xref: /linux/kernel/rcu/tree.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68 
69 #include "tree.h"
70 #include "rcu.h"
71 
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76 
77 /* Data structures. */
78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
79 
80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
81 	.gpwrap = true,
82 };
83 static struct rcu_state rcu_state = {
84 	.level = { &rcu_state.node[0] },
85 	.gp_state = RCU_GP_IDLE,
86 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
87 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
88 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
89 	.name = RCU_NAME,
90 	.abbr = RCU_ABBR,
91 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
92 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
93 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
94 	.srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
95 		rcu_sr_normal_gp_cleanup_work),
96 	.srs_cleanups_pending = ATOMIC_INIT(0),
97 #ifdef CONFIG_RCU_NOCB_CPU
98 	.nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex),
99 #endif
100 };
101 
102 /* Dump rcu_node combining tree at boot to verify correct setup. */
103 static bool dump_tree;
104 module_param(dump_tree, bool, 0444);
105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
107 #ifndef CONFIG_PREEMPT_RT
108 module_param(use_softirq, bool, 0444);
109 #endif
110 /* Control rcu_node-tree auto-balancing at boot time. */
111 static bool rcu_fanout_exact;
112 module_param(rcu_fanout_exact, bool, 0444);
113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
115 module_param(rcu_fanout_leaf, int, 0444);
116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
117 /* Number of rcu_nodes at specified level. */
118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120 
121 /*
122  * The rcu_scheduler_active variable is initialized to the value
123  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
124  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
125  * RCU can assume that there is but one task, allowing RCU to (for example)
126  * optimize synchronize_rcu() to a simple barrier().  When this variable
127  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
128  * to detect real grace periods.  This variable is also used to suppress
129  * boot-time false positives from lockdep-RCU error checking.  Finally, it
130  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
131  * is fully initialized, including all of its kthreads having been spawned.
132  */
133 int rcu_scheduler_active __read_mostly;
134 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
135 
136 /*
137  * The rcu_scheduler_fully_active variable transitions from zero to one
138  * during the early_initcall() processing, which is after the scheduler
139  * is capable of creating new tasks.  So RCU processing (for example,
140  * creating tasks for RCU priority boosting) must be delayed until after
141  * rcu_scheduler_fully_active transitions from zero to one.  We also
142  * currently delay invocation of any RCU callbacks until after this point.
143  *
144  * It might later prove better for people registering RCU callbacks during
145  * early boot to take responsibility for these callbacks, but one step at
146  * a time.
147  */
148 static int rcu_scheduler_fully_active __read_mostly;
149 
150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
151 			      unsigned long gps, unsigned long flags);
152 static void invoke_rcu_core(void);
153 static void rcu_report_exp_rdp(struct rcu_data *rdp);
154 static void sync_sched_exp_online_cleanup(int cpu);
155 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
156 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
157 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
158 static bool rcu_init_invoked(void);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161 
162 /*
163  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
164  * real-time priority(enabling/disabling) is controlled by
165  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
166  */
167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
168 module_param(kthread_prio, int, 0444);
169 
170 /* Delay in jiffies for grace-period initialization delays, debug only. */
171 
172 static int gp_preinit_delay;
173 module_param(gp_preinit_delay, int, 0444);
174 static int gp_init_delay;
175 module_param(gp_init_delay, int, 0444);
176 static int gp_cleanup_delay;
177 module_param(gp_cleanup_delay, int, 0444);
178 static int nohz_full_patience_delay;
179 module_param(nohz_full_patience_delay, int, 0444);
180 static int nohz_full_patience_delay_jiffies;
181 
182 // Add delay to rcu_read_unlock() for strict grace periods.
183 static int rcu_unlock_delay;
184 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
185 module_param(rcu_unlock_delay, int, 0444);
186 #endif
187 
188 /* Retrieve RCU kthreads priority for rcutorture */
189 int rcu_get_gp_kthreads_prio(void)
190 {
191 	return kthread_prio;
192 }
193 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
194 
195 /*
196  * Number of grace periods between delays, normalized by the duration of
197  * the delay.  The longer the delay, the more the grace periods between
198  * each delay.  The reason for this normalization is that it means that,
199  * for non-zero delays, the overall slowdown of grace periods is constant
200  * regardless of the duration of the delay.  This arrangement balances
201  * the need for long delays to increase some race probabilities with the
202  * need for fast grace periods to increase other race probabilities.
203  */
204 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
205 
206 /*
207  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
208  * permit this function to be invoked without holding the root rcu_node
209  * structure's ->lock, but of course results can be subject to change.
210  */
211 static int rcu_gp_in_progress(void)
212 {
213 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
214 }
215 
216 /*
217  * Return the number of callbacks queued on the specified CPU.
218  * Handles both the nocbs and normal cases.
219  */
220 static long rcu_get_n_cbs_cpu(int cpu)
221 {
222 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
223 
224 	if (rcu_segcblist_is_enabled(&rdp->cblist))
225 		return rcu_segcblist_n_cbs(&rdp->cblist);
226 	return 0;
227 }
228 
229 /**
230  * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
231  *
232  * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
233  * This is a special-purpose function to be used in the softirq
234  * infrastructure and perhaps the occasional long-running softirq
235  * handler.
236  *
237  * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
238  * equivalent to momentarily completely enabling preemption.  For
239  * example, given this code::
240  *
241  *	local_bh_disable();
242  *	do_something();
243  *	rcu_softirq_qs();  // A
244  *	do_something_else();
245  *	local_bh_enable();  // B
246  *
247  * A call to synchronize_rcu() that began concurrently with the
248  * call to do_something() would be guaranteed to wait only until
249  * execution reached statement A.  Without that rcu_softirq_qs(),
250  * that same synchronize_rcu() would instead be guaranteed to wait
251  * until execution reached statement B.
252  */
253 void rcu_softirq_qs(void)
254 {
255 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
256 			 lock_is_held(&rcu_lock_map) ||
257 			 lock_is_held(&rcu_sched_lock_map),
258 			 "Illegal rcu_softirq_qs() in RCU read-side critical section");
259 	rcu_qs();
260 	rcu_preempt_deferred_qs(current);
261 	rcu_tasks_qs(current, false);
262 }
263 
264 /*
265  * Reset the current CPU's RCU_WATCHING counter to indicate that the
266  * newly onlined CPU is no longer in an extended quiescent state.
267  * This will either leave the counter unchanged, or increment it
268  * to the next non-quiescent value.
269  *
270  * The non-atomic test/increment sequence works because the upper bits
271  * of the ->state variable are manipulated only by the corresponding CPU,
272  * or when the corresponding CPU is offline.
273  */
274 static void rcu_watching_online(void)
275 {
276 	if (ct_rcu_watching() & CT_RCU_WATCHING)
277 		return;
278 	ct_state_inc(CT_RCU_WATCHING);
279 }
280 
281 /*
282  * Return true if the snapshot returned from ct_rcu_watching()
283  * indicates that RCU is in an extended quiescent state.
284  */
285 static bool rcu_watching_snap_in_eqs(int snap)
286 {
287 	return !(snap & CT_RCU_WATCHING);
288 }
289 
290 /**
291  * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
292  * since the specified @snap?
293  *
294  * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
295  * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
296  *
297  * Returns true if the CPU corresponding to @rdp has spent some time in an
298  * extended quiescent state since @snap. Note that this doesn't check if it
299  * /still/ is in an EQS, just that it went through one since @snap.
300  *
301  * This is meant to be used in a loop waiting for a CPU to go through an EQS.
302  */
303 static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
304 {
305 	/*
306 	 * The first failing snapshot is already ordered against the accesses
307 	 * performed by the remote CPU after it exits idle.
308 	 *
309 	 * The second snapshot therefore only needs to order against accesses
310 	 * performed by the remote CPU prior to entering idle and therefore can
311 	 * rely solely on acquire semantics.
