1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * Internal non-public definitions that provide either classic 5 * or preemptible semantics. 6 * 7 * Copyright Red Hat, 2009 8 * Copyright IBM Corporation, 2009 9 * Copyright SUSE, 2021 10 * 11 * Author: Ingo Molnar <mingo@elte.hu> 12 * Paul E. McKenney <paulmck@linux.ibm.com> 13 * Frederic Weisbecker <frederic@kernel.org> 14 */ 15 16 #ifdef CONFIG_RCU_NOCB_CPU 17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ 18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */ 19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 20 { 21 return lockdep_is_held(&rdp->nocb_lock); 22 } 23 24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 25 { 26 /* Race on early boot between thread creation and assignment */ 27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread) 28 return true; 29 30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread) 31 if (in_task()) 32 return true; 33 return false; 34 } 35 36 /* 37 * Offload callback processing from the boot-time-specified set of CPUs 38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads 39 * created that pull the callbacks from the corresponding CPU, wait for 40 * a grace period to elapse, and invoke the callbacks. These kthreads 41 * are organized into GP kthreads, which manage incoming callbacks, wait for 42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only 43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs 44 * do a wake_up() on their GP kthread when they insert a callback into any 45 * empty list, unless the rcu_nocb_poll boot parameter has been specified, 46 * in which case each kthread actively polls its CPU. (Which isn't so great 47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.) 48 * 49 * This is intended to be used in conjunction with Frederic Weisbecker's 50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs 51 * running CPU-bound user-mode computations. 52 * 53 * Offloading of callbacks can also be used as an energy-efficiency 54 * measure because CPUs with no RCU callbacks queued are more aggressive 55 * about entering dyntick-idle mode. 56 */ 57 58 59 /* 60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. 61 * If the list is invalid, a warning is emitted and all CPUs are offloaded. 62 */ 63 static int __init rcu_nocb_setup(char *str) 64 { 65 alloc_bootmem_cpumask_var(&rcu_nocb_mask); 66 if (*str == '=') { 67 if (cpulist_parse(++str, rcu_nocb_mask)) { 68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); 69 cpumask_setall(rcu_nocb_mask); 70 } 71 } 72 rcu_state.nocb_is_setup = true; 73 return 1; 74 } 75 __setup("rcu_nocbs", rcu_nocb_setup); 76 77 static int __init parse_rcu_nocb_poll(char *arg) 78 { 79 rcu_nocb_poll = true; 80 return 1; 81 } 82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll); 83 84 /* 85 * Don't bother bypassing ->cblist if the call_rcu() rate is low. 86 * After all, the main point of bypassing is to avoid lock contention 87 * on ->nocb_lock, which only can happen at high call_rcu() rates. 88 */ 89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; 90 module_param(nocb_nobypass_lim_per_jiffy, int, 0); 91 92 /* 93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the 94 * lock isn't immediately available, increment ->nocb_lock_contended to 95 * flag the contention. 96 */ 97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp) 98 __acquires(&rdp->nocb_bypass_lock) 99 { 100 lockdep_assert_irqs_disabled(); 101 if (raw_spin_trylock(&rdp->nocb_bypass_lock)) 102 return; 103 atomic_inc(&rdp->nocb_lock_contended); 104 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 105 smp_mb__after_atomic(); /* atomic_inc() before lock. */ 106 raw_spin_lock(&rdp->nocb_bypass_lock); 107 smp_mb__before_atomic(); /* atomic_dec() after lock. */ 108 atomic_dec(&rdp->nocb_lock_contended); 109 } 110 111 /* 112 * Spinwait until the specified rcu_data structure's ->nocb_lock is 113 * not contended. Please note that this is extremely special-purpose, 114 * relying on the fact that at most two kthreads and one CPU contend for 115 * this lock, and also that the two kthreads are guaranteed to have frequent 116 * grace-period-duration time intervals between successive acquisitions 117 * of the lock. This allows us to use an extremely simple throttling 118 * mechanism, and further to apply it only to the CPU doing floods of 119 * call_rcu() invocations. Don't try this at home! 120 */ 121 static void rcu_nocb_wait_contended(struct rcu_data *rdp) 122 { 123 WARN_ON_ONCE(smp_processor_id() != rdp->cpu); 124 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) 125 cpu_relax(); 126 } 127 128 /* 129 * Conditionally acquire the specified rcu_data structure's 130 * ->nocb_bypass_lock. 131 */ 132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) 133 { 134 lockdep_assert_irqs_disabled(); 135 return raw_spin_trylock(&rdp->nocb_bypass_lock); 136 } 137 138 /* 139 * Release the specified rcu_data structure's ->nocb_bypass_lock. 140 */ 141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) 142 __releases(&rdp->nocb_bypass_lock) 143 { 144 lockdep_assert_irqs_disabled(); 145 raw_spin_unlock(&rdp->nocb_bypass_lock); 146 } 147 148 /* 149 * Acquire the specified rcu_data structure's ->nocb_lock, but only 150 * if it corresponds to a no-CBs CPU. 151 */ 152 static void rcu_nocb_lock(struct rcu_data *rdp) 153 { 154 lockdep_assert_irqs_disabled(); 155 if (!rcu_rdp_is_offloaded(rdp)) 156 return; 157 raw_spin_lock(&rdp->nocb_lock); 158 } 159 160 /* 161 * Release the specified rcu_data structure's ->nocb_lock, but only 162 * if it corresponds to a no-CBs CPU. 163 */ 164 static void rcu_nocb_unlock(struct rcu_data *rdp) 165 { 166 if (rcu_rdp_is_offloaded(rdp)) { 167 lockdep_assert_irqs_disabled(); 168 raw_spin_unlock(&rdp->nocb_lock); 169 } 170 } 171 172 /* 173 * Release the specified rcu_data structure's ->nocb_lock and restore 174 * interrupts, but only if it corresponds to a no-CBs CPU. 175 */ 176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 177 unsigned long flags) 178 { 179 if (rcu_rdp_is_offloaded(rdp)) { 180 lockdep_assert_irqs_disabled(); 181 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 182 } else { 183 local_irq_restore(flags); 184 } 185 } 186 187 /* Lockdep check that ->cblist may be safely accessed. */ 188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 189 { 190 lockdep_assert_irqs_disabled(); 191 if (rcu_rdp_is_offloaded(rdp)) 192 lockdep_assert_held(&rdp->nocb_lock); 193 } 194 195 /* 196 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended 197 * grace period. 198 */ 199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 200 { 201 swake_up_all(sq); 202 } 203 204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 205 { 206 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; 207 } 208 209 static void rcu_init_one_nocb(struct rcu_node *rnp) 210 { 211 init_swait_queue_head(&rnp->nocb_gp_wq[0]); 212 init_swait_queue_head(&rnp->nocb_gp_wq[1]); 213 } 214 215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp, 216 struct rcu_data *rdp, 217 bool force, unsigned long flags) 218 __releases(rdp_gp->nocb_gp_lock) 219 { 220 bool needwake = false; 221 222 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { 223 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 224 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 225 TPS("AlreadyAwake")); 226 return false; 227 } 228 229 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 230 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 231 del_timer(&rdp_gp->nocb_timer); 232 } 233 234 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { 235 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); 236 needwake = true; 237 } 238 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 239 if (needwake) { 240 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); 241 wake_up_process(rdp_gp->nocb_gp_kthread); 242 } 243 244 return needwake; 245 } 246 247 /* 248 * Kick the GP kthread for this NOCB group. 