1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/sched/debug.h> 39 #include <linux/nmi.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/export.h> 43 #include <linux/completion.h> 44 #include <linux/moduleparam.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <uapi/linux/sched/types.h> 54 #include <linux/prefetch.h> 55 #include <linux/delay.h> 56 #include <linux/stop_machine.h> 57 #include <linux/random.h> 58 #include <linux/trace_events.h> 59 #include <linux/suspend.h> 60 #include <linux/ftrace.h> 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * In order to export the rcu_state name to the tracing tools, it 74 * needs to be added in the __tracepoint_string section. 75 * This requires defining a separate variable tp_<sname>_varname 76 * that points to the string being used, and this will allow 77 * the tracing userspace tools to be able to decipher the string 78 * address to the matching string. 79 */ 80 #ifdef CONFIG_TRACING 81 # define DEFINE_RCU_TPS(sname) \ 82 static char sname##_varname[] = #sname; \ 83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 84 # define RCU_STATE_NAME(sname) sname##_varname 85 #else 86 # define DEFINE_RCU_TPS(sname) 87 # define RCU_STATE_NAME(sname) __stringify(sname) 88 #endif 89 90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 91 DEFINE_RCU_TPS(sname) \ 92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 93 struct rcu_state sname##_state = { \ 94 .level = { &sname##_state.node[0] }, \ 95 .rda = &sname##_data, \ 96 .call = cr, \ 97 .gp_state = RCU_GP_IDLE, \ 98 .gpnum = 0UL - 300UL, \ 99 .completed = 0UL - 300UL, \ 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 101 .name = RCU_STATE_NAME(sname), \ 102 .abbr = sabbr, \ 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 105 } 106 107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 109 110 static struct rcu_state *const rcu_state_p; 111 LIST_HEAD(rcu_struct_flavors); 112 113 /* Dump rcu_node combining tree at boot to verify correct setup. */ 114 static bool dump_tree; 115 module_param(dump_tree, bool, 0444); 116 /* Control rcu_node-tree auto-balancing at boot time. */ 117 static bool rcu_fanout_exact; 118 module_param(rcu_fanout_exact, bool, 0444); 119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 121 module_param(rcu_fanout_leaf, int, 0444); 122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 123 /* Number of rcu_nodes at specified level. */ 124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 126 /* panic() on RCU Stall sysctl. */ 127 int sysctl_panic_on_rcu_stall __read_mostly; 128 129 /* 130 * The rcu_scheduler_active variable is initialized to the value 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 133 * RCU can assume that there is but one task, allowing RCU to (for example) 134 * optimize synchronize_rcu() to a simple barrier(). When this variable 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 136 * to detect real grace periods. This variable is also used to suppress 137 * boot-time false positives from lockdep-RCU error checking. Finally, it 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 139 * is fully initialized, including all of its kthreads having been spawned. 140 */ 141 int rcu_scheduler_active __read_mostly; 142 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 143 144 /* 145 * The rcu_scheduler_fully_active variable transitions from zero to one 146 * during the early_initcall() processing, which is after the scheduler 147 * is capable of creating new tasks. So RCU processing (for example, 148 * creating tasks for RCU priority boosting) must be delayed until after 149 * rcu_scheduler_fully_active transitions from zero to one. We also 150 * currently delay invocation of any RCU callbacks until after this point. 151 * 152 * It might later prove better for people registering RCU callbacks during 153 * early boot to take responsibility for these callbacks, but one step at 154 * a time. 155 */ 156 static int rcu_scheduler_fully_active __read_mostly; 157 158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 161 static void invoke_rcu_core(void); 162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 163 static void rcu_report_exp_rdp(struct rcu_state *rsp, 164 struct rcu_data *rdp, bool wake); 165 static void sync_sched_exp_online_cleanup(int cpu); 166 167 /* rcuc/rcub kthread realtime priority */ 168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 169 module_param(kthread_prio, int, 0644); 170 171 /* Delay in jiffies for grace-period initialization delays, debug only. */ 172 173 static int gp_preinit_delay; 174 module_param(gp_preinit_delay, int, 0444); 175 static int gp_init_delay; 176 module_param(gp_init_delay, int, 0444); 177 static int gp_cleanup_delay; 178 module_param(gp_cleanup_delay, int, 0444); 179 180 /* 181 * Number of grace periods between delays, normalized by the duration of 182 * the delay. The longer the delay, the more the grace periods between 183 * each delay. The reason for this normalization is that it means that, 184 * for non-zero delays, the overall slowdown of grace periods is constant 185 * regardless of the duration of the delay. This arrangement balances 186 * the need for long delays to increase some race probabilities with the 187 * need for fast grace periods to increase other race probabilities. 188 */ 189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 190 191 /* 192 * Track the rcutorture test sequence number and the update version 193 * number within a given test. The rcutorture_testseq is incremented 194 * on every rcutorture module load and unload, so has an odd value 195 * when a test is running. The rcutorture_vernum is set to zero 196 * when rcutorture starts and is incremented on each rcutorture update. 197 * These variables enable correlating rcutorture output with the 198 * RCU tracing information. 199 */ 200 unsigned long rcutorture_testseq; 201 unsigned long rcutorture_vernum; 202 203 /* 204 * Compute the mask of online CPUs for the specified rcu_node structure. 205 * This will not be stable unless the rcu_node structure's ->lock is 206 * held, but the bit corresponding to the current CPU will be stable 207 * in most contexts. 208 */ 209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 210 { 211 return READ_ONCE(rnp->qsmaskinitnext); 212 } 213 214 /* 215 * Return true if an RCU grace period is in progress. The READ_ONCE()s 216 * permit this function to be invoked without holding the root rcu_node 217 * structure's ->lock, but of course results can be subject to change. 218 */ 219 static int rcu_gp_in_progress(struct rcu_state *rsp) 220 { 221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 222 } 223 224 /* 225 * Note a quiescent state. Because we do not need to know 226 * how many quiescent states passed, just if there was at least 227 * one since the start of the grace period, this just sets a flag. 228 * The caller must have disabled preemption. 229 */ 230 void rcu_sched_qs(void) 231 { 232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); 233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 234 return; 235 trace_rcu_grace_period(TPS("rcu_sched"), 236 __this_cpu_read(rcu_sched_data.gpnum), 237 TPS("cpuqs")); 238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 240 return; 241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 242 rcu_report_exp_rdp(&rcu_sched_state, 243 this_cpu_ptr(&rcu_sched_data), true); 244 } 245 246 void rcu_bh_qs(void) 247 { 248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); 249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 250 trace_rcu_grace_period(TPS("rcu_bh"), 251 __this_cpu_read(rcu_bh_data.gpnum), 252 TPS("cpuqs")); 253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 254 } 255 } 256 257 /* 258 * Steal a bit from the bottom of ->dynticks for idle entry/exit 259 * control. Initially this is for TLB flushing. 260 */ 261 #define RCU_DYNTICK_CTRL_MASK 0x1 262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 263 #ifndef rcu_eqs_special_exit 264 #define rcu_eqs_special_exit() do { } while (0) 265 #endif 266 267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 268 .dynticks_nesting = 1, 269 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 270 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 271 }; 272 273 /* 274 * Record entry into an extended quiescent state. This is only to be 275 * called when not already in an extended quiescent state. 276 */ 277 static void rcu_dynticks_eqs_enter(void) 278 { 279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 280 int seq; 281 282 /* 283 * CPUs seeing atomic_add_return() must see prior RCU read-side 284 * critical sections, and we also must force ordering with the 285 * next idle sojourn. 286 */ 287 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 288 /* Better be in an extended quiescent state! */ 289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 290 (seq & RCU_DYNTICK_CTRL_CTR)); 291 /* Better not have special action (TLB flush) pending! */ 292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 293 (seq & RCU_DYNTICK_CTRL_MASK)); 294 } 295 296 /* 297 * Record exit from an extended quiescent state. This is only to be 298 * called from an extended quiescent state. 299 */ 300 static void rcu_dynticks_eqs_exit(void) 301 { 302 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 303 int seq; 304 305 /* 306 * CPUs seeing atomic_add_return() must see prior idle sojourns, 307 * and we also must force ordering with the next RCU read-side 308 * critical section. 309 */ 310 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 312 !(seq & RCU_DYNTICK_CTRL_CTR)); 313 if (seq & RCU_DYNTICK_CTRL_MASK) { 314 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); 315 smp_mb__after_atomic(); /* _exit after clearing mask. */ 316 /* Prefer duplicate flushes to losing a flush. */ 317 rcu_eqs_special_exit(); 318 } 319 } 320 321 /* 322 * Reset the current CPU's ->dynticks counter to indicate that the 323 * newly onlined CPU is no longer in an extended quiescent state. 324 * This will either leave the counter unchanged, or increment it 325 * to the next non-quiescent value. 326 * 327 * The non-atomic test/increment sequence works because the upper bits 328 * of the ->dynticks counter are manipulated only by the corresponding CPU, 329 * or when the corresponding CPU is offline. 330 */ 331 static void rcu_dynticks_eqs_online(void) 332 { 333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 334 335 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) 336 return; 337 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 338 } 339 340 /* 341 * Is the current CPU in an extended quiescent state? 342 * 343 * No ordering, as we are sampling CPU-local information. 344 */ 345 bool rcu_dynticks_curr_cpu_in_eqs(void) 346 { 347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 348 349 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); 350 } 351 352 /* 353 * Snapshot the ->dynticks counter with full ordering so as to allow 354 * stable comparison of this counter with past and future snapshots. 355 */ 356 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 357 { 358 int snap = atomic_add_return(0, &rdtp->dynticks); 359 360 return snap & ~RCU_DYNTICK_CTRL_MASK; 361 } 362 363 /* 364 * Return true if the snapshot returned from rcu_dynticks_snap() 365 * indicates that RCU is in an extended quiescent state. 366 */ 367 static bool rcu_dynticks_in_eqs(int snap) 368 { 369 return !(snap & RCU_DYNTICK_CTRL_CTR); 370 } 371 372 /* 373 * Return true if the CPU corresponding to the specified rcu_dynticks 374 * structure has spent some time in an extended quiescent state since 375 * rcu_dynticks_snap() returned the specified snapshot. 376 */ 377 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 378 { 379 return snap != rcu_dynticks_snap(rdtp); 380 } 381 382 /* 383 * Do a double-increment of the ->dynticks counter to emulate a 384 * momentary idle-CPU quiescent state. 385 */ 386 static void rcu_dynticks_momentary_idle(void) 387 { 388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 389 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 390 &rdtp->dynticks); 391 392 /* It is illegal to call this from idle state. */ 393 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 394 } 395 396 /* 397 * Set the special (bottom) bit of the specified CPU so that it 398 * will take special action (such as flushing its TLB) on the 399 * next exit from an extended quiescent state. Returns true if 400 * the bit was successfully set, or false if the CPU was not in 401 * an extended quiescent state. 402 */ 403 bool rcu_eqs_special_set(int cpu) 404 { 405 int old; 406 int new; 407 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 408 409 do { 410 old = atomic_read(&rdtp->dynticks); 411 if (old & RCU_DYNTICK_CTRL_CTR) 412 return false; 413 new = old | RCU_DYNTICK_CTRL_MASK; 414 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); 415 return true; 416 } 417 418 /* 419 * Let the RCU core know that this CPU has gone through the scheduler, 420 * which is a quiescent state. This is called when the need for a 421 * quiescent state is urgent, so we burn an atomic operation and full 422 * memory barriers to let the RCU core know about it, regardless of what 423 * this CPU might (or might not) do in the near future. 424 * 425 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 426 * 427 * The caller must have disabled interrupts. 428 */ 429 static void rcu_momentary_dyntick_idle(void) 430 { 431 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); 432 rcu_dynticks_momentary_idle(); 433 } 434 435 /* 436 * Note a context switch. This is a quiescent state for RCU-sched, 437 * and requires special handling for preemptible RCU. 438 * The caller must have disabled interrupts. 439 */ 440 void rcu_note_context_switch(bool preempt) 441 { 442 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 443 trace_rcu_utilization(TPS("Start context switch")); 444 rcu_sched_qs(); 445 rcu_preempt_note_context_switch(preempt); 446 /* Load rcu_urgent_qs before other flags. */ 447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) 448 goto out; 449 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 450 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) 451 rcu_momentary_dyntick_idle(); 452 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 453 if (!preempt) 454 rcu_note_voluntary_context_switch_lite(current); 455 out: 456 trace_rcu_utilization(TPS("End context switch")); 457 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 458 } 459 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 460 461 /* 462 * Register a quiescent state for all RCU flavors. If there is an 463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 464 * dyntick-idle quiescent state visible to other CPUs (but only for those 465 * RCU flavors in desperate need of a quiescent state, which will normally 466 * be none of them). Either way, do a lightweight quiescent state for 467 * all RCU flavors. 468 * 469 * The barrier() calls are redundant in the common case when this is 470 * called externally, but just in case this is called from within this 471 * file. 472 * 473 */ 474 void rcu_all_qs(void) 475 { 476 unsigned long flags; 477 478 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) 479 return; 480 preempt_disable(); 481 /* Load rcu_urgent_qs before other flags. */ 482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { 483 preempt_enable(); 484 return; 485 } 486 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 487 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { 489 local_irq_save(flags); 490 rcu_momentary_dyntick_idle(); 491 local_irq_restore(flags); 492 } 493 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) 494 rcu_sched_qs(); 495 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 496 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 497 preempt_enable(); 498 } 499 EXPORT_SYMBOL_GPL(rcu_all_qs); 500 501 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 502 static long blimit = DEFAULT_RCU_BLIMIT; 503 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 504 static long qhimark = DEFAULT_RCU_QHIMARK; 505 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 506 static long qlowmark = DEFAULT_RCU_QLOMARK; 507 508 module_param(blimit, long, 0444); 509 module_param(qhimark, long, 0444); 510 module_param(qlowmark, long, 0444); 511 512 static ulong jiffies_till_first_fqs = ULONG_MAX; 513 static ulong jiffies_till_next_fqs = ULONG_MAX; 514 static bool rcu_kick_kthreads; 515 516 module_param(jiffies_till_first_fqs, ulong, 0644); 517 module_param(jiffies_till_next_fqs, ulong, 0644); 518 module_param(rcu_kick_kthreads, bool, 0644); 519 520 /* 521 * How long the grace period must be before we start recruiting 522 * quiescent-state help from rcu_note_context_switch(). 523 */ 524 static ulong jiffies_till_sched_qs = HZ / 10; 525 module_param(jiffies_till_sched_qs, ulong, 0444); 526 527 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); 528 static void force_quiescent_state(struct rcu_state *rsp); 529 static int rcu_pending(void); 530 531 /* 532 * Return the number of RCU batches started thus far for debug & stats. 533 */ 534 unsigned long rcu_batches_started(void) 535 { 536 return rcu_state_p->gpnum; 537 } 538 EXPORT_SYMBOL_GPL(rcu_batches_started); 539 540 /* 541 * Return the number of RCU-sched batches started thus far for debug & stats. 