312 	 */
313 	if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap)))
314 		return true;
315 
316 	return snap != ct_rcu_watching_cpu_acquire(rdp->cpu);
317 }
318 
319 /*
320  * Return true if the referenced integer is zero while the specified
321  * CPU remains within a single extended quiescent state.
322  */
323 bool rcu_watching_zero_in_eqs(int cpu, int *vp)
324 {
325 	int snap;
326 
327 	// If not quiescent, force back to earlier extended quiescent state.
328 	snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING;
329 	smp_rmb(); // Order CT state and *vp reads.
330 	if (READ_ONCE(*vp))
331 		return false;  // Non-zero, so report failure;
332 	smp_rmb(); // Order *vp read and CT state re-read.
333 
334 	// If still in the same extended quiescent state, we are good!
335 	return snap == ct_rcu_watching_cpu(cpu);
336 }
337 
338 /*
339  * Let the RCU core know that this CPU has gone through the scheduler,
340  * which is a quiescent state.  This is called when the need for a
341  * quiescent state is urgent, so we burn an atomic operation and full
342  * memory barriers to let the RCU core know about it, regardless of what
343  * this CPU might (or might not) do in the near future.
344  *
345  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
346  *
347  * The caller must have disabled interrupts and must not be idle.
348  */
349 notrace void rcu_momentary_eqs(void)
350 {
351 	int seq;
352 
353 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
354 	seq = ct_state_inc(2 * CT_RCU_WATCHING);
355 	/* It is illegal to call this from idle state. */
356 	WARN_ON_ONCE(!(seq & CT_RCU_WATCHING));
357 	rcu_preempt_deferred_qs(current);
358 }
359 EXPORT_SYMBOL_GPL(rcu_momentary_eqs);
360 
361 /**
362  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
363  *
364  * If the current CPU is idle and running at a first-level (not nested)
365  * interrupt, or directly, from idle, return true.
366  *
367  * The caller must have at least disabled IRQs.
368  */
369 static int rcu_is_cpu_rrupt_from_idle(void)
370 {
371 	long nesting;
372 
373 	/*
374 	 * Usually called from the tick; but also used from smp_function_call()
375 	 * for expedited grace periods. This latter can result in running from
376 	 * the idle task, instead of an actual IPI.
377 	 */
378 	lockdep_assert_irqs_disabled();
379 
380 	/* Check for counter underflows */
381 	RCU_LOCKDEP_WARN(ct_nesting() < 0,
382 			 "RCU nesting counter underflow!");
383 	RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0,
384 			 "RCU nmi_nesting counter underflow/zero!");
385 
386 	/* Are we at first interrupt nesting level? */
387 	nesting = ct_nmi_nesting();
388 	if (nesting > 1)
389 		return false;
390 
391 	/*
392 	 * If we're not in an interrupt, we must be in the idle task!
393 	 */
394 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
395 
396 	/* Does CPU appear to be idle from an RCU standpoint? */
397 	return ct_nesting() == 0;
398 }
399 
400 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
401 				// Maximum callbacks per rcu_do_batch ...
402 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
403 static long blimit = DEFAULT_RCU_BLIMIT;
404 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
405 static long qhimark = DEFAULT_RCU_QHIMARK;
406 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
407 static long qlowmark = DEFAULT_RCU_QLOMARK;
408 #define DEFAULT_RCU_QOVLD_MULT 2
409 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
410 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
411 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
412 
413 module_param(blimit, long, 0444);
414 module_param(qhimark, long, 0444);
415 module_param(qlowmark, long, 0444);
416 module_param(qovld, long, 0444);
417 
418 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
419 static ulong jiffies_till_next_fqs = ULONG_MAX;
420 static bool rcu_kick_kthreads;
421 static int rcu_divisor = 7;
422 module_param(rcu_divisor, int, 0644);
423 
424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
426 module_param(rcu_resched_ns, long, 0644);
427 
428 /*
429  * How long the grace period must be before we start recruiting
430  * quiescent-state help from rcu_note_context_switch().
431  */
432 static ulong jiffies_till_sched_qs = ULONG_MAX;
433 module_param(jiffies_till_sched_qs, ulong, 0444);
434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
436 
437 /*
438  * Make sure that we give the grace-period kthread time to detect any
439  * idle CPUs before taking active measures to force quiescent states.
440  * However, don't go below 100 milliseconds, adjusted upwards for really
441  * large systems.
442  */
443 static void adjust_jiffies_till_sched_qs(void)
444 {
445 	unsigned long j;
446 
447 	/* If jiffies_till_sched_qs was specified, respect the request. */
448 	if (jiffies_till_sched_qs != ULONG_MAX) {
449 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
450 		return;
451 	}
452 	/* Otherwise, set to third fqs scan, but bound below on large system. */
453 	j = READ_ONCE(jiffies_till_first_fqs) +
454 		      2 * READ_ONCE(jiffies_till_next_fqs);
455 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
456 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
457 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
458 	WRITE_ONCE(jiffies_to_sched_qs, j);
459 }
460 
461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
462 {
463 	ulong j;
464 	int ret = kstrtoul(val, 0, &j);
465 
466 	if (!ret) {
467 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
468 		adjust_jiffies_till_sched_qs();
469 	}
470 	return ret;
471 }
472 
473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
474 {
475 	ulong j;
476 	int ret = kstrtoul(val, 0, &j);
477 
478 	if (!ret) {
479 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
480 		adjust_jiffies_till_sched_qs();
481 	}
482 	return ret;
483 }
484 
485 static const struct kernel_param_ops first_fqs_jiffies_ops = {
486 	.set = param_set_first_fqs_jiffies,
487 	.get = param_get_ulong,
488 };
489 
490 static const struct kernel_param_ops next_fqs_jiffies_ops = {
491 	.set = param_set_next_fqs_jiffies,
492 	.get = param_get_ulong,
493 };
494 
495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
497 module_param(rcu_kick_kthreads, bool, 0644);
498 
499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
500 static int rcu_pending(int user);
501 
502 /*
503  * Return the number of RCU GPs completed thus far for debug & stats.
504  */
505 unsigned long rcu_get_gp_seq(void)
506 {
507 	return READ_ONCE(rcu_state.gp_seq);
508 }
509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
510 
511 /*
512  * Return the number of RCU expedited batches completed thus far for
513  * debug & stats.  Odd numbers mean that a batch is in progress, even
514  * numbers mean idle.  The value returned will thus be roughly double
515  * the cumulative batches since boot.
516  */
517 unsigned long rcu_exp_batches_completed(void)
518 {
519 	return rcu_state.expedited_sequence;
520 }
521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
522 
523 /*
524  * Return the root node of the rcu_state structure.
525  */
526 static struct rcu_node *rcu_get_root(void)
527 {
528 	return &rcu_state.node[0];
529 }
530 
531 /*
532  * Send along grace-period-related data for rcutorture diagnostics.
533  */
534 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
535 {
536 	*flags = READ_ONCE(rcu_state.gp_flags);
537 	*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
538 }
539 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
540 
541 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
542 /*
543  * An empty function that will trigger a reschedule on
544  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
545  */
546 static void late_wakeup_func(struct irq_work *work)
547 {
548 }
549 
550 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
551 	IRQ_WORK_INIT(late_wakeup_func);
552 
553 /*
554  * If either:
555  *
556  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
557  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
558  *
559  * In these cases the late RCU wake ups aren't supported in the resched loops and our
560  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
561  * get re-enabled again.
