1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include <linux/context_tracking.h> 66 #include "../time/tick-internal.h" 67 68 #include "tree.h" 69 #include "rcu.h" 70 71 #ifdef MODULE_PARAM_PREFIX 72 #undef MODULE_PARAM_PREFIX 73 #endif 74 #define MODULE_PARAM_PREFIX "rcutree." 75 76 /* Data structures. */ 77 78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 79 .gpwrap = true, 80 #ifdef CONFIG_RCU_NOCB_CPU 81 .cblist.flags = SEGCBLIST_RCU_CORE, 82 #endif 83 }; 84 static struct rcu_state rcu_state = { 85 .level = { &rcu_state.node[0] }, 86 .gp_state = RCU_GP_IDLE, 87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 155 156 /* 157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 158 * real-time priority(enabling/disabling) is controlled by 159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 160 */ 161 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 162 module_param(kthread_prio, int, 0444); 163 164 /* Delay in jiffies for grace-period initialization delays, debug only. */ 165 166 static int gp_preinit_delay; 167 module_param(gp_preinit_delay, int, 0444); 168 static int gp_init_delay; 169 module_param(gp_init_delay, int, 0444); 170 static int gp_cleanup_delay; 171 module_param(gp_cleanup_delay, int, 0444); 172 173 // Add delay to rcu_read_unlock() for strict grace periods. 174 static int rcu_unlock_delay; 175 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 176 module_param(rcu_unlock_delay, int, 0444); 177 #endif 178 179 /* 180 * This rcu parameter is runtime-read-only. It reflects 181 * a minimum allowed number of objects which can be cached 182 * per-CPU. Object size is equal to one page. This value 183 * can be changed at boot time. 184 */ 185 static int rcu_min_cached_objs = 5; 186 module_param(rcu_min_cached_objs, int, 0444); 187 188 // A page shrinker can ask for pages to be freed to make them 189 // available for other parts of the system. This usually happens 190 // under low memory conditions, and in that case we should also 191 // defer page-cache filling for a short time period. 192 // 193 // The default value is 5 seconds, which is long enough to reduce 194 // interference with the shrinker while it asks other systems to 195 // drain their caches. 196 static int rcu_delay_page_cache_fill_msec = 5000; 197 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 198 199 /* Retrieve RCU kthreads priority for rcutorture */ 200 int rcu_get_gp_kthreads_prio(void) 201 { 202 return kthread_prio; 203 } 204 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 205 206 /* 207 * Number of grace periods between delays, normalized by the duration of 208 * the delay. The longer the delay, the more the grace periods between 209 * each delay. The reason for this normalization is that it means that, 210 * for non-zero delays, the overall slowdown of grace periods is constant 211 * regardless of the duration of the delay. This arrangement balances 212 * the need for long delays to increase some race probabilities with the 213 * need for fast grace periods to increase other race probabilities. 214 */ 215 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 216 217 /* 218 * Compute the mask of online CPUs for the specified rcu_node structure. 219 * This will not be stable unless the rcu_node structure's ->lock is 220 * held, but the bit corresponding to the current CPU will be stable 221 * in most contexts. 222 */ 223 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 224 { 225 return READ_ONCE(rnp->qsmaskinitnext); 226 } 227 228 /* 229 * Is the CPU corresponding to the specified rcu_data structure online 230 * from RCU's perspective? This perspective is given by that structure's 231 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 232 */ 233 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 234 { 235 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 236 } 237 238 /* 239 * Return true if an RCU grace period is in progress. The READ_ONCE()s 240 * permit this function to be invoked without holding the root rcu_node 241 * structure's ->lock, but of course results can be subject to change. 242 */ 243 static int rcu_gp_in_progress(void) 244 { 245 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 246 } 247 248 /* 249 * Return the number of callbacks queued on the specified CPU. 250 * Handles both the nocbs and normal cases. 251 */ 252 static long rcu_get_n_cbs_cpu(int cpu) 253 { 254 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 255 256 if (rcu_segcblist_is_enabled(&rdp->cblist)) 257 return rcu_segcblist_n_cbs(&rdp->cblist); 258 return 0; 259 } 260 261 void rcu_softirq_qs(void) 262 { 263 rcu_qs(); 264 rcu_preempt_deferred_qs(current); 265 rcu_tasks_qs(current, false); 266 } 267 268 /* 269 * Reset the current CPU's ->dynticks counter to indicate that the 270 * newly onlined CPU is no longer in an extended quiescent state. 271 * This will either leave the counter unchanged, or increment it 272 * to the next non-quiescent value. 273 * 274 * The non-atomic test/increment sequence works because the upper bits 275 * of the ->dynticks counter are manipulated only by the corresponding CPU, 276 * or when the corresponding CPU is offline. 277 */ 278 static void rcu_dynticks_eqs_online(void) 279 { 280 if (ct_dynticks() & RCU_DYNTICKS_IDX) 281 return; 282 ct_state_inc(RCU_DYNTICKS_IDX); 283 } 284 285 /* 286 * Snapshot the ->dynticks counter with full ordering so as to allow 287 * stable comparison of this counter with past and future snapshots. 288 */ 289 static int rcu_dynticks_snap(int cpu) 290 { 291 smp_mb(); // Fundamental RCU ordering guarantee. 292 return ct_dynticks_cpu_acquire(cpu); 293 } 294 295 /* 296 * Return true if the snapshot returned from rcu_dynticks_snap() 297 * indicates that RCU is in an extended quiescent state. 298 */ 299 static bool rcu_dynticks_in_eqs(int snap) 300 { 301 return !(snap & RCU_DYNTICKS_IDX); 302 } 303 304 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 305 bool rcu_is_idle_cpu(int cpu) 306 { 307 return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)); 308 } 309 310 /* 311 * Return true if the CPU corresponding to the specified rcu_data 312 * structure has spent some time in an extended quiescent state since 313 * rcu_dynticks_snap() returned the specified snapshot. 314 */ 315 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 316 { 317 return snap != rcu_dynticks_snap(rdp->cpu); 318 } 319 320 /* 321 * Return true if the referenced integer is zero while the specified 322 * CPU remains within a single extended quiescent state. 323 */ 324 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 325 { 326 int snap; 327 328 // If not quiescent, force back to earlier extended quiescent state. 329 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 330 smp_rmb(); // Order ->dynticks and *vp reads. 331 if (READ_ONCE(*vp)) 332 return false; // Non-zero, so report failure; 333 smp_rmb(); // Order *vp read and ->dynticks re-read. 334 335 // If still in the same extended quiescent state, we are good! 336 return snap == ct_dynticks_cpu(cpu); 337 } 338 339 /* 340 * Let the RCU core know that this CPU has gone through the scheduler, 341 * which is a quiescent state. This is called when the need for a 342 * quiescent state is urgent, so we burn an atomic operation and full 343 * memory barriers to let the RCU core know about it, regardless of what 344 * this CPU might (or might not) do in the near future. 345 * 346 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 347 * 348 * The caller must have disabled interrupts and must not be idle. 349 */ 350 notrace void rcu_momentary_dyntick_idle(void) 351 { 352 int seq; 353 354 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 355 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 356 /* It is illegal to call this from idle state. */ 357 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 358 rcu_preempt_deferred_qs(current); 359 } 360 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 361 362 /** 363 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 364 * 365 * If the current CPU is idle and running at a first-level (not nested) 366 * interrupt, or directly, from idle, return true. 367 * 368 * The caller must have at least disabled IRQs. 369 */ 370 static int rcu_is_cpu_rrupt_from_idle(void) 371 { 372 long nesting; 373 374 /* 375 * Usually called from the tick; but also used from smp_function_call() 376 * for expedited grace periods. This latter can result in running from 377 * the idle task, instead of an actual IPI. 378 */ 379 lockdep_assert_irqs_disabled(); 380 381 /* Check for counter underflows */ 382 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 383 "RCU dynticks_nesting counter underflow!"); 384 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 385 "RCU dynticks_nmi_nesting counter underflow/zero!"); 386 387 /* Are we at first interrupt nesting level? */ 388 nesting = ct_dynticks_nmi_nesting(); 389 if (nesting > 1) 390 return false; 391 392 /* 393 * If we're not in an interrupt, we must be in the idle task! 394 */ 395 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 396 397 /* Does CPU appear to be idle from an RCU standpoint? */ 398 return ct_dynticks_nesting() == 0; 399 } 400 401 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 402 // Maximum callbacks per rcu_do_batch ... 403 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 404 static long blimit = DEFAULT_RCU_BLIMIT; 405 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 406 static long qhimark = DEFAULT_RCU_QHIMARK; 407 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 408 static long qlowmark = DEFAULT_RCU_QLOMARK; 409 #define DEFAULT_RCU_QOVLD_MULT 2 410 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 411 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 412 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 413 414 module_param(blimit, long, 0444); 415 module_param(qhimark, long, 0444); 416 module_param(qlowmark, long, 0444); 417 module_param(qovld, long, 0444); 418 419 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 420 static ulong jiffies_till_next_fqs = ULONG_MAX; 421 static bool rcu_kick_kthreads; 422 static int rcu_divisor = 7; 423 module_param(rcu_divisor, int, 0644); 424 425 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 426 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 427 module_param(rcu_resched_ns, long, 0644); 428 429 /* 430 * How long the grace period must be before we start recruiting 431 * quiescent-state help from rcu_note_context_switch(). 432 */ 433 static ulong jiffies_till_sched_qs = ULONG_MAX; 434 module_param(jiffies_till_sched_qs, ulong, 0444); 435 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 436 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 437 438 /* 439 * Make sure that we give the grace-period kthread time to detect any 440 * idle CPUs before taking active measures to force quiescent states. 441 * However, don't go below 100 milliseconds, adjusted upwards for really 442 * large systems. 443 */ 444 static void adjust_jiffies_till_sched_qs(void) 445 { 446 unsigned long j; 447 448 /* If jiffies_till_sched_qs was specified, respect the request. */ 449 if (jiffies_till_sched_qs != ULONG_MAX) { 450 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 451 return; 452 } 453 /* Otherwise, set to third fqs scan, but bound below on large system. */ 454 j = READ_ONCE(jiffies_till_first_fqs) + 455 2 * READ_ONCE(jiffies_till_next_fqs); 456 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 457 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 458 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 459 WRITE_ONCE(jiffies_to_sched_qs, j); 460 } 461 462 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 463 { 464 ulong j; 465 int ret = kstrtoul(val, 0, &j); 466 467 if (!ret) { 468 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 469 adjust_jiffies_till_sched_qs(); 470 } 471 return ret; 472 } 473 474 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 475 { 476 ulong j; 477 int ret = kstrtoul(val, 0, &j); 478 479 if (!ret) { 480 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 481 adjust_jiffies_till_sched_qs(); 482 } 483 return ret; 484 } 485 486 static const struct kernel_param_ops first_fqs_jiffies_ops = { 487 .set = param_set_first_fqs_jiffies, 488 .get = param_get_ulong, 489 }; 490 491 static const struct kernel_param_ops next_fqs_jiffies_ops = { 492 .set = param_set_next_fqs_jiffies, 493 .get = param_get_ulong, 494 }; 495 496 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 497 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 498 module_param(rcu_kick_kthreads, bool, 0644); 499 500 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 501 static int rcu_pending(int user); 502 503 /* 504 * Return the number of RCU GPs completed thus far for debug & stats. 505 */ 506 unsigned long rcu_get_gp_seq(void) 507 { 508 return READ_ONCE(rcu_state.gp_seq); 509 } 510 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 511 512 /* 513 * Return the number of RCU expedited batches completed thus far for 514 * debug & stats. Odd numbers mean that a batch is in progress, even 515 * numbers mean idle. The value returned will thus be roughly double 516 * the cumulative batches since boot. 517 */ 518 unsigned long rcu_exp_batches_completed(void) 519 { 520 return rcu_state.expedited_sequence; 521 } 522 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 523 524 /* 525 * Return the root node of the rcu_state structure. 526 */ 527 static struct rcu_node *rcu_get_root(void) 528 { 529 return &rcu_state.node[0]; 530 } 531 532 /* 533 * Send along grace-period-related data for rcutorture diagnostics. 534 */ 535 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 536 unsigned long *gp_seq) 537 { 538 switch (test_type) { 539 case RCU_FLAVOR: 540 *flags = READ_ONCE(rcu_state.gp_flags); 541 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 542 break; 543 default: 544 break; 545 } 546 } 547 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 548 549 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 550 /* 551 * An empty function that will trigger a reschedule on 552 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 553 */ 554 static void late_wakeup_func(struct irq_work *work) 555 { 556 } 557 558 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 559 IRQ_WORK_INIT(late_wakeup_func); 560 561 /* 562 * If either: 563 * 564 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 565 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 566 * 567 * In these cases the late RCU wake ups aren't supported in the resched loops and our 568 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 569 * get re-enabled again. 570 */ 571 noinstr void rcu_irq_work_resched(void) 572 { 573 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 574 575 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 576 return; 577 578 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 579 return; 580 581 instrumentation_begin(); 582 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 583 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 584 } 585 instrumentation_end(); 586 } 587 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 588 589 #ifdef CONFIG_PROVE_RCU 590 /** 591 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 592 */ 593 void rcu_irq_exit_check_preempt(void) 594 { 595 lockdep_assert_irqs_disabled(); 596 597 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 598 "RCU dynticks_nesting counter underflow/zero!"); 599 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 600 DYNTICK_IRQ_NONIDLE, 601 "Bad RCU dynticks_nmi_nesting counter\n"); 602 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 603 "RCU in extended quiescent state!"); 604 } 605 #endif /* #ifdef CONFIG_PROVE_RCU */ 606 607 #ifdef CONFIG_NO_HZ_FULL 608 /** 609 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 610 * 611 * The scheduler tick is not normally enabled when CPUs enter the kernel 612 * from nohz_full userspace execution. After all, nohz_full userspace 613 * execution is an RCU quiescent state and the time executing in the kernel 614 * is quite short. Except of course when it isn't. And it is not hard to 615 * cause a large system to spend tens of seconds or even minutes looping 616 * in the kernel, which can cause a number of problems, include RCU CPU 617 * stall warnings. 618 * 619 * Therefore, if a nohz_full CPU fails to report a quiescent state 620 * in a timely manner, the RCU grace-period kthread sets that CPU's 621 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 622 * exception will invoke this function, which will turn on the scheduler 623 * tick, which will enable RCU to detect that CPU's quiescent states, 624 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 625 * The tick will be disabled once a quiescent state is reported for 626 * this CPU. 627 * 628 * Of course, in carefully tuned systems, there might never be an 629 * interrupt or exception. In that case, the RCU grace-period kthread 630 * will eventually cause one to happen. However, in less carefully 631 * controlled environments, this function allows RCU to get what it 632 * needs without creating otherwise useless interruptions. 633 */ 634 void __rcu_irq_enter_check_tick(void) 635 { 636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 637 638 // If we're here from NMI there's nothing to do. 639 if (in_nmi()) 640 return; 641 642 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 643 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 644 645 if (!tick_nohz_full_cpu(rdp->cpu) || 646 !READ_ONCE(rdp->rcu_urgent_qs) || 647 READ_ONCE(rdp->rcu_forced_tick)) { 648 // RCU doesn't need nohz_full help from this CPU, or it is 649 // already getting that help. 650 return; 651 } 652 653 // We get here only when not in an extended quiescent state and 654 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 655 // already watching and (2) The fact that we are in an interrupt 656 // handler and that the rcu_node lock is an irq-disabled lock 657 // prevents self-deadlock. So we can safely recheck under the lock. 658 // Note that the nohz_full state currently cannot change. 659 raw_spin_lock_rcu_node(rdp->mynode); 660 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 661 // A nohz_full CPU is in the kernel and RCU needs a 662 // quiescent state. Turn on the tick! 663 WRITE_ONCE(rdp->rcu_forced_tick, true); 664 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 665 } 666 raw_spin_unlock_rcu_node(rdp->mynode); 667 } 668 #endif /* CONFIG_NO_HZ_FULL */ 669 670 /* 671 * Check to see if any future non-offloaded RCU-related work will need 672 * to be done by the current CPU, even if none need be done immediately, 673 * returning 1 if so. This function is part of the RCU implementation; 674 * it is -not- an exported member of the RCU API. This is used by 675 * the idle-entry code to figure out whether it is safe to disable the 676 * scheduler-clock interrupt. 677 * 678 * Just check whether or not this CPU has non-offloaded RCU callbacks 679 * queued. 680 */ 681 int rcu_needs_cpu(void) 682 { 683 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 684 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 685 } 686 687 /* 688 * If any sort of urgency was applied to the current CPU (for example, 689 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 690 * to get to a quiescent state, disable it. 691 */ 692 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 693 { 694 raw_lockdep_assert_held_rcu_node(rdp->mynode); 695 WRITE_ONCE(rdp->rcu_urgent_qs, false); 696 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 697 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 698 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 699 WRITE_ONCE(rdp->rcu_forced_tick, false); 700 } 701 } 702 703 /** 704 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 705 * 706 * Return true if RCU is watching the running CPU, which means that this 707 * CPU can safely enter RCU read-side critical sections. In other words, 708 * if the current CPU is not in its idle loop or is in an interrupt or 709 * NMI handler, return true. 710 * 711 * Make notrace because it can be called by the internal functions of 712 * ftrace, and making this notrace removes unnecessary recursion calls. 713 */ 714 notrace bool rcu_is_watching(void) 715 { 716 bool ret; 717 718 preempt_disable_notrace(); 719 ret = !rcu_dynticks_curr_cpu_in_eqs(); 720 preempt_enable_notrace(); 721 return ret; 722 } 723 EXPORT_SYMBOL_GPL(rcu_is_watching); 724 725 /* 726 * If a holdout task is actually running, request an urgent quiescent 727 * state from its CPU. This is unsynchronized, so migrations can cause 728 * the request to go to the wrong CPU. Which is OK, all that will happen 729 * is that the CPU's next context switch will be a bit slower and next 730 * time around this task will generate another request. 