xref: /linux/kernel/rcu/tree_nocb.h (revision 9e4d52a00a0217857fa40dc998971a375f861a61)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <mingo@elte.hu>
12  *	   Paul E. McKenney <paulmck@linux.ibm.com>
13  *	   Frederic Weisbecker <frederic@kernel.org>
14  */
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 	return lockdep_is_held(&rdp->nocb_lock);
22 }
23 
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 	/* Race on early boot between thread creation and assignment */
27 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 		return true;
29 
30 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 		if (in_task())
32 			return true;
33 	return false;
34 }
35 
36 /*
37  * Offload callback processing from the boot-time-specified set of CPUs
38  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39  * created that pull the callbacks from the corresponding CPU, wait for
40  * a grace period to elapse, and invoke the callbacks.  These kthreads
41  * are organized into GP kthreads, which manage incoming callbacks, wait for
42  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44  * do a wake_up() on their GP kthread when they insert a callback into any
45  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46  * in which case each kthread actively polls its CPU.  (Which isn't so great
47  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48  *
49  * This is intended to be used in conjunction with Frederic Weisbecker's
50  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51  * running CPU-bound user-mode computations.
52  *
53  * Offloading of callbacks can also be used as an energy-efficiency
54  * measure because CPUs with no RCU callbacks queued are more aggressive
55  * about entering dyntick-idle mode.
56  */
57 
58 
59 /*
60  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62  */
63 static int __init rcu_nocb_setup(char *str)
64 {
65 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66 	if (cpulist_parse(str, rcu_nocb_mask)) {
67 		pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
68 		cpumask_setall(rcu_nocb_mask);
69 	}
70 	return 1;
71 }
72 __setup("rcu_nocbs=", rcu_nocb_setup);
73 
74 static int __init parse_rcu_nocb_poll(char *arg)
75 {
76 	rcu_nocb_poll = true;
77 	return 0;
78 }
79 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
80 
81 /*
82  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
83  * After all, the main point of bypassing is to avoid lock contention
84  * on ->nocb_lock, which only can happen at high call_rcu() rates.
85  */
86 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
87 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
88 
89 /*
90  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
91  * lock isn't immediately available, increment ->nocb_lock_contended to
92  * flag the contention.
93  */
94 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
95 	__acquires(&rdp->nocb_bypass_lock)
96 {
97 	lockdep_assert_irqs_disabled();
98 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
99 		return;
100 	atomic_inc(&rdp->nocb_lock_contended);
101 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
102 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
103 	raw_spin_lock(&rdp->nocb_bypass_lock);
104 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
105 	atomic_dec(&rdp->nocb_lock_contended);
106 }
107 
108 /*
109  * Spinwait until the specified rcu_data structure's ->nocb_lock is
110  * not contended.  Please note that this is extremely special-purpose,
111  * relying on the fact that at most two kthreads and one CPU contend for
112  * this lock, and also that the two kthreads are guaranteed to have frequent
113  * grace-period-duration time intervals between successive acquisitions
114  * of the lock.  This allows us to use an extremely simple throttling
115  * mechanism, and further to apply it only to the CPU doing floods of
116  * call_rcu() invocations.  Don't try this at home!
117  */
118 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
119 {
120 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
121 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
122 		cpu_relax();
123 }
124 
125 /*
126  * Conditionally acquire the specified rcu_data structure's
127  * ->nocb_bypass_lock.
128  */
129 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
130 {
131 	lockdep_assert_irqs_disabled();
132 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
133 }
134 
135 /*
136  * Release the specified rcu_data structure's ->nocb_bypass_lock.
137  */
138 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
139 	__releases(&rdp->nocb_bypass_lock)
140 {
141 	lockdep_assert_irqs_disabled();
142 	raw_spin_unlock(&rdp->nocb_bypass_lock);
143 }
144 
145 /*
146  * Acquire the specified rcu_data structure's ->nocb_lock, but only
147  * if it corresponds to a no-CBs CPU.
148  */
149 static void rcu_nocb_lock(struct rcu_data *rdp)
150 {
151 	lockdep_assert_irqs_disabled();
152 	if (!rcu_rdp_is_offloaded(rdp))
153 		return;
154 	raw_spin_lock(&rdp->nocb_lock);
155 }
156 
157 /*
158  * Release the specified rcu_data structure's ->nocb_lock, but only
159  * if it corresponds to a no-CBs CPU.
160  */
161 static void rcu_nocb_unlock(struct rcu_data *rdp)
162 {
163 	if (rcu_rdp_is_offloaded(rdp)) {
164 		lockdep_assert_irqs_disabled();
165 		raw_spin_unlock(&rdp->nocb_lock);
166 	}
167 }
168 
169 /*
170  * Release the specified rcu_data structure's ->nocb_lock and restore
171  * interrupts, but only if it corresponds to a no-CBs CPU.
172  */
173 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
174 				       unsigned long flags)
175 {
176 	if (rcu_rdp_is_offloaded(rdp)) {
177 		lockdep_assert_irqs_disabled();
178 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
179 	} else {
180 		local_irq_restore(flags);
181 	}
182 }
183 
184 /* Lockdep check that ->cblist may be safely accessed. */
185 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
186 {
187 	lockdep_assert_irqs_disabled();
188 	if (rcu_rdp_is_offloaded(rdp))
189 		lockdep_assert_held(&rdp->nocb_lock);
190 }
191 
192 /*
193  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
194  * grace period.