562  */
563 noinstr void rcu_irq_work_resched(void)
564 {
565 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
566 
567 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
568 		return;
569 
570 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
571 		return;
572 
573 	instrumentation_begin();
574 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
575 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
576 	}
577 	instrumentation_end();
578 }
579 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
580 
581 #ifdef CONFIG_PROVE_RCU
582 /**
583  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
584  */
585 void rcu_irq_exit_check_preempt(void)
586 {
587 	lockdep_assert_irqs_disabled();
588 
589 	RCU_LOCKDEP_WARN(ct_nesting() <= 0,
590 			 "RCU nesting counter underflow/zero!");
591 	RCU_LOCKDEP_WARN(ct_nmi_nesting() !=
592 			 CT_NESTING_IRQ_NONIDLE,
593 			 "Bad RCU  nmi_nesting counter\n");
594 	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
595 			 "RCU in extended quiescent state!");
596 }
597 #endif /* #ifdef CONFIG_PROVE_RCU */
598 
599 #ifdef CONFIG_NO_HZ_FULL
600 /**
601  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
602  *
603  * The scheduler tick is not normally enabled when CPUs enter the kernel
604  * from nohz_full userspace execution.  After all, nohz_full userspace
605  * execution is an RCU quiescent state and the time executing in the kernel
606  * is quite short.  Except of course when it isn't.  And it is not hard to
607  * cause a large system to spend tens of seconds or even minutes looping
608  * in the kernel, which can cause a number of problems, include RCU CPU
609  * stall warnings.
610  *
611  * Therefore, if a nohz_full CPU fails to report a quiescent state
612  * in a timely manner, the RCU grace-period kthread sets that CPU's
613  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
614  * exception will invoke this function, which will turn on the scheduler
615  * tick, which will enable RCU to detect that CPU's quiescent states,
616  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
617  * The tick will be disabled once a quiescent state is reported for
618  * this CPU.
619  *
620  * Of course, in carefully tuned systems, there might never be an
621  * interrupt or exception.  In that case, the RCU grace-period kthread
622  * will eventually cause one to happen.  However, in less carefully
623  * controlled environments, this function allows RCU to get what it
624  * needs without creating otherwise useless interruptions.
625  */
626 void __rcu_irq_enter_check_tick(void)
627 {
628 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
629 
630 	// If we're here from NMI there's nothing to do.
631 	if (in_nmi())
632 		return;
633 
634 	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
635 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
636 
637 	if (!tick_nohz_full_cpu(rdp->cpu) ||
638 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
639 	    READ_ONCE(rdp->rcu_forced_tick)) {
640 		// RCU doesn't need nohz_full help from this CPU, or it is
641 		// already getting that help.
642 		return;
643 	}
644 
645 	// We get here only when not in an extended quiescent state and
646 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
647 	// already watching and (2) The fact that we are in an interrupt
648 	// handler and that the rcu_node lock is an irq-disabled lock
649 	// prevents self-deadlock.  So we can safely recheck under the lock.
650 	// Note that the nohz_full state currently cannot change.
651 	raw_spin_lock_rcu_node(rdp->mynode);
652 	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
653 		// A nohz_full CPU is in the kernel and RCU needs a
654 		// quiescent state.  Turn on the tick!
655 		WRITE_ONCE(rdp->rcu_forced_tick, true);
656 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
657 	}
658 	raw_spin_unlock_rcu_node(rdp->mynode);
659 }
660 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
661 #endif /* CONFIG_NO_HZ_FULL */
662 
663 /*
664  * Check to see if any future non-offloaded RCU-related work will need
665  * to be done by the current CPU, even if none need be done immediately,
666  * returning 1 if so.  This function is part of the RCU implementation;
667  * it is -not- an exported member of the RCU API.  This is used by
668  * the idle-entry code to figure out whether it is safe to disable the
669  * scheduler-clock interrupt.
670  *
671  * Just check whether or not this CPU has non-offloaded RCU callbacks
672  * queued.
673  */
674 int rcu_needs_cpu(void)
675 {
676 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
677 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
678 }
679 
680 /*
681  * If any sort of urgency was applied to the current CPU (for example,
682  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
683  * to get to a quiescent state, disable it.
684  */
685 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
686 {
687 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
688 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
689 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
690 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
691 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
692 		WRITE_ONCE(rdp->rcu_forced_tick, false);
693 	}
694 }
695 
696 /**
697  * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
698  *
699  * Return @true if RCU is watching the running CPU and @false otherwise.
700  * An @true return means that this CPU can safely enter RCU read-side
701  * critical sections.
702  *
703  * Although calls to rcu_is_watching() from most parts of the kernel
704  * will return @true, there are important exceptions.  For example, if the
705  * current CPU is deep within its idle loop, in kernel entry/exit code,
706  * or offline, rcu_is_watching() will return @false.
707  *
708  * Make notrace because it can be called by the internal functions of
709  * ftrace, and making this notrace removes unnecessary recursion calls.
710  */
711 notrace bool rcu_is_watching(void)
712 {
713 	bool ret;
714 
715 	preempt_disable_notrace();
716 	ret = rcu_is_watching_curr_cpu();
717 	preempt_enable_notrace();
718 	return ret;
719 }
720 EXPORT_SYMBOL_GPL(rcu_is_watching);
721 
722 /*
723  * If a holdout task is actually running, request an urgent quiescent
724  * state from its CPU.  This is unsynchronized, so migrations can cause
725  * the request to go to the wrong CPU.  Which is OK, all that will happen
726  * is that the CPU's next context switch will be a bit slower and next
727  * time around this task will generate another request.
728  */
729 void rcu_request_urgent_qs_task(struct task_struct *t)
730 {
731 	int cpu;
732 
733 	barrier();
734 	cpu = task_cpu(t);
735 	if (!task_curr(t))
736 		return; /* This task is not running on that CPU. */
737 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
738 }
739 
740 /*
741  * When trying to report a quiescent state on behalf of some other CPU,
742  * it is our responsibility to check for and handle potential overflow
743  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
744  * After all, the CPU might be in deep idle state, and thus executing no
745  * code whatsoever.
746  */
747 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
748 {
749 	raw_lockdep_assert_held_rcu_node(rnp);
750 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
751 			 rnp->gp_seq))
752 		WRITE_ONCE(rdp->gpwrap, true);
753 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
754 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
755 }
756 
757 /*
758  * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
759  * credit them with an implicit quiescent state.  Return 1 if this CPU
760  * is in dynticks idle mode, which is an extended quiescent state.
761  */
762 static int rcu_watching_snap_save(struct rcu_data *rdp)
763 {
764 	/*
765 	 * Full ordering between remote CPU's post idle accesses and updater's
766 	 * accesses prior to current GP (and also the started GP sequence number)
767 	 * is enforced by rcu_seq_start() implicit barrier and even further by
768 	 * smp_mb__after_unlock_lock() barriers chained all the way throughout the
769 	 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp
770 	 * locking.
771 	 *
772 	 * Ordering between remote CPU's pre idle accesses and post grace period
773 	 * updater's accesses is enforced by the below acquire semantic.
774 	 */
775 	rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu);
776 	if (rcu_watching_snap_in_eqs(rdp->watching_snap)) {
777 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
778 		rcu_gpnum_ovf(rdp->mynode, rdp);
779 		return 1;
780 	}
781 	return 0;
782 }
783 
784 /*
785  * Returns positive if the specified CPU has passed through a quiescent state
786  * by virtue of being in or having passed through an dynticks idle state since
787  * the last call to rcu_watching_snap_save() for this same CPU, or by
788  * virtue of having been offline.
789  *
790  * Returns negative if the specified CPU needs a force resched.
791  *
792  * Returns zero otherwise.
793  */
794 static int rcu_watching_snap_recheck(struct rcu_data *rdp)
795 {
796 	unsigned long jtsq;
797 	int ret = 0;
798 	struct rcu_node *rnp = rdp->mynode;
799 
800 	/*
801 	 * If the CPU passed through or entered a dynticks idle phase with
802 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
803 	 * already acknowledged the request to pass through a quiescent
804 	 * state.  Either way, that CPU cannot possibly be in an RCU
805 	 * read-side critical section that started before the beginning
806 	 * of the current RCU grace period.
807 	 */
808 	if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) {
809 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
810 		rcu_gpnum_ovf(rnp, rdp);
811 		return 1;
812 	}
813 
814 	/*
815 	 * Complain if a CPU that is considered to be offline from RCU's
816 	 * perspective has not yet reported a quiescent state.  After all,
817 	 * the offline CPU should have reported a quiescent state during
818 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
819 	 * if it ran concurrently with either the CPU going offline or the
820 	 * last task on a leaf rcu_node structure exiting its RCU read-side
821 	 * critical section while all CPUs corresponding to that structure
822 	 * are offline.  This added warning detects bugs in any of these
823 	 * code paths.