731 */ 732 void rcu_request_urgent_qs_task(struct task_struct *t) 733 { 734 int cpu; 735 736 barrier(); 737 cpu = task_cpu(t); 738 if (!task_curr(t)) 739 return; /* This task is not running on that CPU. */ 740 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 741 } 742 743 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 744 745 /* 746 * Is the current CPU online as far as RCU is concerned? 747 * 748 * Disable preemption to avoid false positives that could otherwise 749 * happen due to the current CPU number being sampled, this task being 750 * preempted, its old CPU being taken offline, resuming on some other CPU, 751 * then determining that its old CPU is now offline. 752 * 753 * Disable checking if in an NMI handler because we cannot safely 754 * report errors from NMI handlers anyway. In addition, it is OK to use 755 * RCU on an offline processor during initial boot, hence the check for 756 * rcu_scheduler_fully_active. 757 */ 758 bool rcu_lockdep_current_cpu_online(void) 759 { 760 struct rcu_data *rdp; 761 bool ret = false; 762 763 if (in_nmi() || !rcu_scheduler_fully_active) 764 return true; 765 preempt_disable_notrace(); 766 rdp = this_cpu_ptr(&rcu_data); 767 /* 768 * Strictly, we care here about the case where the current CPU is 769 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 770 * not being up to date. So arch_spin_is_locked() might have a 771 * false positive if it's held by some *other* CPU, but that's 772 * OK because that just means a false *negative* on the warning. 773 */ 774 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 775 ret = true; 776 preempt_enable_notrace(); 777 return ret; 778 } 779 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 780 781 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 782 783 /* 784 * When trying to report a quiescent state on behalf of some other CPU, 785 * it is our responsibility to check for and handle potential overflow 786 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 787 * After all, the CPU might be in deep idle state, and thus executing no 788 * code whatsoever. 789 */ 790 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 791 { 792 raw_lockdep_assert_held_rcu_node(rnp); 793 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 794 rnp->gp_seq)) 795 WRITE_ONCE(rdp->gpwrap, true); 796 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 797 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 798 } 799 800 /* 801 * Snapshot the specified CPU's dynticks counter so that we can later 802 * credit them with an implicit quiescent state. Return 1 if this CPU 803 * is in dynticks idle mode, which is an extended quiescent state. 804 */ 805 static int dyntick_save_progress_counter(struct rcu_data *rdp) 806 { 807 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 808 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 809 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 810 rcu_gpnum_ovf(rdp->mynode, rdp); 811 return 1; 812 } 813 return 0; 814 } 815 816 /* 817 * Return true if the specified CPU has passed through a quiescent 818 * state by virtue of being in or having passed through an dynticks 819 * idle state since the last call to dyntick_save_progress_counter() 820 * for this same CPU, or by virtue of having been offline. 821 */ 822 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 823 { 824 unsigned long jtsq; 825 struct rcu_node *rnp = rdp->mynode; 826 827 /* 828 * If the CPU passed through or entered a dynticks idle phase with 829 * no active irq/NMI handlers, then we can safely pretend that the CPU 830 * already acknowledged the request to pass through a quiescent 831 * state. Either way, that CPU cannot possibly be in an RCU 832 * read-side critical section that started before the beginning 833 * of the current RCU grace period. 834 */ 835 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 836 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 837 rcu_gpnum_ovf(rnp, rdp); 838 return 1; 839 } 840 841 /* 842 * Complain if a CPU that is considered to be offline from RCU's 843 * perspective has not yet reported a quiescent state. After all, 844 * the offline CPU should have reported a quiescent state during 845 * the CPU-offline process, or, failing that, by rcu_gp_init() 846 * if it ran concurrently with either the CPU going offline or the 847 * last task on a leaf rcu_node structure exiting its RCU read-side 848 * critical section while all CPUs corresponding to that structure 849 * are offline. This added warning detects bugs in any of these 850 * code paths. 851 * 852 * The rcu_node structure's ->lock is held here, which excludes 853 * the relevant portions the CPU-hotplug code, the grace-period 854 * initialization code, and the rcu_read_unlock() code paths. 855 * 856 * For more detail, please refer to the "Hotplug CPU" section 857 * of RCU's Requirements documentation. 858 */ 859 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 860 struct rcu_node *rnp1; 861 862 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 863 __func__, rnp->grplo, rnp->grphi, rnp->level, 864 (long)rnp->gp_seq, (long)rnp->completedqs); 865 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 866 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 867 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 868 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 869 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 870 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 871 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 872 return 1; /* Break things loose after complaining. */ 873 } 874 875 /* 876 * A CPU running for an extended time within the kernel can 877 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 878 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 879 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 880 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 881 * variable are safe because the assignments are repeated if this 882 * CPU failed to pass through a quiescent state. This code 883 * also checks .jiffies_resched in case jiffies_to_sched_qs 884 * is set way high. 885 */ 886 jtsq = READ_ONCE(jiffies_to_sched_qs); 887 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 888 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 889 time_after(jiffies, rcu_state.jiffies_resched) || 890 rcu_state.cbovld)) { 891 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 892 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 893 smp_store_release(&rdp->rcu_urgent_qs, true); 894 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 895 WRITE_ONCE(rdp->rcu_urgent_qs, true); 896 } 897 898 /* 899 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 900 * The above code handles this, but only for straight cond_resched(). 901 * And some in-kernel loops check need_resched() before calling 902 * cond_resched(), which defeats the above code for CPUs that are 903 * running in-kernel with scheduling-clock interrupts disabled. 904 * So hit them over the head with the resched_cpu() hammer! 905 */ 906 if (tick_nohz_full_cpu(rdp->cpu) && 907 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 908 rcu_state.cbovld)) { 909 WRITE_ONCE(rdp->rcu_urgent_qs, true); 910 resched_cpu(rdp->cpu); 911 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 912 } 913 914 /* 915 * If more than halfway to RCU CPU stall-warning time, invoke 916 * resched_cpu() more frequently to try to loosen things up a bit. 917 * Also check to see if the CPU is getting hammered with interrupts, 918 * but only once per grace period, just to keep the IPIs down to 919 * a dull roar. 920 */ 921 if (time_after(jiffies, rcu_state.jiffies_resched)) { 922 if (time_after(jiffies, 923 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 924 resched_cpu(rdp->cpu); 925 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 926 } 927 if (IS_ENABLED(CONFIG_IRQ_WORK) && 928 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 929 (rnp->ffmask & rdp->grpmask)) { 930 rdp->rcu_iw_pending = true; 931 rdp->rcu_iw_gp_seq = rnp->gp_seq; 932 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 933 } 934 } 935 936 return 0; 937 } 938 939 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 940 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 941 unsigned long gp_seq_req, const char *s) 942 { 943 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 944 gp_seq_req, rnp->level, 945 rnp->grplo, rnp->grphi, s); 946 } 947 948 /* 949 * rcu_start_this_gp - Request the start of a particular grace period 950 * @rnp_start: The leaf node of the CPU from which to start. 951 * @rdp: The rcu_data corresponding to the CPU from which to start. 952 * @gp_seq_req: The gp_seq of the grace period to start. 953 * 954 * Start the specified grace period, as needed to handle newly arrived 955 * callbacks. The required future grace periods are recorded in each 956 * rcu_node structure's ->gp_seq_needed field. Returns true if there 957 * is reason to awaken the grace-period kthread. 958 * 959 * The caller must hold the specified rcu_node structure's ->lock, which 960 * is why the caller is responsible for waking the grace-period kthread. 961 * 962 * Returns true if the GP thread needs to be awakened else false. 963 */ 964 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 965 unsigned long gp_seq_req) 966 { 967 bool ret = false; 968 struct rcu_node *rnp; 969 970 /* 971 * Use funnel locking to either acquire the root rcu_node 972 * structure's lock or bail out if the need for this grace period 973 * has already been recorded -- or if that grace period has in 974 * fact already started. If there is already a grace period in 975 * progress in a non-leaf node, no recording is needed because the 976 * end of the grace period will scan the leaf rcu_node structures. 977 * Note that rnp_start->lock must not be released. 978 */ 979 raw_lockdep_assert_held_rcu_node(rnp_start); 980 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 981 for (rnp = rnp_start; 1; rnp = rnp->parent) { 982 if (rnp != rnp_start) 983 raw_spin_lock_rcu_node(rnp); 984 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 985 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 986 (rnp != rnp_start && 987 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 988 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 989 TPS("Prestarted")); 990 goto unlock_out; 991 } 992 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 993 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 994 /* 995 * We just marked the leaf or internal node, and a 996 * grace period is in progress, which means that 997 * rcu_gp_cleanup() will see the marking. Bail to 998 * reduce contention. 999 */ 1000 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1001 TPS("Startedleaf")); 1002 goto unlock_out; 1003 } 1004 if (rnp != rnp_start && rnp->parent != NULL) 1005 raw_spin_unlock_rcu_node(rnp); 1006 if (!rnp->parent) 1007 break; /* At root, and perhaps also leaf. */ 1008 } 1009 1010 /* If GP already in progress, just leave, otherwise start one. */ 1011 if (rcu_gp_in_progress()) { 1012 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1013 goto unlock_out; 1014 } 1015 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1016 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1017 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1018 if (!READ_ONCE(rcu_state.gp_kthread)) { 1019 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1020 goto unlock_out; 1021 } 1022 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1023 ret = true; /* Caller must wake GP kthread. */ 1024 unlock_out: 1025 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1026 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1027 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1028 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1029 } 1030 if (rnp != rnp_start) 1031 raw_spin_unlock_rcu_node(rnp); 1032 return ret; 1033 } 1034 1035 /* 1036 * Clean up any old requests for the just-ended grace period. Also return 1037 * whether any additional grace periods have been requested. 1038 */ 1039 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1040 { 1041 bool needmore; 1042 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1043 1044 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1045 if (!needmore) 1046 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1047 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1048 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1049 return needmore; 1050 } 1051 1052 /* 1053 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1054 * interrupt or softirq handler, in which case we just might immediately 1055 * sleep upon return, resulting in a grace-period hang), and don't bother 1056 * awakening when there is nothing for the grace-period kthread to do 1057 * (as in several CPUs raced to awaken, we lost), and finally don't try 1058 * to awaken a kthread that has not yet been created. If all those checks 1059 * are passed, track some debug information and awaken. 1060 * 1061 * So why do the self-wakeup when in an interrupt or softirq handler 1062 * in the grace-period kthread's context? Because the kthread might have 1063 * been interrupted just as it was going to sleep, and just after the final 1064 * pre-sleep check of the awaken condition. In this case, a wakeup really 1065 * is required, and is therefore supplied. 1066 */ 1067 static void rcu_gp_kthread_wake(void) 1068 { 1069 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1070 1071 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1072 !READ_ONCE(rcu_state.gp_flags) || !t) 1073 return; 1074 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1075 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1076 swake_up_one(&rcu_state.gp_wq); 1077 } 1078 1079 /* 1080 * If there is room, assign a ->gp_seq number to any callbacks on this 1081 * CPU that have not already been assigned. Also accelerate any callbacks 1082 * that were previously assigned a ->gp_seq number that has since proven 1083 * to be too conservative, which can happen if callbacks get assigned a 1084 * ->gp_seq number while RCU is idle, but with reference to a non-root 1085 * rcu_node structure. This function is idempotent, so it does not hurt 1086 * to call it repeatedly. Returns an flag saying that we should awaken 1087 * the RCU grace-period kthread. 1088 * 1089 * The caller must hold rnp->lock with interrupts disabled. 1090 */ 1091 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1092 { 1093 unsigned long gp_seq_req; 1094 bool ret = false; 1095 1096 rcu_lockdep_assert_cblist_protected(rdp); 1097 raw_lockdep_assert_held_rcu_node(rnp); 1098 1099 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1100 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1101 return false; 1102 1103 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1104 1105 /* 1106 * Callbacks are often registered with incomplete grace-period 1107 * information. Something about the fact that getting exact 1108 * information requires acquiring a global lock... RCU therefore 1109 * makes a conservative estimate of the grace period number at which 1110 * a given callback will become ready to invoke. The following 1111 * code checks this estimate and improves it when possible, thus 1112 * accelerating callback invocation to an earlier grace-period 1113 * number. 1114 */ 1115 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1116 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1117 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1118 1119 /* Trace depending on how much we were able to accelerate. */ 1120 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1121 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1122 else 1123 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1124 1125 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1126 1127 return ret; 1128 } 1129 1130 /* 1131 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1132 * rcu_node structure's ->lock be held. It consults the cached value 1133 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1134 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1135 * while holding the leaf rcu_node structure's ->lock. 1136 */ 1137 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1138 struct rcu_data *rdp) 1139 { 1140 unsigned long c; 1141 bool needwake; 1142 1143 rcu_lockdep_assert_cblist_protected(rdp); 1144 c = rcu_seq_snap(&rcu_state.gp_seq); 1145 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1146 /* Old request still live, so mark recent callbacks. */ 1147 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1148 return; 1149 } 1150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1151 needwake = rcu_accelerate_cbs(rnp, rdp); 1152 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1153 if (needwake) 1154 rcu_gp_kthread_wake(); 1155 } 1156 1157 /* 1158 * Move any callbacks whose grace period has completed to the 1159 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1160 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1161 * sublist. This function is idempotent, so it does not hurt to 1162 * invoke it repeatedly. As long as it is not invoked -too- often... 1163 * Returns true if the RCU grace-period kthread needs to be awakened. 1164 * 1165 * The caller must hold rnp->lock with interrupts disabled. 1166 */ 1167 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1168 { 1169 rcu_lockdep_assert_cblist_protected(rdp); 1170 raw_lockdep_assert_held_rcu_node(rnp); 1171 1172 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1173 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1174 return false; 1175 1176 /* 1177 * Find all callbacks whose ->gp_seq numbers indicate that they 1178 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1179 */ 1180 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1181 1182 /* Classify any remaining callbacks. */ 1183 return rcu_accelerate_cbs(rnp, rdp); 1184 } 1185 1186 /* 1187 * Move and classify callbacks, but only if doing so won't require 1188 * that the RCU grace-period kthread be awakened. 1189 */ 1190 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1191 struct rcu_data *rdp) 1192 { 1193 rcu_lockdep_assert_cblist_protected(rdp); 1194 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1195 return; 1196 // The grace period cannot end while we hold the rcu_node lock. 1197 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1198 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1199 raw_spin_unlock_rcu_node(rnp); 1200 } 1201 1202 /* 1203 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1204 * quiescent state. This is intended to be invoked when the CPU notices 1205 * a new grace period. 1206 */ 1207 static void rcu_strict_gp_check_qs(void) 1208 { 1209 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1210 rcu_read_lock(); 1211 rcu_read_unlock(); 1212 } 1213 } 1214 1215 /* 1216 * Update CPU-local rcu_data state to record the beginnings and ends of 1217 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1218 * structure corresponding to the current CPU, and must have irqs disabled. 1219 * Returns true if the grace-period kthread needs to be awakened. 1220 */ 1221 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1222 { 1223 bool ret = false; 1224 bool need_qs; 1225 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1226 1227 raw_lockdep_assert_held_rcu_node(rnp); 1228 1229 if (rdp->gp_seq == rnp->gp_seq) 1230 return false; /* Nothing to do. */ 1231 1232 /* Handle the ends of any preceding grace periods first. */ 1233 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1234 unlikely(READ_ONCE(rdp->gpwrap))) { 1235 if (!offloaded) 1236 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1237 rdp->core_needs_qs = false; 1238 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1239 } else { 1240 if (!offloaded) 1241 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1242 if (rdp->core_needs_qs) 1243 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1244 } 1245 1246 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1247 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1248 unlikely(READ_ONCE(rdp->gpwrap))) { 1249 /* 1250 * If the current grace period is waiting for this CPU, 1251 * set up to detect a quiescent state, otherwise don't 1252 * go looking for one. 1253 */ 1254 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1255 need_qs = !!