1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *); 79 80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 81 .gpwrap = true, 82 }; 83 static struct rcu_state rcu_state = { 84 .level = { &rcu_state.node[0] }, 85 .gp_state = RCU_GP_IDLE, 86 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 87 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 88 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 89 .name = RCU_NAME, 90 .abbr = RCU_ABBR, 91 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 92 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 93 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 94 .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work, 95 rcu_sr_normal_gp_cleanup_work), 96 .srs_cleanups_pending = ATOMIC_INIT(0), 97 #ifdef CONFIG_RCU_NOCB_CPU 98 .nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex), 99 #endif 100 }; 101 102 /* Dump rcu_node combining tree at boot to verify correct setup. */ 103 static bool dump_tree; 104 module_param(dump_tree, bool, 0444); 105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 107 #ifndef CONFIG_PREEMPT_RT 108 module_param(use_softirq, bool, 0444); 109 #endif 110 /* Control rcu_node-tree auto-balancing at boot time. */ 111 static bool rcu_fanout_exact; 112 module_param(rcu_fanout_exact, bool, 0444); 113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 115 module_param(rcu_fanout_leaf, int, 0444); 116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 117 /* Number of rcu_nodes at specified level. */ 118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 120 121 /* 122 * The rcu_scheduler_active variable is initialized to the value 123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 124 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 125 * RCU can assume that there is but one task, allowing RCU to (for example) 126 * optimize synchronize_rcu() to a simple barrier(). When this variable 127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 128 * to detect real grace periods. This variable is also used to suppress 129 * boot-time false positives from lockdep-RCU error checking. Finally, it 130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 131 * is fully initialized, including all of its kthreads having been spawned. 132 */ 133 int rcu_scheduler_active __read_mostly; 134 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 135 136 /* 137 * The rcu_scheduler_fully_active variable transitions from zero to one 138 * during the early_initcall() processing, which is after the scheduler 139 * is capable of creating new tasks. So RCU processing (for example, 140 * creating tasks for RCU priority boosting) must be delayed until after 141 * rcu_scheduler_fully_active transitions from zero to one. We also 142 * currently delay invocation of any RCU callbacks until after this point. 143 * 144 * It might later prove better for people registering RCU callbacks during 145 * early boot to take responsibility for these callbacks, but one step at 146 * a time. 147 */ 148 static int rcu_scheduler_fully_active __read_mostly; 149 150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 151 unsigned long gps, unsigned long flags); 152 static void invoke_rcu_core(void); 153 static void rcu_report_exp_rdp(struct rcu_data *rdp); 154 static void sync_sched_exp_online_cleanup(int cpu); 155 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 156 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 157 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 158 static bool rcu_init_invoked(void); 159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 161 162 /* 163 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 164 * real-time priority(enabling/disabling) is controlled by 165 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 166 */ 167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 168 module_param(kthread_prio, int, 0444); 169 170 /* Delay in jiffies for grace-period initialization delays, debug only. */ 171 172 static int gp_preinit_delay; 173 module_param(gp_preinit_delay, int, 0444); 174 static int gp_init_delay; 175 module_param(gp_init_delay, int, 0444); 176 static int gp_cleanup_delay; 177 module_param(gp_cleanup_delay, int, 0444); 178 static int nohz_full_patience_delay; 179 module_param(nohz_full_patience_delay, int, 0444); 180 static int nohz_full_patience_delay_jiffies; 181 182 // Add delay to rcu_read_unlock() for strict grace periods. 183 static int rcu_unlock_delay; 184 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 185 module_param(rcu_unlock_delay, int, 0444); 186 #endif 187 188 /* Retrieve RCU kthreads priority for rcutorture */ 189 int rcu_get_gp_kthreads_prio(void) 190 { 191 return kthread_prio; 192 } 193 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 194 195 /* 196 * Number of grace periods between delays, normalized by the duration of 197 * the delay. The longer the delay, the more the grace periods between 198 * each delay. The reason for this normalization is that it means that, 199 * for non-zero delays, the overall slowdown of grace periods is constant 200 * regardless of the duration of the delay. This arrangement balances 201 * the need for long delays to increase some race probabilities with the 202 * need for fast grace periods to increase other race probabilities. 203 */ 204 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 205 206 /* 207 * Return true if an RCU grace period is in progress. The READ_ONCE()s 208 * permit this function to be invoked without holding the root rcu_node 209 * structure's ->lock, but of course results can be subject to change. 210 */ 211 static int rcu_gp_in_progress(void) 212 { 213 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 214 } 215 216 /* 217 * Return the number of callbacks queued on the specified CPU. 218 * Handles both the nocbs and normal cases. 219 */ 220 static long rcu_get_n_cbs_cpu(int cpu) 221 { 222 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 223 224 if (rcu_segcblist_is_enabled(&rdp->cblist)) 225 return rcu_segcblist_n_cbs(&rdp->cblist); 226 return 0; 227 } 228 229 /** 230 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing 231 * 232 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU. 233 * This is a special-purpose function to be used in the softirq 234 * infrastructure and perhaps the occasional long-running softirq 235 * handler. 236 * 237 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is 238 * equivalent to momentarily completely enabling preemption. For 239 * example, given this code:: 240 * 241 * local_bh_disable(); 242 * do_something(); 243 * rcu_softirq_qs(); // A 244 * do_something_else(); 245 * local_bh_enable(); // B 246 * 247 * A call to synchronize_rcu() that began concurrently with the 248 * call to do_something() would be guaranteed to wait only until 249 * execution reached statement A. Without that rcu_softirq_qs(), 250 * that same synchronize_rcu() would instead be guaranteed to wait 251 * until execution reached statement B. 252 */ 253 void rcu_softirq_qs(void) 254 { 255 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 256 lock_is_held(&rcu_lock_map) || 257 lock_is_held(&rcu_sched_lock_map), 258 "Illegal rcu_softirq_qs() in RCU read-side critical section"); 259 rcu_qs(); 260 rcu_preempt_deferred_qs(current); 261 rcu_tasks_qs(current, false); 262 } 263 264 /* 265 * Reset the current CPU's RCU_WATCHING counter to indicate that the 266 * newly onlined CPU is no longer in an extended quiescent state. 267 * This will either leave the counter unchanged, or increment it 268 * to the next non-quiescent value. 269 * 270 * The non-atomic test/increment sequence works because the upper bits 271 * of the ->state variable are manipulated only by the corresponding CPU, 272 * or when the corresponding CPU is offline. 273 */ 274 static void rcu_watching_online(void) 275 { 276 if (ct_rcu_watching() & CT_RCU_WATCHING) 277 return; 278 ct_state_inc(CT_RCU_WATCHING); 279 } 280 281 /* 282 * Return true if the snapshot returned from ct_rcu_watching() 283 * indicates that RCU is in an extended quiescent state. 284 */ 285 static bool rcu_watching_snap_in_eqs(int snap) 286 { 287 return !(snap & CT_RCU_WATCHING); 288 } 289 290 /** 291 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU 292 * since the specified @snap? 293 * 294 * @rdp: The rcu_data corresponding to the CPU for which to check EQS. 295 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS. 296 * 297 * Returns true if the CPU corresponding to @rdp has spent some time in an 298 * extended quiescent state since @snap. Note that this doesn't check if it 299 * /still/ is in an EQS, just that it went through one since @snap. 300 * 301 * This is meant to be used in a loop waiting for a CPU to go through an EQS. 302 */ 303 static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap) 304 { 305 /* 306 * The first failing snapshot is already ordered against the accesses 307 * performed by the remote CPU after it exits idle. 308 * 309 * The second snapshot therefore only needs to order against accesses 310 * performed by the remote CPU prior to entering idle and therefore can 311 * rely solely on acquire semantics. 312 */ 313 if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap))) 314 return true; 315 316 return snap != ct_rcu_watching_cpu_acquire(rdp->cpu); 317 } 318 319 /* 320 * Return true if the referenced integer is zero while the specified 321 * CPU remains within a single extended quiescent state. 322 */ 323 bool rcu_watching_zero_in_eqs(int cpu, int *vp) 324 { 325 int snap; 326 327 // If not quiescent, force back to earlier extended quiescent state. 328 snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING; 329 smp_rmb(); // Order CT state and *vp reads. 330 if (READ_ONCE(*vp)) 331 return false; // Non-zero, so report failure; 332 smp_rmb(); // Order *vp read and CT state re-read. 333 334 // If still in the same extended quiescent state, we are good! 335 return snap == ct_rcu_watching_cpu(cpu); 336 } 337 338 /* 339 * Let the RCU core know that this CPU has gone through the scheduler, 340 * which is a quiescent state. This is called when the need for a 341 * quiescent state is urgent, so we burn an atomic operation and full 342 * memory barriers to let the RCU core know about it, regardless of what 343 * this CPU might (or might not) do in the near future. 344 * 345 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 346 * 347 * The caller must have disabled interrupts and must not be idle. 348 */ 349 notrace void rcu_momentary_eqs(void) 350 { 351 int seq; 352 353 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 354 seq = ct_state_inc(2 * CT_RCU_WATCHING); 355 /* It is illegal to call this from idle state. */ 356 WARN_ON_ONCE(!(seq & CT_RCU_WATCHING)); 357 rcu_preempt_deferred_qs(current); 358 } 359 EXPORT_SYMBOL_GPL(rcu_momentary_eqs); 360 361 /** 362 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 363 * 364 * If the current CPU is idle and running at a first-level (not nested) 365 * interrupt, or directly, from idle, return true. 366 * 367 * The caller must have at least disabled IRQs. 368 */ 369 static int rcu_is_cpu_rrupt_from_idle(void) 370 { 371 long nesting; 372 373 /* 374 * Usually called from the tick; but also used from smp_function_call() 375 * for expedited grace periods. This latter can result in running from 376 * the idle task, instead of an actual IPI. 377 */ 378 lockdep_assert_irqs_disabled(); 379 380 /* Check for counter underflows */ 381 RCU_LOCKDEP_WARN(ct_nesting() < 0, 382 "RCU nesting counter underflow!"); 383 RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0, 384 "RCU nmi_nesting counter underflow/zero!"); 385 386 /* Are we at first interrupt nesting level? */ 387 nesting = ct_nmi_nesting(); 388 if (nesting > 1) 389 return false; 390 391 /* 392 * If we're not in an interrupt, we must be in the idle task! 393 */ 394 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 395 396 /* Does CPU appear to be idle from an RCU standpoint? */ 397 return ct_nesting() == 0; 398 } 399 400 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 401 // Maximum callbacks per rcu_do_batch ... 402 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 403 static long blimit = DEFAULT_RCU_BLIMIT; 404 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 405 static long qhimark = DEFAULT_RCU_QHIMARK; 406 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 407 static long qlowmark = DEFAULT_RCU_QLOMARK; 408 #define DEFAULT_RCU_QOVLD_MULT 2 409 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 410 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 411 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 412 413 module_param(blimit, long, 0444); 414 module_param(qhimark, long, 0444); 415 module_param(qlowmark, long, 0444); 416 module_param(qovld, long, 0444); 417 418 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 419 static ulong jiffies_till_next_fqs = ULONG_MAX; 420 static bool rcu_kick_kthreads; 421 static int rcu_divisor = 7; 422 module_param(rcu_divisor, int, 0644); 423 424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 426 module_param(rcu_resched_ns, long, 0644); 427 428 /* 429 * How long the grace period must be before we start recruiting 430 * quiescent-state help from rcu_note_context_switch(). 431 */ 432 static ulong jiffies_till_sched_qs = ULONG_MAX; 433 module_param(jiffies_till_sched_qs, ulong, 0444); 434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 436 437 /* 438 * Make sure that we give the grace-period kthread time to detect any 439 * idle CPUs before taking active measures to force quiescent states. 440 * However, don't go below 100 milliseconds, adjusted upwards for really 441 * large systems. 442 */ 443 static void adjust_jiffies_till_sched_qs(void) 444 { 445 unsigned long j; 446 447 /* If jiffies_till_sched_qs was specified, respect the request. */ 448 if (jiffies_till_sched_qs != ULONG_MAX) { 449 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 450 return; 451 } 452 /* Otherwise, set to third fqs scan, but bound below on large system. */ 453 j = READ_ONCE(jiffies_till_first_fqs) + 454 2 * READ_ONCE(jiffies_till_next_fqs); 455 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 456 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 457 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 458 WRITE_ONCE(jiffies_to_sched_qs, j); 459 } 460 461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 462 { 463 ulong j; 464 int ret = kstrtoul(val, 0, &j); 465 466 if (!ret) { 467 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 468 adjust_jiffies_till_sched_qs(); 469 } 470 return ret; 471 } 472 473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 474 { 475 ulong j; 476 int ret = kstrtoul(val, 0, &j); 477 478 if (!ret) { 479 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 480 adjust_jiffies_till_sched_qs(); 481 } 482 return ret; 483 } 484 485 static const struct kernel_param_ops first_fqs_jiffies_ops = { 486 .set = param_set_first_fqs_jiffies, 487 .get = param_get_ulong, 488 }; 489 490 static const struct kernel_param_ops next_fqs_jiffies_ops = { 491 .set = param_set_next_fqs_jiffies, 492 .get = param_get_ulong, 493 }; 494 495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 497 module_param(rcu_kick_kthreads, bool, 0644); 498 499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 500 static int rcu_pending(int user); 501 502 /* 503 * Return the number of RCU GPs completed thus far for debug & stats. 504 */ 505 unsigned long rcu_get_gp_seq(void) 506 { 507 return READ_ONCE(rcu_state.gp_seq); 508 } 509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 510 511 /* 512 * Return the number of RCU expedited batches completed thus far for 513 * debug & stats. Odd numbers mean that a batch is in progress, even 514 * numbers mean idle. The value returned will thus be roughly double 515 * the cumulative batches since boot. 516 */ 517 unsigned long rcu_exp_batches_completed(void) 518 { 519 return rcu_state.expedited_sequence; 520 } 521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 522 523 /* 524 * Return the root node of the rcu_state structure. 525 */ 526 static struct rcu_node *rcu_get_root(void) 527 { 528 return &rcu_state.node[0]; 529 } 530 531 /* 532 * Send along grace-period-related data for rcutorture diagnostics. 533 */ 534 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq) 535 { 536 *flags = READ_ONCE(rcu_state.gp_flags); 537 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 538 } 539 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 540 541 /* Gather grace-period sequence numbers for rcutorture diagnostics. */ 542 unsigned long long rcutorture_gather_gp_seqs(void) 543 { 544 return ((READ_ONCE(rcu_state.gp_seq) & 0xffffULL) << 40) | 545 ((READ_ONCE(rcu_state.expedited_sequence) & 0xffffffULL) << 16) | 546 (READ_ONCE(rcu_state.gp_seq_polled) & 0xffffULL); 547 } 548 EXPORT_SYMBOL_GPL(rcutorture_gather_gp_seqs); 549 550 /* Format grace-period sequence numbers for rcutorture diagnostics. */ 551 void rcutorture_format_gp_seqs(unsigned long long seqs, char *cp, size_t len) 552 { 553 unsigned int egp = (seqs >> 16) & 0xffffffULL; 554 unsigned int ggp = (seqs >> 40) & 0xffffULL; 555 unsigned int pgp = seqs & 0xffffULL; 556 557 snprintf(cp, len, "g%04x:e%06x:p%04x", ggp, egp, pgp); 558 } 559 EXPORT_SYMBOL_GPL(rcutorture_format_gp_seqs); 560 561 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 562 /* 563 * An empty function that will trigger a reschedule on 564 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 565 */ 566 static void late_wakeup_func(struct irq_work *work) 567 { 568 } 569 570 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 571 IRQ_WORK_INIT(late_wakeup_func); 572 573 /* 574 * If either: 575 * 576 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 577 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 578 * 579 * In these cases the late RCU wake ups aren't supported in the resched loops and our 580 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 581 * get re-enabled again. 582 */ 583 noinstr void rcu_irq_work_resched(void) 584 { 585 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 586 587 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 588 return; 589 590 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 591 return; 592 593 instrumentation_begin(); 594 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 595 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 596 } 597 instrumentation_end(); 598 } 599 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 600 601 #ifdef CONFIG_PROVE_RCU 602 /** 603 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 604 */ 605 void rcu_irq_exit_check_preempt(void) 606 { 607 lockdep_assert_irqs_disabled(); 608 609 RCU_LOCKDEP_WARN(ct_nesting() <= 0, 610 "RCU nesting counter underflow/zero!"); 611 RCU_LOCKDEP_WARN(ct_nmi_nesting() != 612 CT_NESTING_IRQ_NONIDLE, 613 "Bad RCU nmi_nesting counter\n"); 614 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), 615 "RCU in extended quiescent state!"); 616 } 617 #endif /* #ifdef CONFIG_PROVE_RCU */ 618 619 #ifdef CONFIG_NO_HZ_FULL 620 /** 621 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 622 * 623 * The scheduler tick is not normally enabled when CPUs enter the kernel 624 * from nohz_full userspace execution. After all, nohz_full userspace 625 * execution is an RCU quiescent state and the time executing in the kernel 626 * is quite short. Except of course when it isn't. And it is not hard to 627 * cause a large system to spend tens of seconds or even minutes looping 628 * in the kernel, which can cause a number of problems, include RCU CPU 629 * stall warnings. 630 * 631 * Therefore, if a nohz_full CPU fails to report a quiescent state 632 * in a timely manner, the RCU grace-period kthread sets that CPU's 633 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 634 * exception will invoke this function, which will turn on the scheduler 635 * tick, which will enable RCU to detect that CPU's quiescent states, 636 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 637 * The tick will be disabled once a quiescent state is reported for 638 * this CPU. 639 * 640 * Of course, in carefully tuned systems, there might never be an 641 * interrupt or exception. In that case, the RCU grace-period kthread 642 * will eventually cause one to happen. However, in less carefully 643 * controlled environments, this function allows RCU to get what it 644 * needs without creating otherwise useless interruptions. 645 */ 646 void __rcu_irq_enter_check_tick(void) 647 { 648 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 649 650 // If we're here from NMI there's nothing to do. 651 if (in_nmi()) 652 return; 653 654 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), 655 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 656 657 if (!tick_nohz_full_cpu(rdp->cpu) || 658 !READ_ONCE(rdp->rcu_urgent_qs) || 659 READ_ONCE(rdp->rcu_forced_tick)) { 660 // RCU doesn't need nohz_full help from this CPU, or it is 661 // already getting that help. 662 return; 663 } 664 665 // We get here only when not in an extended quiescent state and 666 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 667 // already watching and (2) The fact that we are in an interrupt 668 // handler and that the rcu_node lock is an irq-disabled lock 669 // prevents self-deadlock. So we can safely recheck under the lock. 670 // Note that the nohz_full state currently cannot change. 