824 	 *
825 	 * The rcu_node structure's ->lock is held here, which excludes
826 	 * the relevant portions the CPU-hotplug code, the grace-period
827 	 * initialization code, and the rcu_read_unlock() code paths.
828 	 *
829 	 * For more detail, please refer to the "Hotplug CPU" section
830 	 * of RCU's Requirements documentation.
831 	 */
832 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
833 		struct rcu_node *rnp1;
834 
835 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
836 			__func__, rnp->grplo, rnp->grphi, rnp->level,
837 			(long)rnp->gp_seq, (long)rnp->completedqs);
838 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
839 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
840 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
841 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
842 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
843 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
844 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
845 		return 1; /* Break things loose after complaining. */
846 	}
847 
848 	/*
849 	 * A CPU running for an extended time within the kernel can
850 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
851 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
852 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
853 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
854 	 * variable are safe because the assignments are repeated if this
855 	 * CPU failed to pass through a quiescent state.  This code
856 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
857 	 * is set way high.
858 	 */
859 	jtsq = READ_ONCE(jiffies_to_sched_qs);
860 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
861 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
862 	     time_after(jiffies, rcu_state.jiffies_resched) ||
863 	     rcu_state.cbovld)) {
864 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
865 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
866 		smp_store_release(&rdp->rcu_urgent_qs, true);
867 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
868 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
869 	}
870 
871 	/*
872 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
873 	 * The above code handles this, but only for straight cond_resched().
874 	 * And some in-kernel loops check need_resched() before calling
875 	 * cond_resched(), which defeats the above code for CPUs that are
876 	 * running in-kernel with scheduling-clock interrupts disabled.
877 	 * So hit them over the head with the resched_cpu() hammer!
878 	 */
879 	if (tick_nohz_full_cpu(rdp->cpu) &&
880 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
881 	     rcu_state.cbovld)) {
882 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
883 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
884 		ret = -1;
885 	}
886 
887 	/*
888 	 * If more than halfway to RCU CPU stall-warning time, invoke
889 	 * resched_cpu() more frequently to try to loosen things up a bit.
890 	 * Also check to see if the CPU is getting hammered with interrupts,
891 	 * but only once per grace period, just to keep the IPIs down to
892 	 * a dull roar.
893 	 */
894 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
895 		if (time_after(jiffies,
896 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
897 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
898 			ret = -1;
899 		}
900 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
901 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
902 		    (rnp->ffmask & rdp->grpmask)) {
903 			rdp->rcu_iw_pending = true;
904 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
905 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
906 		}
907 
908 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
909 			int cpu = rdp->cpu;
910 			struct rcu_snap_record *rsrp;
911 			struct kernel_cpustat *kcsp;
912 
913 			kcsp = &kcpustat_cpu(cpu);
914 
915 			rsrp = &rdp->snap_record;
916 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
917 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
918 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
919 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
920 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
921 			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
922 			rsrp->jiffies = jiffies;
923 			rsrp->gp_seq = rdp->gp_seq;
924 		}
925 	}
926 
927 	return ret;
928 }
929 
930 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
931 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
932 			      unsigned long gp_seq_req, const char *s)
933 {
934 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
935 				      gp_seq_req, rnp->level,
936 				      rnp->grplo, rnp->grphi, s);
937 }
938 
939 /*
940  * rcu_start_this_gp - Request the start of a particular grace period
941  * @rnp_start: The leaf node of the CPU from which to start.
942  * @rdp: The rcu_data corresponding to the CPU from which to start.
943  * @gp_seq_req: The gp_seq of the grace period to start.
944  *
945  * Start the specified grace period, as needed to handle newly arrived
946  * callbacks.  The required future grace periods are recorded in each
947  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
948  * is reason to awaken the grace-period kthread.
949  *
950  * The caller must hold the specified rcu_node structure's ->lock, which
951  * is why the caller is responsible for waking the grace-period kthread.
952  *
953  * Returns true if the GP thread needs to be awakened else false.
954  */
955 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
956 			      unsigned long gp_seq_req)
957 {
958 	bool ret = false;
959 	struct rcu_node *rnp;
960 
961 	/*
962 	 * Use funnel locking to either acquire the root rcu_node
963 	 * structure's lock or bail out if the need for this grace period
964 	 * has already been recorded -- or if that grace period has in
965 	 * fact already started.  If there is already a grace period in
966 	 * progress in a non-leaf node, no recording is needed because the
967 	 * end of the grace period will scan the leaf rcu_node structures.
968 	 * Note that rnp_start->lock must not be released.
969 	 */
970 	raw_lockdep_assert_held_rcu_node(rnp_start);
971 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
972 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
973 		if (rnp != rnp_start)
974 			raw_spin_lock_rcu_node(rnp);
975 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
976 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
977 		    (rnp != rnp_start &&
978 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
979 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
980 					  TPS("Prestarted"));
981 			goto unlock_out;
982 		}
983 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
984 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
985 			/*
986 			 * We just marked the leaf or internal node, and a
987 			 * grace period is in progress, which means that
988 			 * rcu_gp_cleanup() will see the marking.  Bail to
989 			 * reduce contention.
990 			 */
991 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
992 					  TPS("Startedleaf"));
993 			goto unlock_out;
994 		}
995 		if (rnp != rnp_start && rnp->parent != NULL)
996 			raw_spin_unlock_rcu_node(rnp);
997 		if (!rnp->parent)
998 			break;  /* At root, and perhaps also leaf. */
999 	}
1000 
1001 	/* If GP already in progress, just leave, otherwise start one. */
1002 	if (rcu_gp_in_progress()) {
1003 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1004 		goto unlock_out;
1005 	}
1006 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1007 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1008 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1009 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1010 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1011 		goto unlock_out;
1012 	}
1013 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1014 	ret = true;  /* Caller must wake GP kthread. */
1015 unlock_out:
1016 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1017 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1018 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1019 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1020 	}
1021 	if (rnp != rnp_start)
1022 		raw_spin_unlock_rcu_node(rnp);
1023 	return ret;
1024 }
1025 
1026 /*
1027  * Clean up any old requests for the just-ended grace period.  Also return
1028  * whether any additional grace periods have been requested.
1029  */
1030 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1031 {
1032 	bool needmore;
1033 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1034 
1035 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1036 	if (!needmore)
1037 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1038 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1039 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1040 	return needmore;
1041 }
1042 
1043 static void swake_up_one_online_ipi(void *arg)
1044 {
1045 	struct swait_queue_head *wqh = arg;
1046 
1047 	swake_up_one(wqh);
1048 }
1049 
1050 static void swake_up_one_online(struct swait_queue_head *wqh)
1051 {
1052 	int cpu = get_cpu();
1053 
1054 	/*
1055 	 * If called from rcutree_report_cpu_starting(), wake up
1056 	 * is dangerous that late in the CPU-down hotplug process. The
1057 	 * scheduler might queue an ignored hrtimer. Defer the wake up
1058 	 * to an online CPU instead.
1059 	 */
1060 	if (unlikely(cpu_is_offline(cpu))) {
1061 		int target;
1062 
1063 		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1064 					 cpu_online_mask);
1065 
1066 		smp_call_function_single(target, swake_up_one_online_ipi,
1067 					 wqh, 0);
1068 		put_cpu();
1069 	} else {
1070 		put_cpu();
1071 		swake_up_one(wqh);
1072 	}
1073 }
1074 
1075 /*
1076  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1077  * interrupt or softirq handler, in which case we just might immediately
1078  * sleep upon return, resulting in a grace-period hang), and don't bother
1079  * awakening when there is nothing for the grace-period kthread to do
1080  * (as in several CPUs raced to awaken, we lost), and finally don't try
1081  * to awaken a kthread that has not yet been created.  If all those checks
1082  * are passed, track some debug information and awaken.