542 */ 543 unsigned long rcu_batches_started_sched(void) 544 { 545 return rcu_sched_state.gpnum; 546 } 547 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 548 549 /* 550 * Return the number of RCU BH batches started thus far for debug & stats. 551 */ 552 unsigned long rcu_batches_started_bh(void) 553 { 554 return rcu_bh_state.gpnum; 555 } 556 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 557 558 /* 559 * Return the number of RCU batches completed thus far for debug & stats. 560 */ 561 unsigned long rcu_batches_completed(void) 562 { 563 return rcu_state_p->completed; 564 } 565 EXPORT_SYMBOL_GPL(rcu_batches_completed); 566 567 /* 568 * Return the number of RCU-sched batches completed thus far for debug & stats. 569 */ 570 unsigned long rcu_batches_completed_sched(void) 571 { 572 return rcu_sched_state.completed; 573 } 574 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 575 576 /* 577 * Return the number of RCU BH batches completed thus far for debug & stats. 578 */ 579 unsigned long rcu_batches_completed_bh(void) 580 { 581 return rcu_bh_state.completed; 582 } 583 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 584 585 /* 586 * Return the number of RCU expedited batches completed thus far for 587 * debug & stats. Odd numbers mean that a batch is in progress, even 588 * numbers mean idle. The value returned will thus be roughly double 589 * the cumulative batches since boot. 590 */ 591 unsigned long rcu_exp_batches_completed(void) 592 { 593 return rcu_state_p->expedited_sequence; 594 } 595 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 596 597 /* 598 * Return the number of RCU-sched expedited batches completed thus far 599 * for debug & stats. Similar to rcu_exp_batches_completed(). 600 */ 601 unsigned long rcu_exp_batches_completed_sched(void) 602 { 603 return rcu_sched_state.expedited_sequence; 604 } 605 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 606 607 /* 608 * Force a quiescent state. 609 */ 610 void rcu_force_quiescent_state(void) 611 { 612 force_quiescent_state(rcu_state_p); 613 } 614 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 615 616 /* 617 * Force a quiescent state for RCU BH. 618 */ 619 void rcu_bh_force_quiescent_state(void) 620 { 621 force_quiescent_state(&rcu_bh_state); 622 } 623 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 624 625 /* 626 * Force a quiescent state for RCU-sched. 627 */ 628 void rcu_sched_force_quiescent_state(void) 629 { 630 force_quiescent_state(&rcu_sched_state); 631 } 632 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 633 634 /* 635 * Show the state of the grace-period kthreads. 636 */ 637 void show_rcu_gp_kthreads(void) 638 { 639 struct rcu_state *rsp; 640 641 for_each_rcu_flavor(rsp) { 642 pr_info("%s: wait state: %d ->state: %#lx\n", 643 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 644 /* sched_show_task(rsp->gp_kthread); */ 645 } 646 } 647 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 648 649 /* 650 * Record the number of times rcutorture tests have been initiated and 651 * terminated. This information allows the debugfs tracing stats to be 652 * correlated to the rcutorture messages, even when the rcutorture module 653 * is being repeatedly loaded and unloaded. In other words, we cannot 654 * store this state in rcutorture itself. 655 */ 656 void rcutorture_record_test_transition(void) 657 { 658 rcutorture_testseq++; 659 rcutorture_vernum = 0; 660 } 661 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 662 663 /* 664 * Send along grace-period-related data for rcutorture diagnostics. 665 */ 666 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 667 unsigned long *gpnum, unsigned long *completed) 668 { 669 struct rcu_state *rsp = NULL; 670 671 switch (test_type) { 672 case RCU_FLAVOR: 673 rsp = rcu_state_p; 674 break; 675 case RCU_BH_FLAVOR: 676 rsp = &rcu_bh_state; 677 break; 678 case RCU_SCHED_FLAVOR: 679 rsp = &rcu_sched_state; 680 break; 681 default: 682 break; 683 } 684 if (rsp == NULL) 685 return; 686 *flags = READ_ONCE(rsp->gp_flags); 687 *gpnum = READ_ONCE(rsp->gpnum); 688 *completed = READ_ONCE(rsp->completed); 689 } 690 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 691 692 /* 693 * Record the number of writer passes through the current rcutorture test. 694 * This is also used to correlate debugfs tracing stats with the rcutorture 695 * messages. 696 */ 697 void rcutorture_record_progress(unsigned long vernum) 698 { 699 rcutorture_vernum++; 700 } 701 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 702 703 /* 704 * Return the root node of the specified rcu_state structure. 705 */ 706 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 707 { 708 return &rsp->node[0]; 709 } 710 711 /* 712 * Enter an RCU extended quiescent state, which can be either the 713 * idle loop or adaptive-tickless usermode execution. 714 * 715 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 716 * the possibility of usermode upcalls having messed up our count 717 * of interrupt nesting level during the prior busy period. 718 */ 719 static void rcu_eqs_enter(bool user) 720 { 721 struct rcu_state *rsp; 722 struct rcu_data *rdp; 723 struct rcu_dynticks *rdtp; 724 725 rdtp = this_cpu_ptr(&rcu_dynticks); 726 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); 727 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 728 rdtp->dynticks_nesting == 0); 729 if (rdtp->dynticks_nesting != 1) { 730 rdtp->dynticks_nesting--; 731 return; 732 } 733 734 lockdep_assert_irqs_disabled(); 735 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks); 736 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 737 for_each_rcu_flavor(rsp) { 738 rdp = this_cpu_ptr(rsp->rda); 739 do_nocb_deferred_wakeup(rdp); 740 } 741 rcu_prepare_for_idle(); 742 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 743 rcu_dynticks_eqs_enter(); 744 rcu_dynticks_task_enter(); 745 } 746 747 /** 748 * rcu_idle_enter - inform RCU that current CPU is entering idle 749 * 750 * Enter idle mode, in other words, -leave- the mode in which RCU 751 * read-side critical sections can occur. (Though RCU read-side 752 * critical sections can occur in irq handlers in idle, a possibility 753 * handled by irq_enter() and irq_exit().) 754 * 755 * If you add or remove a call to rcu_idle_enter(), be sure to test with 756 * CONFIG_RCU_EQS_DEBUG=y. 757 */ 758 void rcu_idle_enter(void) 759 { 760 lockdep_assert_irqs_disabled(); 761 rcu_eqs_enter(false); 762 } 763 764 #ifdef CONFIG_NO_HZ_FULL 765 /** 766 * rcu_user_enter - inform RCU that we are resuming userspace. 767 * 768 * Enter RCU idle mode right before resuming userspace. No use of RCU 769 * is permitted between this call and rcu_user_exit(). This way the 770 * CPU doesn't need to maintain the tick for RCU maintenance purposes 771 * when the CPU runs in userspace. 772 * 773 * If you add or remove a call to rcu_user_enter(), be sure to test with 774 * CONFIG_RCU_EQS_DEBUG=y. 775 */ 776 void rcu_user_enter(void) 777 { 778 lockdep_assert_irqs_disabled(); 779 rcu_eqs_enter(true); 780 } 781 #endif /* CONFIG_NO_HZ_FULL */ 782 783 /** 784 * rcu_nmi_exit - inform RCU of exit from NMI context 785 * 786 * If we are returning from the outermost NMI handler that interrupted an 787 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 788 * to let the RCU grace-period handling know that the CPU is back to 789 * being RCU-idle. 790 * 791 * If you add or remove a call to rcu_nmi_exit(), be sure to test 792 * with CONFIG_RCU_EQS_DEBUG=y. 793 */ 794 void rcu_nmi_exit(void) 795 { 796 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 797 798 /* 799 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 800 * (We are exiting an NMI handler, so RCU better be paying attention 801 * to us!) 802 */ 803 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 804 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 805 806 /* 807 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 808 * leave it in non-RCU-idle state. 809 */ 810 if (rdtp->dynticks_nmi_nesting != 1) { 811 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks); 812 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */ 813 rdtp->dynticks_nmi_nesting - 2); 814 return; 815 } 816 817 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 818 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks); 819 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 820 rcu_dynticks_eqs_enter(); 821 } 822 823 /** 824 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 825 * 826 * Exit from an interrupt handler, which might possibly result in entering 827 * idle mode, in other words, leaving the mode in which read-side critical 828 * sections can occur. The caller must have disabled interrupts. 829 * 830 * This code assumes that the idle loop never does anything that might 831 * result in unbalanced calls to irq_enter() and irq_exit(). If your 832 * architecture's idle loop violates this assumption, RCU will give you what 833 * you deserve, good and hard. But very infrequently and irreproducibly. 834 * 835 * Use things like work queues to work around this limitation. 836 * 837 * You have been warned. 838 * 839 * If you add or remove a call to rcu_irq_exit(), be sure to test with 840 * CONFIG_RCU_EQS_DEBUG=y. 841 */ 842 void rcu_irq_exit(void) 843 { 844 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 845 846 lockdep_assert_irqs_disabled(); 847 if (rdtp->dynticks_nmi_nesting == 1) 848 rcu_prepare_for_idle(); 849 rcu_nmi_exit(); 850 if (rdtp->dynticks_nmi_nesting == 0) 851 rcu_dynticks_task_enter(); 852 } 853 854 /* 855 * Wrapper for rcu_irq_exit() where interrupts are enabled. 856 * 857 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 858 * with CONFIG_RCU_EQS_DEBUG=y. 859 */ 860 void rcu_irq_exit_irqson(void) 861 { 862 unsigned long flags; 863 864 local_irq_save(flags); 865 rcu_irq_exit(); 866 local_irq_restore(flags); 867 } 868 869 /* 870 * Exit an RCU extended quiescent state, which can be either the 871 * idle loop or adaptive-tickless usermode execution. 872 * 873 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 874 * allow for the possibility of usermode upcalls messing up our count of 875 * interrupt nesting level during the busy period that is just now starting. 876 */ 877 static void rcu_eqs_exit(bool user) 878 { 879 struct rcu_dynticks *rdtp; 880 long oldval; 881 882 lockdep_assert_irqs_disabled(); 883 rdtp = this_cpu_ptr(&rcu_dynticks); 884 oldval = rdtp->dynticks_nesting; 885 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 886 if (oldval) { 887 rdtp->dynticks_nesting++; 888 return; 889 } 890 rcu_dynticks_task_exit(); 891 rcu_dynticks_eqs_exit(); 892 rcu_cleanup_after_idle(); 893 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks); 894 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 895 WRITE_ONCE(rdtp->dynticks_nesting, 1); 896 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 897 } 898 899 /** 900 * rcu_idle_exit - inform RCU that current CPU is leaving idle 901 * 902 * Exit idle mode, in other words, -enter- the mode in which RCU 903 * read-side critical sections can occur. 904 * 905 * If you add or remove a call to rcu_idle_exit(), be sure to test with 906 * CONFIG_RCU_EQS_DEBUG=y. 907 */ 908 void rcu_idle_exit(void) 909 { 910 unsigned long flags; 911 912 local_irq_save(flags); 913 rcu_eqs_exit(false); 914 local_irq_restore(flags); 915 } 916 917 #ifdef CONFIG_NO_HZ_FULL 918 /** 919 * rcu_user_exit - inform RCU that we are exiting userspace. 920 * 921 * Exit RCU idle mode while entering the kernel because it can 922 * run a RCU read side critical section anytime. 923 * 924 * If you add or remove a call to rcu_user_exit(), be sure to test with 925 * CONFIG_RCU_EQS_DEBUG=y. 926 */ 927 void rcu_user_exit(void) 928 { 929 rcu_eqs_exit(1); 930 } 931 #endif /* CONFIG_NO_HZ_FULL */ 932 933 /** 934 * rcu_nmi_enter - inform RCU of entry to NMI context 935 * 936 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 937 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 938 * that the CPU is active. This implementation permits nested NMIs, as 939 * long as the nesting level does not overflow an int. (You will probably 940 * run out of stack space first.) 941 * 942 * If you add or remove a call to rcu_nmi_enter(), be sure to test 943 * with CONFIG_RCU_EQS_DEBUG=y. 944 */ 945 void rcu_nmi_enter(void) 946 { 947 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 948 long incby = 2; 949 950 /* Complain about underflow. */ 951 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 952 953 /* 954 * If idle from RCU viewpoint, atomically increment ->dynticks 955 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 956 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 957 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 958 * to be in the outermost NMI handler that interrupted an RCU-idle 959 * period (observation due to Andy Lutomirski). 960 */ 961 if (rcu_dynticks_curr_cpu_in_eqs()) { 962 rcu_dynticks_eqs_exit(); 963 incby = 1; 964 } 965 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 966 rdtp->dynticks_nmi_nesting, 967 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks); 968 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */ 969 rdtp->dynticks_nmi_nesting + incby); 970 barrier(); 971 } 972 973 /** 974 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 975 * 976 * Enter an interrupt handler, which might possibly result in exiting 977 * idle mode, in other words, entering the mode in which read-side critical 978 * sections can occur. The caller must have disabled interrupts. 979 * 980 * Note that the Linux kernel is fully capable of entering an interrupt 981 * handler that it never exits, for example when doing upcalls to user mode! 982 * This code assumes that the idle loop never does upcalls to user mode. 983 * If your architecture's idle loop does do upcalls to user mode (or does 984 * anything else that results in unbalanced calls to the irq_enter() and 985 * irq_exit() functions), RCU will give you what you deserve, good and hard. 986 * But very infrequently and irreproducibly. 987 * 988 * Use things like work queues to work around this limitation. 989 * 990 * You have been warned. 991 * 992 * If you add or remove a call to rcu_irq_enter(), be sure to test with 993 * CONFIG_RCU_EQS_DEBUG=y. 994 */ 995 void rcu_irq_enter(void) 996 { 997 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 998 999 lockdep_assert_irqs_disabled(); 1000 if (rdtp->dynticks_nmi_nesting == 0) 1001 rcu_dynticks_task_exit(); 1002 rcu_nmi_enter(); 1003 if (rdtp->dynticks_nmi_nesting == 1) 1004 rcu_cleanup_after_idle(); 1005 } 1006 1007 /* 1008 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1009 * 1010 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1011 * with CONFIG_RCU_EQS_DEBUG=y. 1012 */ 1013 void rcu_irq_enter_irqson(void) 1014 { 1015 unsigned long flags; 1016 1017 local_irq_save(flags); 1018 rcu_irq_enter(); 1019 local_irq_restore(flags); 1020 } 1021 1022 /** 1023 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1024 * 1025 * Return true if RCU is watching the running CPU, which means that this 1026 * CPU can safely enter RCU read-side critical sections. In other words, 1027 * if the current CPU is in its idle loop and is neither in an interrupt 1028 * or NMI handler, return true. 1029 */ 1030 bool notrace rcu_is_watching(void) 1031 { 1032 bool ret; 1033 1034 preempt_disable_notrace(); 1035 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1036 preempt_enable_notrace(); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL_GPL(rcu_is_watching); 1040 1041 /* 1042 * If a holdout task is actually running, request an urgent quiescent 1043 * state from its CPU. This is unsynchronized, so migrations can cause 1044 * the request to go to the wrong CPU. Which is OK, all that will happen 1045 * is that the CPU's next context switch will be a bit slower and next 1046 * time around this task will generate another request. 1047 */ 1048 void rcu_request_urgent_qs_task(struct task_struct *t) 1049 { 1050 int cpu; 1051 1052 barrier(); 1053 cpu = task_cpu(t); 1054 if (!task_curr(t)) 1055 return; /* This task is not running on that CPU. */ 1056 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); 1057 } 1058 1059 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1060 1061 /* 1062 * Is the current CPU online? Disable preemption to avoid false positives 1063 * that could otherwise happen due to the current CPU number being sampled, 1064 * this task being preempted, its old CPU being taken offline, resuming 1065 * on some other CPU, then determining that its old CPU is now offline. 1066 * It is OK to use RCU on an offline processor during initial boot, hence 1067 * the check for rcu_scheduler_fully_active. Note also that it is OK 1068 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1069 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1070 * offline to continue to use RCU for one jiffy after marking itself 1071 * offline in the cpu_online_mask. This leniency is necessary given the 1072 * non-atomic nature of the online and offline processing, for example, 1073 * the fact that a CPU enters the scheduler after completing the teardown 1074 * of the CPU. 1075 * 1076 * This is also why RCU internally marks CPUs online during in the 1077 * preparation phase and offline after the CPU has been taken down. 1078 * 1079 * Disable checking if in an NMI handler because we cannot safely report 1080 * errors from NMI handlers anyway. 