249 */ 250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 251 { 252 unsigned long flags; 253 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 254 255 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 256 return __wake_nocb_gp(rdp_gp, rdp, force, flags); 257 } 258 259 #ifdef CONFIG_RCU_LAZY 260 /* 261 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that 262 * can elapse before lazy callbacks are flushed. Lazy callbacks 263 * could be flushed much earlier for a number of other reasons 264 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are 265 * left unsubmitted to RCU after those many jiffies. 266 */ 267 #define LAZY_FLUSH_JIFFIES (10 * HZ) 268 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES; 269 270 // To be called only from test code. 271 void rcu_set_jiffies_lazy_flush(unsigned long jif) 272 { 273 jiffies_lazy_flush = jif; 274 } 275 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush); 276 277 unsigned long rcu_get_jiffies_lazy_flush(void) 278 { 279 return jiffies_lazy_flush; 280 } 281 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush); 282 #endif 283 284 /* 285 * Arrange to wake the GP kthread for this NOCB group at some future 286 * time when it is safe to do so. 287 */ 288 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, 289 const char *reason) 290 { 291 unsigned long flags; 292 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 293 294 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 295 296 /* 297 * Bypass wakeup overrides previous deferments. In case of 298 * callback storms, no need to wake up too early. 299 */ 300 if (waketype == RCU_NOCB_WAKE_LAZY && 301 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) { 302 mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush()); 303 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 304 } else if (waketype == RCU_NOCB_WAKE_BYPASS) { 305 mod_timer(&rdp_gp->nocb_timer, jiffies + 2); 306 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 307 } else { 308 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE) 309 mod_timer(&rdp_gp->nocb_timer, jiffies + 1); 310 if (rdp_gp->nocb_defer_wakeup < waketype) 311 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype); 312 } 313 314 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 315 316 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); 317 } 318 319 /* 320 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 321 * However, if there is a callback to be enqueued and if ->nocb_bypass 322 * proves to be initially empty, just return false because the no-CB GP 323 * kthread may need to be awakened in this case. 324 * 325 * Return true if there was something to be flushed and it succeeded, otherwise 326 * false. 327 * 328 * Note that this function always returns true if rhp is NULL. 329 */ 330 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in, 331 unsigned long j, bool lazy) 332 { 333 struct rcu_cblist rcl; 334 struct rcu_head *rhp = rhp_in; 335 336 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)); 337 rcu_lockdep_assert_cblist_protected(rdp); 338 lockdep_assert_held(&rdp->nocb_bypass_lock); 339 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { 340 raw_spin_unlock(&rdp->nocb_bypass_lock); 341 return false; 342 } 343 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ 344 if (rhp) 345 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 346 347 /* 348 * If the new CB requested was a lazy one, queue it onto the main 349 * ->cblist so that we can take advantage of the grace-period that will 350 * happen regardless. But queue it onto the bypass list first so that 351 * the lazy CB is ordered with the existing CBs in the bypass list. 352 */ 353 if (lazy && rhp) { 354 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 355 rhp = NULL; 356 } 357 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); 358 WRITE_ONCE(rdp->lazy_len, 0); 359 360 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); 361 WRITE_ONCE(rdp->nocb_bypass_first, j); 362 rcu_nocb_bypass_unlock(rdp); 363 return true; 364 } 365 366 /* 367 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. 368 * However, if there is a callback to be enqueued and if ->nocb_bypass 369 * proves to be initially empty, just return false because the no-CB GP 370 * kthread may need to be awakened in this case. 371 * 372 * Note that this function always returns true if rhp is NULL. 373 */ 374 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 375 unsigned long j, bool lazy) 376 { 377 if (!rcu_rdp_is_offloaded(rdp)) 378 return true; 379 rcu_lockdep_assert_cblist_protected(rdp); 380 rcu_nocb_bypass_lock(rdp); 381 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy); 382 } 383 384 /* 385 * If the ->nocb_bypass_lock is immediately available, flush the 386 * ->nocb_bypass queue into ->cblist. 387 */ 388 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) 389 { 390 rcu_lockdep_assert_cblist_protected(rdp); 391 if (!rcu_rdp_is_offloaded(rdp) || 392 !rcu_nocb_bypass_trylock(rdp)) 393 return; 394 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false)); 395 } 396 397 /* 398 * See whether it is appropriate to use the ->nocb_bypass list in order 399 * to control contention on ->nocb_lock. A limited number of direct 400 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass 401 * is non-empty, further callbacks must be placed into ->nocb_bypass, 402 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch 403 * back to direct use of ->cblist. However, ->nocb_bypass should not be 404 * used if ->cblist is empty, because otherwise callbacks can be stranded 405 * on ->nocb_bypass because we cannot count on the current CPU ever again 406 * invoking call_rcu(). The general rule is that if ->nocb_bypass is 407 * non-empty, the corresponding no-CBs grace-period kthread must not be 408 * in an indefinite sleep state. 409 * 410 * Finally, it is not permitted to use the bypass during early boot, 411 * as doing so would confuse the auto-initialization code. Besides 412 * which, there is no point in worrying about lock contention while 413 * there is only one CPU in operation. 414 */ 415 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 416 bool *was_alldone, unsigned long flags, 417 bool lazy) 418 { 419 unsigned long c; 420 unsigned long cur_gp_seq; 421 unsigned long j = jiffies; 422 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 423 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len)); 424 425 lockdep_assert_irqs_disabled(); 426 427 // Pure softirq/rcuc based processing: no bypassing, no 428 // locking. 429 if (!rcu_rdp_is_offloaded(rdp)) { 430 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 431 return false; 432 } 433 434 // In the process of (de-)offloading: no bypassing, but 435 // locking. 436 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 437 rcu_nocb_lock(rdp); 438 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 439 return false; /* Not offloaded, no bypassing. */ 440 } 441 442 // Don't use ->nocb_bypass during early boot. 443 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { 444 rcu_nocb_lock(rdp); 445 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 446 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 447 return false; 448 } 449 450 // If we have advanced to a new jiffy, reset counts to allow 451 // moving back from ->nocb_bypass to ->cblist. 