(rnp->qsmask & rdp->grpmask); 1256 rdp->cpu_no_qs.b.norm = need_qs; 1257 rdp->core_needs_qs = need_qs; 1258 zero_cpu_stall_ticks(rdp); 1259 } 1260 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1261 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1262 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1263 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1264 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1265 WRITE_ONCE(rdp->gpwrap, false); 1266 rcu_gpnum_ovf(rnp, rdp); 1267 return ret; 1268 } 1269 1270 static void note_gp_changes(struct rcu_data *rdp) 1271 { 1272 unsigned long flags; 1273 bool needwake; 1274 struct rcu_node *rnp; 1275 1276 local_irq_save(flags); 1277 rnp = rdp->mynode; 1278 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1279 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1280 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1281 local_irq_restore(flags); 1282 return; 1283 } 1284 needwake = __note_gp_changes(rnp, rdp); 1285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1286 rcu_strict_gp_check_qs(); 1287 if (needwake) 1288 rcu_gp_kthread_wake(); 1289 } 1290 1291 static atomic_t *rcu_gp_slow_suppress; 1292 1293 /* Register a counter to suppress debugging grace-period delays. */ 1294 void rcu_gp_slow_register(atomic_t *rgssp) 1295 { 1296 WARN_ON_ONCE(rcu_gp_slow_suppress); 1297 1298 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1299 } 1300 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1301 1302 /* Unregister a counter, with NULL for not caring which. */ 1303 void rcu_gp_slow_unregister(atomic_t *rgssp) 1304 { 1305 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1306 1307 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1308 } 1309 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1310 1311 static bool rcu_gp_slow_is_suppressed(void) 1312 { 1313 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1314 1315 return rgssp && atomic_read(rgssp); 1316 } 1317 1318 static void rcu_gp_slow(int delay) 1319 { 1320 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1321 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1322 schedule_timeout_idle(delay); 1323 } 1324 1325 static unsigned long sleep_duration; 1326 1327 /* Allow rcutorture to stall the grace-period kthread. */ 1328 void rcu_gp_set_torture_wait(int duration) 1329 { 1330 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1331 WRITE_ONCE(sleep_duration, duration); 1332 } 1333 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1334 1335 /* Actually implement the aforementioned wait. */ 1336 static void rcu_gp_torture_wait(void) 1337 { 1338 unsigned long duration; 1339 1340 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1341 return; 1342 duration = xchg(&sleep_duration, 0UL); 1343 if (duration > 0) { 1344 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1345 schedule_timeout_idle(duration); 1346 pr_alert("%s: Wait complete\n", __func__); 1347 } 1348 } 1349 1350 /* 1351 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1352 * processing. 1353 */ 1354 static void rcu_strict_gp_boundary(void *unused) 1355 { 1356 invoke_rcu_core(); 1357 } 1358 1359 // Has rcu_init() been invoked? This is used (for example) to determine 1360 // whether spinlocks may be acquired safely. 1361 static bool rcu_init_invoked(void) 1362 { 1363 return !!rcu_state.n_online_cpus; 1364 } 1365 1366 // Make the polled API aware of the beginning of a grace period. 1367 static void rcu_poll_gp_seq_start(unsigned long *snap) 1368 { 1369 struct rcu_node *rnp = rcu_get_root(); 1370 1371 if (rcu_init_invoked()) 1372 raw_lockdep_assert_held_rcu_node(rnp); 1373 1374 // If RCU was idle, note beginning of GP. 1375 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1376 rcu_seq_start(&rcu_state.gp_seq_polled); 1377 1378 // Either way, record current state. 1379 *snap = rcu_state.gp_seq_polled; 1380 } 1381 1382 // Make the polled API aware of the end of a grace period. 1383 static void rcu_poll_gp_seq_end(unsigned long *snap) 1384 { 1385 struct rcu_node *rnp = rcu_get_root(); 1386 1387 if (rcu_init_invoked()) 1388 raw_lockdep_assert_held_rcu_node(rnp); 1389 1390 // If the previously noted GP is still in effect, record the 1391 // end of that GP. Either way, zero counter to avoid counter-wrap 1392 // problems. 1393 if (*snap && *snap == rcu_state.gp_seq_polled) { 1394 rcu_seq_end(&rcu_state.gp_seq_polled); 1395 rcu_state.gp_seq_polled_snap = 0; 1396 rcu_state.gp_seq_polled_exp_snap = 0; 1397 } else { 1398 *snap = 0; 1399 } 1400 } 1401 1402 // Make the polled API aware of the beginning of a grace period, but 1403 // where caller does not hold the root rcu_node structure's lock. 1404 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1405 { 1406 unsigned long flags; 1407 struct rcu_node *rnp = rcu_get_root(); 1408 1409 if (rcu_init_invoked()) { 1410 lockdep_assert_irqs_enabled(); 1411 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1412 } 1413 rcu_poll_gp_seq_start(snap); 1414 if (rcu_init_invoked()) 1415 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1416 } 1417 1418 // Make the polled API aware of the end of a grace period, but where 1419 // caller does not hold the root rcu_node structure's lock. 1420 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1421 { 1422 unsigned long flags; 1423 struct rcu_node *rnp = rcu_get_root(); 1424 1425 if (rcu_init_invoked()) { 1426 lockdep_assert_irqs_enabled(); 1427 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1428 } 1429 rcu_poll_gp_seq_end(snap); 1430 if (rcu_init_invoked()) 1431 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1432 } 1433 1434 /* 1435 * Initialize a new grace period. Return false if no grace period required. 1436 */ 1437 static noinline_for_stack bool rcu_gp_init(void) 1438 { 1439 unsigned long flags; 1440 unsigned long oldmask; 1441 unsigned long mask; 1442 struct rcu_data *rdp; 1443 struct rcu_node *rnp = rcu_get_root(); 1444 1445 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1446 raw_spin_lock_irq_rcu_node(rnp); 1447 if (!READ_ONCE(rcu_state.gp_flags)) { 1448 /* Spurious wakeup, tell caller to go back to sleep. */ 1449 raw_spin_unlock_irq_rcu_node(rnp); 1450 return false; 1451 } 1452 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1453 1454 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1455 /* 1456 * Grace period already in progress, don't start another. 1457 * Not supposed to be able to happen. 1458 */ 1459 raw_spin_unlock_irq_rcu_node(rnp); 1460 return false; 1461 } 1462 1463 /* Advance to a new grace period and initialize state. */ 1464 record_gp_stall_check_time(); 1465 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1466 rcu_seq_start(&rcu_state.gp_seq); 1467 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1468 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1469 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1470 raw_spin_unlock_irq_rcu_node(rnp); 1471 1472 /* 1473 * Apply per-leaf buffered online and offline operations to 1474 * the rcu_node tree. Note that this new grace period need not 1475 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1476 * offlining path, when combined with checks in this function, 1477 * will handle CPUs that are currently going offline or that will 1478 * go offline later. Please also refer to "Hotplug CPU" section 1479 * of RCU's Requirements documentation. 1480 */ 1481 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1482 /* Exclude CPU hotplug operations. */ 1483 rcu_for_each_leaf_node(rnp) { 1484 local_irq_save(flags); 1485 arch_spin_lock(&rcu_state.ofl_lock); 1486 raw_spin_lock_rcu_node(rnp); 1487 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1488 !rnp->wait_blkd_tasks) { 1489 /* Nothing to do on this leaf rcu_node structure. */ 1490 raw_spin_unlock_rcu_node(rnp); 1491 arch_spin_unlock(&rcu_state.ofl_lock); 1492 local_irq_restore(flags); 1493 continue; 1494 } 1495 1496 /* Record old state, apply changes to ->qsmaskinit field. */ 1497 oldmask = rnp->qsmaskinit; 1498 rnp->qsmaskinit = rnp->qsmaskinitnext; 1499 1500 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1501 if (!oldmask != !rnp->qsmaskinit) { 1502 if (!oldmask) { /* First online CPU for rcu_node. */ 1503 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1504 rcu_init_new_rnp(rnp); 1505 } else if (rcu_preempt_has_tasks(rnp)) { 1506 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1507 } else { /* Last offline CPU and can propagate. */ 1508 rcu_cleanup_dead_rnp(rnp); 1509 } 1510 } 1511 1512 /* 1513 * If all waited-on tasks from prior grace period are 1514 * done, and if all this rcu_node structure's CPUs are 1515 * still offline, propagate up the rcu_node tree and 1516 * clear ->wait_blkd_tasks. Otherwise, if one of this 1517 * rcu_node structure's CPUs has since come back online, 1518 * simply clear ->wait_blkd_tasks. 1519 */ 1520 if (rnp->wait_blkd_tasks && 1521 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1522 rnp->wait_blkd_tasks = false; 1523 if (!rnp->qsmaskinit) 1524 rcu_cleanup_dead_rnp(rnp); 1525 } 1526 1527 raw_spin_unlock_rcu_node(rnp); 1528 arch_spin_unlock(&rcu_state.ofl_lock); 1529 local_irq_restore(flags); 1530 } 1531 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1532 1533 /* 1534 * Set the quiescent-state-needed bits in all the rcu_node 1535 * structures for all currently online CPUs in breadth-first 1536 * order, starting from the root rcu_node structure, relying on the 1537 * layout of the tree within the rcu_state.node[] array. Note that 1538 * other CPUs will access only the leaves of the hierarchy, thus 1539 * seeing that no grace period is in progress, at least until the 1540 * corresponding leaf node has been initialized. 1541 * 1542 * The grace period cannot complete until the initialization 1543 * process finishes, because this kthread handles both. 1544 */ 1545 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1546 rcu_for_each_node_breadth_first(rnp) { 1547 rcu_gp_slow(gp_init_delay); 1548 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1549 rdp = this_cpu_ptr(&rcu_data); 1550 rcu_preempt_check_blocked_tasks(rnp); 1551 rnp->qsmask = rnp->qsmaskinit; 1552 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1553 if (rnp == rdp->mynode) 1554 (void)__note_gp_changes(rnp, rdp); 1555 rcu_preempt_boost_start_gp(rnp); 1556 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1557 rnp->level, rnp->grplo, 1558 rnp->grphi, rnp->qsmask); 1559 /* Quiescent states for tasks on any now-offline CPUs. */ 1560 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1561 rnp->rcu_gp_init_mask = mask; 1562 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1563 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1564 else 1565 raw_spin_unlock_irq_rcu_node(rnp); 1566 cond_resched_tasks_rcu_qs(); 1567 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1568 } 1569 1570 // If strict, make all CPUs aware of new grace period. 1571 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1572 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1573 1574 return true; 1575 } 1576 1577 /* 1578 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1579 * time. 1580 */ 1581 static bool rcu_gp_fqs_check_wake(int *gfp) 1582 { 1583 struct rcu_node *rnp = rcu_get_root(); 1584 1585 // If under overload conditions, force an immediate FQS scan. 1586 if (*gfp & RCU_GP_FLAG_OVLD) 1587 return true; 1588 1589 // Someone like call_rcu() requested a force-quiescent-state scan. 1590 *gfp = READ_ONCE(rcu_state.gp_flags); 1591 if (*gfp & RCU_GP_FLAG_FQS) 1592 return true; 1593 1594 // The current grace period has completed. 1595 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1596 return true; 1597 1598 return false; 1599 } 1600 1601 /* 1602 * Do one round of quiescent-state forcing. 1603 */ 1604 static void rcu_gp_fqs(bool first_time) 1605 { 1606 struct rcu_node *rnp = rcu_get_root(); 1607 1608 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1609 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1610 if (first_time) { 1611 /* Collect dyntick-idle snapshots. */ 1612 force_qs_rnp(dyntick_save_progress_counter); 1613 } else { 1614 /* Handle dyntick-idle and offline CPUs. */ 1615 force_qs_rnp(rcu_implicit_dynticks_qs); 1616 } 1617 /* Clear flag to prevent immediate re-entry. */ 1618 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1619 raw_spin_lock_irq_rcu_node(rnp); 1620 WRITE_ONCE(rcu_state.gp_flags, 1621 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1622 raw_spin_unlock_irq_rcu_node(rnp); 1623 } 1624 } 1625 1626 /* 1627 * Loop doing repeated quiescent-state forcing until the grace period ends. 1628 */ 1629 static noinline_for_stack void rcu_gp_fqs_loop(void) 1630 { 1631 bool first_gp_fqs = true; 1632 int gf = 0; 1633 unsigned long j; 1634 int ret; 1635 struct rcu_node *rnp = rcu_get_root(); 1636 1637 j = READ_ONCE(jiffies_till_first_fqs); 1638 if (rcu_state.cbovld) 1639 gf = RCU_GP_FLAG_OVLD; 1640 ret = 0; 1641 for (;;) { 1642 if (rcu_state.cbovld) { 1643 j = (j + 2) / 3; 1644 if (j <= 0) 1645 j = 1; 1646 } 1647 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1648 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1649 /* 1650 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1651 * update; required for stall checks. 1652 */ 1653 smp_wmb(); 1654 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1655 jiffies + (j ? 3 * j : 2)); 1656 } 1657 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1658 TPS("fqswait")); 1659 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1660 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1661 rcu_gp_fqs_check_wake(&gf), j); 1662 rcu_gp_torture_wait(); 1663 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1664 /* Locking provides needed memory barriers. */ 1665 /* 1666 * Exit the loop if the root rcu_node structure indicates that the grace period 1667 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1668 * is required only for single-node rcu_node trees because readers blocking 1669 * the current grace period are queued only on leaf rcu_node structures. 1670 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1671 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1672 * the corresponding leaf nodes have passed through their quiescent state. 1673 */ 1674 if (!READ_ONCE(rnp->qsmask) && 1675 !rcu_preempt_blocked_readers_cgp(rnp)) 1676 break; 1677 /* If time for quiescent-state forcing, do it. */ 1678 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1679 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1680 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1681 TPS("fqsstart")); 1682 rcu_gp_fqs(first_gp_fqs); 1683 gf = 0; 1684 if (first_gp_fqs) { 1685 first_gp_fqs = false; 1686 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1687 } 1688 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1689 TPS("fqsend")); 1690 cond_resched_tasks_rcu_qs(); 1691 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1692 ret = 0; /* Force full wait till next FQS. */ 1693 j = READ_ONCE(jiffies_till_next_fqs); 1694 } else { 1695 /* Deal with stray signal. */ 1696 cond_resched_tasks_rcu_qs(); 1697 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1698 WARN_ON(signal_pending(current)); 1699 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1700 TPS("fqswaitsig")); 1701 ret = 1; /* Keep old FQS timing. */ 1702 j = jiffies; 1703 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1704 j = 1; 1705 else 1706 j = rcu_state.jiffies_force_qs - j; 1707 gf = 0; 1708 } 1709 } 1710 } 1711 1712 /* 1713 * Clean up after the old grace period. 1714 */ 1715 static noinline void rcu_gp_cleanup(void) 1716 { 1717 int cpu; 1718 bool needgp = false; 1719 unsigned long gp_duration; 1720 unsigned long new_gp_seq; 1721 bool offloaded; 1722 struct rcu_data *rdp; 1723 struct rcu_node *rnp = rcu_get_root(); 1724 struct swait_queue_head *sq; 1725 1726 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1727 raw_spin_lock_irq_rcu_node(rnp); 1728 rcu_state.gp_end = jiffies; 1729 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1730 if (gp_duration > rcu_state.gp_max) 1731 rcu_state.gp_max = gp_duration; 1732 1733 /* 1734 * We know the grace period is complete, but to everyone else 1735 * it appears to still be ongoing. But it is also the case 1736 * that to everyone else it looks like there is nothing that 1737 * they can do to advance the grace period. It is therefore 1738 * safe for us to drop the lock in order to mark the grace 1739 * period as completed in all of the rcu_node structures. 1740 */ 1741 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1742 raw_spin_unlock_irq_rcu_node(rnp); 1743 1744 /* 1745 * Propagate new ->gp_seq value to rcu_node structures so that 1746 * other CPUs don't have to wait until the start of the next grace 1747 * period to process their callbacks. This also avoids some nasty 1748 * RCU grace-period initialization races by forcing the end of 1749 * the current grace period to be completely recorded in all of 1750 * the rcu_node structures before the beginning of the next grace 1751 * period is recorded in any of the rcu_node structures. 1752 */ 1753 new_gp_seq = rcu_state.gp_seq; 1754 rcu_seq_end(&new_gp_seq); 1755 rcu_for_each_node_breadth_first(rnp) { 1756 raw_spin_lock_irq_rcu_node(rnp); 1757 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1758 dump_blkd_tasks(rnp, 10); 1759 WARN_ON_ONCE(rnp->qsmask); 1760 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1761 if (!rnp->parent) 1762 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1763 rdp = this_cpu_ptr(&rcu_data); 1764 if (rnp == rdp->mynode) 1765 needgp = __note_gp_changes(rnp, rdp) || needgp; 1766 /* smp_mb() provided by prior unlock-lock pair. */ 1767 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1768 // Reset overload indication for CPUs no longer overloaded 1769 if (rcu_is_leaf_node(rnp)) 1770 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1771 rdp = per_cpu_ptr(&rcu_data, cpu); 1772 check_cb_ovld_locked(rdp, rnp); 1773 } 1774 sq = rcu_nocb_gp_get(rnp); 1775 raw_spin_unlock_irq_rcu_node(rnp); 1776 rcu_nocb_gp_cleanup(sq); 1777 cond_resched_tasks_rcu_qs(); 1778 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1779 rcu_gp_slow(gp_cleanup_delay); 1780 } 1781 rnp = rcu_get_root(); 1782 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1783 1784 /* Declare grace period done, trace first to use old GP number. */ 1785 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1786 rcu_seq_end(&rcu_state.gp_seq); 1787 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1788 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1789 /* Check for GP requests since above loop. */ 1790 rdp = this_cpu_ptr(&rcu_data); 1791 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1792 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1793 TPS("CleanupMore")); 1794 needgp = true; 1795 } 1796 /* Advance CBs to reduce false positives below. */ 1797 offloaded = rcu_rdp_is_offloaded(rdp); 1798 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1799 1800 // We get here if a grace period was needed (“needgp”) 1801 // and the above call to rcu_accelerate_cbs() did not set 1802 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1803 // the need for another grace period). The purpose 1804 // of the “offloaded” check is to avoid invoking 1805 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1806 // hold the ->nocb_lock needed to safely access an offloaded 1807 // ->cblist. We do not want to acquire that lock because 1808 // it can be heavily contended during callback floods. 1809 1810 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1811 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1812 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1813 } else { 1814 1815 // We get here either if there is no need for an 1816 // additional grace period or if rcu_accelerate_cbs() has 1817 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1818 // So all we need to do is to clear all of the other 1819 // ->gp_flags bits. 1820 1821 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1822 } 1823 raw_spin_unlock_irq_rcu_node(rnp); 1824 1825 // If strict, make all CPUs aware of the end of the old grace period. 1826 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1827 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1828 } 1829 1830 /* 1831 * Body of kthread that handles grace periods. 1832 */ 1833 static int __noreturn rcu_gp_kthread(void *unused) 1834 { 1835 rcu_bind_gp_kthread(); 1836 for (;;) { 1837 1838 /* Handle grace-period start. */ 1839 for (;;) { 1840 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1841 TPS("reqwait")); 1842 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1843 swait_event_idle_exclusive(rcu_state.gp_wq, 1844 READ_ONCE(rcu_state.gp_flags) & 1845 RCU_GP_FLAG_INIT); 1846 rcu_gp_torture_wait(); 1847 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1848 /* Locking provides needed memory barrier. */ 1849 if (rcu_gp_init()) 1850 break; 1851 cond_resched_tasks_rcu_qs(); 1852 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1853 WARN_ON(signal_pending(current)); 1854 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1855 TPS("reqwaitsig")); 1856 } 1857 1858 /* Handle quiescent-state forcing. */ 1859 rcu_gp_fqs_loop(); 1860 1861 /* Handle grace-period end. */ 1862 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1863 rcu_gp_cleanup(); 1864 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1865 } 1866 } 1867 1868 /* 1869 * Report a full set of quiescent states to the rcu_state data structure. 