1083  *
1084  * So why do the self-wakeup when in an interrupt or softirq handler
1085  * in the grace-period kthread's context?  Because the kthread might have
1086  * been interrupted just as it was going to sleep, and just after the final
1087  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1088  * is required, and is therefore supplied.
1089  */
1090 static void rcu_gp_kthread_wake(void)
1091 {
1092 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1093 
1094 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1095 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1096 		return;
1097 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1098 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1099 	swake_up_one_online(&rcu_state.gp_wq);
1100 }
1101 
1102 /*
1103  * If there is room, assign a ->gp_seq number to any callbacks on this
1104  * CPU that have not already been assigned.  Also accelerate any callbacks
1105  * that were previously assigned a ->gp_seq number that has since proven
1106  * to be too conservative, which can happen if callbacks get assigned a
1107  * ->gp_seq number while RCU is idle, but with reference to a non-root
1108  * rcu_node structure.  This function is idempotent, so it does not hurt
1109  * to call it repeatedly.  Returns an flag saying that we should awaken
1110  * the RCU grace-period kthread.
1111  *
1112  * The caller must hold rnp->lock with interrupts disabled.
1113  */
1114 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1115 {
1116 	unsigned long gp_seq_req;
1117 	bool ret = false;
1118 
1119 	rcu_lockdep_assert_cblist_protected(rdp);
1120 	raw_lockdep_assert_held_rcu_node(rnp);
1121 
1122 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1123 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1124 		return false;
1125 
1126 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1127 
1128 	/*
1129 	 * Callbacks are often registered with incomplete grace-period
1130 	 * information.  Something about the fact that getting exact
1131 	 * information requires acquiring a global lock...  RCU therefore
1132 	 * makes a conservative estimate of the grace period number at which
1133 	 * a given callback will become ready to invoke.	The following
1134 	 * code checks this estimate and improves it when possible, thus
1135 	 * accelerating callback invocation to an earlier grace-period
1136 	 * number.
1137 	 */
1138 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1139 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1140 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1141 
1142 	/* Trace depending on how much we were able to accelerate. */
1143 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1144 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1145 	else
1146 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1147 
1148 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1149 
1150 	return ret;
1151 }
1152 
1153 /*
1154  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1155  * rcu_node structure's ->lock be held.  It consults the cached value
1156  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1157  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1158  * while holding the leaf rcu_node structure's ->lock.
1159  */
1160 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1161 					struct rcu_data *rdp)
1162 {
1163 	unsigned long c;
1164 	bool needwake;
1165 
1166 	rcu_lockdep_assert_cblist_protected(rdp);
1167 	c = rcu_seq_snap(&rcu_state.gp_seq);
1168 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1169 		/* Old request still live, so mark recent callbacks. */
1170 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1171 		return;
1172 	}
1173 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1174 	needwake = rcu_accelerate_cbs(rnp, rdp);
1175 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1176 	if (needwake)
1177 		rcu_gp_kthread_wake();
1178 }
1179 
1180 /*
1181  * Move any callbacks whose grace period has completed to the
1182  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1183  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1184  * sublist.  This function is idempotent, so it does not hurt to
1185  * invoke it repeatedly.  As long as it is not invoked -too- often...
1186  * Returns true if the RCU grace-period kthread needs to be awakened.
1187  *
1188  * The caller must hold rnp->lock with interrupts disabled.
1189  */
1190 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1191 {
1192 	rcu_lockdep_assert_cblist_protected(rdp);
1193 	raw_lockdep_assert_held_rcu_node(rnp);
1194 
1195 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1196 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1197 		return false;
1198 
1199 	/*
1200 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1201 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1202 	 */
1203 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1204 
1205 	/* Classify any remaining callbacks. */
1206 	return rcu_accelerate_cbs(rnp, rdp);
1207 }
1208 
1209 /*
1210  * Move and classify callbacks, but only if doing so won't require
1211  * that the RCU grace-period kthread be awakened.
1212  */
1213 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1214 						  struct rcu_data *rdp)
1215 {
1216 	rcu_lockdep_assert_cblist_protected(rdp);
1217 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1218 		return;
1219 	// The grace period cannot end while we hold the rcu_node lock.
1220 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1221 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1222 	raw_spin_unlock_rcu_node(rnp);
1223 }
1224 
1225 /*
1226  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1227  * quiescent state.  This is intended to be invoked when the CPU notices
1228  * a new grace period.
1229  */
1230 static void rcu_strict_gp_check_qs(void)
1231 {
1232 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1233 		rcu_read_lock();
1234 		rcu_read_unlock();
1235 	}
1236 }
1237 
1238 /*
1239  * Update CPU-local rcu_data state to record the beginnings and ends of
1240  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1241  * structure corresponding to the current CPU, and must have irqs disabled.
1242  * Returns true if the grace-period kthread needs to be awakened.
1243  */
1244 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1245 {
1246 	bool ret = false;
1247 	bool need_qs;
1248 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1249 
1250 	raw_lockdep_assert_held_rcu_node(rnp);
1251 
1252 	if (rdp->gp_seq == rnp->gp_seq)
1253 		return false; /* Nothing to do. */
1254 
1255 	/* Handle the ends of any preceding grace periods first. */
1256 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1257 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1258 		if (!offloaded)
1259 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1260 		rdp->core_needs_qs = false;
1261 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1262 	} else {
1263 		if (!offloaded)
1264 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1265 		if (rdp->core_needs_qs)
1266 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1267 	}
1268 
1269 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1270 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1271 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1272 		/*
1273 		 * If the current grace period is waiting for this CPU,
1274 		 * set up to detect a quiescent state, otherwise don't
1275 		 * go looking for one.
1276 		 */
1277 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1278 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1279 		rdp->cpu_no_qs.b.norm = need_qs;
1280 		rdp->core_needs_qs = need_qs;
1281 		zero_cpu_stall_ticks(rdp);
1282 	}
1283 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1284 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1285 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1286 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1287 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1288 	WRITE_ONCE(rdp->gpwrap, false);
1289 	rcu_gpnum_ovf(rnp, rdp);
1290 	return ret;
1291 }
1292 
1293 static void note_gp_changes(struct rcu_data *rdp)
1294 {
1295 	unsigned long flags;
1296 	bool needwake;
1297 	struct rcu_node *rnp;
1298 
1299 	local_irq_save(flags);
1300 	rnp = rdp->mynode;
1301 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1302 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1303 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1304 		local_irq_restore(flags);
1305 		return;
1306 	}
1307 	needwake = __note_gp_changes(rnp, rdp);
1308 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1309 	rcu_strict_gp_check_qs();
1310 	if (needwake)
1311 		rcu_gp_kthread_wake();
1312 }
1313 
1314 static atomic_t *rcu_gp_slow_suppress;
1315 
1316 /* Register a counter to suppress debugging grace-period delays. */
1317 void rcu_gp_slow_register(atomic_t *rgssp)
1318 {
1319 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1320 
1321 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1322 }
1323 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1324 
1325 /* Unregister a counter, with NULL for not caring which. */
1326 void rcu_gp_slow_unregister(atomic_t *rgssp)
1327 {
1328 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1329 
1330 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1331 }
1332 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1333 
1334 static bool rcu_gp_slow_is_suppressed(void)
1335 {
1336 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1337 
1338 	return rgssp && atomic_read(rgssp);
1339 }
1340 
1341 static void rcu_gp_slow(int delay)
1342 {
1343 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1344 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1345 		schedule_timeout_idle(delay);
1346 }
1347 
1348 static unsigned long sleep_duration;
1349 
1350 /* Allow rcutorture to stall the grace-period kthread. */
1351 void rcu_gp_set_torture_wait(int duration)
1352 {
1353 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1354 		WRITE_ONCE(sleep_duration, duration);
1355 }
1356 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1357 
1358 /* Actually implement the aforementioned wait. */
1359 static void rcu_gp_torture_wait(void)
1360 {
1361 	unsigned long duration;
1362 
1363 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1364 		return;
1365 	duration = xchg(&sleep_duration, 0UL);
1366 	if (duration > 0) {
1367 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1368 		schedule_timeout_idle(duration);
1369 		pr_alert("%s: Wait complete\n", __func__);
1370 	}
1371 }
1372 
1373 /*
1374  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1375  * processing.