195  */
196 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
197 {
198 	swake_up_all(sq);
199 }
200 
201 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
202 {
203 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
204 }
205 
206 static void rcu_init_one_nocb(struct rcu_node *rnp)
207 {
208 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
209 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
210 }
211 
212 /* Is the specified CPU a no-CBs CPU? */
213 bool rcu_is_nocb_cpu(int cpu)
214 {
215 	if (cpumask_available(rcu_nocb_mask))
216 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
217 	return false;
218 }
219 
220 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
221 			   struct rcu_data *rdp,
222 			   bool force, unsigned long flags)
223 	__releases(rdp_gp->nocb_gp_lock)
224 {
225 	bool needwake = false;
226 
227 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
228 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
229 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
230 				    TPS("AlreadyAwake"));
231 		return false;
232 	}
233 
234 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
235 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
236 		del_timer(&rdp_gp->nocb_timer);
237 	}
238 
239 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
240 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
241 		needwake = true;
242 	}
243 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
244 	if (needwake) {
245 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
246 		wake_up_process(rdp_gp->nocb_gp_kthread);
247 	}
248 
249 	return needwake;
250 }
251 
252 /*
253  * Kick the GP kthread for this NOCB group.
254  */
255 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
256 {
257 	unsigned long flags;
258 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
259 
260 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
261 	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
262 }
263 
264 /*
265  * Arrange to wake the GP kthread for this NOCB group at some future
266  * time when it is safe to do so.
267  */
268 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
269 			       const char *reason)
270 {
271 	unsigned long flags;
272 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
273 
274 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
275 
276 	/*
277 	 * Bypass wakeup overrides previous deferments. In case
278 	 * of callback storm, no need to wake up too early.
279 	 */
280 	if (waketype == RCU_NOCB_WAKE_BYPASS) {
281 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
282 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
283 	} else {
284 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
285 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
286 		if (rdp_gp->nocb_defer_wakeup < waketype)
287 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
288 	}
289 
290 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
291 
292 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
293 }
294 
295 /*
296  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
297  * However, if there is a callback to be enqueued and if ->nocb_bypass
298  * proves to be initially empty, just return false because the no-CB GP
299  * kthread may need to be awakened in this case.
300  *
301  * Note that this function always returns true if rhp is NULL.
302  */
303 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
304 				     unsigned long j)
305 {
306 	struct rcu_cblist rcl;
307 
308 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
309 	rcu_lockdep_assert_cblist_protected(rdp);
310 	lockdep_assert_held(&rdp->nocb_bypass_lock);
311 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
312 		raw_spin_unlock(&rdp->nocb_bypass_lock);
313 		return false;
314 	}
315 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
316 	if (rhp)
317 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
318 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
319 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
320 	WRITE_ONCE(rdp->nocb_bypass_first, j);
321 	rcu_nocb_bypass_unlock(rdp);
322 	return true;
323 }
324 
325 /*
326  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
327  * However, if there is a callback to be enqueued and if ->nocb_bypass
328  * proves to be initially empty, just return false because the no-CB GP
329  * kthread may need to be awakened in this case.
330  *
331  * Note that this function always returns true if rhp is NULL.
332  */
333 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
334 				  unsigned long j)
335 {
336 	if (!rcu_rdp_is_offloaded(rdp))
337 		return true;
338 	rcu_lockdep_assert_cblist_protected(rdp);
339 	rcu_nocb_bypass_lock(rdp);
340 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
341 }
342 
343 /*
344  * If the ->nocb_bypass_lock is immediately available, flush the
345  * ->nocb_bypass queue into ->cblist.
346  */
347 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
348 {
349 	rcu_lockdep_assert_cblist_protected(rdp);
350 	if (!rcu_rdp_is_offloaded(rdp) ||
351 	    !rcu_nocb_bypass_trylock(rdp))
352 		return;
353 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
354 }
355 
356 /*
357  * See whether it is appropriate to use the ->nocb_bypass list in order
358  * to control contention on ->nocb_lock.  A limited number of direct
359  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
360  * is non-empty, further callbacks must be placed into ->nocb_bypass,
361  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
362  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
363  * used if ->cblist is empty, because otherwise callbacks can be stranded
364  * on ->nocb_bypass because we cannot count on the current CPU ever again
365  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
366  * non-empty, the corresponding no-CBs grace-period kthread must not be
367  * in an indefinite sleep state.
368  *
369  * Finally, it is not permitted to use the bypass during early boot,
370  * as doing so would confuse the auto-initialization code.  Besides
371  * which, there is no point in worrying about lock contention while
372  * there is only one CPU in operation.
373  */
374 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
375 				bool *was_alldone, unsigned long flags)
376 {
377 	unsigned long c;
378 	unsigned long cur_gp_seq;
379 	unsigned long j = jiffies;
380 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
381 
382 	lockdep_assert_irqs_disabled();
383 
384 	// Pure softirq/rcuc based processing: no bypassing, no
385 	// locking.
386 	if (!rcu_rdp_is_offloaded(rdp)) {
387 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
388 		return false;
389 	}
390 
391 	// In the process of (de-)offloading: no bypassing, but
392 	// locking.
393 	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
394 		rcu_nocb_lock(rdp);
395 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
396 		return false; /* Not offloaded, no bypassing. */
397 	}
398 
399 	// Don't use ->nocb_bypass during early boot.
400 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
401 		rcu_nocb_lock(rdp);
402 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
403 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
404 		return false;
405 	}
406 
407 	// If we have advanced to a new jiffy, reset counts to allow
408 	// moving back from ->nocb_bypass to ->cblist.