671 raw_spin_lock_rcu_node(rdp->mynode); 672 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 673 // A nohz_full CPU is in the kernel and RCU needs a 674 // quiescent state. Turn on the tick! 675 WRITE_ONCE(rdp->rcu_forced_tick, true); 676 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 677 } 678 raw_spin_unlock_rcu_node(rdp->mynode); 679 } 680 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 681 #endif /* CONFIG_NO_HZ_FULL */ 682 683 /* 684 * Check to see if any future non-offloaded RCU-related work will need 685 * to be done by the current CPU, even if none need be done immediately, 686 * returning 1 if so. This function is part of the RCU implementation; 687 * it is -not- an exported member of the RCU API. This is used by 688 * the idle-entry code to figure out whether it is safe to disable the 689 * scheduler-clock interrupt. 690 * 691 * Just check whether or not this CPU has non-offloaded RCU callbacks 692 * queued. 693 */ 694 int rcu_needs_cpu(void) 695 { 696 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 697 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 698 } 699 700 /* 701 * If any sort of urgency was applied to the current CPU (for example, 702 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 703 * to get to a quiescent state, disable it. 704 */ 705 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 706 { 707 raw_lockdep_assert_held_rcu_node(rdp->mynode); 708 WRITE_ONCE(rdp->rcu_urgent_qs, false); 709 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 710 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 711 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 712 WRITE_ONCE(rdp->rcu_forced_tick, false); 713 } 714 } 715 716 /** 717 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 718 * 719 * Return @true if RCU is watching the running CPU and @false otherwise. 720 * An @true return means that this CPU can safely enter RCU read-side 721 * critical sections. 722 * 723 * Although calls to rcu_is_watching() from most parts of the kernel 724 * will return @true, there are important exceptions. For example, if the 725 * current CPU is deep within its idle loop, in kernel entry/exit code, 726 * or offline, rcu_is_watching() will return @false. 727 * 728 * Make notrace because it can be called by the internal functions of 729 * ftrace, and making this notrace removes unnecessary recursion calls. 730 */ 731 notrace bool rcu_is_watching(void) 732 { 733 bool ret; 734 735 preempt_disable_notrace(); 736 ret = rcu_is_watching_curr_cpu(); 737 preempt_enable_notrace(); 738 return ret; 739 } 740 EXPORT_SYMBOL_GPL(rcu_is_watching); 741 742 /* 743 * If a holdout task is actually running, request an urgent quiescent 744 * state from its CPU. This is unsynchronized, so migrations can cause 745 * the request to go to the wrong CPU. Which is OK, all that will happen 746 * is that the CPU's next context switch will be a bit slower and next 747 * time around this task will generate another request. 748 */ 749 void rcu_request_urgent_qs_task(struct task_struct *t) 750 { 751 int cpu; 752 753 barrier(); 754 cpu = task_cpu(t); 755 if (!task_curr(t)) 756 return; /* This task is not running on that CPU. */ 757 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 758 } 759 760 /* 761 * When trying to report a quiescent state on behalf of some other CPU, 762 * it is our responsibility to check for and handle potential overflow 763 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 764 * After all, the CPU might be in deep idle state, and thus executing no 765 * code whatsoever. 766 */ 767 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 768 { 769 raw_lockdep_assert_held_rcu_node(rnp); 770 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 771 rnp->gp_seq)) 772 WRITE_ONCE(rdp->gpwrap, true); 773 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 774 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 775 } 776 777 /* 778 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later 779 * credit them with an implicit quiescent state. Return 1 if this CPU 780 * is in dynticks idle mode, which is an extended quiescent state. 781 */ 782 static int rcu_watching_snap_save(struct rcu_data *rdp) 783 { 784 /* 785 * Full ordering between remote CPU's post idle accesses and updater's 786 * accesses prior to current GP (and also the started GP sequence number) 787 * is enforced by rcu_seq_start() implicit barrier and even further by 788 * smp_mb__after_unlock_lock() barriers chained all the way throughout the 789 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp 790 * locking. 791 * 792 * Ordering between remote CPU's pre idle accesses and post grace period 793 * updater's accesses is enforced by the below acquire semantic. 794 */ 795 rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu); 796 if (rcu_watching_snap_in_eqs(rdp->watching_snap)) { 797 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 798 rcu_gpnum_ovf(rdp->mynode, rdp); 799 return 1; 800 } 801 return 0; 802 } 803 804 /* 805 * Returns positive if the specified CPU has passed through a quiescent state 806 * by virtue of being in or having passed through an dynticks idle state since 807 * the last call to rcu_watching_snap_save() for this same CPU, or by 808 * virtue of having been offline. 809 * 810 * Returns negative if the specified CPU needs a force resched. 811 * 812 * Returns zero otherwise. 813 */ 814 static int rcu_watching_snap_recheck(struct rcu_data *rdp) 815 { 816 unsigned long jtsq; 817 int ret = 0; 818 struct rcu_node *rnp = rdp->mynode; 819 820 /* 821 * If the CPU passed through or entered a dynticks idle phase with 822 * no active irq/NMI handlers, then we can safely pretend that the CPU 823 * already acknowledged the request to pass through a quiescent 824 * state. Either way, that CPU cannot possibly be in an RCU 825 * read-side critical section that started before the beginning 826 * of the current RCU grace period. 827 */ 828 if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) { 829 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 830 rcu_gpnum_ovf(rnp, rdp); 831 return 1; 832 } 833 834 /* 835 * Complain if a CPU that is considered to be offline from RCU's 836 * perspective has not yet reported a quiescent state. After all, 837 * the offline CPU should have reported a quiescent state during 838 * the CPU-offline process, or, failing that, by rcu_gp_init() 839 * if it ran concurrently with either the CPU going offline or the 840 * last task on a leaf rcu_node structure exiting its RCU read-side 841 * critical section while all CPUs corresponding to that structure 842 * are offline. This added warning detects bugs in any of these 843 * code paths. 844 * 845 * The rcu_node structure's ->lock is held here, which excludes 846 * the relevant portions the CPU-hotplug code, the grace-period 847 * initialization code, and the rcu_read_unlock() code paths. 848 * 849 * For more detail, please refer to the "Hotplug CPU" section 850 * of RCU's Requirements documentation. 851 */ 852 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 853 struct rcu_node *rnp1; 854 855 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 856 __func__, rnp->grplo, rnp->grphi, rnp->level, 857 (long)rnp->gp_seq, (long)rnp->completedqs); 858 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 859 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 860 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 861 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 862 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 863 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state, 864 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state); 865 return 1; /* Break things loose after complaining. */ 866 } 867 868 /* 869 * A CPU running for an extended time within the kernel can 870 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 871 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 872 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 873 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 874 * variable are safe because the assignments are repeated if this 875 * CPU failed to pass through a quiescent state. This code 876 * also checks .jiffies_resched in case jiffies_to_sched_qs 877 * is set way high. 878 */ 879 jtsq = READ_ONCE(jiffies_to_sched_qs); 880 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 881 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 882 time_after(jiffies, rcu_state.jiffies_resched) || 883 rcu_state.cbovld)) { 884 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 885 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 886 smp_store_release(&rdp->rcu_urgent_qs, true); 887 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 888 WRITE_ONCE(rdp->rcu_urgent_qs, true); 889 } 890 891 /* 892 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 893 * The above code handles this, but only for straight cond_resched(). 894 * And some in-kernel loops check need_resched() before calling 895 * cond_resched(), which defeats the above code for CPUs that are 896 * running in-kernel with scheduling-clock interrupts disabled. 897 * So hit them over the head with the resched_cpu() hammer! 898 */ 899 if (tick_nohz_full_cpu(rdp->cpu) && 900 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 901 rcu_state.cbovld)) { 902 WRITE_ONCE(rdp->rcu_urgent_qs, true); 903 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 904 ret = -1; 905 } 906 907 /* 908 * If more than halfway to RCU CPU stall-warning time, invoke 909 * resched_cpu() more frequently to try to loosen things up a bit. 910 * Also check to see if the CPU is getting hammered with interrupts, 911 * but only once per grace period, just to keep the IPIs down to 912 * a dull roar. 913 */ 914 if (time_after(jiffies, rcu_state.jiffies_resched)) { 915 if (time_after(jiffies, 916 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 917 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 918 ret = -1; 919 } 920 if (IS_ENABLED(CONFIG_IRQ_WORK) && 921 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 922 (rnp->ffmask & rdp->grpmask)) { 923 rdp->rcu_iw_pending = true; 924 rdp->rcu_iw_gp_seq = rnp->gp_seq; 925 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 926 } 927 928 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 929 int cpu = rdp->cpu; 930 struct rcu_snap_record *rsrp; 931 struct kernel_cpustat *kcsp; 932 933 kcsp = &kcpustat_cpu(cpu); 934 935 rsrp = &rdp->snap_record; 936 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 937 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 938 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 939 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 940 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 941 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 942 rsrp->jiffies = jiffies; 943 rsrp->gp_seq = rdp->gp_seq; 944 } 945 } 946 947 return ret; 948 } 949 950 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 951 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 952 unsigned long gp_seq_req, const char *s) 953 { 954 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 955 gp_seq_req, rnp->level, 956 rnp->grplo, rnp->grphi, s); 957 } 958 959 /* 960 * rcu_start_this_gp - Request the start of a particular grace period 961 * @rnp_start: The leaf node of the CPU from which to start. 962 * @rdp: The rcu_data corresponding to the CPU from which to start. 963 * @gp_seq_req: The gp_seq of the grace period to start. 964 * 965 * Start the specified grace period, as needed to handle newly arrived 966 * callbacks. The required future grace periods are recorded in each 967 * rcu_node structure's ->gp_seq_needed field. Returns true if there 968 * is reason to awaken the grace-period kthread. 969 * 970 * The caller must hold the specified rcu_node structure's ->lock, which 971 * is why the caller is responsible for waking the grace-period kthread. 972 * 973 * Returns true if the GP thread needs to be awakened else false. 974 */ 975 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 976 unsigned long gp_seq_req) 977 { 978 bool ret = false; 979 struct rcu_node *rnp; 980 981 /* 982 * Use funnel locking to either acquire the root rcu_node 983 * structure's lock or bail out if the need for this grace period 984 * has already been recorded -- or if that grace period has in 985 * fact already started. If there is already a grace period in 986 * progress in a non-leaf node, no recording is needed because the 987 * end of the grace period will scan the leaf rcu_node structures. 988 * Note that rnp_start->lock must not be released. 989 */ 990 raw_lockdep_assert_held_rcu_node(rnp_start); 991 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 992 for (rnp = rnp_start; 1; rnp = rnp->parent) { 993 if (rnp != rnp_start) 994 raw_spin_lock_rcu_node(rnp); 995 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 996 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 997 (rnp != rnp_start && 998 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 999 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1000 TPS("Prestarted")); 1001 goto unlock_out; 1002 } 1003 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1004 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1005 /* 1006 * We just marked the leaf or internal node, and a 1007 * grace period is in progress, which means that 1008 * rcu_gp_cleanup() will see the marking. Bail to 1009 * reduce contention. 1010 */ 1011 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1012 TPS("Startedleaf")); 1013 goto unlock_out; 1014 } 1015 if (rnp != rnp_start && rnp->parent != NULL) 1016 raw_spin_unlock_rcu_node(rnp); 1017 if (!rnp->parent) 1018 break; /* At root, and perhaps also leaf. */ 1019 } 1020 1021 /* If GP already in progress, just leave, otherwise start one. */ 1022 if (rcu_gp_in_progress()) { 1023 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1024 goto unlock_out; 1025 } 1026 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1027 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1028 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1029 if (!READ_ONCE(rcu_state.gp_kthread)) { 1030 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1031 goto unlock_out; 1032 } 1033 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1034 ret = true; /* Caller must wake GP kthread. */ 1035 unlock_out: 1036 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1037 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1038 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1039 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1040 } 1041 if (rnp != rnp_start) 1042 raw_spin_unlock_rcu_node(rnp); 1043 return ret; 1044 } 1045 1046 /* 1047 * Clean up any old requests for the just-ended grace period. Also return 1048 * whether any additional grace periods have been requested. 1049 */ 1050 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1051 { 1052 bool needmore; 1053 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1054 1055 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1056 if (!needmore) 1057 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1058 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1059 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1060 return needmore; 1061 } 1062 1063 static void swake_up_one_online_ipi(void *arg) 1064 { 1065 struct swait_queue_head *wqh = arg; 1066 1067 swake_up_one(wqh); 1068 } 1069 1070 static void swake_up_one_online(struct swait_queue_head *wqh) 1071 { 1072 int cpu = get_cpu(); 1073 1074 /* 1075 * If called from rcutree_report_cpu_starting(), wake up 1076 * is dangerous that late in the CPU-down hotplug process. The 1077 * scheduler might queue an ignored hrtimer. Defer the wake up 1078 * to an online CPU instead. 1079 */ 1080 if (unlikely(cpu_is_offline(cpu))) { 1081 int target; 1082 1083 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU), 1084 cpu_online_mask); 1085 1086 smp_call_function_single(target, swake_up_one_online_ipi, 1087 wqh, 0); 1088 put_cpu(); 1089 } else { 1090 put_cpu(); 1091 swake_up_one(wqh); 1092 } 1093 } 1094 1095 /* 1096 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1097 * interrupt or softirq handler, in which case we just might immediately 1098 * sleep upon return, resulting in a grace-period hang), and don't bother 1099 * awakening when there is nothing for the grace-period kthread to do 1100 * (as in several CPUs raced to awaken, we lost), and finally don't try 1101 * to awaken a kthread that has not yet been created. If all those checks 1102 * are passed, track some debug information and awaken. 1103 * 1104 * So why do the self-wakeup when in an interrupt or softirq handler 1105 * in the grace-period kthread's context? Because the kthread might have 1106 * been interrupted just as it was going to sleep, and just after the final 1107 * pre-sleep check of the awaken condition. In this case, a wakeup really 1108 * is required, and is therefore supplied. 1109 */ 1110 static void rcu_gp_kthread_wake(void) 1111 { 1112 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1113 1114 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1115 !READ_ONCE(rcu_state.gp_flags) || !t) 1116 return; 1117 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1118 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1119 swake_up_one_online(&rcu_state.gp_wq); 1120 } 1121 1122 /* 1123 * If there is room, assign a ->gp_seq number to any callbacks on this 1124 * CPU that have not already been assigned. Also accelerate any callbacks 1125 * that were previously assigned a ->gp_seq number that has since proven 1126 * to be too conservative, which can happen if callbacks get assigned a 1127 * ->gp_seq number while RCU is idle, but with reference to a non-root 1128 * rcu_node structure. This function is idempotent, so it does not hurt 1129 * to call it repeatedly. Returns an flag saying that we should awaken 1130 * the RCU grace-period kthread. 1131 * 1132 * The caller must hold rnp->lock with interrupts disabled. 1133 */ 1134 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1135 { 1136 unsigned long gp_seq_req; 1137 bool ret = false; 1138 1139 rcu_lockdep_assert_cblist_protected(rdp); 1140 raw_lockdep_assert_held_rcu_node(rnp); 1141 1142 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1143 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1144 return false; 1145 1146 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1147 1148 /* 1149 * Callbacks are often registered with incomplete grace-period 1150 * information. Something about the fact that getting exact 1151 * information requires acquiring a global lock... RCU therefore 1152 * makes a conservative estimate of the grace period number at which 1153 * a given callback will become ready to invoke. The following 1154 * code checks this estimate and improves it when possible, thus 1155 * accelerating callback invocation to an earlier grace-period 1156 * number. 1157 */ 1158 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1159 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1160 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1161 1162 /* Trace depending on how much we were able to accelerate. */ 1163 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1164 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1165 else 1166 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1167 1168 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1169 1170 return ret; 1171 } 1172 1173 /* 1174 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1175 * rcu_node structure's ->lock be held. It consults the cached value 1176 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1177 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1178 * while holding the leaf rcu_node structure's ->lock. 1179 */ 1180 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1181 struct rcu_data *rdp) 1182 { 1183 unsigned long c; 1184 bool needwake; 1185 1186 rcu_lockdep_assert_cblist_protected(rdp); 1187 c = rcu_seq_snap(&rcu_state.gp_seq); 1188 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1189 /* Old request still live, so mark recent callbacks. */ 1190 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1191 return; 1192 } 1193 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1194 needwake = rcu_accelerate_cbs(rnp, rdp); 1195 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1196 if (needwake) 1197 rcu_gp_kthread_wake(); 1198 } 1199 1200 /* 1201 * Move any callbacks whose grace period has completed to the 1202 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1203 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1204 * sublist. This function is idempotent, so it does not hurt to 1205 * invoke it repeatedly. As long as it is not invoked -too- often... 1206 * Returns true if the RCU grace-period kthread needs to be awakened. 1207 * 1208 * The caller must hold rnp->lock with interrupts disabled. 1209 */ 1210 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1211 { 1212 rcu_lockdep_assert_cblist_protected(rdp); 1213 raw_lockdep_assert_held_rcu_node(rnp); 1214 1215 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1216 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1217 return false; 1218 1219 /* 1220 * Find all callbacks whose ->gp_seq numbers indicate that they 1221 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1222 */ 1223 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1224 1225 /* Classify any remaining callbacks. */ 1226 return rcu_accelerate_cbs(rnp, rdp); 1227 } 1228 1229 /* 1230 * Move and classify callbacks, but only if doing so won't require 1231 * that the RCU grace-period kthread be awakened. 