1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include <linux/context_tracking.h> 66 #include "../time/tick-internal.h" 67 68 #include "tree.h" 69 #include "rcu.h" 70 71 #ifdef MODULE_PARAM_PREFIX 72 #undef MODULE_PARAM_PREFIX 73 #endif 74 #define MODULE_PARAM_PREFIX "rcutree." 75 76 /* Data structures. */ 77 78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 79 #ifdef CONFIG_RCU_NOCB_CPU 80 .cblist.flags = SEGCBLIST_RCU_CORE, 81 #endif 82 }; 83 static struct rcu_state rcu_state = { 84 .level = { &rcu_state.node[0] }, 85 .gp_state = RCU_GP_IDLE, 86 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 87 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 88 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 89 .name = RCU_NAME, 90 .abbr = RCU_ABBR, 91 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 92 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 93 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 94 }; 95 96 /* Dump rcu_node combining tree at boot to verify correct setup. */ 97 static bool dump_tree; 98 module_param(dump_tree, bool, 0444); 99 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 100 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 101 #ifndef CONFIG_PREEMPT_RT 102 module_param(use_softirq, bool, 0444); 103 #endif 104 /* Control rcu_node-tree auto-balancing at boot time. */ 105 static bool rcu_fanout_exact; 106 module_param(rcu_fanout_exact, bool, 0444); 107 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 108 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 109 module_param(rcu_fanout_leaf, int, 0444); 110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 111 /* Number of rcu_nodes at specified level. */ 112 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 113 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 114 115 /* 116 * The rcu_scheduler_active variable is initialized to the value 117 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 118 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 119 * RCU can assume that there is but one task, allowing RCU to (for example) 120 * optimize synchronize_rcu() to a simple barrier(). When this variable 121 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 122 * to detect real grace periods. This variable is also used to suppress 123 * boot-time false positives from lockdep-RCU error checking. Finally, it 124 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 125 * is fully initialized, including all of its kthreads having been spawned. 126 */ 127 int rcu_scheduler_active __read_mostly; 128 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 129 130 /* 131 * The rcu_scheduler_fully_active variable transitions from zero to one 132 * during the early_initcall() processing, which is after the scheduler 133 * is capable of creating new tasks. So RCU processing (for example, 134 * creating tasks for RCU priority boosting) must be delayed until after 135 * rcu_scheduler_fully_active transitions from zero to one. We also 136 * currently delay invocation of any RCU callbacks until after this point. 137 * 138 * It might later prove better for people registering RCU callbacks during 139 * early boot to take responsibility for these callbacks, but one step at 140 * a time. 141 */ 142 static int rcu_scheduler_fully_active __read_mostly; 143 144 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 145 unsigned long gps, unsigned long flags); 146 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 147 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 149 static void invoke_rcu_core(void); 150 static void rcu_report_exp_rdp(struct rcu_data *rdp); 151 static void sync_sched_exp_online_cleanup(int cpu); 152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 154 155 /* 156 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 157 * real-time priority(enabling/disabling) is controlled by 158 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 159 */ 160 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 161 module_param(kthread_prio, int, 0444); 162 163 /* Delay in jiffies for grace-period initialization delays, debug only. */ 164 165 static int gp_preinit_delay; 166 module_param(gp_preinit_delay, int, 0444); 167 static int gp_init_delay; 168 module_param(gp_init_delay, int, 0444); 169 static int gp_cleanup_delay; 170 module_param(gp_cleanup_delay, int, 0444); 171 172 // Add delay to rcu_read_unlock() for strict grace periods. 173 static int rcu_unlock_delay; 174 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 175 module_param(rcu_unlock_delay, int, 0444); 176 #endif 177 178 /* 179 * This rcu parameter is runtime-read-only. It reflects 180 * a minimum allowed number of objects which can be cached 181 * per-CPU. Object size is equal to one page. This value 182 * can be changed at boot time. 183 */ 184 static int rcu_min_cached_objs = 5; 185 module_param(rcu_min_cached_objs, int, 0444); 186 187 // A page shrinker can ask for pages to be freed to make them 188 // available for other parts of the system. This usually happens 189 // under low memory conditions, and in that case we should also 190 // defer page-cache filling for a short time period. 191 // 192 // The default value is 5 seconds, which is long enough to reduce 193 // interference with the shrinker while it asks other systems to 194 // drain their caches. 195 static int rcu_delay_page_cache_fill_msec = 5000; 196 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 197 198 /* Retrieve RCU kthreads priority for rcutorture */ 199 int rcu_get_gp_kthreads_prio(void) 200 { 201 return kthread_prio; 202 } 203 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 204 205 /* 206 * Number of grace periods between delays, normalized by the duration of 207 * the delay. The longer the delay, the more the grace periods between 208 * each delay. The reason for this normalization is that it means that, 209 * for non-zero delays, the overall slowdown of grace periods is constant 210 * regardless of the duration of the delay. This arrangement balances 211 * the need for long delays to increase some race probabilities with the 212 * need for fast grace periods to increase other race probabilities. 213 */ 214 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 215 216 /* 217 * Compute the mask of online CPUs for the specified rcu_node structure. 218 * This will not be stable unless the rcu_node structure's ->lock is 219 * held, but the bit corresponding to the current CPU will be stable 220 * in most contexts. 221 */ 222 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 223 { 224 return READ_ONCE(rnp->qsmaskinitnext); 225 } 226 227 /* 228 * Is the CPU corresponding to the specified rcu_data structure online 229 * from RCU's perspective? This perspective is given by that structure's 230 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 231 */ 232 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 233 { 234 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 235 } 236 237 /* 238 * Return true if an RCU grace period is in progress. The READ_ONCE()s 239 * permit this function to be invoked without holding the root rcu_node 240 * structure's ->lock, but of course results can be subject to change. 241 */ 242 static int rcu_gp_in_progress(void) 243 { 244 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 245 } 246 247 /* 248 * Return the number of callbacks queued on the specified CPU. 249 * Handles both the nocbs and normal cases. 250 */ 251 static long rcu_get_n_cbs_cpu(int cpu) 252 { 253 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 254 255 if (rcu_segcblist_is_enabled(&rdp->cblist)) 256 return rcu_segcblist_n_cbs(&rdp->cblist); 257 return 0; 258 } 259 260 void rcu_softirq_qs(void) 261 { 262 rcu_qs(); 263 rcu_preempt_deferred_qs(current); 264 rcu_tasks_qs(current, false); 265 } 266 267 /* 268 * Reset the current CPU's ->dynticks counter to indicate that the 269 * newly onlined CPU is no longer in an extended quiescent state. 270 * This will either leave the counter unchanged, or increment it 271 * to the next non-quiescent value. 272 * 273 * The non-atomic test/increment sequence works because the upper bits 274 * of the ->dynticks counter are manipulated only by the corresponding CPU, 275 * or when the corresponding CPU is offline. 276 */ 277 static void rcu_dynticks_eqs_online(void) 278 { 279 if (ct_dynticks() & RCU_DYNTICKS_IDX) 280 return; 281 ct_state_inc(RCU_DYNTICKS_IDX); 282 } 283 284 /* 285 * Snapshot the ->dynticks counter with full ordering so as to allow 286 * stable comparison of this counter with past and future snapshots. 287 */ 288 static int rcu_dynticks_snap(int cpu) 289 { 290 smp_mb(); // Fundamental RCU ordering guarantee. 291 return ct_dynticks_cpu_acquire(cpu); 292 } 293 294 /* 295 * Return true if the snapshot returned from rcu_dynticks_snap() 296 * indicates that RCU is in an extended quiescent state. 297 */ 298 static bool rcu_dynticks_in_eqs(int snap) 299 { 300 return !(snap & RCU_DYNTICKS_IDX); 301 } 302 303 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 304 bool rcu_is_idle_cpu(int cpu) 305 { 306 return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)); 307 } 308 309 /* 310 * Return true if the CPU corresponding to the specified rcu_data 311 * structure has spent some time in an extended quiescent state since 312 * rcu_dynticks_snap() returned the specified snapshot. 313 */ 314 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 315 { 316 return snap != rcu_dynticks_snap(rdp->cpu); 317 } 318 319 /* 320 * Return true if the referenced integer is zero while the specified 321 * CPU remains within a single extended quiescent state. 322 */ 323 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 324 { 325 int snap; 326 327 // If not quiescent, force back to earlier extended quiescent state. 328 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 329 smp_rmb(); // Order ->dynticks and *vp reads. 330 if (READ_ONCE(*vp)) 331 return false; // Non-zero, so report failure; 332 smp_rmb(); // Order *vp read and ->dynticks re-read. 333 334 // If still in the same extended quiescent state, we are good! 335 return snap == ct_dynticks_cpu(cpu); 336 } 337 338 /* 339 * Let the RCU core know that this CPU has gone through the scheduler, 340 * which is a quiescent state. This is called when the need for a 341 * quiescent state is urgent, so we burn an atomic operation and full 342 * memory barriers to let the RCU core know about it, regardless of what 343 * this CPU might (or might not) do in the near future. 344 * 345 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 346 * 347 * The caller must have disabled interrupts and must not be idle. 348 */ 349 notrace void rcu_momentary_dyntick_idle(void) 350 { 351 int seq; 352 353 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 354 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 355 /* It is illegal to call this from idle state. */ 356 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 357 rcu_preempt_deferred_qs(current); 358 } 359 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 360 361 /** 362 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 363 * 364 * If the current CPU is idle and running at a first-level (not nested) 365 * interrupt, or directly, from idle, return true. 366 * 367 * The caller must have at least disabled IRQs. 368 */ 369 static int rcu_is_cpu_rrupt_from_idle(void) 370 { 371 long nesting; 372 373 /* 374 * Usually called from the tick; but also used from smp_function_call() 375 * for expedited grace periods. This latter can result in running from 376 * the idle task, instead of an actual IPI. 377 */ 378 lockdep_assert_irqs_disabled(); 379 380 /* Check for counter underflows */ 381 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 382 "RCU dynticks_nesting counter underflow!"); 383 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 384 "RCU dynticks_nmi_nesting counter underflow/zero!"); 385 386 /* Are we at first interrupt nesting level? */ 387 nesting = ct_dynticks_nmi_nesting(); 388 if (nesting > 1) 389 return false; 390 391 /* 392 * If we're not in an interrupt, we must be in the idle task! 393 */ 394 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 395 396 /* Does CPU appear to be idle from an RCU standpoint? */ 397 return ct_dynticks_nesting() == 0; 398 } 399 400 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 401 // Maximum callbacks per rcu_do_batch ... 402 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 403 static long blimit = DEFAULT_RCU_BLIMIT; 404 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 405 static long qhimark = DEFAULT_RCU_QHIMARK; 406 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 407 static long qlowmark = DEFAULT_RCU_QLOMARK; 408 #define DEFAULT_RCU_QOVLD_MULT 2 409 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 410 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 411 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 412 413 module_param(blimit, long, 0444); 414 module_param(qhimark, long, 0444); 415 module_param(qlowmark, long, 0444); 416 module_param(qovld, long, 0444); 417 418 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 419 static ulong jiffies_till_next_fqs = ULONG_MAX; 420 static bool rcu_kick_kthreads; 421 static int rcu_divisor = 7; 422 module_param(rcu_divisor, int, 0644); 423 424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 426 module_param(rcu_resched_ns, long, 0644); 427 428 /* 429 * How long the grace period must be before we start recruiting 430 * quiescent-state help from rcu_note_context_switch(). 431 */ 432 static ulong jiffies_till_sched_qs = ULONG_MAX; 433 module_param(jiffies_till_sched_qs, ulong, 0444); 434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 436 437 /* 438 * Make sure that we give the grace-period kthread time to detect any 439 * idle CPUs before taking active measures to force quiescent states. 440 * However, don't go below 100 milliseconds, adjusted upwards for really 441 * large systems. 442 */ 443 static void adjust_jiffies_till_sched_qs(void) 444 { 445 unsigned long j; 446 447 /* If jiffies_till_sched_qs was specified, respect the request. */ 448 if (jiffies_till_sched_qs != ULONG_MAX) { 449 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 450 return; 451 } 452 /* Otherwise, set to third fqs scan, but bound below on large system. */ 453 j = READ_ONCE(jiffies_till_first_fqs) + 454 2 * READ_ONCE(jiffies_till_next_fqs); 455 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 456 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 457 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 458 WRITE_ONCE(jiffies_to_sched_qs, j); 459 } 460 461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 462 { 463 ulong j; 464 int ret = kstrtoul(val, 0, &j); 465 466 if (!ret) { 467 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 468 adjust_jiffies_till_sched_qs(); 469 } 470 return ret; 471 } 472 473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 474 { 475 ulong j; 476 int ret = kstrtoul(val, 0, &j); 477 478 if (!ret) { 479 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 480 adjust_jiffies_till_sched_qs(); 481 } 482 return ret; 483 } 484 485 static const struct kernel_param_ops first_fqs_jiffies_ops = { 486 .set = param_set_first_fqs_jiffies, 487 .get = param_get_ulong, 488 }; 489 490 static const struct kernel_param_ops next_fqs_jiffies_ops = { 491 .set = param_set_next_fqs_jiffies, 492 .get = param_get_ulong, 493 }; 494 495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 497 module_param(rcu_kick_kthreads, bool, 0644); 498 499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 500 static int rcu_pending(int user); 501 502 /* 503 * Return the number of RCU GPs completed thus far for debug & stats. 504 */ 505 unsigned long rcu_get_gp_seq(void) 506 { 507 return READ_ONCE(rcu_state.gp_seq); 508 } 509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 510 511 /* 512 * Return the number of RCU expedited batches completed thus far for 513 * debug & stats. Odd numbers mean that a batch is in progress, even 514 * numbers mean idle. The value returned will thus be roughly double 515 * the cumulative batches since boot. 516 */ 517 unsigned long rcu_exp_batches_completed(void) 518 { 519 return rcu_state.expedited_sequence; 520 } 521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 522 523 /* 524 * Return the root node of the rcu_state structure. 525 */ 526 static struct rcu_node *rcu_get_root(void) 527 { 528 return &rcu_state.node[0]; 529 } 530 531 /* 532 * Send along grace-period-related data for rcutorture diagnostics. 533 */ 534 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 535 unsigned long *gp_seq) 536 { 537 switch (test_type) { 538 case RCU_FLAVOR: 539 *flags = READ_ONCE(rcu_state.gp_flags); 540 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 541 break; 542 default: 543 break; 544 } 545 } 546 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 547 548 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 549 /* 550 * An empty function that will trigger a reschedule on 551 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 552 */ 553 static void late_wakeup_func(struct irq_work *work) 554 { 555 } 556 557 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 558 IRQ_WORK_INIT(late_wakeup_func); 559 560 /* 561 * If either: 562 * 563 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 564 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 565 * 566 * In these cases the late RCU wake ups aren't supported in the resched loops and our 567 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 568 * get re-enabled again. 569 */ 570 noinstr void rcu_irq_work_resched(void) 571 { 572 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 573 574 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 575 return; 576 577 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 578 return; 579 580 instrumentation_begin(); 581 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 582 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 583 } 584 instrumentation_end(); 585 } 586 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 587 588 #ifdef CONFIG_PROVE_RCU 589 /** 590 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 591 */ 592 void rcu_irq_exit_check_preempt(void) 593 { 594 lockdep_assert_irqs_disabled(); 595 596 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 597 "RCU dynticks_nesting counter underflow/zero!"); 598 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 599 DYNTICK_IRQ_NONIDLE, 600 "Bad RCU dynticks_nmi_nesting counter\n"); 601 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 602 "RCU in extended quiescent state!"); 603 } 604 #endif /* #ifdef CONFIG_PROVE_RCU */ 605 606 #ifdef CONFIG_NO_HZ_FULL 607 /** 608 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 609 * 610 * The scheduler tick is not normally enabled when CPUs enter the kernel 611 * from nohz_full userspace execution. After all, nohz_full userspace 612 * execution is an RCU quiescent state and the time executing in the kernel 613 * is quite short. Except of course when it isn't. And it is not hard to 614 * cause a large system to spend tens of seconds or even minutes looping 615 * in the kernel, which can cause a number of problems, include RCU CPU 616 * stall warnings. 617 * 618 * Therefore, if a nohz_full CPU fails to report a quiescent state 619 * in a timely manner, the RCU grace-period kthread sets that CPU's 620 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 621 * exception will invoke this function, which will turn on the scheduler 622 * tick, which will enable RCU to detect that CPU's quiescent states, 623 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 624 * The tick will be disabled once a quiescent state is reported for 625 * this CPU. 626 * 627 * Of course, in carefully tuned systems, there might never be an 628 * interrupt or exception. In that case, the RCU grace-period kthread 629 * will eventually cause one to happen. However, in less carefully 630 * controlled environments, this function allows RCU to get what it 631 * needs without creating otherwise useless interruptions. 