409 	if (j == rdp->nocb_nobypass_last) {
410 		c = rdp->nocb_nobypass_count + 1;
411 	} else {
412 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
413 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
414 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
415 				 nocb_nobypass_lim_per_jiffy))
416 			c = 0;
417 		else if (c > nocb_nobypass_lim_per_jiffy)
418 			c = nocb_nobypass_lim_per_jiffy;
419 	}
420 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
421 
422 	// If there hasn't yet been all that many ->cblist enqueues
423 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
424 	// ->nocb_bypass first.
425 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
426 		rcu_nocb_lock(rdp);
427 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
428 		if (*was_alldone)
429 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
430 					    TPS("FirstQ"));
431 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
432 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
433 		return false; // Caller must enqueue the callback.
434 	}
435 
436 	// If ->nocb_bypass has been used too long or is too full,
437 	// flush ->nocb_bypass to ->cblist.
438 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
439 	    ncbs >= qhimark) {
440 		rcu_nocb_lock(rdp);
441 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
442 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
443 			if (*was_alldone)
444 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
445 						    TPS("FirstQ"));
446 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
447 			return false; // Caller must enqueue the callback.
448 		}
449 		if (j != rdp->nocb_gp_adv_time &&
450 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
451 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
452 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
453 			rdp->nocb_gp_adv_time = j;
454 		}
455 		rcu_nocb_unlock_irqrestore(rdp, flags);
456 		return true; // Callback already enqueued.
457 	}
458 
459 	// We need to use the bypass.
460 	rcu_nocb_wait_contended(rdp);
461 	rcu_nocb_bypass_lock(rdp);
462 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
463 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
464 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
465 	if (!ncbs) {
466 		WRITE_ONCE(rdp->nocb_bypass_first, j);
467 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
468 	}
469 	rcu_nocb_bypass_unlock(rdp);
470 	smp_mb(); /* Order enqueue before wake. */
471 	if (ncbs) {
472 		local_irq_restore(flags);
473 	} else {
474 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
475 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
476 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
477 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
478 					    TPS("FirstBQwake"));
479 			__call_rcu_nocb_wake(rdp, true, flags);
480 		} else {
481 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
482 					    TPS("FirstBQnoWake"));
483 			rcu_nocb_unlock_irqrestore(rdp, flags);
484 		}
485 	}
486 	return true; // Callback already enqueued.
487 }
488 
489 /*
490  * Awaken the no-CBs grace-period kthread if needed, either due to it
491  * legitimately being asleep or due to overload conditions.
492  *
493  * If warranted, also wake up the kthread servicing this CPUs queues.
494  */
495 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
496 				 unsigned long flags)
497 				 __releases(rdp->nocb_lock)
498 {
499 	unsigned long cur_gp_seq;
500 	unsigned long j;
501 	long len;
502 	struct task_struct *t;
503 
504 	// If we are being polled or there is no kthread, just leave.
505 	t = READ_ONCE(rdp->nocb_gp_kthread);
506 	if (rcu_nocb_poll || !t) {
507 		rcu_nocb_unlock_irqrestore(rdp, flags);
508 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
509 				    TPS("WakeNotPoll"));
510 		return;
511 	}
512 	// Need to actually to a wakeup.
513 	len = rcu_segcblist_n_cbs(&rdp->cblist);
514 	if (was_alldone) {
515 		rdp->qlen_last_fqs_check = len;
516 		if (!irqs_disabled_flags(flags)) {
517 			/* ... if queue was empty ... */
518 			rcu_nocb_unlock_irqrestore(rdp, flags);
519 			wake_nocb_gp(rdp, false);
520 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
521 					    TPS("WakeEmpty"));
522 		} else {
523 			rcu_nocb_unlock_irqrestore(rdp, flags);
524 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
525 					   TPS("WakeEmptyIsDeferred"));
526 		}
527 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
528 		/* ... or if many callbacks queued. */
529 		rdp->qlen_last_fqs_check = len;
530 		j = jiffies;
531 		if (j != rdp->nocb_gp_adv_time &&
532 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
533 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
534 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
535 			rdp->nocb_gp_adv_time = j;
536 		}
537 		smp_mb(); /* Enqueue before timer_pending(). */
538 		if ((rdp->nocb_cb_sleep ||
539 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
540 		    !timer_pending(&rdp->nocb_timer)) {
541 			rcu_nocb_unlock_irqrestore(rdp, flags);
542 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
543 					   TPS("WakeOvfIsDeferred"));
544 		} else {
545 			rcu_nocb_unlock_irqrestore(rdp, flags);
546 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
547 		}
548 	} else {
549 		rcu_nocb_unlock_irqrestore(rdp, flags);
550 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
551 	}
552 }
553 
554 /*
555  * Check if we ignore this rdp.
556  *
557  * We check that without holding the nocb lock but
558  * we make sure not to miss a freshly offloaded rdp
559  * with the current ordering:
560  *
561  *  rdp_offload_toggle()        nocb_gp_enabled_cb()
562  * -------------------------   ----------------------------
563  *    WRITE flags                 LOCK nocb_gp_lock
564  *    LOCK nocb_gp_lock           READ/WRITE nocb_gp_sleep
565  *    READ/WRITE nocb_gp_sleep    UNLOCK nocb_gp_lock
566  *    UNLOCK nocb_gp_lock         READ flags
567  */
568 static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
569 {
570 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
571 
572 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
573 }
574 
575 static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
576 						     bool *needwake_state)
577 {
578 	struct rcu_segcblist *cblist = &rdp->cblist;
579 
580 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
581 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
582 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
583 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
584 				*needwake_state = true;
585 		}
586 		return false;
587 	}
588 
589 	/*
590 	 * De-offloading. Clear our flag and notify the de-offload worker.