1232 */ 1233 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1234 struct rcu_data *rdp) 1235 { 1236 rcu_lockdep_assert_cblist_protected(rdp); 1237 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1238 return; 1239 // The grace period cannot end while we hold the rcu_node lock. 1240 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1241 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1242 raw_spin_unlock_rcu_node(rnp); 1243 } 1244 1245 /* 1246 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1247 * quiescent state. This is intended to be invoked when the CPU notices 1248 * a new grace period. 1249 */ 1250 static void rcu_strict_gp_check_qs(void) 1251 { 1252 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1253 rcu_read_lock(); 1254 rcu_read_unlock(); 1255 } 1256 } 1257 1258 /* 1259 * Update CPU-local rcu_data state to record the beginnings and ends of 1260 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1261 * structure corresponding to the current CPU, and must have irqs disabled. 1262 * Returns true if the grace-period kthread needs to be awakened. 1263 */ 1264 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1265 { 1266 bool ret = false; 1267 bool need_qs; 1268 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1269 1270 raw_lockdep_assert_held_rcu_node(rnp); 1271 1272 if (rdp->gp_seq == rnp->gp_seq) 1273 return false; /* Nothing to do. */ 1274 1275 /* Handle the ends of any preceding grace periods first. */ 1276 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1277 unlikely(rdp->gpwrap)) { 1278 if (!offloaded) 1279 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1280 rdp->core_needs_qs = false; 1281 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1282 } else { 1283 if (!offloaded) 1284 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1285 if (rdp->core_needs_qs) 1286 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1287 } 1288 1289 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1290 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1291 unlikely(rdp->gpwrap)) { 1292 /* 1293 * If the current grace period is waiting for this CPU, 1294 * set up to detect a quiescent state, otherwise don't 1295 * go looking for one. 1296 */ 1297 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1298 need_qs = !!(rnp->qsmask & rdp->grpmask); 1299 rdp->cpu_no_qs.b.norm = need_qs; 1300 rdp->core_needs_qs = need_qs; 1301 zero_cpu_stall_ticks(rdp); 1302 } 1303 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1304 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1305 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1306 if (IS_ENABLED(CONFIG_PROVE_RCU) && rdp->gpwrap) 1307 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1308 WRITE_ONCE(rdp->gpwrap, false); 1309 rcu_gpnum_ovf(rnp, rdp); 1310 return ret; 1311 } 1312 1313 static void note_gp_changes(struct rcu_data *rdp) 1314 { 1315 unsigned long flags; 1316 bool needwake; 1317 struct rcu_node *rnp; 1318 1319 local_irq_save(flags); 1320 rnp = rdp->mynode; 1321 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1322 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1323 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1324 local_irq_restore(flags); 1325 return; 1326 } 1327 needwake = __note_gp_changes(rnp, rdp); 1328 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1329 rcu_strict_gp_check_qs(); 1330 if (needwake) 1331 rcu_gp_kthread_wake(); 1332 } 1333 1334 static atomic_t *rcu_gp_slow_suppress; 1335 1336 /* Register a counter to suppress debugging grace-period delays. */ 1337 void rcu_gp_slow_register(atomic_t *rgssp) 1338 { 1339 WARN_ON_ONCE(rcu_gp_slow_suppress); 1340 1341 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1342 } 1343 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1344 1345 /* Unregister a counter, with NULL for not caring which. */ 1346 void rcu_gp_slow_unregister(atomic_t *rgssp) 1347 { 1348 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1349 1350 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1351 } 1352 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1353 1354 static bool rcu_gp_slow_is_suppressed(void) 1355 { 1356 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1357 1358 return rgssp && atomic_read(rgssp); 1359 } 1360 1361 static void rcu_gp_slow(int delay) 1362 { 1363 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1364 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1365 schedule_timeout_idle(delay); 1366 } 1367 1368 static unsigned long sleep_duration; 1369 1370 /* Allow rcutorture to stall the grace-period kthread. */ 1371 void rcu_gp_set_torture_wait(int duration) 1372 { 1373 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1374 WRITE_ONCE(sleep_duration, duration); 1375 } 1376 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1377 1378 /* Actually implement the aforementioned wait. */ 1379 static void rcu_gp_torture_wait(void) 1380 { 1381 unsigned long duration; 1382 1383 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1384 return; 1385 duration = xchg(&sleep_duration, 0UL); 1386 if (duration > 0) { 1387 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1388 schedule_timeout_idle(duration); 1389 pr_alert("%s: Wait complete\n", __func__); 1390 } 1391 } 1392 1393 /* 1394 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1395 * processing. 1396 */ 1397 static void rcu_strict_gp_boundary(void *unused) 1398 { 1399 invoke_rcu_core(); 1400 } 1401 1402 // Make the polled API aware of the beginning of a grace period. 1403 static void rcu_poll_gp_seq_start(unsigned long *snap) 1404 { 1405 struct rcu_node *rnp = rcu_get_root(); 1406 1407 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1408 raw_lockdep_assert_held_rcu_node(rnp); 1409 1410 // If RCU was idle, note beginning of GP. 1411 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1412 rcu_seq_start(&rcu_state.gp_seq_polled); 1413 1414 // Either way, record current state. 1415 *snap = rcu_state.gp_seq_polled; 1416 } 1417 1418 // Make the polled API aware of the end of a grace period. 1419 static void rcu_poll_gp_seq_end(unsigned long *snap) 1420 { 1421 struct rcu_node *rnp = rcu_get_root(); 1422 1423 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1424 raw_lockdep_assert_held_rcu_node(rnp); 1425 1426 // If the previously noted GP is still in effect, record the 1427 // end of that GP. Either way, zero counter to avoid counter-wrap 1428 // problems. 1429 if (*snap && *snap == rcu_state.gp_seq_polled) { 1430 rcu_seq_end(&rcu_state.gp_seq_polled); 1431 rcu_state.gp_seq_polled_snap = 0; 1432 rcu_state.gp_seq_polled_exp_snap = 0; 1433 } else { 1434 *snap = 0; 1435 } 1436 } 1437 1438 // Make the polled API aware of the beginning of a grace period, but 1439 // where caller does not hold the root rcu_node structure's lock. 1440 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1441 { 1442 unsigned long flags; 1443 struct rcu_node *rnp = rcu_get_root(); 1444 1445 if (rcu_init_invoked()) { 1446 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1447 lockdep_assert_irqs_enabled(); 1448 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1449 } 1450 rcu_poll_gp_seq_start(snap); 1451 if (rcu_init_invoked()) 1452 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1453 } 1454 1455 // Make the polled API aware of the end of a grace period, but where 1456 // caller does not hold the root rcu_node structure's lock. 1457 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1458 { 1459 unsigned long flags; 1460 struct rcu_node *rnp = rcu_get_root(); 1461 1462 if (rcu_init_invoked()) { 1463 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1464 lockdep_assert_irqs_enabled(); 1465 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1466 } 1467 rcu_poll_gp_seq_end(snap); 1468 if (rcu_init_invoked()) 1469 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1470 } 1471 1472 /* 1473 * There is a single llist, which is used for handling 1474 * synchronize_rcu() users' enqueued rcu_synchronize nodes. 1475 * Within this llist, there are two tail pointers: 1476 * 1477 * wait tail: Tracks the set of nodes, which need to 1478 * wait for the current GP to complete. 1479 * done tail: Tracks the set of nodes, for which grace 1480 * period has elapsed. These nodes processing 1481 * will be done as part of the cleanup work 1482 * execution by a kworker. 1483 * 1484 * At every grace period init, a new wait node is added 1485 * to the llist. This wait node is used as wait tail 1486 * for this new grace period. Given that there are a fixed 1487 * number of wait nodes, if all wait nodes are in use 1488 * (which can happen when kworker callback processing 1489 * is delayed) and additional grace period is requested. 1490 * This means, a system is slow in processing callbacks. 1491 * 1492 * TODO: If a slow processing is detected, a first node 1493 * in the llist should be used as a wait-tail for this 1494 * grace period, therefore users which should wait due 1495 * to a slow process are handled by _this_ grace period 1496 * and not next. 1497 * 1498 * Below is an illustration of how the done and wait 1499 * tail pointers move from one set of rcu_synchronize nodes 1500 * to the other, as grace periods start and finish and 1501 * nodes are processed by kworker. 1502 * 1503 * 1504 * a. Initial llist callbacks list: 1505 * 1506 * +----------+ +--------+ +-------+ 1507 * | | | | | | 1508 * | head |---------> | cb2 |--------->| cb1 | 1509 * | | | | | | 1510 * +----------+ +--------+ +-------+ 1511 * 1512 * 1513 * 1514 * b. New GP1 Start: 1515 * 1516 * WAIT TAIL 1517 * | 1518 * | 1519 * v 1520 * +----------+ +--------+ +--------+ +-------+ 1521 * | | | | | | | | 1522 * | head ------> wait |------> cb2 |------> | cb1 | 1523 * | | | head1 | | | | | 1524 * +----------+ +--------+ +--------+ +-------+ 1525 * 1526 * 1527 * 1528 * c. GP completion: 1529 * 1530 * WAIT_TAIL == DONE_TAIL 1531 * 1532 * DONE TAIL 1533 * | 1534 * | 1535 * v 1536 * +----------+ +--------+ +--------+ +-------+ 1537 * | | | | | | | | 1538 * | head ------> wait |------> cb2 |------> | cb1 | 1539 * | | | head1 | | | | | 1540 * +----------+ +--------+ +--------+ +-------+ 1541 * 1542 * 1543 * 1544 * d. New callbacks and GP2 start: 1545 * 1546 * WAIT TAIL DONE TAIL 1547 * | | 1548 * | | 1549 * v v 1550 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1551 * | | | | | | | | | | | | | | 1552 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1553 * | | | head2| | | | | |head1| | | | | 1554 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1555 * 1556 * 1557 * 1558 * e. GP2 completion: 1559 * 1560 * WAIT_TAIL == DONE_TAIL 1561 * DONE TAIL 1562 * | 1563 * | 1564 * v 1565 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1566 * | | | | | | | | | | | | | | 1567 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | 1568 * | | | head2| | | | | |head1| | | | | 1569 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ 1570 * 1571 * 1572 * While the llist state transitions from d to e, a kworker 1573 * can start executing rcu_sr_normal_gp_cleanup_work() and 1574 * can observe either the old done tail (@c) or the new 1575 * done tail (@e). So, done tail updates and reads need 1576 * to use the rel-acq semantics. If the concurrent kworker 1577 * observes the old done tail, the newly queued work 1578 * execution will process the updated done tail. If the 1579 * concurrent kworker observes the new done tail, then 1580 * the newly queued work will skip processing the done 1581 * tail, as workqueue semantics guarantees that the new 1582 * work is executed only after the previous one completes. 1583 * 1584 * f. kworker callbacks processing complete: 1585 * 1586 * 1587 * DONE TAIL 1588 * | 1589 * | 1590 * v 1591 * +----------+ +--------+ 1592 * | | | | 1593 * | head ------> wait | 1594 * | | | head2 | 1595 * +----------+ +--------+ 1596 * 1597 */ 1598 static bool rcu_sr_is_wait_head(struct llist_node *node) 1599 { 1600 return &(rcu_state.srs_wait_nodes)[0].node <= node && 1601 node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node; 1602 } 1603 1604 static struct llist_node *rcu_sr_get_wait_head(void) 1605 { 1606 struct sr_wait_node *sr_wn; 1607 int i; 1608 1609 for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) { 1610 sr_wn = &(rcu_state.srs_wait_nodes)[i]; 1611 1612 if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1)) 1613 return &sr_wn->node; 1614 } 1615 1616 return NULL; 1617 } 1618 1619 static void rcu_sr_put_wait_head(struct llist_node *node) 1620 { 1621 struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node); 1622 1623 atomic_set_release(&sr_wn->inuse, 0); 1624 } 1625 1626 /* Disabled by default. */ 1627 static int rcu_normal_wake_from_gp; 1628 module_param(rcu_normal_wake_from_gp, int, 0644); 1629 static struct workqueue_struct *sync_wq; 1630 1631 static void rcu_sr_normal_complete(struct llist_node *node) 1632 { 1633 struct rcu_synchronize *rs = container_of( 1634 (struct rcu_head *) node, struct rcu_synchronize, head); 1635 1636 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && 1637 !poll_state_synchronize_rcu_full(&rs->oldstate), 1638 "A full grace period is not passed yet!\n"); 1639 1640 /* Finally. */ 1641 complete(&rs->completion); 1642 } 1643 1644 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work) 1645 { 1646 struct llist_node *done, *rcu, *next, *head; 1647 1648 /* 1649 * This work execution can potentially execute 1650 * while a new done tail is being updated by 1651 * grace period kthread in rcu_sr_normal_gp_cleanup(). 1652 * So, read and updates of done tail need to 1653 * follow acq-rel semantics. 1654 * 1655 * Given that wq semantics guarantees that a single work 1656 * cannot execute concurrently by multiple kworkers, 1657 * the done tail list manipulations are protected here. 1658 */ 1659 done = smp_load_acquire(&rcu_state.srs_done_tail); 1660 if (WARN_ON_ONCE(!done)) 1661 return; 1662 1663 WARN_ON_ONCE(!rcu_sr_is_wait_head(done)); 1664 head = done->next; 1665 done->next = NULL; 1666 1667 /* 1668 * The dummy node, which is pointed to by the 1669 * done tail which is acq-read above is not removed 1670 * here. This allows lockless additions of new 1671 * rcu_synchronize nodes in rcu_sr_normal_add_req(), 1672 * while the cleanup work executes. The dummy 1673 * nodes is removed, in next round of cleanup 1674 * work execution. 1675 */ 1676 llist_for_each_safe(rcu, next, head) { 1677 if (!rcu_sr_is_wait_head(rcu)) { 1678 rcu_sr_normal_complete(rcu); 1679 continue; 1680 } 1681 1682 rcu_sr_put_wait_head(rcu); 1683 } 1684 1685 /* Order list manipulations with atomic access. */ 1686 atomic_dec_return_release(&rcu_state.srs_cleanups_pending); 1687 } 1688 1689 /* 1690 * Helper function for rcu_gp_cleanup(). 1691 */ 1692 static void rcu_sr_normal_gp_cleanup(void) 1693 { 1694 struct llist_node *wait_tail, *next = NULL, *rcu = NULL; 1695 int done = 0; 1696 1697 wait_tail = rcu_state.srs_wait_tail; 1698 if (wait_tail == NULL) 1699 return; 1700 1701 rcu_state.srs_wait_tail = NULL; 1702 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1703 WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail)); 1704 1705 /* 1706 * Process (a) and (d) cases. See an illustration. 1707 */ 1708 llist_for_each_safe(rcu, next, wait_tail->next) { 1709 if (rcu_sr_is_wait_head(rcu)) 1710 break; 1711 1712 rcu_sr_normal_complete(rcu); 1713 // It can be last, update a next on this step. 1714 wait_tail->next = next; 1715 1716 if (++done == SR_MAX_USERS_WAKE_FROM_GP) 1717 break; 1718 } 1719 1720 /* 1721 * Fast path, no more users to process except putting the second last 1722 * wait head if no inflight-workers. If there are in-flight workers, 1723 * they will remove the last wait head. 1724 * 1725 * Note that the ACQUIRE orders atomic access with list manipulation. 1726 */ 1727 if (wait_tail->next && wait_tail->next->next == NULL && 1728 rcu_sr_is_wait_head(wait_tail->next) && 1729 !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) { 1730 rcu_sr_put_wait_head(wait_tail->next); 1731 wait_tail->next = NULL; 1732 } 1733 1734 /* Concurrent sr_normal_gp_cleanup work might observe this update. */ 1735 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail); 1736 smp_store_release(&rcu_state.srs_done_tail, wait_tail); 1737 1738 /* 1739 * We schedule a work in order to perform a final processing 1740 * of outstanding users(if still left) and releasing wait-heads 1741 * added by rcu_sr_normal_gp_init() call. 1742 */ 1743 if (wait_tail->next) { 1744 atomic_inc(&rcu_state.srs_cleanups_pending); 1745 if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work)) 1746 atomic_dec(&rcu_state.srs_cleanups_pending); 1747 } 1748 } 1749 1750 /* 1751 * Helper function for rcu_gp_init(). 1752 */ 1753 static bool rcu_sr_normal_gp_init(void) 1754 { 1755 struct llist_node *first; 1756 struct llist_node *wait_head; 1757 bool start_new_poll = false; 1758 1759 first = READ_ONCE(rcu_state.srs_next.first); 1760 if (!first || rcu_sr_is_wait_head(first)) 1761 return start_new_poll; 1762 1763 wait_head = rcu_sr_get_wait_head(); 1764 if (!wait_head) { 1765 // Kick another GP to retry. 1766 start_new_poll = true; 1767 return start_new_poll; 1768 } 1769 1770 /* Inject a wait-dummy-node. */ 1771 llist_add(wait_head, &rcu_state.srs_next); 1772 1773 /* 1774 * A waiting list of rcu_synchronize nodes should be empty on 1775 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(), 1776 * rolls it over. If not, it is a BUG, warn a user. 1777 */ 1778 WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL); 1779 rcu_state.srs_wait_tail = wait_head; 1780 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); 1781 1782 return start_new_poll; 1783 } 1784 1785 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs) 1786 { 1787 llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next); 1788 } 1789 1790 /* 1791 * Initialize a new grace period. Return false if no grace period required. 1792 */ 1793 static noinline_for_stack bool rcu_gp_init(void) 1794 { 1795 unsigned long flags; 1796 unsigned long oldmask; 1797 unsigned long mask; 1798 struct rcu_data *rdp; 1799 struct rcu_node *rnp = rcu_get_root(); 1800 bool start_new_poll; 1801 1802 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1803 raw_spin_lock_irq_rcu_node(rnp); 1804 if (!rcu_state.gp_flags) { 1805 /* Spurious wakeup, tell caller to go back to sleep. */ 1806 raw_spin_unlock_irq_rcu_node(rnp); 1807 return false; 1808 } 1809 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1810 1811 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1812 /* 1813 * Grace period already in progress, don't start another. 1814 * Not supposed to be able to happen. 1815 */ 1816 raw_spin_unlock_irq_rcu_node(rnp); 1817 return false; 1818 } 1819 1820 /* Advance to a new grace period and initialize state. */ 1821 record_gp_stall_check_time(); 1822 /* 1823 * A new wait segment must be started before gp_seq advanced, so 1824 * that previous gp waiters won't observe the new gp_seq. 1825 */ 1826 start_new_poll = rcu_sr_normal_gp_init(); 1827 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1828 rcu_seq_start(&rcu_state.gp_seq); 1829 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1830 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1831 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1832 raw_spin_unlock_irq_rcu_node(rnp); 1833 1834 /* 1835 * The "start_new_poll" is set to true, only when this GP is not able 1836 * to handle anything and there are outstanding users. It happens when 1837 * the rcu_sr_normal_gp_init() function was not able to insert a dummy 1838 * separator to the llist, because there were no left any dummy-nodes. 1839 * 1840 * Number of dummy-nodes is fixed, it could be that we are run out of 1841 * them, if so we start a new pool request to repeat a try. It is rare 1842 * and it means that a system is doing a slow processing of callbacks. 1843 */ 1844 if (start_new_poll) 1845 (void) start_poll_synchronize_rcu(); 1846 1847 /* 1848 * Apply per-leaf buffered online and offline operations to 1849 * the rcu_node tree. Note that this new grace period need not 1850 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1851 * offlining path, when combined with checks in this function, 1852 * will handle CPUs that are currently going offline or that will 1853 * go offline later. Please also refer to "Hotplug CPU" section 1854 * of RCU's Requirements documentation. 1855 */ 1856 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1857 /* Exclude CPU hotplug operations. */ 1858 rcu_for_each_leaf_node(rnp) { 1859 local_irq_disable(); 1860 arch_spin_lock(&rcu_state.ofl_lock); 1861 raw_spin_lock_rcu_node(rnp); 1862 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1863 !rnp->wait_blkd_tasks) { 1864 /* Nothing to do on this leaf rcu_node structure. */ 1865 raw_spin_unlock_rcu_node(rnp); 1866 arch_spin_unlock(&rcu_state.ofl_lock); 1867 local_irq_enable(); 1868 continue; 1869 } 1870 1871 /* Record old state, apply changes to ->qsmaskinit field. */ 1872 oldmask = rnp->qsmaskinit; 1873 rnp->qsmaskinit = rnp->qsmaskinitnext; 1874 1875 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1876 if (!oldmask != !rnp->qsmaskinit) { 1877 if (!oldmask) { /* First online CPU for rcu_node. */ 1878 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1879 rcu_init_new_rnp(rnp); 1880 } else if (rcu_preempt_has_tasks(rnp)) { 1881 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1882 } else { /* Last offline CPU and can propagate. */ 1883 rcu_cleanup_dead_rnp(rnp); 1884 } 1885 } 1886 1887 /* 1888 * If all waited-on tasks from prior grace period are 1889 * done, and if all this rcu_node structure's CPUs are 1890 * still offline, propagate up the rcu_node tree and 1891 * clear ->wait_blkd_tasks. Otherwise, if one of this 1892 * rcu_node structure's CPUs has since come back online, 1893 * simply clear ->wait_blkd_tasks. 