452 if (j == rdp->nocb_nobypass_last) { 453 c = rdp->nocb_nobypass_count + 1; 454 } else { 455 WRITE_ONCE(rdp->nocb_nobypass_last, j); 456 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; 457 if (ULONG_CMP_LT(rdp->nocb_nobypass_count, 458 nocb_nobypass_lim_per_jiffy)) 459 c = 0; 460 else if (c > nocb_nobypass_lim_per_jiffy) 461 c = nocb_nobypass_lim_per_jiffy; 462 } 463 WRITE_ONCE(rdp->nocb_nobypass_count, c); 464 465 // If there hasn't yet been all that many ->cblist enqueues 466 // this jiffy, tell the caller to enqueue onto ->cblist. But flush 467 // ->nocb_bypass first. 468 // Lazy CBs throttle this back and do immediate bypass queuing. 469 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) { 470 rcu_nocb_lock(rdp); 471 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 472 if (*was_alldone) 473 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 474 TPS("FirstQ")); 475 476 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false)); 477 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 478 return false; // Caller must enqueue the callback. 479 } 480 481 // If ->nocb_bypass has been used too long or is too full, 482 // flush ->nocb_bypass to ->cblist. 483 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) || 484 (ncbs && bypass_is_lazy && 485 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) || 486 ncbs >= qhimark) { 487 rcu_nocb_lock(rdp); 488 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); 489 490 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) { 491 if (*was_alldone) 492 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 493 TPS("FirstQ")); 494 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 495 return false; // Caller must enqueue the callback. 496 } 497 if (j != rdp->nocb_gp_adv_time && 498 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 499 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 500 rcu_advance_cbs_nowake(rdp->mynode, rdp); 501 rdp->nocb_gp_adv_time = j; 502 } 503 504 // The flush succeeded and we moved CBs into the regular list. 505 // Don't wait for the wake up timer as it may be too far ahead. 506 // Wake up the GP thread now instead, if the cblist was empty. 507 __call_rcu_nocb_wake(rdp, *was_alldone, flags); 508 509 return true; // Callback already enqueued. 510 } 511 512 // We need to use the bypass. 513 rcu_nocb_wait_contended(rdp); 514 rcu_nocb_bypass_lock(rdp); 515 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 516 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ 517 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); 518 519 if (lazy) 520 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1); 521 522 if (!ncbs) { 523 WRITE_ONCE(rdp->nocb_bypass_first, j); 524 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); 525 } 526 rcu_nocb_bypass_unlock(rdp); 527 smp_mb(); /* Order enqueue before wake. */ 528 // A wake up of the grace period kthread or timer adjustment 529 // needs to be done only if: 530 // 1. Bypass list was fully empty before (this is the first 531 // bypass list entry), or: 532 // 2. Both of these conditions are met: 533 // a. The bypass list previously had only lazy CBs, and: 534 // b. The new CB is non-lazy. 535 if (!ncbs || (bypass_is_lazy && !lazy)) { 536 // No-CBs GP kthread might be indefinitely asleep, if so, wake. 537 rcu_nocb_lock(rdp); // Rare during call_rcu() flood. 538 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { 539 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 540 TPS("FirstBQwake")); 541 __call_rcu_nocb_wake(rdp, true, flags); 542 } else { 543 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 544 TPS("FirstBQnoWake")); 545 rcu_nocb_unlock(rdp); 546 } 547 } 548 return true; // Callback already enqueued. 549 } 550 551 /* 552 * Awaken the no-CBs grace-period kthread if needed, either due to it 553 * legitimately being asleep or due to overload conditions. 554 * 555 * If warranted, also wake up the kthread servicing this CPUs queues. 556 */ 557 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, 558 unsigned long flags) 559 __releases(rdp->nocb_lock) 560 { 561 long bypass_len; 562 unsigned long cur_gp_seq; 563 unsigned long j; 564 long lazy_len; 565 long len; 566 struct task_struct *t; 567 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 568 569 // If we are being polled or there is no kthread, just leave. 570 t = READ_ONCE(rdp->nocb_gp_kthread); 571 if (rcu_nocb_poll || !t) { 572 rcu_nocb_unlock(rdp); 573 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 574 TPS("WakeNotPoll")); 575 return; 576 } 577 // Need to actually to a wakeup. 578 len = rcu_segcblist_n_cbs(&rdp->cblist); 579 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass); 580 lazy_len = READ_ONCE(rdp->lazy_len); 581 if (was_alldone) { 582 rdp->qlen_last_fqs_check = len; 583 // Only lazy CBs in bypass list 584 if (lazy_len && bypass_len == lazy_len) { 585 rcu_nocb_unlock(rdp); 586 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY, 587 TPS("WakeLazy")); 588 } else if (!irqs_disabled_flags(flags)) { 589 /* ... if queue was empty ... */ 590 rcu_nocb_unlock(rdp); 591 wake_nocb_gp(rdp, false); 592 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 593 TPS("WakeEmpty")); 594 } else { 595 rcu_nocb_unlock(rdp); 596 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, 597 TPS("WakeEmptyIsDeferred")); 598 } 599 } else if (len > rdp->qlen_last_fqs_check + qhimark) { 600 /* ... or if many callbacks queued. */ 601 rdp->qlen_last_fqs_check = len; 602 j = jiffies; 603 if (j != rdp->nocb_gp_adv_time && 604 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 605 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { 606 rcu_advance_cbs_nowake(rdp->mynode, rdp); 607 rdp->nocb_gp_adv_time = j; 608 } 609 smp_mb(); /* Enqueue before timer_pending(). */ 610 if ((rdp->nocb_cb_sleep || 611 !rcu_segcblist_ready_cbs(&rdp->cblist)) && 612 !timer_pending(&rdp_gp->nocb_timer)) { 613 rcu_nocb_unlock(rdp); 614 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, 615 TPS("WakeOvfIsDeferred")); 616 } else { 617 rcu_nocb_unlock(rdp); 618 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 619 } 620 } else { 621 rcu_nocb_unlock(rdp); 622 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); 623 } 624 } 625 626 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 627 rcu_callback_t func, unsigned long flags, bool lazy) 628 { 629 bool was_alldone; 630 631 if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) { 632 /* Not enqueued on bypass but locked, do regular enqueue */ 633 rcutree_enqueue(rdp, head, func); 634 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 635 } 636 } 637 638 static int nocb_gp_toggle_rdp(struct rcu_data *rdp, 639 bool *wake_state) 640 { 641 struct rcu_segcblist *cblist = &rdp->cblist; 642 unsigned long flags; 643 int ret; 644 645 rcu_nocb_lock_irqsave(rdp, flags); 646 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 647 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 648 /* 649 * Offloading. Set our flag and notify the offload worker. 650 * We will handle this rdp until it ever gets de-offloaded. 651 */ 652 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP); 653 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 654 *wake_state = true; 655 ret = 1; 656 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) && 657 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) { 658 /* 659 * De-offloading. Clear our flag and notify the de-offload worker. 