632 */ 633 void __rcu_irq_enter_check_tick(void) 634 { 635 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 636 637 // If we're here from NMI there's nothing to do. 638 if (in_nmi()) 639 return; 640 641 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 642 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 643 644 if (!tick_nohz_full_cpu(rdp->cpu) || 645 !READ_ONCE(rdp->rcu_urgent_qs) || 646 READ_ONCE(rdp->rcu_forced_tick)) { 647 // RCU doesn't need nohz_full help from this CPU, or it is 648 // already getting that help. 649 return; 650 } 651 652 // We get here only when not in an extended quiescent state and 653 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 654 // already watching and (2) The fact that we are in an interrupt 655 // handler and that the rcu_node lock is an irq-disabled lock 656 // prevents self-deadlock. So we can safely recheck under the lock. 657 // Note that the nohz_full state currently cannot change. 658 raw_spin_lock_rcu_node(rdp->mynode); 659 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 660 // A nohz_full CPU is in the kernel and RCU needs a 661 // quiescent state. Turn on the tick! 662 WRITE_ONCE(rdp->rcu_forced_tick, true); 663 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 664 } 665 raw_spin_unlock_rcu_node(rdp->mynode); 666 } 667 #endif /* CONFIG_NO_HZ_FULL */ 668 669 /* 670 * Check to see if any future non-offloaded RCU-related work will need 671 * to be done by the current CPU, even if none need be done immediately, 672 * returning 1 if so. This function is part of the RCU implementation; 673 * it is -not- an exported member of the RCU API. This is used by 674 * the idle-entry code to figure out whether it is safe to disable the 675 * scheduler-clock interrupt. 676 * 677 * Just check whether or not this CPU has non-offloaded RCU callbacks 678 * queued. 679 */ 680 int rcu_needs_cpu(void) 681 { 682 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 683 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 684 } 685 686 /* 687 * If any sort of urgency was applied to the current CPU (for example, 688 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 689 * to get to a quiescent state, disable it. 690 */ 691 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 692 { 693 raw_lockdep_assert_held_rcu_node(rdp->mynode); 694 WRITE_ONCE(rdp->rcu_urgent_qs, false); 695 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 696 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 697 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 698 WRITE_ONCE(rdp->rcu_forced_tick, false); 699 } 700 } 701 702 /** 703 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 704 * 705 * Return true if RCU is watching the running CPU, which means that this 706 * CPU can safely enter RCU read-side critical sections. In other words, 707 * if the current CPU is not in its idle loop or is in an interrupt or 708 * NMI handler, return true. 709 * 710 * Make notrace because it can be called by the internal functions of 711 * ftrace, and making this notrace removes unnecessary recursion calls. 712 */ 713 notrace bool rcu_is_watching(void) 714 { 715 bool ret; 716 717 preempt_disable_notrace(); 718 ret = !rcu_dynticks_curr_cpu_in_eqs(); 719 preempt_enable_notrace(); 720 return ret; 721 } 722 EXPORT_SYMBOL_GPL(rcu_is_watching); 723 724 /* 725 * If a holdout task is actually running, request an urgent quiescent 726 * state from its CPU. This is unsynchronized, so migrations can cause 727 * the request to go to the wrong CPU. Which is OK, all that will happen 728 * is that the CPU's next context switch will be a bit slower and next 729 * time around this task will generate another request. 730 */ 731 void rcu_request_urgent_qs_task(struct task_struct *t) 732 { 733 int cpu; 734 735 barrier(); 736 cpu = task_cpu(t); 737 if (!task_curr(t)) 738 return; /* This task is not running on that CPU. */ 739 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 740 } 741 742 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 743 744 /* 745 * Is the current CPU online as far as RCU is concerned? 746 * 747 * Disable preemption to avoid false positives that could otherwise 748 * happen due to the current CPU number being sampled, this task being 749 * preempted, its old CPU being taken offline, resuming on some other CPU, 750 * then determining that its old CPU is now offline. 751 * 752 * Disable checking if in an NMI handler because we cannot safely 753 * report errors from NMI handlers anyway. In addition, it is OK to use 754 * RCU on an offline processor during initial boot, hence the check for 755 * rcu_scheduler_fully_active. 756 */ 757 bool rcu_lockdep_current_cpu_online(void) 758 { 759 struct rcu_data *rdp; 760 bool ret = false; 761 762 if (in_nmi() || !rcu_scheduler_fully_active) 763 return true; 764 preempt_disable_notrace(); 765 rdp = this_cpu_ptr(&rcu_data); 766 /* 767 * Strictly, we care here about the case where the current CPU is 768 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 769 * not being up to date. So arch_spin_is_locked() might have a 770 * false positive if it's held by some *other* CPU, but that's 771 * OK because that just means a false *negative* on the warning. 772 */ 773 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 774 ret = true; 775 preempt_enable_notrace(); 776 return ret; 777 } 778 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 779 780 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 781 782 /* 783 * When trying to report a quiescent state on behalf of some other CPU, 784 * it is our responsibility to check for and handle potential overflow 785 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 786 * After all, the CPU might be in deep idle state, and thus executing no 787 * code whatsoever. 788 */ 789 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 790 { 791 raw_lockdep_assert_held_rcu_node(rnp); 792 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 793 rnp->gp_seq)) 794 WRITE_ONCE(rdp->gpwrap, true); 795 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 796 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 797 } 798 799 /* 800 * Snapshot the specified CPU's dynticks counter so that we can later 801 * credit them with an implicit quiescent state. Return 1 if this CPU 802 * is in dynticks idle mode, which is an extended quiescent state. 803 */ 804 static int dyntick_save_progress_counter(struct rcu_data *rdp) 805 { 806 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 807 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 808 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 809 rcu_gpnum_ovf(rdp->mynode, rdp); 810 return 1; 811 } 812 return 0; 813 } 814 815 /* 816 * Return true if the specified CPU has passed through a quiescent 817 * state by virtue of being in or having passed through an dynticks 818 * idle state since the last call to dyntick_save_progress_counter() 819 * for this same CPU, or by virtue of having been offline. 820 */ 821 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 822 { 823 unsigned long jtsq; 824 struct rcu_node *rnp = rdp->mynode; 825 826 /* 827 * If the CPU passed through or entered a dynticks idle phase with 828 * no active irq/NMI handlers, then we can safely pretend that the CPU 829 * already acknowledged the request to pass through a quiescent 830 * state. Either way, that CPU cannot possibly be in an RCU 831 * read-side critical section that started before the beginning 832 * of the current RCU grace period. 833 */ 834 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 835 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 836 rcu_gpnum_ovf(rnp, rdp); 837 return 1; 838 } 839 840 /* 841 * Complain if a CPU that is considered to be offline from RCU's 842 * perspective has not yet reported a quiescent state. After all, 843 * the offline CPU should have reported a quiescent state during 844 * the CPU-offline process, or, failing that, by rcu_gp_init() 845 * if it ran concurrently with either the CPU going offline or the 846 * last task on a leaf rcu_node structure exiting its RCU read-side 847 * critical section while all CPUs corresponding to that structure 848 * are offline. This added warning detects bugs in any of these 849 * code paths. 850 * 851 * The rcu_node structure's ->lock is held here, which excludes 852 * the relevant portions the CPU-hotplug code, the grace-period 853 * initialization code, and the rcu_read_unlock() code paths. 854 * 855 * For more detail, please refer to the "Hotplug CPU" section 856 * of RCU's Requirements documentation. 857 */ 858 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 859 struct rcu_node *rnp1; 860 861 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 862 __func__, rnp->grplo, rnp->grphi, rnp->level, 863 (long)rnp->gp_seq, (long)rnp->completedqs); 864 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 865 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 866 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 867 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 868 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 869 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 870 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 871 return 1; /* Break things loose after complaining. */ 872 } 873 874 /* 875 * A CPU running for an extended time within the kernel can 876 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 877 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 878 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 879 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 880 * variable are safe because the assignments are repeated if this 881 * CPU failed to pass through a quiescent state. This code 882 * also checks .jiffies_resched in case jiffies_to_sched_qs 883 * is set way high. 884 */ 885 jtsq = READ_ONCE(jiffies_to_sched_qs); 886 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 887 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 888 time_after(jiffies, rcu_state.jiffies_resched) || 889 rcu_state.cbovld)) { 890 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 891 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 892 smp_store_release(&rdp->rcu_urgent_qs, true); 893 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 894 WRITE_ONCE(rdp->rcu_urgent_qs, true); 895 } 896 897 /* 898 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 899 * The above code handles this, but only for straight cond_resched(). 900 * And some in-kernel loops check need_resched() before calling 901 * cond_resched(), which defeats the above code for CPUs that are 902 * running in-kernel with scheduling-clock interrupts disabled. 903 * So hit them over the head with the resched_cpu() hammer! 904 */ 905 if (tick_nohz_full_cpu(rdp->cpu) && 906 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 907 rcu_state.cbovld)) { 908 WRITE_ONCE(rdp->rcu_urgent_qs, true); 909 resched_cpu(rdp->cpu); 910 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 911 } 912 913 /* 914 * If more than halfway to RCU CPU stall-warning time, invoke 915 * resched_cpu() more frequently to try to loosen things up a bit. 916 * Also check to see if the CPU is getting hammered with interrupts, 917 * but only once per grace period, just to keep the IPIs down to 918 * a dull roar. 919 */ 920 if (time_after(jiffies, rcu_state.jiffies_resched)) { 921 if (time_after(jiffies, 922 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 923 resched_cpu(rdp->cpu); 924 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 925 } 926 if (IS_ENABLED(CONFIG_IRQ_WORK) && 927 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 928 (rnp->ffmask & rdp->grpmask)) { 929 rdp->rcu_iw_pending = true; 930 rdp->rcu_iw_gp_seq = rnp->gp_seq; 931 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 932 } 933 } 934 935 return 0; 936 } 937 938 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 939 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 940 unsigned long gp_seq_req, const char *s) 941 { 942 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 943 gp_seq_req, rnp->level, 944 rnp->grplo, rnp->grphi, s); 945 } 946 947 /* 948 * rcu_start_this_gp - Request the start of a particular grace period 949 * @rnp_start: The leaf node of the CPU from which to start. 950 * @rdp: The rcu_data corresponding to the CPU from which to start. 951 * @gp_seq_req: The gp_seq of the grace period to start. 952 * 953 * Start the specified grace period, as needed to handle newly arrived 954 * callbacks. The required future grace periods are recorded in each 955 * rcu_node structure's ->gp_seq_needed field. Returns true if there 956 * is reason to awaken the grace-period kthread. 957 * 958 * The caller must hold the specified rcu_node structure's ->lock, which 959 * is why the caller is responsible for waking the grace-period kthread. 960 * 961 * Returns true if the GP thread needs to be awakened else false. 962 */ 963 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 964 unsigned long gp_seq_req) 965 { 966 bool ret = false; 967 struct rcu_node *rnp; 968 969 /* 970 * Use funnel locking to either acquire the root rcu_node 971 * structure's lock or bail out if the need for this grace period 972 * has already been recorded -- or if that grace period has in 973 * fact already started. If there is already a grace period in 974 * progress in a non-leaf node, no recording is needed because the 975 * end of the grace period will scan the leaf rcu_node structures. 976 * Note that rnp_start->lock must not be released. 977 */ 978 raw_lockdep_assert_held_rcu_node(rnp_start); 979 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 980 for (rnp = rnp_start; 1; rnp = rnp->parent) { 981 if (rnp != rnp_start) 982 raw_spin_lock_rcu_node(rnp); 983 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 984 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 985 (rnp != rnp_start && 986 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 987 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 988 TPS("Prestarted")); 989 goto unlock_out; 990 } 991 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 992 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 993 /* 994 * We just marked the leaf or internal node, and a 995 * grace period is in progress, which means that 996 * rcu_gp_cleanup() will see the marking. Bail to 997 * reduce contention. 998 */ 999 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1000 TPS("Startedleaf")); 1001 goto unlock_out; 1002 } 1003 if (rnp != rnp_start && rnp->parent != NULL) 1004 raw_spin_unlock_rcu_node(rnp); 1005 if (!rnp->parent) 1006 break; /* At root, and perhaps also leaf. */ 1007 } 1008 1009 /* If GP already in progress, just leave, otherwise start one. */ 1010 if (rcu_gp_in_progress()) { 1011 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1012 goto unlock_out; 1013 } 1014 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1015 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1016 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1017 if (!READ_ONCE(rcu_state.gp_kthread)) { 1018 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1019 goto unlock_out; 1020 } 1021 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1022 ret = true; /* Caller must wake GP kthread. */ 1023 unlock_out: 1024 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1025 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1026 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1027 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1028 } 1029 if (rnp != rnp_start) 1030 raw_spin_unlock_rcu_node(rnp); 1031 return ret; 1032 } 1033 1034 /* 1035 * Clean up any old requests for the just-ended grace period. Also return 1036 * whether any additional grace periods have been requested. 1037 */ 1038 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1039 { 1040 bool needmore; 1041 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1042 1043 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1044 if (!needmore) 1045 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1046 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1047 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1048 return needmore; 1049 } 1050 1051 /* 1052 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1053 * interrupt or softirq handler, in which case we just might immediately 1054 * sleep upon return, resulting in a grace-period hang), and don't bother 1055 * awakening when there is nothing for the grace-period kthread to do 1056 * (as in several CPUs raced to awaken, we lost), and finally don't try 1057 * to awaken a kthread that has not yet been created. If all those checks 1058 * are passed, track some debug information and awaken. 1059 * 1060 * So why do the self-wakeup when in an interrupt or softirq handler 1061 * in the grace-period kthread's context? Because the kthread might have 1062 * been interrupted just as it was going to sleep, and just after the final 1063 * pre-sleep check of the awaken condition. In this case, a wakeup really 1064 * is required, and is therefore supplied. 1065 */ 1066 static void rcu_gp_kthread_wake(void) 1067 { 1068 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1069 1070 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1071 !READ_ONCE(rcu_state.gp_flags) || !t) 1072 return; 1073 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1074 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1075 swake_up_one(&rcu_state.gp_wq); 1076 } 1077 1078 /* 1079 * If there is room, assign a ->gp_seq number to any callbacks on this 1080 * CPU that have not already been assigned. Also accelerate any callbacks 1081 * that were previously assigned a ->gp_seq number that has since proven 1082 * to be too conservative, which can happen if callbacks get assigned a 1083 * ->gp_seq number while RCU is idle, but with reference to a non-root 1084 * rcu_node structure. This function is idempotent, so it does not hurt 1085 * to call it repeatedly. Returns an flag saying that we should awaken 1086 * the RCU grace-period kthread. 1087 * 1088 * The caller must hold rnp->lock with interrupts disabled. 1089 */ 1090 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1091 { 1092 unsigned long gp_seq_req; 1093 bool ret = false; 1094 1095 rcu_lockdep_assert_cblist_protected(rdp); 1096 raw_lockdep_assert_held_rcu_node(rnp); 1097 1098 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1099 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1100 return false; 1101 1102 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1103 1104 /* 1105 * Callbacks are often registered with incomplete grace-period 1106 * information. Something about the fact that getting exact 1107 * information requires acquiring a global lock... RCU therefore 1108 * makes a conservative estimate of the grace period number at which 1109 * a given callback will become ready to invoke. The following 1110 * code checks this estimate and improves it when possible, thus 1111 * accelerating callback invocation to an earlier grace-period 1112 * number. 1113 */ 1114 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1115 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1116 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1117 1118 /* Trace depending on how much we were able to accelerate. */ 1119 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1120 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1121 else 1122 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1123 1124 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1125 1126 return ret; 1127 } 1128 1129 /* 1130 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1131 * rcu_node structure's ->lock be held. It consults the cached value 1132 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1133 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1134 * while holding the leaf rcu_node structure's ->lock. 1135 */ 1136 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1137 struct rcu_data *rdp) 1138 { 1139 unsigned long c; 1140 bool needwake; 1141 1142 rcu_lockdep_assert_cblist_protected(rdp); 1143 c = rcu_seq_snap(&rcu_state.gp_seq); 1144 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1145 /* Old request still live, so mark recent callbacks. */ 1146 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1147 return; 1148 } 1149 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1150 needwake = rcu_accelerate_cbs(rnp, rdp); 1151 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1152 if (needwake) 1153 rcu_gp_kthread_wake(); 1154 } 1155 1156 /* 1157 * Move any callbacks whose grace period has completed to the 1158 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1159 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1160 * sublist. This function is idempotent, so it does not hurt to 1161 * invoke it repeatedly. As long as it is not invoked -too- often... 