1894 */ 1895 if (rnp->wait_blkd_tasks && 1896 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1897 rnp->wait_blkd_tasks = false; 1898 if (!rnp->qsmaskinit) 1899 rcu_cleanup_dead_rnp(rnp); 1900 } 1901 1902 raw_spin_unlock_rcu_node(rnp); 1903 arch_spin_unlock(&rcu_state.ofl_lock); 1904 local_irq_enable(); 1905 } 1906 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1907 1908 /* 1909 * Set the quiescent-state-needed bits in all the rcu_node 1910 * structures for all currently online CPUs in breadth-first 1911 * order, starting from the root rcu_node structure, relying on the 1912 * layout of the tree within the rcu_state.node[] array. Note that 1913 * other CPUs will access only the leaves of the hierarchy, thus 1914 * seeing that no grace period is in progress, at least until the 1915 * corresponding leaf node has been initialized. 1916 * 1917 * The grace period cannot complete until the initialization 1918 * process finishes, because this kthread handles both. 1919 */ 1920 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1921 rcu_for_each_node_breadth_first(rnp) { 1922 rcu_gp_slow(gp_init_delay); 1923 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1924 rdp = this_cpu_ptr(&rcu_data); 1925 rcu_preempt_check_blocked_tasks(rnp); 1926 rnp->qsmask = rnp->qsmaskinit; 1927 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1928 if (rnp == rdp->mynode) 1929 (void)__note_gp_changes(rnp, rdp); 1930 rcu_preempt_boost_start_gp(rnp); 1931 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1932 rnp->level, rnp->grplo, 1933 rnp->grphi, rnp->qsmask); 1934 /* Quiescent states for tasks on any now-offline CPUs. */ 1935 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1936 rnp->rcu_gp_init_mask = mask; 1937 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1938 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1939 else 1940 raw_spin_unlock_irq_rcu_node(rnp); 1941 cond_resched_tasks_rcu_qs(); 1942 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1943 } 1944 1945 // If strict, make all CPUs aware of new grace period. 1946 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1947 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1948 1949 return true; 1950 } 1951 1952 /* 1953 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1954 * time. 1955 */ 1956 static bool rcu_gp_fqs_check_wake(int *gfp) 1957 { 1958 struct rcu_node *rnp = rcu_get_root(); 1959 1960 // If under overload conditions, force an immediate FQS scan. 1961 if (*gfp & RCU_GP_FLAG_OVLD) 1962 return true; 1963 1964 // Someone like call_rcu() requested a force-quiescent-state scan. 1965 *gfp = READ_ONCE(rcu_state.gp_flags); 1966 if (*gfp & RCU_GP_FLAG_FQS) 1967 return true; 1968 1969 // The current grace period has completed. 1970 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1971 return true; 1972 1973 return false; 1974 } 1975 1976 /* 1977 * Do one round of quiescent-state forcing. 1978 */ 1979 static void rcu_gp_fqs(bool first_time) 1980 { 1981 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1982 struct rcu_node *rnp = rcu_get_root(); 1983 1984 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1985 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1986 1987 WARN_ON_ONCE(nr_fqs > 3); 1988 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1989 if (nr_fqs) { 1990 if (nr_fqs == 1) { 1991 WRITE_ONCE(rcu_state.jiffies_stall, 1992 jiffies + rcu_jiffies_till_stall_check()); 1993 } 1994 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1995 } 1996 1997 if (first_time) { 1998 /* Collect dyntick-idle snapshots. */ 1999 force_qs_rnp(rcu_watching_snap_save); 2000 } else { 2001 /* Handle dyntick-idle and offline CPUs. */ 2002 force_qs_rnp(rcu_watching_snap_recheck); 2003 } 2004 /* Clear flag to prevent immediate re-entry. */ 2005 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2006 raw_spin_lock_irq_rcu_node(rnp); 2007 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS); 2008 raw_spin_unlock_irq_rcu_node(rnp); 2009 } 2010 } 2011 2012 /* 2013 * Loop doing repeated quiescent-state forcing until the grace period ends. 2014 */ 2015 static noinline_for_stack void rcu_gp_fqs_loop(void) 2016 { 2017 bool first_gp_fqs = true; 2018 int gf = 0; 2019 unsigned long j; 2020 int ret; 2021 struct rcu_node *rnp = rcu_get_root(); 2022 2023 j = READ_ONCE(jiffies_till_first_fqs); 2024 if (rcu_state.cbovld) 2025 gf = RCU_GP_FLAG_OVLD; 2026 ret = 0; 2027 for (;;) { 2028 if (rcu_state.cbovld) { 2029 j = (j + 2) / 3; 2030 if (j <= 0) 2031 j = 1; 2032 } 2033 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 2034 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 2035 /* 2036 * jiffies_force_qs before RCU_GP_WAIT_FQS state 2037 * update; required for stall checks. 2038 */ 2039 smp_wmb(); 2040 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 2041 jiffies + (j ? 3 * j : 2)); 2042 } 2043 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2044 TPS("fqswait")); 2045 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 2046 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 2047 rcu_gp_fqs_check_wake(&gf), j); 2048 rcu_gp_torture_wait(); 2049 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2050 /* Locking provides needed memory barriers. */ 2051 /* 2052 * Exit the loop if the root rcu_node structure indicates that the grace period 2053 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 2054 * is required only for single-node rcu_node trees because readers blocking 2055 * the current grace period are queued only on leaf rcu_node structures. 2056 * For multi-node trees, checking the root node's ->qsmask suffices, because a 2057 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 2058 * the corresponding leaf nodes have passed through their quiescent state. 2059 */ 2060 if (!READ_ONCE(rnp->qsmask) && 2061 !rcu_preempt_blocked_readers_cgp(rnp)) 2062 break; 2063 /* If time for quiescent-state forcing, do it. */ 2064 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2065 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2066 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2067 TPS("fqsstart")); 2068 rcu_gp_fqs(first_gp_fqs); 2069 gf = 0; 2070 if (first_gp_fqs) { 2071 first_gp_fqs = false; 2072 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2073 } 2074 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2075 TPS("fqsend")); 2076 cond_resched_tasks_rcu_qs(); 2077 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2078 ret = 0; /* Force full wait till next FQS. */ 2079 j = READ_ONCE(jiffies_till_next_fqs); 2080 } else { 2081 /* Deal with stray signal. */ 2082 cond_resched_tasks_rcu_qs(); 2083 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2084 WARN_ON(signal_pending(current)); 2085 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2086 TPS("fqswaitsig")); 2087 ret = 1; /* Keep old FQS timing. */ 2088 j = jiffies; 2089 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2090 j = 1; 2091 else 2092 j = rcu_state.jiffies_force_qs - j; 2093 gf = 0; 2094 } 2095 } 2096 } 2097 2098 /* 2099 * Clean up after the old grace period. 2100 */ 2101 static noinline void rcu_gp_cleanup(void) 2102 { 2103 int cpu; 2104 bool needgp = false; 2105 unsigned long gp_duration; 2106 unsigned long new_gp_seq; 2107 bool offloaded; 2108 struct rcu_data *rdp; 2109 struct rcu_node *rnp = rcu_get_root(); 2110 struct swait_queue_head *sq; 2111 2112 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2113 raw_spin_lock_irq_rcu_node(rnp); 2114 rcu_state.gp_end = jiffies; 2115 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2116 if (gp_duration > rcu_state.gp_max) 2117 rcu_state.gp_max = gp_duration; 2118 2119 /* 2120 * We know the grace period is complete, but to everyone else 2121 * it appears to still be ongoing. But it is also the case 2122 * that to everyone else it looks like there is nothing that 2123 * they can do to advance the grace period. It is therefore 2124 * safe for us to drop the lock in order to mark the grace 2125 * period as completed in all of the rcu_node structures. 2126 */ 2127 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 2128 raw_spin_unlock_irq_rcu_node(rnp); 2129 2130 /* 2131 * Propagate new ->gp_seq value to rcu_node structures so that 2132 * other CPUs don't have to wait until the start of the next grace 2133 * period to process their callbacks. This also avoids some nasty 2134 * RCU grace-period initialization races by forcing the end of 2135 * the current grace period to be completely recorded in all of 2136 * the rcu_node structures before the beginning of the next grace 2137 * period is recorded in any of the rcu_node structures. 2138 */ 2139 new_gp_seq = rcu_state.gp_seq; 2140 rcu_seq_end(&new_gp_seq); 2141 rcu_for_each_node_breadth_first(rnp) { 2142 raw_spin_lock_irq_rcu_node(rnp); 2143 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2144 dump_blkd_tasks(rnp, 10); 2145 WARN_ON_ONCE(rnp->qsmask); 2146 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2147 if (!rnp->parent) 2148 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 2149 rdp = this_cpu_ptr(&rcu_data); 2150 if (rnp == rdp->mynode) 2151 needgp = __note_gp_changes(rnp, rdp) || needgp; 2152 /* smp_mb() provided by prior unlock-lock pair. */ 2153 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2154 // Reset overload indication for CPUs no longer overloaded 2155 if (rcu_is_leaf_node(rnp)) 2156 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2157 rdp = per_cpu_ptr(&rcu_data, cpu); 2158 check_cb_ovld_locked(rdp, rnp); 2159 } 2160 sq = rcu_nocb_gp_get(rnp); 2161 raw_spin_unlock_irq_rcu_node(rnp); 2162 rcu_nocb_gp_cleanup(sq); 2163 cond_resched_tasks_rcu_qs(); 2164 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2165 rcu_gp_slow(gp_cleanup_delay); 2166 } 2167 rnp = rcu_get_root(); 2168 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2169 2170 /* Declare grace period done, trace first to use old GP number. */ 2171 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2172 rcu_seq_end(&rcu_state.gp_seq); 2173 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2174 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2175 /* Check for GP requests since above loop. */ 2176 rdp = this_cpu_ptr(&rcu_data); 2177 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2178 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2179 TPS("CleanupMore")); 2180 needgp = true; 2181 } 2182 /* Advance CBs to reduce false positives below. */ 2183 offloaded = rcu_rdp_is_offloaded(rdp); 2184 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2185 2186 // We get here if a grace period was needed (“needgp”) 2187 // and the above call to rcu_accelerate_cbs() did not set 2188 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 2189 // the need for another grace period). The purpose 2190 // of the “offloaded” check is to avoid invoking 2191 // rcu_accelerate_cbs() on an offloaded CPU because we do not 2192 // hold the ->nocb_lock needed to safely access an offloaded 2193 // ->cblist. We do not want to acquire that lock because 2194 // it can be heavily contended during callback floods. 2195 2196 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2197 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2198 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 2199 } else { 2200 2201 // We get here either if there is no need for an 2202 // additional grace period or if rcu_accelerate_cbs() has 2203 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 2204 // So all we need to do is to clear all of the other 2205 // ->gp_flags bits. 2206 2207 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2208 } 2209 raw_spin_unlock_irq_rcu_node(rnp); 2210 2211 // Make synchronize_rcu() users aware of the end of old grace period. 2212 rcu_sr_normal_gp_cleanup(); 2213 2214 // If strict, make all CPUs aware of the end of the old grace period. 2215 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2216 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2217 } 2218 2219 /* 2220 * Body of kthread that handles grace periods. 2221 */ 2222 static int __noreturn rcu_gp_kthread(void *unused) 2223 { 2224 rcu_bind_gp_kthread(); 2225 for (;;) { 2226 2227 /* Handle grace-period start. */ 2228 for (;;) { 2229 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2230 TPS("reqwait")); 2231 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2232 swait_event_idle_exclusive(rcu_state.gp_wq, 2233 READ_ONCE(rcu_state.gp_flags) & 2234 RCU_GP_FLAG_INIT); 2235 rcu_gp_torture_wait(); 2236 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2237 /* Locking provides needed memory barrier. */ 2238 if (rcu_gp_init()) 2239 break; 2240 cond_resched_tasks_rcu_qs(); 2241 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2242 WARN_ON(signal_pending(current)); 2243 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2244 TPS("reqwaitsig")); 2245 } 2246 2247 /* Handle quiescent-state forcing. */ 2248 rcu_gp_fqs_loop(); 2249 2250 /* Handle grace-period end. */ 2251 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2252 rcu_gp_cleanup(); 2253 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2254 } 2255 } 2256 2257 /* 2258 * Report a full set of quiescent states to the rcu_state data structure. 2259 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2260 * another grace period is required. Whether we wake the grace-period 2261 * kthread or it awakens itself for the next round of quiescent-state 2262 * forcing, that kthread will clean up after the just-completed grace 2263 * period. Note that the caller must hold rnp->lock, which is released 2264 * before return. 2265 */ 2266 static void rcu_report_qs_rsp(unsigned long flags) 2267 __releases(rcu_get_root()->lock) 2268 { 2269 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2270 WARN_ON_ONCE(!rcu_gp_in_progress()); 2271 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2272 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2273 rcu_gp_kthread_wake(); 2274 } 2275 2276 /* 2277 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2278 * Allows quiescent states for a group of CPUs to be reported at one go 2279 * to the specified rcu_node structure, though all the CPUs in the group 2280 * must be represented by the same rcu_node structure (which need not be a 2281 * leaf rcu_node structure, though it often will be). The gps parameter 2282 * is the grace-period snapshot, which means that the quiescent states 2283 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2284 * must be held upon entry, and it is released before return. 2285 * 2286 * As a special case, if mask is zero, the bit-already-cleared check is 2287 * disabled. This allows propagating quiescent state due to resumed tasks 2288 * during grace-period initialization. 2289 */ 2290 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2291 unsigned long gps, unsigned long flags) 2292 __releases(rnp->lock) 2293 { 2294 unsigned long oldmask = 0; 2295 struct rcu_node *rnp_c; 2296 2297 raw_lockdep_assert_held_rcu_node(rnp); 2298 2299 /* Walk up the rcu_node hierarchy. */ 2300 for (;;) { 2301 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2302 2303 /* 2304 * Our bit has already been cleared, or the 2305 * relevant grace period is already over, so done. 2306 */ 2307 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2308 return; 2309 } 2310 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2311 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2312 rcu_preempt_blocked_readers_cgp(rnp)); 2313 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2314 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2315 mask, rnp->qsmask, rnp->level, 2316 rnp->grplo, rnp->grphi, 2317 !!rnp->gp_tasks); 2318 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2319 2320 /* Other bits still set at this level, so done. */ 2321 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2322 return; 2323 } 2324 rnp->completedqs = rnp->gp_seq; 2325 mask = rnp->grpmask; 2326 if (rnp->parent == NULL) { 2327 2328 /* No more levels. Exit loop holding root lock. */ 2329 2330 break; 2331 } 2332 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2333 rnp_c = rnp; 2334 rnp = rnp->parent; 2335 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2336 oldmask = READ_ONCE(rnp_c->qsmask); 2337 } 2338 2339 /* 2340 * Get here if we are the last CPU to pass through a quiescent 2341 * state for this grace period. Invoke rcu_report_qs_rsp() 2342 * to clean up and start the next grace period if one is needed. 2343 */ 2344 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2345 } 2346 2347 /* 2348 * Record a quiescent state for all tasks that were previously queued 2349 * on the specified rcu_node structure and that were blocking the current 2350 * RCU grace period. The caller must hold the corresponding rnp->lock with 2351 * irqs disabled, and this lock is released upon return, but irqs remain 2352 * disabled. 2353 */ 2354 static void __maybe_unused 2355 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2356 __releases(rnp->lock) 2357 { 2358 unsigned long gps; 2359 unsigned long mask; 2360 struct rcu_node *rnp_p; 2361 2362 raw_lockdep_assert_held_rcu_node(rnp); 2363 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2364 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2365 rnp->qsmask != 0) { 2366 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2367 return; /* Still need more quiescent states! */ 2368 } 2369 2370 rnp->completedqs = rnp->gp_seq; 2371 rnp_p = rnp->parent; 2372 if (rnp_p == NULL) { 2373 /* 2374 * Only one rcu_node structure in the tree, so don't 2375 * try to report up to its nonexistent parent! 2376 */ 2377 rcu_report_qs_rsp(flags); 2378 return; 2379 } 2380 2381 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2382 gps = rnp->gp_seq; 2383 mask = rnp->grpmask; 2384 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2385 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2386 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2387 } 2388 2389 /* 2390 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2391 * structure. This must be called from the specified CPU. 2392 */ 2393 static void 2394 rcu_report_qs_rdp(struct rcu_data *rdp) 2395 { 2396 unsigned long flags; 2397 unsigned long mask; 2398 struct rcu_node *rnp; 2399 2400 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2401 rnp = rdp->mynode; 2402 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2403 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2404 rdp->gpwrap) { 2405 2406 /* 2407 * The grace period in which this quiescent state was 2408 * recorded has ended, so don't report it upwards. 2409 * We will instead need a new quiescent state that lies 2410 * within the current grace period. 2411 */ 2412 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2413 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2414 return; 2415 } 2416 mask = rdp->grpmask; 2417 rdp->core_needs_qs = false; 2418 if ((rnp->qsmask & mask) == 0) { 2419 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2420 } else { 2421 /* 2422 * This GP can't end until cpu checks in, so all of our 2423 * callbacks can be processed during the next GP. 2424 * 2425 * NOCB kthreads have their own way to deal with that... 2426 */ 2427 if (!rcu_rdp_is_offloaded(rdp)) { 2428 /* 2429 * The current GP has not yet ended, so it 2430 * should not be possible for rcu_accelerate_cbs() 2431 * to return true. So complain, but don't awaken. 2432 */ 2433 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2434 } 2435 2436 rcu_disable_urgency_upon_qs(rdp); 2437 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2438 /* ^^^ Released rnp->lock */ 2439 } 2440 } 2441 2442 /* 2443 * Check to see if there is a new grace period of which this CPU 2444 * is not yet aware, and if so, set up local rcu_data state for it. 2445 * Otherwise, see if this CPU has just passed through its first 2446 * quiescent state for this grace period, and record that fact if so. 2447 */ 2448 static void 2449 rcu_check_quiescent_state(struct rcu_data *rdp) 2450 { 2451 /* Check for grace-period ends and beginnings. */ 2452 note_gp_changes(rdp); 2453 2454 /* 2455 * Does this CPU still need to do its part for current grace period? 2456 * If no, return and let the other CPUs do their part as well. 2457 */ 2458 if (!rdp->core_needs_qs) 2459 return; 2460 2461 /* 2462 * Was there a quiescent state since the beginning of the grace 2463 * period? If no, then exit and wait for the next call. 2464 */ 2465 if (rdp->cpu_no_qs.b.norm) 2466 return; 2467 2468 /* 2469 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2470 * judge of that). 2471 */ 2472 rcu_report_qs_rdp(rdp); 2473 } 2474 2475 /* Return true if callback-invocation time limit exceeded. */ 2476 static bool rcu_do_batch_check_time(long count, long tlimit, 2477 bool jlimit_check, unsigned long jlimit) 2478 { 2479 // Invoke local_clock() only once per 32 consecutive callbacks. 2480 return unlikely(tlimit) && 2481 (!likely(count & 31) || 2482 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2483 jlimit_check && time_after(jiffies, jlimit))) && 2484 local_clock() >= tlimit; 2485 } 2486 2487 /* 2488 * Invoke any RCU callbacks that have made it to the end of their grace 2489 * period. Throttle as specified by rdp->blimit. 