1376  */
1377 static void rcu_strict_gp_boundary(void *unused)
1378 {
1379 	invoke_rcu_core();
1380 }
1381 
1382 // Make the polled API aware of the beginning of a grace period.
1383 static void rcu_poll_gp_seq_start(unsigned long *snap)
1384 {
1385 	struct rcu_node *rnp = rcu_get_root();
1386 
1387 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1388 		raw_lockdep_assert_held_rcu_node(rnp);
1389 
1390 	// If RCU was idle, note beginning of GP.
1391 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1392 		rcu_seq_start(&rcu_state.gp_seq_polled);
1393 
1394 	// Either way, record current state.
1395 	*snap = rcu_state.gp_seq_polled;
1396 }
1397 
1398 // Make the polled API aware of the end of a grace period.
1399 static void rcu_poll_gp_seq_end(unsigned long *snap)
1400 {
1401 	struct rcu_node *rnp = rcu_get_root();
1402 
1403 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1404 		raw_lockdep_assert_held_rcu_node(rnp);
1405 
1406 	// If the previously noted GP is still in effect, record the
1407 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1408 	// problems.
1409 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1410 		rcu_seq_end(&rcu_state.gp_seq_polled);
1411 		rcu_state.gp_seq_polled_snap = 0;
1412 		rcu_state.gp_seq_polled_exp_snap = 0;
1413 	} else {
1414 		*snap = 0;
1415 	}
1416 }
1417 
1418 // Make the polled API aware of the beginning of a grace period, but
1419 // where caller does not hold the root rcu_node structure's lock.
1420 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1421 {
1422 	unsigned long flags;
1423 	struct rcu_node *rnp = rcu_get_root();
1424 
1425 	if (rcu_init_invoked()) {
1426 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1427 			lockdep_assert_irqs_enabled();
1428 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1429 	}
1430 	rcu_poll_gp_seq_start(snap);
1431 	if (rcu_init_invoked())
1432 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1433 }
1434 
1435 // Make the polled API aware of the end of a grace period, but where
1436 // caller does not hold the root rcu_node structure's lock.
1437 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1438 {
1439 	unsigned long flags;
1440 	struct rcu_node *rnp = rcu_get_root();
1441 
1442 	if (rcu_init_invoked()) {
1443 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1444 			lockdep_assert_irqs_enabled();
1445 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1446 	}
1447 	rcu_poll_gp_seq_end(snap);
1448 	if (rcu_init_invoked())
1449 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1450 }
1451 
1452 /*
1453  * There is a single llist, which is used for handling
1454  * synchronize_rcu() users' enqueued rcu_synchronize nodes.
1455  * Within this llist, there are two tail pointers:
1456  *
1457  * wait tail: Tracks the set of nodes, which need to
1458  *            wait for the current GP to complete.
1459  * done tail: Tracks the set of nodes, for which grace
1460  *            period has elapsed. These nodes processing
1461  *            will be done as part of the cleanup work
1462  *            execution by a kworker.
1463  *
1464  * At every grace period init, a new wait node is added
1465  * to the llist. This wait node is used as wait tail
1466  * for this new grace period. Given that there are a fixed
1467  * number of wait nodes, if all wait nodes are in use
1468  * (which can happen when kworker callback processing
1469  * is delayed) and additional grace period is requested.
1470  * This means, a system is slow in processing callbacks.
1471  *
1472  * TODO: If a slow processing is detected, a first node
1473  * in the llist should be used as a wait-tail for this
1474  * grace period, therefore users which should wait due
1475  * to a slow process are handled by _this_ grace period
1476  * and not next.
1477  *
1478  * Below is an illustration of how the done and wait
1479  * tail pointers move from one set of rcu_synchronize nodes
1480  * to the other, as grace periods start and finish and
1481  * nodes are processed by kworker.
1482  *
1483  *
1484  * a. Initial llist callbacks list:
1485  *
1486  * +----------+           +--------+          +-------+
1487  * |          |           |        |          |       |
1488  * |   head   |---------> |   cb2  |--------->| cb1   |
1489  * |          |           |        |          |       |
1490  * +----------+           +--------+          +-------+
1491  *
1492  *
1493  *
1494  * b. New GP1 Start:
1495  *
1496  *                    WAIT TAIL
1497  *                      |
1498  *                      |
1499  *                      v
1500  * +----------+     +--------+      +--------+        +-------+
1501  * |          |     |        |      |        |        |       |
1502  * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1503  * |          |     | head1  |      |        |        |       |
1504  * +----------+     +--------+      +--------+        +-------+
1505  *
1506  *
1507  *
1508  * c. GP completion:
1509  *
1510  * WAIT_TAIL == DONE_TAIL
1511  *
1512  *                   DONE TAIL
1513  *                     |
1514  *                     |
1515  *                     v
1516  * +----------+     +--------+      +--------+        +-------+
1517  * |          |     |        |      |        |        |       |
1518  * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1519  * |          |     | head1  |      |        |        |       |
1520  * +----------+     +--------+      +--------+        +-------+
1521  *
1522  *
1523  *
1524  * d. New callbacks and GP2 start:
1525  *
1526  *                    WAIT TAIL                          DONE TAIL
1527  *                      |                                 |
1528  *                      |                                 |
1529  *                      v                                 v
1530  * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1531  * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1532  * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1533  * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1534  * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1535  *
1536  *
1537  *
1538  * e. GP2 completion:
1539  *
1540  * WAIT_TAIL == DONE_TAIL
1541  *                   DONE TAIL
1542  *                      |
1543  *                      |
1544  *                      v
1545  * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1546  * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1547  * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1548  * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1549  * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1550  *
1551  *
1552  * While the llist state transitions from d to e, a kworker
1553  * can start executing rcu_sr_normal_gp_cleanup_work() and
1554  * can observe either the old done tail (@c) or the new
1555  * done tail (@e). So, done tail updates and reads need
1556  * to use the rel-acq semantics. If the concurrent kworker
1557  * observes the old done tail, the newly queued work
1558  * execution will process the updated done tail. If the
1559  * concurrent kworker observes the new done tail, then
1560  * the newly queued work will skip processing the done
1561  * tail, as workqueue semantics guarantees that the new
1562  * work is executed only after the previous one completes.
1563  *
1564  * f. kworker callbacks processing complete:
1565  *
1566  *
1567  *                   DONE TAIL
1568  *                     |
1569  *                     |
1570  *                     v
1571  * +----------+     +--------+
1572  * |          |     |        |
1573  * |   head   ------> wait   |
1574  * |          |     | head2  |
1575  * +----------+     +--------+
1576  *
1577  */
1578 static bool rcu_sr_is_wait_head(struct llist_node *node)
1579 {
1580 	return &(rcu_state.srs_wait_nodes)[0].node <= node &&
1581 		node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
1582 }
1583 
1584 static struct llist_node *rcu_sr_get_wait_head(void)
1585 {
1586 	struct sr_wait_node *sr_wn;
1587 	int i;
1588 
1589 	for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
1590 		sr_wn = &(rcu_state.srs_wait_nodes)[i];
1591 
1592 		if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
1593 			return &sr_wn->node;
1594 	}
1595 
1596 	return NULL;
1597 }
1598 
1599 static void rcu_sr_put_wait_head(struct llist_node *node)
1600 {
1601 	struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
1602 
1603 	atomic_set_release(&sr_wn->inuse, 0);
1604 }
1605 
1606 /* Disabled by default. */
1607 static int rcu_normal_wake_from_gp;
1608 module_param(rcu_normal_wake_from_gp, int, 0644);
1609 static struct workqueue_struct *sync_wq;
1610 
1611 static void rcu_sr_normal_complete(struct llist_node *node)
1612 {
1613 	struct rcu_synchronize *rs = container_of(
1614 		(struct rcu_head *) node, struct rcu_synchronize, head);
1615 	unsigned long oldstate = (unsigned long) rs->head.func;
1616 
1617 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1618 		!poll_state_synchronize_rcu(oldstate),
1619 		"A full grace period is not passed yet: %lu",
1620 		rcu_seq_diff(get_state_synchronize_rcu(), oldstate));
1621 
1622 	/* Finally. */
1623 	complete(&rs->completion);
1624 }
1625 
1626 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
1627 {
1628 	struct llist_node *done, *rcu, *next, *head;
1629 
1630 	/*
1631 	 * This work execution can potentially execute
1632 	 * while a new done tail is being updated by
1633 	 * grace period kthread in rcu_sr_normal_gp_cleanup().