1081 */ 1082 bool rcu_lockdep_current_cpu_online(void) 1083 { 1084 struct rcu_data *rdp; 1085 struct rcu_node *rnp; 1086 bool ret; 1087 1088 if (in_nmi()) 1089 return true; 1090 preempt_disable(); 1091 rdp = this_cpu_ptr(&rcu_sched_data); 1092 rnp = rdp->mynode; 1093 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1094 !rcu_scheduler_fully_active; 1095 preempt_enable(); 1096 return ret; 1097 } 1098 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1099 1100 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1101 1102 /** 1103 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1104 * 1105 * If the current CPU is idle or running at a first-level (not nested) 1106 * interrupt from idle, return true. The caller must have at least 1107 * disabled preemption. 1108 */ 1109 static int rcu_is_cpu_rrupt_from_idle(void) 1110 { 1111 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 && 1112 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1; 1113 } 1114 1115 /* 1116 * We are reporting a quiescent state on behalf of some other CPU, so 1117 * it is our responsibility to check for and handle potential overflow 1118 * of the rcu_node ->gpnum counter with respect to the rcu_data counters. 1119 * After all, the CPU might be in deep idle state, and thus executing no 1120 * code whatsoever. 1121 */ 1122 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1123 { 1124 raw_lockdep_assert_held_rcu_node(rnp); 1125 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum)) 1126 WRITE_ONCE(rdp->gpwrap, true); 1127 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum)) 1128 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4; 1129 } 1130 1131 /* 1132 * Snapshot the specified CPU's dynticks counter so that we can later 1133 * credit them with an implicit quiescent state. Return 1 if this CPU 1134 * is in dynticks idle mode, which is an extended quiescent state. 1135 */ 1136 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1137 { 1138 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1139 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1140 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1141 rcu_gpnum_ovf(rdp->mynode, rdp); 1142 return 1; 1143 } 1144 return 0; 1145 } 1146 1147 /* 1148 * Handler for the irq_work request posted when a grace period has 1149 * gone on for too long, but not yet long enough for an RCU CPU 1150 * stall warning. Set state appropriately, but just complain if 1151 * there is unexpected state on entry. 1152 */ 1153 static void rcu_iw_handler(struct irq_work *iwp) 1154 { 1155 struct rcu_data *rdp; 1156 struct rcu_node *rnp; 1157 1158 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1159 rnp = rdp->mynode; 1160 raw_spin_lock_rcu_node(rnp); 1161 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1162 rdp->rcu_iw_gpnum = rnp->gpnum; 1163 rdp->rcu_iw_pending = false; 1164 } 1165 raw_spin_unlock_rcu_node(rnp); 1166 } 1167 1168 /* 1169 * Return true if the specified CPU has passed through a quiescent 1170 * state by virtue of being in or having passed through an dynticks 1171 * idle state since the last call to dyntick_save_progress_counter() 1172 * for this same CPU, or by virtue of having been offline. 1173 */ 1174 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1175 { 1176 unsigned long jtsq; 1177 bool *rnhqp; 1178 bool *ruqp; 1179 struct rcu_node *rnp = rdp->mynode; 1180 1181 /* 1182 * If the CPU passed through or entered a dynticks idle phase with 1183 * no active irq/NMI handlers, then we can safely pretend that the CPU 1184 * already acknowledged the request to pass through a quiescent 1185 * state. Either way, that CPU cannot possibly be in an RCU 1186 * read-side critical section that started before the beginning 1187 * of the current RCU grace period. 1188 */ 1189 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1190 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1191 rdp->dynticks_fqs++; 1192 rcu_gpnum_ovf(rnp, rdp); 1193 return 1; 1194 } 1195 1196 /* 1197 * Has this CPU encountered a cond_resched() since the beginning 1198 * of the grace period? For this to be the case, the CPU has to 1199 * have noticed the current grace period. This might not be the 1200 * case for nohz_full CPUs looping in the kernel. 1201 */ 1202 jtsq = jiffies_till_sched_qs; 1203 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); 1204 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1205 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && 1206 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) { 1207 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); 1208 rcu_gpnum_ovf(rnp, rdp); 1209 return 1; 1210 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) { 1211 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ 1212 smp_store_release(ruqp, true); 1213 } 1214 1215 /* Check for the CPU being offline. */ 1216 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { 1217 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1218 rdp->offline_fqs++; 1219 rcu_gpnum_ovf(rnp, rdp); 1220 return 1; 1221 } 1222 1223 /* 1224 * A CPU running for an extended time within the kernel can 1225 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1226 * even context-switching back and forth between a pair of 1227 * in-kernel CPU-bound tasks cannot advance grace periods. 1228 * So if the grace period is old enough, make the CPU pay attention. 1229 * Note that the unsynchronized assignments to the per-CPU 1230 * rcu_need_heavy_qs variable are safe. Yes, setting of 1231 * bits can be lost, but they will be set again on the next 1232 * force-quiescent-state pass. So lost bit sets do not result 1233 * in incorrect behavior, merely in a grace period lasting 1234 * a few jiffies longer than it might otherwise. Because 1235 * there are at most four threads involved, and because the 1236 * updates are only once every few jiffies, the probability of 1237 * lossage (and thus of slight grace-period extension) is 1238 * quite low. 1239 */ 1240 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); 1241 if (!READ_ONCE(*rnhqp) && 1242 (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1243 time_after(jiffies, rdp->rsp->jiffies_resched))) { 1244 WRITE_ONCE(*rnhqp, true); 1245 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1246 smp_store_release(ruqp, true); 1247 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */ 1248 } 1249 1250 /* 1251 * If more than halfway to RCU CPU stall-warning time, do a 1252 * resched_cpu() to try to loosen things up a bit. Also check to 1253 * see if the CPU is getting hammered with interrupts, but only 1254 * once per grace period, just to keep the IPIs down to a dull roar. 1255 */ 1256 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) { 1257 resched_cpu(rdp->cpu); 1258 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1259 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum && 1260 (rnp->ffmask & rdp->grpmask)) { 1261 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1262 rdp->rcu_iw_pending = true; 1263 rdp->rcu_iw_gpnum = rnp->gpnum; 1264 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1265 } 1266 } 1267 1268 return 0; 1269 } 1270 1271 static void record_gp_stall_check_time(struct rcu_state *rsp) 1272 { 1273 unsigned long j = jiffies; 1274 unsigned long j1; 1275 1276 rsp->gp_start = j; 1277 smp_wmb(); /* Record start time before stall time. */ 1278 j1 = rcu_jiffies_till_stall_check(); 1279 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1280 rsp->jiffies_resched = j + j1 / 2; 1281 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1282 } 1283 1284 /* 1285 * Convert a ->gp_state value to a character string. 1286 */ 1287 static const char *gp_state_getname(short gs) 1288 { 1289 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1290 return "???"; 1291 return gp_state_names[gs]; 1292 } 1293 1294 /* 1295 * Complain about starvation of grace-period kthread. 1296 */ 1297 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1298 { 1299 unsigned long gpa; 1300 unsigned long j; 1301 1302 j = jiffies; 1303 gpa = READ_ONCE(rsp->gp_activity); 1304 if (j - gpa > 2 * HZ) { 1305 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1306 rsp->name, j - gpa, 1307 rsp->gpnum, rsp->completed, 1308 rsp->gp_flags, 1309 gp_state_getname(rsp->gp_state), rsp->gp_state, 1310 rsp->gp_kthread ? rsp->gp_kthread->state : ~0, 1311 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1); 1312 if (rsp->gp_kthread) { 1313 pr_err("RCU grace-period kthread stack dump:\n"); 1314 sched_show_task(rsp->gp_kthread); 1315 wake_up_process(rsp->gp_kthread); 1316 } 1317 } 1318 } 1319 1320 /* 1321 * Dump stacks of all tasks running on stalled CPUs. First try using 1322 * NMIs, but fall back to manual remote stack tracing on architectures 1323 * that don't support NMI-based stack dumps. The NMI-triggered stack 1324 * traces are more accurate because they are printed by the target CPU. 1325 */ 1326 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1327 { 1328 int cpu; 1329 unsigned long flags; 1330 struct rcu_node *rnp; 1331 1332 rcu_for_each_leaf_node(rsp, rnp) { 1333 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1334 for_each_leaf_node_possible_cpu(rnp, cpu) 1335 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1336 if (!trigger_single_cpu_backtrace(cpu)) 1337 dump_cpu_task(cpu); 1338 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1339 } 1340 } 1341 1342 /* 1343 * If too much time has passed in the current grace period, and if 1344 * so configured, go kick the relevant kthreads. 1345 */ 1346 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1347 { 1348 unsigned long j; 1349 1350 if (!rcu_kick_kthreads) 1351 return; 1352 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1353 if (time_after(jiffies, j) && rsp->gp_kthread && 1354 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1355 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1356 rcu_ftrace_dump(DUMP_ALL); 1357 wake_up_process(rsp->gp_kthread); 1358 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1359 } 1360 } 1361 1362 static inline void panic_on_rcu_stall(void) 1363 { 1364 if (sysctl_panic_on_rcu_stall) 1365 panic("RCU Stall\n"); 1366 } 1367 1368 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1369 { 1370 int cpu; 1371 long delta; 1372 unsigned long flags; 1373 unsigned long gpa; 1374 unsigned long j; 1375 int ndetected = 0; 1376 struct rcu_node *rnp = rcu_get_root(rsp); 1377 long totqlen = 0; 1378 1379 /* Kick and suppress, if so configured. */ 1380 rcu_stall_kick_kthreads(rsp); 1381 if (rcu_cpu_stall_suppress) 1382 return; 1383 1384 /* Only let one CPU complain about others per time interval. */ 1385 1386 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1387 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1388 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1389 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1390 return; 1391 } 1392 WRITE_ONCE(rsp->jiffies_stall, 1393 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1394 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1395 1396 /* 1397 * OK, time to rat on our buddy... 1398 * See Documentation/RCU/stallwarn.txt for info on how to debug 1399 * RCU CPU stall warnings. 1400 */ 1401 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1402 rsp->name); 1403 print_cpu_stall_info_begin(); 1404 rcu_for_each_leaf_node(rsp, rnp) { 1405 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1406 ndetected += rcu_print_task_stall(rnp); 1407 if (rnp->qsmask != 0) { 1408 for_each_leaf_node_possible_cpu(rnp, cpu) 1409 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1410 print_cpu_stall_info(rsp, cpu); 1411 ndetected++; 1412 } 1413 } 1414 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1415 } 1416 1417 print_cpu_stall_info_end(); 1418 for_each_possible_cpu(cpu) 1419 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1420 cpu)->cblist); 1421 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1422 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1423 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1424 if (ndetected) { 1425 rcu_dump_cpu_stacks(rsp); 1426 1427 /* Complain about tasks blocking the grace period. */ 1428 rcu_print_detail_task_stall(rsp); 1429 } else { 1430 if (READ_ONCE(rsp->gpnum) != gpnum || 1431 READ_ONCE(rsp->completed) == gpnum) { 1432 pr_err("INFO: Stall ended before state dump start\n"); 1433 } else { 1434 j = jiffies; 1435 gpa = READ_ONCE(rsp->gp_activity); 1436 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1437 rsp->name, j - gpa, j, gpa, 1438 jiffies_till_next_fqs, 1439 rcu_get_root(rsp)->qsmask); 1440 /* In this case, the current CPU might be at fault. */ 1441 sched_show_task(current); 1442 } 1443 } 1444 1445 rcu_check_gp_kthread_starvation(rsp); 1446 1447 panic_on_rcu_stall(); 1448 1449 force_quiescent_state(rsp); /* Kick them all. */ 1450 } 1451 1452 static void print_cpu_stall(struct rcu_state *rsp) 1453 { 1454 int cpu; 1455 unsigned long flags; 1456 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1457 struct rcu_node *rnp = rcu_get_root(rsp); 1458 long totqlen = 0; 1459 1460 /* Kick and suppress, if so configured. */ 1461 rcu_stall_kick_kthreads(rsp); 1462 if (rcu_cpu_stall_suppress) 1463 return; 1464 1465 /* 1466 * OK, time to rat on ourselves... 1467 * See Documentation/RCU/stallwarn.txt for info on how to debug 1468 * RCU CPU stall warnings. 1469 */ 1470 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1471 print_cpu_stall_info_begin(); 1472 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1473 print_cpu_stall_info(rsp, smp_processor_id()); 1474 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1475 print_cpu_stall_info_end(); 1476 for_each_possible_cpu(cpu) 1477 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1478 cpu)->cblist); 1479 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1480 jiffies - rsp->gp_start, 1481 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1482 1483 rcu_check_gp_kthread_starvation(rsp); 1484 1485 rcu_dump_cpu_stacks(rsp); 1486 1487 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1488 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1489 WRITE_ONCE(rsp->jiffies_stall, 1490 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1492 1493 panic_on_rcu_stall(); 1494 1495 /* 1496 * Attempt to revive the RCU machinery by forcing a context switch. 1497 * 1498 * A context switch would normally allow the RCU state machine to make 1499 * progress and it could be we're stuck in kernel space without context 1500 * switches for an entirely unreasonable amount of time. 1501 */ 1502 resched_cpu(smp_processor_id()); 1503 } 1504 1505 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1506 { 1507 unsigned long completed; 1508 unsigned long gpnum; 1509 unsigned long gps; 1510 unsigned long j; 1511 unsigned long js; 1512 struct rcu_node *rnp; 1513 1514 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1515 !rcu_gp_in_progress(rsp)) 1516 return; 1517 rcu_stall_kick_kthreads(rsp); 1518 j = jiffies; 1519 1520 /* 1521 * Lots of memory barriers to reject false positives. 1522 * 1523 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1524 * then rsp->gp_start, and finally rsp->completed. These values 1525 * are updated in the opposite order with memory barriers (or 1526 * equivalent) during grace-period initialization and cleanup. 1527 * Now, a false positive can occur if we get an new value of 1528 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1529 * the memory barriers, the only way that this can happen is if one 1530 * grace period ends and another starts between these two fetches. 1531 * Detect this by comparing rsp->completed with the previous fetch 1532 * from rsp->gpnum. 1533 * 1534 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1535 * and rsp->gp_start suffice to forestall false positives. 1536 */ 1537 gpnum = READ_ONCE(rsp->gpnum); 1538 smp_rmb(); /* Pick up ->gpnum first... */ 1539 js = READ_ONCE(rsp->jiffies_stall); 1540 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1541 gps = READ_ONCE(rsp->gp_start); 1542 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1543 completed = READ_ONCE(rsp->completed); 1544 if (ULONG_CMP_GE(completed, gpnum) || 1545 ULONG_CMP_LT(j, js) || 1546 ULONG_CMP_GE(gps, js)) 1547 return; /* No stall or GP completed since entering function. */ 1548 rnp = rdp->mynode; 1549 if (rcu_gp_in_progress(rsp) && 1550 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1551 1552 /* We haven't checked in, so go dump stack. */ 1553 print_cpu_stall(rsp); 1554 1555 } else if (rcu_gp_in_progress(rsp) && 1556 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1557 1558 /* They had a few time units to dump stack, so complain. */ 1559 print_other_cpu_stall(rsp, gpnum); 1560 } 1561 } 1562 1563 /** 1564 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1565 * 1566 * Set the stall-warning timeout way off into the future, thus preventing 1567 * any RCU CPU stall-warning messages from appearing in the current set of 1568 * RCU grace periods. 