2490 */ 2491 static void rcu_do_batch(struct rcu_data *rdp) 2492 { 2493 long bl; 2494 long count = 0; 2495 int div; 2496 bool __maybe_unused empty; 2497 unsigned long flags; 2498 unsigned long jlimit; 2499 bool jlimit_check = false; 2500 long pending; 2501 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2502 struct rcu_head *rhp; 2503 long tlimit = 0; 2504 2505 /* If no callbacks are ready, just return. */ 2506 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2507 trace_rcu_batch_start(rcu_state.name, 2508 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2509 trace_rcu_batch_end(rcu_state.name, 0, 2510 !rcu_segcblist_empty(&rdp->cblist), 2511 need_resched(), is_idle_task(current), 2512 rcu_is_callbacks_kthread(rdp)); 2513 return; 2514 } 2515 2516 /* 2517 * Extract the list of ready callbacks, disabling IRQs to prevent 2518 * races with call_rcu() from interrupt handlers. Leave the 2519 * callback counts, as rcu_barrier() needs to be conservative. 2520 * 2521 * Callbacks execution is fully ordered against preceding grace period 2522 * completion (materialized by rnp->gp_seq update) thanks to the 2523 * smp_mb__after_unlock_lock() upon node locking required for callbacks 2524 * advancing. In NOCB mode this ordering is then further relayed through 2525 * the nocb locking that protects both callbacks advancing and extraction. 2526 */ 2527 rcu_nocb_lock_irqsave(rdp, flags); 2528 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2529 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2530 div = READ_ONCE(rcu_divisor); 2531 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2532 bl = max(rdp->blimit, pending >> div); 2533 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2534 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2535 const long npj = NSEC_PER_SEC / HZ; 2536 long rrn = READ_ONCE(rcu_resched_ns); 2537 2538 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2539 tlimit = local_clock() + rrn; 2540 jlimit = jiffies + (rrn + npj + 1) / npj; 2541 jlimit_check = true; 2542 } 2543 trace_rcu_batch_start(rcu_state.name, 2544 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2545 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2546 if (rcu_rdp_is_offloaded(rdp)) 2547 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2548 2549 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2550 rcu_nocb_unlock_irqrestore(rdp, flags); 2551 2552 /* Invoke callbacks. */ 2553 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2554 rhp = rcu_cblist_dequeue(&rcl); 2555 2556 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2557 rcu_callback_t f; 2558 2559 count++; 2560 debug_rcu_head_unqueue(rhp); 2561 2562 rcu_lock_acquire(&rcu_callback_map); 2563 trace_rcu_invoke_callback(rcu_state.name, rhp); 2564 2565 f = rhp->func; 2566 debug_rcu_head_callback(rhp); 2567 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2568 f(rhp); 2569 2570 rcu_lock_release(&rcu_callback_map); 2571 2572 /* 2573 * Stop only if limit reached and CPU has something to do. 2574 */ 2575 if (in_serving_softirq()) { 2576 if (count >= bl && (need_resched() || !is_idle_task(current))) 2577 break; 2578 /* 2579 * Make sure we don't spend too much time here and deprive other 2580 * softirq vectors of CPU cycles. 2581 */ 2582 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2583 break; 2584 } else { 2585 // In rcuc/rcuoc context, so no worries about 2586 // depriving other softirq vectors of CPU cycles. 2587 local_bh_enable(); 2588 lockdep_assert_irqs_enabled(); 2589 cond_resched_tasks_rcu_qs(); 2590 lockdep_assert_irqs_enabled(); 2591 local_bh_disable(); 2592 // But rcuc kthreads can delay quiescent-state 2593 // reporting, so check time limits for them. 2594 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2595 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2596 rdp->rcu_cpu_has_work = 1; 2597 break; 2598 } 2599 } 2600 } 2601 2602 rcu_nocb_lock_irqsave(rdp, flags); 2603 rdp->n_cbs_invoked += count; 2604 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2605 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2606 2607 /* Update counts and requeue any remaining callbacks. */ 2608 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2609 rcu_segcblist_add_len(&rdp->cblist, -count); 2610 2611 /* Reinstate batch limit if we have worked down the excess. */ 2612 count = rcu_segcblist_n_cbs(&rdp->cblist); 2613 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2614 rdp->blimit = blimit; 2615 2616 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2617 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2618 rdp->qlen_last_fqs_check = 0; 2619 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2620 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2621 rdp->qlen_last_fqs_check = count; 2622 2623 /* 2624 * The following usually indicates a double call_rcu(). To track 2625 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2626 */ 2627 empty = rcu_segcblist_empty(&rdp->cblist); 2628 WARN_ON_ONCE(count == 0 && !empty); 2629 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2630 count != 0 && empty); 2631 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2632 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2633 2634 rcu_nocb_unlock_irqrestore(rdp, flags); 2635 2636 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2637 } 2638 2639 /* 2640 * This function is invoked from each scheduling-clock interrupt, 2641 * and checks to see if this CPU is in a non-context-switch quiescent 2642 * state, for example, user mode or idle loop. It also schedules RCU 2643 * core processing. If the current grace period has gone on too long, 2644 * it will ask the scheduler to manufacture a context switch for the sole 2645 * purpose of providing the needed quiescent state. 2646 */ 2647 void rcu_sched_clock_irq(int user) 2648 { 2649 unsigned long j; 2650 2651 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2652 j = jiffies; 2653 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2654 __this_cpu_write(rcu_data.last_sched_clock, j); 2655 } 2656 trace_rcu_utilization(TPS("Start scheduler-tick")); 2657 lockdep_assert_irqs_disabled(); 2658 raw_cpu_inc(rcu_data.ticks_this_gp); 2659 /* The load-acquire pairs with the store-release setting to true. */ 2660 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2661 /* Idle and userspace execution already are quiescent states. */ 2662 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2663 set_tsk_need_resched(current); 2664 set_preempt_need_resched(); 2665 } 2666 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2667 } 2668 rcu_flavor_sched_clock_irq(user); 2669 if (rcu_pending(user)) 2670 invoke_rcu_core(); 2671 if (user || rcu_is_cpu_rrupt_from_idle()) 2672 rcu_note_voluntary_context_switch(current); 2673 lockdep_assert_irqs_disabled(); 2674 2675 trace_rcu_utilization(TPS("End scheduler-tick")); 2676 } 2677 2678 /* 2679 * Scan the leaf rcu_node structures. For each structure on which all 2680 * CPUs have reported a quiescent state and on which there are tasks 2681 * blocking the current grace period, initiate RCU priority boosting. 2682 * Otherwise, invoke the specified function to check dyntick state for 2683 * each CPU that has not yet reported a quiescent state. 2684 */ 2685 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2686 { 2687 int cpu; 2688 unsigned long flags; 2689 struct rcu_node *rnp; 2690 2691 rcu_state.cbovld = rcu_state.cbovldnext; 2692 rcu_state.cbovldnext = false; 2693 rcu_for_each_leaf_node(rnp) { 2694 unsigned long mask = 0; 2695 unsigned long rsmask = 0; 2696 2697 cond_resched_tasks_rcu_qs(); 2698 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2699 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2700 if (rnp->qsmask == 0) { 2701 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2702 /* 2703 * No point in scanning bits because they 2704 * are all zero. But we might need to 2705 * priority-boost blocked readers. 2706 */ 2707 rcu_initiate_boost(rnp, flags); 2708 /* rcu_initiate_boost() releases rnp->lock */ 2709 continue; 2710 } 2711 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2712 continue; 2713 } 2714 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2715 struct rcu_data *rdp; 2716 int ret; 2717 2718 rdp = per_cpu_ptr(&rcu_data, cpu); 2719 ret = f(rdp); 2720 if (ret > 0) { 2721 mask |= rdp->grpmask; 2722 rcu_disable_urgency_upon_qs(rdp); 2723 } 2724 if (ret < 0) 2725 rsmask |= rdp->grpmask; 2726 } 2727 if (mask != 0) { 2728 /* Idle/offline CPUs, report (releases rnp->lock). */ 2729 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2730 } else { 2731 /* Nothing to do here, so just drop the lock. */ 2732 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2733 } 2734 2735 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) 2736 resched_cpu(cpu); 2737 } 2738 } 2739 2740 /* 2741 * Force quiescent states on reluctant CPUs, and also detect which 2742 * CPUs are in dyntick-idle mode. 2743 */ 2744 void rcu_force_quiescent_state(void) 2745 { 2746 unsigned long flags; 2747 bool ret; 2748 struct rcu_node *rnp; 2749 struct rcu_node *rnp_old = NULL; 2750 2751 if (!rcu_gp_in_progress()) 2752 return; 2753 /* Funnel through hierarchy to reduce memory contention. */ 2754 rnp = raw_cpu_read(rcu_data.mynode); 2755 for (; rnp != NULL; rnp = rnp->parent) { 2756 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2757 !raw_spin_trylock(&rnp->fqslock); 2758 if (rnp_old != NULL) 2759 raw_spin_unlock(&rnp_old->fqslock); 2760 if (ret) 2761 return; 2762 rnp_old = rnp; 2763 } 2764 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2765 2766 /* Reached the root of the rcu_node tree, acquire lock. */ 2767 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2768 raw_spin_unlock(&rnp_old->fqslock); 2769 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2770 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2771 return; /* Someone beat us to it. */ 2772 } 2773 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); 2774 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2775 rcu_gp_kthread_wake(); 2776 } 2777 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2778 2779 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2780 // grace periods. 2781 static void strict_work_handler(struct work_struct *work) 2782 { 2783 rcu_read_lock(); 2784 rcu_read_unlock(); 2785 } 2786 2787 /* Perform RCU core processing work for the current CPU. */ 2788 static __latent_entropy void rcu_core(void) 2789 { 2790 unsigned long flags; 2791 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2792 struct rcu_node *rnp = rdp->mynode; 2793 2794 if (cpu_is_offline(smp_processor_id())) 2795 return; 2796 trace_rcu_utilization(TPS("Start RCU core")); 2797 WARN_ON_ONCE(!rdp->beenonline); 2798 2799 /* Report any deferred quiescent states if preemption enabled. */ 2800 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2801 rcu_preempt_deferred_qs(current); 2802 } else if (rcu_preempt_need_deferred_qs(current)) { 2803 set_tsk_need_resched(current); 2804 set_preempt_need_resched(); 2805 } 2806 2807 /* Update RCU state based on any recent quiescent states. */ 2808 rcu_check_quiescent_state(rdp); 2809 2810 /* No grace period and unregistered callbacks? */ 2811 if (!rcu_gp_in_progress() && 2812 rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) { 2813 local_irq_save(flags); 2814 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2815 rcu_accelerate_cbs_unlocked(rnp, rdp); 2816 local_irq_restore(flags); 2817 } 2818 2819 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2820 2821 /* If there are callbacks ready, invoke them. */ 2822 if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) && 2823 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2824 rcu_do_batch(rdp); 2825 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2826 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2827 invoke_rcu_core(); 2828 } 2829 2830 /* Do any needed deferred wakeups of rcuo kthreads. */ 2831 do_nocb_deferred_wakeup(rdp); 2832 trace_rcu_utilization(TPS("End RCU core")); 2833 2834 // If strict GPs, schedule an RCU reader in a clean environment. 2835 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2836 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2837 } 2838 2839 static void rcu_core_si(void) 2840 { 2841 rcu_core(); 2842 } 2843 2844 static void rcu_wake_cond(struct task_struct *t, int status) 2845 { 2846 /* 2847 * If the thread is yielding, only wake it when this 2848 * is invoked from idle 2849 */ 2850 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2851 wake_up_process(t); 2852 } 2853 2854 static void invoke_rcu_core_kthread(void) 2855 { 2856 struct task_struct *t; 2857 unsigned long flags; 2858 2859 local_irq_save(flags); 2860 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2861 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2862 if (t != NULL && t != current) 2863 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2864 local_irq_restore(flags); 2865 } 2866 2867 /* 2868 * Wake up this CPU's rcuc kthread to do RCU core processing. 2869 */ 2870 static void invoke_rcu_core(void) 2871 { 2872 if (!cpu_online(smp_processor_id())) 2873 return; 2874 if (use_softirq) 2875 raise_softirq(RCU_SOFTIRQ); 2876 else 2877 invoke_rcu_core_kthread(); 2878 } 2879 2880 static void rcu_cpu_kthread_park(unsigned int cpu) 2881 { 2882 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2883 } 2884 2885 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2886 { 2887 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2888 } 2889 2890 /* 2891 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2892 * the RCU softirq used in configurations of RCU that do not support RCU 2893 * priority boosting. 2894 */ 2895 static void rcu_cpu_kthread(unsigned int cpu) 2896 { 2897 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2898 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2899 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2900 int spincnt; 2901 2902 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2903 for (spincnt = 0; spincnt < 10; spincnt++) { 2904 WRITE_ONCE(*j, jiffies); 2905 local_bh_disable(); 2906 *statusp = RCU_KTHREAD_RUNNING; 2907 local_irq_disable(); 2908 work = *workp; 2909 WRITE_ONCE(*workp, 0); 2910 local_irq_enable(); 2911 if (work) 2912 rcu_core(); 2913 local_bh_enable(); 2914 if (!READ_ONCE(*workp)) { 2915 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2916 *statusp = RCU_KTHREAD_WAITING; 2917 return; 2918 } 2919 } 2920 *statusp = RCU_KTHREAD_YIELDING; 2921 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2922 schedule_timeout_idle(2); 2923 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2924 *statusp = RCU_KTHREAD_WAITING; 2925 WRITE_ONCE(*j, jiffies); 2926 } 2927 2928 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2929 .store = &rcu_data.rcu_cpu_kthread_task, 2930 .thread_should_run = rcu_cpu_kthread_should_run, 2931 .thread_fn = rcu_cpu_kthread, 2932 .thread_comm = "rcuc/%u", 2933 .setup = rcu_cpu_kthread_setup, 2934 .park = rcu_cpu_kthread_park, 2935 }; 2936 2937 /* 2938 * Spawn per-CPU RCU core processing kthreads. 2939 */ 2940 static int __init rcu_spawn_core_kthreads(void) 2941 { 2942 int cpu; 2943 2944 for_each_possible_cpu(cpu) 2945 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2946 if (use_softirq) 2947 return 0; 2948 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2949 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2950 return 0; 2951 } 2952 2953 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func) 2954 { 2955 rcu_segcblist_enqueue(&rdp->cblist, head); 2956 trace_rcu_callback(rcu_state.name, head, 2957 rcu_segcblist_n_cbs(&rdp->cblist)); 2958 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2959 } 2960 2961 /* 2962 * Handle any core-RCU processing required by a call_rcu() invocation. 2963 */ 2964 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2965 rcu_callback_t func, unsigned long flags) 2966 { 2967 rcutree_enqueue(rdp, head, func); 2968 /* 2969 * If called from an extended quiescent state, invoke the RCU 2970 * core in order to force a re-evaluation of RCU's idleness. 2971 */ 2972 if (!rcu_is_watching()) 2973 invoke_rcu_core(); 2974 2975 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2976 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2977 return; 2978 2979 /* 2980 * Force the grace period if too many callbacks or too long waiting. 2981 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2982 * if some other CPU has recently done so. Also, don't bother 2983 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2984 * is the only one waiting for a grace period to complete. 2985 */ 2986 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2987 rdp->qlen_last_fqs_check + qhimark)) { 2988 2989 /* Are we ignoring a completed grace period? */ 2990 note_gp_changes(rdp); 2991 2992 /* Start a new grace period if one not already started. */ 2993 if (!rcu_gp_in_progress()) { 2994 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2995 } else { 2996 /* Give the grace period a kick. */ 2997 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2998 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2999 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 3000 rcu_force_quiescent_state(); 3001 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 3002 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 3003 } 3004 } 3005 } 3006 3007 /* 3008 * RCU callback function to leak a callback. 3009 */ 3010 static void rcu_leak_callback(struct rcu_head *rhp) 3011 { 3012 } 3013 3014 /* 3015 * Check and if necessary update the leaf rcu_node structure's 3016 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3017 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 3018 * structure's ->lock. 3019 */ 3020 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 3021 { 3022 raw_lockdep_assert_held_rcu_node(rnp); 3023 if (qovld_calc <= 0) 3024 return; // Early boot and wildcard value set. 3025 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 3026 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 3027 else 3028 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 3029 } 3030 3031 /* 3032 * Check and if necessary update the leaf rcu_node structure's 3033 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 3034 * number of queued RCU callbacks. No locks need be held, but the 3035 * caller must have disabled interrupts. 3036 * 3037 * Note that this function ignores the possibility that there are a lot 3038 * of callbacks all of which have already seen the end of their respective 3039 * grace periods. This omission is due to the need for no-CBs CPUs to 3040 * be holding ->nocb_lock to do this check, which is too heavy for a 3041 * common-case operation. 3042 */ 3043 static void check_cb_ovld(struct rcu_data *rdp) 3044 { 3045 struct rcu_node *const rnp = rdp->mynode; 3046 3047 if (qovld_calc <= 0 || 3048 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3049 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3050 return; // Early boot wildcard value or already set correctly. 3051 raw_spin_lock_rcu_node(rnp); 3052 check_cb_ovld_locked(rdp, rnp); 3053 raw_spin_unlock_rcu_node(rnp); 3054 } 3055 3056 static void 3057 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 3058 { 3059 static atomic_t doublefrees; 3060 unsigned long flags; 3061 bool lazy; 3062 struct rcu_data *rdp; 3063 3064 /* Misaligned rcu_head! */ 3065 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3066 3067 if (debug_rcu_head_queue(head)) { 3068 /* 3069 * Probable double call_rcu(), so leak the callback. 3070 * Use rcu:rcu_callback trace event to find the previous 3071 * time callback was passed to call_rcu(). 3072 */ 3073 if (atomic_inc_return(&doublefrees) < 4) { 3074 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3075 mem_dump_obj(head); 3076 } 3077 WRITE_ONCE(head->func, rcu_leak_callback); 3078 return; 3079 } 3080 head->func = func; 3081 head->next = NULL; 3082 kasan_record_aux_stack(head); 3083 3084 local_irq_save(flags); 3085 rdp = this_cpu_ptr(&rcu_data); 3086 RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!"); 3087 3088 lazy = lazy_in && !rcu_async_should_hurry(); 3089 3090 /* Add the callback to our list. */ 3091 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3092 // This can trigger due to call_rcu() from offline CPU: 3093 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3094 WARN_ON_ONCE(!rcu_is_watching()); 3095 // Very early boot, before rcu_init(). Initialize if needed 3096 // and then drop through to queue the callback. 3097 if (rcu_segcblist_empty(&rdp->cblist)) 3098 rcu_segcblist_init(&rdp->cblist); 3099 } 3100 3101 check_cb_ovld(rdp); 3102 3103 if (unlikely(rcu_rdp_is_offloaded(rdp))) 3104 call_rcu_nocb(rdp, head, func, flags, lazy); 3105 else 3106 call_rcu_core(rdp, head, func, flags); 3107 local_irq_restore(flags); 3108 } 3109 3110 #ifdef CONFIG_RCU_LAZY 3111 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF); 3112 module_param(enable_rcu_lazy, bool, 0444); 3113 3114 /** 3115 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 3116 * flush all lazy callbacks (including the new one) to the main ->cblist while 3117 * doing so. 3118 * 3119 * @head: structure to be used for queueing the RCU updates. 3120 * @func: actual callback function to be invoked after the grace period 3121 * 3122 * The callback function will be invoked some time after a full grace 3123 * period elapses, in other words after all pre-existing RCU read-side 3124 * critical sections have completed. 