591 	 * We will ignore this rdp until it ever gets re-offloaded.
592 	 */
593 	WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
594 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
595 	if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
596 		*needwake_state = true;
597 	return true;
598 }
599 
600 
601 /*
602  * No-CBs GP kthreads come here to wait for additional callbacks to show up
603  * or for grace periods to end.
604  */
605 static void nocb_gp_wait(struct rcu_data *my_rdp)
606 {
607 	bool bypass = false;
608 	long bypass_ncbs;
609 	int __maybe_unused cpu = my_rdp->cpu;
610 	unsigned long cur_gp_seq;
611 	unsigned long flags;
612 	bool gotcbs = false;
613 	unsigned long j = jiffies;
614 	bool needwait_gp = false; // This prevents actual uninitialized use.
615 	bool needwake;
616 	bool needwake_gp;
617 	struct rcu_data *rdp;
618 	struct rcu_node *rnp;
619 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
620 	bool wasempty = false;
621 
622 	/*
623 	 * Each pass through the following loop checks for CBs and for the
624 	 * nearest grace period (if any) to wait for next.  The CB kthreads
625 	 * and the global grace-period kthread are awakened if needed.
626 	 */
627 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
628 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
629 		bool needwake_state = false;
630 
631 		if (!nocb_gp_enabled_cb(rdp))
632 			continue;
633 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
634 		rcu_nocb_lock_irqsave(rdp, flags);
635 		if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
636 			rcu_nocb_unlock_irqrestore(rdp, flags);
637 			if (needwake_state)
638 				swake_up_one(&rdp->nocb_state_wq);
639 			continue;
640 		}
641 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
642 		if (bypass_ncbs &&
643 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
644 		     bypass_ncbs > 2 * qhimark)) {
645 			// Bypass full or old, so flush it.
646 			(void)rcu_nocb_try_flush_bypass(rdp, j);
647 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
648 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
649 			rcu_nocb_unlock_irqrestore(rdp, flags);
650 			if (needwake_state)
651 				swake_up_one(&rdp->nocb_state_wq);
652 			continue; /* No callbacks here, try next. */
653 		}
654 		if (bypass_ncbs) {
655 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
656 					    TPS("Bypass"));
657 			bypass = true;
658 		}
659 		rnp = rdp->mynode;
660 
661 		// Advance callbacks if helpful and low contention.
662 		needwake_gp = false;
663 		if (!rcu_segcblist_restempty(&rdp->cblist,
664 					     RCU_NEXT_READY_TAIL) ||
665 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
666 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
667 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
668 			needwake_gp = rcu_advance_cbs(rnp, rdp);
669 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
670 							   RCU_NEXT_READY_TAIL);
671 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
672 		}
673 		// Need to wait on some grace period?
674 		WARN_ON_ONCE(wasempty &&
675 			     !rcu_segcblist_restempty(&rdp->cblist,
676 						      RCU_NEXT_READY_TAIL));
677 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
678 			if (!needwait_gp ||
679 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
680 				wait_gp_seq = cur_gp_seq;
681 			needwait_gp = true;
682 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
683 					    TPS("NeedWaitGP"));
684 		}
685 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
686 			needwake = rdp->nocb_cb_sleep;
687 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
688 			smp_mb(); /* CB invocation -after- GP end. */
689 		} else {
690 			needwake = false;
691 		}
692 		rcu_nocb_unlock_irqrestore(rdp, flags);
693 		if (needwake) {
694 			swake_up_one(&rdp->nocb_cb_wq);
695 			gotcbs = true;
696 		}
697 		if (needwake_gp)
698 			rcu_gp_kthread_wake();
699 		if (needwake_state)
700 			swake_up_one(&rdp->nocb_state_wq);
701 	}
702 
703 	my_rdp->nocb_gp_bypass = bypass;
704 	my_rdp->nocb_gp_gp = needwait_gp;
705 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
706 
707 	if (bypass && !rcu_nocb_poll) {
708 		// At least one child with non-empty ->nocb_bypass, so set
709 		// timer in order to avoid stranding its callbacks.
710 		wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
711 				   TPS("WakeBypassIsDeferred"));
712 	}
713 	if (rcu_nocb_poll) {
714 		/* Polling, so trace if first poll in the series. */
715 		if (gotcbs)
716 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
717 		schedule_timeout_idle(1);
718 	} else if (!needwait_gp) {
719 		/* Wait for callbacks to appear. */
720 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
721 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
722 				!READ_ONCE(my_rdp->nocb_gp_sleep));
723 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
724 	} else {
725 		rnp = my_rdp->mynode;
726 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
727 		swait_event_interruptible_exclusive(
728 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
729 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
730 			!READ_ONCE(my_rdp->nocb_gp_sleep));
731 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
732 	}
733 	if (!rcu_nocb_poll) {
734 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
735 		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
736 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
737 			del_timer(&my_rdp->nocb_timer);
738 		}
739 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
740 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
741 	}
742 	my_rdp->nocb_gp_seq = -1;
743 	WARN_ON(signal_pending(current));
744 }
745 
746 /*
747  * No-CBs grace-period-wait kthread.  There is one of these per group
748  * of CPUs, but only once at least one CPU in that group has come online
749  * at least once since boot.  This kthread checks for newly posted
750  * callbacks from any of the CPUs it is responsible for, waits for a
751  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
752  * that then have callback-invocation work to do.