660 * We will ignore this rdp until it ever gets re-offloaded. 661 */ 662 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP); 663 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) 664 *wake_state = true; 665 ret = 0; 666 } else { 667 WARN_ON_ONCE(1); 668 ret = -1; 669 } 670 671 rcu_nocb_unlock_irqrestore(rdp, flags); 672 673 return ret; 674 } 675 676 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu) 677 { 678 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); 679 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, 680 !READ_ONCE(my_rdp->nocb_gp_sleep)); 681 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); 682 } 683 684 /* 685 * No-CBs GP kthreads come here to wait for additional callbacks to show up 686 * or for grace periods to end. 687 */ 688 static void nocb_gp_wait(struct rcu_data *my_rdp) 689 { 690 bool bypass = false; 691 int __maybe_unused cpu = my_rdp->cpu; 692 unsigned long cur_gp_seq; 693 unsigned long flags; 694 bool gotcbs = false; 695 unsigned long j = jiffies; 696 bool lazy = false; 697 bool needwait_gp = false; // This prevents actual uninitialized use. 698 bool needwake; 699 bool needwake_gp; 700 struct rcu_data *rdp, *rdp_toggling = NULL; 701 struct rcu_node *rnp; 702 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. 703 bool wasempty = false; 704 705 /* 706 * Each pass through the following loop checks for CBs and for the 707 * nearest grace period (if any) to wait for next. The CB kthreads 708 * and the global grace-period kthread are awakened if needed. 709 */ 710 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp); 711 /* 712 * An rcu_data structure is removed from the list after its 713 * CPU is de-offloaded and added to the list before that CPU is 714 * (re-)offloaded. If the following loop happens to be referencing 715 * that rcu_data structure during the time that the corresponding 716 * CPU is de-offloaded and then immediately re-offloaded, this 717 * loop's rdp pointer will be carried to the end of the list by 718 * the resulting pair of list operations. This can cause the loop 719 * to skip over some of the rcu_data structures that were supposed 720 * to have been scanned. Fortunately a new iteration through the 721 * entire loop is forced after a given CPU's rcu_data structure 722 * is added to the list, so the skipped-over rcu_data structures 723 * won't be ignored for long. 724 */ 725 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) { 726 long bypass_ncbs; 727 bool flush_bypass = false; 728 long lazy_ncbs; 729 730 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); 731 rcu_nocb_lock_irqsave(rdp, flags); 732 lockdep_assert_held(&rdp->nocb_lock); 733 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 734 lazy_ncbs = READ_ONCE(rdp->lazy_len); 735 736 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) && 737 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) || 738 bypass_ncbs > 2 * qhimark)) { 739 flush_bypass = true; 740 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) && 741 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || 742 bypass_ncbs > 2 * qhimark)) { 743 flush_bypass = true; 744 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { 745 rcu_nocb_unlock_irqrestore(rdp, flags); 746 continue; /* No callbacks here, try next. */ 747 } 748 749 if (flush_bypass) { 750 // Bypass full or old, so flush it. 751 (void)rcu_nocb_try_flush_bypass(rdp, j); 752 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); 753 lazy_ncbs = READ_ONCE(rdp->lazy_len); 754 } 755 756 if (bypass_ncbs) { 757 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 758 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass")); 759 if (bypass_ncbs == lazy_ncbs) 760 lazy = true; 761 else 762 bypass = true; 763 } 764 rnp = rdp->mynode; 765 766 // Advance callbacks if helpful and low contention. 767 needwake_gp = false; 768 if (!rcu_segcblist_restempty(&rdp->cblist, 769 RCU_NEXT_READY_TAIL) || 770 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && 771 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { 772 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 773 needwake_gp = rcu_advance_cbs(rnp, rdp); 774 wasempty = rcu_segcblist_restempty(&rdp->cblist, 775 RCU_NEXT_READY_TAIL); 776 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ 777 } 778 // Need to wait on some grace period? 779 WARN_ON_ONCE(wasempty && 780 !rcu_segcblist_restempty(&rdp->cblist, 781 RCU_NEXT_READY_TAIL)); 782 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { 783 if (!needwait_gp || 784 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) 785 wait_gp_seq = cur_gp_seq; 786 needwait_gp = true; 787 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, 788 TPS("NeedWaitGP")); 789 } 790 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 791 needwake = rdp->nocb_cb_sleep; 792 WRITE_ONCE(rdp->nocb_cb_sleep, false); 793 } else { 794 needwake = false; 795 } 796 rcu_nocb_unlock_irqrestore(rdp, flags); 797 if (needwake) { 798 swake_up_one(&rdp->nocb_cb_wq); 799 gotcbs = true; 800 } 801 if (needwake_gp) 802 rcu_gp_kthread_wake(); 803 } 804 805 my_rdp->nocb_gp_bypass = bypass; 806 my_rdp->nocb_gp_gp = needwait_gp; 807 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; 808 809 // At least one child with non-empty ->nocb_bypass, so set 810 // timer in order to avoid stranding its callbacks. 811 if (!rcu_nocb_poll) { 812 // If bypass list only has lazy CBs. Add a deferred lazy wake up. 813 if (lazy && !bypass) { 814 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY, 815 TPS("WakeLazyIsDeferred")); 816 // Otherwise add a deferred bypass wake up. 817 } else if (bypass) { 818 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS, 819 TPS("WakeBypassIsDeferred")); 820 } 821 } 822 823 if (rcu_nocb_poll) { 824 /* Polling, so trace if first poll in the series. */ 825 if (gotcbs) 826 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); 827 if (list_empty(&my_rdp->nocb_head_rdp)) { 828 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 829 if (!my_rdp->nocb_toggling_rdp) 830 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 831 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 832 /* Wait for any offloading rdp */ 833 nocb_gp_sleep(my_rdp, cpu); 834 } else { 835 schedule_timeout_idle(1); 836 } 837 } else if (!needwait_gp) { 838 /* Wait for callbacks to appear. */ 839 nocb_gp_sleep(my_rdp, cpu); 840 } else { 841 rnp = my_rdp->mynode; 842 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); 843 swait_event_interruptible_exclusive( 844 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], 845 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || 846 !READ_ONCE(my_rdp->nocb_gp_sleep)); 847 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); 848 } 849 850 if (!rcu_nocb_poll) { 851 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 852 // (De-)queue an rdp to/from the group if its nocb state is changing 853 rdp_toggling = my_rdp->nocb_toggling_rdp; 854 if (rdp_toggling) 855 my_rdp->nocb_toggling_rdp = NULL; 856 857 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) { 858 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); 859 del_timer(&my_rdp->nocb_timer); 860 } 861 WRITE_ONCE(my_rdp->nocb_gp_sleep, true); 862 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 863 } else { 864 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp); 865 if (rdp_toggling) { 866 /* 867 * Paranoid locking to make sure nocb_toggling_rdp is well 868 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could 