1569 * 1570 * The caller must disable hard irqs. 1571 */ 1572 void rcu_cpu_stall_reset(void) 1573 { 1574 struct rcu_state *rsp; 1575 1576 for_each_rcu_flavor(rsp) 1577 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1578 } 1579 1580 /* 1581 * Determine the value that ->completed will have at the end of the 1582 * next subsequent grace period. This is used to tag callbacks so that 1583 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1584 * been dyntick-idle for an extended period with callbacks under the 1585 * influence of RCU_FAST_NO_HZ. 1586 * 1587 * The caller must hold rnp->lock with interrupts disabled. 1588 */ 1589 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1590 struct rcu_node *rnp) 1591 { 1592 raw_lockdep_assert_held_rcu_node(rnp); 1593 1594 /* 1595 * If RCU is idle, we just wait for the next grace period. 1596 * But we can only be sure that RCU is idle if we are looking 1597 * at the root rcu_node structure -- otherwise, a new grace 1598 * period might have started, but just not yet gotten around 1599 * to initializing the current non-root rcu_node structure. 1600 */ 1601 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1602 return rnp->completed + 1; 1603 1604 /* 1605 * If the current rcu_node structure believes that RCU is 1606 * idle, and if the rcu_state structure does not yet reflect 1607 * the start of a new grace period, then the next grace period 1608 * will suffice. The memory barrier is needed to accurately 1609 * sample the rsp->gpnum, and pairs with the second lock 1610 * acquisition in rcu_gp_init(), which is augmented with 1611 * smp_mb__after_unlock_lock() for this purpose. 1612 */ 1613 if (rnp->gpnum == rnp->completed) { 1614 smp_mb(); /* See above block comment. */ 1615 if (READ_ONCE(rsp->gpnum) == rnp->completed) 1616 return rnp->completed + 1; 1617 } 1618 1619 /* 1620 * Otherwise, wait for a possible partial grace period and 1621 * then the subsequent full grace period. 1622 */ 1623 return rnp->completed + 2; 1624 } 1625 1626 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1627 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1628 unsigned long c, const char *s) 1629 { 1630 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1631 rnp->completed, c, rnp->level, 1632 rnp->grplo, rnp->grphi, s); 1633 } 1634 1635 /* 1636 * Start the specified grace period, as needed to handle newly arrived 1637 * callbacks. The required future grace periods are recorded in each 1638 * rcu_node structure's ->need_future_gp[] field. Returns true if there 1639 * is reason to awaken the grace-period kthread. 1640 * 1641 * The caller must hold the specified rcu_node structure's ->lock, which 1642 * is why the caller is responsible for waking the grace-period kthread. 1643 */ 1644 static bool rcu_start_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1645 unsigned long c) 1646 { 1647 bool ret = false; 1648 struct rcu_state *rsp = rdp->rsp; 1649 struct rcu_node *rnp_root; 1650 1651 /* 1652 * Use funnel locking to either acquire the root rcu_node 1653 * structure's lock or bail out if the need for this grace period 1654 * has already been recorded -- or has already started. If there 1655 * is already a grace period in progress in a non-leaf node, no 1656 * recording is needed because the end of the grace period will 1657 * scan the leaf rcu_node structures. Note that rnp->lock must 1658 * not be released. 1659 */ 1660 raw_lockdep_assert_held_rcu_node(rnp); 1661 trace_rcu_this_gp(rnp, rdp, c, TPS("Startleaf")); 1662 for (rnp_root = rnp; 1; rnp_root = rnp_root->parent) { 1663 if (rnp_root != rnp) 1664 raw_spin_lock_rcu_node(rnp_root); 1665 WARN_ON_ONCE(ULONG_CMP_LT(rnp_root->gpnum + 1666 need_future_gp_mask(), c)); 1667 if (need_future_gp_element(rnp_root, c) || 1668 ULONG_CMP_GE(rnp_root->gpnum, c) || 1669 (rnp != rnp_root && 1670 rnp_root->gpnum != rnp_root->completed)) { 1671 trace_rcu_this_gp(rnp_root, rdp, c, TPS("Prestarted")); 1672 goto unlock_out; 1673 } 1674 need_future_gp_element(rnp_root, c) = true; 1675 if (rnp_root != rnp && rnp_root->parent != NULL) 1676 raw_spin_unlock_rcu_node(rnp_root); 1677 if (!rnp_root->parent) 1678 break; /* At root, and perhaps also leaf. */ 1679 } 1680 1681 /* If GP already in progress, just leave, otherwise start one. */ 1682 if (rnp_root->gpnum != rnp_root->completed) { 1683 trace_rcu_this_gp(rnp_root, rdp, c, TPS("Startedleafroot")); 1684 goto unlock_out; 1685 } 1686 trace_rcu_this_gp(rnp_root, rdp, c, TPS("Startedroot")); 1687 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT); 1688 if (!rsp->gp_kthread) { 1689 trace_rcu_this_gp(rnp_root, rdp, c, TPS("NoGPkthread")); 1690 goto unlock_out; 1691 } 1692 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("newreq")); 1693 ret = true; /* Caller must wake GP kthread. */ 1694 unlock_out: 1695 if (rnp != rnp_root) 1696 raw_spin_unlock_rcu_node(rnp_root); 1697 return ret; 1698 } 1699 1700 /* 1701 * Clean up any old requests for the just-ended grace period. Also return 1702 * whether any additional grace periods have been requested. 1703 */ 1704 static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1705 { 1706 unsigned long c = rnp->completed; 1707 bool needmore; 1708 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1709 1710 need_future_gp_element(rnp, c) = false; 1711 needmore = need_any_future_gp(rnp); 1712 trace_rcu_this_gp(rnp, rdp, c, 1713 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1714 return needmore; 1715 } 1716 1717 /* 1718 * Awaken the grace-period kthread for the specified flavor of RCU. 1719 * Don't do a self-awaken, and don't bother awakening when there is 1720 * nothing for the grace-period kthread to do (as in several CPUs 1721 * raced to awaken, and we lost), and finally don't try to awaken 1722 * a kthread that has not yet been created. 1723 */ 1724 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1725 { 1726 if (current == rsp->gp_kthread || 1727 !READ_ONCE(rsp->gp_flags) || 1728 !rsp->gp_kthread) 1729 return; 1730 swake_up(&rsp->gp_wq); 1731 } 1732 1733 /* 1734 * If there is room, assign a ->completed number to any callbacks on 1735 * this CPU that have not already been assigned. Also accelerate any 1736 * callbacks that were previously assigned a ->completed number that has 1737 * since proven to be too conservative, which can happen if callbacks get 1738 * assigned a ->completed number while RCU is idle, but with reference to 1739 * a non-root rcu_node structure. This function is idempotent, so it does 1740 * not hurt to call it repeatedly. Returns an flag saying that we should 1741 * awaken the RCU grace-period kthread. 1742 * 1743 * The caller must hold rnp->lock with interrupts disabled. 1744 */ 1745 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1746 struct rcu_data *rdp) 1747 { 1748 unsigned long c; 1749 bool ret = false; 1750 1751 raw_lockdep_assert_held_rcu_node(rnp); 1752 1753 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1754 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1755 return false; 1756 1757 /* 1758 * Callbacks are often registered with incomplete grace-period 1759 * information. Something about the fact that getting exact 1760 * information requires acquiring a global lock... RCU therefore 1761 * makes a conservative estimate of the grace period number at which 1762 * a given callback will become ready to invoke. The following 1763 * code checks this estimate and improves it when possible, thus 1764 * accelerating callback invocation to an earlier grace-period 1765 * number. 1766 */ 1767 c = rcu_cbs_completed(rsp, rnp); 1768 if (rcu_segcblist_accelerate(&rdp->cblist, c)) 1769 ret = rcu_start_this_gp(rnp, rdp, c); 1770 1771 /* Trace depending on how much we were able to accelerate. */ 1772 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1773 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1774 else 1775 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1776 return ret; 1777 } 1778 1779 /* 1780 * Move any callbacks whose grace period has completed to the 1781 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1782 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1783 * sublist. This function is idempotent, so it does not hurt to 1784 * invoke it repeatedly. As long as it is not invoked -too- often... 1785 * Returns true if the RCU grace-period kthread needs to be awakened. 1786 * 1787 * The caller must hold rnp->lock with interrupts disabled. 1788 */ 1789 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1790 struct rcu_data *rdp) 1791 { 1792 raw_lockdep_assert_held_rcu_node(rnp); 1793 1794 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1795 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1796 return false; 1797 1798 /* 1799 * Find all callbacks whose ->completed numbers indicate that they 1800 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1801 */ 1802 rcu_segcblist_advance(&rdp->cblist, rnp->completed); 1803 1804 /* Classify any remaining callbacks. */ 1805 return rcu_accelerate_cbs(rsp, rnp, rdp); 1806 } 1807 1808 /* 1809 * Update CPU-local rcu_data state to record the beginnings and ends of 1810 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1811 * structure corresponding to the current CPU, and must have irqs disabled. 1812 * Returns true if the grace-period kthread needs to be awakened. 1813 */ 1814 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1815 struct rcu_data *rdp) 1816 { 1817 bool ret; 1818 bool need_gp; 1819 1820 raw_lockdep_assert_held_rcu_node(rnp); 1821 1822 /* Handle the ends of any preceding grace periods first. */ 1823 if (rdp->completed == rnp->completed && 1824 !unlikely(READ_ONCE(rdp->gpwrap))) { 1825 1826 /* No grace period end, so just accelerate recent callbacks. */ 1827 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1828 1829 } else { 1830 1831 /* Advance callbacks. */ 1832 ret = rcu_advance_cbs(rsp, rnp, rdp); 1833 1834 /* Remember that we saw this grace-period completion. */ 1835 rdp->completed = rnp->completed; 1836 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1837 } 1838 1839 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1840 /* 1841 * If the current grace period is waiting for this CPU, 1842 * set up to detect a quiescent state, otherwise don't 1843 * go looking for one. 1844 */ 1845 rdp->gpnum = rnp->gpnum; 1846 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1847 need_gp = !!(rnp->qsmask & rdp->grpmask); 1848 rdp->cpu_no_qs.b.norm = need_gp; 1849 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 1850 rdp->core_needs_qs = need_gp; 1851 zero_cpu_stall_ticks(rdp); 1852 WRITE_ONCE(rdp->gpwrap, false); 1853 rcu_gpnum_ovf(rnp, rdp); 1854 } 1855 return ret; 1856 } 1857 1858 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1859 { 1860 unsigned long flags; 1861 bool needwake; 1862 struct rcu_node *rnp; 1863 1864 local_irq_save(flags); 1865 rnp = rdp->mynode; 1866 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1867 rdp->completed == READ_ONCE(rnp->completed) && 1868 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1869 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1870 local_irq_restore(flags); 1871 return; 1872 } 1873 needwake = __note_gp_changes(rsp, rnp, rdp); 1874 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1875 if (needwake) 1876 rcu_gp_kthread_wake(rsp); 1877 } 1878 1879 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1880 { 1881 if (delay > 0 && 1882 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1883 schedule_timeout_uninterruptible(delay); 1884 } 1885 1886 /* 1887 * Initialize a new grace period. Return false if no grace period required. 1888 */ 1889 static bool rcu_gp_init(struct rcu_state *rsp) 1890 { 1891 unsigned long oldmask; 1892 struct rcu_data *rdp; 1893 struct rcu_node *rnp = rcu_get_root(rsp); 1894 1895 WRITE_ONCE(rsp->gp_activity, jiffies); 1896 raw_spin_lock_irq_rcu_node(rnp); 1897 if (!READ_ONCE(rsp->gp_flags)) { 1898 /* Spurious wakeup, tell caller to go back to sleep. */ 1899 raw_spin_unlock_irq_rcu_node(rnp); 1900 return false; 1901 } 1902 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1903 1904 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1905 /* 1906 * Grace period already in progress, don't start another. 1907 * Not supposed to be able to happen. 1908 */ 1909 raw_spin_unlock_irq_rcu_node(rnp); 1910 return false; 1911 } 1912 1913 /* Advance to a new grace period and initialize state. */ 1914 record_gp_stall_check_time(rsp); 1915 /* Record GP times before starting GP, hence smp_store_release(). */ 1916 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1917 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1918 raw_spin_unlock_irq_rcu_node(rnp); 1919 1920 /* 1921 * Apply per-leaf buffered online and offline operations to the 1922 * rcu_node tree. Note that this new grace period need not wait 1923 * for subsequent online CPUs, and that quiescent-state forcing 1924 * will handle subsequent offline CPUs. 1925 */ 1926 rcu_for_each_leaf_node(rsp, rnp) { 1927 rcu_gp_slow(rsp, gp_preinit_delay); 1928 raw_spin_lock_irq_rcu_node(rnp); 1929 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1930 !rnp->wait_blkd_tasks) { 1931 /* Nothing to do on this leaf rcu_node structure. */ 1932 raw_spin_unlock_irq_rcu_node(rnp); 1933 continue; 1934 } 1935 1936 /* Record old state, apply changes to ->qsmaskinit field. */ 1937 oldmask = rnp->qsmaskinit; 1938 rnp->qsmaskinit = rnp->qsmaskinitnext; 1939 1940 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1941 if (!oldmask != !rnp->qsmaskinit) { 1942 if (!oldmask) /* First online CPU for this rcu_node. */ 1943 rcu_init_new_rnp(rnp); 1944 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 1945 rnp->wait_blkd_tasks = true; 1946 else /* Last offline CPU and can propagate. */ 1947 rcu_cleanup_dead_rnp(rnp); 1948 } 1949 1950 /* 1951 * If all waited-on tasks from prior grace period are 1952 * done, and if all this rcu_node structure's CPUs are 1953 * still offline, propagate up the rcu_node tree and 1954 * clear ->wait_blkd_tasks. Otherwise, if one of this 1955 * rcu_node structure's CPUs has since come back online, 1956 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 1957 * checks for this, so just call it unconditionally). 1958 */ 1959 if (rnp->wait_blkd_tasks && 1960 (!rcu_preempt_has_tasks(rnp) || 1961 rnp->qsmaskinit)) { 1962 rnp->wait_blkd_tasks = false; 1963 rcu_cleanup_dead_rnp(rnp); 1964 } 1965 1966 raw_spin_unlock_irq_rcu_node(rnp); 1967 } 1968 1969 /* 1970 * Set the quiescent-state-needed bits in all the rcu_node 1971 * structures for all currently online CPUs in breadth-first order, 1972 * starting from the root rcu_node structure, relying on the layout 1973 * of the tree within the rsp->node[] array. Note that other CPUs 1974 * will access only the leaves of the hierarchy, thus seeing that no 1975 * grace period is in progress, at least until the corresponding 1976 * leaf node has been initialized. 1977 * 1978 * The grace period cannot complete until the initialization 1979 * process finishes, because this kthread handles both. 1980 */ 1981 rcu_for_each_node_breadth_first(rsp, rnp) { 1982 rcu_gp_slow(rsp, gp_init_delay); 1983 raw_spin_lock_irq_rcu_node(rnp); 1984 rdp = this_cpu_ptr(rsp->rda); 1985 rcu_preempt_check_blocked_tasks(rnp); 1986 rnp->qsmask = rnp->qsmaskinit; 1987 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 1988 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 1989 WRITE_ONCE(rnp->completed, rsp->completed); 1990 if (rnp == rdp->mynode) 1991 (void)__note_gp_changes(rsp, rnp, rdp); 1992 rcu_preempt_boost_start_gp(rnp); 1993 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1994 rnp->level, rnp->grplo, 1995 rnp->grphi, rnp->qsmask); 1996 raw_spin_unlock_irq_rcu_node(rnp); 1997 cond_resched_tasks_rcu_qs(); 1998 WRITE_ONCE(rsp->gp_activity, jiffies); 1999 } 2000 2001 return true; 2002 } 2003 2004 /* 2005 * Helper function for swait_event_idle() wakeup at force-quiescent-state 2006 * time. 2007 */ 2008 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2009 { 2010 struct rcu_node *rnp = rcu_get_root(rsp); 2011 2012 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2013 *gfp = READ_ONCE(rsp->gp_flags); 2014 if (*gfp & RCU_GP_FLAG_FQS) 2015 return true; 2016 2017 /* The current grace period has completed. */ 2018 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2019 return true; 2020 2021 return false; 2022 } 2023 2024 /* 2025 * Do one round of quiescent-state forcing. 2026 */ 2027 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2028 { 2029 struct rcu_node *rnp = rcu_get_root(rsp); 2030 2031 WRITE_ONCE(rsp->gp_activity, jiffies); 2032 rsp->n_force_qs++; 2033 if (first_time) { 2034 /* Collect dyntick-idle snapshots. */ 2035 force_qs_rnp(rsp, dyntick_save_progress_counter); 2036 } else { 2037 /* Handle dyntick-idle and offline CPUs. */ 2038 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 2039 } 2040 /* Clear flag to prevent immediate re-entry. */ 2041 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2042 raw_spin_lock_irq_rcu_node(rnp); 2043 WRITE_ONCE(rsp->gp_flags, 2044 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2045 raw_spin_unlock_irq_rcu_node(rnp); 2046 } 2047 } 2048 2049 /* 2050 * Clean up after the old grace period. 