1162 * Returns true if the RCU grace-period kthread needs to be awakened. 1163 * 1164 * The caller must hold rnp->lock with interrupts disabled. 1165 */ 1166 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1167 { 1168 rcu_lockdep_assert_cblist_protected(rdp); 1169 raw_lockdep_assert_held_rcu_node(rnp); 1170 1171 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1172 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1173 return false; 1174 1175 /* 1176 * Find all callbacks whose ->gp_seq numbers indicate that they 1177 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1178 */ 1179 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1180 1181 /* Classify any remaining callbacks. */ 1182 return rcu_accelerate_cbs(rnp, rdp); 1183 } 1184 1185 /* 1186 * Move and classify callbacks, but only if doing so won't require 1187 * that the RCU grace-period kthread be awakened. 1188 */ 1189 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1190 struct rcu_data *rdp) 1191 { 1192 rcu_lockdep_assert_cblist_protected(rdp); 1193 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1194 return; 1195 // The grace period cannot end while we hold the rcu_node lock. 1196 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1197 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1198 raw_spin_unlock_rcu_node(rnp); 1199 } 1200 1201 /* 1202 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1203 * quiescent state. This is intended to be invoked when the CPU notices 1204 * a new grace period. 1205 */ 1206 static void rcu_strict_gp_check_qs(void) 1207 { 1208 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1209 rcu_read_lock(); 1210 rcu_read_unlock(); 1211 } 1212 } 1213 1214 /* 1215 * Update CPU-local rcu_data state to record the beginnings and ends of 1216 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1217 * structure corresponding to the current CPU, and must have irqs disabled. 1218 * Returns true if the grace-period kthread needs to be awakened. 1219 */ 1220 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1221 { 1222 bool ret = false; 1223 bool need_qs; 1224 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1225 1226 raw_lockdep_assert_held_rcu_node(rnp); 1227 1228 if (rdp->gp_seq == rnp->gp_seq) 1229 return false; /* Nothing to do. */ 1230 1231 /* Handle the ends of any preceding grace periods first. */ 1232 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1233 unlikely(READ_ONCE(rdp->gpwrap))) { 1234 if (!offloaded) 1235 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1236 rdp->core_needs_qs = false; 1237 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1238 } else { 1239 if (!offloaded) 1240 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1241 if (rdp->core_needs_qs) 1242 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1243 } 1244 1245 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1246 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1247 unlikely(READ_ONCE(rdp->gpwrap))) { 1248 /* 1249 * If the current grace period is waiting for this CPU, 1250 * set up to detect a quiescent state, otherwise don't 1251 * go looking for one. 1252 */ 1253 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1254 need_qs = !!(rnp->qsmask & rdp->grpmask); 1255 rdp->cpu_no_qs.b.norm = need_qs; 1256 rdp->core_needs_qs = need_qs; 1257 zero_cpu_stall_ticks(rdp); 1258 } 1259 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1260 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1261 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1262 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1263 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1264 WRITE_ONCE(rdp->gpwrap, false); 1265 rcu_gpnum_ovf(rnp, rdp); 1266 return ret; 1267 } 1268 1269 static void note_gp_changes(struct rcu_data *rdp) 1270 { 1271 unsigned long flags; 1272 bool needwake; 1273 struct rcu_node *rnp; 1274 1275 local_irq_save(flags); 1276 rnp = rdp->mynode; 1277 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1278 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1279 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1280 local_irq_restore(flags); 1281 return; 1282 } 1283 needwake = __note_gp_changes(rnp, rdp); 1284 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1285 rcu_strict_gp_check_qs(); 1286 if (needwake) 1287 rcu_gp_kthread_wake(); 1288 } 1289 1290 static atomic_t *rcu_gp_slow_suppress; 1291 1292 /* Register a counter to suppress debugging grace-period delays. */ 1293 void rcu_gp_slow_register(atomic_t *rgssp) 1294 { 1295 WARN_ON_ONCE(rcu_gp_slow_suppress); 1296 1297 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1298 } 1299 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1300 1301 /* Unregister a counter, with NULL for not caring which. */ 1302 void rcu_gp_slow_unregister(atomic_t *rgssp) 1303 { 1304 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1305 1306 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1307 } 1308 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1309 1310 static bool rcu_gp_slow_is_suppressed(void) 1311 { 1312 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1313 1314 return rgssp && atomic_read(rgssp); 1315 } 1316 1317 static void rcu_gp_slow(int delay) 1318 { 1319 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1320 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1321 schedule_timeout_idle(delay); 1322 } 1323 1324 static unsigned long sleep_duration; 1325 1326 /* Allow rcutorture to stall the grace-period kthread. */ 1327 void rcu_gp_set_torture_wait(int duration) 1328 { 1329 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1330 WRITE_ONCE(sleep_duration, duration); 1331 } 1332 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1333 1334 /* Actually implement the aforementioned wait. */ 1335 static void rcu_gp_torture_wait(void) 1336 { 1337 unsigned long duration; 1338 1339 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1340 return; 1341 duration = xchg(&sleep_duration, 0UL); 1342 if (duration > 0) { 1343 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1344 schedule_timeout_idle(duration); 1345 pr_alert("%s: Wait complete\n", __func__); 1346 } 1347 } 1348 1349 /* 1350 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1351 * processing. 1352 */ 1353 static void rcu_strict_gp_boundary(void *unused) 1354 { 1355 invoke_rcu_core(); 1356 } 1357 1358 // Has rcu_init() been invoked? This is used (for example) to determine 1359 // whether spinlocks may be acquired safely. 1360 static bool rcu_init_invoked(void) 1361 { 1362 return !!rcu_state.n_online_cpus; 1363 } 1364 1365 // Make the polled API aware of the beginning of a grace period. 1366 static void rcu_poll_gp_seq_start(unsigned long *snap) 1367 { 1368 struct rcu_node *rnp = rcu_get_root(); 1369 1370 if (rcu_init_invoked()) 1371 raw_lockdep_assert_held_rcu_node(rnp); 1372 1373 // If RCU was idle, note beginning of GP. 1374 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1375 rcu_seq_start(&rcu_state.gp_seq_polled); 1376 1377 // Either way, record current state. 1378 *snap = rcu_state.gp_seq_polled; 1379 } 1380 1381 // Make the polled API aware of the end of a grace period. 1382 static void rcu_poll_gp_seq_end(unsigned long *snap) 1383 { 1384 struct rcu_node *rnp = rcu_get_root(); 1385 1386 if (rcu_init_invoked()) 1387 raw_lockdep_assert_held_rcu_node(rnp); 1388 1389 // If the previously noted GP is still in effect, record the 1390 // end of that GP. Either way, zero counter to avoid counter-wrap 1391 // problems. 1392 if (*snap && *snap == rcu_state.gp_seq_polled) { 1393 rcu_seq_end(&rcu_state.gp_seq_polled); 1394 rcu_state.gp_seq_polled_snap = 0; 1395 rcu_state.gp_seq_polled_exp_snap = 0; 1396 } else { 1397 *snap = 0; 1398 } 1399 } 1400 1401 // Make the polled API aware of the beginning of a grace period, but 1402 // where caller does not hold the root rcu_node structure's lock. 1403 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1404 { 1405 struct rcu_node *rnp = rcu_get_root(); 1406 1407 if (rcu_init_invoked()) { 1408 lockdep_assert_irqs_enabled(); 1409 raw_spin_lock_irq_rcu_node(rnp); 1410 } 1411 rcu_poll_gp_seq_start(snap); 1412 if (rcu_init_invoked()) 1413 raw_spin_unlock_irq_rcu_node(rnp); 1414 } 1415 1416 // Make the polled API aware of the end of a grace period, but where 1417 // caller does not hold the root rcu_node structure's lock. 1418 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1419 { 1420 struct rcu_node *rnp = rcu_get_root(); 1421 1422 if (rcu_init_invoked()) { 1423 lockdep_assert_irqs_enabled(); 1424 raw_spin_lock_irq_rcu_node(rnp); 1425 } 1426 rcu_poll_gp_seq_end(snap); 1427 if (rcu_init_invoked()) 1428 raw_spin_unlock_irq_rcu_node(rnp); 1429 } 1430 1431 /* 1432 * Initialize a new grace period. Return false if no grace period required. 1433 */ 1434 static noinline_for_stack bool rcu_gp_init(void) 1435 { 1436 unsigned long flags; 1437 unsigned long oldmask; 1438 unsigned long mask; 1439 struct rcu_data *rdp; 1440 struct rcu_node *rnp = rcu_get_root(); 1441 1442 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1443 raw_spin_lock_irq_rcu_node(rnp); 1444 if (!READ_ONCE(rcu_state.gp_flags)) { 1445 /* Spurious wakeup, tell caller to go back to sleep. */ 1446 raw_spin_unlock_irq_rcu_node(rnp); 1447 return false; 1448 } 1449 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1450 1451 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1452 /* 1453 * Grace period already in progress, don't start another. 1454 * Not supposed to be able to happen. 1455 */ 1456 raw_spin_unlock_irq_rcu_node(rnp); 1457 return false; 1458 } 1459 1460 /* Advance to a new grace period and initialize state. */ 1461 record_gp_stall_check_time(); 1462 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1463 rcu_seq_start(&rcu_state.gp_seq); 1464 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1465 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1466 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1467 raw_spin_unlock_irq_rcu_node(rnp); 1468 1469 /* 1470 * Apply per-leaf buffered online and offline operations to 1471 * the rcu_node tree. Note that this new grace period need not 1472 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1473 * offlining path, when combined with checks in this function, 1474 * will handle CPUs that are currently going offline or that will 1475 * go offline later. Please also refer to "Hotplug CPU" section 1476 * of RCU's Requirements documentation. 1477 */ 1478 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1479 /* Exclude CPU hotplug operations. */ 1480 rcu_for_each_leaf_node(rnp) { 1481 local_irq_save(flags); 1482 arch_spin_lock(&rcu_state.ofl_lock); 1483 raw_spin_lock_rcu_node(rnp); 1484 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1485 !rnp->wait_blkd_tasks) { 1486 /* Nothing to do on this leaf rcu_node structure. */ 1487 raw_spin_unlock_rcu_node(rnp); 1488 arch_spin_unlock(&rcu_state.ofl_lock); 1489 local_irq_restore(flags); 1490 continue; 1491 } 1492 1493 /* Record old state, apply changes to ->qsmaskinit field. */ 1494 oldmask = rnp->qsmaskinit; 1495 rnp->qsmaskinit = rnp->qsmaskinitnext; 1496 1497 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1498 if (!oldmask != !rnp->qsmaskinit) { 1499 if (!oldmask) { /* First online CPU for rcu_node. */ 1500 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1501 rcu_init_new_rnp(rnp); 1502 } else if (rcu_preempt_has_tasks(rnp)) { 1503 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1504 } else { /* Last offline CPU and can propagate. */ 1505 rcu_cleanup_dead_rnp(rnp); 1506 } 1507 } 1508 1509 /* 1510 * If all waited-on tasks from prior grace period are 1511 * done, and if all this rcu_node structure's CPUs are 1512 * still offline, propagate up the rcu_node tree and 1513 * clear ->wait_blkd_tasks. Otherwise, if one of this 1514 * rcu_node structure's CPUs has since come back online, 1515 * simply clear ->wait_blkd_tasks. 1516 */ 1517 if (rnp->wait_blkd_tasks && 1518 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1519 rnp->wait_blkd_tasks = false; 1520 if (!rnp->qsmaskinit) 1521 rcu_cleanup_dead_rnp(rnp); 1522 } 1523 1524 raw_spin_unlock_rcu_node(rnp); 1525 arch_spin_unlock(&rcu_state.ofl_lock); 1526 local_irq_restore(flags); 1527 } 1528 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1529 1530 /* 1531 * Set the quiescent-state-needed bits in all the rcu_node 1532 * structures for all currently online CPUs in breadth-first 1533 * order, starting from the root rcu_node structure, relying on the 1534 * layout of the tree within the rcu_state.node[] array. Note that 1535 * other CPUs will access only the leaves of the hierarchy, thus 1536 * seeing that no grace period is in progress, at least until the 1537 * corresponding leaf node has been initialized. 1538 * 1539 * The grace period cannot complete until the initialization 1540 * process finishes, because this kthread handles both. 1541 */ 1542 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1543 rcu_for_each_node_breadth_first(rnp) { 1544 rcu_gp_slow(gp_init_delay); 1545 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1546 rdp = this_cpu_ptr(&rcu_data); 1547 rcu_preempt_check_blocked_tasks(rnp); 1548 rnp->qsmask = rnp->qsmaskinit; 1549 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1550 if (rnp == rdp->mynode) 1551 (void)__note_gp_changes(rnp, rdp); 1552 rcu_preempt_boost_start_gp(rnp); 1553 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1554 rnp->level, rnp->grplo, 1555 rnp->grphi, rnp->qsmask); 1556 /* Quiescent states for tasks on any now-offline CPUs. */ 1557 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1558 rnp->rcu_gp_init_mask = mask; 1559 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1560 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1561 else 1562 raw_spin_unlock_irq_rcu_node(rnp); 1563 cond_resched_tasks_rcu_qs(); 1564 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1565 } 1566 1567 // If strict, make all CPUs aware of new grace period. 1568 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1569 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1570 1571 return true; 1572 } 1573 1574 /* 1575 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1576 * time. 1577 */ 1578 static bool rcu_gp_fqs_check_wake(int *gfp) 1579 { 1580 struct rcu_node *rnp = rcu_get_root(); 1581 1582 // If under overload conditions, force an immediate FQS scan. 1583 if (*gfp & RCU_GP_FLAG_OVLD) 1584 return true; 1585 1586 // Someone like call_rcu() requested a force-quiescent-state scan. 1587 *gfp = READ_ONCE(rcu_state.gp_flags); 1588 if (*gfp & RCU_GP_FLAG_FQS) 1589 return true; 1590 1591 // The current grace period has completed. 1592 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1593 return true; 1594 1595 return false; 1596 } 1597 1598 /* 1599 * Do one round of quiescent-state forcing. 1600 */ 1601 static void rcu_gp_fqs(bool first_time) 1602 { 1603 struct rcu_node *rnp = rcu_get_root(); 1604 1605 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1606 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1607 if (first_time) { 1608 /* Collect dyntick-idle snapshots. */ 1609 force_qs_rnp(dyntick_save_progress_counter); 1610 } else { 1611 /* Handle dyntick-idle and offline CPUs. */ 1612 force_qs_rnp(rcu_implicit_dynticks_qs); 1613 } 1614 /* Clear flag to prevent immediate re-entry. */ 1615 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1616 raw_spin_lock_irq_rcu_node(rnp); 1617 WRITE_ONCE(rcu_state.gp_flags, 1618 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1619 raw_spin_unlock_irq_rcu_node(rnp); 1620 } 1621 } 1622 1623 /* 1624 * Loop doing repeated quiescent-state forcing until the grace period ends. 1625 */ 1626 static noinline_for_stack void rcu_gp_fqs_loop(void) 1627 { 1628 bool first_gp_fqs = true; 1629 int gf = 0; 1630 unsigned long j; 1631 int ret; 1632 struct rcu_node *rnp = rcu_get_root(); 1633 1634 j = READ_ONCE(jiffies_till_first_fqs); 1635 if (rcu_state.cbovld) 1636 gf = RCU_GP_FLAG_OVLD; 1637 ret = 0; 1638 for (;;) { 1639 if (rcu_state.cbovld) { 1640 j = (j + 2) / 3; 1641 if (j <= 0) 1642 j = 1; 1643 } 1644 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1645 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1646 /* 1647 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1648 * update; required for stall checks. 1649 */ 1650 smp_wmb(); 1651 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1652 jiffies + (j ? 3 * j : 2)); 1653 } 1654 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1655 TPS("fqswait")); 1656 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1657 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1658 rcu_gp_fqs_check_wake(&gf), j); 1659 rcu_gp_torture_wait(); 1660 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1661 /* Locking provides needed memory barriers. */ 1662 /* 1663 * Exit the loop if the root rcu_node structure indicates that the grace period 1664 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1665 * is required only for single-node rcu_node trees because readers blocking 1666 * the current grace period are queued only on leaf rcu_node structures. 1667 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1668 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1669 * the corresponding leaf nodes have passed through their quiescent state. 1670 */ 1671 if (!READ_ONCE(rnp->qsmask) && 1672 !rcu_preempt_blocked_readers_cgp(rnp)) 1673 break; 1674 /* If time for quiescent-state forcing, do it. */ 1675 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1676 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1677 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1678 TPS("fqsstart")); 1679 rcu_gp_fqs(first_gp_fqs); 1680 gf = 0; 1681 if (first_gp_fqs) { 1682 first_gp_fqs = false; 1683 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1684 } 1685 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1686 TPS("fqsend")); 1687 cond_resched_tasks_rcu_qs(); 1688 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1689 ret = 0; /* Force full wait till next FQS. */ 1690 j = READ_ONCE(jiffies_till_next_fqs); 1691 } else { 1692 /* Deal with stray signal. */ 1693 cond_resched_tasks_rcu_qs(); 1694 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1695 WARN_ON(signal_pending(current)); 1696 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1697 TPS("fqswaitsig")); 1698 ret = 1; /* Keep old FQS timing. */ 1699 j = jiffies; 1700 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1701 j = 1; 1702 else 1703 j = rcu_state.jiffies_force_qs - j; 1704 gf = 0; 1705 } 1706 } 1707 } 1708 1709 /* 1710 * Clean up after the old grace period. 1711 */ 1712 static noinline void rcu_gp_cleanup(void) 1713 { 1714 int cpu; 1715 bool needgp = false; 1716 unsigned long gp_duration; 1717 unsigned long new_gp_seq; 1718 bool offloaded; 1719 struct rcu_data *rdp; 1720 struct rcu_node *rnp = rcu_get_root(); 1721 struct swait_queue_head *sq; 1722 1723 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1724 raw_spin_lock_irq_rcu_node(rnp); 1725 rcu_state.gp_end = jiffies; 1726 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1727 if (gp_duration > rcu_state.gp_max) 1728 rcu_state.gp_max = gp_duration; 1729 1730 /* 1731 * We know the grace period is complete, but to everyone else 1732 * it appears to still be ongoing. But it is also the case 1733 * that to everyone else it looks like there is nothing that 1734 * they can do to advance the grace period. It is therefore 1735 * safe for us to drop the lock in order to mark the grace 1736 * period as completed in all of the rcu_node structures. 