3125 * 3126 * Use this API instead of call_rcu() if you don't want the callback to be 3127 * delayed for very long periods of time, which can happen on systems without 3128 * memory pressure and on systems which are lightly loaded or mostly idle. 3129 * This function will cause callbacks to be invoked sooner than later at the 3130 * expense of extra power. Other than that, this function is identical to, and 3131 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 3132 * ordering and other functionality. 3133 */ 3134 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 3135 { 3136 __call_rcu_common(head, func, false); 3137 } 3138 EXPORT_SYMBOL_GPL(call_rcu_hurry); 3139 #else 3140 #define enable_rcu_lazy false 3141 #endif 3142 3143 /** 3144 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3145 * By default the callbacks are 'lazy' and are kept hidden from the main 3146 * ->cblist to prevent starting of grace periods too soon. 3147 * If you desire grace periods to start very soon, use call_rcu_hurry(). 3148 * 3149 * @head: structure to be used for queueing the RCU updates. 3150 * @func: actual callback function to be invoked after the grace period 3151 * 3152 * The callback function will be invoked some time after a full grace 3153 * period elapses, in other words after all pre-existing RCU read-side 3154 * critical sections have completed. However, the callback function 3155 * might well execute concurrently with RCU read-side critical sections 3156 * that started after call_rcu() was invoked. 3157 * 3158 * It is perfectly legal to repost an RCU callback, potentially with 3159 * a different callback function, from within its callback function. 3160 * The specified function will be invoked after another full grace period 3161 * has elapsed. This use case is similar in form to the common practice 3162 * of reposting a timer from within its own handler. 3163 * 3164 * RCU read-side critical sections are delimited by rcu_read_lock() 3165 * and rcu_read_unlock(), and may be nested. In addition, but only in 3166 * v5.0 and later, regions of code across which interrupts, preemption, 3167 * or softirqs have been disabled also serve as RCU read-side critical 3168 * sections. This includes hardware interrupt handlers, softirq handlers, 3169 * and NMI handlers. 3170 * 3171 * Note that all CPUs must agree that the grace period extended beyond 3172 * all pre-existing RCU read-side critical section. On systems with more 3173 * than one CPU, this means that when "func()" is invoked, each CPU is 3174 * guaranteed to have executed a full memory barrier since the end of its 3175 * last RCU read-side critical section whose beginning preceded the call 3176 * to call_rcu(). It also means that each CPU executing an RCU read-side 3177 * critical section that continues beyond the start of "func()" must have 3178 * executed a memory barrier after the call_rcu() but before the beginning 3179 * of that RCU read-side critical section. Note that these guarantees 3180 * include CPUs that are offline, idle, or executing in user mode, as 3181 * well as CPUs that are executing in the kernel. 3182 * 3183 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3184 * resulting RCU callback function "func()", then both CPU A and CPU B are 3185 * guaranteed to execute a full memory barrier during the time interval 3186 * between the call to call_rcu() and the invocation of "func()" -- even 3187 * if CPU A and CPU B are the same CPU (but again only if the system has 3188 * more than one CPU). 3189 * 3190 * Implementation of these memory-ordering guarantees is described here: 3191 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3192 * 3193 * Specific to call_rcu() (as opposed to the other call_rcu*() functions), 3194 * in kernels built with CONFIG_RCU_LAZY=y, call_rcu() might delay for many 3195 * seconds before starting the grace period needed by the corresponding 3196 * callback. This delay can significantly improve energy-efficiency 3197 * on low-utilization battery-powered devices. To avoid this delay, 3198 * in latency-sensitive kernel code, use call_rcu_hurry(). 3199 */ 3200 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3201 { 3202 __call_rcu_common(head, func, enable_rcu_lazy); 3203 } 3204 EXPORT_SYMBOL_GPL(call_rcu); 3205 3206 /* 3207 * During early boot, any blocking grace-period wait automatically 3208 * implies a grace period. 3209 * 3210 * Later on, this could in theory be the case for kernels built with 3211 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3212 * is not a common case. Furthermore, this optimization would cause 3213 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3214 * grace-period optimization is ignored once the scheduler is running. 3215 */ 3216 static int rcu_blocking_is_gp(void) 3217 { 3218 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3219 might_sleep(); 3220 return false; 3221 } 3222 return true; 3223 } 3224 3225 /* 3226 * Helper function for the synchronize_rcu() API. 3227 */ 3228 static void synchronize_rcu_normal(void) 3229 { 3230 struct rcu_synchronize rs; 3231 3232 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request")); 3233 3234 if (!READ_ONCE(rcu_normal_wake_from_gp)) { 3235 wait_rcu_gp(call_rcu_hurry); 3236 goto trace_complete_out; 3237 } 3238 3239 init_rcu_head_on_stack(&rs.head); 3240 init_completion(&rs.completion); 3241 3242 /* 3243 * This code might be preempted, therefore take a GP 3244 * snapshot before adding a request. 3245 */ 3246 if (IS_ENABLED(CONFIG_PROVE_RCU)) 3247 get_state_synchronize_rcu_full(&rs.oldstate); 3248 3249 rcu_sr_normal_add_req(&rs); 3250 3251 /* Kick a GP and start waiting. */ 3252 (void) start_poll_synchronize_rcu(); 3253 3254 /* Now we can wait. */ 3255 wait_for_completion(&rs.completion); 3256 destroy_rcu_head_on_stack(&rs.head); 3257 3258 trace_complete_out: 3259 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete")); 3260 } 3261 3262 /** 3263 * synchronize_rcu - wait until a grace period has elapsed. 3264 * 3265 * Control will return to the caller some time after a full grace 3266 * period has elapsed, in other words after all currently executing RCU 3267 * read-side critical sections have completed. Note, however, that 3268 * upon return from synchronize_rcu(), the caller might well be executing 3269 * concurrently with new RCU read-side critical sections that began while 3270 * synchronize_rcu() was waiting. 3271 * 3272 * RCU read-side critical sections are delimited by rcu_read_lock() 3273 * and rcu_read_unlock(), and may be nested. In addition, but only in 3274 * v5.0 and later, regions of code across which interrupts, preemption, 3275 * or softirqs have been disabled also serve as RCU read-side critical 3276 * sections. This includes hardware interrupt handlers, softirq handlers, 3277 * and NMI handlers. 3278 * 3279 * Note that this guarantee implies further memory-ordering guarantees. 3280 * On systems with more than one CPU, when synchronize_rcu() returns, 3281 * each CPU is guaranteed to have executed a full memory barrier since 3282 * the end of its last RCU read-side critical section whose beginning 3283 * preceded the call to synchronize_rcu(). In addition, each CPU having 3284 * an RCU read-side critical section that extends beyond the return from 3285 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3286 * after the beginning of synchronize_rcu() and before the beginning of 3287 * that RCU read-side critical section. Note that these guarantees include 3288 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3289 * that are executing in the kernel. 3290 * 3291 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3292 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3293 * to have executed a full memory barrier during the execution of 3294 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3295 * again only if the system has more than one CPU). 3296 * 3297 * Implementation of these memory-ordering guarantees is described here: 3298 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3299 */ 3300 void synchronize_rcu(void) 3301 { 3302 unsigned long flags; 3303 struct rcu_node *rnp; 3304 3305 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3306 lock_is_held(&rcu_lock_map) || 3307 lock_is_held(&rcu_sched_lock_map), 3308 "Illegal synchronize_rcu() in RCU read-side critical section"); 3309 if (!rcu_blocking_is_gp()) { 3310 if (rcu_gp_is_expedited()) 3311 synchronize_rcu_expedited(); 3312 else 3313 synchronize_rcu_normal(); 3314 return; 3315 } 3316 3317 // Context allows vacuous grace periods. 3318 // Note well that this code runs with !PREEMPT && !SMP. 3319 // In addition, all code that advances grace periods runs at 3320 // process level. Therefore, this normal GP overlaps with other 3321 // normal GPs only by being fully nested within them, which allows 3322 // reuse of ->gp_seq_polled_snap. 3323 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3324 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3325 3326 // Update the normal grace-period counters to record 3327 // this grace period, but only those used by the boot CPU. 3328 // The rcu_scheduler_starting() will take care of the rest of 3329 // these counters. 3330 local_irq_save(flags); 3331 WARN_ON_ONCE(num_online_cpus() > 1); 3332 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3333 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3334 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3335 local_irq_restore(flags); 3336 } 3337 EXPORT_SYMBOL_GPL(synchronize_rcu); 3338 3339 /** 3340 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3341 * @rgosp: Place to put state cookie 3342 * 3343 * Stores into @rgosp a value that will always be treated by functions 3344 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3345 * has already completed. 3346 */ 3347 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3348 { 3349 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3350 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3351 } 3352 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3353 3354 /** 3355 * get_state_synchronize_rcu - Snapshot current RCU state 3356 * 3357 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3358 * or poll_state_synchronize_rcu() to determine whether or not a full 3359 * grace period has elapsed in the meantime. 3360 */ 3361 unsigned long get_state_synchronize_rcu(void) 3362 { 3363 /* 3364 * Any prior manipulation of RCU-protected data must happen 3365 * before the load from ->gp_seq. 3366 */ 3367 smp_mb(); /* ^^^ */ 3368 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3369 } 3370 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3371 3372 /** 3373 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3374 * @rgosp: location to place combined normal/expedited grace-period state 3375 * 3376 * Places the normal and expedited grace-period states in @rgosp. This 3377 * state value can be passed to a later call to cond_synchronize_rcu_full() 3378 * or poll_state_synchronize_rcu_full() to determine whether or not a 3379 * grace period (whether normal or expedited) has elapsed in the meantime. 3380 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3381 * long, but is guaranteed to see all grace periods. In contrast, the 3382 * combined state occupies less memory, but can sometimes fail to take 3383 * grace periods into account. 3384 * 3385 * This does not guarantee that the needed grace period will actually 3386 * start. 3387 */ 3388 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3389 { 3390 /* 3391 * Any prior manipulation of RCU-protected data must happen 3392 * before the loads from ->gp_seq and ->expedited_sequence. 3393 */ 3394 smp_mb(); /* ^^^ */ 3395 3396 // Yes, rcu_state.gp_seq, not rnp_root->gp_seq, the latter's use 3397 // in poll_state_synchronize_rcu_full() notwithstanding. Use of 3398 // the latter here would result in too-short grace periods due to 3399 // interactions with newly onlined CPUs. 3400 rgosp->rgos_norm = rcu_seq_snap(&rcu_state.gp_seq); 3401 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3402 } 3403 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3404 3405 /* 3406 * Helper function for start_poll_synchronize_rcu() and 3407 * start_poll_synchronize_rcu_full(). 3408 */ 3409 static void start_poll_synchronize_rcu_common(void) 3410 { 3411 unsigned long flags; 3412 bool needwake; 3413 struct rcu_data *rdp; 3414 struct rcu_node *rnp; 3415 3416 local_irq_save(flags); 3417 rdp = this_cpu_ptr(&rcu_data); 3418 rnp = rdp->mynode; 3419 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3420 // Note it is possible for a grace period to have elapsed between 3421 // the above call to get_state_synchronize_rcu() and the below call 3422 // to rcu_seq_snap. This is OK, the worst that happens is that we 3423 // get a grace period that no one needed. These accesses are ordered 3424 // by smp_mb(), and we are accessing them in the opposite order 3425 // from which they are updated at grace-period start, as required. 3426 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3427 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3428 if (needwake) 3429 rcu_gp_kthread_wake(); 3430 } 3431 3432 /** 3433 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3434 * 3435 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3436 * or poll_state_synchronize_rcu() to determine whether or not a full 3437 * grace period has elapsed in the meantime. If the needed grace period 3438 * is not already slated to start, notifies RCU core of the need for that 3439 * grace period. 3440 */ 3441 unsigned long start_poll_synchronize_rcu(void) 3442 { 3443 unsigned long gp_seq = get_state_synchronize_rcu(); 3444 3445 start_poll_synchronize_rcu_common(); 3446 return gp_seq; 3447 } 3448 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3449 3450 /** 3451 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3452 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3453 * 3454 * Places the normal and expedited grace-period states in *@rgos. This 3455 * state value can be passed to a later call to cond_synchronize_rcu_full() 3456 * or poll_state_synchronize_rcu_full() to determine whether or not a 3457 * grace period (whether normal or expedited) has elapsed in the meantime. 3458 * If the needed grace period is not already slated to start, notifies 3459 * RCU core of the need for that grace period. 3460 */ 3461 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3462 { 3463 get_state_synchronize_rcu_full(rgosp); 3464 3465 start_poll_synchronize_rcu_common(); 3466 } 3467 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3468 3469 /** 3470 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3471 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3472 * 3473 * If a full RCU grace period has elapsed since the earlier call from 3474 * which @oldstate was obtained, return @true, otherwise return @false. 3475 * If @false is returned, it is the caller's responsibility to invoke this 3476 * function later on until it does return @true. Alternatively, the caller 3477 * can explicitly wait for a grace period, for example, by passing @oldstate 3478 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3479 * on the one hand or by directly invoking either synchronize_rcu() or 3480 * synchronize_rcu_expedited() on the other. 3481 * 3482 * Yes, this function does not take counter wrap into account. 3483 * But counter wrap is harmless. If the counter wraps, we have waited for 3484 * more than a billion grace periods (and way more on a 64-bit system!). 3485 * Those needing to keep old state values for very long time periods 3486 * (many hours even on 32-bit systems) should check them occasionally and 3487 * either refresh them or set a flag indicating that the grace period has 3488 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3489 * to get a guaranteed-completed grace-period state. 3490 * 3491 * In addition, because oldstate compresses the grace-period state for 3492 * both normal and expedited grace periods into a single unsigned long, 3493 * it can miss a grace period when synchronize_rcu() runs concurrently 3494 * with synchronize_rcu_expedited(). If this is unacceptable, please 3495 * instead use the _full() variant of these polling APIs. 3496 * 3497 * This function provides the same memory-ordering guarantees that 3498 * would be provided by a synchronize_rcu() that was invoked at the call 3499 * to the function that provided @oldstate, and that returned at the end 3500 * of this function. 3501 */ 3502 bool poll_state_synchronize_rcu(unsigned long oldstate) 3503 { 3504 if (oldstate == RCU_GET_STATE_COMPLETED || 3505 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3506 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3507 return true; 3508 } 3509 return false; 3510 } 3511 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3512 3513 /** 3514 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3515 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3516 * 3517 * If a full RCU grace period has elapsed since the earlier call from 3518 * which *rgosp was obtained, return @true, otherwise return @false. 3519 * If @false is returned, it is the caller's responsibility to invoke this 3520 * function later on until it does return @true. Alternatively, the caller 3521 * can explicitly wait for a grace period, for example, by passing @rgosp 3522 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3523 * 3524 * Yes, this function does not take counter wrap into account. 3525 * But counter wrap is harmless. If the counter wraps, we have waited 3526 * for more than a billion grace periods (and way more on a 64-bit 3527 * system!). Those needing to keep rcu_gp_oldstate values for very 3528 * long time periods (many hours even on 32-bit systems) should check 3529 * them occasionally and either refresh them or set a flag indicating 3530 * that the grace period has completed. Alternatively, they can use 3531 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3532 * grace-period state. 3533 * 3534 * This function provides the same memory-ordering guarantees that would 3535 * be provided by a synchronize_rcu() that was invoked at the call to 3536 * the function that provided @rgosp, and that returned at the end of this 3537 * function. And this guarantee requires that the root rcu_node structure's 3538 * ->gp_seq field be checked instead of that of the rcu_state structure. 3539 * The problem is that the just-ending grace-period's callbacks can be 3540 * invoked between the time that the root rcu_node structure's ->gp_seq 3541 * field is updated and the time that the rcu_state structure's ->gp_seq 3542 * field is updated. Therefore, if a single synchronize_rcu() is to 3543 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3544 * then the root rcu_node structure is the one that needs to be polled. 3545 */ 3546 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3547 { 3548 struct rcu_node *rnp = rcu_get_root(); 3549 3550 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3551 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3552 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3553 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3554 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3555 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3556 return true; 3557 } 3558 return false; 3559 } 3560 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3561 3562 /** 3563 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3564 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3565 * 3566 * If a full RCU grace period has elapsed since the earlier call to 3567 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3568 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3569 * 3570 * Yes, this function does not take counter wrap into account. 3571 * But counter wrap is harmless. If the counter wraps, we have waited for 3572 * more than 2 billion grace periods (and way more on a 64-bit system!), 3573 * so waiting for a couple of additional grace periods should be just fine. 3574 * 3575 * This function provides the same memory-ordering guarantees that 3576 * would be provided by a synchronize_rcu() that was invoked at the call 3577 * to the function that provided @oldstate and that returned at the end 3578 * of this function. 3579 */ 3580 void cond_synchronize_rcu(unsigned long oldstate) 3581 { 3582 if (!poll_state_synchronize_rcu(oldstate)) 3583 synchronize_rcu(); 3584 } 3585 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3586 3587 /** 3588 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3589 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3590 * 3591 * If a full RCU grace period has elapsed since the call to 3592 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3593 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3594 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3595 * for a full grace period. 3596 * 3597 * Yes, this function does not take counter wrap into account. 3598 * But counter wrap is harmless. If the counter wraps, we have waited for 3599 * more than 2 billion grace periods (and way more on a 64-bit system!), 3600 * so waiting for a couple of additional grace periods should be just fine. 3601 * 3602 * This function provides the same memory-ordering guarantees that 3603 * would be provided by a synchronize_rcu() that was invoked at the call 3604 * to the function that provided @rgosp and that returned at the end of 3605 * this function. 3606 */ 3607 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3608 { 3609 if (!poll_state_synchronize_rcu_full(rgosp)) 3610 synchronize_rcu(); 3611 } 3612 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3613 3614 /* 3615 * Check to see if there is any immediate RCU-related work to be done by 3616 * the current CPU, returning 1 if so and zero otherwise. The checks are 3617 * in order of increasing expense: checks that can be carried out against 3618 * CPU-local state are performed first. However, we must check for CPU 3619 * stalls first, else we might not get a chance. 