1870 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1871 * another grace period is required. Whether we wake the grace-period 1872 * kthread or it awakens itself for the next round of quiescent-state 1873 * forcing, that kthread will clean up after the just-completed grace 1874 * period. Note that the caller must hold rnp->lock, which is released 1875 * before return. 1876 */ 1877 static void rcu_report_qs_rsp(unsigned long flags) 1878 __releases(rcu_get_root()->lock) 1879 { 1880 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1881 WARN_ON_ONCE(!rcu_gp_in_progress()); 1882 WRITE_ONCE(rcu_state.gp_flags, 1883 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1884 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1885 rcu_gp_kthread_wake(); 1886 } 1887 1888 /* 1889 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1890 * Allows quiescent states for a group of CPUs to be reported at one go 1891 * to the specified rcu_node structure, though all the CPUs in the group 1892 * must be represented by the same rcu_node structure (which need not be a 1893 * leaf rcu_node structure, though it often will be). The gps parameter 1894 * is the grace-period snapshot, which means that the quiescent states 1895 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1896 * must be held upon entry, and it is released before return. 1897 * 1898 * As a special case, if mask is zero, the bit-already-cleared check is 1899 * disabled. This allows propagating quiescent state due to resumed tasks 1900 * during grace-period initialization. 1901 */ 1902 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1903 unsigned long gps, unsigned long flags) 1904 __releases(rnp->lock) 1905 { 1906 unsigned long oldmask = 0; 1907 struct rcu_node *rnp_c; 1908 1909 raw_lockdep_assert_held_rcu_node(rnp); 1910 1911 /* Walk up the rcu_node hierarchy. */ 1912 for (;;) { 1913 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1914 1915 /* 1916 * Our bit has already been cleared, or the 1917 * relevant grace period is already over, so done. 1918 */ 1919 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1920 return; 1921 } 1922 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1923 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1924 rcu_preempt_blocked_readers_cgp(rnp)); 1925 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1926 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1927 mask, rnp->qsmask, rnp->level, 1928 rnp->grplo, rnp->grphi, 1929 !!rnp->gp_tasks); 1930 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1931 1932 /* Other bits still set at this level, so done. */ 1933 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1934 return; 1935 } 1936 rnp->completedqs = rnp->gp_seq; 1937 mask = rnp->grpmask; 1938 if (rnp->parent == NULL) { 1939 1940 /* No more levels. Exit loop holding root lock. */ 1941 1942 break; 1943 } 1944 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1945 rnp_c = rnp; 1946 rnp = rnp->parent; 1947 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1948 oldmask = READ_ONCE(rnp_c->qsmask); 1949 } 1950 1951 /* 1952 * Get here if we are the last CPU to pass through a quiescent 1953 * state for this grace period. Invoke rcu_report_qs_rsp() 1954 * to clean up and start the next grace period if one is needed. 1955 */ 1956 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1957 } 1958 1959 /* 1960 * Record a quiescent state for all tasks that were previously queued 1961 * on the specified rcu_node structure and that were blocking the current 1962 * RCU grace period. The caller must hold the corresponding rnp->lock with 1963 * irqs disabled, and this lock is released upon return, but irqs remain 1964 * disabled. 1965 */ 1966 static void __maybe_unused 1967 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1968 __releases(rnp->lock) 1969 { 1970 unsigned long gps; 1971 unsigned long mask; 1972 struct rcu_node *rnp_p; 1973 1974 raw_lockdep_assert_held_rcu_node(rnp); 1975 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1976 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1977 rnp->qsmask != 0) { 1978 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1979 return; /* Still need more quiescent states! */ 1980 } 1981 1982 rnp->completedqs = rnp->gp_seq; 1983 rnp_p = rnp->parent; 1984 if (rnp_p == NULL) { 1985 /* 1986 * Only one rcu_node structure in the tree, so don't 1987 * try to report up to its nonexistent parent! 1988 */ 1989 rcu_report_qs_rsp(flags); 1990 return; 1991 } 1992 1993 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1994 gps = rnp->gp_seq; 1995 mask = rnp->grpmask; 1996 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1997 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1998 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1999 } 2000 2001 /* 2002 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2003 * structure. This must be called from the specified CPU. 2004 */ 2005 static void 2006 rcu_report_qs_rdp(struct rcu_data *rdp) 2007 { 2008 unsigned long flags; 2009 unsigned long mask; 2010 bool needwake = false; 2011 bool needacc = false; 2012 struct rcu_node *rnp; 2013 2014 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2015 rnp = rdp->mynode; 2016 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2017 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2018 rdp->gpwrap) { 2019 2020 /* 2021 * The grace period in which this quiescent state was 2022 * recorded has ended, so don't report it upwards. 2023 * We will instead need a new quiescent state that lies 2024 * within the current grace period. 2025 */ 2026 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2027 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2028 return; 2029 } 2030 mask = rdp->grpmask; 2031 rdp->core_needs_qs = false; 2032 if ((rnp->qsmask & mask) == 0) { 2033 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2034 } else { 2035 /* 2036 * This GP can't end until cpu checks in, so all of our 2037 * callbacks can be processed during the next GP. 2038 * 2039 * NOCB kthreads have their own way to deal with that... 2040 */ 2041 if (!rcu_rdp_is_offloaded(rdp)) { 2042 needwake = rcu_accelerate_cbs(rnp, rdp); 2043 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2044 /* 2045 * ...but NOCB kthreads may miss or delay callbacks acceleration 2046 * if in the middle of a (de-)offloading process. 2047 */ 2048 needacc = true; 2049 } 2050 2051 rcu_disable_urgency_upon_qs(rdp); 2052 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2053 /* ^^^ Released rnp->lock */ 2054 if (needwake) 2055 rcu_gp_kthread_wake(); 2056 2057 if (needacc) { 2058 rcu_nocb_lock_irqsave(rdp, flags); 2059 rcu_accelerate_cbs_unlocked(rnp, rdp); 2060 rcu_nocb_unlock_irqrestore(rdp, flags); 2061 } 2062 } 2063 } 2064 2065 /* 2066 * Check to see if there is a new grace period of which this CPU 2067 * is not yet aware, and if so, set up local rcu_data state for it. 2068 * Otherwise, see if this CPU has just passed through its first 2069 * quiescent state for this grace period, and record that fact if so. 2070 */ 2071 static void 2072 rcu_check_quiescent_state(struct rcu_data *rdp) 2073 { 2074 /* Check for grace-period ends and beginnings. */ 2075 note_gp_changes(rdp); 2076 2077 /* 2078 * Does this CPU still need to do its part for current grace period? 2079 * If no, return and let the other CPUs do their part as well. 2080 */ 2081 if (!rdp->core_needs_qs) 2082 return; 2083 2084 /* 2085 * Was there a quiescent state since the beginning of the grace 2086 * period? If no, then exit and wait for the next call. 2087 */ 2088 if (rdp->cpu_no_qs.b.norm) 2089 return; 2090 2091 /* 2092 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2093 * judge of that). 2094 */ 2095 rcu_report_qs_rdp(rdp); 2096 } 2097 2098 /* 2099 * Near the end of the offline process. Trace the fact that this CPU 2100 * is going offline. 2101 */ 2102 int rcutree_dying_cpu(unsigned int cpu) 2103 { 2104 bool blkd; 2105 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2106 struct rcu_node *rnp = rdp->mynode; 2107 2108 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2109 return 0; 2110 2111 blkd = !!(rnp->qsmask & rdp->grpmask); 2112 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2113 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2114 return 0; 2115 } 2116 2117 /* 2118 * All CPUs for the specified rcu_node structure have gone offline, 2119 * and all tasks that were preempted within an RCU read-side critical 2120 * section while running on one of those CPUs have since exited their RCU 2121 * read-side critical section. Some other CPU is reporting this fact with 2122 * the specified rcu_node structure's ->lock held and interrupts disabled. 2123 * This function therefore goes up the tree of rcu_node structures, 2124 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2125 * the leaf rcu_node structure's ->qsmaskinit field has already been 2126 * updated. 2127 * 2128 * This function does check that the specified rcu_node structure has 2129 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2130 * prematurely. That said, invoking it after the fact will cost you 2131 * a needless lock acquisition. So once it has done its work, don't 2132 * invoke it again. 2133 */ 2134 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2135 { 2136 long mask; 2137 struct rcu_node *rnp = rnp_leaf; 2138 2139 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2140 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2141 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2142 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2143 return; 2144 for (;;) { 2145 mask = rnp->grpmask; 2146 rnp = rnp->parent; 2147 if (!rnp) 2148 break; 2149 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2150 rnp->qsmaskinit &= ~mask; 2151 /* Between grace periods, so better already be zero! */ 2152 WARN_ON_ONCE(rnp->qsmask); 2153 if (rnp->qsmaskinit) { 2154 raw_spin_unlock_rcu_node(rnp); 2155 /* irqs remain disabled. */ 2156 return; 2157 } 2158 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2159 } 2160 } 2161 2162 /* 2163 * The CPU has been completely removed, and some other CPU is reporting 2164 * this fact from process context. Do the remainder of the cleanup. 2165 * There can only be one CPU hotplug operation at a time, so no need for 2166 * explicit locking. 2167 */ 2168 int rcutree_dead_cpu(unsigned int cpu) 2169 { 2170 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2171 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2172 2173 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2174 return 0; 2175 2176 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2177 /* Adjust any no-longer-needed kthreads. */ 2178 rcu_boost_kthread_setaffinity(rnp, -1); 2179 // Stop-machine done, so allow nohz_full to disable tick. 2180 tick_dep_clear(TICK_DEP_BIT_RCU); 2181 return 0; 2182 } 2183 2184 /* 2185 * Invoke any RCU callbacks that have made it to the end of their grace 2186 * period. Throttle as specified by rdp->blimit. 2187 */ 2188 static void rcu_do_batch(struct rcu_data *rdp) 2189 { 2190 int div; 2191 bool __maybe_unused empty; 2192 unsigned long flags; 2193 struct rcu_head *rhp; 2194 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2195 long bl, count = 0; 2196 long pending, tlimit = 0; 2197 2198 /* If no callbacks are ready, just return. */ 2199 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2200 trace_rcu_batch_start(rcu_state.name, 2201 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2202 trace_rcu_batch_end(rcu_state.name, 0, 2203 !rcu_segcblist_empty(&rdp->cblist), 2204 need_resched(), is_idle_task(current), 2205 rcu_is_callbacks_kthread(rdp)); 2206 return; 2207 } 2208 2209 /* 2210 * Extract the list of ready callbacks, disabling IRQs to prevent 2211 * races with call_rcu() from interrupt handlers. Leave the 2212 * callback counts, as rcu_barrier() needs to be conservative. 2213 */ 2214 rcu_nocb_lock_irqsave(rdp, flags); 2215 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2216 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2217 div = READ_ONCE(rcu_divisor); 2218 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2219 bl = max(rdp->blimit, pending >> div); 2220 if (in_serving_softirq() && unlikely(bl > 100)) { 2221 long rrn = READ_ONCE(rcu_resched_ns); 2222 2223 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2224 tlimit = local_clock() + rrn; 2225 } 2226 trace_rcu_batch_start(rcu_state.name, 2227 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2228 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2229 if (rcu_rdp_is_offloaded(rdp)) 2230 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2231 2232 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2233 rcu_nocb_unlock_irqrestore(rdp, flags); 2234 2235 /* Invoke callbacks. */ 2236 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2237 rhp = rcu_cblist_dequeue(&rcl); 2238 2239 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2240 rcu_callback_t f; 2241 2242 count++; 2243 debug_rcu_head_unqueue(rhp); 2244 2245 rcu_lock_acquire(&rcu_callback_map); 2246 trace_rcu_invoke_callback(rcu_state.name, rhp); 2247 2248 f = rhp->func; 2249 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2250 f(rhp); 2251 2252 rcu_lock_release(&rcu_callback_map); 2253 2254 /* 2255 * Stop only if limit reached and CPU has something to do. 2256 */ 2257 if (in_serving_softirq()) { 2258 if (count >= bl && (need_resched() || !is_idle_task(current))) 2259 break; 2260 /* 2261 * Make sure we don't spend too much time here and deprive other 2262 * softirq vectors of CPU cycles. 2263 */ 2264 if (unlikely(tlimit)) { 2265 /* only call local_clock() every 32 callbacks */ 2266 if (likely((count & 31) || local_clock() < tlimit)) 2267 continue; 2268 /* Exceeded the time limit, so leave. */ 2269 break; 2270 } 2271 } else { 2272 local_bh_enable(); 2273 lockdep_assert_irqs_enabled(); 2274 cond_resched_tasks_rcu_qs(); 2275 lockdep_assert_irqs_enabled(); 2276 local_bh_disable(); 2277 } 2278 } 2279 2280 rcu_nocb_lock_irqsave(rdp, flags); 2281 rdp->n_cbs_invoked += count; 2282 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2283 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2284 2285 /* Update counts and requeue any remaining callbacks. */ 2286 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2287 rcu_segcblist_add_len(&rdp->cblist, -count); 2288 2289 /* Reinstate batch limit if we have worked down the excess. */ 2290 count = rcu_segcblist_n_cbs(&rdp->cblist); 2291 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2292 rdp->blimit = blimit; 2293 2294 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2295 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2296 rdp->qlen_last_fqs_check = 0; 2297 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2298 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2299 rdp->qlen_last_fqs_check = count; 2300 2301 /* 2302 * The following usually indicates a double call_rcu(). To track 2303 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2304 */ 2305 empty = rcu_segcblist_empty(&rdp->cblist); 2306 WARN_ON_ONCE(count == 0 && !empty); 2307 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2308 count != 0 && empty); 2309 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2310 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2311 2312 rcu_nocb_unlock_irqrestore(rdp, flags); 2313 2314 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2315 } 2316 2317 /* 2318 * This function is invoked from each scheduling-clock interrupt, 2319 * and checks to see if this CPU is in a non-context-switch quiescent 2320 * state, for example, user mode or idle loop. It also schedules RCU 2321 * core processing. If the current grace period has gone on too long, 2322 * it will ask the scheduler to manufacture a context switch for the sole 2323 * purpose of providing the needed quiescent state. 2324 */ 2325 void rcu_sched_clock_irq(int user) 2326 { 2327 unsigned long j; 2328 2329 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2330 j = jiffies; 2331 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2332 __this_cpu_write(rcu_data.last_sched_clock, j); 2333 } 2334 trace_rcu_utilization(TPS("Start scheduler-tick")); 2335 lockdep_assert_irqs_disabled(); 2336 raw_cpu_inc(rcu_data.ticks_this_gp); 2337 /* The load-acquire pairs with the store-release setting to true. */ 2338 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2339 /* Idle and userspace execution already are quiescent states. */ 2340 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2341 set_tsk_need_resched(current); 2342 set_preempt_need_resched(); 2343 } 2344 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2345 } 2346 rcu_flavor_sched_clock_irq(user); 2347 if (rcu_pending(user)) 2348 invoke_rcu_core(); 2349 if (user || rcu_is_cpu_rrupt_from_idle()) 2350 rcu_note_voluntary_context_switch(current); 2351 lockdep_assert_irqs_disabled(); 2352 2353 trace_rcu_utilization(TPS("End scheduler-tick")); 2354 } 2355 2356 /* 2357 * Scan the leaf rcu_node structures. For each structure on which all 2358 * CPUs have reported a quiescent state and on which there are tasks 2359 * blocking the current grace period, initiate RCU priority boosting. 2360 * Otherwise, invoke the specified function to check dyntick state for 2361 * each CPU that has not yet reported a quiescent state. 2362 */ 2363 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2364 { 2365 int cpu; 2366 unsigned long flags; 2367 unsigned long mask; 2368 struct rcu_data *rdp; 2369 struct rcu_node *rnp; 2370 2371 rcu_state.cbovld = rcu_state.cbovldnext; 2372 rcu_state.cbovldnext = false; 2373 rcu_for_each_leaf_node(rnp) { 2374 cond_resched_tasks_rcu_qs(); 2375 mask = 0; 2376 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2377 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2378 if (rnp->qsmask == 0) { 2379 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2380 /* 2381 * No point in scanning bits because they 2382 * are all zero. But we might need to 2383 * priority-boost blocked readers. 2384 */ 2385 rcu_initiate_boost(rnp, flags); 2386 /* rcu_initiate_boost() releases rnp->lock */ 2387 continue; 2388 } 2389 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2390 continue; 2391 } 2392 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2393 rdp = per_cpu_ptr(&rcu_data, cpu); 2394 if (f(rdp)) { 2395 mask |= rdp->grpmask; 2396 rcu_disable_urgency_upon_qs(rdp); 2397 } 2398 } 2399 if (mask != 0) { 2400 /* Idle/offline CPUs, report (releases rnp->lock). */ 2401 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2402 } else { 2403 /* Nothing to do here, so just drop the lock. */ 2404 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2405 } 2406 } 2407 } 2408 2409 /* 2410 * Force quiescent states on reluctant CPUs, and also detect which 2411 * CPUs are in dyntick-idle mode. 2412 */ 2413 void rcu_force_quiescent_state(void) 2414 { 2415 unsigned long flags; 2416 bool ret; 2417 struct rcu_node *rnp; 2418 struct rcu_node *rnp_old = NULL; 2419 2420 /* Funnel through hierarchy to reduce memory contention. */ 2421 rnp = __this_cpu_read(rcu_data.mynode); 2422 for (; rnp != NULL; rnp = rnp->parent) { 2423 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2424 !raw_spin_trylock(&rnp->fqslock); 2425 if (rnp_old != NULL) 2426 raw_spin_unlock(&rnp_old->fqslock); 2427 if (ret) 2428 return; 2429 rnp_old = rnp; 2430 } 2431 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2432 2433 /* Reached the root of the rcu_node tree, acquire lock. */ 2434 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2435 raw_spin_unlock(&rnp_old->fqslock); 2436 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2437 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2438 return; /* Someone beat us to it. */ 2439 } 2440 WRITE_ONCE(rcu_state.gp_flags, 2441 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2442 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2443 rcu_gp_kthread_wake(); 2444 } 2445 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2446 2447 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2448 // grace periods. 2449 static void strict_work_handler(struct work_struct *work) 2450 { 2451 rcu_read_lock(); 2452 rcu_read_unlock(); 2453 } 2454 2455 /* Perform RCU core processing work for the current CPU. */ 2456 static __latent_entropy void rcu_core(void) 2457 { 2458 unsigned long flags; 2459 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2460 struct rcu_node *rnp = rdp->mynode; 2461 /* 2462 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2463 * Therefore this function can race with concurrent NOCB (de-)offloading 2464 * on this CPU and the below condition must be considered volatile. 