2051 */ 2052 static void rcu_gp_cleanup(struct rcu_state *rsp) 2053 { 2054 unsigned long gp_duration; 2055 bool needgp = false; 2056 struct rcu_data *rdp; 2057 struct rcu_node *rnp = rcu_get_root(rsp); 2058 struct swait_queue_head *sq; 2059 2060 WRITE_ONCE(rsp->gp_activity, jiffies); 2061 raw_spin_lock_irq_rcu_node(rnp); 2062 gp_duration = jiffies - rsp->gp_start; 2063 if (gp_duration > rsp->gp_max) 2064 rsp->gp_max = gp_duration; 2065 2066 /* 2067 * We know the grace period is complete, but to everyone else 2068 * it appears to still be ongoing. But it is also the case 2069 * that to everyone else it looks like there is nothing that 2070 * they can do to advance the grace period. It is therefore 2071 * safe for us to drop the lock in order to mark the grace 2072 * period as completed in all of the rcu_node structures. 2073 */ 2074 raw_spin_unlock_irq_rcu_node(rnp); 2075 2076 /* 2077 * Propagate new ->completed value to rcu_node structures so 2078 * that other CPUs don't have to wait until the start of the next 2079 * grace period to process their callbacks. This also avoids 2080 * some nasty RCU grace-period initialization races by forcing 2081 * the end of the current grace period to be completely recorded in 2082 * all of the rcu_node structures before the beginning of the next 2083 * grace period is recorded in any of the rcu_node structures. 2084 */ 2085 rcu_for_each_node_breadth_first(rsp, rnp) { 2086 raw_spin_lock_irq_rcu_node(rnp); 2087 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2088 WARN_ON_ONCE(rnp->qsmask); 2089 WRITE_ONCE(rnp->completed, rsp->gpnum); 2090 rdp = this_cpu_ptr(rsp->rda); 2091 if (rnp == rdp->mynode) 2092 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2093 /* smp_mb() provided by prior unlock-lock pair. */ 2094 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp; 2095 sq = rcu_nocb_gp_get(rnp); 2096 raw_spin_unlock_irq_rcu_node(rnp); 2097 rcu_nocb_gp_cleanup(sq); 2098 cond_resched_tasks_rcu_qs(); 2099 WRITE_ONCE(rsp->gp_activity, jiffies); 2100 rcu_gp_slow(rsp, gp_cleanup_delay); 2101 } 2102 rnp = rcu_get_root(rsp); 2103 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2104 2105 /* Declare grace period done. */ 2106 WRITE_ONCE(rsp->completed, rsp->gpnum); 2107 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2108 rsp->gp_state = RCU_GP_IDLE; 2109 /* Check for GP requests since above loop. */ 2110 rdp = this_cpu_ptr(rsp->rda); 2111 if (need_any_future_gp(rnp)) { 2112 trace_rcu_this_gp(rnp, rdp, rsp->completed - 1, 2113 TPS("CleanupMore")); 2114 needgp = true; 2115 } 2116 /* Advance CBs to reduce false positives below. */ 2117 if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) { 2118 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2119 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2120 TPS("newreq")); 2121 } 2122 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT); 2123 raw_spin_unlock_irq_rcu_node(rnp); 2124 } 2125 2126 /* 2127 * Body of kthread that handles grace periods. 2128 */ 2129 static int __noreturn rcu_gp_kthread(void *arg) 2130 { 2131 bool first_gp_fqs; 2132 int gf; 2133 unsigned long j; 2134 int ret; 2135 struct rcu_state *rsp = arg; 2136 struct rcu_node *rnp = rcu_get_root(rsp); 2137 2138 rcu_bind_gp_kthread(); 2139 for (;;) { 2140 2141 /* Handle grace-period start. */ 2142 for (;;) { 2143 trace_rcu_grace_period(rsp->name, 2144 READ_ONCE(rsp->gpnum), 2145 TPS("reqwait")); 2146 rsp->gp_state = RCU_GP_WAIT_GPS; 2147 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) & 2148 RCU_GP_FLAG_INIT); 2149 rsp->gp_state = RCU_GP_DONE_GPS; 2150 /* Locking provides needed memory barrier. */ 2151 if (rcu_gp_init(rsp)) 2152 break; 2153 cond_resched_tasks_rcu_qs(); 2154 WRITE_ONCE(rsp->gp_activity, jiffies); 2155 WARN_ON(signal_pending(current)); 2156 trace_rcu_grace_period(rsp->name, 2157 READ_ONCE(rsp->gpnum), 2158 TPS("reqwaitsig")); 2159 } 2160 2161 /* Handle quiescent-state forcing. */ 2162 first_gp_fqs = true; 2163 j = jiffies_till_first_fqs; 2164 if (j > HZ) { 2165 j = HZ; 2166 jiffies_till_first_fqs = HZ; 2167 } 2168 ret = 0; 2169 for (;;) { 2170 if (!ret) { 2171 rsp->jiffies_force_qs = jiffies + j; 2172 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2173 jiffies + 3 * j); 2174 } 2175 trace_rcu_grace_period(rsp->name, 2176 READ_ONCE(rsp->gpnum), 2177 TPS("fqswait")); 2178 rsp->gp_state = RCU_GP_WAIT_FQS; 2179 ret = swait_event_idle_timeout(rsp->gp_wq, 2180 rcu_gp_fqs_check_wake(rsp, &gf), j); 2181 rsp->gp_state = RCU_GP_DOING_FQS; 2182 /* Locking provides needed memory barriers. */ 2183 /* If grace period done, leave loop. */ 2184 if (!READ_ONCE(rnp->qsmask) && 2185 !rcu_preempt_blocked_readers_cgp(rnp)) 2186 break; 2187 /* If time for quiescent-state forcing, do it. */ 2188 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2189 (gf & RCU_GP_FLAG_FQS)) { 2190 trace_rcu_grace_period(rsp->name, 2191 READ_ONCE(rsp->gpnum), 2192 TPS("fqsstart")); 2193 rcu_gp_fqs(rsp, first_gp_fqs); 2194 first_gp_fqs = false; 2195 trace_rcu_grace_period(rsp->name, 2196 READ_ONCE(rsp->gpnum), 2197 TPS("fqsend")); 2198 cond_resched_tasks_rcu_qs(); 2199 WRITE_ONCE(rsp->gp_activity, jiffies); 2200 ret = 0; /* Force full wait till next FQS. */ 2201 j = jiffies_till_next_fqs; 2202 if (j > HZ) { 2203 j = HZ; 2204 jiffies_till_next_fqs = HZ; 2205 } else if (j < 1) { 2206 j = 1; 2207 jiffies_till_next_fqs = 1; 2208 } 2209 } else { 2210 /* Deal with stray signal. */ 2211 cond_resched_tasks_rcu_qs(); 2212 WRITE_ONCE(rsp->gp_activity, jiffies); 2213 WARN_ON(signal_pending(current)); 2214 trace_rcu_grace_period(rsp->name, 2215 READ_ONCE(rsp->gpnum), 2216 TPS("fqswaitsig")); 2217 ret = 1; /* Keep old FQS timing. */ 2218 j = jiffies; 2219 if (time_after(jiffies, rsp->jiffies_force_qs)) 2220 j = 1; 2221 else 2222 j = rsp->jiffies_force_qs - j; 2223 } 2224 } 2225 2226 /* Handle grace-period end. */ 2227 rsp->gp_state = RCU_GP_CLEANUP; 2228 rcu_gp_cleanup(rsp); 2229 rsp->gp_state = RCU_GP_CLEANED; 2230 } 2231 } 2232 2233 /* 2234 * Report a full set of quiescent states to the specified rcu_state data 2235 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2236 * kthread if another grace period is required. Whether we wake 2237 * the grace-period kthread or it awakens itself for the next round 2238 * of quiescent-state forcing, that kthread will clean up after the 2239 * just-completed grace period. Note that the caller must hold rnp->lock, 2240 * which is released before return. 2241 */ 2242 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2243 __releases(rcu_get_root(rsp)->lock) 2244 { 2245 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp)); 2246 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2247 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2248 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2249 rcu_gp_kthread_wake(rsp); 2250 } 2251 2252 /* 2253 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2254 * Allows quiescent states for a group of CPUs to be reported at one go 2255 * to the specified rcu_node structure, though all the CPUs in the group 2256 * must be represented by the same rcu_node structure (which need not be a 2257 * leaf rcu_node structure, though it often will be). The gps parameter 2258 * is the grace-period snapshot, which means that the quiescent states 2259 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2260 * must be held upon entry, and it is released before return. 2261 */ 2262 static void 2263 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2264 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2265 __releases(rnp->lock) 2266 { 2267 unsigned long oldmask = 0; 2268 struct rcu_node *rnp_c; 2269 2270 raw_lockdep_assert_held_rcu_node(rnp); 2271 2272 /* Walk up the rcu_node hierarchy. */ 2273 for (;;) { 2274 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2275 2276 /* 2277 * Our bit has already been cleared, or the 2278 * relevant grace period is already over, so done. 2279 */ 2280 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2281 return; 2282 } 2283 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2284 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2285 rcu_preempt_blocked_readers_cgp(rnp)); 2286 rnp->qsmask &= ~mask; 2287 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2288 mask, rnp->qsmask, rnp->level, 2289 rnp->grplo, rnp->grphi, 2290 !!rnp->gp_tasks); 2291 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2292 2293 /* Other bits still set at this level, so done. */ 2294 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2295 return; 2296 } 2297 mask = rnp->grpmask; 2298 if (rnp->parent == NULL) { 2299 2300 /* No more levels. Exit loop holding root lock. */ 2301 2302 break; 2303 } 2304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2305 rnp_c = rnp; 2306 rnp = rnp->parent; 2307 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2308 oldmask = rnp_c->qsmask; 2309 } 2310 2311 /* 2312 * Get here if we are the last CPU to pass through a quiescent 2313 * state for this grace period. Invoke rcu_report_qs_rsp() 2314 * to clean up and start the next grace period if one is needed. 2315 */ 2316 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2317 } 2318 2319 /* 2320 * Record a quiescent state for all tasks that were previously queued 2321 * on the specified rcu_node structure and that were blocking the current 2322 * RCU grace period. The caller must hold the specified rnp->lock with 2323 * irqs disabled, and this lock is released upon return, but irqs remain 2324 * disabled. 2325 */ 2326 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2327 struct rcu_node *rnp, unsigned long flags) 2328 __releases(rnp->lock) 2329 { 2330 unsigned long gps; 2331 unsigned long mask; 2332 struct rcu_node *rnp_p; 2333 2334 raw_lockdep_assert_held_rcu_node(rnp); 2335 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2336 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2337 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2338 return; /* Still need more quiescent states! */ 2339 } 2340 2341 rnp_p = rnp->parent; 2342 if (rnp_p == NULL) { 2343 /* 2344 * Only one rcu_node structure in the tree, so don't 2345 * try to report up to its nonexistent parent! 2346 */ 2347 rcu_report_qs_rsp(rsp, flags); 2348 return; 2349 } 2350 2351 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2352 gps = rnp->gpnum; 2353 mask = rnp->grpmask; 2354 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2355 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2356 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2357 } 2358 2359 /* 2360 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2361 * structure. This must be called from the specified CPU. 2362 */ 2363 static void 2364 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2365 { 2366 unsigned long flags; 2367 unsigned long mask; 2368 bool needwake; 2369 struct rcu_node *rnp; 2370 2371 rnp = rdp->mynode; 2372 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2373 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum || 2374 rnp->completed == rnp->gpnum || rdp->gpwrap) { 2375 2376 /* 2377 * The grace period in which this quiescent state was 2378 * recorded has ended, so don't report it upwards. 2379 * We will instead need a new quiescent state that lies 2380 * within the current grace period. 2381 */ 2382 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2383 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 2384 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2385 return; 2386 } 2387 mask = rdp->grpmask; 2388 if ((rnp->qsmask & mask) == 0) { 2389 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2390 } else { 2391 rdp->core_needs_qs = false; 2392 2393 /* 2394 * This GP can't end until cpu checks in, so all of our 2395 * callbacks can be processed during the next GP. 2396 */ 2397 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2398 2399 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2400 /* ^^^ Released rnp->lock */ 2401 if (needwake) 2402 rcu_gp_kthread_wake(rsp); 2403 } 2404 } 2405 2406 /* 2407 * Check to see if there is a new grace period of which this CPU 2408 * is not yet aware, and if so, set up local rcu_data state for it. 2409 * Otherwise, see if this CPU has just passed through its first 2410 * quiescent state for this grace period, and record that fact if so. 2411 */ 2412 static void 2413 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2414 { 2415 /* Check for grace-period ends and beginnings. */ 2416 note_gp_changes(rsp, rdp); 2417 2418 /* 2419 * Does this CPU still need to do its part for current grace period? 2420 * If no, return and let the other CPUs do their part as well. 2421 */ 2422 if (!rdp->core_needs_qs) 2423 return; 2424 2425 /* 2426 * Was there a quiescent state since the beginning of the grace 2427 * period? If no, then exit and wait for the next call. 2428 */ 2429 if (rdp->cpu_no_qs.b.norm) 2430 return; 2431 2432 /* 2433 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2434 * judge of that). 2435 */ 2436 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2437 } 2438 2439 /* 2440 * Trace the fact that this CPU is going offline. 2441 */ 2442 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2443 { 2444 RCU_TRACE(unsigned long mask;) 2445 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) 2446 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2447 2448 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2449 return; 2450 2451 RCU_TRACE(mask = rdp->grpmask;) 2452 trace_rcu_grace_period(rsp->name, 2453 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2454 TPS("cpuofl")); 2455 } 2456 2457 /* 2458 * All CPUs for the specified rcu_node structure have gone offline, 2459 * and all tasks that were preempted within an RCU read-side critical 2460 * section while running on one of those CPUs have since exited their RCU 2461 * read-side critical section. Some other CPU is reporting this fact with 2462 * the specified rcu_node structure's ->lock held and interrupts disabled. 2463 * This function therefore goes up the tree of rcu_node structures, 2464 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2465 * the leaf rcu_node structure's ->qsmaskinit field has already been 2466 * updated 2467 * 2468 * This function does check that the specified rcu_node structure has 2469 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2470 * prematurely. That said, invoking it after the fact will cost you 2471 * a needless lock acquisition. So once it has done its work, don't 2472 * invoke it again. 2473 */ 2474 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2475 { 2476 long mask; 2477 struct rcu_node *rnp = rnp_leaf; 2478 2479 raw_lockdep_assert_held_rcu_node(rnp); 2480 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2481 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2482 return; 2483 for (;;) { 2484 mask = rnp->grpmask; 2485 rnp = rnp->parent; 2486 if (!rnp) 2487 break; 2488 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2489 rnp->qsmaskinit &= ~mask; 2490 rnp->qsmask &= ~mask; 2491 if (rnp->qsmaskinit) { 2492 raw_spin_unlock_rcu_node(rnp); 2493 /* irqs remain disabled. */ 2494 return; 2495 } 2496 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2497 } 2498 } 2499 2500 /* 2501 * The CPU has been completely removed, and some other CPU is reporting 2502 * this fact from process context. Do the remainder of the cleanup. 2503 * There can only be one CPU hotplug operation at a time, so no need for 2504 * explicit locking. 2505 */ 2506 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2507 { 2508 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2509 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2510 2511 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2512 return; 2513 2514 /* Adjust any no-longer-needed kthreads. */ 2515 rcu_boost_kthread_setaffinity(rnp, -1); 2516 } 2517 2518 /* 2519 * Invoke any RCU callbacks that have made it to the end of their grace 2520 * period. Thottle as specified by rdp->blimit. 2521 */ 2522 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2523 { 2524 unsigned long flags; 2525 struct rcu_head *rhp; 2526 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2527 long bl, count; 2528 2529 /* If no callbacks are ready, just return. */ 2530 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2531 trace_rcu_batch_start(rsp->name, 2532 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2533 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2534 trace_rcu_batch_end(rsp->name, 0, 2535 !rcu_segcblist_empty(&rdp->cblist), 2536 need_resched(), is_idle_task(current), 2537 rcu_is_callbacks_kthread()); 2538 return; 2539 } 2540 2541 /* 2542 * Extract the list of ready callbacks, disabling to prevent 2543 * races with call_rcu() from interrupt handlers. Leave the 2544 * callback counts, as rcu_barrier() needs to be conservative. 