1737 */ 1738 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1739 raw_spin_unlock_irq_rcu_node(rnp); 1740 1741 /* 1742 * Propagate new ->gp_seq value to rcu_node structures so that 1743 * other CPUs don't have to wait until the start of the next grace 1744 * period to process their callbacks. This also avoids some nasty 1745 * RCU grace-period initialization races by forcing the end of 1746 * the current grace period to be completely recorded in all of 1747 * the rcu_node structures before the beginning of the next grace 1748 * period is recorded in any of the rcu_node structures. 1749 */ 1750 new_gp_seq = rcu_state.gp_seq; 1751 rcu_seq_end(&new_gp_seq); 1752 rcu_for_each_node_breadth_first(rnp) { 1753 raw_spin_lock_irq_rcu_node(rnp); 1754 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1755 dump_blkd_tasks(rnp, 10); 1756 WARN_ON_ONCE(rnp->qsmask); 1757 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1758 rdp = this_cpu_ptr(&rcu_data); 1759 if (rnp == rdp->mynode) 1760 needgp = __note_gp_changes(rnp, rdp) || needgp; 1761 /* smp_mb() provided by prior unlock-lock pair. */ 1762 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1763 // Reset overload indication for CPUs no longer overloaded 1764 if (rcu_is_leaf_node(rnp)) 1765 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1766 rdp = per_cpu_ptr(&rcu_data, cpu); 1767 check_cb_ovld_locked(rdp, rnp); 1768 } 1769 sq = rcu_nocb_gp_get(rnp); 1770 raw_spin_unlock_irq_rcu_node(rnp); 1771 rcu_nocb_gp_cleanup(sq); 1772 cond_resched_tasks_rcu_qs(); 1773 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1774 rcu_gp_slow(gp_cleanup_delay); 1775 } 1776 rnp = rcu_get_root(); 1777 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1778 1779 /* Declare grace period done, trace first to use old GP number. */ 1780 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1781 rcu_seq_end(&rcu_state.gp_seq); 1782 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1783 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1784 /* Check for GP requests since above loop. */ 1785 rdp = this_cpu_ptr(&rcu_data); 1786 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1787 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1788 TPS("CleanupMore")); 1789 needgp = true; 1790 } 1791 /* Advance CBs to reduce false positives below. */ 1792 offloaded = rcu_rdp_is_offloaded(rdp); 1793 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1794 1795 // We get here if a grace period was needed (“needgp”) 1796 // and the above call to rcu_accelerate_cbs() did not set 1797 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1798 // the need for another grace period). The purpose 1799 // of the “offloaded” check is to avoid invoking 1800 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1801 // hold the ->nocb_lock needed to safely access an offloaded 1802 // ->cblist. We do not want to acquire that lock because 1803 // it can be heavily contended during callback floods. 1804 1805 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1806 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1807 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1808 } else { 1809 1810 // We get here either if there is no need for an 1811 // additional grace period or if rcu_accelerate_cbs() has 1812 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1813 // So all we need to do is to clear all of the other 1814 // ->gp_flags bits. 1815 1816 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1817 } 1818 raw_spin_unlock_irq_rcu_node(rnp); 1819 1820 // If strict, make all CPUs aware of the end of the old grace period. 1821 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1822 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1823 } 1824 1825 /* 1826 * Body of kthread that handles grace periods. 1827 */ 1828 static int __noreturn rcu_gp_kthread(void *unused) 1829 { 1830 rcu_bind_gp_kthread(); 1831 for (;;) { 1832 1833 /* Handle grace-period start. */ 1834 for (;;) { 1835 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1836 TPS("reqwait")); 1837 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1838 swait_event_idle_exclusive(rcu_state.gp_wq, 1839 READ_ONCE(rcu_state.gp_flags) & 1840 RCU_GP_FLAG_INIT); 1841 rcu_gp_torture_wait(); 1842 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1843 /* Locking provides needed memory barrier. */ 1844 if (rcu_gp_init()) 1845 break; 1846 cond_resched_tasks_rcu_qs(); 1847 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1848 WARN_ON(signal_pending(current)); 1849 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1850 TPS("reqwaitsig")); 1851 } 1852 1853 /* Handle quiescent-state forcing. */ 1854 rcu_gp_fqs_loop(); 1855 1856 /* Handle grace-period end. */ 1857 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1858 rcu_gp_cleanup(); 1859 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1860 } 1861 } 1862 1863 /* 1864 * Report a full set of quiescent states to the rcu_state data structure. 1865 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1866 * another grace period is required. Whether we wake the grace-period 1867 * kthread or it awakens itself for the next round of quiescent-state 1868 * forcing, that kthread will clean up after the just-completed grace 1869 * period. Note that the caller must hold rnp->lock, which is released 1870 * before return. 1871 */ 1872 static void rcu_report_qs_rsp(unsigned long flags) 1873 __releases(rcu_get_root()->lock) 1874 { 1875 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1876 WARN_ON_ONCE(!rcu_gp_in_progress()); 1877 WRITE_ONCE(rcu_state.gp_flags, 1878 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1879 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1880 rcu_gp_kthread_wake(); 1881 } 1882 1883 /* 1884 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1885 * Allows quiescent states for a group of CPUs to be reported at one go 1886 * to the specified rcu_node structure, though all the CPUs in the group 1887 * must be represented by the same rcu_node structure (which need not be a 1888 * leaf rcu_node structure, though it often will be). The gps parameter 1889 * is the grace-period snapshot, which means that the quiescent states 1890 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1891 * must be held upon entry, and it is released before return. 1892 * 1893 * As a special case, if mask is zero, the bit-already-cleared check is 1894 * disabled. This allows propagating quiescent state due to resumed tasks 1895 * during grace-period initialization. 1896 */ 1897 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1898 unsigned long gps, unsigned long flags) 1899 __releases(rnp->lock) 1900 { 1901 unsigned long oldmask = 0; 1902 struct rcu_node *rnp_c; 1903 1904 raw_lockdep_assert_held_rcu_node(rnp); 1905 1906 /* Walk up the rcu_node hierarchy. */ 1907 for (;;) { 1908 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1909 1910 /* 1911 * Our bit has already been cleared, or the 1912 * relevant grace period is already over, so done. 1913 */ 1914 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1915 return; 1916 } 1917 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1918 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1919 rcu_preempt_blocked_readers_cgp(rnp)); 1920 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1921 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1922 mask, rnp->qsmask, rnp->level, 1923 rnp->grplo, rnp->grphi, 1924 !!rnp->gp_tasks); 1925 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1926 1927 /* Other bits still set at this level, so done. */ 1928 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1929 return; 1930 } 1931 rnp->completedqs = rnp->gp_seq; 1932 mask = rnp->grpmask; 1933 if (rnp->parent == NULL) { 1934 1935 /* No more levels. Exit loop holding root lock. */ 1936 1937 break; 1938 } 1939 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1940 rnp_c = rnp; 1941 rnp = rnp->parent; 1942 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1943 oldmask = READ_ONCE(rnp_c->qsmask); 1944 } 1945 1946 /* 1947 * Get here if we are the last CPU to pass through a quiescent 1948 * state for this grace period. Invoke rcu_report_qs_rsp() 1949 * to clean up and start the next grace period if one is needed. 1950 */ 1951 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1952 } 1953 1954 /* 1955 * Record a quiescent state for all tasks that were previously queued 1956 * on the specified rcu_node structure and that were blocking the current 1957 * RCU grace period. The caller must hold the corresponding rnp->lock with 1958 * irqs disabled, and this lock is released upon return, but irqs remain 1959 * disabled. 1960 */ 1961 static void __maybe_unused 1962 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1963 __releases(rnp->lock) 1964 { 1965 unsigned long gps; 1966 unsigned long mask; 1967 struct rcu_node *rnp_p; 1968 1969 raw_lockdep_assert_held_rcu_node(rnp); 1970 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1971 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1972 rnp->qsmask != 0) { 1973 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1974 return; /* Still need more quiescent states! */ 1975 } 1976 1977 rnp->completedqs = rnp->gp_seq; 1978 rnp_p = rnp->parent; 1979 if (rnp_p == NULL) { 1980 /* 1981 * Only one rcu_node structure in the tree, so don't 1982 * try to report up to its nonexistent parent! 1983 */ 1984 rcu_report_qs_rsp(flags); 1985 return; 1986 } 1987 1988 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1989 gps = rnp->gp_seq; 1990 mask = rnp->grpmask; 1991 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1992 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1993 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1994 } 1995 1996 /* 1997 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1998 * structure. This must be called from the specified CPU. 1999 */ 2000 static void 2001 rcu_report_qs_rdp(struct rcu_data *rdp) 2002 { 2003 unsigned long flags; 2004 unsigned long mask; 2005 bool needwake = false; 2006 bool needacc = false; 2007 struct rcu_node *rnp; 2008 2009 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2010 rnp = rdp->mynode; 2011 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2012 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2013 rdp->gpwrap) { 2014 2015 /* 2016 * The grace period in which this quiescent state was 2017 * recorded has ended, so don't report it upwards. 2018 * We will instead need a new quiescent state that lies 2019 * within the current grace period. 2020 */ 2021 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2022 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2023 return; 2024 } 2025 mask = rdp->grpmask; 2026 rdp->core_needs_qs = false; 2027 if ((rnp->qsmask & mask) == 0) { 2028 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2029 } else { 2030 /* 2031 * This GP can't end until cpu checks in, so all of our 2032 * callbacks can be processed during the next GP. 2033 * 2034 * NOCB kthreads have their own way to deal with that... 2035 */ 2036 if (!rcu_rdp_is_offloaded(rdp)) { 2037 needwake = rcu_accelerate_cbs(rnp, rdp); 2038 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2039 /* 2040 * ...but NOCB kthreads may miss or delay callbacks acceleration 2041 * if in the middle of a (de-)offloading process. 2042 */ 2043 needacc = true; 2044 } 2045 2046 rcu_disable_urgency_upon_qs(rdp); 2047 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2048 /* ^^^ Released rnp->lock */ 2049 if (needwake) 2050 rcu_gp_kthread_wake(); 2051 2052 if (needacc) { 2053 rcu_nocb_lock_irqsave(rdp, flags); 2054 rcu_accelerate_cbs_unlocked(rnp, rdp); 2055 rcu_nocb_unlock_irqrestore(rdp, flags); 2056 } 2057 } 2058 } 2059 2060 /* 2061 * Check to see if there is a new grace period of which this CPU 2062 * is not yet aware, and if so, set up local rcu_data state for it. 2063 * Otherwise, see if this CPU has just passed through its first 2064 * quiescent state for this grace period, and record that fact if so. 2065 */ 2066 static void 2067 rcu_check_quiescent_state(struct rcu_data *rdp) 2068 { 2069 /* Check for grace-period ends and beginnings. */ 2070 note_gp_changes(rdp); 2071 2072 /* 2073 * Does this CPU still need to do its part for current grace period? 2074 * If no, return and let the other CPUs do their part as well. 2075 */ 2076 if (!rdp->core_needs_qs) 2077 return; 2078 2079 /* 2080 * Was there a quiescent state since the beginning of the grace 2081 * period? If no, then exit and wait for the next call. 2082 */ 2083 if (rdp->cpu_no_qs.b.norm) 2084 return; 2085 2086 /* 2087 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2088 * judge of that). 2089 */ 2090 rcu_report_qs_rdp(rdp); 2091 } 2092 2093 /* 2094 * Near the end of the offline process. Trace the fact that this CPU 2095 * is going offline. 2096 */ 2097 int rcutree_dying_cpu(unsigned int cpu) 2098 { 2099 bool blkd; 2100 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2101 struct rcu_node *rnp = rdp->mynode; 2102 2103 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2104 return 0; 2105 2106 blkd = !!(rnp->qsmask & rdp->grpmask); 2107 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2108 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2109 return 0; 2110 } 2111 2112 /* 2113 * All CPUs for the specified rcu_node structure have gone offline, 2114 * and all tasks that were preempted within an RCU read-side critical 2115 * section while running on one of those CPUs have since exited their RCU 2116 * read-side critical section. Some other CPU is reporting this fact with 2117 * the specified rcu_node structure's ->lock held and interrupts disabled. 2118 * This function therefore goes up the tree of rcu_node structures, 2119 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2120 * the leaf rcu_node structure's ->qsmaskinit field has already been 2121 * updated. 2122 * 2123 * This function does check that the specified rcu_node structure has 2124 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2125 * prematurely. That said, invoking it after the fact will cost you 2126 * a needless lock acquisition. So once it has done its work, don't 2127 * invoke it again. 2128 */ 2129 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2130 { 2131 long mask; 2132 struct rcu_node *rnp = rnp_leaf; 2133 2134 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2135 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2136 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2137 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2138 return; 2139 for (;;) { 2140 mask = rnp->grpmask; 2141 rnp = rnp->parent; 2142 if (!rnp) 2143 break; 2144 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2145 rnp->qsmaskinit &= ~mask; 2146 /* Between grace periods, so better already be zero! */ 2147 WARN_ON_ONCE(rnp->qsmask); 2148 if (rnp->qsmaskinit) { 2149 raw_spin_unlock_rcu_node(rnp); 2150 /* irqs remain disabled. */ 2151 return; 2152 } 2153 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2154 } 2155 } 2156 2157 /* 2158 * The CPU has been completely removed, and some other CPU is reporting 2159 * this fact from process context. Do the remainder of the cleanup. 2160 * There can only be one CPU hotplug operation at a time, so no need for 2161 * explicit locking. 2162 */ 2163 int rcutree_dead_cpu(unsigned int cpu) 2164 { 2165 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2166 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2167 2168 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2169 return 0; 2170 2171 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2172 /* Adjust any no-longer-needed kthreads. */ 2173 rcu_boost_kthread_setaffinity(rnp, -1); 2174 // Stop-machine done, so allow nohz_full to disable tick. 2175 tick_dep_clear(TICK_DEP_BIT_RCU); 2176 return 0; 2177 } 2178 2179 /* 2180 * Invoke any RCU callbacks that have made it to the end of their grace 2181 * period. Throttle as specified by rdp->blimit. 2182 */ 2183 static void rcu_do_batch(struct rcu_data *rdp) 2184 { 2185 int div; 2186 bool __maybe_unused empty; 2187 unsigned long flags; 2188 struct rcu_head *rhp; 2189 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2190 long bl, count = 0; 2191 long pending, tlimit = 0; 2192 2193 /* If no callbacks are ready, just return. */ 2194 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2195 trace_rcu_batch_start(rcu_state.name, 2196 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2197 trace_rcu_batch_end(rcu_state.name, 0, 2198 !rcu_segcblist_empty(&rdp->cblist), 2199 need_resched(), is_idle_task(current), 2200 rcu_is_callbacks_kthread(rdp)); 2201 return; 2202 } 2203 2204 /* 2205 * Extract the list of ready callbacks, disabling IRQs to prevent 2206 * races with call_rcu() from interrupt handlers. Leave the 2207 * callback counts, as rcu_barrier() needs to be conservative. 2208 */ 2209 rcu_nocb_lock_irqsave(rdp, flags); 2210 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2211 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2212 div = READ_ONCE(rcu_divisor); 2213 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2214 bl = max(rdp->blimit, pending >> div); 2215 if (in_serving_softirq() && unlikely(bl > 100)) { 2216 long rrn = READ_ONCE(rcu_resched_ns); 2217 2218 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2219 tlimit = local_clock() + rrn; 2220 } 2221 trace_rcu_batch_start(rcu_state.name, 2222 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2223 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2224 if (rcu_rdp_is_offloaded(rdp)) 2225 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2226 2227 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2228 rcu_nocb_unlock_irqrestore(rdp, flags); 2229 2230 /* Invoke callbacks. */ 2231 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2232 rhp = rcu_cblist_dequeue(&rcl); 2233 2234 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2235 rcu_callback_t f; 2236 2237 count++; 2238 debug_rcu_head_unqueue(rhp); 2239 2240 rcu_lock_acquire(&rcu_callback_map); 2241 trace_rcu_invoke_callback(rcu_state.name, rhp); 2242 2243 f = rhp->func; 2244 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2245 f(rhp); 2246 2247 rcu_lock_release(&rcu_callback_map); 2248 2249 /* 2250 * Stop only if limit reached and CPU has something to do. 2251 */ 2252 if (in_serving_softirq()) { 2253 if (count >= bl && (need_resched() || !is_idle_task(current))) 2254 break; 2255 /* 2256 * Make sure we don't spend too much time here and deprive other 2257 * softirq vectors of CPU cycles. 2258 */ 2259 if (unlikely(tlimit)) { 2260 /* only call local_clock() every 32 callbacks */ 2261 if (likely((count & 31) || local_clock() < tlimit)) 2262 continue; 2263 /* Exceeded the time limit, so leave. */ 2264 break; 2265 } 2266 } else { 2267 local_bh_enable(); 2268 lockdep_assert_irqs_enabled(); 2269 cond_resched_tasks_rcu_qs(); 2270 lockdep_assert_irqs_enabled(); 2271 local_bh_disable(); 2272 } 2273 } 2274 2275 rcu_nocb_lock_irqsave(rdp, flags); 2276 rdp->n_cbs_invoked += count; 2277 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2278 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2279 2280 /* Update counts and requeue any remaining callbacks. */ 2281 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2282 rcu_segcblist_add_len(&rdp->cblist, -count); 2283 2284 /* Reinstate batch limit if we have worked down the excess. */ 2285 count = rcu_segcblist_n_cbs(&rdp->cblist); 2286 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2287 rdp->blimit = blimit; 2288 2289 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2290 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2291 rdp->qlen_last_fqs_check = 0; 2292 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2293 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2294 rdp->qlen_last_fqs_check = count; 2295 2296 /* 2297 * The following usually indicates a double call_rcu(). To track 2298 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2299 */ 2300 empty = rcu_segcblist_empty(&rdp->cblist); 2301 WARN_ON_ONCE(count == 0 && !empty); 2302 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2303 count != 0 && empty); 2304 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2305 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2306 2307 rcu_nocb_unlock_irqrestore(rdp, flags); 2308 2309 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2310 } 2311 2312 /* 2313 * This function is invoked from each scheduling-clock interrupt, 2314 * and checks to see if this CPU is in a non-context-switch quiescent 2315 * state, for example, user mode or idle loop. It also schedules RCU 2316 * core processing. If the current grace period has gone on too long, 2317 * it will ask the scheduler to manufacture a context switch for the sole 2318 * purpose of providing the needed quiescent state. 