2465 * However if we race with: 2466 * 2467 * _ Offloading: In the worst case we accelerate or process callbacks 2468 * concurrently with NOCB kthreads. We are guaranteed to 2469 * call rcu_nocb_lock() if that happens. 2470 * 2471 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2472 * processing. This is fine because the early stage 2473 * of deoffloading invokes rcu_core() after setting 2474 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2475 * what could have been dismissed without the need to wait 2476 * for the next rcu_pending() check in the next jiffy. 2477 */ 2478 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2479 2480 if (cpu_is_offline(smp_processor_id())) 2481 return; 2482 trace_rcu_utilization(TPS("Start RCU core")); 2483 WARN_ON_ONCE(!rdp->beenonline); 2484 2485 /* Report any deferred quiescent states if preemption enabled. */ 2486 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2487 rcu_preempt_deferred_qs(current); 2488 } else if (rcu_preempt_need_deferred_qs(current)) { 2489 set_tsk_need_resched(current); 2490 set_preempt_need_resched(); 2491 } 2492 2493 /* Update RCU state based on any recent quiescent states. */ 2494 rcu_check_quiescent_state(rdp); 2495 2496 /* No grace period and unregistered callbacks? */ 2497 if (!rcu_gp_in_progress() && 2498 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2499 rcu_nocb_lock_irqsave(rdp, flags); 2500 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2501 rcu_accelerate_cbs_unlocked(rnp, rdp); 2502 rcu_nocb_unlock_irqrestore(rdp, flags); 2503 } 2504 2505 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2506 2507 /* If there are callbacks ready, invoke them. */ 2508 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2509 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2510 rcu_do_batch(rdp); 2511 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2512 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2513 invoke_rcu_core(); 2514 } 2515 2516 /* Do any needed deferred wakeups of rcuo kthreads. */ 2517 do_nocb_deferred_wakeup(rdp); 2518 trace_rcu_utilization(TPS("End RCU core")); 2519 2520 // If strict GPs, schedule an RCU reader in a clean environment. 2521 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2522 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2523 } 2524 2525 static void rcu_core_si(struct softirq_action *h) 2526 { 2527 rcu_core(); 2528 } 2529 2530 static void rcu_wake_cond(struct task_struct *t, int status) 2531 { 2532 /* 2533 * If the thread is yielding, only wake it when this 2534 * is invoked from idle 2535 */ 2536 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2537 wake_up_process(t); 2538 } 2539 2540 static void invoke_rcu_core_kthread(void) 2541 { 2542 struct task_struct *t; 2543 unsigned long flags; 2544 2545 local_irq_save(flags); 2546 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2547 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2548 if (t != NULL && t != current) 2549 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2550 local_irq_restore(flags); 2551 } 2552 2553 /* 2554 * Wake up this CPU's rcuc kthread to do RCU core processing. 2555 */ 2556 static void invoke_rcu_core(void) 2557 { 2558 if (!cpu_online(smp_processor_id())) 2559 return; 2560 if (use_softirq) 2561 raise_softirq(RCU_SOFTIRQ); 2562 else 2563 invoke_rcu_core_kthread(); 2564 } 2565 2566 static void rcu_cpu_kthread_park(unsigned int cpu) 2567 { 2568 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2569 } 2570 2571 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2572 { 2573 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2574 } 2575 2576 /* 2577 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2578 * the RCU softirq used in configurations of RCU that do not support RCU 2579 * priority boosting. 2580 */ 2581 static void rcu_cpu_kthread(unsigned int cpu) 2582 { 2583 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2584 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2585 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2586 int spincnt; 2587 2588 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2589 for (spincnt = 0; spincnt < 10; spincnt++) { 2590 WRITE_ONCE(*j, jiffies); 2591 local_bh_disable(); 2592 *statusp = RCU_KTHREAD_RUNNING; 2593 local_irq_disable(); 2594 work = *workp; 2595 *workp = 0; 2596 local_irq_enable(); 2597 if (work) 2598 rcu_core(); 2599 local_bh_enable(); 2600 if (*workp == 0) { 2601 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2602 *statusp = RCU_KTHREAD_WAITING; 2603 return; 2604 } 2605 } 2606 *statusp = RCU_KTHREAD_YIELDING; 2607 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2608 schedule_timeout_idle(2); 2609 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2610 *statusp = RCU_KTHREAD_WAITING; 2611 WRITE_ONCE(*j, jiffies); 2612 } 2613 2614 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2615 .store = &rcu_data.rcu_cpu_kthread_task, 2616 .thread_should_run = rcu_cpu_kthread_should_run, 2617 .thread_fn = rcu_cpu_kthread, 2618 .thread_comm = "rcuc/%u", 2619 .setup = rcu_cpu_kthread_setup, 2620 .park = rcu_cpu_kthread_park, 2621 }; 2622 2623 /* 2624 * Spawn per-CPU RCU core processing kthreads. 2625 */ 2626 static int __init rcu_spawn_core_kthreads(void) 2627 { 2628 int cpu; 2629 2630 for_each_possible_cpu(cpu) 2631 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2632 if (use_softirq) 2633 return 0; 2634 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2635 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2636 return 0; 2637 } 2638 2639 /* 2640 * Handle any core-RCU processing required by a call_rcu() invocation. 2641 */ 2642 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2643 unsigned long flags) 2644 { 2645 /* 2646 * If called from an extended quiescent state, invoke the RCU 2647 * core in order to force a re-evaluation of RCU's idleness. 2648 */ 2649 if (!rcu_is_watching()) 2650 invoke_rcu_core(); 2651 2652 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2653 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2654 return; 2655 2656 /* 2657 * Force the grace period if too many callbacks or too long waiting. 2658 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2659 * if some other CPU has recently done so. Also, don't bother 2660 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2661 * is the only one waiting for a grace period to complete. 2662 */ 2663 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2664 rdp->qlen_last_fqs_check + qhimark)) { 2665 2666 /* Are we ignoring a completed grace period? */ 2667 note_gp_changes(rdp); 2668 2669 /* Start a new grace period if one not already started. */ 2670 if (!rcu_gp_in_progress()) { 2671 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2672 } else { 2673 /* Give the grace period a kick. */ 2674 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2675 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2676 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2677 rcu_force_quiescent_state(); 2678 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2679 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2680 } 2681 } 2682 } 2683 2684 /* 2685 * RCU callback function to leak a callback. 2686 */ 2687 static void rcu_leak_callback(struct rcu_head *rhp) 2688 { 2689 } 2690 2691 /* 2692 * Check and if necessary update the leaf rcu_node structure's 2693 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2694 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2695 * structure's ->lock. 2696 */ 2697 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2698 { 2699 raw_lockdep_assert_held_rcu_node(rnp); 2700 if (qovld_calc <= 0) 2701 return; // Early boot and wildcard value set. 2702 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2703 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2704 else 2705 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2706 } 2707 2708 /* 2709 * Check and if necessary update the leaf rcu_node structure's 2710 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2711 * number of queued RCU callbacks. No locks need be held, but the 2712 * caller must have disabled interrupts. 2713 * 2714 * Note that this function ignores the possibility that there are a lot 2715 * of callbacks all of which have already seen the end of their respective 2716 * grace periods. This omission is due to the need for no-CBs CPUs to 2717 * be holding ->nocb_lock to do this check, which is too heavy for a 2718 * common-case operation. 2719 */ 2720 static void check_cb_ovld(struct rcu_data *rdp) 2721 { 2722 struct rcu_node *const rnp = rdp->mynode; 2723 2724 if (qovld_calc <= 0 || 2725 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2726 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2727 return; // Early boot wildcard value or already set correctly. 2728 raw_spin_lock_rcu_node(rnp); 2729 check_cb_ovld_locked(rdp, rnp); 2730 raw_spin_unlock_rcu_node(rnp); 2731 } 2732 2733 /** 2734 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2735 * @head: structure to be used for queueing the RCU updates. 2736 * @func: actual callback function to be invoked after the grace period 2737 * 2738 * The callback function will be invoked some time after a full grace 2739 * period elapses, in other words after all pre-existing RCU read-side 2740 * critical sections have completed. However, the callback function 2741 * might well execute concurrently with RCU read-side critical sections 2742 * that started after call_rcu() was invoked. 2743 * 2744 * RCU read-side critical sections are delimited by rcu_read_lock() 2745 * and rcu_read_unlock(), and may be nested. In addition, but only in 2746 * v5.0 and later, regions of code across which interrupts, preemption, 2747 * or softirqs have been disabled also serve as RCU read-side critical 2748 * sections. This includes hardware interrupt handlers, softirq handlers, 2749 * and NMI handlers. 2750 * 2751 * Note that all CPUs must agree that the grace period extended beyond 2752 * all pre-existing RCU read-side critical section. On systems with more 2753 * than one CPU, this means that when "func()" is invoked, each CPU is 2754 * guaranteed to have executed a full memory barrier since the end of its 2755 * last RCU read-side critical section whose beginning preceded the call 2756 * to call_rcu(). It also means that each CPU executing an RCU read-side 2757 * critical section that continues beyond the start of "func()" must have 2758 * executed a memory barrier after the call_rcu() but before the beginning 2759 * of that RCU read-side critical section. Note that these guarantees 2760 * include CPUs that are offline, idle, or executing in user mode, as 2761 * well as CPUs that are executing in the kernel. 2762 * 2763 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2764 * resulting RCU callback function "func()", then both CPU A and CPU B are 2765 * guaranteed to execute a full memory barrier during the time interval 2766 * between the call to call_rcu() and the invocation of "func()" -- even 2767 * if CPU A and CPU B are the same CPU (but again only if the system has 2768 * more than one CPU). 2769 * 2770 * Implementation of these memory-ordering guarantees is described here: 2771 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2772 */ 2773 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2774 { 2775 static atomic_t doublefrees; 2776 unsigned long flags; 2777 struct rcu_data *rdp; 2778 bool was_alldone; 2779 2780 /* Misaligned rcu_head! */ 2781 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2782 2783 if (debug_rcu_head_queue(head)) { 2784 /* 2785 * Probable double call_rcu(), so leak the callback. 2786 * Use rcu:rcu_callback trace event to find the previous 2787 * time callback was passed to call_rcu(). 2788 */ 2789 if (atomic_inc_return(&doublefrees) < 4) { 2790 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2791 mem_dump_obj(head); 2792 } 2793 WRITE_ONCE(head->func, rcu_leak_callback); 2794 return; 2795 } 2796 head->func = func; 2797 head->next = NULL; 2798 kasan_record_aux_stack_noalloc(head); 2799 local_irq_save(flags); 2800 rdp = this_cpu_ptr(&rcu_data); 2801 2802 /* Add the callback to our list. */ 2803 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2804 // This can trigger due to call_rcu() from offline CPU: 2805 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2806 WARN_ON_ONCE(!rcu_is_watching()); 2807 // Very early boot, before rcu_init(). Initialize if needed 2808 // and then drop through to queue the callback. 2809 if (rcu_segcblist_empty(&rdp->cblist)) 2810 rcu_segcblist_init(&rdp->cblist); 2811 } 2812 2813 check_cb_ovld(rdp); 2814 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 2815 return; // Enqueued onto ->nocb_bypass, so just leave. 2816 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2817 rcu_segcblist_enqueue(&rdp->cblist, head); 2818 if (__is_kvfree_rcu_offset((unsigned long)func)) 2819 trace_rcu_kvfree_callback(rcu_state.name, head, 2820 (unsigned long)func, 2821 rcu_segcblist_n_cbs(&rdp->cblist)); 2822 else 2823 trace_rcu_callback(rcu_state.name, head, 2824 rcu_segcblist_n_cbs(&rdp->cblist)); 2825 2826 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2827 2828 /* Go handle any RCU core processing required. */ 2829 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2830 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2831 } else { 2832 __call_rcu_core(rdp, head, flags); 2833 local_irq_restore(flags); 2834 } 2835 } 2836 EXPORT_SYMBOL_GPL(call_rcu); 2837 2838 2839 /* Maximum number of jiffies to wait before draining a batch. */ 2840 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2841 #define KFREE_N_BATCHES 2 2842 #define FREE_N_CHANNELS 2 2843 2844 /** 2845 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2846 * @nr_records: Number of active pointers in the array 2847 * @next: Next bulk object in the block chain 2848 * @records: Array of the kvfree_rcu() pointers 2849 */ 2850 struct kvfree_rcu_bulk_data { 2851 unsigned long nr_records; 2852 struct kvfree_rcu_bulk_data *next; 2853 void *records[]; 2854 }; 2855 2856 /* 2857 * This macro defines how many entries the "records" array 2858 * will contain. It is based on the fact that the size of 2859 * kvfree_rcu_bulk_data structure becomes exactly one page. 2860 */ 2861 #define KVFREE_BULK_MAX_ENTR \ 2862 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2863 2864 /** 2865 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2866 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2867 * @head_free: List of kfree_rcu() objects waiting for a grace period 2868 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2869 * @krcp: Pointer to @kfree_rcu_cpu structure 2870 */ 2871 2872 struct kfree_rcu_cpu_work { 2873 struct rcu_work rcu_work; 2874 struct rcu_head *head_free; 2875 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 2876 struct kfree_rcu_cpu *krcp; 2877 }; 2878 2879 /** 2880 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2881 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2882 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2883 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2884 * @lock: Synchronize access to this structure 2885 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2886 * @initialized: The @rcu_work fields have been initialized 2887 * @count: Number of objects for which GP not started 2888 * @bkvcache: 2889 * A simple cache list that contains objects for reuse purpose. 2890 * In order to save some per-cpu space the list is singular. 2891 * Even though it is lockless an access has to be protected by the 2892 * per-cpu lock. 2893 * @page_cache_work: A work to refill the cache when it is empty 2894 * @backoff_page_cache_fill: Delay cache refills 2895 * @work_in_progress: Indicates that page_cache_work is running 2896 * @hrtimer: A hrtimer for scheduling a page_cache_work 2897 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2898 * 2899 * This is a per-CPU structure. The reason that it is not included in 2900 * the rcu_data structure is to permit this code to be extracted from 2901 * the RCU files. Such extraction could allow further optimization of 2902 * the interactions with the slab allocators. 2903 */ 2904 struct kfree_rcu_cpu { 2905 struct rcu_head *head; 2906 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 2907 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2908 raw_spinlock_t lock; 2909 struct delayed_work monitor_work; 2910 bool initialized; 2911 int count; 2912 2913 struct delayed_work page_cache_work; 2914 atomic_t backoff_page_cache_fill; 2915 atomic_t work_in_progress; 2916 struct hrtimer hrtimer; 2917 2918 struct llist_head bkvcache; 2919 int nr_bkv_objs; 2920 }; 2921 2922 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2923 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2924 }; 2925 2926 static __always_inline void 2927 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2928 { 2929 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2930 int i; 2931 2932 for (i = 0; i < bhead->nr_records; i++) 2933 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2934 #endif 2935 } 2936 2937 static inline struct kfree_rcu_cpu * 2938 krc_this_cpu_lock(unsigned long *flags) 2939 { 2940 struct kfree_rcu_cpu *krcp; 2941 2942 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2943 krcp = this_cpu_ptr(&krc); 2944 raw_spin_lock(&krcp->lock); 2945 2946 return krcp; 2947 } 2948 2949 static inline void 2950 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2951 { 2952 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2953 } 2954 2955 static inline struct kvfree_rcu_bulk_data * 2956 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2957 { 2958 if (!krcp->nr_bkv_objs) 2959 return NULL; 2960 2961 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2962 return (struct kvfree_rcu_bulk_data *) 2963 llist_del_first(&krcp->bkvcache); 2964 } 2965 2966 static inline bool 2967 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2968 struct kvfree_rcu_bulk_data *bnode) 2969 { 2970 // Check the limit. 2971 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2972 return false; 2973 2974 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2975 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2976 return true; 2977 } 2978 2979 static int 2980 drain_page_cache(struct kfree_rcu_cpu *krcp) 2981 { 2982 unsigned long flags; 2983 struct llist_node *page_list, *pos, *n; 2984 int freed = 0; 2985 2986 raw_spin_lock_irqsave(&krcp->lock, flags); 2987 page_list = llist_del_all(&krcp->bkvcache); 2988 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2989 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2990 2991 llist_for_each_safe(pos, n, page_list) { 2992 free_page((unsigned long)pos); 2993 freed++; 2994 } 2995 2996 return freed; 2997 } 2998 2999 /* 3000 * This function is invoked in workqueue context after a grace period. 3001 * It frees all the objects queued on ->bkvhead_free or ->head_free. 3002 */ 3003 static void kfree_rcu_work(struct work_struct *work) 3004 { 3005 unsigned long flags; 3006 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3007 struct rcu_head *head, *next; 3008 struct kfree_rcu_cpu *krcp; 3009 struct kfree_rcu_cpu_work *krwp; 3010 int i, j; 3011 3012 krwp = container_of(to_rcu_work(work), 3013 struct kfree_rcu_cpu_work, rcu_work); 3014 krcp = krwp->krcp; 3015 3016 raw_spin_lock_irqsave(&krcp->lock, flags); 3017 // Channels 1 and 2. 3018 for (i = 0; i < FREE_N_CHANNELS; i++) { 3019 bkvhead[i] = krwp->bkvhead_free[i]; 3020 krwp->bkvhead_free[i] = NULL; 3021 } 3022 3023 // Channel 3. 3024 head = krwp->head_free; 3025 krwp->head_free = NULL; 3026 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3027 3028 // Handle the first two channels. 3029 for (i = 0; i < FREE_N_CHANNELS; i++) { 3030 for (; bkvhead[i]; bkvhead[i] = bnext) { 3031 bnext = bkvhead[i]->next; 3032 debug_rcu_bhead_unqueue(bkvhead[i]); 3033 3034 rcu_lock_acquire(&rcu_callback_map); 3035 if (i == 0) { // kmalloc() / kfree(). 3036 trace_rcu_invoke_kfree_bulk_callback( 3037 rcu_state.name, bkvhead[i]->nr_records, 3038 bkvhead[i]->records); 3039 3040 kfree_bulk(bkvhead[i]->nr_records, 3041 bkvhead[i]->records); 3042 } else { // vmalloc() / vfree(). 