753  */
754 static int rcu_nocb_gp_kthread(void *arg)
755 {
756 	struct rcu_data *rdp = arg;
757 
758 	for (;;) {
759 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
760 		nocb_gp_wait(rdp);
761 		cond_resched_tasks_rcu_qs();
762 	}
763 	return 0;
764 }
765 
766 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
767 {
768 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
769 
770 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
771 }
772 
773 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
774 {
775 	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
776 }
777 
778 /*
779  * Invoke any ready callbacks from the corresponding no-CBs CPU,
780  * then, if there are no more, wait for more to appear.
781  */
782 static void nocb_cb_wait(struct rcu_data *rdp)
783 {
784 	struct rcu_segcblist *cblist = &rdp->cblist;
785 	unsigned long cur_gp_seq;
786 	unsigned long flags;
787 	bool needwake_state = false;
788 	bool needwake_gp = false;
789 	bool can_sleep = true;
790 	struct rcu_node *rnp = rdp->mynode;
791 
792 	local_irq_save(flags);
793 	rcu_momentary_dyntick_idle();
794 	local_irq_restore(flags);
795 	/*
796 	 * Disable BH to provide the expected environment.  Also, when
797 	 * transitioning to/from NOCB mode, a self-requeuing callback might
798 	 * be invoked from softirq.  A short grace period could cause both
799 	 * instances of this callback would execute concurrently.
800 	 */
801 	local_bh_disable();
802 	rcu_do_batch(rdp);
803 	local_bh_enable();
804 	lockdep_assert_irqs_enabled();
805 	rcu_nocb_lock_irqsave(rdp, flags);
806 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
807 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
808 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
809 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
810 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
811 	}
812 
813 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
814 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
815 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
816 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
817 				needwake_state = true;
818 		}
819 		if (rcu_segcblist_ready_cbs(cblist))
820 			can_sleep = false;
821 	} else {
822 		/*
823 		 * De-offloading. Clear our flag and notify the de-offload worker.
824 		 * We won't touch the callbacks and keep sleeping until we ever
825 		 * get re-offloaded.
826 		 */
827 		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
828 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
829 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
830 			needwake_state = true;
831 	}
832 
833 	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
834 
835 	if (rdp->nocb_cb_sleep)
836 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
837 
838 	rcu_nocb_unlock_irqrestore(rdp, flags);
839 	if (needwake_gp)
840 		rcu_gp_kthread_wake();
841 
842 	if (needwake_state)
843 		swake_up_one(&rdp->nocb_state_wq);
844 
845 	do {
846 		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
847 						    nocb_cb_wait_cond(rdp));
848 
849 		// VVV Ensure CB invocation follows _sleep test.
850 		if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
851 			WARN_ON(signal_pending(current));
852 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
853 		}
854 	} while (!nocb_cb_can_run(rdp));
855 }
856 
857 /*
858  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
859  * nocb_cb_wait() to do the dirty work.
860  */
861 static int rcu_nocb_cb_kthread(void *arg)
862 {
863 	struct rcu_data *rdp = arg;
864 
865 	// Each pass through this loop does one callback batch, and,
866 	// if there are no more ready callbacks, waits for them.
867 	for (;;) {
868 		nocb_cb_wait(rdp);
869 		cond_resched_tasks_rcu_qs();
870 	}
871 	return 0;
872 }
873 
874 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
875 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
876 {
877 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
878 }
879 
880 /* Do a deferred wakeup of rcu_nocb_kthread(). */
881 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
882 					   struct rcu_data *rdp, int level,
883 					   unsigned long flags)
884 	__releases(rdp_gp->nocb_gp_lock)
885 {
886 	int ndw;
887 	int ret;
888 
889 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
890 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
891 		return false;
892 	}
893 
894 	ndw = rdp_gp->nocb_defer_wakeup;
895 	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
896 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
897 
898 	return ret;
899 }
900 
901 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
902 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
903 {
904 	unsigned long flags;
905 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
906 
907 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
908 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
909 
910 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
911 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
912 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
913 }
914 
915 /*
916  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
917  * This means we do an inexact common-case check.  Note that if
918  * we miss, ->nocb_timer will eventually clean things up.
919  */
920 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
921 {
922 	unsigned long flags;
923 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
924 
925 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
926 		return false;
927 
928 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
929 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
930 }
931 
932 void rcu_nocb_flush_deferred_wakeup(void)
933 {
934 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
935 }
936 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
937 
938 static int rdp_offload_toggle(struct rcu_data *rdp,
939 			       bool offload, unsigned long flags)
940 	__releases(rdp->nocb_lock)
941 {
942 	struct rcu_segcblist *cblist = &rdp->cblist;
943 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
944 	bool wake_gp = false;
945 
946 	rcu_segcblist_offload(cblist, offload);
947 
948 	if (rdp->nocb_cb_sleep)
949 		rdp->nocb_cb_sleep = false;
950 	rcu_nocb_unlock_irqrestore(rdp, flags);
951 
952 	/*
953 	 * Ignore former value of nocb_cb_sleep and force wake up as it could
954 	 * have been spuriously set to false already.