869 * race with another round of nocb toggling for this rdp. 870 * Nocb locking should prevent from that already but we stick 871 * to paranoia, especially in rare path. 872 */ 873 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); 874 my_rdp->nocb_toggling_rdp = NULL; 875 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); 876 } 877 } 878 879 if (rdp_toggling) { 880 bool wake_state = false; 881 int ret; 882 883 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state); 884 if (ret == 1) 885 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp); 886 else if (ret == 0) 887 list_del(&rdp_toggling->nocb_entry_rdp); 888 if (wake_state) 889 swake_up_one(&rdp_toggling->nocb_state_wq); 890 } 891 892 my_rdp->nocb_gp_seq = -1; 893 WARN_ON(signal_pending(current)); 894 } 895 896 /* 897 * No-CBs grace-period-wait kthread. There is one of these per group 898 * of CPUs, but only once at least one CPU in that group has come online 899 * at least once since boot. This kthread checks for newly posted 900 * callbacks from any of the CPUs it is responsible for, waits for a 901 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances 902 * that then have callback-invocation work to do. 903 */ 904 static int rcu_nocb_gp_kthread(void *arg) 905 { 906 struct rcu_data *rdp = arg; 907 908 for (;;) { 909 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); 910 nocb_gp_wait(rdp); 911 cond_resched_tasks_rcu_qs(); 912 } 913 return 0; 914 } 915 916 static inline bool nocb_cb_can_run(struct rcu_data *rdp) 917 { 918 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB; 919 920 return rcu_segcblist_test_flags(&rdp->cblist, flags); 921 } 922 923 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp) 924 { 925 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep); 926 } 927 928 /* 929 * Invoke any ready callbacks from the corresponding no-CBs CPU, 930 * then, if there are no more, wait for more to appear. 931 */ 932 static void nocb_cb_wait(struct rcu_data *rdp) 933 { 934 struct rcu_segcblist *cblist = &rdp->cblist; 935 unsigned long cur_gp_seq; 936 unsigned long flags; 937 bool needwake_state = false; 938 bool needwake_gp = false; 939 bool can_sleep = true; 940 struct rcu_node *rnp = rdp->mynode; 941 942 do { 943 swait_event_interruptible_exclusive(rdp->nocb_cb_wq, 944 nocb_cb_wait_cond(rdp)); 945 946 if (READ_ONCE(rdp->nocb_cb_sleep)) { 947 WARN_ON(signal_pending(current)); 948 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); 949 } 950 } while (!nocb_cb_can_run(rdp)); 951 952 953 local_irq_save(flags); 954 rcu_momentary_dyntick_idle(); 955 local_irq_restore(flags); 956 /* 957 * Disable BH to provide the expected environment. Also, when 958 * transitioning to/from NOCB mode, a self-requeuing callback might 959 * be invoked from softirq. A short grace period could cause both 960 * instances of this callback would execute concurrently. 961 */ 962 local_bh_disable(); 963 rcu_do_batch(rdp); 964 local_bh_enable(); 965 lockdep_assert_irqs_enabled(); 966 rcu_nocb_lock_irqsave(rdp, flags); 967 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) && 968 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && 969 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ 970 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); 971 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 972 } 973 974 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) { 975 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) { 976 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB); 977 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 978 needwake_state = true; 979 } 980 if (rcu_segcblist_ready_cbs(cblist)) 981 can_sleep = false; 982 } else { 983 /* 984 * De-offloading. Clear our flag and notify the de-offload worker. 985 * We won't touch the callbacks and keep sleeping until we ever 986 * get re-offloaded. 987 */ 988 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)); 989 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB); 990 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) 991 needwake_state = true; 992 } 993 994 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep); 995 996 if (rdp->nocb_cb_sleep) 997 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); 998 999 rcu_nocb_unlock_irqrestore(rdp, flags); 1000 if (needwake_gp) 1001 rcu_gp_kthread_wake(); 1002 1003 if (needwake_state) 1004 swake_up_one(&rdp->nocb_state_wq); 1005 } 1006 1007 /* 1008 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke 1009 * nocb_cb_wait() to do the dirty work. 1010 */ 1011 static int rcu_nocb_cb_kthread(void *arg) 1012 { 1013 struct rcu_data *rdp = arg; 1014 1015 // Each pass through this loop does one callback batch, and, 1016 // if there are no more ready callbacks, waits for them. 1017 for (;;) { 1018 nocb_cb_wait(rdp); 1019 cond_resched_tasks_rcu_qs(); 1020 } 1021 return 0; 1022 } 1023 1024 /* Is a deferred wakeup of rcu_nocb_kthread() required? */ 1025 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1026 { 1027 return READ_ONCE(rdp->nocb_defer_wakeup) >= level; 1028 } 1029 1030 /* Do a deferred wakeup of rcu_nocb_kthread(). */ 1031 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp, 1032 struct rcu_data *rdp, int level, 1033 unsigned long flags) 1034 __releases(rdp_gp->nocb_gp_lock) 1035 { 1036 int ndw; 1037 int ret; 1038 1039 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) { 1040 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1041 return false; 1042 } 1043 1044 ndw = rdp_gp->nocb_defer_wakeup; 1045 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); 1046 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); 1047 1048 return ret; 1049 } 1050 1051 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ 1052 static void do_nocb_deferred_wakeup_timer(struct timer_list *t) 1053 { 1054 unsigned long flags; 1055 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); 1056 1057 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp); 1058 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); 1059 1060 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags); 1061 smp_mb__after_spinlock(); /* Timer expire before wakeup. */ 1062 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags); 1063 } 1064 1065 /* 1066 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. 1067 * This means we do an inexact common-case check. Note that if 1068 * we miss, ->nocb_timer will eventually clean things up. 1069 */ 1070 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1071 { 1072 unsigned long flags; 1073 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1074 1075 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE)) 1076 return false; 1077 1078 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1079 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags); 1080 } 1081 1082 void rcu_nocb_flush_deferred_wakeup(void) 1083 { 1084 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data)); 1085 } 1086 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup); 1087 1088 static int rdp_offload_toggle(struct rcu_data *rdp, 1089 bool offload, unsigned long flags) 1090 __releases(rdp->nocb_lock) 1091 { 1092 struct rcu_segcblist *cblist = &rdp->cblist; 1093 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1094 bool wake_gp = false; 1095 1096 rcu_segcblist_offload(cblist, offload); 1097 1098 if (rdp->nocb_cb_sleep) 1099 rdp->nocb_cb_sleep = false; 1100 rcu_nocb_unlock_irqrestore(rdp, flags); 1101 1102 /* 1103 * Ignore former value of nocb_cb_sleep and force wake up as it could 1104 * have been spuriously set to false already. 