3620 */ 3621 static int rcu_pending(int user) 3622 { 3623 bool gp_in_progress; 3624 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3625 struct rcu_node *rnp = rdp->mynode; 3626 3627 lockdep_assert_irqs_disabled(); 3628 3629 /* Check for CPU stalls, if enabled. */ 3630 check_cpu_stall(rdp); 3631 3632 /* Does this CPU need a deferred NOCB wakeup? */ 3633 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3634 return 1; 3635 3636 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3637 gp_in_progress = rcu_gp_in_progress(); 3638 if ((user || rcu_is_cpu_rrupt_from_idle() || 3639 (gp_in_progress && 3640 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + 3641 nohz_full_patience_delay_jiffies))) && 3642 rcu_nohz_full_cpu()) 3643 return 0; 3644 3645 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3646 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3647 return 1; 3648 3649 /* Does this CPU have callbacks ready to invoke? */ 3650 if (!rcu_rdp_is_offloaded(rdp) && 3651 rcu_segcblist_ready_cbs(&rdp->cblist)) 3652 return 1; 3653 3654 /* Has RCU gone idle with this CPU needing another grace period? */ 3655 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3656 !rcu_rdp_is_offloaded(rdp) && 3657 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3658 return 1; 3659 3660 /* Have RCU grace period completed or started? */ 3661 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3662 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3663 return 1; 3664 3665 /* nothing to do */ 3666 return 0; 3667 } 3668 3669 /* 3670 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3671 * the compiler is expected to optimize this away. 3672 */ 3673 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3674 { 3675 trace_rcu_barrier(rcu_state.name, s, cpu, 3676 atomic_read(&rcu_state.barrier_cpu_count), done); 3677 } 3678 3679 /* 3680 * RCU callback function for rcu_barrier(). If we are last, wake 3681 * up the task executing rcu_barrier(). 3682 * 3683 * Note that the value of rcu_state.barrier_sequence must be captured 3684 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3685 * other CPUs might count the value down to zero before this CPU gets 3686 * around to invoking rcu_barrier_trace(), which might result in bogus 3687 * data from the next instance of rcu_barrier(). 3688 */ 3689 static void rcu_barrier_callback(struct rcu_head *rhp) 3690 { 3691 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3692 3693 rhp->next = rhp; // Mark the callback as having been invoked. 3694 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3695 rcu_barrier_trace(TPS("LastCB"), -1, s); 3696 complete(&rcu_state.barrier_completion); 3697 } else { 3698 rcu_barrier_trace(TPS("CB"), -1, s); 3699 } 3700 } 3701 3702 /* 3703 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3704 */ 3705 static void rcu_barrier_entrain(struct rcu_data *rdp) 3706 { 3707 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3708 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3709 bool wake_nocb = false; 3710 bool was_alldone = false; 3711 3712 lockdep_assert_held(&rcu_state.barrier_lock); 3713 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3714 return; 3715 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3716 rdp->barrier_head.func = rcu_barrier_callback; 3717 debug_rcu_head_queue(&rdp->barrier_head); 3718 rcu_nocb_lock(rdp); 3719 /* 3720 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3721 * queue. This way we don't wait for bypass timer that can reach seconds 3722 * if it's fully lazy. 3723 */ 3724 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3725 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3726 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3727 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3728 atomic_inc(&rcu_state.barrier_cpu_count); 3729 } else { 3730 debug_rcu_head_unqueue(&rdp->barrier_head); 3731 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3732 } 3733 rcu_nocb_unlock(rdp); 3734 if (wake_nocb) 3735 wake_nocb_gp(rdp, false); 3736 smp_store_release(&rdp->barrier_seq_snap, gseq); 3737 } 3738 3739 /* 3740 * Called with preemption disabled, and from cross-cpu IRQ context. 3741 */ 3742 static void rcu_barrier_handler(void *cpu_in) 3743 { 3744 uintptr_t cpu = (uintptr_t)cpu_in; 3745 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3746 3747 lockdep_assert_irqs_disabled(); 3748 WARN_ON_ONCE(cpu != rdp->cpu); 3749 WARN_ON_ONCE(cpu != smp_processor_id()); 3750 raw_spin_lock(&rcu_state.barrier_lock); 3751 rcu_barrier_entrain(rdp); 3752 raw_spin_unlock(&rcu_state.barrier_lock); 3753 } 3754 3755 /** 3756 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3757 * 3758 * Note that this primitive does not necessarily wait for an RCU grace period 3759 * to complete. For example, if there are no RCU callbacks queued anywhere 3760 * in the system, then rcu_barrier() is within its rights to return 3761 * immediately, without waiting for anything, much less an RCU grace period. 3762 */ 3763 void rcu_barrier(void) 3764 { 3765 uintptr_t cpu; 3766 unsigned long flags; 3767 unsigned long gseq; 3768 struct rcu_data *rdp; 3769 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3770 3771 rcu_barrier_trace(TPS("Begin"), -1, s); 3772 3773 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3774 mutex_lock(&rcu_state.barrier_mutex); 3775 3776 /* Did someone else do our work for us? */ 3777 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3778 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 3779 smp_mb(); /* caller's subsequent code after above check. */ 3780 mutex_unlock(&rcu_state.barrier_mutex); 3781 return; 3782 } 3783 3784 /* Mark the start of the barrier operation. */ 3785 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3786 rcu_seq_start(&rcu_state.barrier_sequence); 3787 gseq = rcu_state.barrier_sequence; 3788 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3789 3790 /* 3791 * Initialize the count to two rather than to zero in order 3792 * to avoid a too-soon return to zero in case of an immediate 3793 * invocation of the just-enqueued callback (or preemption of 3794 * this task). Exclude CPU-hotplug operations to ensure that no 3795 * offline non-offloaded CPU has callbacks queued. 3796 */ 3797 init_completion(&rcu_state.barrier_completion); 3798 atomic_set(&rcu_state.barrier_cpu_count, 2); 3799 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3800 3801 /* 3802 * Force each CPU with callbacks to register a new callback. 3803 * When that callback is invoked, we will know that all of the 3804 * corresponding CPU's preceding callbacks have been invoked. 3805 */ 3806 for_each_possible_cpu(cpu) { 3807 rdp = per_cpu_ptr(&rcu_data, cpu); 3808 retry: 3809 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 3810 continue; 3811 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3812 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 3813 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3814 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3815 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 3816 continue; 3817 } 3818 if (!rcu_rdp_cpu_online(rdp)) { 3819 rcu_barrier_entrain(rdp); 3820 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3821 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3822 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 3823 continue; 3824 } 3825 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3826 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 3827 schedule_timeout_uninterruptible(1); 3828 goto retry; 3829 } 3830 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3831 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 3832 } 3833 3834 /* 3835 * Now that we have an rcu_barrier_callback() callback on each 3836 * CPU, and thus each counted, remove the initial count. 3837 */ 3838 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 3839 complete(&rcu_state.barrier_completion); 3840 3841 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3842 wait_for_completion(&rcu_state.barrier_completion); 3843 3844 /* Mark the end of the barrier operation. */ 3845 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3846 rcu_seq_end(&rcu_state.barrier_sequence); 3847 gseq = rcu_state.barrier_sequence; 3848 for_each_possible_cpu(cpu) { 3849 rdp = per_cpu_ptr(&rcu_data, cpu); 3850 3851 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3852 } 3853 3854 /* Other rcu_barrier() invocations can now safely proceed. */ 3855 mutex_unlock(&rcu_state.barrier_mutex); 3856 } 3857 EXPORT_SYMBOL_GPL(rcu_barrier); 3858 3859 static unsigned long rcu_barrier_last_throttle; 3860 3861 /** 3862 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 3863 * 3864 * This can be thought of as guard rails around rcu_barrier() that 3865 * permits unrestricted userspace use, at least assuming the hardware's 3866 * try_cmpxchg() is robust. There will be at most one call per second to 3867 * rcu_barrier() system-wide from use of this function, which means that 3868 * callers might needlessly wait a second or three. 3869 * 3870 * This is intended for use by test suites to avoid OOM by flushing RCU 3871 * callbacks from the previous test before starting the next. See the 3872 * rcutree.do_rcu_barrier module parameter for more information. 3873 * 3874 * Why not simply make rcu_barrier() more scalable? That might be 3875 * the eventual endpoint, but let's keep it simple for the time being. 3876 * Note that the module parameter infrastructure serializes calls to a 3877 * given .set() function, but should concurrent .set() invocation ever be 3878 * possible, we are ready! 3879 */ 3880 static void rcu_barrier_throttled(void) 3881 { 3882 unsigned long j = jiffies; 3883 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 3884 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3885 3886 while (time_in_range(j, old, old + HZ / 16) || 3887 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 3888 schedule_timeout_idle(HZ / 16); 3889 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3890 smp_mb(); /* caller's subsequent code after above check. */ 3891 return; 3892 } 3893 j = jiffies; 3894 old = READ_ONCE(rcu_barrier_last_throttle); 3895 } 3896 rcu_barrier(); 3897 } 3898 3899 /* 3900 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 3901 * request arrives. We insist on a true value to allow for possible 3902 * future expansion. 3903 */ 3904 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 3905 { 3906 bool b; 3907 int ret; 3908 3909 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 3910 return -EAGAIN; 3911 ret = kstrtobool(val, &b); 3912 if (!ret && b) { 3913 atomic_inc((atomic_t *)kp->arg); 3914 rcu_barrier_throttled(); 3915 atomic_dec((atomic_t *)kp->arg); 3916 } 3917 return ret; 3918 } 3919 3920 /* 3921 * Output the number of outstanding rcutree.do_rcu_barrier requests. 3922 */ 3923 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 3924 { 3925 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 3926 } 3927 3928 static const struct kernel_param_ops do_rcu_barrier_ops = { 3929 .set = param_set_do_rcu_barrier, 3930 .get = param_get_do_rcu_barrier, 3931 }; 3932 static atomic_t do_rcu_barrier; 3933 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 3934 3935 /* 3936 * Compute the mask of online CPUs for the specified rcu_node structure. 3937 * This will not be stable unless the rcu_node structure's ->lock is 3938 * held, but the bit corresponding to the current CPU will be stable 3939 * in most contexts. 3940 */ 3941 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 3942 { 3943 return READ_ONCE(rnp->qsmaskinitnext); 3944 } 3945 3946 /* 3947 * Is the CPU corresponding to the specified rcu_data structure online 3948 * from RCU's perspective? This perspective is given by that structure's 3949 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 3950 */ 3951 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 3952 { 3953 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 3954 } 3955 3956 bool rcu_cpu_online(int cpu) 3957 { 3958 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3959 3960 return rcu_rdp_cpu_online(rdp); 3961 } 3962 3963 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 3964 3965 /* 3966 * Is the current CPU online as far as RCU is concerned? 3967 * 3968 * Disable preemption to avoid false positives that could otherwise 3969 * happen due to the current CPU number being sampled, this task being 3970 * preempted, its old CPU being taken offline, resuming on some other CPU, 3971 * then determining that its old CPU is now offline. 3972 * 3973 * Disable checking if in an NMI handler because we cannot safely 3974 * report errors from NMI handlers anyway. In addition, it is OK to use 3975 * RCU on an offline processor during initial boot, hence the check for 3976 * rcu_scheduler_fully_active. 3977 */ 3978 bool rcu_lockdep_current_cpu_online(void) 3979 { 3980 struct rcu_data *rdp; 3981 bool ret = false; 3982 3983 if (in_nmi() || !rcu_scheduler_fully_active) 3984 return true; 3985 preempt_disable_notrace(); 3986 rdp = this_cpu_ptr(&rcu_data); 3987 /* 3988 * Strictly, we care here about the case where the current CPU is 3989 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 3990 * not being up to date. So arch_spin_is_locked() might have a 3991 * false positive if it's held by some *other* CPU, but that's 3992 * OK because that just means a false *negative* on the warning. 3993 */ 3994 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 3995 ret = true; 3996 preempt_enable_notrace(); 3997 return ret; 3998 } 3999 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4000 4001 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4002 4003 // Has rcu_init() been invoked? This is used (for example) to determine 4004 // whether spinlocks may be acquired safely. 4005 static bool rcu_init_invoked(void) 4006 { 4007 return !!READ_ONCE(rcu_state.n_online_cpus); 4008 } 4009 4010 /* 4011 * All CPUs for the specified rcu_node structure have gone offline, 4012 * and all tasks that were preempted within an RCU read-side critical 4013 * section while running on one of those CPUs have since exited their RCU 4014 * read-side critical section. Some other CPU is reporting this fact with 4015 * the specified rcu_node structure's ->lock held and interrupts disabled. 4016 * This function therefore goes up the tree of rcu_node structures, 4017 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4018 * the leaf rcu_node structure's ->qsmaskinit field has already been 4019 * updated. 4020 * 4021 * This function does check that the specified rcu_node structure has 4022 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4023 * prematurely. That said, invoking it after the fact will cost you 4024 * a needless lock acquisition. So once it has done its work, don't 4025 * invoke it again. 4026 */ 4027 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4028 { 4029 long mask; 4030 struct rcu_node *rnp = rnp_leaf; 4031 4032 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4033 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4034 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4035 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4036 return; 4037 for (;;) { 4038 mask = rnp->grpmask; 4039 rnp = rnp->parent; 4040 if (!rnp) 4041 break; 4042 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4043 rnp->qsmaskinit &= ~mask; 4044 /* Between grace periods, so better already be zero! */ 4045 WARN_ON_ONCE(rnp->qsmask); 4046 if (rnp->qsmaskinit) { 4047 raw_spin_unlock_rcu_node(rnp); 4048 /* irqs remain disabled. */ 4049 return; 4050 } 4051 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4052 } 4053 } 4054 4055 /* 4056 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4057 * first CPU in a given leaf rcu_node structure coming online. The caller 4058 * must hold the corresponding leaf rcu_node ->lock with interrupts 4059 * disabled. 4060 */ 4061 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4062 { 4063 long mask; 4064 long oldmask; 4065 struct rcu_node *rnp = rnp_leaf; 4066 4067 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4068 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4069 for (;;) { 4070 mask = rnp->grpmask; 4071 rnp = rnp->parent; 4072 if (rnp == NULL) 4073 return; 4074 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4075 oldmask = rnp->qsmaskinit; 4076 rnp->qsmaskinit |= mask; 4077 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4078 if (oldmask) 4079 return; 4080 } 4081 } 4082 4083 /* 4084 * Do boot-time initialization of a CPU's per-CPU RCU data. 4085 */ 4086 static void __init 4087 rcu_boot_init_percpu_data(int cpu) 4088 { 4089 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4090 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4091 4092 /* Set up local state, ensuring consistent view of global state. */ 4093 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4094 INIT_WORK(&rdp->strict_work, strict_work_handler); 4095 WARN_ON_ONCE(ct->nesting != 1); 4096 WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu))); 4097 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4098 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4099 rdp->rcu_ofl_gp_state = RCU_GP_CLEANED; 4100 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4101 rdp->rcu_onl_gp_state = RCU_GP_CLEANED; 4102 rdp->last_sched_clock = jiffies; 4103 rdp->cpu = cpu; 4104 rcu_boot_init_nocb_percpu_data(rdp); 4105 } 4106 4107 static void rcu_thread_affine_rnp(struct task_struct *t, struct rcu_node *rnp) 4108 { 4109 cpumask_var_t affinity; 4110 int cpu; 4111 4112 if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) 4113 return; 4114 4115 for_each_leaf_node_possible_cpu(rnp, cpu) 4116 cpumask_set_cpu(cpu, affinity); 4117 4118 kthread_affine_preferred(t, affinity); 4119 4120 free_cpumask_var(affinity); 4121 } 4122 4123 struct kthread_worker *rcu_exp_gp_kworker; 4124 4125 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp) 4126 { 4127 struct kthread_worker *kworker; 4128 const char *name = "rcu_exp_par_gp_kthread_worker/%d"; 4129 struct sched_param param = { .sched_priority = kthread_prio }; 4130 int rnp_index = rnp - rcu_get_root(); 4131 4132 if (rnp->exp_kworker) 4133 return; 4134 4135 kworker = kthread_create_worker(0, name, rnp_index); 4136 if (IS_ERR_OR_NULL(kworker)) { 4137 pr_err("Failed to create par gp kworker on %d/%d\n", 4138 rnp->grplo, rnp->grphi); 4139 return; 4140 } 4141 WRITE_ONCE(rnp->exp_kworker, kworker); 4142 4143 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4144 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m); 4145 4146 rcu_thread_affine_rnp(kworker->task, rnp); 4147 wake_up_process(kworker->task); 4148 } 4149 4150 static void __init rcu_start_exp_gp_kworker(void) 4151 { 4152 const char *name = "rcu_exp_gp_kthread_worker"; 4153 struct sched_param param = { .sched_priority = kthread_prio }; 4154 4155 rcu_exp_gp_kworker = kthread_run_worker(0, name); 4156 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4157 pr_err("Failed to create %s!\n", name); 4158 rcu_exp_gp_kworker = NULL; 4159 return; 4160 } 4161 4162 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4163 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4164 } 4165 4166 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp) 4167 { 4168 if (rcu_scheduler_fully_active) { 4169 mutex_lock(&rnp->kthread_mutex); 4170 rcu_spawn_one_boost_kthread(rnp); 4171 rcu_spawn_exp_par_gp_kworker(rnp); 4172 mutex_unlock(&rnp->kthread_mutex); 4173 } 4174 } 4175 4176 /* 4177 * Invoked early in the CPU-online process, when pretty much all services 4178 * are available. The incoming CPU is not present. 4179 * 4180 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4181 * offline event can be happening at a given time. Note also that we can 4182 * accept some slop in the rsp->gp_seq access due to the fact that this 4183 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4184 * And any offloaded callbacks are being numbered elsewhere. 4185 */ 4186 int rcutree_prepare_cpu(unsigned int cpu) 4187 { 4188 unsigned long flags; 4189 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4190 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4191 struct rcu_node *rnp = rcu_get_root(); 4192 4193 /* Set up local state, ensuring consistent view of global state. */ 4194 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4195 rdp->qlen_last_fqs_check = 0; 4196 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4197 rdp->blimit = blimit; 4198 ct->nesting = 1; /* CPU not up, no tearing. */ 4199 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4200 4201 /* 4202 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4203 * (re-)initialized. 4204 */ 4205 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4206 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4207 4208 /* 4209 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4210 * propagation up the rcu_node tree will happen at the beginning 4211 * of the next grace period. 