2319 */ 2320 void rcu_sched_clock_irq(int user) 2321 { 2322 unsigned long j; 2323 2324 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2325 j = jiffies; 2326 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2327 __this_cpu_write(rcu_data.last_sched_clock, j); 2328 } 2329 trace_rcu_utilization(TPS("Start scheduler-tick")); 2330 lockdep_assert_irqs_disabled(); 2331 raw_cpu_inc(rcu_data.ticks_this_gp); 2332 /* The load-acquire pairs with the store-release setting to true. */ 2333 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2334 /* Idle and userspace execution already are quiescent states. */ 2335 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2336 set_tsk_need_resched(current); 2337 set_preempt_need_resched(); 2338 } 2339 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2340 } 2341 rcu_flavor_sched_clock_irq(user); 2342 if (rcu_pending(user)) 2343 invoke_rcu_core(); 2344 if (user) 2345 rcu_tasks_classic_qs(current, false); 2346 lockdep_assert_irqs_disabled(); 2347 2348 trace_rcu_utilization(TPS("End scheduler-tick")); 2349 } 2350 2351 /* 2352 * Scan the leaf rcu_node structures. For each structure on which all 2353 * CPUs have reported a quiescent state and on which there are tasks 2354 * blocking the current grace period, initiate RCU priority boosting. 2355 * Otherwise, invoke the specified function to check dyntick state for 2356 * each CPU that has not yet reported a quiescent state. 2357 */ 2358 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2359 { 2360 int cpu; 2361 unsigned long flags; 2362 unsigned long mask; 2363 struct rcu_data *rdp; 2364 struct rcu_node *rnp; 2365 2366 rcu_state.cbovld = rcu_state.cbovldnext; 2367 rcu_state.cbovldnext = false; 2368 rcu_for_each_leaf_node(rnp) { 2369 cond_resched_tasks_rcu_qs(); 2370 mask = 0; 2371 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2372 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2373 if (rnp->qsmask == 0) { 2374 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2375 /* 2376 * No point in scanning bits because they 2377 * are all zero. But we might need to 2378 * priority-boost blocked readers. 2379 */ 2380 rcu_initiate_boost(rnp, flags); 2381 /* rcu_initiate_boost() releases rnp->lock */ 2382 continue; 2383 } 2384 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2385 continue; 2386 } 2387 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2388 rdp = per_cpu_ptr(&rcu_data, cpu); 2389 if (f(rdp)) { 2390 mask |= rdp->grpmask; 2391 rcu_disable_urgency_upon_qs(rdp); 2392 } 2393 } 2394 if (mask != 0) { 2395 /* Idle/offline CPUs, report (releases rnp->lock). */ 2396 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2397 } else { 2398 /* Nothing to do here, so just drop the lock. */ 2399 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2400 } 2401 } 2402 } 2403 2404 /* 2405 * Force quiescent states on reluctant CPUs, and also detect which 2406 * CPUs are in dyntick-idle mode. 2407 */ 2408 void rcu_force_quiescent_state(void) 2409 { 2410 unsigned long flags; 2411 bool ret; 2412 struct rcu_node *rnp; 2413 struct rcu_node *rnp_old = NULL; 2414 2415 /* Funnel through hierarchy to reduce memory contention. */ 2416 rnp = __this_cpu_read(rcu_data.mynode); 2417 for (; rnp != NULL; rnp = rnp->parent) { 2418 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2419 !raw_spin_trylock(&rnp->fqslock); 2420 if (rnp_old != NULL) 2421 raw_spin_unlock(&rnp_old->fqslock); 2422 if (ret) 2423 return; 2424 rnp_old = rnp; 2425 } 2426 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2427 2428 /* Reached the root of the rcu_node tree, acquire lock. */ 2429 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2430 raw_spin_unlock(&rnp_old->fqslock); 2431 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2432 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2433 return; /* Someone beat us to it. */ 2434 } 2435 WRITE_ONCE(rcu_state.gp_flags, 2436 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2437 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2438 rcu_gp_kthread_wake(); 2439 } 2440 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2441 2442 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2443 // grace periods. 2444 static void strict_work_handler(struct work_struct *work) 2445 { 2446 rcu_read_lock(); 2447 rcu_read_unlock(); 2448 } 2449 2450 /* Perform RCU core processing work for the current CPU. */ 2451 static __latent_entropy void rcu_core(void) 2452 { 2453 unsigned long flags; 2454 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2455 struct rcu_node *rnp = rdp->mynode; 2456 /* 2457 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2458 * Therefore this function can race with concurrent NOCB (de-)offloading 2459 * on this CPU and the below condition must be considered volatile. 2460 * However if we race with: 2461 * 2462 * _ Offloading: In the worst case we accelerate or process callbacks 2463 * concurrently with NOCB kthreads. We are guaranteed to 2464 * call rcu_nocb_lock() if that happens. 2465 * 2466 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2467 * processing. This is fine because the early stage 2468 * of deoffloading invokes rcu_core() after setting 2469 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2470 * what could have been dismissed without the need to wait 2471 * for the next rcu_pending() check in the next jiffy. 2472 */ 2473 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2474 2475 if (cpu_is_offline(smp_processor_id())) 2476 return; 2477 trace_rcu_utilization(TPS("Start RCU core")); 2478 WARN_ON_ONCE(!rdp->beenonline); 2479 2480 /* Report any deferred quiescent states if preemption enabled. */ 2481 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2482 rcu_preempt_deferred_qs(current); 2483 } else if (rcu_preempt_need_deferred_qs(current)) { 2484 set_tsk_need_resched(current); 2485 set_preempt_need_resched(); 2486 } 2487 2488 /* Update RCU state based on any recent quiescent states. */ 2489 rcu_check_quiescent_state(rdp); 2490 2491 /* No grace period and unregistered callbacks? */ 2492 if (!rcu_gp_in_progress() && 2493 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2494 rcu_nocb_lock_irqsave(rdp, flags); 2495 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2496 rcu_accelerate_cbs_unlocked(rnp, rdp); 2497 rcu_nocb_unlock_irqrestore(rdp, flags); 2498 } 2499 2500 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2501 2502 /* If there are callbacks ready, invoke them. */ 2503 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2504 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2505 rcu_do_batch(rdp); 2506 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2507 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2508 invoke_rcu_core(); 2509 } 2510 2511 /* Do any needed deferred wakeups of rcuo kthreads. */ 2512 do_nocb_deferred_wakeup(rdp); 2513 trace_rcu_utilization(TPS("End RCU core")); 2514 2515 // If strict GPs, schedule an RCU reader in a clean environment. 2516 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2517 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2518 } 2519 2520 static void rcu_core_si(struct softirq_action *h) 2521 { 2522 rcu_core(); 2523 } 2524 2525 static void rcu_wake_cond(struct task_struct *t, int status) 2526 { 2527 /* 2528 * If the thread is yielding, only wake it when this 2529 * is invoked from idle 2530 */ 2531 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2532 wake_up_process(t); 2533 } 2534 2535 static void invoke_rcu_core_kthread(void) 2536 { 2537 struct task_struct *t; 2538 unsigned long flags; 2539 2540 local_irq_save(flags); 2541 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2542 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2543 if (t != NULL && t != current) 2544 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2545 local_irq_restore(flags); 2546 } 2547 2548 /* 2549 * Wake up this CPU's rcuc kthread to do RCU core processing. 2550 */ 2551 static void invoke_rcu_core(void) 2552 { 2553 if (!cpu_online(smp_processor_id())) 2554 return; 2555 if (use_softirq) 2556 raise_softirq(RCU_SOFTIRQ); 2557 else 2558 invoke_rcu_core_kthread(); 2559 } 2560 2561 static void rcu_cpu_kthread_park(unsigned int cpu) 2562 { 2563 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2564 } 2565 2566 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2567 { 2568 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2569 } 2570 2571 /* 2572 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2573 * the RCU softirq used in configurations of RCU that do not support RCU 2574 * priority boosting. 2575 */ 2576 static void rcu_cpu_kthread(unsigned int cpu) 2577 { 2578 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2579 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2580 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2581 int spincnt; 2582 2583 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2584 for (spincnt = 0; spincnt < 10; spincnt++) { 2585 WRITE_ONCE(*j, jiffies); 2586 local_bh_disable(); 2587 *statusp = RCU_KTHREAD_RUNNING; 2588 local_irq_disable(); 2589 work = *workp; 2590 *workp = 0; 2591 local_irq_enable(); 2592 if (work) 2593 rcu_core(); 2594 local_bh_enable(); 2595 if (*workp == 0) { 2596 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2597 *statusp = RCU_KTHREAD_WAITING; 2598 return; 2599 } 2600 } 2601 *statusp = RCU_KTHREAD_YIELDING; 2602 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2603 schedule_timeout_idle(2); 2604 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2605 *statusp = RCU_KTHREAD_WAITING; 2606 WRITE_ONCE(*j, jiffies); 2607 } 2608 2609 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2610 .store = &rcu_data.rcu_cpu_kthread_task, 2611 .thread_should_run = rcu_cpu_kthread_should_run, 2612 .thread_fn = rcu_cpu_kthread, 2613 .thread_comm = "rcuc/%u", 2614 .setup = rcu_cpu_kthread_setup, 2615 .park = rcu_cpu_kthread_park, 2616 }; 2617 2618 /* 2619 * Spawn per-CPU RCU core processing kthreads. 2620 */ 2621 static int __init rcu_spawn_core_kthreads(void) 2622 { 2623 int cpu; 2624 2625 for_each_possible_cpu(cpu) 2626 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2627 if (use_softirq) 2628 return 0; 2629 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2630 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2631 return 0; 2632 } 2633 2634 /* 2635 * Handle any core-RCU processing required by a call_rcu() invocation. 2636 */ 2637 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2638 unsigned long flags) 2639 { 2640 /* 2641 * If called from an extended quiescent state, invoke the RCU 2642 * core in order to force a re-evaluation of RCU's idleness. 2643 */ 2644 if (!rcu_is_watching()) 2645 invoke_rcu_core(); 2646 2647 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2648 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2649 return; 2650 2651 /* 2652 * Force the grace period if too many callbacks or too long waiting. 2653 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2654 * if some other CPU has recently done so. Also, don't bother 2655 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2656 * is the only one waiting for a grace period to complete. 2657 */ 2658 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2659 rdp->qlen_last_fqs_check + qhimark)) { 2660 2661 /* Are we ignoring a completed grace period? */ 2662 note_gp_changes(rdp); 2663 2664 /* Start a new grace period if one not already started. */ 2665 if (!rcu_gp_in_progress()) { 2666 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2667 } else { 2668 /* Give the grace period a kick. */ 2669 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2670 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2671 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2672 rcu_force_quiescent_state(); 2673 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2674 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2675 } 2676 } 2677 } 2678 2679 /* 2680 * RCU callback function to leak a callback. 2681 */ 2682 static void rcu_leak_callback(struct rcu_head *rhp) 2683 { 2684 } 2685 2686 /* 2687 * Check and if necessary update the leaf rcu_node structure's 2688 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2689 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2690 * structure's ->lock. 2691 */ 2692 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2693 { 2694 raw_lockdep_assert_held_rcu_node(rnp); 2695 if (qovld_calc <= 0) 2696 return; // Early boot and wildcard value set. 2697 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2698 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2699 else 2700 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2701 } 2702 2703 /* 2704 * Check and if necessary update the leaf rcu_node structure's 2705 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2706 * number of queued RCU callbacks. No locks need be held, but the 2707 * caller must have disabled interrupts. 2708 * 2709 * Note that this function ignores the possibility that there are a lot 2710 * of callbacks all of which have already seen the end of their respective 2711 * grace periods. This omission is due to the need for no-CBs CPUs to 2712 * be holding ->nocb_lock to do this check, which is too heavy for a 2713 * common-case operation. 2714 */ 2715 static void check_cb_ovld(struct rcu_data *rdp) 2716 { 2717 struct rcu_node *const rnp = rdp->mynode; 2718 2719 if (qovld_calc <= 0 || 2720 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2721 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2722 return; // Early boot wildcard value or already set correctly. 2723 raw_spin_lock_rcu_node(rnp); 2724 check_cb_ovld_locked(rdp, rnp); 2725 raw_spin_unlock_rcu_node(rnp); 2726 } 2727 2728 /** 2729 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2730 * @head: structure to be used for queueing the RCU updates. 2731 * @func: actual callback function to be invoked after the grace period 2732 * 2733 * The callback function will be invoked some time after a full grace 2734 * period elapses, in other words after all pre-existing RCU read-side 2735 * critical sections have completed. However, the callback function 2736 * might well execute concurrently with RCU read-side critical sections 2737 * that started after call_rcu() was invoked. 2738 * 2739 * RCU read-side critical sections are delimited by rcu_read_lock() 2740 * and rcu_read_unlock(), and may be nested. In addition, but only in 2741 * v5.0 and later, regions of code across which interrupts, preemption, 2742 * or softirqs have been disabled also serve as RCU read-side critical 2743 * sections. This includes hardware interrupt handlers, softirq handlers, 2744 * and NMI handlers. 2745 * 2746 * Note that all CPUs must agree that the grace period extended beyond 2747 * all pre-existing RCU read-side critical section. On systems with more 2748 * than one CPU, this means that when "func()" is invoked, each CPU is 2749 * guaranteed to have executed a full memory barrier since the end of its 2750 * last RCU read-side critical section whose beginning preceded the call 2751 * to call_rcu(). It also means that each CPU executing an RCU read-side 2752 * critical section that continues beyond the start of "func()" must have 2753 * executed a memory barrier after the call_rcu() but before the beginning 2754 * of that RCU read-side critical section. Note that these guarantees 2755 * include CPUs that are offline, idle, or executing in user mode, as 2756 * well as CPUs that are executing in the kernel. 2757 * 2758 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2759 * resulting RCU callback function "func()", then both CPU A and CPU B are 2760 * guaranteed to execute a full memory barrier during the time interval 2761 * between the call to call_rcu() and the invocation of "func()" -- even 2762 * if CPU A and CPU B are the same CPU (but again only if the system has 2763 * more than one CPU). 2764 * 2765 * Implementation of these memory-ordering guarantees is described here: 2766 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2767 */ 2768 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2769 { 2770 static atomic_t doublefrees; 2771 unsigned long flags; 2772 struct rcu_data *rdp; 2773 bool was_alldone; 2774 2775 /* Misaligned rcu_head! */ 2776 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2777 2778 if (debug_rcu_head_queue(head)) { 2779 /* 2780 * Probable double call_rcu(), so leak the callback. 2781 * Use rcu:rcu_callback trace event to find the previous 2782 * time callback was passed to call_rcu(). 2783 */ 2784 if (atomic_inc_return(&doublefrees) < 4) { 2785 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2786 mem_dump_obj(head); 2787 } 2788 WRITE_ONCE(head->func, rcu_leak_callback); 2789 return; 2790 } 2791 head->func = func; 2792 head->next = NULL; 2793 kasan_record_aux_stack_noalloc(head); 2794 local_irq_save(flags); 2795 rdp = this_cpu_ptr(&rcu_data); 2796 2797 /* Add the callback to our list. */ 2798 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2799 // This can trigger due to call_rcu() from offline CPU: 2800 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2801 WARN_ON_ONCE(!rcu_is_watching()); 2802 // Very early boot, before rcu_init(). Initialize if needed 2803 // and then drop through to queue the callback. 2804 if (rcu_segcblist_empty(&rdp->cblist)) 2805 rcu_segcblist_init(&rdp->cblist); 2806 } 2807 2808 check_cb_ovld(rdp); 2809 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 2810 return; // Enqueued onto ->nocb_bypass, so just leave. 2811 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2812 rcu_segcblist_enqueue(&rdp->cblist, head); 2813 if (__is_kvfree_rcu_offset((unsigned long)func)) 2814 trace_rcu_kvfree_callback(rcu_state.name, head, 2815 (unsigned long)func, 2816 rcu_segcblist_n_cbs(&rdp->cblist)); 2817 else 2818 trace_rcu_callback(rcu_state.name, head, 2819 rcu_segcblist_n_cbs(&rdp->cblist)); 2820 2821 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2822 2823 /* Go handle any RCU core processing required. */ 2824 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2825 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2826 } else { 2827 __call_rcu_core(rdp, head, flags); 2828 local_irq_restore(flags); 2829 } 2830 } 2831 EXPORT_SYMBOL_GPL(call_rcu); 2832 2833 2834 /* Maximum number of jiffies to wait before draining a batch. */ 2835 #define KFREE_DRAIN_JIFFIES (HZ / 50) 2836 #define KFREE_N_BATCHES 2 2837 #define FREE_N_CHANNELS 2 2838 2839 /** 2840 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2841 * @nr_records: Number of active pointers in the array 2842 * @next: Next bulk object in the block chain 2843 * @records: Array of the kvfree_rcu() pointers 2844 */ 2845 struct kvfree_rcu_bulk_data { 2846 unsigned long nr_records; 2847 struct kvfree_rcu_bulk_data *next; 2848 void *records[]; 2849 }; 2850 2851 /* 2852 * This macro defines how many entries the "records" array 2853 * will contain. It is based on the fact that the size of 2854 * kvfree_rcu_bulk_data structure becomes exactly one page. 2855 */ 2856 #define KVFREE_BULK_MAX_ENTR \ 2857 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2858 2859 /** 2860 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2861 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2862 * @head_free: List of kfree_rcu() objects waiting for a grace period 2863 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2864 * @krcp: Pointer to @kfree_rcu_cpu structure 2865 */ 2866 2867 struct kfree_rcu_cpu_work { 2868 struct rcu_work rcu_work; 2869 struct rcu_head *head_free; 2870 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 2871 struct kfree_rcu_cpu *krcp; 2872 }; 2873 2874 /** 2875 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2876 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2877 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2878 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2879 * @lock: Synchronize access to this structure 2880 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2881 * @initialized: The @rcu_work fields have been initialized 2882 * @count: Number of objects for which GP not started 2883 * @bkvcache: 2884 * A simple cache list that contains objects for reuse purpose. 