1634 	 * So, read and updates of done tail need to
1635 	 * follow acq-rel semantics.
1636 	 *
1637 	 * Given that wq semantics guarantees that a single work
1638 	 * cannot execute concurrently by multiple kworkers,
1639 	 * the done tail list manipulations are protected here.
1640 	 */
1641 	done = smp_load_acquire(&rcu_state.srs_done_tail);
1642 	if (WARN_ON_ONCE(!done))
1643 		return;
1644 
1645 	WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
1646 	head = done->next;
1647 	done->next = NULL;
1648 
1649 	/*
1650 	 * The dummy node, which is pointed to by the
1651 	 * done tail which is acq-read above is not removed
1652 	 * here.  This allows lockless additions of new
1653 	 * rcu_synchronize nodes in rcu_sr_normal_add_req(),
1654 	 * while the cleanup work executes. The dummy
1655 	 * nodes is removed, in next round of cleanup
1656 	 * work execution.
1657 	 */
1658 	llist_for_each_safe(rcu, next, head) {
1659 		if (!rcu_sr_is_wait_head(rcu)) {
1660 			rcu_sr_normal_complete(rcu);
1661 			continue;
1662 		}
1663 
1664 		rcu_sr_put_wait_head(rcu);
1665 	}
1666 
1667 	/* Order list manipulations with atomic access. */
1668 	atomic_dec_return_release(&rcu_state.srs_cleanups_pending);
1669 }
1670 
1671 /*
1672  * Helper function for rcu_gp_cleanup().
1673  */
1674 static void rcu_sr_normal_gp_cleanup(void)
1675 {
1676 	struct llist_node *wait_tail, *next = NULL, *rcu = NULL;
1677 	int done = 0;
1678 
1679 	wait_tail = rcu_state.srs_wait_tail;
1680 	if (wait_tail == NULL)
1681 		return;
1682 
1683 	rcu_state.srs_wait_tail = NULL;
1684 	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1685 	WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
1686 
1687 	/*
1688 	 * Process (a) and (d) cases. See an illustration.
1689 	 */
1690 	llist_for_each_safe(rcu, next, wait_tail->next) {
1691 		if (rcu_sr_is_wait_head(rcu))
1692 			break;
1693 
1694 		rcu_sr_normal_complete(rcu);
1695 		// It can be last, update a next on this step.
1696 		wait_tail->next = next;
1697 
1698 		if (++done == SR_MAX_USERS_WAKE_FROM_GP)
1699 			break;
1700 	}
1701 
1702 	/*
1703 	 * Fast path, no more users to process except putting the second last
1704 	 * wait head if no inflight-workers. If there are in-flight workers,
1705 	 * they will remove the last wait head.
1706 	 *
1707 	 * Note that the ACQUIRE orders atomic access with list manipulation.
1708 	 */
1709 	if (wait_tail->next && wait_tail->next->next == NULL &&
1710 	    rcu_sr_is_wait_head(wait_tail->next) &&
1711 	    !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) {
1712 		rcu_sr_put_wait_head(wait_tail->next);
1713 		wait_tail->next = NULL;
1714 	}
1715 
1716 	/* Concurrent sr_normal_gp_cleanup work might observe this update. */
1717 	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
1718 	smp_store_release(&rcu_state.srs_done_tail, wait_tail);
1719 
1720 	/*
1721 	 * We schedule a work in order to perform a final processing
1722 	 * of outstanding users(if still left) and releasing wait-heads
1723 	 * added by rcu_sr_normal_gp_init() call.
1724 	 */
1725 	if (wait_tail->next) {
1726 		atomic_inc(&rcu_state.srs_cleanups_pending);
1727 		if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work))
1728 			atomic_dec(&rcu_state.srs_cleanups_pending);
1729 	}
1730 }
1731 
1732 /*
1733  * Helper function for rcu_gp_init().
1734  */
1735 static bool rcu_sr_normal_gp_init(void)
1736 {
1737 	struct llist_node *first;
1738 	struct llist_node *wait_head;
1739 	bool start_new_poll = false;
1740 
1741 	first = READ_ONCE(rcu_state.srs_next.first);
1742 	if (!first || rcu_sr_is_wait_head(first))
1743 		return start_new_poll;
1744 
1745 	wait_head = rcu_sr_get_wait_head();
1746 	if (!wait_head) {
1747 		// Kick another GP to retry.
1748 		start_new_poll = true;
1749 		return start_new_poll;
1750 	}
1751 
1752 	/* Inject a wait-dummy-node. */
1753 	llist_add(wait_head, &rcu_state.srs_next);
1754 
1755 	/*
1756 	 * A waiting list of rcu_synchronize nodes should be empty on
1757 	 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
1758 	 * rolls it over. If not, it is a BUG, warn a user.
1759 	 */
1760 	WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
1761 	rcu_state.srs_wait_tail = wait_head;
1762 	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1763 
1764 	return start_new_poll;
1765 }
1766 
1767 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
1768 {
1769 	llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
1770 }
1771 
1772 /*
1773  * Initialize a new grace period.  Return false if no grace period required.
1774  */
1775 static noinline_for_stack bool rcu_gp_init(void)
1776 {
1777 	unsigned long flags;
1778 	unsigned long oldmask;
1779 	unsigned long mask;
1780 	struct rcu_data *rdp;
1781 	struct rcu_node *rnp = rcu_get_root();
1782 	bool start_new_poll;
1783 
1784 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1785 	raw_spin_lock_irq_rcu_node(rnp);
1786 	if (!rcu_state.gp_flags) {
1787 		/* Spurious wakeup, tell caller to go back to sleep.  */
1788 		raw_spin_unlock_irq_rcu_node(rnp);
1789 		return false;
1790 	}
1791 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1792 
1793 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1794 		/*
1795 		 * Grace period already in progress, don't start another.
1796 		 * Not supposed to be able to happen.
1797 		 */
1798 		raw_spin_unlock_irq_rcu_node(rnp);
1799 		return false;
1800 	}
1801 
1802 	/* Advance to a new grace period and initialize state. */
1803 	record_gp_stall_check_time();
1804 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1805 	rcu_seq_start(&rcu_state.gp_seq);
1806 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1807 	start_new_poll = rcu_sr_normal_gp_init();
1808 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1809 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1810 	raw_spin_unlock_irq_rcu_node(rnp);
1811 
1812 	/*
1813 	 * The "start_new_poll" is set to true, only when this GP is not able
1814 	 * to handle anything and there are outstanding users. It happens when
1815 	 * the rcu_sr_normal_gp_init() function was not able to insert a dummy
1816 	 * separator to the llist, because there were no left any dummy-nodes.
1817 	 *
1818 	 * Number of dummy-nodes is fixed, it could be that we are run out of
1819 	 * them, if so we start a new pool request to repeat a try. It is rare
1820 	 * and it means that a system is doing a slow processing of callbacks.
1821 	 */
1822 	if (start_new_poll)
1823 		(void) start_poll_synchronize_rcu();
1824 
1825 	/*
1826 	 * Apply per-leaf buffered online and offline operations to
1827 	 * the rcu_node tree. Note that this new grace period need not
1828 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1829 	 * offlining path, when combined with checks in this function,
1830 	 * will handle CPUs that are currently going offline or that will
1831 	 * go offline later.  Please also refer to "Hotplug CPU" section
1832 	 * of RCU's Requirements documentation.