3043 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3044 trace_rcu_invoke_kvfree_callback( 3045 rcu_state.name, 3046 bkvhead[i]->records[j], 0); 3047 3048 vfree(bkvhead[i]->records[j]); 3049 } 3050 } 3051 rcu_lock_release(&rcu_callback_map); 3052 3053 raw_spin_lock_irqsave(&krcp->lock, flags); 3054 if (put_cached_bnode(krcp, bkvhead[i])) 3055 bkvhead[i] = NULL; 3056 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3057 3058 if (bkvhead[i]) 3059 free_page((unsigned long) bkvhead[i]); 3060 3061 cond_resched_tasks_rcu_qs(); 3062 } 3063 } 3064 3065 /* 3066 * This is used when the "bulk" path can not be used for the 3067 * double-argument of kvfree_rcu(). This happens when the 3068 * page-cache is empty, which means that objects are instead 3069 * queued on a linked list through their rcu_head structures. 3070 * This list is named "Channel 3". 3071 */ 3072 for (; head; head = next) { 3073 unsigned long offset = (unsigned long)head->func; 3074 void *ptr = (void *)head - offset; 3075 3076 next = head->next; 3077 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3078 rcu_lock_acquire(&rcu_callback_map); 3079 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3080 3081 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3082 kvfree(ptr); 3083 3084 rcu_lock_release(&rcu_callback_map); 3085 cond_resched_tasks_rcu_qs(); 3086 } 3087 } 3088 3089 static bool 3090 need_offload_krc(struct kfree_rcu_cpu *krcp) 3091 { 3092 int i; 3093 3094 for (i = 0; i < FREE_N_CHANNELS; i++) 3095 if (krcp->bkvhead[i]) 3096 return true; 3097 3098 return !!krcp->head; 3099 } 3100 3101 static void 3102 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3103 { 3104 long delay, delay_left; 3105 3106 delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3107 if (delayed_work_pending(&krcp->monitor_work)) { 3108 delay_left = krcp->monitor_work.timer.expires - jiffies; 3109 if (delay < delay_left) 3110 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3111 return; 3112 } 3113 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3114 } 3115 3116 /* 3117 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3118 */ 3119 static void kfree_rcu_monitor(struct work_struct *work) 3120 { 3121 struct kfree_rcu_cpu *krcp = container_of(work, 3122 struct kfree_rcu_cpu, monitor_work.work); 3123 unsigned long flags; 3124 int i, j; 3125 3126 raw_spin_lock_irqsave(&krcp->lock, flags); 3127 3128 // Attempt to start a new batch. 3129 for (i = 0; i < KFREE_N_BATCHES; i++) { 3130 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3131 3132 // Try to detach bkvhead or head and attach it over any 3133 // available corresponding free channel. It can be that 3134 // a previous RCU batch is in progress, it means that 3135 // immediately to queue another one is not possible so 3136 // in that case the monitor work is rearmed. 3137 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3138 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3139 (krcp->head && !krwp->head_free)) { 3140 // Channel 1 corresponds to the SLAB-pointer bulk path. 3141 // Channel 2 corresponds to vmalloc-pointer bulk path. 3142 for (j = 0; j < FREE_N_CHANNELS; j++) { 3143 if (!krwp->bkvhead_free[j]) { 3144 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3145 krcp->bkvhead[j] = NULL; 3146 } 3147 } 3148 3149 // Channel 3 corresponds to both SLAB and vmalloc 3150 // objects queued on the linked list. 3151 if (!krwp->head_free) { 3152 krwp->head_free = krcp->head; 3153 krcp->head = NULL; 3154 } 3155 3156 WRITE_ONCE(krcp->count, 0); 3157 3158 // One work is per one batch, so there are three 3159 // "free channels", the batch can handle. It can 3160 // be that the work is in the pending state when 3161 // channels have been detached following by each 3162 // other. 3163 queue_rcu_work(system_wq, &krwp->rcu_work); 3164 } 3165 } 3166 3167 // If there is nothing to detach, it means that our job is 3168 // successfully done here. In case of having at least one 3169 // of the channels that is still busy we should rearm the 3170 // work to repeat an attempt. Because previous batches are 3171 // still in progress. 3172 if (need_offload_krc(krcp)) 3173 schedule_delayed_monitor_work(krcp); 3174 3175 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3176 } 3177 3178 static enum hrtimer_restart 3179 schedule_page_work_fn(struct hrtimer *t) 3180 { 3181 struct kfree_rcu_cpu *krcp = 3182 container_of(t, struct kfree_rcu_cpu, hrtimer); 3183 3184 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3185 return HRTIMER_NORESTART; 3186 } 3187 3188 static void fill_page_cache_func(struct work_struct *work) 3189 { 3190 struct kvfree_rcu_bulk_data *bnode; 3191 struct kfree_rcu_cpu *krcp = 3192 container_of(work, struct kfree_rcu_cpu, 3193 page_cache_work.work); 3194 unsigned long flags; 3195 int nr_pages; 3196 bool pushed; 3197 int i; 3198 3199 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3200 1 : rcu_min_cached_objs; 3201 3202 for (i = 0; i < nr_pages; i++) { 3203 bnode = (struct kvfree_rcu_bulk_data *) 3204 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3205 3206 if (!bnode) 3207 break; 3208 3209 raw_spin_lock_irqsave(&krcp->lock, flags); 3210 pushed = put_cached_bnode(krcp, bnode); 3211 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3212 3213 if (!pushed) { 3214 free_page((unsigned long) bnode); 3215 break; 3216 } 3217 } 3218 3219 atomic_set(&krcp->work_in_progress, 0); 3220 atomic_set(&krcp->backoff_page_cache_fill, 0); 3221 } 3222 3223 static void 3224 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3225 { 3226 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3227 !atomic_xchg(&krcp->work_in_progress, 1)) { 3228 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3229 queue_delayed_work(system_wq, 3230 &krcp->page_cache_work, 3231 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3232 } else { 3233 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3234 krcp->hrtimer.function = schedule_page_work_fn; 3235 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3236 } 3237 } 3238 } 3239 3240 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3241 // state specified by flags. If can_alloc is true, the caller must 3242 // be schedulable and not be holding any locks or mutexes that might be 3243 // acquired by the memory allocator or anything that it might invoke. 3244 // Returns true if ptr was successfully recorded, else the caller must 3245 // use a fallback. 3246 static inline bool 3247 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3248 unsigned long *flags, void *ptr, bool can_alloc) 3249 { 3250 struct kvfree_rcu_bulk_data *bnode; 3251 int idx; 3252 3253 *krcp = krc_this_cpu_lock(flags); 3254 if (unlikely(!(*krcp)->initialized)) 3255 return false; 3256 3257 idx = !!is_vmalloc_addr(ptr); 3258 3259 /* Check if a new block is required. */ 3260 if (!(*krcp)->bkvhead[idx] || 3261 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3262 bnode = get_cached_bnode(*krcp); 3263 if (!bnode && can_alloc) { 3264 krc_this_cpu_unlock(*krcp, *flags); 3265 3266 // __GFP_NORETRY - allows a light-weight direct reclaim 3267 // what is OK from minimizing of fallback hitting point of 3268 // view. Apart of that it forbids any OOM invoking what is 3269 // also beneficial since we are about to release memory soon. 3270 // 3271 // __GFP_NOMEMALLOC - prevents from consuming of all the 3272 // memory reserves. Please note we have a fallback path. 3273 // 3274 // __GFP_NOWARN - it is supposed that an allocation can 3275 // be failed under low memory or high memory pressure 3276 // scenarios. 3277 bnode = (struct kvfree_rcu_bulk_data *) 3278 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3279 *krcp = krc_this_cpu_lock(flags); 3280 } 3281 3282 if (!bnode) 3283 return false; 3284 3285 /* Initialize the new block. */ 3286 bnode->nr_records = 0; 3287 bnode->next = (*krcp)->bkvhead[idx]; 3288 3289 /* Attach it to the head. */ 3290 (*krcp)->bkvhead[idx] = bnode; 3291 } 3292 3293 /* Finally insert. */ 3294 (*krcp)->bkvhead[idx]->records 3295 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3296 3297 return true; 3298 } 3299 3300 /* 3301 * Queue a request for lazy invocation of the appropriate free routine 3302 * after a grace period. Please note that three paths are maintained, 3303 * two for the common case using arrays of pointers and a third one that 3304 * is used only when the main paths cannot be used, for example, due to 3305 * memory pressure. 3306 * 3307 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3308 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3309 * be free'd in workqueue context. This allows us to: batch requests together to 3310 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3311 */ 3312 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3313 { 3314 unsigned long flags; 3315 struct kfree_rcu_cpu *krcp; 3316 bool success; 3317 void *ptr; 3318 3319 if (head) { 3320 ptr = (void *) head - (unsigned long) func; 3321 } else { 3322 /* 3323 * Please note there is a limitation for the head-less 3324 * variant, that is why there is a clear rule for such 3325 * objects: it can be used from might_sleep() context 3326 * only. For other places please embed an rcu_head to 3327 * your data. 3328 */ 3329 might_sleep(); 3330 ptr = (unsigned long *) func; 3331 } 3332 3333 // Queue the object but don't yet schedule the batch. 3334 if (debug_rcu_head_queue(ptr)) { 3335 // Probable double kfree_rcu(), just leak. 3336 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3337 __func__, head); 3338 3339 // Mark as success and leave. 3340 return; 3341 } 3342 3343 kasan_record_aux_stack_noalloc(ptr); 3344 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3345 if (!success) { 3346 run_page_cache_worker(krcp); 3347 3348 if (head == NULL) 3349 // Inline if kvfree_rcu(one_arg) call. 3350 goto unlock_return; 3351 3352 head->func = func; 3353 head->next = krcp->head; 3354 krcp->head = head; 3355 success = true; 3356 } 3357 3358 WRITE_ONCE(krcp->count, krcp->count + 1); 3359 3360 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3361 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3362 schedule_delayed_monitor_work(krcp); 3363 3364 unlock_return: 3365 krc_this_cpu_unlock(krcp, flags); 3366 3367 /* 3368 * Inline kvfree() after synchronize_rcu(). We can do 3369 * it from might_sleep() context only, so the current 3370 * CPU can pass the QS state. 3371 */ 3372 if (!success) { 3373 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3374 synchronize_rcu(); 3375 kvfree(ptr); 3376 } 3377 } 3378 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3379 3380 static unsigned long 3381 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3382 { 3383 int cpu; 3384 unsigned long count = 0; 3385 3386 /* Snapshot count of all CPUs */ 3387 for_each_possible_cpu(cpu) { 3388 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3389 3390 count += READ_ONCE(krcp->count); 3391 count += READ_ONCE(krcp->nr_bkv_objs); 3392 atomic_set(&krcp->backoff_page_cache_fill, 1); 3393 } 3394 3395 return count == 0 ? SHRINK_EMPTY : count; 3396 } 3397 3398 static unsigned long 3399 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3400 { 3401 int cpu, freed = 0; 3402 3403 for_each_possible_cpu(cpu) { 3404 int count; 3405 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3406 3407 count = krcp->count; 3408 count += drain_page_cache(krcp); 3409 kfree_rcu_monitor(&krcp->monitor_work.work); 3410 3411 sc->nr_to_scan -= count; 3412 freed += count; 3413 3414 if (sc->nr_to_scan <= 0) 3415 break; 3416 } 3417 3418 return freed == 0 ? SHRINK_STOP : freed; 3419 } 3420 3421 static struct shrinker kfree_rcu_shrinker = { 3422 .count_objects = kfree_rcu_shrink_count, 3423 .scan_objects = kfree_rcu_shrink_scan, 3424 .batch = 0, 3425 .seeks = DEFAULT_SEEKS, 3426 }; 3427 3428 void __init kfree_rcu_scheduler_running(void) 3429 { 3430 int cpu; 3431 unsigned long flags; 3432 3433 for_each_possible_cpu(cpu) { 3434 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3435 3436 raw_spin_lock_irqsave(&krcp->lock, flags); 3437 if (need_offload_krc(krcp)) 3438 schedule_delayed_monitor_work(krcp); 3439 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3440 } 3441 } 3442 3443 /* 3444 * During early boot, any blocking grace-period wait automatically 3445 * implies a grace period. 3446 * 3447 * Later on, this could in theory be the case for kernels built with 3448 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3449 * is not a common case. Furthermore, this optimization would cause 3450 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3451 * grace-period optimization is ignored once the scheduler is running. 3452 */ 3453 static int rcu_blocking_is_gp(void) 3454 { 3455 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 3456 return false; 3457 might_sleep(); /* Check for RCU read-side critical section. */ 3458 return true; 3459 } 3460 3461 /** 3462 * synchronize_rcu - wait until a grace period has elapsed. 3463 * 3464 * Control will return to the caller some time after a full grace 3465 * period has elapsed, in other words after all currently executing RCU 3466 * read-side critical sections have completed. Note, however, that 3467 * upon return from synchronize_rcu(), the caller might well be executing 3468 * concurrently with new RCU read-side critical sections that began while 3469 * synchronize_rcu() was waiting. 3470 * 3471 * RCU read-side critical sections are delimited by rcu_read_lock() 3472 * and rcu_read_unlock(), and may be nested. In addition, but only in 3473 * v5.0 and later, regions of code across which interrupts, preemption, 3474 * or softirqs have been disabled also serve as RCU read-side critical 3475 * sections. This includes hardware interrupt handlers, softirq handlers, 3476 * and NMI handlers. 3477 * 3478 * Note that this guarantee implies further memory-ordering guarantees. 3479 * On systems with more than one CPU, when synchronize_rcu() returns, 3480 * each CPU is guaranteed to have executed a full memory barrier since 3481 * the end of its last RCU read-side critical section whose beginning 3482 * preceded the call to synchronize_rcu(). In addition, each CPU having 3483 * an RCU read-side critical section that extends beyond the return from 3484 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3485 * after the beginning of synchronize_rcu() and before the beginning of 3486 * that RCU read-side critical section. Note that these guarantees include 3487 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3488 * that are executing in the kernel. 3489 * 3490 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3491 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3492 * to have executed a full memory barrier during the execution of 3493 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3494 * again only if the system has more than one CPU). 3495 * 3496 * Implementation of these memory-ordering guarantees is described here: 3497 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3498 */ 3499 void synchronize_rcu(void) 3500 { 3501 unsigned long flags; 3502 struct rcu_node *rnp; 3503 3504 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3505 lock_is_held(&rcu_lock_map) || 3506 lock_is_held(&rcu_sched_lock_map), 3507 "Illegal synchronize_rcu() in RCU read-side critical section"); 3508 if (!rcu_blocking_is_gp()) { 3509 if (rcu_gp_is_expedited()) 3510 synchronize_rcu_expedited(); 3511 else 3512 wait_rcu_gp(call_rcu); 3513 return; 3514 } 3515 3516 // Context allows vacuous grace periods. 3517 // Note well that this code runs with !PREEMPT && !SMP. 3518 // In addition, all code that advances grace periods runs at 3519 // process level. Therefore, this normal GP overlaps with other 3520 // normal GPs only by being fully nested within them, which allows 3521 // reuse of ->gp_seq_polled_snap. 3522 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3523 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3524 3525 // Update the normal grace-period counters to record 3526 // this grace period, but only those used by the boot CPU. 3527 // The rcu_scheduler_starting() will take care of the rest of 3528 // these counters. 3529 local_irq_save(flags); 3530 WARN_ON_ONCE(num_online_cpus() > 1); 3531 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3532 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3533 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3534 local_irq_restore(flags); 3535 } 3536 EXPORT_SYMBOL_GPL(synchronize_rcu); 3537 3538 /** 3539 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3540 * @rgosp: Place to put state cookie 3541 * 3542 * Stores into @rgosp a value that will always be treated by functions 3543 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3544 * has already completed. 3545 */ 3546 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3547 { 3548 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3549 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3550 } 3551 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3552 3553 /** 3554 * get_state_synchronize_rcu - Snapshot current RCU state 3555 * 3556 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3557 * or poll_state_synchronize_rcu() to determine whether or not a full 3558 * grace period has elapsed in the meantime. 3559 */ 3560 unsigned long get_state_synchronize_rcu(void) 3561 { 3562 /* 3563 * Any prior manipulation of RCU-protected data must happen 3564 * before the load from ->gp_seq. 3565 */ 3566 smp_mb(); /* ^^^ */ 3567 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3568 } 3569 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3570 3571 /** 3572 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3573 * @rgosp: location to place combined normal/expedited grace-period state 3574 * 3575 * Places the normal and expedited grace-period states in @rgosp. This 3576 * state value can be passed to a later call to cond_synchronize_rcu_full() 3577 * or poll_state_synchronize_rcu_full() to determine whether or not a 3578 * grace period (whether normal or expedited) has elapsed in the meantime. 3579 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3580 * long, but is guaranteed to see all grace periods. In contrast, the 3581 * combined state occupies less memory, but can sometimes fail to take 3582 * grace periods into account. 3583 * 3584 * This does not guarantee that the needed grace period will actually 3585 * start. 3586 */ 3587 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3588 { 3589 struct rcu_node *rnp = rcu_get_root(); 3590 3591 /* 3592 * Any prior manipulation of RCU-protected data must happen 3593 * before the loads from ->gp_seq and ->expedited_sequence. 3594 */ 3595 smp_mb(); /* ^^^ */ 3596 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3597 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3598 } 3599 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3600 3601 /* 3602 * Helper function for start_poll_synchronize_rcu() and 3603 * start_poll_synchronize_rcu_full(). 3604 */ 3605 static void start_poll_synchronize_rcu_common(void) 3606 { 3607 unsigned long flags; 3608 bool needwake; 3609 struct rcu_data *rdp; 3610 struct rcu_node *rnp; 3611 3612 lockdep_assert_irqs_enabled(); 3613 local_irq_save(flags); 3614 rdp = this_cpu_ptr(&rcu_data); 3615 rnp = rdp->mynode; 3616 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3617 // Note it is possible for a grace period to have elapsed between 3618 // the above call to get_state_synchronize_rcu() and the below call 3619 // to rcu_seq_snap. This is OK, the worst that happens is that we 3620 // get a grace period that no one needed. These accesses are ordered 3621 // by smp_mb(), and we are accessing them in the opposite order 3622 // from which they are updated at grace-period start, as required. 3623 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3624 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3625 if (needwake) 3626 rcu_gp_kthread_wake(); 3627 } 3628 3629 /** 3630 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3631 * 3632 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3633 * or poll_state_synchronize_rcu() to determine whether or not a full 3634 * grace period has elapsed in the meantime. If the needed grace period 3635 * is not already slated to start, notifies RCU core of the need for that 3636 * grace period. 3637 * 3638 * Interrupts must be enabled for the case where it is necessary to awaken 3639 * the grace-period kthread. 3640 */ 3641 unsigned long start_poll_synchronize_rcu(void) 3642 { 3643 unsigned long gp_seq = get_state_synchronize_rcu(); 3644 3645 start_poll_synchronize_rcu_common(); 3646 return gp_seq; 3647 } 3648 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3649 3650 /** 3651 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3652 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3653 * 3654 * Places the normal and expedited grace-period states in *@rgos. This 3655 * state value can be passed to a later call to cond_synchronize_rcu_full() 3656 * or poll_state_synchronize_rcu_full() to determine whether or not a 3657 * grace period (whether normal or expedited) has elapsed in the meantime. 