468 */ 1469 for_each_possible_cpu(cpu) { 1470 rdp = per_cpu_ptr(&rcu_data, cpu); 1471 if (rdp->cpu >= nl) { 1472 /* New GP kthread, set up for CBs & next GP. */ 1473 gotnocbs = true; 1474 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1475 rdp_gp = rdp; 1476 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1477 if (dump_tree) { 1478 if (!firsttime) 1479 pr_cont("%s\n", gotnocbscbs 1480 ? "" : " (self only)"); 1481 gotnocbscbs = false; 1482 firsttime = false; 1483 pr_alert("%s: No-CB GP kthread CPU %d:", 1484 __func__, cpu); 1485 } 1486 } else { 1487 /* Another CB kthread, link to previous GP kthread. */ 1488 gotnocbscbs = true; 1489 if (dump_tree) 1490 pr_cont(" %d", cpu); 1491 } 1492 rdp->nocb_gp_rdp = rdp_gp; 1493 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1494 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1495 } 1496 if (gotnocbs && dump_tree) 1497 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1498 } 1499 1500 /* 1501 * Bind the current task to the offloaded CPUs. If there are no offloaded 1502 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1503 */ 1504 void rcu_bind_current_to_nocb(void) 1505 { 1506 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1507 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1508 } 1509 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1510 1511 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1512 #ifdef CONFIG_SMP 1513 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1514 { 1515 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1516 } 1517 #else // #ifdef CONFIG_SMP 1518 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1519 { 1520 return ""; 1521 } 1522 #endif // #else #ifdef CONFIG_SMP 1523 1524 /* 1525 * Dump out nocb grace-period kthread state for the specified rcu_data 1526 * structure. 1527 */ 1528 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1529 { 1530 struct rcu_node *rnp = rdp->mynode; 1531 1532 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1533 rdp->cpu, 1534 "kK"[!!rdp->nocb_gp_kthread], 1535 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1536 "dD"[!!rdp->nocb_defer_wakeup], 1537 "tT"[timer_pending(&rdp->nocb_timer)], 1538 "sS"[!!rdp->nocb_gp_sleep], 1539 ".W"[swait_active(&rdp->nocb_gp_wq)], 1540 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1541 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1542 ".B"[!!rdp->nocb_gp_bypass], 1543 ".G"[!!rdp->nocb_gp_gp], 1544 (long)rdp->nocb_gp_seq, 1545 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1546 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1547 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1548 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1549 } 1550 1551 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1552 static void show_rcu_nocb_state(struct rcu_data *rdp) 1553 { 1554 char bufd[22]; 1555 char bufw[45]; 1556 char bufr[45]; 1557 char bufn[22]; 1558 char bufb[22]; 1559 struct rcu_data *nocb_next_rdp; 1560 struct rcu_segcblist *rsclp = &rdp->cblist; 1561 bool waslocked; 1562 bool wassleep; 1563 1564 if (rdp->nocb_gp_rdp == rdp) 1565 show_rcu_nocb_gp_state(rdp); 1566 1567 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1568 &rdp->nocb_entry_rdp, 1569 typeof(*rdp), 1570 nocb_entry_rdp); 1571 1572 sprintf(bufd, "%ld", rsclp->seglen[RCU_DONE_TAIL]); 1573 sprintf(bufw, "%ld(%ld)", rsclp->seglen[RCU_WAIT_TAIL], rsclp->gp_seq[RCU_WAIT_TAIL]); 1574 sprintf(bufr, "%ld(%ld)", rsclp->seglen[RCU_NEXT_READY_TAIL], 1575 rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1576 sprintf(bufn, "%ld", rsclp->seglen[RCU_NEXT_TAIL]); 1577 sprintf(bufb, "%ld", rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1578 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%s%c%s%c%s%c%s%c%s q%ld %c CPU %d%s\n", 1579 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1580 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1581 "kK"[!!rdp->nocb_cb_kthread], 1582 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1583 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1584 "sS"[!!rdp->nocb_cb_sleep], 1585 ".W"[swait_active(&rdp->nocb_cb_wq)], 1586 jiffies - rdp->nocb_bypass_first, 1587 jiffies - rdp->nocb_nobypass_last, 1588 rdp->nocb_nobypass_count, 1589 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1590 rcu_segcblist_segempty(rsclp, RCU_DONE_TAIL) ? "" : bufd, 1591 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1592 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1593 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1594 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1595 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1596 rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL) ? "" : bufn, 1597 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1598 !rcu_cblist_n_cbs(&rdp->nocb_bypass) ? "" : bufb, 1599 rcu_segcblist_n_cbs(&rdp->cblist), 1600 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1601 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1602 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1603 1604 /* It is OK for GP kthreads to have GP state. */ 1605 if (rdp->nocb_gp_rdp == rdp) 1606 return; 1607 1608 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1609 wassleep = swait_active(&rdp->nocb_gp_wq); 1610 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1611 return; /* Nothing untoward. */ 1612 1613 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1614 "lL"[waslocked], 1615 "dD"[!!rdp->nocb_defer_wakeup], 1616 "sS"[!!rdp->nocb_gp_sleep], 1617 ".W"[wassleep]); 1618 } 1619 1620 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1621 1622 /* No ->nocb_lock to acquire. */ 1623 static void rcu_nocb_lock(struct rcu_data *rdp) 1624 { 1625 } 1626 1627 /* No ->nocb_lock to release. */ 1628 static void rcu_nocb_unlock(struct rcu_data *rdp) 1629 { 1630 } 1631 1632 /* No ->nocb_lock to release. */ 1633 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1634 unsigned long flags) 1635 { 1636 local_irq_restore(flags); 1637 } 1638 1639 /* Lockdep check that ->cblist may be safely accessed. */ 1640 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1641 { 1642 lockdep_assert_irqs_disabled(); 1643 } 1644 1645 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1646 { 1647 } 1648 1649 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1650 { 1651 return NULL; 1652 } 1653 1654 static void rcu_init_one_nocb(struct rcu_node *rnp) 1655 { 1656 } 1657 1658 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1659 { 1660 return false; 1661 } 1662 1663 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1664 unsigned long j, bool lazy) 1665 { 1666 return true; 1667 } 1668 1669 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 1670 rcu_callback_t func, unsigned long flags, bool lazy) 1671 { 1672 WARN_ON_ONCE(1); /* Should be dead code! */ 1673 } 1674 1675 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1676 unsigned long flags) 1677 { 1678 WARN_ON_ONCE(1); /* Should be dead code! */ 1679 } 1680 1681 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1682 { 1683 } 1684 1685 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1686 { 1687 return false; 1688 } 1689 1690 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1691 { 1692 return false; 1693 } 1694 1695 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1696 { 1697 } 1698 1699 static void show_rcu_nocb_state(struct rcu_data *rdp) 1700 { 1701 } 1702 1703 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1704