1105 */ 1106 swake_up_one(&rdp->nocb_cb_wq); 1107 1108 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); 1109 // Queue this rdp for add/del to/from the list to iterate on rcuog 1110 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp); 1111 if (rdp_gp->nocb_gp_sleep) { 1112 rdp_gp->nocb_gp_sleep = false; 1113 wake_gp = true; 1114 } 1115 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); 1116 1117 return wake_gp; 1118 } 1119 1120 static long rcu_nocb_rdp_deoffload(void *arg) 1121 { 1122 struct rcu_data *rdp = arg; 1123 struct rcu_segcblist *cblist = &rdp->cblist; 1124 unsigned long flags; 1125 int wake_gp; 1126 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1127 1128 /* 1129 * rcu_nocb_rdp_deoffload() may be called directly if 1130 * rcuog/o[p] spawn failed, because at this time the rdp->cpu 1131 * is not online yet. 1132 */ 1133 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu)); 1134 1135 pr_info("De-offloading %d\n", rdp->cpu); 1136 1137 rcu_nocb_lock_irqsave(rdp, flags); 1138 /* 1139 * Flush once and for all now. This suffices because we are 1140 * running on the target CPU holding ->nocb_lock (thus having 1141 * interrupts disabled), and because rdp_offload_toggle() 1142 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED. 1143 * Thus future calls to rcu_segcblist_completely_offloaded() will 1144 * return false, which means that future calls to rcu_nocb_try_bypass() 1145 * will refuse to put anything into the bypass. 1146 */ 1147 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 1148 /* 1149 * Start with invoking rcu_core() early. This way if the current thread 1150 * happens to preempt an ongoing call to rcu_core() in the middle, 1151 * leaving some work dismissed because rcu_core() still thinks the rdp is 1152 * completely offloaded, we are guaranteed a nearby future instance of 1153 * rcu_core() to catch up. 1154 */ 1155 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE); 1156 invoke_rcu_core(); 1157 wake_gp = rdp_offload_toggle(rdp, false, flags); 1158 1159 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1160 if (rdp_gp->nocb_gp_kthread) { 1161 if (wake_gp) 1162 wake_up_process(rdp_gp->nocb_gp_kthread); 1163 1164 /* 1165 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB. 1166 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog. 1167 */ 1168 if (!rdp->nocb_cb_kthread) { 1169 rcu_nocb_lock_irqsave(rdp, flags); 1170 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB); 1171 rcu_nocb_unlock_irqrestore(rdp, flags); 1172 } 1173 1174 swait_event_exclusive(rdp->nocb_state_wq, 1175 !rcu_segcblist_test_flags(cblist, 1176 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP)); 1177 } else { 1178 /* 1179 * No kthread to clear the flags for us or remove the rdp from the nocb list 1180 * to iterate. Do it here instead. Locking doesn't look stricly necessary 1181 * but we stick to paranoia in this rare path. 1182 */ 1183 rcu_nocb_lock_irqsave(rdp, flags); 1184 rcu_segcblist_clear_flags(&rdp->cblist, 1185 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1186 rcu_nocb_unlock_irqrestore(rdp, flags); 1187 1188 list_del(&rdp->nocb_entry_rdp); 1189 } 1190 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1191 1192 /* 1193 * Lock one last time to acquire latest callback updates from kthreads 1194 * so we can later handle callbacks locally without locking. 1195 */ 1196 rcu_nocb_lock_irqsave(rdp, flags); 1197 /* 1198 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb 1199 * lock is released but how about being paranoid for once? 1200 */ 1201 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING); 1202 /* 1203 * Without SEGCBLIST_LOCKING, we can't use 1204 * rcu_nocb_unlock_irqrestore() anymore. 1205 */ 1206 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); 1207 1208 /* Sanity check */ 1209 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); 1210 1211 1212 return 0; 1213 } 1214 1215 int rcu_nocb_cpu_deoffload(int cpu) 1216 { 1217 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1218 int ret = 0; 1219 1220 cpus_read_lock(); 1221 mutex_lock(&rcu_state.barrier_mutex); 1222 if (rcu_rdp_is_offloaded(rdp)) { 1223 if (cpu_online(cpu)) { 1224 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp); 1225 if (!ret) 1226 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1227 } else { 1228 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu); 1229 ret = -EINVAL; 1230 } 1231 } 1232 mutex_unlock(&rcu_state.barrier_mutex); 1233 cpus_read_unlock(); 1234 1235 return ret; 1236 } 1237 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload); 1238 1239 static long rcu_nocb_rdp_offload(void *arg) 1240 { 1241 struct rcu_data *rdp = arg; 1242 struct rcu_segcblist *cblist = &rdp->cblist; 1243 unsigned long flags; 1244 int wake_gp; 1245 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; 1246 1247 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id()); 1248 /* 1249 * For now we only support re-offload, ie: the rdp must have been 1250 * offloaded on boot first. 1251 */ 1252 if (!rdp->nocb_gp_rdp) 1253 return -EINVAL; 1254 1255 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread)) 1256 return -EINVAL; 1257 1258 pr_info("Offloading %d\n", rdp->cpu); 1259 1260 /* 1261 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING 1262 * is set. 1263 */ 1264 raw_spin_lock_irqsave(&rdp->nocb_lock, flags); 1265 1266 /* 1267 * We didn't take the nocb lock while working on the 1268 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode). 1269 * Every modifications that have been done previously on 1270 * rdp->cblist must be visible remotely by the nocb kthreads 1271 * upon wake up after reading the cblist flags. 1272 * 1273 * The layout against nocb_lock enforces that ordering: 1274 * 1275 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait() 1276 * ------------------------- ---------------------------- 1277 * WRITE callbacks rcu_nocb_lock() 1278 * rcu_nocb_lock() READ flags 1279 * WRITE flags READ callbacks 1280 * rcu_nocb_unlock() rcu_nocb_unlock() 1281 */ 1282 wake_gp = rdp_offload_toggle(rdp, true, flags); 1283 if (wake_gp) 1284 wake_up_process(rdp_gp->nocb_gp_kthread); 1285 swait_event_exclusive(rdp->nocb_state_wq, 1286 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) && 1287 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)); 1288 1289 /* 1290 * All kthreads are ready to work, we can finally relieve rcu_core() and 1291 * enable nocb bypass. 1292 */ 1293 rcu_nocb_lock_irqsave(rdp, flags); 1294 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE); 1295 rcu_nocb_unlock_irqrestore(rdp, flags); 1296 1297 return 0; 1298 } 1299 1300 int rcu_nocb_cpu_offload(int cpu) 1301 { 1302 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1303 int ret = 0; 1304 1305 cpus_read_lock(); 1306 mutex_lock(&rcu_state.barrier_mutex); 1307 if (!rcu_rdp_is_offloaded(rdp)) { 1308 if (cpu_online(cpu)) { 1309 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp); 1310 if (!ret) 1311 cpumask_set_cpu(cpu, rcu_nocb_mask); 1312 } else { 1313 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu); 1314 ret = -EINVAL; 1315 } 1316 } 1317 mutex_unlock(&rcu_state.barrier_mutex); 1318 cpus_read_unlock(); 1319 1320 return ret; 1321 } 1322 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload); 1323 1324 #ifdef CONFIG_RCU_LAZY 1325 static unsigned long 1326 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1327 { 1328 int cpu; 1329 unsigned long count = 0; 1330 1331 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1332 return 0; 1333 1334 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */ 1335 if (!mutex_trylock(&rcu_state.barrier_mutex)) 1336 return 0; 1337 1338 /* Snapshot count of all CPUs */ 1339 for_each_cpu(cpu, rcu_nocb_mask) { 1340 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1341 1342 count += READ_ONCE(rdp->lazy_len); 1343 } 1344 1345 mutex_unlock(&rcu_state.barrier_mutex); 1346 1347 return count ? count : SHRINK_EMPTY; 1348 } 1349 1350 static unsigned long 1351 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1352 { 1353 int cpu; 1354 unsigned long flags; 1355 unsigned long count = 0; 1356 1357 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask))) 1358 return 0; 1359 /* 1360 * Protect against concurrent (de-)offloading. Otherwise nocb locking 1361 * may be ignored or imbalanced. 