955 	 */
956 	swake_up_one(&rdp->nocb_cb_wq);
957 
958 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
959 	if (rdp_gp->nocb_gp_sleep) {
960 		rdp_gp->nocb_gp_sleep = false;
961 		wake_gp = true;
962 	}
963 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
964 
965 	if (wake_gp)
966 		wake_up_process(rdp_gp->nocb_gp_kthread);
967 
968 	return 0;
969 }
970 
971 static long rcu_nocb_rdp_deoffload(void *arg)
972 {
973 	struct rcu_data *rdp = arg;
974 	struct rcu_segcblist *cblist = &rdp->cblist;
975 	unsigned long flags;
976 	int ret;
977 
978 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
979 
980 	pr_info("De-offloading %d\n", rdp->cpu);
981 
982 	rcu_nocb_lock_irqsave(rdp, flags);
983 	/*
984 	 * Flush once and for all now. This suffices because we are
985 	 * running on the target CPU holding ->nocb_lock (thus having
986 	 * interrupts disabled), and because rdp_offload_toggle()
987 	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
988 	 * Thus future calls to rcu_segcblist_completely_offloaded() will
989 	 * return false, which means that future calls to rcu_nocb_try_bypass()
990 	 * will refuse to put anything into the bypass.
991 	 */
992 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
993 	ret = rdp_offload_toggle(rdp, false, flags);
994 	swait_event_exclusive(rdp->nocb_state_wq,
995 			      !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
996 							SEGCBLIST_KTHREAD_GP));
997 	/*
998 	 * Lock one last time to acquire latest callback updates from kthreads
999 	 * so we can later handle callbacks locally without locking.
1000 	 */
1001 	rcu_nocb_lock_irqsave(rdp, flags);
1002 	/*
1003 	 * Theoretically we could set SEGCBLIST_SOFTIRQ_ONLY after the nocb
1004 	 * lock is released but how about being paranoid for once?
1005 	 */
1006 	rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY);
1007 	/*
1008 	 * With SEGCBLIST_SOFTIRQ_ONLY, we can't use
1009 	 * rcu_nocb_unlock_irqrestore() anymore.
1010 	 */
1011 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1012 
1013 	/* Sanity check */
1014 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1015 
1016 
1017 	return ret;
1018 }
1019 
1020 int rcu_nocb_cpu_deoffload(int cpu)
1021 {
1022 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1023 	int ret = 0;
1024 
1025 	mutex_lock(&rcu_state.barrier_mutex);
1026 	cpus_read_lock();
1027 	if (rcu_rdp_is_offloaded(rdp)) {
1028 		if (cpu_online(cpu)) {
1029 			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1030 			if (!ret)
1031 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1032 		} else {
1033 			pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
1034 			ret = -EINVAL;
1035 		}
1036 	}
1037 	cpus_read_unlock();
1038 	mutex_unlock(&rcu_state.barrier_mutex);
1039 
1040 	return ret;
1041 }
1042 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1043 
1044 static long rcu_nocb_rdp_offload(void *arg)
1045 {
1046 	struct rcu_data *rdp = arg;
1047 	struct rcu_segcblist *cblist = &rdp->cblist;
1048 	unsigned long flags;
1049 	int ret;
1050 
1051 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1052 	/*
1053 	 * For now we only support re-offload, ie: the rdp must have been
1054 	 * offloaded on boot first.
1055 	 */
1056 	if (!rdp->nocb_gp_rdp)
1057 		return -EINVAL;
1058 
1059 	pr_info("Offloading %d\n", rdp->cpu);
1060 	/*
1061 	 * Can't use rcu_nocb_lock_irqsave() while we are in
1062 	 * SEGCBLIST_SOFTIRQ_ONLY mode.
1063 	 */
1064 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1065 
1066 	/*
1067 	 * We didn't take the nocb lock while working on the
1068 	 * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode.
1069 	 * Every modifications that have been done previously on
1070 	 * rdp->cblist must be visible remotely by the nocb kthreads
1071 	 * upon wake up after reading the cblist flags.