3658 * If the needed grace period is not already slated to start, notifies 3659 * RCU core of the need for that grace period. 3660 * 3661 * Interrupts must be enabled for the case where it is necessary to awaken 3662 * the grace-period kthread. 3663 */ 3664 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3665 { 3666 get_state_synchronize_rcu_full(rgosp); 3667 3668 start_poll_synchronize_rcu_common(); 3669 } 3670 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3671 3672 /** 3673 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3674 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3675 * 3676 * If a full RCU grace period has elapsed since the earlier call from 3677 * which @oldstate was obtained, return @true, otherwise return @false. 3678 * If @false is returned, it is the caller's responsibility to invoke this 3679 * function later on until it does return @true. Alternatively, the caller 3680 * can explicitly wait for a grace period, for example, by passing @oldstate 3681 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3682 * 3683 * Yes, this function does not take counter wrap into account. 3684 * But counter wrap is harmless. If the counter wraps, we have waited for 3685 * more than a billion grace periods (and way more on a 64-bit system!). 3686 * Those needing to keep old state values for very long time periods 3687 * (many hours even on 32-bit systems) should check them occasionally and 3688 * either refresh them or set a flag indicating that the grace period has 3689 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3690 * to get a guaranteed-completed grace-period state. 3691 * 3692 * This function provides the same memory-ordering guarantees that 3693 * would be provided by a synchronize_rcu() that was invoked at the call 3694 * to the function that provided @oldstate, and that returned at the end 3695 * of this function. 3696 */ 3697 bool poll_state_synchronize_rcu(unsigned long oldstate) 3698 { 3699 if (oldstate == RCU_GET_STATE_COMPLETED || 3700 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3701 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3702 return true; 3703 } 3704 return false; 3705 } 3706 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3707 3708 /** 3709 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3710 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3711 * 3712 * If a full RCU grace period has elapsed since the earlier call from 3713 * which *rgosp was obtained, return @true, otherwise return @false. 3714 * If @false is returned, it is the caller's responsibility to invoke this 3715 * function later on until it does return @true. Alternatively, the caller 3716 * can explicitly wait for a grace period, for example, by passing @rgosp 3717 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3718 * 3719 * Yes, this function does not take counter wrap into account. 3720 * But counter wrap is harmless. If the counter wraps, we have waited 3721 * for more than a billion grace periods (and way more on a 64-bit 3722 * system!). Those needing to keep rcu_gp_oldstate values for very 3723 * long time periods (many hours even on 32-bit systems) should check 3724 * them occasionally and either refresh them or set a flag indicating 3725 * that the grace period has completed. Alternatively, they can use 3726 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3727 * grace-period state. 3728 * 3729 * This function provides the same memory-ordering guarantees that would 3730 * be provided by a synchronize_rcu() that was invoked at the call to 3731 * the function that provided @rgosp, and that returned at the end of this 3732 * function. And this guarantee requires that the root rcu_node structure's 3733 * ->gp_seq field be checked instead of that of the rcu_state structure. 3734 * The problem is that the just-ending grace-period's callbacks can be 3735 * invoked between the time that the root rcu_node structure's ->gp_seq 3736 * field is updated and the time that the rcu_state structure's ->gp_seq 3737 * field is updated. Therefore, if a single synchronize_rcu() is to 3738 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3739 * then the root rcu_node structure is the one that needs to be polled. 3740 */ 3741 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3742 { 3743 struct rcu_node *rnp = rcu_get_root(); 3744 3745 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3746 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3747 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3748 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3749 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3750 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3751 return true; 3752 } 3753 return false; 3754 } 3755 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3756 3757 /** 3758 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3759 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3760 * 3761 * If a full RCU grace period has elapsed since the earlier call to 3762 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3763 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3764 * 3765 * Yes, this function does not take counter wrap into account. 3766 * But counter wrap is harmless. If the counter wraps, we have waited for 3767 * more than 2 billion grace periods (and way more on a 64-bit system!), 3768 * so waiting for a couple of additional grace periods should be just fine. 3769 * 3770 * This function provides the same memory-ordering guarantees that 3771 * would be provided by a synchronize_rcu() that was invoked at the call 3772 * to the function that provided @oldstate and that returned at the end 3773 * of this function. 3774 */ 3775 void cond_synchronize_rcu(unsigned long oldstate) 3776 { 3777 if (!poll_state_synchronize_rcu(oldstate)) 3778 synchronize_rcu(); 3779 } 3780 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3781 3782 /** 3783 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3784 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3785 * 3786 * If a full RCU grace period has elapsed since the call to 3787 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3788 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3789 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3790 * for a full grace period. 3791 * 3792 * Yes, this function does not take counter wrap into account. 3793 * But counter wrap is harmless. If the counter wraps, we have waited for 3794 * more than 2 billion grace periods (and way more on a 64-bit system!), 3795 * so waiting for a couple of additional grace periods should be just fine. 3796 * 3797 * This function provides the same memory-ordering guarantees that 3798 * would be provided by a synchronize_rcu() that was invoked at the call 3799 * to the function that provided @rgosp and that returned at the end of 3800 * this function. 3801 */ 3802 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3803 { 3804 if (!poll_state_synchronize_rcu_full(rgosp)) 3805 synchronize_rcu(); 3806 } 3807 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3808 3809 /* 3810 * Check to see if there is any immediate RCU-related work to be done by 3811 * the current CPU, returning 1 if so and zero otherwise. The checks are 3812 * in order of increasing expense: checks that can be carried out against 3813 * CPU-local state are performed first. However, we must check for CPU 3814 * stalls first, else we might not get a chance. 3815 */ 3816 static int rcu_pending(int user) 3817 { 3818 bool gp_in_progress; 3819 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3820 struct rcu_node *rnp = rdp->mynode; 3821 3822 lockdep_assert_irqs_disabled(); 3823 3824 /* Check for CPU stalls, if enabled. */ 3825 check_cpu_stall(rdp); 3826 3827 /* Does this CPU need a deferred NOCB wakeup? */ 3828 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3829 return 1; 3830 3831 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3832 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3833 return 0; 3834 3835 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3836 gp_in_progress = rcu_gp_in_progress(); 3837 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3838 return 1; 3839 3840 /* Does this CPU have callbacks ready to invoke? */ 3841 if (!rcu_rdp_is_offloaded(rdp) && 3842 rcu_segcblist_ready_cbs(&rdp->cblist)) 3843 return 1; 3844 3845 /* Has RCU gone idle with this CPU needing another grace period? */ 3846 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3847 !rcu_rdp_is_offloaded(rdp) && 3848 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3849 return 1; 3850 3851 /* Have RCU grace period completed or started? */ 3852 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3853 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3854 return 1; 3855 3856 /* nothing to do */ 3857 return 0; 3858 } 3859 3860 /* 3861 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3862 * the compiler is expected to optimize this away. 3863 */ 3864 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3865 { 3866 trace_rcu_barrier(rcu_state.name, s, cpu, 3867 atomic_read(&rcu_state.barrier_cpu_count), done); 3868 } 3869 3870 /* 3871 * RCU callback function for rcu_barrier(). If we are last, wake 3872 * up the task executing rcu_barrier(). 3873 * 3874 * Note that the value of rcu_state.barrier_sequence must be captured 3875 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3876 * other CPUs might count the value down to zero before this CPU gets 3877 * around to invoking rcu_barrier_trace(), which might result in bogus 3878 * data from the next instance of rcu_barrier(). 3879 */ 3880 static void rcu_barrier_callback(struct rcu_head *rhp) 3881 { 3882 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3883 3884 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3885 rcu_barrier_trace(TPS("LastCB"), -1, s); 3886 complete(&rcu_state.barrier_completion); 3887 } else { 3888 rcu_barrier_trace(TPS("CB"), -1, s); 3889 } 3890 } 3891 3892 /* 3893 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3894 */ 3895 static void rcu_barrier_entrain(struct rcu_data *rdp) 3896 { 3897 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3898 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3899 3900 lockdep_assert_held(&rcu_state.barrier_lock); 3901 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3902 return; 3903 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3904 rdp->barrier_head.func = rcu_barrier_callback; 3905 debug_rcu_head_queue(&rdp->barrier_head); 3906 rcu_nocb_lock(rdp); 3907 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3908 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3909 atomic_inc(&rcu_state.barrier_cpu_count); 3910 } else { 3911 debug_rcu_head_unqueue(&rdp->barrier_head); 3912 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3913 } 3914 rcu_nocb_unlock(rdp); 3915 smp_store_release(&rdp->barrier_seq_snap, gseq); 3916 } 3917 3918 /* 3919 * Called with preemption disabled, and from cross-cpu IRQ context. 3920 */ 3921 static void rcu_barrier_handler(void *cpu_in) 3922 { 3923 uintptr_t cpu = (uintptr_t)cpu_in; 3924 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3925 3926 lockdep_assert_irqs_disabled(); 3927 WARN_ON_ONCE(cpu != rdp->cpu); 3928 WARN_ON_ONCE(cpu != smp_processor_id()); 3929 raw_spin_lock(&rcu_state.barrier_lock); 3930 rcu_barrier_entrain(rdp); 3931 raw_spin_unlock(&rcu_state.barrier_lock); 3932 } 3933 3934 /** 3935 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3936 * 3937 * Note that this primitive does not necessarily wait for an RCU grace period 3938 * to complete. For example, if there are no RCU callbacks queued anywhere 3939 * in the system, then rcu_barrier() is within its rights to return 3940 * immediately, without waiting for anything, much less an RCU grace period. 3941 */ 3942 void rcu_barrier(void) 3943 { 3944 uintptr_t cpu; 3945 unsigned long flags; 3946 unsigned long gseq; 3947 struct rcu_data *rdp; 3948 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3949 3950 rcu_barrier_trace(TPS("Begin"), -1, s); 3951 3952 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3953 mutex_lock(&rcu_state.barrier_mutex); 3954 3955 /* Did someone else do our work for us? */ 3956 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3957 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 3958 smp_mb(); /* caller's subsequent code after above check. */ 3959 mutex_unlock(&rcu_state.barrier_mutex); 3960 return; 3961 } 3962 3963 /* Mark the start of the barrier operation. */ 3964 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3965 rcu_seq_start(&rcu_state.barrier_sequence); 3966 gseq = rcu_state.barrier_sequence; 3967 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3968 3969 /* 3970 * Initialize the count to two rather than to zero in order 3971 * to avoid a too-soon return to zero in case of an immediate 3972 * invocation of the just-enqueued callback (or preemption of 3973 * this task). Exclude CPU-hotplug operations to ensure that no 3974 * offline non-offloaded CPU has callbacks queued. 3975 */ 3976 init_completion(&rcu_state.barrier_completion); 3977 atomic_set(&rcu_state.barrier_cpu_count, 2); 3978 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3979 3980 /* 3981 * Force each CPU with callbacks to register a new callback. 3982 * When that callback is invoked, we will know that all of the 3983 * corresponding CPU's preceding callbacks have been invoked. 3984 */ 3985 for_each_possible_cpu(cpu) { 3986 rdp = per_cpu_ptr(&rcu_data, cpu); 3987 retry: 3988 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 3989 continue; 3990 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3991 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 3992 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3993 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3994 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 3995 continue; 3996 } 3997 if (!rcu_rdp_cpu_online(rdp)) { 3998 rcu_barrier_entrain(rdp); 3999 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4000 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4001 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4002 continue; 4003 } 4004 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4005 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4006 schedule_timeout_uninterruptible(1); 4007 goto retry; 4008 } 4009 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4010 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4011 } 4012 4013 /* 4014 * Now that we have an rcu_barrier_callback() callback on each 4015 * CPU, and thus each counted, remove the initial count. 4016 */ 4017 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4018 complete(&rcu_state.barrier_completion); 4019 4020 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4021 wait_for_completion(&rcu_state.barrier_completion); 4022 4023 /* Mark the end of the barrier operation. */ 4024 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4025 rcu_seq_end(&rcu_state.barrier_sequence); 4026 gseq = rcu_state.barrier_sequence; 4027 for_each_possible_cpu(cpu) { 4028 rdp = per_cpu_ptr(&rcu_data, cpu); 4029 4030 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4031 } 4032 4033 /* Other rcu_barrier() invocations can now safely proceed. */ 4034 mutex_unlock(&rcu_state.barrier_mutex); 4035 } 4036 EXPORT_SYMBOL_GPL(rcu_barrier); 4037 4038 /* 4039 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4040 * first CPU in a given leaf rcu_node structure coming online. The caller 4041 * must hold the corresponding leaf rcu_node ->lock with interrupts 4042 * disabled. 4043 */ 4044 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4045 { 4046 long mask; 4047 long oldmask; 4048 struct rcu_node *rnp = rnp_leaf; 4049 4050 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4051 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4052 for (;;) { 4053 mask = rnp->grpmask; 4054 rnp = rnp->parent; 4055 if (rnp == NULL) 4056 return; 4057 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4058 oldmask = rnp->qsmaskinit; 4059 rnp->qsmaskinit |= mask; 4060 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4061 if (oldmask) 4062 return; 4063 } 4064 } 4065 4066 /* 4067 * Do boot-time initialization of a CPU's per-CPU RCU data. 4068 */ 4069 static void __init 4070 rcu_boot_init_percpu_data(int cpu) 4071 { 4072 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4073 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4074 4075 /* Set up local state, ensuring consistent view of global state. */ 4076 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4077 INIT_WORK(&rdp->strict_work, strict_work_handler); 4078 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4079 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4080 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4081 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4082 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4083 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4084 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4085 rdp->last_sched_clock = jiffies; 4086 rdp->cpu = cpu; 4087 rcu_boot_init_nocb_percpu_data(rdp); 4088 } 4089 4090 /* 4091 * Invoked early in the CPU-online process, when pretty much all services 4092 * are available. The incoming CPU is not present. 4093 * 4094 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4095 * offline event can be happening at a given time. Note also that we can 4096 * accept some slop in the rsp->gp_seq access due to the fact that this 4097 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4098 * And any offloaded callbacks are being numbered elsewhere. 4099 */ 4100 int rcutree_prepare_cpu(unsigned int cpu) 4101 { 4102 unsigned long flags; 4103 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4104 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4105 struct rcu_node *rnp = rcu_get_root(); 4106 4107 /* Set up local state, ensuring consistent view of global state. */ 4108 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4109 rdp->qlen_last_fqs_check = 0; 4110 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4111 rdp->blimit = blimit; 4112 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4113 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4114 4115 /* 4116 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4117 * (re-)initialized. 4118 */ 4119 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4120 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4121 4122 /* 4123 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4124 * propagation up the rcu_node tree will happen at the beginning 4125 * of the next grace period. 4126 */ 4127 rnp = rdp->mynode; 4128 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4129 rdp->beenonline = true; /* We have now been online. */ 4130 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4131 rdp->gp_seq_needed = rdp->gp_seq; 4132 rdp->cpu_no_qs.b.norm = true; 4133 rdp->core_needs_qs = false; 4134 rdp->rcu_iw_pending = false; 4135 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4136 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4137 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4138 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4139 rcu_spawn_one_boost_kthread(rnp); 4140 rcu_spawn_cpu_nocb_kthread(cpu); 4141 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4142 4143 return 0; 4144 } 4145 4146 /* 4147 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4148 */ 4149 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4150 { 4151 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4152 4153 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4154 } 4155 4156 /* 4157 * Near the end of the CPU-online process. Pretty much all services 4158 * enabled, and the CPU is now very much alive. 4159 */ 4160 int rcutree_online_cpu(unsigned int cpu) 4161 { 4162 unsigned long flags; 4163 struct rcu_data *rdp; 4164 struct rcu_node *rnp; 4165 4166 rdp = per_cpu_ptr(&rcu_data, cpu); 4167 rnp = rdp->mynode; 4168 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4169 rnp->ffmask |= rdp->grpmask; 4170 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4171 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4172 return 0; /* Too early in boot for scheduler work. */ 4173 sync_sched_exp_online_cleanup(cpu); 4174 rcutree_affinity_setting(cpu, -1); 4175 4176 // Stop-machine done, so allow nohz_full to disable tick. 4177 tick_dep_clear(TICK_DEP_BIT_RCU); 4178 return 0; 4179 } 4180 4181 /* 4182 * Near the beginning of the process. The CPU is still very much alive 4183 * with pretty much all services enabled. 