2885 * In order to save some per-cpu space the list is singular. 2886 * Even though it is lockless an access has to be protected by the 2887 * per-cpu lock. 2888 * @page_cache_work: A work to refill the cache when it is empty 2889 * @backoff_page_cache_fill: Delay cache refills 2890 * @work_in_progress: Indicates that page_cache_work is running 2891 * @hrtimer: A hrtimer for scheduling a page_cache_work 2892 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2893 * 2894 * This is a per-CPU structure. The reason that it is not included in 2895 * the rcu_data structure is to permit this code to be extracted from 2896 * the RCU files. Such extraction could allow further optimization of 2897 * the interactions with the slab allocators. 2898 */ 2899 struct kfree_rcu_cpu { 2900 struct rcu_head *head; 2901 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 2902 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2903 raw_spinlock_t lock; 2904 struct delayed_work monitor_work; 2905 bool initialized; 2906 int count; 2907 2908 struct delayed_work page_cache_work; 2909 atomic_t backoff_page_cache_fill; 2910 atomic_t work_in_progress; 2911 struct hrtimer hrtimer; 2912 2913 struct llist_head bkvcache; 2914 int nr_bkv_objs; 2915 }; 2916 2917 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2918 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2919 }; 2920 2921 static __always_inline void 2922 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2923 { 2924 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2925 int i; 2926 2927 for (i = 0; i < bhead->nr_records; i++) 2928 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2929 #endif 2930 } 2931 2932 static inline struct kfree_rcu_cpu * 2933 krc_this_cpu_lock(unsigned long *flags) 2934 { 2935 struct kfree_rcu_cpu *krcp; 2936 2937 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2938 krcp = this_cpu_ptr(&krc); 2939 raw_spin_lock(&krcp->lock); 2940 2941 return krcp; 2942 } 2943 2944 static inline void 2945 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2946 { 2947 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2948 } 2949 2950 static inline struct kvfree_rcu_bulk_data * 2951 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2952 { 2953 if (!krcp->nr_bkv_objs) 2954 return NULL; 2955 2956 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2957 return (struct kvfree_rcu_bulk_data *) 2958 llist_del_first(&krcp->bkvcache); 2959 } 2960 2961 static inline bool 2962 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2963 struct kvfree_rcu_bulk_data *bnode) 2964 { 2965 // Check the limit. 2966 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2967 return false; 2968 2969 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2970 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2971 return true; 2972 } 2973 2974 static int 2975 drain_page_cache(struct kfree_rcu_cpu *krcp) 2976 { 2977 unsigned long flags; 2978 struct llist_node *page_list, *pos, *n; 2979 int freed = 0; 2980 2981 raw_spin_lock_irqsave(&krcp->lock, flags); 2982 page_list = llist_del_all(&krcp->bkvcache); 2983 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2984 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2985 2986 llist_for_each_safe(pos, n, page_list) { 2987 free_page((unsigned long)pos); 2988 freed++; 2989 } 2990 2991 return freed; 2992 } 2993 2994 /* 2995 * This function is invoked in workqueue context after a grace period. 2996 * It frees all the objects queued on ->bkvhead_free or ->head_free. 2997 */ 2998 static void kfree_rcu_work(struct work_struct *work) 2999 { 3000 unsigned long flags; 3001 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3002 struct rcu_head *head, *next; 3003 struct kfree_rcu_cpu *krcp; 3004 struct kfree_rcu_cpu_work *krwp; 3005 int i, j; 3006 3007 krwp = container_of(to_rcu_work(work), 3008 struct kfree_rcu_cpu_work, rcu_work); 3009 krcp = krwp->krcp; 3010 3011 raw_spin_lock_irqsave(&krcp->lock, flags); 3012 // Channels 1 and 2. 3013 for (i = 0; i < FREE_N_CHANNELS; i++) { 3014 bkvhead[i] = krwp->bkvhead_free[i]; 3015 krwp->bkvhead_free[i] = NULL; 3016 } 3017 3018 // Channel 3. 3019 head = krwp->head_free; 3020 krwp->head_free = NULL; 3021 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3022 3023 // Handle the first two channels. 3024 for (i = 0; i < FREE_N_CHANNELS; i++) { 3025 for (; bkvhead[i]; bkvhead[i] = bnext) { 3026 bnext = bkvhead[i]->next; 3027 debug_rcu_bhead_unqueue(bkvhead[i]); 3028 3029 rcu_lock_acquire(&rcu_callback_map); 3030 if (i == 0) { // kmalloc() / kfree(). 3031 trace_rcu_invoke_kfree_bulk_callback( 3032 rcu_state.name, bkvhead[i]->nr_records, 3033 bkvhead[i]->records); 3034 3035 kfree_bulk(bkvhead[i]->nr_records, 3036 bkvhead[i]->records); 3037 } else { // vmalloc() / vfree(). 3038 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3039 trace_rcu_invoke_kvfree_callback( 3040 rcu_state.name, 3041 bkvhead[i]->records[j], 0); 3042 3043 vfree(bkvhead[i]->records[j]); 3044 } 3045 } 3046 rcu_lock_release(&rcu_callback_map); 3047 3048 raw_spin_lock_irqsave(&krcp->lock, flags); 3049 if (put_cached_bnode(krcp, bkvhead[i])) 3050 bkvhead[i] = NULL; 3051 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3052 3053 if (bkvhead[i]) 3054 free_page((unsigned long) bkvhead[i]); 3055 3056 cond_resched_tasks_rcu_qs(); 3057 } 3058 } 3059 3060 /* 3061 * This is used when the "bulk" path can not be used for the 3062 * double-argument of kvfree_rcu(). This happens when the 3063 * page-cache is empty, which means that objects are instead 3064 * queued on a linked list through their rcu_head structures. 3065 * This list is named "Channel 3". 3066 */ 3067 for (; head; head = next) { 3068 unsigned long offset = (unsigned long)head->func; 3069 void *ptr = (void *)head - offset; 3070 3071 next = head->next; 3072 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3073 rcu_lock_acquire(&rcu_callback_map); 3074 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3075 3076 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3077 kvfree(ptr); 3078 3079 rcu_lock_release(&rcu_callback_map); 3080 cond_resched_tasks_rcu_qs(); 3081 } 3082 } 3083 3084 static bool 3085 need_offload_krc(struct kfree_rcu_cpu *krcp) 3086 { 3087 int i; 3088 3089 for (i = 0; i < FREE_N_CHANNELS; i++) 3090 if (krcp->bkvhead[i]) 3091 return true; 3092 3093 return !!krcp->head; 3094 } 3095 3096 /* 3097 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3098 */ 3099 static void kfree_rcu_monitor(struct work_struct *work) 3100 { 3101 struct kfree_rcu_cpu *krcp = container_of(work, 3102 struct kfree_rcu_cpu, monitor_work.work); 3103 unsigned long flags; 3104 int i, j; 3105 3106 raw_spin_lock_irqsave(&krcp->lock, flags); 3107 3108 // Attempt to start a new batch. 3109 for (i = 0; i < KFREE_N_BATCHES; i++) { 3110 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3111 3112 // Try to detach bkvhead or head and attach it over any 3113 // available corresponding free channel. It can be that 3114 // a previous RCU batch is in progress, it means that 3115 // immediately to queue another one is not possible so 3116 // in that case the monitor work is rearmed. 3117 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3118 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3119 (krcp->head && !krwp->head_free)) { 3120 // Channel 1 corresponds to the SLAB-pointer bulk path. 3121 // Channel 2 corresponds to vmalloc-pointer bulk path. 3122 for (j = 0; j < FREE_N_CHANNELS; j++) { 3123 if (!krwp->bkvhead_free[j]) { 3124 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3125 krcp->bkvhead[j] = NULL; 3126 } 3127 } 3128 3129 // Channel 3 corresponds to both SLAB and vmalloc 3130 // objects queued on the linked list. 3131 if (!krwp->head_free) { 3132 krwp->head_free = krcp->head; 3133 krcp->head = NULL; 3134 } 3135 3136 WRITE_ONCE(krcp->count, 0); 3137 3138 // One work is per one batch, so there are three 3139 // "free channels", the batch can handle. It can 3140 // be that the work is in the pending state when 3141 // channels have been detached following by each 3142 // other. 3143 queue_rcu_work(system_wq, &krwp->rcu_work); 3144 } 3145 } 3146 3147 // If there is nothing to detach, it means that our job is 3148 // successfully done here. In case of having at least one 3149 // of the channels that is still busy we should rearm the 3150 // work to repeat an attempt. Because previous batches are 3151 // still in progress. 3152 if (need_offload_krc(krcp)) 3153 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3154 3155 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3156 } 3157 3158 static enum hrtimer_restart 3159 schedule_page_work_fn(struct hrtimer *t) 3160 { 3161 struct kfree_rcu_cpu *krcp = 3162 container_of(t, struct kfree_rcu_cpu, hrtimer); 3163 3164 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3165 return HRTIMER_NORESTART; 3166 } 3167 3168 static void fill_page_cache_func(struct work_struct *work) 3169 { 3170 struct kvfree_rcu_bulk_data *bnode; 3171 struct kfree_rcu_cpu *krcp = 3172 container_of(work, struct kfree_rcu_cpu, 3173 page_cache_work.work); 3174 unsigned long flags; 3175 int nr_pages; 3176 bool pushed; 3177 int i; 3178 3179 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3180 1 : rcu_min_cached_objs; 3181 3182 for (i = 0; i < nr_pages; i++) { 3183 bnode = (struct kvfree_rcu_bulk_data *) 3184 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3185 3186 if (bnode) { 3187 raw_spin_lock_irqsave(&krcp->lock, flags); 3188 pushed = put_cached_bnode(krcp, bnode); 3189 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3190 3191 if (!pushed) { 3192 free_page((unsigned long) bnode); 3193 break; 3194 } 3195 } 3196 } 3197 3198 atomic_set(&krcp->work_in_progress, 0); 3199 atomic_set(&krcp->backoff_page_cache_fill, 0); 3200 } 3201 3202 static void 3203 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3204 { 3205 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3206 !atomic_xchg(&krcp->work_in_progress, 1)) { 3207 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3208 queue_delayed_work(system_wq, 3209 &krcp->page_cache_work, 3210 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3211 } else { 3212 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3213 krcp->hrtimer.function = schedule_page_work_fn; 3214 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3215 } 3216 } 3217 } 3218 3219 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3220 // state specified by flags. If can_alloc is true, the caller must 3221 // be schedulable and not be holding any locks or mutexes that might be 3222 // acquired by the memory allocator or anything that it might invoke. 3223 // Returns true if ptr was successfully recorded, else the caller must 3224 // use a fallback. 3225 static inline bool 3226 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3227 unsigned long *flags, void *ptr, bool can_alloc) 3228 { 3229 struct kvfree_rcu_bulk_data *bnode; 3230 int idx; 3231 3232 *krcp = krc_this_cpu_lock(flags); 3233 if (unlikely(!(*krcp)->initialized)) 3234 return false; 3235 3236 idx = !!is_vmalloc_addr(ptr); 3237 3238 /* Check if a new block is required. */ 3239 if (!(*krcp)->bkvhead[idx] || 3240 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3241 bnode = get_cached_bnode(*krcp); 3242 if (!bnode && can_alloc) { 3243 krc_this_cpu_unlock(*krcp, *flags); 3244 3245 // __GFP_NORETRY - allows a light-weight direct reclaim 3246 // what is OK from minimizing of fallback hitting point of 3247 // view. Apart of that it forbids any OOM invoking what is 3248 // also beneficial since we are about to release memory soon. 3249 // 3250 // __GFP_NOMEMALLOC - prevents from consuming of all the 3251 // memory reserves. Please note we have a fallback path. 3252 // 3253 // __GFP_NOWARN - it is supposed that an allocation can 3254 // be failed under low memory or high memory pressure 3255 // scenarios. 3256 bnode = (struct kvfree_rcu_bulk_data *) 3257 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3258 *krcp = krc_this_cpu_lock(flags); 3259 } 3260 3261 if (!bnode) 3262 return false; 3263 3264 /* Initialize the new block. */ 3265 bnode->nr_records = 0; 3266 bnode->next = (*krcp)->bkvhead[idx]; 3267 3268 /* Attach it to the head. */ 3269 (*krcp)->bkvhead[idx] = bnode; 3270 } 3271 3272 /* Finally insert. */ 3273 (*krcp)->bkvhead[idx]->records 3274 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3275 3276 return true; 3277 } 3278 3279 /* 3280 * Queue a request for lazy invocation of the appropriate free routine 3281 * after a grace period. Please note that three paths are maintained, 3282 * two for the common case using arrays of pointers and a third one that 3283 * is used only when the main paths cannot be used, for example, due to 3284 * memory pressure. 3285 * 3286 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3287 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3288 * be free'd in workqueue context. This allows us to: batch requests together to 3289 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3290 */ 3291 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3292 { 3293 unsigned long flags; 3294 struct kfree_rcu_cpu *krcp; 3295 bool success; 3296 void *ptr; 3297 3298 if (head) { 3299 ptr = (void *) head - (unsigned long) func; 3300 } else { 3301 /* 3302 * Please note there is a limitation for the head-less 3303 * variant, that is why there is a clear rule for such 3304 * objects: it can be used from might_sleep() context 3305 * only. For other places please embed an rcu_head to 3306 * your data. 3307 */ 3308 might_sleep(); 3309 ptr = (unsigned long *) func; 3310 } 3311 3312 // Queue the object but don't yet schedule the batch. 3313 if (debug_rcu_head_queue(ptr)) { 3314 // Probable double kfree_rcu(), just leak. 3315 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3316 __func__, head); 3317 3318 // Mark as success and leave. 3319 return; 3320 } 3321 3322 kasan_record_aux_stack_noalloc(ptr); 3323 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3324 if (!success) { 3325 run_page_cache_worker(krcp); 3326 3327 if (head == NULL) 3328 // Inline if kvfree_rcu(one_arg) call. 3329 goto unlock_return; 3330 3331 head->func = func; 3332 head->next = krcp->head; 3333 krcp->head = head; 3334 success = true; 3335 } 3336 3337 WRITE_ONCE(krcp->count, krcp->count + 1); 3338 3339 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3340 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3341 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3342 3343 unlock_return: 3344 krc_this_cpu_unlock(krcp, flags); 3345 3346 /* 3347 * Inline kvfree() after synchronize_rcu(). We can do 3348 * it from might_sleep() context only, so the current 3349 * CPU can pass the QS state. 3350 */ 3351 if (!success) { 3352 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3353 synchronize_rcu(); 3354 kvfree(ptr); 3355 } 3356 } 3357 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3358 3359 static unsigned long 3360 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3361 { 3362 int cpu; 3363 unsigned long count = 0; 3364 3365 /* Snapshot count of all CPUs */ 3366 for_each_possible_cpu(cpu) { 3367 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3368 3369 count += READ_ONCE(krcp->count); 3370 count += READ_ONCE(krcp->nr_bkv_objs); 3371 atomic_set(&krcp->backoff_page_cache_fill, 1); 3372 } 3373 3374 return count; 3375 } 3376 3377 static unsigned long 3378 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3379 { 3380 int cpu, freed = 0; 3381 3382 for_each_possible_cpu(cpu) { 3383 int count; 3384 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3385 3386 count = krcp->count; 3387 count += drain_page_cache(krcp); 3388 kfree_rcu_monitor(&krcp->monitor_work.work); 3389 3390 sc->nr_to_scan -= count; 3391 freed += count; 3392 3393 if (sc->nr_to_scan <= 0) 3394 break; 3395 } 3396 3397 return freed == 0 ? SHRINK_STOP : freed; 3398 } 3399 3400 static struct shrinker kfree_rcu_shrinker = { 3401 .count_objects = kfree_rcu_shrink_count, 3402 .scan_objects = kfree_rcu_shrink_scan, 3403 .batch = 0, 3404 .seeks = DEFAULT_SEEKS, 3405 }; 3406 3407 void __init kfree_rcu_scheduler_running(void) 3408 { 3409 int cpu; 3410 unsigned long flags; 3411 3412 for_each_possible_cpu(cpu) { 3413 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3414 3415 raw_spin_lock_irqsave(&krcp->lock, flags); 3416 if (need_offload_krc(krcp)) 3417 schedule_delayed_work_on(cpu, &krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3418 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3419 } 3420 } 3421 3422 /* 3423 * During early boot, any blocking grace-period wait automatically 3424 * implies a grace period. Later on, this is never the case for PREEMPTION. 3425 * 3426 * However, because a context switch is a grace period for !PREEMPTION, any 3427 * blocking grace-period wait automatically implies a grace period if 3428 * there is only one CPU online at any point time during execution of 3429 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3430 * occasionally incorrectly indicate that there are multiple CPUs online 3431 * when there was in fact only one the whole time, as this just adds some 3432 * overhead: RCU still operates correctly. 3433 */ 3434 static int rcu_blocking_is_gp(void) 3435 { 3436 int ret; 3437 3438 // Invoking preempt_model_*() too early gets a splat. 3439 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE || 3440 preempt_model_full() || preempt_model_rt()) 3441 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3442 might_sleep(); /* Check for RCU read-side critical section. */ 3443 preempt_disable(); 3444 /* 3445 * If the rcu_state.n_online_cpus counter is equal to one, 3446 * there is only one CPU, and that CPU sees all prior accesses 3447 * made by any CPU that was online at the time of its access. 3448 * Furthermore, if this counter is equal to one, its value cannot 3449 * change until after the preempt_enable() below. 3450 * 3451 * Furthermore, if rcu_state.n_online_cpus is equal to one here, 3452 * all later CPUs (both this one and any that come online later 3453 * on) are guaranteed to see all accesses prior to this point 3454 * in the code, without the need for additional memory barriers. 3455 * Those memory barriers are provided by CPU-hotplug code. 3456 */ 3457 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; 3458 preempt_enable(); 3459 return ret; 3460 } 3461 3462 /** 3463 * synchronize_rcu - wait until a grace period has elapsed. 3464 * 3465 * Control will return to the caller some time after a full grace 3466 * period has elapsed, in other words after all currently executing RCU 3467 * read-side critical sections have completed. Note, however, that 3468 * upon return from synchronize_rcu(), the caller might well be executing 3469 * concurrently with new RCU read-side critical sections that began while 3470 * synchronize_rcu() was waiting. 3471 * 3472 * RCU read-side critical sections are delimited by rcu_read_lock() 3473 * and rcu_read_unlock(), and may be nested. In addition, but only in 3474 * v5.0 and later, regions of code across which interrupts, preemption, 3475 * or softirqs have been disabled also serve as RCU read-side critical 3476 * sections. This includes hardware interrupt handlers, softirq handlers, 3477 * and NMI handlers. 3478 * 3479 * Note that this guarantee implies further memory-ordering guarantees. 3480 * On systems with more than one CPU, when synchronize_rcu() returns, 3481 * each CPU is guaranteed to have executed a full memory barrier since 3482 * the end of its last RCU read-side critical section whose beginning 3483 * preceded the call to synchronize_rcu(). In addition, each CPU having 3484 * an RCU read-side critical section that extends beyond the return from 3485 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3486 * after the beginning of synchronize_rcu() and before the beginning of 3487 * that RCU read-side critical section. Note that these guarantees include 3488 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3489 * that are executing in the kernel. 