2545 */ 2546 local_irq_save(flags); 2547 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2548 bl = rdp->blimit; 2549 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2550 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2551 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2552 local_irq_restore(flags); 2553 2554 /* Invoke callbacks. */ 2555 rhp = rcu_cblist_dequeue(&rcl); 2556 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2557 debug_rcu_head_unqueue(rhp); 2558 if (__rcu_reclaim(rsp->name, rhp)) 2559 rcu_cblist_dequeued_lazy(&rcl); 2560 /* 2561 * Stop only if limit reached and CPU has something to do. 2562 * Note: The rcl structure counts down from zero. 2563 */ 2564 if (-rcl.len >= bl && 2565 (need_resched() || 2566 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2567 break; 2568 } 2569 2570 local_irq_save(flags); 2571 count = -rcl.len; 2572 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), 2573 is_idle_task(current), rcu_is_callbacks_kthread()); 2574 2575 /* Update counts and requeue any remaining callbacks. */ 2576 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2577 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2578 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2579 2580 /* Reinstate batch limit if we have worked down the excess. */ 2581 count = rcu_segcblist_n_cbs(&rdp->cblist); 2582 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2583 rdp->blimit = blimit; 2584 2585 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2586 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2587 rdp->qlen_last_fqs_check = 0; 2588 rdp->n_force_qs_snap = rsp->n_force_qs; 2589 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2590 rdp->qlen_last_fqs_check = count; 2591 2592 /* 2593 * The following usually indicates a double call_rcu(). To track 2594 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2595 */ 2596 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2597 2598 local_irq_restore(flags); 2599 2600 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2601 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2602 invoke_rcu_core(); 2603 } 2604 2605 /* 2606 * Check to see if this CPU is in a non-context-switch quiescent state 2607 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2608 * Also schedule RCU core processing. 2609 * 2610 * This function must be called from hardirq context. It is normally 2611 * invoked from the scheduling-clock interrupt. 2612 */ 2613 void rcu_check_callbacks(int user) 2614 { 2615 trace_rcu_utilization(TPS("Start scheduler-tick")); 2616 increment_cpu_stall_ticks(); 2617 if (user || rcu_is_cpu_rrupt_from_idle()) { 2618 2619 /* 2620 * Get here if this CPU took its interrupt from user 2621 * mode or from the idle loop, and if this is not a 2622 * nested interrupt. In this case, the CPU is in 2623 * a quiescent state, so note it. 2624 * 2625 * No memory barrier is required here because both 2626 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2627 * variables that other CPUs neither access nor modify, 2628 * at least not while the corresponding CPU is online. 2629 */ 2630 2631 rcu_sched_qs(); 2632 rcu_bh_qs(); 2633 2634 } else if (!in_softirq()) { 2635 2636 /* 2637 * Get here if this CPU did not take its interrupt from 2638 * softirq, in other words, if it is not interrupting 2639 * a rcu_bh read-side critical section. This is an _bh 2640 * critical section, so note it. 2641 */ 2642 2643 rcu_bh_qs(); 2644 } 2645 rcu_preempt_check_callbacks(); 2646 if (rcu_pending()) 2647 invoke_rcu_core(); 2648 if (user) 2649 rcu_note_voluntary_context_switch(current); 2650 trace_rcu_utilization(TPS("End scheduler-tick")); 2651 } 2652 2653 /* 2654 * Scan the leaf rcu_node structures, processing dyntick state for any that 2655 * have not yet encountered a quiescent state, using the function specified. 2656 * Also initiate boosting for any threads blocked on the root rcu_node. 2657 * 2658 * The caller must have suppressed start of new grace periods. 2659 */ 2660 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) 2661 { 2662 int cpu; 2663 unsigned long flags; 2664 unsigned long mask; 2665 struct rcu_node *rnp; 2666 2667 rcu_for_each_leaf_node(rsp, rnp) { 2668 cond_resched_tasks_rcu_qs(); 2669 mask = 0; 2670 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2671 if (rnp->qsmask == 0) { 2672 if (rcu_state_p == &rcu_sched_state || 2673 rsp != rcu_state_p || 2674 rcu_preempt_blocked_readers_cgp(rnp)) { 2675 /* 2676 * No point in scanning bits because they 2677 * are all zero. But we might need to 2678 * priority-boost blocked readers. 2679 */ 2680 rcu_initiate_boost(rnp, flags); 2681 /* rcu_initiate_boost() releases rnp->lock */ 2682 continue; 2683 } 2684 if (rnp->parent && 2685 (rnp->parent->qsmask & rnp->grpmask)) { 2686 /* 2687 * Race between grace-period 2688 * initialization and task exiting RCU 2689 * read-side critical section: Report. 2690 */ 2691 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2692 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2693 continue; 2694 } 2695 } 2696 for_each_leaf_node_possible_cpu(rnp, cpu) { 2697 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2698 if ((rnp->qsmask & bit) != 0) { 2699 if (f(per_cpu_ptr(rsp->rda, cpu))) 2700 mask |= bit; 2701 } 2702 } 2703 if (mask != 0) { 2704 /* Idle/offline CPUs, report (releases rnp->lock. */ 2705 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2706 } else { 2707 /* Nothing to do here, so just drop the lock. */ 2708 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2709 } 2710 } 2711 } 2712 2713 /* 2714 * Force quiescent states on reluctant CPUs, and also detect which 2715 * CPUs are in dyntick-idle mode. 2716 */ 2717 static void force_quiescent_state(struct rcu_state *rsp) 2718 { 2719 unsigned long flags; 2720 bool ret; 2721 struct rcu_node *rnp; 2722 struct rcu_node *rnp_old = NULL; 2723 2724 /* Funnel through hierarchy to reduce memory contention. */ 2725 rnp = __this_cpu_read(rsp->rda->mynode); 2726 for (; rnp != NULL; rnp = rnp->parent) { 2727 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2728 !raw_spin_trylock(&rnp->fqslock); 2729 if (rnp_old != NULL) 2730 raw_spin_unlock(&rnp_old->fqslock); 2731 if (ret) 2732 return; 2733 rnp_old = rnp; 2734 } 2735 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2736 2737 /* Reached the root of the rcu_node tree, acquire lock. */ 2738 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2739 raw_spin_unlock(&rnp_old->fqslock); 2740 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2741 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2742 return; /* Someone beat us to it. */ 2743 } 2744 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2745 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2746 rcu_gp_kthread_wake(rsp); 2747 } 2748 2749 /* 2750 * This does the RCU core processing work for the specified rcu_state 2751 * and rcu_data structures. This may be called only from the CPU to 2752 * whom the rdp belongs. 2753 */ 2754 static void 2755 __rcu_process_callbacks(struct rcu_state *rsp) 2756 { 2757 unsigned long flags; 2758 bool needwake; 2759 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2760 struct rcu_node *rnp; 2761 2762 WARN_ON_ONCE(!rdp->beenonline); 2763 2764 /* Update RCU state based on any recent quiescent states. */ 2765 rcu_check_quiescent_state(rsp, rdp); 2766 2767 /* No grace period and unregistered callbacks? */ 2768 if (!rcu_gp_in_progress(rsp) && 2769 rcu_segcblist_is_enabled(&rdp->cblist)) { 2770 local_irq_save(flags); 2771 if (rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) { 2772 local_irq_restore(flags); 2773 } else { 2774 rnp = rdp->mynode; 2775 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ 2776 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2777 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2778 if (needwake) 2779 rcu_gp_kthread_wake(rsp); 2780 } 2781 } 2782 2783 /* If there are callbacks ready, invoke them. */ 2784 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2785 invoke_rcu_callbacks(rsp, rdp); 2786 2787 /* Do any needed deferred wakeups of rcuo kthreads. */ 2788 do_nocb_deferred_wakeup(rdp); 2789 } 2790 2791 /* 2792 * Do RCU core processing for the current CPU. 2793 */ 2794 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2795 { 2796 struct rcu_state *rsp; 2797 2798 if (cpu_is_offline(smp_processor_id())) 2799 return; 2800 trace_rcu_utilization(TPS("Start RCU core")); 2801 for_each_rcu_flavor(rsp) 2802 __rcu_process_callbacks(rsp); 2803 trace_rcu_utilization(TPS("End RCU core")); 2804 } 2805 2806 /* 2807 * Schedule RCU callback invocation. If the specified type of RCU 2808 * does not support RCU priority boosting, just do a direct call, 2809 * otherwise wake up the per-CPU kernel kthread. Note that because we 2810 * are running on the current CPU with softirqs disabled, the 2811 * rcu_cpu_kthread_task cannot disappear out from under us. 2812 */ 2813 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2814 { 2815 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2816 return; 2817 if (likely(!rsp->boost)) { 2818 rcu_do_batch(rsp, rdp); 2819 return; 2820 } 2821 invoke_rcu_callbacks_kthread(); 2822 } 2823 2824 static void invoke_rcu_core(void) 2825 { 2826 if (cpu_online(smp_processor_id())) 2827 raise_softirq(RCU_SOFTIRQ); 2828 } 2829 2830 /* 2831 * Handle any core-RCU processing required by a call_rcu() invocation. 2832 */ 2833 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2834 struct rcu_head *head, unsigned long flags) 2835 { 2836 bool needwake; 2837 2838 /* 2839 * If called from an extended quiescent state, invoke the RCU 2840 * core in order to force a re-evaluation of RCU's idleness. 2841 */ 2842 if (!rcu_is_watching()) 2843 invoke_rcu_core(); 2844 2845 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2846 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2847 return; 2848 2849 /* 2850 * Force the grace period if too many callbacks or too long waiting. 2851 * Enforce hysteresis, and don't invoke force_quiescent_state() 2852 * if some other CPU has recently done so. Also, don't bother 2853 * invoking force_quiescent_state() if the newly enqueued callback 2854 * is the only one waiting for a grace period to complete. 2855 */ 2856 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2857 rdp->qlen_last_fqs_check + qhimark)) { 2858 2859 /* Are we ignoring a completed grace period? */ 2860 note_gp_changes(rsp, rdp); 2861 2862 /* Start a new grace period if one not already started. */ 2863 if (!rcu_gp_in_progress(rsp)) { 2864 struct rcu_node *rnp = rdp->mynode; 2865 2866 raw_spin_lock_rcu_node(rnp); 2867 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2868 raw_spin_unlock_rcu_node(rnp); 2869 if (needwake) 2870 rcu_gp_kthread_wake(rsp); 2871 } else { 2872 /* Give the grace period a kick. */ 2873 rdp->blimit = LONG_MAX; 2874 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2875 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2876 force_quiescent_state(rsp); 2877 rdp->n_force_qs_snap = rsp->n_force_qs; 2878 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2879 } 2880 } 2881 } 2882 2883 /* 2884 * RCU callback function to leak a callback. 2885 */ 2886 static void rcu_leak_callback(struct rcu_head *rhp) 2887 { 2888 } 2889 2890 /* 2891 * Helper function for call_rcu() and friends. The cpu argument will 2892 * normally be -1, indicating "currently running CPU". It may specify 2893 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2894 * is expected to specify a CPU. 2895 */ 2896 static void 2897 __call_rcu(struct rcu_head *head, rcu_callback_t func, 2898 struct rcu_state *rsp, int cpu, bool lazy) 2899 { 2900 unsigned long flags; 2901 struct rcu_data *rdp; 2902 2903 /* Misaligned rcu_head! */ 2904 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2905 2906 if (debug_rcu_head_queue(head)) { 2907 /* 2908 * Probable double call_rcu(), so leak the callback. 2909 * Use rcu:rcu_callback trace event to find the previous 2910 * time callback was passed to __call_rcu(). 2911 */ 2912 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2913 head, head->func); 2914 WRITE_ONCE(head->func, rcu_leak_callback); 2915 return; 2916 } 2917 head->func = func; 2918 head->next = NULL; 2919 local_irq_save(flags); 2920 rdp = this_cpu_ptr(rsp->rda); 2921 2922 /* Add the callback to our list. */ 2923 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2924 int offline; 2925 2926 if (cpu != -1) 2927 rdp = per_cpu_ptr(rsp->rda, cpu); 2928 if (likely(rdp->mynode)) { 2929 /* Post-boot, so this should be for a no-CBs CPU. */ 2930 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2931 WARN_ON_ONCE(offline); 2932 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2933 local_irq_restore(flags); 2934 return; 2935 } 2936 /* 2937 * Very early boot, before rcu_init(). Initialize if needed 2938 * and then drop through to queue the callback. 2939 */ 2940 BUG_ON(cpu != -1); 2941 WARN_ON_ONCE(!rcu_is_watching()); 2942 if (rcu_segcblist_empty(&rdp->cblist)) 2943 rcu_segcblist_init(&rdp->cblist); 2944 } 2945 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2946 if (!lazy) 2947 rcu_idle_count_callbacks_posted(); 2948 2949 if (__is_kfree_rcu_offset((unsigned long)func)) 2950 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 2951 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2952 rcu_segcblist_n_cbs(&rdp->cblist)); 2953 else 2954 trace_rcu_callback(rsp->name, head, 2955 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2956 rcu_segcblist_n_cbs(&rdp->cblist)); 2957 2958 /* Go handle any RCU core processing required. */ 2959 __call_rcu_core(rsp, rdp, head, flags); 2960 local_irq_restore(flags); 2961 } 2962 2963 /** 2964 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 2965 * @head: structure to be used for queueing the RCU updates. 2966 * @func: actual callback function to be invoked after the grace period 2967 * 2968 * The callback function will be invoked some time after a full grace 2969 * period elapses, in other words after all currently executing RCU 2970 * read-side critical sections have completed. call_rcu_sched() assumes 2971 * that the read-side critical sections end on enabling of preemption 2972 * or on voluntary preemption. 2973 * RCU read-side critical sections are delimited by: 2974 * 2975 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR 2976 * - anything that disables preemption. 2977 * 2978 * These may be nested. 2979 * 2980 * See the description of call_rcu() for more detailed information on 2981 * memory ordering guarantees. 2982 */ 2983 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 2984 { 2985 __call_rcu(head, func, &rcu_sched_state, -1, 0); 2986 } 2987 EXPORT_SYMBOL_GPL(call_rcu_sched); 2988 2989 /** 2990 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 2991 * @head: structure to be used for queueing the RCU updates. 2992 * @func: actual callback function to be invoked after the grace period 2993 * 2994 * The callback function will be invoked some time after a full grace 2995 * period elapses, in other words after all currently executing RCU 2996 * read-side critical sections have completed. call_rcu_bh() assumes 2997 * that the read-side critical sections end on completion of a softirq 2998 * handler. This means that read-side critical sections in process 2999 * context must not be interrupted by softirqs. This interface is to be 3000 * used when most of the read-side critical sections are in softirq context. 3001 * RCU read-side critical sections are delimited by: 3002 * 3003 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR 3004 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 3005 * 3006 * These may be nested. 3007 * 3008 * See the description of call_rcu() for more detailed information on 3009 * memory ordering guarantees. 3010 */ 3011 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3012 { 3013 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3014 } 3015 EXPORT_SYMBOL_GPL(call_rcu_bh); 3016 3017 /* 3018 * Queue an RCU callback for lazy invocation after a grace period. 3019 * This will likely be later named something like "call_rcu_lazy()", 3020 * but this change will require some way of tagging the lazy RCU 3021 * callbacks in the list of pending callbacks. Until then, this 3022 * function may only be called from __kfree_rcu(). 3023 */ 3024 void kfree_call_rcu(struct rcu_head *head, 3025 rcu_callback_t func) 3026 { 3027 __call_rcu(head, func, rcu_state_p, -1, 1); 3028 } 3029 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3030 3031 /* 3032 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3033 * any blocking grace-period wait automatically implies a grace period 3034 * if there is only one CPU online at any point time during execution 3035 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3036 * occasionally incorrectly indicate that there are multiple CPUs online 3037 * when there was in fact only one the whole time, as this just adds 3038 * some overhead: RCU still operates correctly. 3039 */ 3040 static inline int rcu_blocking_is_gp(void) 3041 { 3042 int ret; 3043 3044 might_sleep(); /* Check for RCU read-side critical section. */ 3045 preempt_disable(); 3046 ret = num_online_cpus() <= 1; 3047 preempt_enable(); 3048 return ret; 3049 } 3050 3051 /** 3052 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3053 * 3054 * Control will return to the caller some time after a full rcu-sched 3055 * grace period has elapsed, in other words after all currently executing 3056 * rcu-sched read-side critical sections have completed. These read-side 3057 * critical sections are delimited by rcu_read_lock_sched() and 3058 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3059 * local_irq_disable(), and so on may be used in place of 3060 * rcu_read_lock_sched(). 3061 * 3062 * This means that all preempt_disable code sequences, including NMI and 3063 * non-threaded hardware-interrupt handlers, in progress on entry will 3064 * have completed before this primitive returns. However, this does not 3065 * guarantee that softirq handlers will have completed, since in some 3066 * kernels, these handlers can run in process context, and can block. 3067 * 3068 * Note that this guarantee implies further memory-ordering guarantees. 