1072 	 *
1073 	 * The layout against nocb_lock enforces that ordering:
1074 	 *
1075 	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1076 	 * -------------------------   ----------------------------
1077 	 *      WRITE callbacks           rcu_nocb_lock()
1078 	 *      rcu_nocb_lock()           READ flags
1079 	 *      WRITE flags               READ callbacks
1080 	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
1081 	 */
1082 	ret = rdp_offload_toggle(rdp, true, flags);
1083 	swait_event_exclusive(rdp->nocb_state_wq,
1084 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1085 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1086 
1087 	return ret;
1088 }
1089 
1090 int rcu_nocb_cpu_offload(int cpu)
1091 {
1092 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1093 	int ret = 0;
1094 
1095 	mutex_lock(&rcu_state.barrier_mutex);
1096 	cpus_read_lock();
1097 	if (!rcu_rdp_is_offloaded(rdp)) {
1098 		if (cpu_online(cpu)) {
1099 			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1100 			if (!ret)
1101 				cpumask_set_cpu(cpu, rcu_nocb_mask);
1102 		} else {
1103 			pr_info("NOCB: Can't CB-offload an offline CPU\n");
1104 			ret = -EINVAL;
1105 		}
1106 	}
1107 	cpus_read_unlock();
1108 	mutex_unlock(&rcu_state.barrier_mutex);
1109 
1110 	return ret;
1111 }
1112 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1113 
1114 void __init rcu_init_nohz(void)
1115 {
1116 	int cpu;
1117 	bool need_rcu_nocb_mask = false;
1118 	struct rcu_data *rdp;
1119 
1120 #if defined(CONFIG_NO_HZ_FULL)
1121 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
1122 		need_rcu_nocb_mask = true;
1123 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1124 
1125 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
1126 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1127 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1128 			return;
1129 		}
1130 	}
1131 	if (!cpumask_available(rcu_nocb_mask))
1132 		return;
1133 
1134 #if defined(CONFIG_NO_HZ_FULL)
1135 	if (tick_nohz_full_running)
1136 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
1137 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1138 
1139 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1140 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1141 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1142 			    rcu_nocb_mask);
1143 	}
1144 	if (cpumask_empty(rcu_nocb_mask))
1145 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1146 	else
1147 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1148 			cpumask_pr_args(rcu_nocb_mask));
1149 	if (rcu_nocb_poll)
1150 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1151 
1152 	for_each_cpu(cpu, rcu_nocb_mask) {
1153 		rdp = per_cpu_ptr(&rcu_data, cpu);
1154 		if (rcu_segcblist_empty(&rdp->cblist))
1155 			rcu_segcblist_init(&rdp->cblist);
1156 		rcu_segcblist_offload(&rdp->cblist, true);
1157 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1158 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP);
1159 	}
1160 	rcu_organize_nocb_kthreads();
1161 }
1162 
1163 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1164 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1165 {
1166 	init_swait_queue_head(&rdp->nocb_cb_wq);
1167 	init_swait_queue_head(&rdp->nocb_gp_wq);
1168 	init_swait_queue_head(&rdp->nocb_state_wq);
1169 	raw_spin_lock_init(&rdp->nocb_lock);
1170 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1171 	raw_spin_lock_init(&rdp->nocb_gp_lock);
1172 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1173 	rcu_cblist_init(&rdp->nocb_bypass);
1174 }
1175 
1176 /*
1177  * If the specified CPU is a no-CBs CPU that does not already have its
1178  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1179  * for this CPU's group has not yet been created, spawn it as well.
1180  */
1181 static void rcu_spawn_one_nocb_kthread(int cpu)
1182 {
1183 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1184 	struct rcu_data *rdp_gp;
1185 	struct task_struct *t;
1186 
1187 	/*
1188 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
1189 	 * then nothing to do.
1190 	 */
1191 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
1192 		return;
1193 
1194 	/* If we didn't spawn the GP kthread first, reorganize! */
1195 	rdp_gp = rdp->nocb_gp_rdp;
1196 	if (!rdp_gp->nocb_gp_kthread) {
1197 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1198 				"rcuog/%d", rdp_gp->cpu);
1199 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
1200 			return;
1201 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1202 	}
1203 
1204 	/* Spawn the kthread for this CPU. */
1205 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
1206 			"rcuo%c/%d", rcu_state.abbr, cpu);
1207 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1208 		return;
1209 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1210 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1211 }
1212 
1213 /*
1214  * If the specified CPU is a no-CBs CPU that does not already have its
1215  * rcuo kthread, spawn it.
1216  */
1217 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1218 {
1219 	if (rcu_scheduler_fully_active)
1220 		rcu_spawn_one_nocb_kthread(cpu);
1221 }
1222 
1223 /*
1224  * Once the scheduler is running, spawn rcuo kthreads for all online
1225  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
1226  * non-boot CPUs come online -- if this changes, we will need to add
1227  * some mutual exclusion.
1228  */
1229 static void __init rcu_spawn_nocb_kthreads(void)
1230 {
1231 	int cpu;
1232 
1233 	for_each_online_cpu(cpu)
1234 		rcu_spawn_cpu_nocb_kthread(cpu);
1235 }
1236 
1237 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1238 static int rcu_nocb_gp_stride = -1;
1239 module_param(rcu_nocb_gp_stride, int, 0444);
1240 
1241 /*
1242  * Initialize GP-CB relationships for all no-CBs CPU.
1243  */
1244 static void __init rcu_organize_nocb_kthreads(void)
1245 {
1246 	int cpu;
1247 	bool firsttime = true;
1248 	bool gotnocbs = false;
1249 	bool gotnocbscbs = true;
1250 	int ls = rcu_nocb_gp_stride;
1251 	int nl = 0;  /* Next GP kthread. */
1252 	struct rcu_data *rdp;
1253 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1254 	struct rcu_data *rdp_prev = NULL;
1255 
1256 	if (!cpumask_available(rcu_nocb_mask))
1257 		return;
1258 	if (ls == -1) {
1259 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1260 		rcu_nocb_gp_stride = ls;
1261 	}
1262 
1263 	/*
1264 	 * Each pass through this loop sets up one rcu_data structure.