1362 */ 1363 if (!mutex_trylock(&rcu_state.barrier_mutex)) { 1364 /* 1365 * But really don't insist if barrier_mutex is contended since we 1366 * can't guarantee that it will never engage in a dependency 1367 * chain involving memory allocation. The lock is seldom contended 1368 * anyway. 1369 */ 1370 return 0; 1371 } 1372 1373 /* Snapshot count of all CPUs */ 1374 for_each_cpu(cpu, rcu_nocb_mask) { 1375 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1376 int _count; 1377 1378 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp))) 1379 continue; 1380 1381 if (!READ_ONCE(rdp->lazy_len)) 1382 continue; 1383 1384 rcu_nocb_lock_irqsave(rdp, flags); 1385 /* 1386 * Recheck under the nocb lock. Since we are not holding the bypass 1387 * lock we may still race with increments from the enqueuer but still 1388 * we know for sure if there is at least one lazy callback. 1389 */ 1390 _count = READ_ONCE(rdp->lazy_len); 1391 if (!_count) { 1392 rcu_nocb_unlock_irqrestore(rdp, flags); 1393 continue; 1394 } 1395 rcu_nocb_try_flush_bypass(rdp, jiffies); 1396 rcu_nocb_unlock_irqrestore(rdp, flags); 1397 wake_nocb_gp(rdp, false); 1398 sc->nr_to_scan -= _count; 1399 count += _count; 1400 if (sc->nr_to_scan <= 0) 1401 break; 1402 } 1403 1404 mutex_unlock(&rcu_state.barrier_mutex); 1405 1406 return count ? count : SHRINK_STOP; 1407 } 1408 #endif // #ifdef CONFIG_RCU_LAZY 1409 1410 void __init rcu_init_nohz(void) 1411 { 1412 int cpu; 1413 struct rcu_data *rdp; 1414 const struct cpumask *cpumask = NULL; 1415 struct shrinker * __maybe_unused lazy_rcu_shrinker; 1416 1417 #if defined(CONFIG_NO_HZ_FULL) 1418 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) 1419 cpumask = tick_nohz_full_mask; 1420 #endif 1421 1422 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) && 1423 !rcu_state.nocb_is_setup && !cpumask) 1424 cpumask = cpu_possible_mask; 1425 1426 if (cpumask) { 1427 if (!cpumask_available(rcu_nocb_mask)) { 1428 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { 1429 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); 1430 return; 1431 } 1432 } 1433 1434 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask); 1435 rcu_state.nocb_is_setup = true; 1436 } 1437 1438 if (!rcu_state.nocb_is_setup) 1439 return; 1440 1441 #ifdef CONFIG_RCU_LAZY 1442 lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy"); 1443 if (!lazy_rcu_shrinker) { 1444 pr_err("Failed to allocate lazy_rcu shrinker!\n"); 1445 } else { 1446 lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count; 1447 lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan; 1448 1449 shrinker_register(lazy_rcu_shrinker); 1450 } 1451 #endif // #ifdef CONFIG_RCU_LAZY 1452 1453 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { 1454 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); 1455 cpumask_and(rcu_nocb_mask, cpu_possible_mask, 1456 rcu_nocb_mask); 1457 } 1458 if (cpumask_empty(rcu_nocb_mask)) 1459 pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); 1460 else 1461 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", 1462 cpumask_pr_args(rcu_nocb_mask)); 1463 if (rcu_nocb_poll) 1464 pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); 1465 1466 for_each_cpu(cpu, rcu_nocb_mask) { 1467 rdp = per_cpu_ptr(&rcu_data, cpu); 1468 if (rcu_segcblist_empty(&rdp->cblist)) 1469 rcu_segcblist_init(&rdp->cblist); 1470 rcu_segcblist_offload(&rdp->cblist, true); 1471 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP); 1472 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE); 1473 } 1474 rcu_organize_nocb_kthreads(); 1475 } 1476 1477 /* Initialize per-rcu_data variables for no-CBs CPUs. */ 1478 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1479 { 1480 init_swait_queue_head(&rdp->nocb_cb_wq); 1481 init_swait_queue_head(&rdp->nocb_gp_wq); 1482 init_swait_queue_head(&rdp->nocb_state_wq); 1483 raw_spin_lock_init(&rdp->nocb_lock); 1484 raw_spin_lock_init(&rdp->nocb_bypass_lock); 1485 raw_spin_lock_init(&rdp->nocb_gp_lock); 1486 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); 1487 rcu_cblist_init(&rdp->nocb_bypass); 1488 WRITE_ONCE(rdp->lazy_len, 0); 1489 mutex_init(&rdp->nocb_gp_kthread_mutex); 1490 } 1491 1492 /* 1493 * If the specified CPU is a no-CBs CPU that does not already have its 1494 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread 1495 * for this CPU's group has not yet been created, spawn it as well. 1496 */ 1497 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1498 { 1499 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 1500 struct rcu_data *rdp_gp; 1501 struct task_struct *t; 1502 struct sched_param sp; 1503 1504 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup) 1505 return; 1506 1507 /* If there already is an rcuo kthread, then nothing to do. */ 1508 if (rdp->nocb_cb_kthread) 1509 return; 1510 1511 /* If we didn't spawn the GP kthread first, reorganize! */ 1512 sp.sched_priority = kthread_prio; 1513 rdp_gp = rdp->nocb_gp_rdp; 1514 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex); 1515 if (!rdp_gp->nocb_gp_kthread) { 1516 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, 1517 "rcuog/%d", rdp_gp->cpu); 1518 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) { 1519 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1520 goto end; 1521 } 1522 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); 1523 if (kthread_prio) 1524 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1525 } 1526 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex); 1527 1528 /* Spawn the kthread for this CPU. */ 1529 t = kthread_run(rcu_nocb_cb_kthread, rdp, 1530 "rcuo%c/%d", rcu_state.abbr, cpu); 1531 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) 1532 goto end; 1533 1534 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio) 1535 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 1536 1537 WRITE_ONCE(rdp->nocb_cb_kthread, t); 1538 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); 1539 return; 1540 end: 1541 mutex_lock(&rcu_state.barrier_mutex); 1542 if (rcu_rdp_is_offloaded(rdp)) { 1543 rcu_nocb_rdp_deoffload(rdp); 1544 cpumask_clear_cpu(cpu, rcu_nocb_mask); 1545 } 1546 mutex_unlock(&rcu_state.barrier_mutex); 1547 } 1548 1549 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */ 1550 static int rcu_nocb_gp_stride = -1; 1551 module_param(rcu_nocb_gp_stride, int, 0444); 1552 1553 /* 1554 * Initialize GP-CB relationships for all no-CBs CPU. 1555 */ 1556 static void __init rcu_organize_nocb_kthreads(void) 1557 { 1558 int cpu; 1559 bool firsttime = true; 1560 bool gotnocbs = false; 1561 bool gotnocbscbs = true; 1562 int ls = rcu_nocb_gp_stride; 1563 int nl = 0; /* Next GP kthread. */ 1564 struct rcu_data *rdp; 1565 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */ 1566 1567 if (!cpumask_available(rcu_nocb_mask)) 1568 return; 1569 if (ls == -1) { 1570 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); 1571 rcu_nocb_gp_stride = ls; 1572 } 1573 1574 /* 1575 * Each pass through this loop sets up one rcu_data structure. 