3069 * On systems with more than one CPU, when synchronize_sched() returns, 3070 * each CPU is guaranteed to have executed a full memory barrier since the 3071 * end of its last RCU-sched read-side critical section whose beginning 3072 * preceded the call to synchronize_sched(). In addition, each CPU having 3073 * an RCU read-side critical section that extends beyond the return from 3074 * synchronize_sched() is guaranteed to have executed a full memory barrier 3075 * after the beginning of synchronize_sched() and before the beginning of 3076 * that RCU read-side critical section. Note that these guarantees include 3077 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3078 * that are executing in the kernel. 3079 * 3080 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3081 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3082 * to have executed a full memory barrier during the execution of 3083 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3084 * again only if the system has more than one CPU). 3085 */ 3086 void synchronize_sched(void) 3087 { 3088 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3089 lock_is_held(&rcu_lock_map) || 3090 lock_is_held(&rcu_sched_lock_map), 3091 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3092 if (rcu_blocking_is_gp()) 3093 return; 3094 if (rcu_gp_is_expedited()) 3095 synchronize_sched_expedited(); 3096 else 3097 wait_rcu_gp(call_rcu_sched); 3098 } 3099 EXPORT_SYMBOL_GPL(synchronize_sched); 3100 3101 /** 3102 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3103 * 3104 * Control will return to the caller some time after a full rcu_bh grace 3105 * period has elapsed, in other words after all currently executing rcu_bh 3106 * read-side critical sections have completed. RCU read-side critical 3107 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3108 * and may be nested. 3109 * 3110 * See the description of synchronize_sched() for more detailed information 3111 * on memory ordering guarantees. 3112 */ 3113 void synchronize_rcu_bh(void) 3114 { 3115 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3116 lock_is_held(&rcu_lock_map) || 3117 lock_is_held(&rcu_sched_lock_map), 3118 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3119 if (rcu_blocking_is_gp()) 3120 return; 3121 if (rcu_gp_is_expedited()) 3122 synchronize_rcu_bh_expedited(); 3123 else 3124 wait_rcu_gp(call_rcu_bh); 3125 } 3126 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3127 3128 /** 3129 * get_state_synchronize_rcu - Snapshot current RCU state 3130 * 3131 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3132 * to determine whether or not a full grace period has elapsed in the 3133 * meantime. 3134 */ 3135 unsigned long get_state_synchronize_rcu(void) 3136 { 3137 /* 3138 * Any prior manipulation of RCU-protected data must happen 3139 * before the load from ->gpnum. 3140 */ 3141 smp_mb(); /* ^^^ */ 3142 3143 /* 3144 * Make sure this load happens before the purportedly 3145 * time-consuming work between get_state_synchronize_rcu() 3146 * and cond_synchronize_rcu(). 3147 */ 3148 return smp_load_acquire(&rcu_state_p->gpnum); 3149 } 3150 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3151 3152 /** 3153 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3154 * 3155 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3156 * 3157 * If a full RCU grace period has elapsed since the earlier call to 3158 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3159 * synchronize_rcu() to wait for a full grace period. 3160 * 3161 * Yes, this function does not take counter wrap into account. But 3162 * counter wrap is harmless. If the counter wraps, we have waited for 3163 * more than 2 billion grace periods (and way more on a 64-bit system!), 3164 * so waiting for one additional grace period should be just fine. 3165 */ 3166 void cond_synchronize_rcu(unsigned long oldstate) 3167 { 3168 unsigned long newstate; 3169 3170 /* 3171 * Ensure that this load happens before any RCU-destructive 3172 * actions the caller might carry out after we return. 3173 */ 3174 newstate = smp_load_acquire(&rcu_state_p->completed); 3175 if (ULONG_CMP_GE(oldstate, newstate)) 3176 synchronize_rcu(); 3177 } 3178 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3179 3180 /** 3181 * get_state_synchronize_sched - Snapshot current RCU-sched state 3182 * 3183 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3184 * to determine whether or not a full grace period has elapsed in the 3185 * meantime. 3186 */ 3187 unsigned long get_state_synchronize_sched(void) 3188 { 3189 /* 3190 * Any prior manipulation of RCU-protected data must happen 3191 * before the load from ->gpnum. 3192 */ 3193 smp_mb(); /* ^^^ */ 3194 3195 /* 3196 * Make sure this load happens before the purportedly 3197 * time-consuming work between get_state_synchronize_sched() 3198 * and cond_synchronize_sched(). 3199 */ 3200 return smp_load_acquire(&rcu_sched_state.gpnum); 3201 } 3202 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3203 3204 /** 3205 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3206 * 3207 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3208 * 3209 * If a full RCU-sched grace period has elapsed since the earlier call to 3210 * get_state_synchronize_sched(), just return. Otherwise, invoke 3211 * synchronize_sched() to wait for a full grace period. 3212 * 3213 * Yes, this function does not take counter wrap into account. But 3214 * counter wrap is harmless. If the counter wraps, we have waited for 3215 * more than 2 billion grace periods (and way more on a 64-bit system!), 3216 * so waiting for one additional grace period should be just fine. 3217 */ 3218 void cond_synchronize_sched(unsigned long oldstate) 3219 { 3220 unsigned long newstate; 3221 3222 /* 3223 * Ensure that this load happens before any RCU-destructive 3224 * actions the caller might carry out after we return. 3225 */ 3226 newstate = smp_load_acquire(&rcu_sched_state.completed); 3227 if (ULONG_CMP_GE(oldstate, newstate)) 3228 synchronize_sched(); 3229 } 3230 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3231 3232 /* 3233 * Check to see if there is any immediate RCU-related work to be done 3234 * by the current CPU, for the specified type of RCU, returning 1 if so. 3235 * The checks are in order of increasing expense: checks that can be 3236 * carried out against CPU-local state are performed first. However, 3237 * we must check for CPU stalls first, else we might not get a chance. 3238 */ 3239 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3240 { 3241 struct rcu_node *rnp = rdp->mynode; 3242 3243 /* Check for CPU stalls, if enabled. */ 3244 check_cpu_stall(rsp, rdp); 3245 3246 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3247 if (rcu_nohz_full_cpu(rsp)) 3248 return 0; 3249 3250 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3251 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3252 return 1; 3253 3254 /* Does this CPU have callbacks ready to invoke? */ 3255 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3256 return 1; 3257 3258 /* Has RCU gone idle with this CPU needing another grace period? */ 3259 if (!rcu_gp_in_progress(rsp) && 3260 rcu_segcblist_is_enabled(&rdp->cblist) && 3261 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3262 return 1; 3263 3264 /* Has another RCU grace period completed? */ 3265 if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */ 3266 return 1; 3267 3268 /* Has a new RCU grace period started? */ 3269 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3270 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3271 return 1; 3272 3273 /* Does this CPU need a deferred NOCB wakeup? */ 3274 if (rcu_nocb_need_deferred_wakeup(rdp)) 3275 return 1; 3276 3277 /* nothing to do */ 3278 return 0; 3279 } 3280 3281 /* 3282 * Check to see if there is any immediate RCU-related work to be done 3283 * by the current CPU, returning 1 if so. This function is part of the 3284 * RCU implementation; it is -not- an exported member of the RCU API. 3285 */ 3286 static int rcu_pending(void) 3287 { 3288 struct rcu_state *rsp; 3289 3290 for_each_rcu_flavor(rsp) 3291 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3292 return 1; 3293 return 0; 3294 } 3295 3296 /* 3297 * Return true if the specified CPU has any callback. If all_lazy is 3298 * non-NULL, store an indication of whether all callbacks are lazy. 3299 * (If there are no callbacks, all of them are deemed to be lazy.) 3300 */ 3301 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3302 { 3303 bool al = true; 3304 bool hc = false; 3305 struct rcu_data *rdp; 3306 struct rcu_state *rsp; 3307 3308 for_each_rcu_flavor(rsp) { 3309 rdp = this_cpu_ptr(rsp->rda); 3310 if (rcu_segcblist_empty(&rdp->cblist)) 3311 continue; 3312 hc = true; 3313 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { 3314 al = false; 3315 break; 3316 } 3317 } 3318 if (all_lazy) 3319 *all_lazy = al; 3320 return hc; 3321 } 3322 3323 /* 3324 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3325 * the compiler is expected to optimize this away. 3326 */ 3327 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3328 int cpu, unsigned long done) 3329 { 3330 trace_rcu_barrier(rsp->name, s, cpu, 3331 atomic_read(&rsp->barrier_cpu_count), done); 3332 } 3333 3334 /* 3335 * RCU callback function for _rcu_barrier(). If we are last, wake 3336 * up the task executing _rcu_barrier(). 3337 */ 3338 static void rcu_barrier_callback(struct rcu_head *rhp) 3339 { 3340 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3341 struct rcu_state *rsp = rdp->rsp; 3342 3343 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3344 _rcu_barrier_trace(rsp, TPS("LastCB"), -1, 3345 rsp->barrier_sequence); 3346 complete(&rsp->barrier_completion); 3347 } else { 3348 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence); 3349 } 3350 } 3351 3352 /* 3353 * Called with preemption disabled, and from cross-cpu IRQ context. 3354 */ 3355 static void rcu_barrier_func(void *type) 3356 { 3357 struct rcu_state *rsp = type; 3358 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3359 3360 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence); 3361 rdp->barrier_head.func = rcu_barrier_callback; 3362 debug_rcu_head_queue(&rdp->barrier_head); 3363 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3364 atomic_inc(&rsp->barrier_cpu_count); 3365 } else { 3366 debug_rcu_head_unqueue(&rdp->barrier_head); 3367 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1, 3368 rsp->barrier_sequence); 3369 } 3370 } 3371 3372 /* 3373 * Orchestrate the specified type of RCU barrier, waiting for all 3374 * RCU callbacks of the specified type to complete. 3375 */ 3376 static void _rcu_barrier(struct rcu_state *rsp) 3377 { 3378 int cpu; 3379 struct rcu_data *rdp; 3380 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3381 3382 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s); 3383 3384 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3385 mutex_lock(&rsp->barrier_mutex); 3386 3387 /* Did someone else do our work for us? */ 3388 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3389 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1, 3390 rsp->barrier_sequence); 3391 smp_mb(); /* caller's subsequent code after above check. */ 3392 mutex_unlock(&rsp->barrier_mutex); 3393 return; 3394 } 3395 3396 /* Mark the start of the barrier operation. */ 3397 rcu_seq_start(&rsp->barrier_sequence); 3398 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence); 3399 3400 /* 3401 * Initialize the count to one rather than to zero in order to 3402 * avoid a too-soon return to zero in case of a short grace period 3403 * (or preemption of this task). Exclude CPU-hotplug operations 3404 * to ensure that no offline CPU has callbacks queued. 3405 */ 3406 init_completion(&rsp->barrier_completion); 3407 atomic_set(&rsp->barrier_cpu_count, 1); 3408 get_online_cpus(); 3409 3410 /* 3411 * Force each CPU with callbacks to register a new callback. 3412 * When that callback is invoked, we will know that all of the 3413 * corresponding CPU's preceding callbacks have been invoked. 3414 */ 3415 for_each_possible_cpu(cpu) { 3416 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3417 continue; 3418 rdp = per_cpu_ptr(rsp->rda, cpu); 3419 if (rcu_is_nocb_cpu(cpu)) { 3420 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3421 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu, 3422 rsp->barrier_sequence); 3423 } else { 3424 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu, 3425 rsp->barrier_sequence); 3426 smp_mb__before_atomic(); 3427 atomic_inc(&rsp->barrier_cpu_count); 3428 __call_rcu(&rdp->barrier_head, 3429 rcu_barrier_callback, rsp, cpu, 0); 3430 } 3431 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3432 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu, 3433 rsp->barrier_sequence); 3434 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3435 } else { 3436 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu, 3437 rsp->barrier_sequence); 3438 } 3439 } 3440 put_online_cpus(); 3441 3442 /* 3443 * Now that we have an rcu_barrier_callback() callback on each 3444 * CPU, and thus each counted, remove the initial count. 3445 */ 3446 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3447 complete(&rsp->barrier_completion); 3448 3449 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3450 wait_for_completion(&rsp->barrier_completion); 3451 3452 /* Mark the end of the barrier operation. */ 3453 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence); 3454 rcu_seq_end(&rsp->barrier_sequence); 3455 3456 /* Other rcu_barrier() invocations can now safely proceed. */ 3457 mutex_unlock(&rsp->barrier_mutex); 3458 } 3459 3460 /** 3461 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3462 */ 3463 void rcu_barrier_bh(void) 3464 { 3465 _rcu_barrier(&rcu_bh_state); 3466 } 3467 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3468 3469 /** 3470 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3471 */ 3472 void rcu_barrier_sched(void) 3473 { 3474 _rcu_barrier(&rcu_sched_state); 3475 } 3476 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3477 3478 /* 3479 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3480 * first CPU in a given leaf rcu_node structure coming online. The caller 3481 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3482 * disabled. 3483 */ 3484 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3485 { 3486 long mask; 3487 struct rcu_node *rnp = rnp_leaf; 3488 3489 raw_lockdep_assert_held_rcu_node(rnp); 3490 for (;;) { 3491 mask = rnp->grpmask; 3492 rnp = rnp->parent; 3493 if (rnp == NULL) 3494 return; 3495 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3496 rnp->qsmaskinit |= mask; 3497 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3498 } 3499 } 3500 3501 /* 3502 * Do boot-time initialization of a CPU's per-CPU RCU data. 3503 */ 3504 static void __init 3505 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3506 { 3507 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3508 3509 /* Set up local state, ensuring consistent view of global state. */ 3510 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3511 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3512 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1); 3513 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3514 rdp->cpu = cpu; 3515 rdp->rsp = rsp; 3516 rcu_boot_init_nocb_percpu_data(rdp); 3517 } 3518 3519 /* 3520 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3521 * offline event can be happening at a given time. Note also that we 3522 * can accept some slop in the rsp->completed access due to the fact 3523 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3524 */ 3525 static void 3526 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3527 { 3528 unsigned long flags; 3529 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3530 struct rcu_node *rnp = rcu_get_root(rsp); 3531 3532 /* Set up local state, ensuring consistent view of global state. */ 3533 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3534 rdp->qlen_last_fqs_check = 0; 3535 rdp->n_force_qs_snap = rsp->n_force_qs; 3536 rdp->blimit = blimit; 3537 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3538 !init_nocb_callback_list(rdp)) 3539 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3540 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3541 rcu_dynticks_eqs_online(); 3542 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3543 3544 /* 3545 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3546 * propagation up the rcu_node tree will happen at the beginning 3547 * of the next grace period. 3548 */ 3549 rnp = rdp->mynode; 3550 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3551 rdp->beenonline = true; /* We have now been online. */ 3552 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3553 rdp->completed = rnp->completed; 3554 rdp->cpu_no_qs.b.norm = true; 3555 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); 3556 rdp->core_needs_qs = false; 3557 rdp->rcu_iw_pending = false; 3558 rdp->rcu_iw_gpnum = rnp->gpnum - 1; 3559 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3560 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3561 } 3562 3563 /* 3564 * Invoked early in the CPU-online process, when pretty much all 3565 * services are available. The incoming CPU is not present. 