4184 */ 4185 int rcutree_offline_cpu(unsigned int cpu) 4186 { 4187 unsigned long flags; 4188 struct rcu_data *rdp; 4189 struct rcu_node *rnp; 4190 4191 rdp = per_cpu_ptr(&rcu_data, cpu); 4192 rnp = rdp->mynode; 4193 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4194 rnp->ffmask &= ~rdp->grpmask; 4195 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4196 4197 rcutree_affinity_setting(cpu, cpu); 4198 4199 // nohz_full CPUs need the tick for stop-machine to work quickly 4200 tick_dep_set(TICK_DEP_BIT_RCU); 4201 return 0; 4202 } 4203 4204 /* 4205 * Mark the specified CPU as being online so that subsequent grace periods 4206 * (both expedited and normal) will wait on it. Note that this means that 4207 * incoming CPUs are not allowed to use RCU read-side critical sections 4208 * until this function is called. Failing to observe this restriction 4209 * will result in lockdep splats. 4210 * 4211 * Note that this function is special in that it is invoked directly 4212 * from the incoming CPU rather than from the cpuhp_step mechanism. 4213 * This is because this function must be invoked at a precise location. 4214 */ 4215 void rcu_cpu_starting(unsigned int cpu) 4216 { 4217 unsigned long flags; 4218 unsigned long mask; 4219 struct rcu_data *rdp; 4220 struct rcu_node *rnp; 4221 bool newcpu; 4222 4223 rdp = per_cpu_ptr(&rcu_data, cpu); 4224 if (rdp->cpu_started) 4225 return; 4226 rdp->cpu_started = true; 4227 4228 rnp = rdp->mynode; 4229 mask = rdp->grpmask; 4230 local_irq_save(flags); 4231 arch_spin_lock(&rcu_state.ofl_lock); 4232 rcu_dynticks_eqs_online(); 4233 raw_spin_lock(&rcu_state.barrier_lock); 4234 raw_spin_lock_rcu_node(rnp); 4235 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4236 raw_spin_unlock(&rcu_state.barrier_lock); 4237 newcpu = !(rnp->expmaskinitnext & mask); 4238 rnp->expmaskinitnext |= mask; 4239 /* Allow lockless access for expedited grace periods. */ 4240 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4241 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4242 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4243 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4244 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4245 4246 /* An incoming CPU should never be blocking a grace period. */ 4247 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4248 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4249 unsigned long flags2; 4250 4251 local_irq_save(flags2); 4252 rcu_disable_urgency_upon_qs(rdp); 4253 /* Report QS -after- changing ->qsmaskinitnext! */ 4254 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2); 4255 } else { 4256 raw_spin_unlock_rcu_node(rnp); 4257 } 4258 arch_spin_unlock(&rcu_state.ofl_lock); 4259 local_irq_restore(flags); 4260 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4261 } 4262 4263 /* 4264 * The outgoing function has no further need of RCU, so remove it from 4265 * the rcu_node tree's ->qsmaskinitnext bit masks. 4266 * 4267 * Note that this function is special in that it is invoked directly 4268 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4269 * This is because this function must be invoked at a precise location. 4270 */ 4271 void rcu_report_dead(unsigned int cpu) 4272 { 4273 unsigned long flags, seq_flags; 4274 unsigned long mask; 4275 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4276 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4277 4278 // Do any dangling deferred wakeups. 4279 do_nocb_deferred_wakeup(rdp); 4280 4281 /* QS for any half-done expedited grace period. */ 4282 rcu_report_exp_rdp(rdp); 4283 rcu_preempt_deferred_qs(current); 4284 4285 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4286 mask = rdp->grpmask; 4287 local_irq_save(seq_flags); 4288 arch_spin_lock(&rcu_state.ofl_lock); 4289 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4290 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4291 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4292 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4293 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4294 rcu_disable_urgency_upon_qs(rdp); 4295 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4296 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4297 } 4298 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4299 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4300 arch_spin_unlock(&rcu_state.ofl_lock); 4301 local_irq_restore(seq_flags); 4302 4303 rdp->cpu_started = false; 4304 } 4305 4306 #ifdef CONFIG_HOTPLUG_CPU 4307 /* 4308 * The outgoing CPU has just passed through the dying-idle state, and we 4309 * are being invoked from the CPU that was IPIed to continue the offline 4310 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4311 */ 4312 void rcutree_migrate_callbacks(int cpu) 4313 { 4314 unsigned long flags; 4315 struct rcu_data *my_rdp; 4316 struct rcu_node *my_rnp; 4317 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4318 bool needwake; 4319 4320 if (rcu_rdp_is_offloaded(rdp) || 4321 rcu_segcblist_empty(&rdp->cblist)) 4322 return; /* No callbacks to migrate. */ 4323 4324 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4325 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4326 rcu_barrier_entrain(rdp); 4327 my_rdp = this_cpu_ptr(&rcu_data); 4328 my_rnp = my_rdp->mynode; 4329 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4330 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4331 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4332 /* Leverage recent GPs and set GP for new callbacks. */ 4333 needwake = rcu_advance_cbs(my_rnp, rdp) || 4334 rcu_advance_cbs(my_rnp, my_rdp); 4335 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4336 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4337 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4338 rcu_segcblist_disable(&rdp->cblist); 4339 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4340 check_cb_ovld_locked(my_rdp, my_rnp); 4341 if (rcu_rdp_is_offloaded(my_rdp)) { 4342 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4343 __call_rcu_nocb_wake(my_rdp, true, flags); 4344 } else { 4345 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4346 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4347 } 4348 if (needwake) 4349 rcu_gp_kthread_wake(); 4350 lockdep_assert_irqs_enabled(); 4351 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4352 !rcu_segcblist_empty(&rdp->cblist), 4353 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4354 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4355 rcu_segcblist_first_cb(&rdp->cblist)); 4356 } 4357 #endif 4358 4359 /* 4360 * On non-huge systems, use expedited RCU grace periods to make suspend 4361 * and hibernation run faster. 4362 */ 4363 static int rcu_pm_notify(struct notifier_block *self, 4364 unsigned long action, void *hcpu) 4365 { 4366 switch (action) { 4367 case PM_HIBERNATION_PREPARE: 4368 case PM_SUSPEND_PREPARE: 4369 rcu_expedite_gp(); 4370 break; 4371 case PM_POST_HIBERNATION: 4372 case PM_POST_SUSPEND: 4373 rcu_unexpedite_gp(); 4374 break; 4375 default: 4376 break; 4377 } 4378 return NOTIFY_OK; 4379 } 4380 4381 #ifdef CONFIG_RCU_EXP_KTHREAD 4382 struct kthread_worker *rcu_exp_gp_kworker; 4383 struct kthread_worker *rcu_exp_par_gp_kworker; 4384 4385 static void __init rcu_start_exp_gp_kworkers(void) 4386 { 4387 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4388 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4389 struct sched_param param = { .sched_priority = kthread_prio }; 4390 4391 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4392 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4393 pr_err("Failed to create %s!\n", gp_kworker_name); 4394 return; 4395 } 4396 4397 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4398 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4399 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4400 kthread_destroy_worker(rcu_exp_gp_kworker); 4401 return; 4402 } 4403 4404 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4405 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4406 ¶m); 4407 } 4408 4409 static inline void rcu_alloc_par_gp_wq(void) 4410 { 4411 } 4412 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4413 struct workqueue_struct *rcu_par_gp_wq; 4414 4415 static void __init rcu_start_exp_gp_kworkers(void) 4416 { 4417 } 4418 4419 static inline void rcu_alloc_par_gp_wq(void) 4420 { 4421 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4422 WARN_ON(!rcu_par_gp_wq); 4423 } 4424 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4425 4426 /* 4427 * Spawn the kthreads that handle RCU's grace periods. 4428 */ 4429 static int __init rcu_spawn_gp_kthread(void) 4430 { 4431 unsigned long flags; 4432 struct rcu_node *rnp; 4433 struct sched_param sp; 4434 struct task_struct *t; 4435 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4436 4437 rcu_scheduler_fully_active = 1; 4438 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4439 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4440 return 0; 4441 if (kthread_prio) { 4442 sp.sched_priority = kthread_prio; 4443 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4444 } 4445 rnp = rcu_get_root(); 4446 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4447 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4448 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4449 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4450 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4451 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4452 wake_up_process(t); 4453 /* This is a pre-SMP initcall, we expect a single CPU */ 4454 WARN_ON(num_online_cpus() > 1); 4455 /* 4456 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4457 * due to rcu_scheduler_fully_active. 4458 */ 4459 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4460 rcu_spawn_one_boost_kthread(rdp->mynode); 4461 rcu_spawn_core_kthreads(); 4462 /* Create kthread worker for expedited GPs */ 4463 rcu_start_exp_gp_kworkers(); 4464 return 0; 4465 } 4466 early_initcall(rcu_spawn_gp_kthread); 4467 4468 /* 4469 * This function is invoked towards the end of the scheduler's 4470 * initialization process. Before this is called, the idle task might 4471 * contain synchronous grace-period primitives (during which time, this idle 4472 * task is booting the system, and such primitives are no-ops). After this 4473 * function is called, any synchronous grace-period primitives are run as 4474 * expedited, with the requesting task driving the grace period forward. 4475 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4476 * runtime RCU functionality. 4477 */ 4478 void rcu_scheduler_starting(void) 4479 { 4480 unsigned long flags; 4481 struct rcu_node *rnp; 4482 4483 WARN_ON(num_online_cpus() != 1); 4484 WARN_ON(nr_context_switches() > 0); 4485 rcu_test_sync_prims(); 4486 4487 // Fix up the ->gp_seq counters. 4488 local_irq_save(flags); 4489 rcu_for_each_node_breadth_first(rnp) 4490 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4491 local_irq_restore(flags); 4492 4493 // Switch out of early boot mode. 4494 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4495 rcu_test_sync_prims(); 4496 } 4497 4498 /* 4499 * Helper function for rcu_init() that initializes the rcu_state structure. 4500 */ 4501 static void __init rcu_init_one(void) 4502 { 4503 static const char * const buf[] = RCU_NODE_NAME_INIT; 4504 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4505 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4506 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4507 4508 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4509 int cpustride = 1; 4510 int i; 4511 int j; 4512 struct rcu_node *rnp; 4513 4514 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4515 4516 /* Silence gcc 4.8 false positive about array index out of range. */ 4517 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4518 panic("rcu_init_one: rcu_num_lvls out of range"); 4519 4520 /* Initialize the level-tracking arrays. */ 4521 4522 for (i = 1; i < rcu_num_lvls; i++) 4523 rcu_state.level[i] = 4524 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4525 rcu_init_levelspread(levelspread, num_rcu_lvl); 4526 4527 /* Initialize the elements themselves, starting from the leaves. */ 4528 4529 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4530 cpustride *= levelspread[i]; 4531 rnp = rcu_state.level[i]; 4532 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4533 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4534 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4535 &rcu_node_class[i], buf[i]); 4536 raw_spin_lock_init(&rnp->fqslock); 4537 lockdep_set_class_and_name(&rnp->fqslock, 4538 &rcu_fqs_class[i], fqs[i]); 4539 rnp->gp_seq = rcu_state.gp_seq; 4540 rnp->gp_seq_needed = rcu_state.gp_seq; 4541 rnp->completedqs = rcu_state.gp_seq; 4542 rnp->qsmask = 0; 4543 rnp->qsmaskinit = 0; 4544 rnp->grplo = j * cpustride; 4545 rnp->grphi = (j + 1) * cpustride - 1; 4546 if (rnp->grphi >= nr_cpu_ids) 4547 rnp->grphi = nr_cpu_ids - 1; 4548 if (i == 0) { 4549 rnp->grpnum = 0; 4550 rnp->grpmask = 0; 4551 rnp->parent = NULL; 4552 } else { 4553 rnp->grpnum = j % levelspread[i - 1]; 4554 rnp->grpmask = BIT(rnp->grpnum); 4555 rnp->parent = rcu_state.level[i - 1] + 4556 j / levelspread[i - 1]; 4557 } 4558 rnp->level = i; 4559 INIT_LIST_HEAD(&rnp->blkd_tasks); 4560 rcu_init_one_nocb(rnp); 4561 init_waitqueue_head(&rnp->exp_wq[0]); 4562 init_waitqueue_head(&rnp->exp_wq[1]); 4563 init_waitqueue_head(&rnp->exp_wq[2]); 4564 init_waitqueue_head(&rnp->exp_wq[3]); 4565 spin_lock_init(&rnp->exp_lock); 4566 mutex_init(&rnp->boost_kthread_mutex); 4567 raw_spin_lock_init(&rnp->exp_poll_lock); 4568 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4569 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4570 } 4571 } 4572 4573 init_swait_queue_head(&rcu_state.gp_wq); 4574 init_swait_queue_head(&rcu_state.expedited_wq); 4575 rnp = rcu_first_leaf_node(); 4576 for_each_possible_cpu(i) { 4577 while (i > rnp->grphi) 4578 rnp++; 4579 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4580 rcu_boot_init_percpu_data(i); 4581 } 4582 } 4583 4584 /* 4585 * Force priority from the kernel command-line into range. 4586 */ 4587 static void __init sanitize_kthread_prio(void) 4588 { 4589 int kthread_prio_in = kthread_prio; 4590 4591 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4592 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4593 kthread_prio = 2; 4594 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4595 kthread_prio = 1; 4596 else if (kthread_prio < 0) 4597 kthread_prio = 0; 4598 else if (kthread_prio > 99) 4599 kthread_prio = 99; 4600 4601 if (kthread_prio != kthread_prio_in) 4602 pr_alert("%s: Limited prio to %d from %d\n", 4603 __func__, kthread_prio, kthread_prio_in); 4604 } 4605 4606 /* 4607 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4608 * replace the definitions in tree.h because those are needed to size 4609 * the ->node array in the rcu_state structure. 4610 */ 4611 void rcu_init_geometry(void) 4612 { 4613 ulong d; 4614 int i; 4615 static unsigned long old_nr_cpu_ids; 4616 int rcu_capacity[RCU_NUM_LVLS]; 4617 static bool initialized; 4618 4619 if (initialized) { 4620 /* 4621 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4622 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4623 */ 4624 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4625 return; 4626 } 4627 4628 old_nr_cpu_ids = nr_cpu_ids; 4629 initialized = true; 4630 4631 /* 4632 * Initialize any unspecified boot parameters. 4633 * The default values of jiffies_till_first_fqs and 4634 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4635 * value, which is a function of HZ, then adding one for each 4636 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4637 */ 4638 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4639 if (jiffies_till_first_fqs == ULONG_MAX) 4640 jiffies_till_first_fqs = d; 4641 if (jiffies_till_next_fqs == ULONG_MAX) 4642 jiffies_till_next_fqs = d; 4643 adjust_jiffies_till_sched_qs(); 4644 4645 /* If the compile-time values are accurate, just leave. */ 4646 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4647 nr_cpu_ids == NR_CPUS) 4648 return; 4649 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4650 rcu_fanout_leaf, nr_cpu_ids); 4651 4652 /* 4653 * The boot-time rcu_fanout_leaf parameter must be at least two 4654 * and cannot exceed the number of bits in the rcu_node masks. 4655 * Complain and fall back to the compile-time values if this 4656 * limit is exceeded. 4657 */ 4658 if (rcu_fanout_leaf < 2 || 4659 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4660 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4661 WARN_ON(1); 4662 return; 4663 } 4664 4665 /* 4666 * Compute number of nodes that can be handled an rcu_node tree 4667 * with the given number of levels. 4668 */ 4669 rcu_capacity[0] = rcu_fanout_leaf; 4670 for (i = 1; i < RCU_NUM_LVLS; i++) 4671 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4672 4673 /* 4674 * The tree must be able to accommodate the configured number of CPUs. 4675 * If this limit is exceeded, fall back to the compile-time values. 4676 */ 4677 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4678 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4679 WARN_ON(1); 4680 return; 4681 } 4682 4683 /* Calculate the number of levels in the tree. */ 4684 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4685 } 4686 rcu_num_lvls = i + 1; 4687 4688 /* Calculate the number of rcu_nodes at each level of the tree. */ 4689 for (i = 0; i < rcu_num_lvls; i++) { 4690 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4691 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4692 } 4693 4694 /* Calculate the total number of rcu_node structures. */ 4695 rcu_num_nodes = 0; 4696 for (i = 0; i < rcu_num_lvls; i++) 4697 rcu_num_nodes += num_rcu_lvl[i]; 4698 } 4699 4700 /* 4701 * Dump out the structure of the rcu_node combining tree associated 4702 * with the rcu_state structure. 4703 */ 4704 static void __init rcu_dump_rcu_node_tree(void) 4705 { 4706 int level = 0; 4707 struct rcu_node *rnp; 4708 4709 pr_info("rcu_node tree layout dump\n"); 4710 pr_info(" "); 4711 rcu_for_each_node_breadth_first(rnp) { 4712 if (rnp->level != level) { 4713 pr_cont("\n"); 4714 pr_info(" "); 4715 level = rnp->level; 4716 } 4717 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4718 } 4719 pr_cont("\n"); 4720 } 4721 4722 struct workqueue_struct *rcu_gp_wq; 4723 4724 static void __init kfree_rcu_batch_init(void) 4725 { 4726 int cpu; 4727 int i; 4728 4729 /* Clamp it to [0:100] seconds interval. */ 4730 if (rcu_delay_page_cache_fill_msec < 0 || 4731 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4732 4733 rcu_delay_page_cache_fill_msec = 4734 clamp(rcu_delay_page_cache_fill_msec, 0, 4735 (int) (100 * MSEC_PER_SEC)); 4736 4737 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4738 rcu_delay_page_cache_fill_msec); 4739 } 4740 4741 for_each_possible_cpu(cpu) { 4742 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4743 4744 for (i = 0; i < KFREE_N_BATCHES; i++) { 4745 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4746 krcp->krw_arr[i].krcp = krcp; 4747 } 4748 4749 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4750 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4751 krcp->initialized = true; 4752 } 4753 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4754 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4755 } 4756 4757 void __init rcu_init(void) 4758 { 4759 int cpu = smp_processor_id(); 4760 4761 rcu_early_boot_tests(); 4762 4763 kfree_rcu_batch_init(); 4764 rcu_bootup_announce(); 4765 sanitize_kthread_prio(); 4766 rcu_init_geometry(); 4767 rcu_init_one(); 4768 if (dump_tree) 4769 rcu_dump_rcu_node_tree(); 4770 if (use_softirq) 4771 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4772 4773 /* 4774 * We don't need protection against CPU-hotplug here because 4775 * this is called early in boot, before either interrupts 4776 * or the scheduler are operational. 4777 */ 4778 pm_notifier(rcu_pm_notify, 0); 4779 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4780 rcutree_prepare_cpu(cpu); 4781 rcu_cpu_starting(cpu); 4782 rcutree_online_cpu(cpu); 4783 4784 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4785 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4786 WARN_ON(!rcu_gp_wq); 4787 rcu_alloc_par_gp_wq(); 4788 4789 /* Fill in default value for rcutree.qovld boot parameter. */ 4790 /* -After- the rcu_node ->lock fields are initialized! */ 4791 if (qovld < 0) 4792 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4793 else 4794 qovld_calc = qovld; 4795 4796 // Kick-start any polled grace periods that started early. 4797 if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1)) 4798 (void)start_poll_synchronize_rcu_expedited(); 4799 } 4800 4801 #include "tree_stall.h" 4802 #include "tree_exp.h" 4803 #include "tree_nocb.h" 4804 #include "tree_plugin.h" 4805