1576 * Should the corresponding CPU come online in the future, then 1577 * we will spawn the needed set of rcu_nocb_kthread() kthreads. 1578 */ 1579 for_each_possible_cpu(cpu) { 1580 rdp = per_cpu_ptr(&rcu_data, cpu); 1581 if (rdp->cpu >= nl) { 1582 /* New GP kthread, set up for CBs & next GP. */ 1583 gotnocbs = true; 1584 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; 1585 rdp_gp = rdp; 1586 INIT_LIST_HEAD(&rdp->nocb_head_rdp); 1587 if (dump_tree) { 1588 if (!firsttime) 1589 pr_cont("%s\n", gotnocbscbs 1590 ? "" : " (self only)"); 1591 gotnocbscbs = false; 1592 firsttime = false; 1593 pr_alert("%s: No-CB GP kthread CPU %d:", 1594 __func__, cpu); 1595 } 1596 } else { 1597 /* Another CB kthread, link to previous GP kthread. */ 1598 gotnocbscbs = true; 1599 if (dump_tree) 1600 pr_cont(" %d", cpu); 1601 } 1602 rdp->nocb_gp_rdp = rdp_gp; 1603 if (cpumask_test_cpu(cpu, rcu_nocb_mask)) 1604 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp); 1605 } 1606 if (gotnocbs && dump_tree) 1607 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); 1608 } 1609 1610 /* 1611 * Bind the current task to the offloaded CPUs. If there are no offloaded 1612 * CPUs, leave the task unbound. Splat if the bind attempt fails. 1613 */ 1614 void rcu_bind_current_to_nocb(void) 1615 { 1616 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask)) 1617 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); 1618 } 1619 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); 1620 1621 // The ->on_cpu field is available only in CONFIG_SMP=y, so... 1622 #ifdef CONFIG_SMP 1623 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1624 { 1625 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : ""; 1626 } 1627 #else // #ifdef CONFIG_SMP 1628 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp) 1629 { 1630 return ""; 1631 } 1632 #endif // #else #ifdef CONFIG_SMP 1633 1634 /* 1635 * Dump out nocb grace-period kthread state for the specified rcu_data 1636 * structure. 1637 */ 1638 static void show_rcu_nocb_gp_state(struct rcu_data *rdp) 1639 { 1640 struct rcu_node *rnp = rdp->mynode; 1641 1642 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n", 1643 rdp->cpu, 1644 "kK"[!!rdp->nocb_gp_kthread], 1645 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], 1646 "dD"[!!rdp->nocb_defer_wakeup], 1647 "tT"[timer_pending(&rdp->nocb_timer)], 1648 "sS"[!!rdp->nocb_gp_sleep], 1649 ".W"[swait_active(&rdp->nocb_gp_wq)], 1650 ".W"[swait_active(&rnp->nocb_gp_wq[0])], 1651 ".W"[swait_active(&rnp->nocb_gp_wq[1])], 1652 ".B"[!!rdp->nocb_gp_bypass], 1653 ".G"[!!rdp->nocb_gp_gp], 1654 (long)rdp->nocb_gp_seq, 1655 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops), 1656 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.', 1657 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1, 1658 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread)); 1659 } 1660 1661 /* Dump out nocb kthread state for the specified rcu_data structure. */ 1662 static void show_rcu_nocb_state(struct rcu_data *rdp) 1663 { 1664 char bufw[20]; 1665 char bufr[20]; 1666 struct rcu_data *nocb_next_rdp; 1667 struct rcu_segcblist *rsclp = &rdp->cblist; 1668 bool waslocked; 1669 bool wassleep; 1670 1671 if (rdp->nocb_gp_rdp == rdp) 1672 show_rcu_nocb_gp_state(rdp); 1673 1674 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp, 1675 &rdp->nocb_entry_rdp, 1676 typeof(*rdp), 1677 nocb_entry_rdp); 1678 1679 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]); 1680 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]); 1681 pr_info(" CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n", 1682 rdp->cpu, rdp->nocb_gp_rdp->cpu, 1683 nocb_next_rdp ? nocb_next_rdp->cpu : -1, 1684 "kK"[!!rdp->nocb_cb_kthread], 1685 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], 1686 "cC"[!!atomic_read(&rdp->nocb_lock_contended)], 1687 "lL"[raw_spin_is_locked(&rdp->nocb_lock)], 1688 "sS"[!!rdp->nocb_cb_sleep], 1689 ".W"[swait_active(&rdp->nocb_cb_wq)], 1690 jiffies - rdp->nocb_bypass_first, 1691 jiffies - rdp->nocb_nobypass_last, 1692 rdp->nocb_nobypass_count, 1693 ".D"[rcu_segcblist_ready_cbs(rsclp)], 1694 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)], 1695 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw, 1696 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)], 1697 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr, 1698 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)], 1699 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], 1700 rcu_segcblist_n_cbs(&rdp->cblist), 1701 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.', 1702 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1, 1703 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread)); 1704 1705 /* It is OK for GP kthreads to have GP state. */ 1706 if (rdp->nocb_gp_rdp == rdp) 1707 return; 1708 1709 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); 1710 wassleep = swait_active(&rdp->nocb_gp_wq); 1711 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep) 1712 return; /* Nothing untoward. */ 1713 1714 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n", 1715 "lL"[waslocked], 1716 "dD"[!!rdp->nocb_defer_wakeup], 1717 "sS"[!!rdp->nocb_gp_sleep], 1718 ".W"[wassleep]); 1719 } 1720 1721 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 1722 1723 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp) 1724 { 1725 return 0; 1726 } 1727 1728 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp) 1729 { 1730 return false; 1731 } 1732 1733 /* No ->nocb_lock to acquire. */ 1734 static void rcu_nocb_lock(struct rcu_data *rdp) 1735 { 1736 } 1737 1738 /* No ->nocb_lock to release. */ 1739 static void rcu_nocb_unlock(struct rcu_data *rdp) 1740 { 1741 } 1742 1743 /* No ->nocb_lock to release. */ 1744 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, 1745 unsigned long flags) 1746 { 1747 local_irq_restore(flags); 1748 } 1749 1750 /* Lockdep check that ->cblist may be safely accessed. */ 1751 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) 1752 { 1753 lockdep_assert_irqs_disabled(); 1754 } 1755 1756 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) 1757 { 1758 } 1759 1760 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) 1761 { 1762 return NULL; 1763 } 1764 1765 static void rcu_init_one_nocb(struct rcu_node *rnp) 1766 { 1767 } 1768 1769 static bool wake_nocb_gp(struct rcu_data *rdp, bool force) 1770 { 1771 return false; 1772 } 1773 1774 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, 1775 unsigned long j, bool lazy) 1776 { 1777 return true; 1778 } 1779 1780 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head, 1781 rcu_callback_t func, unsigned long flags, bool lazy) 1782 { 1783 WARN_ON_ONCE(1); /* Should be dead code! */ 1784 } 1785 1786 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, 1787 unsigned long flags) 1788 { 1789 WARN_ON_ONCE(1); /* Should be dead code! */ 1790 } 1791 1792 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) 1793 { 1794 } 1795 1796 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level) 1797 { 1798 return false; 1799 } 1800 1801 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp) 1802 { 1803 return false; 1804 } 1805 1806 static void rcu_spawn_cpu_nocb_kthread(int cpu) 1807 { 1808 } 1809 1810 static void show_rcu_nocb_state(struct rcu_data *rdp) 1811 { 1812 } 1813 1814 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 1815