3566 */ 3567 int rcutree_prepare_cpu(unsigned int cpu) 3568 { 3569 struct rcu_state *rsp; 3570 3571 for_each_rcu_flavor(rsp) 3572 rcu_init_percpu_data(cpu, rsp); 3573 3574 rcu_prepare_kthreads(cpu); 3575 rcu_spawn_all_nocb_kthreads(cpu); 3576 3577 return 0; 3578 } 3579 3580 /* 3581 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3582 */ 3583 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3584 { 3585 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3586 3587 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3588 } 3589 3590 /* 3591 * Near the end of the CPU-online process. Pretty much all services 3592 * enabled, and the CPU is now very much alive. 3593 */ 3594 int rcutree_online_cpu(unsigned int cpu) 3595 { 3596 unsigned long flags; 3597 struct rcu_data *rdp; 3598 struct rcu_node *rnp; 3599 struct rcu_state *rsp; 3600 3601 for_each_rcu_flavor(rsp) { 3602 rdp = per_cpu_ptr(rsp->rda, cpu); 3603 rnp = rdp->mynode; 3604 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3605 rnp->ffmask |= rdp->grpmask; 3606 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3607 } 3608 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3609 srcu_online_cpu(cpu); 3610 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3611 return 0; /* Too early in boot for scheduler work. */ 3612 sync_sched_exp_online_cleanup(cpu); 3613 rcutree_affinity_setting(cpu, -1); 3614 return 0; 3615 } 3616 3617 /* 3618 * Near the beginning of the process. The CPU is still very much alive 3619 * with pretty much all services enabled. 3620 */ 3621 int rcutree_offline_cpu(unsigned int cpu) 3622 { 3623 unsigned long flags; 3624 struct rcu_data *rdp; 3625 struct rcu_node *rnp; 3626 struct rcu_state *rsp; 3627 3628 for_each_rcu_flavor(rsp) { 3629 rdp = per_cpu_ptr(rsp->rda, cpu); 3630 rnp = rdp->mynode; 3631 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3632 rnp->ffmask &= ~rdp->grpmask; 3633 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3634 } 3635 3636 rcutree_affinity_setting(cpu, cpu); 3637 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3638 srcu_offline_cpu(cpu); 3639 return 0; 3640 } 3641 3642 /* 3643 * Near the end of the offline process. We do only tracing here. 3644 */ 3645 int rcutree_dying_cpu(unsigned int cpu) 3646 { 3647 struct rcu_state *rsp; 3648 3649 for_each_rcu_flavor(rsp) 3650 rcu_cleanup_dying_cpu(rsp); 3651 return 0; 3652 } 3653 3654 /* 3655 * The outgoing CPU is gone and we are running elsewhere. 3656 */ 3657 int rcutree_dead_cpu(unsigned int cpu) 3658 { 3659 struct rcu_state *rsp; 3660 3661 for_each_rcu_flavor(rsp) { 3662 rcu_cleanup_dead_cpu(cpu, rsp); 3663 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3664 } 3665 return 0; 3666 } 3667 3668 static DEFINE_PER_CPU(int, rcu_cpu_started); 3669 3670 /* 3671 * Mark the specified CPU as being online so that subsequent grace periods 3672 * (both expedited and normal) will wait on it. Note that this means that 3673 * incoming CPUs are not allowed to use RCU read-side critical sections 3674 * until this function is called. Failing to observe this restriction 3675 * will result in lockdep splats. 3676 * 3677 * Note that this function is special in that it is invoked directly 3678 * from the incoming CPU rather than from the cpuhp_step mechanism. 3679 * This is because this function must be invoked at a precise location. 3680 */ 3681 void rcu_cpu_starting(unsigned int cpu) 3682 { 3683 unsigned long flags; 3684 unsigned long mask; 3685 int nbits; 3686 unsigned long oldmask; 3687 struct rcu_data *rdp; 3688 struct rcu_node *rnp; 3689 struct rcu_state *rsp; 3690 3691 if (per_cpu(rcu_cpu_started, cpu)) 3692 return; 3693 3694 per_cpu(rcu_cpu_started, cpu) = 1; 3695 3696 for_each_rcu_flavor(rsp) { 3697 rdp = per_cpu_ptr(rsp->rda, cpu); 3698 rnp = rdp->mynode; 3699 mask = rdp->grpmask; 3700 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3701 rnp->qsmaskinitnext |= mask; 3702 oldmask = rnp->expmaskinitnext; 3703 rnp->expmaskinitnext |= mask; 3704 oldmask ^= rnp->expmaskinitnext; 3705 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3706 /* Allow lockless access for expedited grace periods. */ 3707 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */ 3708 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3709 } 3710 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3711 } 3712 3713 #ifdef CONFIG_HOTPLUG_CPU 3714 /* 3715 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3716 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3717 * bit masks. 3718 */ 3719 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3720 { 3721 unsigned long flags; 3722 unsigned long mask; 3723 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3724 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3725 3726 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3727 mask = rdp->grpmask; 3728 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3729 rnp->qsmaskinitnext &= ~mask; 3730 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3731 } 3732 3733 /* 3734 * The outgoing function has no further need of RCU, so remove it from 3735 * the list of CPUs that RCU must track. 3736 * 3737 * Note that this function is special in that it is invoked directly 3738 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3739 * This is because this function must be invoked at a precise location. 3740 */ 3741 void rcu_report_dead(unsigned int cpu) 3742 { 3743 struct rcu_state *rsp; 3744 3745 /* QS for any half-done expedited RCU-sched GP. */ 3746 preempt_disable(); 3747 rcu_report_exp_rdp(&rcu_sched_state, 3748 this_cpu_ptr(rcu_sched_state.rda), true); 3749 preempt_enable(); 3750 for_each_rcu_flavor(rsp) 3751 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3752 3753 per_cpu(rcu_cpu_started, cpu) = 0; 3754 } 3755 3756 /* Migrate the dead CPU's callbacks to the current CPU. */ 3757 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp) 3758 { 3759 unsigned long flags; 3760 struct rcu_data *my_rdp; 3761 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3762 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 3763 bool needwake; 3764 3765 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3766 return; /* No callbacks to migrate. */ 3767 3768 local_irq_save(flags); 3769 my_rdp = this_cpu_ptr(rsp->rda); 3770 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3771 local_irq_restore(flags); 3772 return; 3773 } 3774 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3775 /* Leverage recent GPs and set GP for new callbacks. */ 3776 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) || 3777 rcu_advance_cbs(rsp, rnp_root, my_rdp); 3778 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3779 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3780 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3781 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3782 if (needwake) 3783 rcu_gp_kthread_wake(rsp); 3784 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3785 !rcu_segcblist_empty(&rdp->cblist), 3786 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3787 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3788 rcu_segcblist_first_cb(&rdp->cblist)); 3789 } 3790 3791 /* 3792 * The outgoing CPU has just passed through the dying-idle state, 3793 * and we are being invoked from the CPU that was IPIed to continue the 3794 * offline operation. We need to migrate the outgoing CPU's callbacks. 3795 */ 3796 void rcutree_migrate_callbacks(int cpu) 3797 { 3798 struct rcu_state *rsp; 3799 3800 for_each_rcu_flavor(rsp) 3801 rcu_migrate_callbacks(cpu, rsp); 3802 } 3803 #endif 3804 3805 /* 3806 * On non-huge systems, use expedited RCU grace periods to make suspend 3807 * and hibernation run faster. 3808 */ 3809 static int rcu_pm_notify(struct notifier_block *self, 3810 unsigned long action, void *hcpu) 3811 { 3812 switch (action) { 3813 case PM_HIBERNATION_PREPARE: 3814 case PM_SUSPEND_PREPARE: 3815 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3816 rcu_expedite_gp(); 3817 break; 3818 case PM_POST_HIBERNATION: 3819 case PM_POST_SUSPEND: 3820 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3821 rcu_unexpedite_gp(); 3822 break; 3823 default: 3824 break; 3825 } 3826 return NOTIFY_OK; 3827 } 3828 3829 /* 3830 * Spawn the kthreads that handle each RCU flavor's grace periods. 3831 */ 3832 static int __init rcu_spawn_gp_kthread(void) 3833 { 3834 unsigned long flags; 3835 int kthread_prio_in = kthread_prio; 3836 struct rcu_node *rnp; 3837 struct rcu_state *rsp; 3838 struct sched_param sp; 3839 struct task_struct *t; 3840 3841 /* Force priority into range. */ 3842 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3843 kthread_prio = 1; 3844 else if (kthread_prio < 0) 3845 kthread_prio = 0; 3846 else if (kthread_prio > 99) 3847 kthread_prio = 99; 3848 if (kthread_prio != kthread_prio_in) 3849 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3850 kthread_prio, kthread_prio_in); 3851 3852 rcu_scheduler_fully_active = 1; 3853 for_each_rcu_flavor(rsp) { 3854 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3855 BUG_ON(IS_ERR(t)); 3856 rnp = rcu_get_root(rsp); 3857 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3858 rsp->gp_kthread = t; 3859 if (kthread_prio) { 3860 sp.sched_priority = kthread_prio; 3861 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3862 } 3863 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3864 wake_up_process(t); 3865 } 3866 rcu_spawn_nocb_kthreads(); 3867 rcu_spawn_boost_kthreads(); 3868 return 0; 3869 } 3870 early_initcall(rcu_spawn_gp_kthread); 3871 3872 /* 3873 * This function is invoked towards the end of the scheduler's 3874 * initialization process. Before this is called, the idle task might 3875 * contain synchronous grace-period primitives (during which time, this idle 3876 * task is booting the system, and such primitives are no-ops). After this 3877 * function is called, any synchronous grace-period primitives are run as 3878 * expedited, with the requesting task driving the grace period forward. 3879 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3880 * runtime RCU functionality. 3881 */ 3882 void rcu_scheduler_starting(void) 3883 { 3884 WARN_ON(num_online_cpus() != 1); 3885 WARN_ON(nr_context_switches() > 0); 3886 rcu_test_sync_prims(); 3887 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3888 rcu_test_sync_prims(); 3889 } 3890 3891 /* 3892 * Helper function for rcu_init() that initializes one rcu_state structure. 3893 */ 3894 static void __init rcu_init_one(struct rcu_state *rsp) 3895 { 3896 static const char * const buf[] = RCU_NODE_NAME_INIT; 3897 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3898 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3899 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3900 3901 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3902 int cpustride = 1; 3903 int i; 3904 int j; 3905 struct rcu_node *rnp; 3906 3907 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3908 3909 /* Silence gcc 4.8 false positive about array index out of range. */ 3910 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3911 panic("rcu_init_one: rcu_num_lvls out of range"); 3912 3913 /* Initialize the level-tracking arrays. */ 3914 3915 for (i = 1; i < rcu_num_lvls; i++) 3916 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; 3917 rcu_init_levelspread(levelspread, num_rcu_lvl); 3918 3919 /* Initialize the elements themselves, starting from the leaves. */ 3920 3921 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3922 cpustride *= levelspread[i]; 3923 rnp = rsp->level[i]; 3924 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3925 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3926 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3927 &rcu_node_class[i], buf[i]); 3928 raw_spin_lock_init(&rnp->fqslock); 3929 lockdep_set_class_and_name(&rnp->fqslock, 3930 &rcu_fqs_class[i], fqs[i]); 3931 rnp->gpnum = rsp->gpnum; 3932 rnp->completed = rsp->completed; 3933 rnp->qsmask = 0; 3934 rnp->qsmaskinit = 0; 3935 rnp->grplo = j * cpustride; 3936 rnp->grphi = (j + 1) * cpustride - 1; 3937 if (rnp->grphi >= nr_cpu_ids) 3938 rnp->grphi = nr_cpu_ids - 1; 3939 if (i == 0) { 3940 rnp->grpnum = 0; 3941 rnp->grpmask = 0; 3942 rnp->parent = NULL; 3943 } else { 3944 rnp->grpnum = j % levelspread[i - 1]; 3945 rnp->grpmask = 1UL << rnp->grpnum; 3946 rnp->parent = rsp->level[i - 1] + 3947 j / levelspread[i - 1]; 3948 } 3949 rnp->level = i; 3950 INIT_LIST_HEAD(&rnp->blkd_tasks); 3951 rcu_init_one_nocb(rnp); 3952 init_waitqueue_head(&rnp->exp_wq[0]); 3953 init_waitqueue_head(&rnp->exp_wq[1]); 3954 init_waitqueue_head(&rnp->exp_wq[2]); 3955 init_waitqueue_head(&rnp->exp_wq[3]); 3956 spin_lock_init(&rnp->exp_lock); 3957 } 3958 } 3959 3960 init_swait_queue_head(&rsp->gp_wq); 3961 init_swait_queue_head(&rsp->expedited_wq); 3962 rnp = rcu_first_leaf_node(rsp); 3963 for_each_possible_cpu(i) { 3964 while (i > rnp->grphi) 3965 rnp++; 3966 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 3967 rcu_boot_init_percpu_data(i, rsp); 3968 } 3969 list_add(&rsp->flavors, &rcu_struct_flavors); 3970 } 3971 3972 /* 3973 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3974 * replace the definitions in tree.h because those are needed to size 3975 * the ->node array in the rcu_state structure. 3976 */ 3977 static void __init rcu_init_geometry(void) 3978 { 3979 ulong d; 3980 int i; 3981 int rcu_capacity[RCU_NUM_LVLS]; 3982 3983 /* 3984 * Initialize any unspecified boot parameters. 3985 * The default values of jiffies_till_first_fqs and 3986 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3987 * value, which is a function of HZ, then adding one for each 3988 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3989 */ 3990 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3991 if (jiffies_till_first_fqs == ULONG_MAX) 3992 jiffies_till_first_fqs = d; 3993 if (jiffies_till_next_fqs == ULONG_MAX) 3994 jiffies_till_next_fqs = d; 3995 3996 /* If the compile-time values are accurate, just leave. */ 3997 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3998 nr_cpu_ids == NR_CPUS) 3999 return; 4000 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4001 rcu_fanout_leaf, nr_cpu_ids); 4002 4003 /* 4004 * The boot-time rcu_fanout_leaf parameter must be at least two 4005 * and cannot exceed the number of bits in the rcu_node masks. 4006 * Complain and fall back to the compile-time values if this 4007 * limit is exceeded. 4008 */ 4009 if (rcu_fanout_leaf < 2 || 4010 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4011 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4012 WARN_ON(1); 4013 return; 4014 } 4015 4016 /* 4017 * Compute number of nodes that can be handled an rcu_node tree 4018 * with the given number of levels. 4019 */ 4020 rcu_capacity[0] = rcu_fanout_leaf; 4021 for (i = 1; i < RCU_NUM_LVLS; i++) 4022 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4023 4024 /* 4025 * The tree must be able to accommodate the configured number of CPUs. 4026 * If this limit is exceeded, fall back to the compile-time values. 4027 */ 4028 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4029 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4030 WARN_ON(1); 4031 return; 4032 } 4033 4034 /* Calculate the number of levels in the tree. */ 4035 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4036 } 4037 rcu_num_lvls = i + 1; 4038 4039 /* Calculate the number of rcu_nodes at each level of the tree. */ 4040 for (i = 0; i < rcu_num_lvls; i++) { 4041 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4042 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4043 } 4044 4045 /* Calculate the total number of rcu_node structures. */ 4046 rcu_num_nodes = 0; 4047 for (i = 0; i < rcu_num_lvls; i++) 4048 rcu_num_nodes += num_rcu_lvl[i]; 4049 } 4050 4051 /* 4052 * Dump out the structure of the rcu_node combining tree associated 4053 * with the rcu_state structure referenced by rsp. 4054 */ 4055 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4056 { 4057 int level = 0; 4058 struct rcu_node *rnp; 4059 4060 pr_info("rcu_node tree layout dump\n"); 4061 pr_info(" "); 4062 rcu_for_each_node_breadth_first(rsp, rnp) { 4063 if (rnp->level != level) { 4064 pr_cont("\n"); 4065 pr_info(" "); 4066 level = rnp->level; 4067 } 4068 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4069 } 4070 pr_cont("\n"); 4071 } 4072 4073 struct workqueue_struct *rcu_gp_wq; 4074 struct workqueue_struct *rcu_par_gp_wq; 4075 4076 void __init rcu_init(void) 4077 { 4078 int cpu; 4079 4080 rcu_early_boot_tests(); 4081 4082 rcu_bootup_announce(); 4083 rcu_init_geometry(); 4084 rcu_init_one(&rcu_bh_state); 4085 rcu_init_one(&rcu_sched_state); 4086 if (dump_tree) 4087 rcu_dump_rcu_node_tree(&rcu_sched_state); 4088 __rcu_init_preempt(); 4089 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4090 4091 /* 4092 * We don't need protection against CPU-hotplug here because 4093 * this is called early in boot, before either interrupts 4094 * or the scheduler are operational. 4095 */ 4096 pm_notifier(rcu_pm_notify, 0); 4097 for_each_online_cpu(cpu) { 4098 rcutree_prepare_cpu(cpu); 4099 rcu_cpu_starting(cpu); 4100 rcutree_online_cpu(cpu); 4101 } 4102 4103 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4104 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4105 WARN_ON(!rcu_gp_wq); 4106 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4107 WARN_ON(!rcu_par_gp_wq); 4108 } 4109 4110 #include "tree_exp.h" 4111 #include "tree_plugin.h" 4112