4212 */ 4213 rnp = rdp->mynode; 4214 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4215 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4216 rdp->gp_seq_needed = rdp->gp_seq; 4217 rdp->cpu_no_qs.b.norm = true; 4218 rdp->core_needs_qs = false; 4219 rdp->rcu_iw_pending = false; 4220 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4221 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4222 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4223 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4224 rcu_spawn_rnp_kthreads(rnp); 4225 rcu_spawn_cpu_nocb_kthread(cpu); 4226 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 4227 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4228 4229 return 0; 4230 } 4231 4232 /* 4233 * Has the specified (known valid) CPU ever been fully online? 4234 */ 4235 bool rcu_cpu_beenfullyonline(int cpu) 4236 { 4237 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4238 4239 return smp_load_acquire(&rdp->beenonline); 4240 } 4241 4242 /* 4243 * Near the end of the CPU-online process. Pretty much all services 4244 * enabled, and the CPU is now very much alive. 4245 */ 4246 int rcutree_online_cpu(unsigned int cpu) 4247 { 4248 unsigned long flags; 4249 struct rcu_data *rdp; 4250 struct rcu_node *rnp; 4251 4252 rdp = per_cpu_ptr(&rcu_data, cpu); 4253 rnp = rdp->mynode; 4254 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4255 rnp->ffmask |= rdp->grpmask; 4256 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4257 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4258 return 0; /* Too early in boot for scheduler work. */ 4259 sync_sched_exp_online_cleanup(cpu); 4260 4261 // Stop-machine done, so allow nohz_full to disable tick. 4262 tick_dep_clear(TICK_DEP_BIT_RCU); 4263 return 0; 4264 } 4265 4266 /* 4267 * Mark the specified CPU as being online so that subsequent grace periods 4268 * (both expedited and normal) will wait on it. Note that this means that 4269 * incoming CPUs are not allowed to use RCU read-side critical sections 4270 * until this function is called. Failing to observe this restriction 4271 * will result in lockdep splats. 4272 * 4273 * Note that this function is special in that it is invoked directly 4274 * from the incoming CPU rather than from the cpuhp_step mechanism. 4275 * This is because this function must be invoked at a precise location. 4276 * This incoming CPU must not have enabled interrupts yet. 4277 * 4278 * This mirrors the effects of rcutree_report_cpu_dead(). 4279 */ 4280 void rcutree_report_cpu_starting(unsigned int cpu) 4281 { 4282 unsigned long mask; 4283 struct rcu_data *rdp; 4284 struct rcu_node *rnp; 4285 bool newcpu; 4286 4287 lockdep_assert_irqs_disabled(); 4288 rdp = per_cpu_ptr(&rcu_data, cpu); 4289 if (rdp->cpu_started) 4290 return; 4291 rdp->cpu_started = true; 4292 4293 rnp = rdp->mynode; 4294 mask = rdp->grpmask; 4295 arch_spin_lock(&rcu_state.ofl_lock); 4296 rcu_watching_online(); 4297 raw_spin_lock(&rcu_state.barrier_lock); 4298 raw_spin_lock_rcu_node(rnp); 4299 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4300 raw_spin_unlock(&rcu_state.barrier_lock); 4301 newcpu = !(rnp->expmaskinitnext & mask); 4302 rnp->expmaskinitnext |= mask; 4303 /* Allow lockless access for expedited grace periods. */ 4304 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4305 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4306 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4307 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4308 rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state); 4309 4310 /* An incoming CPU should never be blocking a grace period. */ 4311 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4312 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4313 unsigned long flags; 4314 4315 local_irq_save(flags); 4316 rcu_disable_urgency_upon_qs(rdp); 4317 /* Report QS -after- changing ->qsmaskinitnext! */ 4318 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4319 } else { 4320 raw_spin_unlock_rcu_node(rnp); 4321 } 4322 arch_spin_unlock(&rcu_state.ofl_lock); 4323 smp_store_release(&rdp->beenonline, true); 4324 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4325 } 4326 4327 /* 4328 * The outgoing function has no further need of RCU, so remove it from 4329 * the rcu_node tree's ->qsmaskinitnext bit masks. 4330 * 4331 * Note that this function is special in that it is invoked directly 4332 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4333 * This is because this function must be invoked at a precise location. 4334 * 4335 * This mirrors the effect of rcutree_report_cpu_starting(). 4336 */ 4337 void rcutree_report_cpu_dead(void) 4338 { 4339 unsigned long flags; 4340 unsigned long mask; 4341 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4342 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4343 4344 /* 4345 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 4346 * may introduce a new READ-side while it is actually off the QS masks. 4347 */ 4348 lockdep_assert_irqs_disabled(); 4349 // Do any dangling deferred wakeups. 4350 do_nocb_deferred_wakeup(rdp); 4351 4352 rcu_preempt_deferred_qs(current); 4353 4354 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4355 mask = rdp->grpmask; 4356 arch_spin_lock(&rcu_state.ofl_lock); 4357 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4358 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4359 rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state); 4360 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4361 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4362 rcu_disable_urgency_upon_qs(rdp); 4363 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4364 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4365 } 4366 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4367 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4368 arch_spin_unlock(&rcu_state.ofl_lock); 4369 rdp->cpu_started = false; 4370 } 4371 4372 #ifdef CONFIG_HOTPLUG_CPU 4373 /* 4374 * The outgoing CPU has just passed through the dying-idle state, and we 4375 * are being invoked from the CPU that was IPIed to continue the offline 4376 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4377 */ 4378 void rcutree_migrate_callbacks(int cpu) 4379 { 4380 unsigned long flags; 4381 struct rcu_data *my_rdp; 4382 struct rcu_node *my_rnp; 4383 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4384 bool needwake; 4385 4386 if (rcu_rdp_is_offloaded(rdp)) 4387 return; 4388 4389 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4390 if (rcu_segcblist_empty(&rdp->cblist)) { 4391 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4392 return; /* No callbacks to migrate. */ 4393 } 4394 4395 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4396 rcu_barrier_entrain(rdp); 4397 my_rdp = this_cpu_ptr(&rcu_data); 4398 my_rnp = my_rdp->mynode; 4399 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4400 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4401 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4402 /* Leverage recent GPs and set GP for new callbacks. */ 4403 needwake = rcu_advance_cbs(my_rnp, rdp) || 4404 rcu_advance_cbs(my_rnp, my_rdp); 4405 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4406 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4407 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4408 rcu_segcblist_disable(&rdp->cblist); 4409 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4410 check_cb_ovld_locked(my_rdp, my_rnp); 4411 if (rcu_rdp_is_offloaded(my_rdp)) { 4412 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4413 __call_rcu_nocb_wake(my_rdp, true, flags); 4414 } else { 4415 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4416 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4417 } 4418 local_irq_restore(flags); 4419 if (needwake) 4420 rcu_gp_kthread_wake(); 4421 lockdep_assert_irqs_enabled(); 4422 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4423 !rcu_segcblist_empty(&rdp->cblist), 4424 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4425 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4426 rcu_segcblist_first_cb(&rdp->cblist)); 4427 } 4428 4429 /* 4430 * The CPU has been completely removed, and some other CPU is reporting 4431 * this fact from process context. Do the remainder of the cleanup. 4432 * There can only be one CPU hotplug operation at a time, so no need for 4433 * explicit locking. 4434 */ 4435 int rcutree_dead_cpu(unsigned int cpu) 4436 { 4437 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); 4438 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4439 // Stop-machine done, so allow nohz_full to disable tick. 4440 tick_dep_clear(TICK_DEP_BIT_RCU); 4441 return 0; 4442 } 4443 4444 /* 4445 * Near the end of the offline process. Trace the fact that this CPU 4446 * is going offline. 4447 */ 4448 int rcutree_dying_cpu(unsigned int cpu) 4449 { 4450 bool blkd; 4451 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4452 struct rcu_node *rnp = rdp->mynode; 4453 4454 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4455 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4456 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4457 return 0; 4458 } 4459 4460 /* 4461 * Near the beginning of the process. The CPU is still very much alive 4462 * with pretty much all services enabled. 4463 */ 4464 int rcutree_offline_cpu(unsigned int cpu) 4465 { 4466 unsigned long flags; 4467 struct rcu_data *rdp; 4468 struct rcu_node *rnp; 4469 4470 rdp = per_cpu_ptr(&rcu_data, cpu); 4471 rnp = rdp->mynode; 4472 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4473 rnp->ffmask &= ~rdp->grpmask; 4474 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4475 4476 // nohz_full CPUs need the tick for stop-machine to work quickly 4477 tick_dep_set(TICK_DEP_BIT_RCU); 4478 return 0; 4479 } 4480 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 4481 4482 /* 4483 * On non-huge systems, use expedited RCU grace periods to make suspend 4484 * and hibernation run faster. 4485 */ 4486 static int rcu_pm_notify(struct notifier_block *self, 4487 unsigned long action, void *hcpu) 4488 { 4489 switch (action) { 4490 case PM_HIBERNATION_PREPARE: 4491 case PM_SUSPEND_PREPARE: 4492 rcu_async_hurry(); 4493 rcu_expedite_gp(); 4494 break; 4495 case PM_POST_HIBERNATION: 4496 case PM_POST_SUSPEND: 4497 rcu_unexpedite_gp(); 4498 rcu_async_relax(); 4499 break; 4500 default: 4501 break; 4502 } 4503 return NOTIFY_OK; 4504 } 4505 4506 /* 4507 * Spawn the kthreads that handle RCU's grace periods. 4508 */ 4509 static int __init rcu_spawn_gp_kthread(void) 4510 { 4511 unsigned long flags; 4512 struct rcu_node *rnp; 4513 struct sched_param sp; 4514 struct task_struct *t; 4515 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4516 4517 rcu_scheduler_fully_active = 1; 4518 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4519 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4520 return 0; 4521 if (kthread_prio) { 4522 sp.sched_priority = kthread_prio; 4523 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4524 } 4525 rnp = rcu_get_root(); 4526 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4527 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4528 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4529 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4530 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4532 wake_up_process(t); 4533 /* This is a pre-SMP initcall, we expect a single CPU */ 4534 WARN_ON(num_online_cpus() > 1); 4535 /* 4536 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4537 * due to rcu_scheduler_fully_active. 4538 */ 4539 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4540 rcu_spawn_rnp_kthreads(rdp->mynode); 4541 rcu_spawn_core_kthreads(); 4542 /* Create kthread worker for expedited GPs */ 4543 rcu_start_exp_gp_kworker(); 4544 return 0; 4545 } 4546 early_initcall(rcu_spawn_gp_kthread); 4547 4548 /* 4549 * This function is invoked towards the end of the scheduler's 4550 * initialization process. Before this is called, the idle task might 4551 * contain synchronous grace-period primitives (during which time, this idle 4552 * task is booting the system, and such primitives are no-ops). After this 4553 * function is called, any synchronous grace-period primitives are run as 4554 * expedited, with the requesting task driving the grace period forward. 4555 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4556 * runtime RCU functionality. 4557 */ 4558 void rcu_scheduler_starting(void) 4559 { 4560 unsigned long flags; 4561 struct rcu_node *rnp; 4562 4563 WARN_ON(num_online_cpus() != 1); 4564 WARN_ON(nr_context_switches() > 0); 4565 rcu_test_sync_prims(); 4566 4567 // Fix up the ->gp_seq counters. 4568 local_irq_save(flags); 4569 rcu_for_each_node_breadth_first(rnp) 4570 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4571 local_irq_restore(flags); 4572 4573 // Switch out of early boot mode. 4574 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4575 rcu_test_sync_prims(); 4576 } 4577 4578 /* 4579 * Helper function for rcu_init() that initializes the rcu_state structure. 4580 */ 4581 static void __init rcu_init_one(void) 4582 { 4583 static const char * const buf[] = RCU_NODE_NAME_INIT; 4584 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4585 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4586 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4587 4588 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4589 int cpustride = 1; 4590 int i; 4591 int j; 4592 struct rcu_node *rnp; 4593 4594 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4595 4596 /* Silence gcc 4.8 false positive about array index out of range. */ 4597 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4598 panic("rcu_init_one: rcu_num_lvls out of range"); 4599 4600 /* Initialize the level-tracking arrays. */ 4601 4602 for (i = 1; i < rcu_num_lvls; i++) 4603 rcu_state.level[i] = 4604 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4605 rcu_init_levelspread(levelspread, num_rcu_lvl); 4606 4607 /* Initialize the elements themselves, starting from the leaves. */ 4608 4609 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4610 cpustride *= levelspread[i]; 4611 rnp = rcu_state.level[i]; 4612 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4613 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4614 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4615 &rcu_node_class[i], buf[i]); 4616 raw_spin_lock_init(&rnp->fqslock); 4617 lockdep_set_class_and_name(&rnp->fqslock, 4618 &rcu_fqs_class[i], fqs[i]); 4619 rnp->gp_seq = rcu_state.gp_seq; 4620 rnp->gp_seq_needed = rcu_state.gp_seq; 4621 rnp->completedqs = rcu_state.gp_seq; 4622 rnp->qsmask = 0; 4623 rnp->qsmaskinit = 0; 4624 rnp->grplo = j * cpustride; 4625 rnp->grphi = (j + 1) * cpustride - 1; 4626 if (rnp->grphi >= nr_cpu_ids) 4627 rnp->grphi = nr_cpu_ids - 1; 4628 if (i == 0) { 4629 rnp->grpnum = 0; 4630 rnp->grpmask = 0; 4631 rnp->parent = NULL; 4632 } else { 4633 rnp->grpnum = j % levelspread[i - 1]; 4634 rnp->grpmask = BIT(rnp->grpnum); 4635 rnp->parent = rcu_state.level[i - 1] + 4636 j / levelspread[i - 1]; 4637 } 4638 rnp->level = i; 4639 INIT_LIST_HEAD(&rnp->blkd_tasks); 4640 rcu_init_one_nocb(rnp); 4641 init_waitqueue_head(&rnp->exp_wq[0]); 4642 init_waitqueue_head(&rnp->exp_wq[1]); 4643 init_waitqueue_head(&rnp->exp_wq[2]); 4644 init_waitqueue_head(&rnp->exp_wq[3]); 4645 spin_lock_init(&rnp->exp_lock); 4646 mutex_init(&rnp->kthread_mutex); 4647 raw_spin_lock_init(&rnp->exp_poll_lock); 4648 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4649 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4650 } 4651 } 4652 4653 init_swait_queue_head(&rcu_state.gp_wq); 4654 init_swait_queue_head(&rcu_state.expedited_wq); 4655 rnp = rcu_first_leaf_node(); 4656 for_each_possible_cpu(i) { 4657 while (i > rnp->grphi) 4658 rnp++; 4659 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4660 per_cpu_ptr(&rcu_data, i)->barrier_head.next = 4661 &per_cpu_ptr(&rcu_data, i)->barrier_head; 4662 rcu_boot_init_percpu_data(i); 4663 } 4664 } 4665 4666 /* 4667 * Force priority from the kernel command-line into range. 4668 */ 4669 static void __init sanitize_kthread_prio(void) 4670 { 4671 int kthread_prio_in = kthread_prio; 4672 4673 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4674 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4675 kthread_prio = 2; 4676 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4677 kthread_prio = 1; 4678 else if (kthread_prio < 0) 4679 kthread_prio = 0; 4680 else if (kthread_prio > 99) 4681 kthread_prio = 99; 4682 4683 if (kthread_prio != kthread_prio_in) 4684 pr_alert("%s: Limited prio to %d from %d\n", 4685 __func__, kthread_prio, kthread_prio_in); 4686 } 4687 4688 /* 4689 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4690 * replace the definitions in tree.h because those are needed to size 4691 * the ->node array in the rcu_state structure. 4692 */ 4693 void rcu_init_geometry(void) 4694 { 4695 ulong d; 4696 int i; 4697 static unsigned long old_nr_cpu_ids; 4698 int rcu_capacity[RCU_NUM_LVLS]; 4699 static bool initialized; 4700 4701 if (initialized) { 4702 /* 4703 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4704 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4705 */ 4706 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4707 return; 4708 } 4709 4710 old_nr_cpu_ids = nr_cpu_ids; 4711 initialized = true; 4712 4713 /* 4714 * Initialize any unspecified boot parameters. 4715 * The default values of jiffies_till_first_fqs and 4716 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4717 * value, which is a function of HZ, then adding one for each 4718 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4719 */ 4720 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4721 if (jiffies_till_first_fqs == ULONG_MAX) 4722 jiffies_till_first_fqs = d; 4723 if (jiffies_till_next_fqs == ULONG_MAX) 4724 jiffies_till_next_fqs = d; 4725 adjust_jiffies_till_sched_qs(); 4726 4727 /* If the compile-time values are accurate, just leave. */ 4728 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4729 nr_cpu_ids == NR_CPUS) 4730 return; 4731 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4732 rcu_fanout_leaf, nr_cpu_ids); 4733 4734 /* 4735 * The boot-time rcu_fanout_leaf parameter must be at least two 4736 * and cannot exceed the number of bits in the rcu_node masks. 4737 * Complain and fall back to the compile-time values if this 4738 * limit is exceeded. 4739 */ 4740 if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) { 4741 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4742 WARN_ON(1); 4743 return; 4744 } 4745 4746 /* 4747 * Compute number of nodes that can be handled an rcu_node tree 4748 * with the given number of levels. 4749 */ 4750 rcu_capacity[0] = rcu_fanout_leaf; 4751 for (i = 1; i < RCU_NUM_LVLS; i++) 4752 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4753 4754 /* 4755 * The tree must be able to accommodate the configured number of CPUs. 4756 * If this limit is exceeded, fall back to the compile-time values. 4757 */ 4758 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4759 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4760 WARN_ON(1); 4761 return; 4762 } 4763 4764 /* Calculate the number of levels in the tree. */ 4765 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4766 } 4767 rcu_num_lvls = i + 1; 4768 4769 /* Calculate the number of rcu_nodes at each level of the tree. */ 4770 for (i = 0; i < rcu_num_lvls; i++) { 4771 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4772 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4773 } 4774 4775 /* Calculate the total number of rcu_node structures. */ 4776 rcu_num_nodes = 0; 4777 for (i = 0; i < rcu_num_lvls; i++) 4778 rcu_num_nodes += num_rcu_lvl[i]; 4779 } 4780 4781 /* 4782 * Dump out the structure of the rcu_node combining tree associated 4783 * with the rcu_state structure. 4784 */ 4785 static void __init rcu_dump_rcu_node_tree(void) 4786 { 4787 int level = 0; 4788 struct rcu_node *rnp; 4789 4790 pr_info("rcu_node tree layout dump\n"); 4791 pr_info(" "); 4792 rcu_for_each_node_breadth_first(rnp) { 4793 if (rnp->level != level) { 4794 pr_cont("\n"); 4795 pr_info(" "); 4796 level = rnp->level; 4797 } 4798 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4799 } 4800 pr_cont("\n"); 4801 } 4802 4803 struct workqueue_struct *rcu_gp_wq; 4804 4805 void __init rcu_init(void) 4806 { 4807 int cpu = smp_processor_id(); 4808 4809 rcu_early_boot_tests(); 4810 4811 rcu_bootup_announce(); 4812 sanitize_kthread_prio(); 4813 rcu_init_geometry(); 4814 rcu_init_one(); 4815 if (dump_tree) 4816 rcu_dump_rcu_node_tree(); 4817 if (use_softirq) 4818 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4819 4820 /* 4821 * We don't need protection against CPU-hotplug here because 4822 * this is called early in boot, before either interrupts 4823 * or the scheduler are operational. 4824 */ 4825 pm_notifier(rcu_pm_notify, 0); 4826 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4827 rcutree_prepare_cpu(cpu); 4828 rcutree_report_cpu_starting(cpu); 4829 rcutree_online_cpu(cpu); 4830 4831 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4832 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4833 WARN_ON(!rcu_gp_wq); 4834 4835 sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0); 4836 WARN_ON(!sync_wq); 4837 4838 /* Fill in default value for rcutree.qovld boot parameter. */ 4839 /* -After- the rcu_node ->lock fields are initialized! */ 4840 if (qovld < 0) 4841 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4842 else 4843 qovld_calc = qovld; 4844 4845 // Kick-start in case any polled grace periods started early. 4846 (void)start_poll_synchronize_rcu_expedited(); 4847 4848 rcu_test_sync_prims(); 4849 4850 tasks_cblist_init_generic(); 4851 } 4852 4853 #include "tree_stall.h" 4854 #include "tree_exp.h" 4855 #include "tree_nocb.h" 4856 #include "tree_plugin.h" 4857