3490 * 3491 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3492 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3493 * to have executed a full memory barrier during the execution of 3494 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3495 * again only if the system has more than one CPU). 3496 * 3497 * Implementation of these memory-ordering guarantees is described here: 3498 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3499 */ 3500 void synchronize_rcu(void) 3501 { 3502 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3503 lock_is_held(&rcu_lock_map) || 3504 lock_is_held(&rcu_sched_lock_map), 3505 "Illegal synchronize_rcu() in RCU read-side critical section"); 3506 if (rcu_blocking_is_gp()) { 3507 // Note well that this code runs with !PREEMPT && !SMP. 3508 // In addition, all code that advances grace periods runs at 3509 // process level. Therefore, this normal GP overlaps with 3510 // other normal GPs only by being fully nested within them, 3511 // which allows reuse of ->gp_seq_polled_snap. 3512 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3513 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3514 if (rcu_init_invoked()) 3515 cond_resched_tasks_rcu_qs(); 3516 return; // Context allows vacuous grace periods. 3517 } 3518 if (rcu_gp_is_expedited()) 3519 synchronize_rcu_expedited(); 3520 else 3521 wait_rcu_gp(call_rcu); 3522 } 3523 EXPORT_SYMBOL_GPL(synchronize_rcu); 3524 3525 /** 3526 * get_state_synchronize_rcu - Snapshot current RCU state 3527 * 3528 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3529 * or poll_state_synchronize_rcu() to determine whether or not a full 3530 * grace period has elapsed in the meantime. 3531 */ 3532 unsigned long get_state_synchronize_rcu(void) 3533 { 3534 /* 3535 * Any prior manipulation of RCU-protected data must happen 3536 * before the load from ->gp_seq. 3537 */ 3538 smp_mb(); /* ^^^ */ 3539 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3540 } 3541 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3542 3543 /** 3544 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3545 * 3546 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3547 * or poll_state_synchronize_rcu() to determine whether or not a full 3548 * grace period has elapsed in the meantime. If the needed grace period 3549 * is not already slated to start, notifies RCU core of the need for that 3550 * grace period. 3551 * 3552 * Interrupts must be enabled for the case where it is necessary to awaken 3553 * the grace-period kthread. 3554 */ 3555 unsigned long start_poll_synchronize_rcu(void) 3556 { 3557 unsigned long flags; 3558 unsigned long gp_seq = get_state_synchronize_rcu(); 3559 bool needwake; 3560 struct rcu_data *rdp; 3561 struct rcu_node *rnp; 3562 3563 lockdep_assert_irqs_enabled(); 3564 local_irq_save(flags); 3565 rdp = this_cpu_ptr(&rcu_data); 3566 rnp = rdp->mynode; 3567 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3568 // Note it is possible for a grace period to have elapsed between 3569 // the above call to get_state_synchronize_rcu() and the below call 3570 // to rcu_seq_snap. This is OK, the worst that happens is that we 3571 // get a grace period that no one needed. These accesses are ordered 3572 // by smp_mb(), and we are accessing them in the opposite order 3573 // from which they are updated at grace-period start, as required. 3574 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3575 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3576 if (needwake) 3577 rcu_gp_kthread_wake(); 3578 return gp_seq; 3579 } 3580 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3581 3582 /** 3583 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period 3584 * 3585 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3586 * 3587 * If a full RCU grace period has elapsed since the earlier call from 3588 * which oldstate was obtained, return @true, otherwise return @false. 3589 * If @false is returned, it is the caller's responsibility to invoke this 3590 * function later on until it does return @true. Alternatively, the caller 3591 * can explicitly wait for a grace period, for example, by passing @oldstate 3592 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3593 * 3594 * Yes, this function does not take counter wrap into account. 3595 * But counter wrap is harmless. If the counter wraps, we have waited for 3596 * more than a billion grace periods (and way more on a 64-bit system!). 3597 * Those needing to keep oldstate values for very long time periods 3598 * (many hours even on 32-bit systems) should check them occasionally 3599 * and either refresh them or set a flag indicating that the grace period 3600 * has completed. 3601 * 3602 * This function provides the same memory-ordering guarantees that 3603 * would be provided by a synchronize_rcu() that was invoked at the call 3604 * to the function that provided @oldstate, and that returned at the end 3605 * of this function. 3606 */ 3607 bool poll_state_synchronize_rcu(unsigned long oldstate) 3608 { 3609 if (oldstate == RCU_GET_STATE_COMPLETED || 3610 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3611 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3612 return true; 3613 } 3614 return false; 3615 } 3616 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3617 3618 /** 3619 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3620 * 3621 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3622 * 3623 * If a full RCU grace period has elapsed since the earlier call to 3624 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3625 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3626 * 3627 * Yes, this function does not take counter wrap into account. 3628 * But counter wrap is harmless. If the counter wraps, we have waited for 3629 * more than 2 billion grace periods (and way more on a 64-bit system!), 3630 * so waiting for a couple of additional grace periods should be just fine. 3631 * 3632 * This function provides the same memory-ordering guarantees that 3633 * would be provided by a synchronize_rcu() that was invoked at the call 3634 * to the function that provided @oldstate and that returned at the end 3635 * of this function. 3636 */ 3637 void cond_synchronize_rcu(unsigned long oldstate) 3638 { 3639 if (!poll_state_synchronize_rcu(oldstate)) 3640 synchronize_rcu(); 3641 } 3642 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3643 3644 /* 3645 * Check to see if there is any immediate RCU-related work to be done by 3646 * the current CPU, returning 1 if so and zero otherwise. The checks are 3647 * in order of increasing expense: checks that can be carried out against 3648 * CPU-local state are performed first. However, we must check for CPU 3649 * stalls first, else we might not get a chance. 3650 */ 3651 static int rcu_pending(int user) 3652 { 3653 bool gp_in_progress; 3654 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3655 struct rcu_node *rnp = rdp->mynode; 3656 3657 lockdep_assert_irqs_disabled(); 3658 3659 /* Check for CPU stalls, if enabled. */ 3660 check_cpu_stall(rdp); 3661 3662 /* Does this CPU need a deferred NOCB wakeup? */ 3663 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3664 return 1; 3665 3666 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3667 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3668 return 0; 3669 3670 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3671 gp_in_progress = rcu_gp_in_progress(); 3672 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3673 return 1; 3674 3675 /* Does this CPU have callbacks ready to invoke? */ 3676 if (!rcu_rdp_is_offloaded(rdp) && 3677 rcu_segcblist_ready_cbs(&rdp->cblist)) 3678 return 1; 3679 3680 /* Has RCU gone idle with this CPU needing another grace period? */ 3681 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3682 !rcu_rdp_is_offloaded(rdp) && 3683 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3684 return 1; 3685 3686 /* Have RCU grace period completed or started? */ 3687 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3688 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3689 return 1; 3690 3691 /* nothing to do */ 3692 return 0; 3693 } 3694 3695 /* 3696 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3697 * the compiler is expected to optimize this away. 3698 */ 3699 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3700 { 3701 trace_rcu_barrier(rcu_state.name, s, cpu, 3702 atomic_read(&rcu_state.barrier_cpu_count), done); 3703 } 3704 3705 /* 3706 * RCU callback function for rcu_barrier(). If we are last, wake 3707 * up the task executing rcu_barrier(). 3708 * 3709 * Note that the value of rcu_state.barrier_sequence must be captured 3710 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3711 * other CPUs might count the value down to zero before this CPU gets 3712 * around to invoking rcu_barrier_trace(), which might result in bogus 3713 * data from the next instance of rcu_barrier(). 3714 */ 3715 static void rcu_barrier_callback(struct rcu_head *rhp) 3716 { 3717 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3718 3719 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3720 rcu_barrier_trace(TPS("LastCB"), -1, s); 3721 complete(&rcu_state.barrier_completion); 3722 } else { 3723 rcu_barrier_trace(TPS("CB"), -1, s); 3724 } 3725 } 3726 3727 /* 3728 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3729 */ 3730 static void rcu_barrier_entrain(struct rcu_data *rdp) 3731 { 3732 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3733 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3734 3735 lockdep_assert_held(&rcu_state.barrier_lock); 3736 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3737 return; 3738 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3739 rdp->barrier_head.func = rcu_barrier_callback; 3740 debug_rcu_head_queue(&rdp->barrier_head); 3741 rcu_nocb_lock(rdp); 3742 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3743 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3744 atomic_inc(&rcu_state.barrier_cpu_count); 3745 } else { 3746 debug_rcu_head_unqueue(&rdp->barrier_head); 3747 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3748 } 3749 rcu_nocb_unlock(rdp); 3750 smp_store_release(&rdp->barrier_seq_snap, gseq); 3751 } 3752 3753 /* 3754 * Called with preemption disabled, and from cross-cpu IRQ context. 3755 */ 3756 static void rcu_barrier_handler(void *cpu_in) 3757 { 3758 uintptr_t cpu = (uintptr_t)cpu_in; 3759 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3760 3761 lockdep_assert_irqs_disabled(); 3762 WARN_ON_ONCE(cpu != rdp->cpu); 3763 WARN_ON_ONCE(cpu != smp_processor_id()); 3764 raw_spin_lock(&rcu_state.barrier_lock); 3765 rcu_barrier_entrain(rdp); 3766 raw_spin_unlock(&rcu_state.barrier_lock); 3767 } 3768 3769 /** 3770 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3771 * 3772 * Note that this primitive does not necessarily wait for an RCU grace period 3773 * to complete. For example, if there are no RCU callbacks queued anywhere 3774 * in the system, then rcu_barrier() is within its rights to return 3775 * immediately, without waiting for anything, much less an RCU grace period. 3776 */ 3777 void rcu_barrier(void) 3778 { 3779 uintptr_t cpu; 3780 unsigned long flags; 3781 unsigned long gseq; 3782 struct rcu_data *rdp; 3783 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3784 3785 rcu_barrier_trace(TPS("Begin"), -1, s); 3786 3787 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3788 mutex_lock(&rcu_state.barrier_mutex); 3789 3790 /* Did someone else do our work for us? */ 3791 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3792 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 3793 smp_mb(); /* caller's subsequent code after above check. */ 3794 mutex_unlock(&rcu_state.barrier_mutex); 3795 return; 3796 } 3797 3798 /* Mark the start of the barrier operation. */ 3799 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3800 rcu_seq_start(&rcu_state.barrier_sequence); 3801 gseq = rcu_state.barrier_sequence; 3802 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3803 3804 /* 3805 * Initialize the count to two rather than to zero in order 3806 * to avoid a too-soon return to zero in case of an immediate 3807 * invocation of the just-enqueued callback (or preemption of 3808 * this task). Exclude CPU-hotplug operations to ensure that no 3809 * offline non-offloaded CPU has callbacks queued. 3810 */ 3811 init_completion(&rcu_state.barrier_completion); 3812 atomic_set(&rcu_state.barrier_cpu_count, 2); 3813 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3814 3815 /* 3816 * Force each CPU with callbacks to register a new callback. 3817 * When that callback is invoked, we will know that all of the 3818 * corresponding CPU's preceding callbacks have been invoked. 3819 */ 3820 for_each_possible_cpu(cpu) { 3821 rdp = per_cpu_ptr(&rcu_data, cpu); 3822 retry: 3823 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 3824 continue; 3825 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3826 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 3827 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3828 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3829 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 3830 continue; 3831 } 3832 if (!rcu_rdp_cpu_online(rdp)) { 3833 rcu_barrier_entrain(rdp); 3834 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3835 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3836 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 3837 continue; 3838 } 3839 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3840 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 3841 schedule_timeout_uninterruptible(1); 3842 goto retry; 3843 } 3844 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3845 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 3846 } 3847 3848 /* 3849 * Now that we have an rcu_barrier_callback() callback on each 3850 * CPU, and thus each counted, remove the initial count. 3851 */ 3852 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 3853 complete(&rcu_state.barrier_completion); 3854 3855 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3856 wait_for_completion(&rcu_state.barrier_completion); 3857 3858 /* Mark the end of the barrier operation. */ 3859 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3860 rcu_seq_end(&rcu_state.barrier_sequence); 3861 gseq = rcu_state.barrier_sequence; 3862 for_each_possible_cpu(cpu) { 3863 rdp = per_cpu_ptr(&rcu_data, cpu); 3864 3865 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3866 } 3867 3868 /* Other rcu_barrier() invocations can now safely proceed. */ 3869 mutex_unlock(&rcu_state.barrier_mutex); 3870 } 3871 EXPORT_SYMBOL_GPL(rcu_barrier); 3872 3873 /* 3874 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3875 * first CPU in a given leaf rcu_node structure coming online. The caller 3876 * must hold the corresponding leaf rcu_node ->lock with interrupts 3877 * disabled. 3878 */ 3879 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3880 { 3881 long mask; 3882 long oldmask; 3883 struct rcu_node *rnp = rnp_leaf; 3884 3885 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3886 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3887 for (;;) { 3888 mask = rnp->grpmask; 3889 rnp = rnp->parent; 3890 if (rnp == NULL) 3891 return; 3892 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3893 oldmask = rnp->qsmaskinit; 3894 rnp->qsmaskinit |= mask; 3895 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3896 if (oldmask) 3897 return; 3898 } 3899 } 3900 3901 /* 3902 * Do boot-time initialization of a CPU's per-CPU RCU data. 3903 */ 3904 static void __init 3905 rcu_boot_init_percpu_data(int cpu) 3906 { 3907 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 3908 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3909 3910 /* Set up local state, ensuring consistent view of global state. */ 3911 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3912 INIT_WORK(&rdp->strict_work, strict_work_handler); 3913 WARN_ON_ONCE(ct->dynticks_nesting != 1); 3914 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 3915 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 3916 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3917 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3918 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3919 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3920 rdp->last_sched_clock = jiffies; 3921 rdp->cpu = cpu; 3922 rcu_boot_init_nocb_percpu_data(rdp); 3923 } 3924 3925 /* 3926 * Invoked early in the CPU-online process, when pretty much all services 3927 * are available. The incoming CPU is not present. 3928 * 3929 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3930 * offline event can be happening at a given time. Note also that we can 3931 * accept some slop in the rsp->gp_seq access due to the fact that this 3932 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 3933 * And any offloaded callbacks are being numbered elsewhere. 3934 */ 3935 int rcutree_prepare_cpu(unsigned int cpu) 3936 { 3937 unsigned long flags; 3938 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 3939 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3940 struct rcu_node *rnp = rcu_get_root(); 3941 3942 /* Set up local state, ensuring consistent view of global state. */ 3943 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3944 rdp->qlen_last_fqs_check = 0; 3945 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 3946 rdp->blimit = blimit; 3947 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3948 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3949 3950 /* 3951 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 3952 * (re-)initialized. 3953 */ 3954 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 3955 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3956 3957 /* 3958 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3959 * propagation up the rcu_node tree will happen at the beginning 3960 * of the next grace period. 3961 */ 3962 rnp = rdp->mynode; 3963 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3964 rdp->beenonline = true; /* We have now been online. */ 3965 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 3966 rdp->gp_seq_needed = rdp->gp_seq; 3967 rdp->cpu_no_qs.b.norm = true; 3968 rdp->core_needs_qs = false; 3969 rdp->rcu_iw_pending = false; 3970 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 3971 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 3972 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3973 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3974 rcu_spawn_one_boost_kthread(rnp); 3975 rcu_spawn_cpu_nocb_kthread(cpu); 3976 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 3977 3978 return 0; 3979 } 3980 3981 /* 3982 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3983 */ 3984 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3985 { 3986 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3987 3988 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3989 } 3990 3991 /* 3992 * Near the end of the CPU-online process. Pretty much all services 3993 * enabled, and the CPU is now very much alive. 3994 */ 3995 int rcutree_online_cpu(unsigned int cpu) 3996 { 3997 unsigned long flags; 3998 struct rcu_data *rdp; 3999 struct rcu_node *rnp; 4000 4001 rdp = per_cpu_ptr(&rcu_data, cpu); 4002 rnp = rdp->mynode; 4003 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4004 rnp->ffmask |= rdp->grpmask; 4005 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4006 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4007 return 0; /* Too early in boot for scheduler work. */ 4008 sync_sched_exp_online_cleanup(cpu); 4009 rcutree_affinity_setting(cpu, -1); 4010 4011 // Stop-machine done, so allow nohz_full to disable tick. 4012 tick_dep_clear(TICK_DEP_BIT_RCU); 4013 return 0; 4014 } 4015 4016 /* 4017 * Near the beginning of the process. The CPU is still very much alive 4018 * with pretty much all services enabled. 