1265 	 * Should the corresponding CPU come online in the future, then
1266 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1267 	 */
1268 	for_each_cpu(cpu, rcu_nocb_mask) {
1269 		rdp = per_cpu_ptr(&rcu_data, cpu);
1270 		if (rdp->cpu >= nl) {
1271 			/* New GP kthread, set up for CBs & next GP. */
1272 			gotnocbs = true;
1273 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1274 			rdp->nocb_gp_rdp = rdp;
1275 			rdp_gp = rdp;
1276 			if (dump_tree) {
1277 				if (!firsttime)
1278 					pr_cont("%s\n", gotnocbscbs
1279 							? "" : " (self only)");
1280 				gotnocbscbs = false;
1281 				firsttime = false;
1282 				pr_alert("%s: No-CB GP kthread CPU %d:",
1283 					 __func__, cpu);
1284 			}
1285 		} else {
1286 			/* Another CB kthread, link to previous GP kthread. */
1287 			gotnocbscbs = true;
1288 			rdp->nocb_gp_rdp = rdp_gp;
1289 			rdp_prev->nocb_next_cb_rdp = rdp;
1290 			if (dump_tree)
1291 				pr_cont(" %d", cpu);
1292 		}
1293 		rdp_prev = rdp;
1294 	}
1295 	if (gotnocbs && dump_tree)
1296 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1297 }
1298 
1299 /*
1300  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1301  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1302  */
1303 void rcu_bind_current_to_nocb(void)
1304 {
1305 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
1306 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1307 }
1308 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1309 
1310 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1311 #ifdef CONFIG_SMP
1312 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1313 {
1314 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1315 }
1316 #else // #ifdef CONFIG_SMP
1317 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1318 {
1319 	return "";
1320 }
1321 #endif // #else #ifdef CONFIG_SMP
1322 
1323 /*
1324  * Dump out nocb grace-period kthread state for the specified rcu_data
1325  * structure.
1326  */
1327 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1328 {
1329 	struct rcu_node *rnp = rdp->mynode;
1330 
1331 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1332 		rdp->cpu,
1333 		"kK"[!!rdp->nocb_gp_kthread],
1334 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1335 		"dD"[!!rdp->nocb_defer_wakeup],
1336 		"tT"[timer_pending(&rdp->nocb_timer)],
1337 		"sS"[!!rdp->nocb_gp_sleep],
1338 		".W"[swait_active(&rdp->nocb_gp_wq)],
1339 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1340 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1341 		".B"[!!rdp->nocb_gp_bypass],
1342 		".G"[!!rdp->nocb_gp_gp],
1343 		(long)rdp->nocb_gp_seq,
1344 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1345 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1346 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1347 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1348 }
1349 
1350 /* Dump out nocb kthread state for the specified rcu_data structure. */
1351 static void show_rcu_nocb_state(struct rcu_data *rdp)
1352 {
1353 	char bufw[20];
1354 	char bufr[20];
1355 	struct rcu_segcblist *rsclp = &rdp->cblist;
1356 	bool waslocked;
1357 	bool wassleep;
1358 
1359 	if (rdp->nocb_gp_rdp == rdp)
1360 		show_rcu_nocb_gp_state(rdp);
1361 
1362 	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1363 	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1364 	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1365 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1366 		rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1,
1367 		"kK"[!!rdp->nocb_cb_kthread],
1368 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1369 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1370 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1371 		"sS"[!!rdp->nocb_cb_sleep],
1372 		".W"[swait_active(&rdp->nocb_cb_wq)],
1373 		jiffies - rdp->nocb_bypass_first,
1374 		jiffies - rdp->nocb_nobypass_last,
1375 		rdp->nocb_nobypass_count,
1376 		".D"[rcu_segcblist_ready_cbs(rsclp)],
1377 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1378 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1379 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1380 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1381 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1382 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1383 		rcu_segcblist_n_cbs(&rdp->cblist),
1384 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1385 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1386 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1387 
1388 	/* It is OK for GP kthreads to have GP state. */
1389 	if (rdp->nocb_gp_rdp == rdp)
1390 		return;
1391 
1392 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1393 	wassleep = swait_active(&rdp->nocb_gp_wq);
1394 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1395 		return;  /* Nothing untoward. */
1396 
1397 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1398 		"lL"[waslocked],
1399 		"dD"[!!rdp->nocb_defer_wakeup],
1400 		"sS"[!!rdp->nocb_gp_sleep],
1401 		".W"[wassleep]);
1402 }
1403 
1404 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1405 
1406 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1407 {
1408 	return 0;
1409 }
1410 
1411 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1412 {
1413 	return false;
1414 }
1415 
1416 /* No ->nocb_lock to acquire.  */
1417 static void rcu_nocb_lock(struct rcu_data *rdp)
1418 {
1419 }
1420 
1421 /* No ->nocb_lock to release.  */
1422 static void rcu_nocb_unlock(struct rcu_data *rdp)
1423 {
1424 }
1425 
1426 /* No ->nocb_lock to release.  */
1427 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1428 				       unsigned long flags)
1429 {
1430 	local_irq_restore(flags);
1431 }
1432 
1433 /* Lockdep check that ->cblist may be safely accessed. */
1434 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1435 {
1436 	lockdep_assert_irqs_disabled();
1437 }
1438 
1439 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1440 {
1441 }
1442 
1443 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1444 {
1445 	return NULL;
1446 }
1447 
1448 static void rcu_init_one_nocb(struct rcu_node *rnp)
1449 {
1450 }
1451 
1452 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1453 				  unsigned long j)
1454 {
1455 	return true;
1456 }
1457 
1458 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1459 				bool *was_alldone, unsigned long flags)
1460 {
1461 	return false;
1462 }
1463 
1464 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1465 				 unsigned long flags)
1466 {
1467 	WARN_ON_ONCE(1);  /* Should be dead code! */
1468 }
1469 
1470 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1471 {
1472 }
1473 
1474 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1475 {
1476 	return false;
1477 }
1478 
1479 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1480 {
1481 	return false;
1482 }
1483 
1484 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1485 {
1486 }
1487 
1488 static void __init rcu_spawn_nocb_kthreads(void)
1489 {
1490 }
1491 
1492 static void show_rcu_nocb_state(struct rcu_data *rdp)
1493 {
1494 }
1495 
1496 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1497