4019 */ 4020 int rcutree_offline_cpu(unsigned int cpu) 4021 { 4022 unsigned long flags; 4023 struct rcu_data *rdp; 4024 struct rcu_node *rnp; 4025 4026 rdp = per_cpu_ptr(&rcu_data, cpu); 4027 rnp = rdp->mynode; 4028 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4029 rnp->ffmask &= ~rdp->grpmask; 4030 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4031 4032 rcutree_affinity_setting(cpu, cpu); 4033 4034 // nohz_full CPUs need the tick for stop-machine to work quickly 4035 tick_dep_set(TICK_DEP_BIT_RCU); 4036 return 0; 4037 } 4038 4039 /* 4040 * Mark the specified CPU as being online so that subsequent grace periods 4041 * (both expedited and normal) will wait on it. Note that this means that 4042 * incoming CPUs are not allowed to use RCU read-side critical sections 4043 * until this function is called. Failing to observe this restriction 4044 * will result in lockdep splats. 4045 * 4046 * Note that this function is special in that it is invoked directly 4047 * from the incoming CPU rather than from the cpuhp_step mechanism. 4048 * This is because this function must be invoked at a precise location. 4049 */ 4050 void rcu_cpu_starting(unsigned int cpu) 4051 { 4052 unsigned long flags; 4053 unsigned long mask; 4054 struct rcu_data *rdp; 4055 struct rcu_node *rnp; 4056 bool newcpu; 4057 4058 rdp = per_cpu_ptr(&rcu_data, cpu); 4059 if (rdp->cpu_started) 4060 return; 4061 rdp->cpu_started = true; 4062 4063 rnp = rdp->mynode; 4064 mask = rdp->grpmask; 4065 local_irq_save(flags); 4066 arch_spin_lock(&rcu_state.ofl_lock); 4067 rcu_dynticks_eqs_online(); 4068 raw_spin_lock(&rcu_state.barrier_lock); 4069 raw_spin_lock_rcu_node(rnp); 4070 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4071 raw_spin_unlock(&rcu_state.barrier_lock); 4072 newcpu = !(rnp->expmaskinitnext & mask); 4073 rnp->expmaskinitnext |= mask; 4074 /* Allow lockless access for expedited grace periods. */ 4075 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4076 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4077 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4078 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4079 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4080 4081 /* An incoming CPU should never be blocking a grace period. */ 4082 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4083 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4084 unsigned long flags2; 4085 4086 local_irq_save(flags2); 4087 rcu_disable_urgency_upon_qs(rdp); 4088 /* Report QS -after- changing ->qsmaskinitnext! */ 4089 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2); 4090 } else { 4091 raw_spin_unlock_rcu_node(rnp); 4092 } 4093 arch_spin_unlock(&rcu_state.ofl_lock); 4094 local_irq_restore(flags); 4095 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4096 } 4097 4098 /* 4099 * The outgoing function has no further need of RCU, so remove it from 4100 * the rcu_node tree's ->qsmaskinitnext bit masks. 4101 * 4102 * Note that this function is special in that it is invoked directly 4103 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4104 * This is because this function must be invoked at a precise location. 4105 */ 4106 void rcu_report_dead(unsigned int cpu) 4107 { 4108 unsigned long flags, seq_flags; 4109 unsigned long mask; 4110 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4111 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4112 4113 // Do any dangling deferred wakeups. 4114 do_nocb_deferred_wakeup(rdp); 4115 4116 /* QS for any half-done expedited grace period. */ 4117 rcu_report_exp_rdp(rdp); 4118 rcu_preempt_deferred_qs(current); 4119 4120 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4121 mask = rdp->grpmask; 4122 local_irq_save(seq_flags); 4123 arch_spin_lock(&rcu_state.ofl_lock); 4124 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4125 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4126 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4127 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4128 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4129 rcu_disable_urgency_upon_qs(rdp); 4130 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4131 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4132 } 4133 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4134 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4135 arch_spin_unlock(&rcu_state.ofl_lock); 4136 local_irq_restore(seq_flags); 4137 4138 rdp->cpu_started = false; 4139 } 4140 4141 #ifdef CONFIG_HOTPLUG_CPU 4142 /* 4143 * The outgoing CPU has just passed through the dying-idle state, and we 4144 * are being invoked from the CPU that was IPIed to continue the offline 4145 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4146 */ 4147 void rcutree_migrate_callbacks(int cpu) 4148 { 4149 unsigned long flags; 4150 struct rcu_data *my_rdp; 4151 struct rcu_node *my_rnp; 4152 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4153 bool needwake; 4154 4155 if (rcu_rdp_is_offloaded(rdp) || 4156 rcu_segcblist_empty(&rdp->cblist)) 4157 return; /* No callbacks to migrate. */ 4158 4159 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4160 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4161 rcu_barrier_entrain(rdp); 4162 my_rdp = this_cpu_ptr(&rcu_data); 4163 my_rnp = my_rdp->mynode; 4164 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4165 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4166 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4167 /* Leverage recent GPs and set GP for new callbacks. */ 4168 needwake = rcu_advance_cbs(my_rnp, rdp) || 4169 rcu_advance_cbs(my_rnp, my_rdp); 4170 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4171 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4172 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4173 rcu_segcblist_disable(&rdp->cblist); 4174 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4175 check_cb_ovld_locked(my_rdp, my_rnp); 4176 if (rcu_rdp_is_offloaded(my_rdp)) { 4177 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4178 __call_rcu_nocb_wake(my_rdp, true, flags); 4179 } else { 4180 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4181 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4182 } 4183 if (needwake) 4184 rcu_gp_kthread_wake(); 4185 lockdep_assert_irqs_enabled(); 4186 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4187 !rcu_segcblist_empty(&rdp->cblist), 4188 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4189 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4190 rcu_segcblist_first_cb(&rdp->cblist)); 4191 } 4192 #endif 4193 4194 /* 4195 * On non-huge systems, use expedited RCU grace periods to make suspend 4196 * and hibernation run faster. 4197 */ 4198 static int rcu_pm_notify(struct notifier_block *self, 4199 unsigned long action, void *hcpu) 4200 { 4201 switch (action) { 4202 case PM_HIBERNATION_PREPARE: 4203 case PM_SUSPEND_PREPARE: 4204 rcu_expedite_gp(); 4205 break; 4206 case PM_POST_HIBERNATION: 4207 case PM_POST_SUSPEND: 4208 rcu_unexpedite_gp(); 4209 break; 4210 default: 4211 break; 4212 } 4213 return NOTIFY_OK; 4214 } 4215 4216 #ifdef CONFIG_RCU_EXP_KTHREAD 4217 struct kthread_worker *rcu_exp_gp_kworker; 4218 struct kthread_worker *rcu_exp_par_gp_kworker; 4219 4220 static void __init rcu_start_exp_gp_kworkers(void) 4221 { 4222 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4223 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4224 struct sched_param param = { .sched_priority = kthread_prio }; 4225 4226 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4227 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4228 pr_err("Failed to create %s!\n", gp_kworker_name); 4229 return; 4230 } 4231 4232 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4233 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4234 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4235 kthread_destroy_worker(rcu_exp_gp_kworker); 4236 return; 4237 } 4238 4239 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4240 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4241 ¶m); 4242 } 4243 4244 static inline void rcu_alloc_par_gp_wq(void) 4245 { 4246 } 4247 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4248 struct workqueue_struct *rcu_par_gp_wq; 4249 4250 static void __init rcu_start_exp_gp_kworkers(void) 4251 { 4252 } 4253 4254 static inline void rcu_alloc_par_gp_wq(void) 4255 { 4256 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4257 WARN_ON(!rcu_par_gp_wq); 4258 } 4259 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4260 4261 /* 4262 * Spawn the kthreads that handle RCU's grace periods. 4263 */ 4264 static int __init rcu_spawn_gp_kthread(void) 4265 { 4266 unsigned long flags; 4267 struct rcu_node *rnp; 4268 struct sched_param sp; 4269 struct task_struct *t; 4270 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4271 4272 rcu_scheduler_fully_active = 1; 4273 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4274 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4275 return 0; 4276 if (kthread_prio) { 4277 sp.sched_priority = kthread_prio; 4278 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4279 } 4280 rnp = rcu_get_root(); 4281 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4282 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4283 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4284 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4285 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4286 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4287 wake_up_process(t); 4288 /* This is a pre-SMP initcall, we expect a single CPU */ 4289 WARN_ON(num_online_cpus() > 1); 4290 /* 4291 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4292 * due to rcu_scheduler_fully_active. 4293 */ 4294 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4295 rcu_spawn_one_boost_kthread(rdp->mynode); 4296 rcu_spawn_core_kthreads(); 4297 /* Create kthread worker for expedited GPs */ 4298 rcu_start_exp_gp_kworkers(); 4299 return 0; 4300 } 4301 early_initcall(rcu_spawn_gp_kthread); 4302 4303 /* 4304 * This function is invoked towards the end of the scheduler's 4305 * initialization process. Before this is called, the idle task might 4306 * contain synchronous grace-period primitives (during which time, this idle 4307 * task is booting the system, and such primitives are no-ops). After this 4308 * function is called, any synchronous grace-period primitives are run as 4309 * expedited, with the requesting task driving the grace period forward. 4310 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4311 * runtime RCU functionality. 4312 */ 4313 void rcu_scheduler_starting(void) 4314 { 4315 WARN_ON(num_online_cpus() != 1); 4316 WARN_ON(nr_context_switches() > 0); 4317 rcu_test_sync_prims(); 4318 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4319 rcu_test_sync_prims(); 4320 } 4321 4322 /* 4323 * Helper function for rcu_init() that initializes the rcu_state structure. 4324 */ 4325 static void __init rcu_init_one(void) 4326 { 4327 static const char * const buf[] = RCU_NODE_NAME_INIT; 4328 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4329 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4330 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4331 4332 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4333 int cpustride = 1; 4334 int i; 4335 int j; 4336 struct rcu_node *rnp; 4337 4338 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4339 4340 /* Silence gcc 4.8 false positive about array index out of range. */ 4341 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4342 panic("rcu_init_one: rcu_num_lvls out of range"); 4343 4344 /* Initialize the level-tracking arrays. */ 4345 4346 for (i = 1; i < rcu_num_lvls; i++) 4347 rcu_state.level[i] = 4348 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4349 rcu_init_levelspread(levelspread, num_rcu_lvl); 4350 4351 /* Initialize the elements themselves, starting from the leaves. */ 4352 4353 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4354 cpustride *= levelspread[i]; 4355 rnp = rcu_state.level[i]; 4356 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4357 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4358 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4359 &rcu_node_class[i], buf[i]); 4360 raw_spin_lock_init(&rnp->fqslock); 4361 lockdep_set_class_and_name(&rnp->fqslock, 4362 &rcu_fqs_class[i], fqs[i]); 4363 rnp->gp_seq = rcu_state.gp_seq; 4364 rnp->gp_seq_needed = rcu_state.gp_seq; 4365 rnp->completedqs = rcu_state.gp_seq; 4366 rnp->qsmask = 0; 4367 rnp->qsmaskinit = 0; 4368 rnp->grplo = j * cpustride; 4369 rnp->grphi = (j + 1) * cpustride - 1; 4370 if (rnp->grphi >= nr_cpu_ids) 4371 rnp->grphi = nr_cpu_ids - 1; 4372 if (i == 0) { 4373 rnp->grpnum = 0; 4374 rnp->grpmask = 0; 4375 rnp->parent = NULL; 4376 } else { 4377 rnp->grpnum = j % levelspread[i - 1]; 4378 rnp->grpmask = BIT(rnp->grpnum); 4379 rnp->parent = rcu_state.level[i - 1] + 4380 j / levelspread[i - 1]; 4381 } 4382 rnp->level = i; 4383 INIT_LIST_HEAD(&rnp->blkd_tasks); 4384 rcu_init_one_nocb(rnp); 4385 init_waitqueue_head(&rnp->exp_wq[0]); 4386 init_waitqueue_head(&rnp->exp_wq[1]); 4387 init_waitqueue_head(&rnp->exp_wq[2]); 4388 init_waitqueue_head(&rnp->exp_wq[3]); 4389 spin_lock_init(&rnp->exp_lock); 4390 mutex_init(&rnp->boost_kthread_mutex); 4391 raw_spin_lock_init(&rnp->exp_poll_lock); 4392 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4393 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4394 } 4395 } 4396 4397 init_swait_queue_head(&rcu_state.gp_wq); 4398 init_swait_queue_head(&rcu_state.expedited_wq); 4399 rnp = rcu_first_leaf_node(); 4400 for_each_possible_cpu(i) { 4401 while (i > rnp->grphi) 4402 rnp++; 4403 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4404 rcu_boot_init_percpu_data(i); 4405 } 4406 } 4407 4408 /* 4409 * Force priority from the kernel command-line into range. 4410 */ 4411 static void __init sanitize_kthread_prio(void) 4412 { 4413 int kthread_prio_in = kthread_prio; 4414 4415 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4416 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4417 kthread_prio = 2; 4418 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4419 kthread_prio = 1; 4420 else if (kthread_prio < 0) 4421 kthread_prio = 0; 4422 else if (kthread_prio > 99) 4423 kthread_prio = 99; 4424 4425 if (kthread_prio != kthread_prio_in) 4426 pr_alert("%s: Limited prio to %d from %d\n", 4427 __func__, kthread_prio, kthread_prio_in); 4428 } 4429 4430 /* 4431 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4432 * replace the definitions in tree.h because those are needed to size 4433 * the ->node array in the rcu_state structure. 4434 */ 4435 void rcu_init_geometry(void) 4436 { 4437 ulong d; 4438 int i; 4439 static unsigned long old_nr_cpu_ids; 4440 int rcu_capacity[RCU_NUM_LVLS]; 4441 static bool initialized; 4442 4443 if (initialized) { 4444 /* 4445 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4446 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4447 */ 4448 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4449 return; 4450 } 4451 4452 old_nr_cpu_ids = nr_cpu_ids; 4453 initialized = true; 4454 4455 /* 4456 * Initialize any unspecified boot parameters. 4457 * The default values of jiffies_till_first_fqs and 4458 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4459 * value, which is a function of HZ, then adding one for each 4460 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4461 */ 4462 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4463 if (jiffies_till_first_fqs == ULONG_MAX) 4464 jiffies_till_first_fqs = d; 4465 if (jiffies_till_next_fqs == ULONG_MAX) 4466 jiffies_till_next_fqs = d; 4467 adjust_jiffies_till_sched_qs(); 4468 4469 /* If the compile-time values are accurate, just leave. */ 4470 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4471 nr_cpu_ids == NR_CPUS) 4472 return; 4473 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4474 rcu_fanout_leaf, nr_cpu_ids); 4475 4476 /* 4477 * The boot-time rcu_fanout_leaf parameter must be at least two 4478 * and cannot exceed the number of bits in the rcu_node masks. 4479 * Complain and fall back to the compile-time values if this 4480 * limit is exceeded. 4481 */ 4482 if (rcu_fanout_leaf < 2 || 4483 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4484 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4485 WARN_ON(1); 4486 return; 4487 } 4488 4489 /* 4490 * Compute number of nodes that can be handled an rcu_node tree 4491 * with the given number of levels. 4492 */ 4493 rcu_capacity[0] = rcu_fanout_leaf; 4494 for (i = 1; i < RCU_NUM_LVLS; i++) 4495 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4496 4497 /* 4498 * The tree must be able to accommodate the configured number of CPUs. 4499 * If this limit is exceeded, fall back to the compile-time values. 4500 */ 4501 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4502 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4503 WARN_ON(1); 4504 return; 4505 } 4506 4507 /* Calculate the number of levels in the tree. */ 4508 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4509 } 4510 rcu_num_lvls = i + 1; 4511 4512 /* Calculate the number of rcu_nodes at each level of the tree. */ 4513 for (i = 0; i < rcu_num_lvls; i++) { 4514 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4515 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4516 } 4517 4518 /* Calculate the total number of rcu_node structures. */ 4519 rcu_num_nodes = 0; 4520 for (i = 0; i < rcu_num_lvls; i++) 4521 rcu_num_nodes += num_rcu_lvl[i]; 4522 } 4523 4524 /* 4525 * Dump out the structure of the rcu_node combining tree associated 4526 * with the rcu_state structure. 4527 */ 4528 static void __init rcu_dump_rcu_node_tree(void) 4529 { 4530 int level = 0; 4531 struct rcu_node *rnp; 4532 4533 pr_info("rcu_node tree layout dump\n"); 4534 pr_info(" "); 4535 rcu_for_each_node_breadth_first(rnp) { 4536 if (rnp->level != level) { 4537 pr_cont("\n"); 4538 pr_info(" "); 4539 level = rnp->level; 4540 } 4541 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4542 } 4543 pr_cont("\n"); 4544 } 4545 4546 struct workqueue_struct *rcu_gp_wq; 4547 4548 static void __init kfree_rcu_batch_init(void) 4549 { 4550 int cpu; 4551 int i; 4552 4553 /* Clamp it to [0:100] seconds interval. */ 4554 if (rcu_delay_page_cache_fill_msec < 0 || 4555 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4556 4557 rcu_delay_page_cache_fill_msec = 4558 clamp(rcu_delay_page_cache_fill_msec, 0, 4559 (int) (100 * MSEC_PER_SEC)); 4560 4561 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4562 rcu_delay_page_cache_fill_msec); 4563 } 4564 4565 for_each_possible_cpu(cpu) { 4566 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4567 4568 for (i = 0; i < KFREE_N_BATCHES; i++) { 4569 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4570 krcp->krw_arr[i].krcp = krcp; 4571 } 4572 4573 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4574 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4575 krcp->initialized = true; 4576 } 4577 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4578 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4579 } 4580 4581 void __init rcu_init(void) 4582 { 4583 int cpu = smp_processor_id(); 4584 4585 rcu_early_boot_tests(); 4586 4587 kfree_rcu_batch_init(); 4588 rcu_bootup_announce(); 4589 sanitize_kthread_prio(); 4590 rcu_init_geometry(); 4591 rcu_init_one(); 4592 if (dump_tree) 4593 rcu_dump_rcu_node_tree(); 4594 if (use_softirq) 4595 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4596 4597 /* 4598 * We don't need protection against CPU-hotplug here because 4599 * this is called early in boot, before either interrupts 4600 * or the scheduler are operational. 4601 */ 4602 pm_notifier(rcu_pm_notify, 0); 4603 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4604 rcutree_prepare_cpu(cpu); 4605 rcu_cpu_starting(cpu); 4606 rcutree_online_cpu(cpu); 4607 4608 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4609 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4610 WARN_ON(!rcu_gp_wq); 4611 rcu_alloc_par_gp_wq(); 4612 4613 /* Fill in default value for rcutree.qovld boot parameter. */ 4614 /* -After- the rcu_node ->lock fields are initialized! */ 4615 if (qovld < 0) 4616 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4617 else 4618 qovld_calc = qovld; 4619 4620 // Kick-start any polled grace periods that started early. 4621 if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1)) 4622 (void)start_poll_synchronize_rcu_expedited(); 4623 } 4624 4625 #include "tree_stall.h" 4626 #include "tree_exp.h" 4627 #include "tree_nocb.h" 4628 #include "tree_plugin.h" 4629