1833 	 */
1834 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1835 	/* Exclude CPU hotplug operations. */
1836 	rcu_for_each_leaf_node(rnp) {
1837 		local_irq_disable();
1838 		arch_spin_lock(&rcu_state.ofl_lock);
1839 		raw_spin_lock_rcu_node(rnp);
1840 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1841 		    !rnp->wait_blkd_tasks) {
1842 			/* Nothing to do on this leaf rcu_node structure. */
1843 			raw_spin_unlock_rcu_node(rnp);
1844 			arch_spin_unlock(&rcu_state.ofl_lock);
1845 			local_irq_enable();
1846 			continue;
1847 		}
1848 
1849 		/* Record old state, apply changes to ->qsmaskinit field. */
1850 		oldmask = rnp->qsmaskinit;
1851 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1852 
1853 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1854 		if (!oldmask != !rnp->qsmaskinit) {
1855 			if (!oldmask) { /* First online CPU for rcu_node. */
1856 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1857 					rcu_init_new_rnp(rnp);
1858 			} else if (rcu_preempt_has_tasks(rnp)) {
1859 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1860 			} else { /* Last offline CPU and can propagate. */
1861 				rcu_cleanup_dead_rnp(rnp);
1862 			}
1863 		}
1864 
1865 		/*
1866 		 * If all waited-on tasks from prior grace period are
1867 		 * done, and if all this rcu_node structure's CPUs are
1868 		 * still offline, propagate up the rcu_node tree and
1869 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1870 		 * rcu_node structure's CPUs has since come back online,
1871 		 * simply clear ->wait_blkd_tasks.
1872 		 */
1873 		if (rnp->wait_blkd_tasks &&
1874 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1875 			rnp->wait_blkd_tasks = false;
1876 			if (!rnp->qsmaskinit)
1877 				rcu_cleanup_dead_rnp(rnp);
1878 		}
1879 
1880 		raw_spin_unlock_rcu_node(rnp);
1881 		arch_spin_unlock(&rcu_state.ofl_lock);
1882 		local_irq_enable();
1883 	}
1884 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1885 
1886 	/*
1887 	 * Set the quiescent-state-needed bits in all the rcu_node
1888 	 * structures for all currently online CPUs in breadth-first
1889 	 * order, starting from the root rcu_node structure, relying on the
1890 	 * layout of the tree within the rcu_state.node[] array.  Note that
1891 	 * other CPUs will access only the leaves of the hierarchy, thus
1892 	 * seeing that no grace period is in progress, at least until the
1893 	 * corresponding leaf node has been initialized.
1894 	 *
1895 	 * The grace period cannot complete until the initialization
1896 	 * process finishes, because this kthread handles both.
1897 	 */
1898 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1899 	rcu_for_each_node_breadth_first(rnp) {
1900 		rcu_gp_slow(gp_init_delay);
1901 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1902 		rdp = this_cpu_ptr(&rcu_data);
1903 		rcu_preempt_check_blocked_tasks(rnp);
1904 		rnp->qsmask = rnp->qsmaskinit;
1905 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1906 		if (rnp == rdp->mynode)
1907 			(void)__note_gp_changes(rnp, rdp);
1908 		rcu_preempt_boost_start_gp(rnp);
1909 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1910 					    rnp->level, rnp->grplo,
1911 					    rnp->grphi, rnp->qsmask);
1912 		/* Quiescent states for tasks on any now-offline CPUs. */
1913 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1914 		rnp->rcu_gp_init_mask = mask;
1915 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1916 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1917 		else
1918 			raw_spin_unlock_irq_rcu_node(rnp);
1919 		cond_resched_tasks_rcu_qs();
1920 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1921 	}
1922 
1923 	// If strict, make all CPUs aware of new grace period.
1924 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1925 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1926 
1927 	return true;
1928 }
1929 
1930 /*
1931  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1932  * time.
1933  */
1934 static bool rcu_gp_fqs_check_wake(int *gfp)
1935 {
1936 	struct rcu_node *rnp = rcu_get_root();
1937 
1938 	// If under overload conditions, force an immediate FQS scan.
1939 	if (*gfp & RCU_GP_FLAG_OVLD)
1940 		return true;
1941 
1942 	// Someone like call_rcu() requested a force-quiescent-state scan.
1943 	*gfp = READ_ONCE(rcu_state.gp_flags);
1944 	if (*gfp & RCU_GP_FLAG_FQS)
1945 		return true;
1946 
1947 	// The current grace period has completed.
1948 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1949 		return true;
1950 
1951 	return false;
1952 }
1953 
1954 /*
1955  * Do one round of quiescent-state forcing.
1956  */
1957 static void rcu_gp_fqs(bool first_time)
1958 {
1959 	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1960 	struct rcu_node *rnp = rcu_get_root();
1961 
1962 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1963 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1964 
1965 	WARN_ON_ONCE(nr_fqs > 3);
1966 	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1967 	if (nr_fqs) {
1968 		if (nr_fqs == 1) {
1969 			WRITE_ONCE(rcu_state.jiffies_stall,
1970 				   jiffies + rcu_jiffies_till_stall_check());
1971 		}
1972 		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1973 	}
1974 
1975 	if (first_time) {
1976 		/* Collect dyntick-idle snapshots. */
1977 		force_qs_rnp(rcu_watching_snap_save);
1978 	} else {
1979 		/* Handle dyntick-idle and offline CPUs. */
1980 		force_qs_rnp(rcu_watching_snap_recheck);
1981 	}
1982 	/* Clear flag to prevent immediate re-entry. */
1983 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1984 		raw_spin_lock_irq_rcu_node(rnp);
1985 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
1986 		raw_spin_unlock_irq_rcu_node(rnp);
1987 	}
1988 }
1989 
1990 /*
1991  * Loop doing repeated quiescent-state forcing until the grace period ends.
1992  */
1993 static noinline_for_stack void rcu_gp_fqs_loop(void)
1994 {
1995 	bool first_gp_fqs = true;
1996 	int gf = 0;
1997 	unsigned long j;
1998 	int ret;
1999 	struct rcu_node *rnp = rcu_get_root();
2000 
2001 	j = READ_ONCE(jiffies_till_first_fqs);
2002 	if (rcu_state.cbovld)
2003 		gf = RCU_GP_FLAG_OVLD;
2004 	ret = 0;
2005 	for (;;) {
2006 		if (rcu_state.cbovld) {
2007 			j = (j + 2) / 3;
2008 			if (j <= 0)
2009 				j = 1;
2010 		}
2011 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
2012 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
2013 			/*
2014 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
2015 			 * update; required for stall checks.
2016 			 */
2017 			smp_wmb();
2018 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
2019 				   jiffies + (j ? 3 * j : 2));
2020 		}
2021 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2022 				       TPS("fqswait"));
2023 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2024 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2025 				 rcu_gp_fqs_check_wake(&gf), j);
2026 		rcu_gp_torture_wait();
2027 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2028 		/* Locking provides needed memory barriers. */
2029 		/*
2030 		 * Exit the loop if the root rcu_node structure indicates that the grace period
2031 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
2032 		 * is required only for single-node rcu_node trees because readers blocking
2033 		 * the current grace period are queued only on leaf rcu_node structures.
2034 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
2035 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
2036 		 * the corresponding leaf nodes have passed through their quiescent state.
2037 		 */
2038 		if (!READ_ONCE(rnp->qsmask) &&
2039 		    !rcu_preempt_blocked_readers_cgp(rnp))
2040 			break;
2041 		/* If time for quiescent-state forcing, do it. */
2042 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2043 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2044 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2045 					       TPS("fqsstart"));
2046 			rcu_gp_fqs(first_gp_fqs);
2047 			gf = 0;
2048 			if (first_gp_fqs) {
2049 				first_gp_fqs = false;
2050 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2051 			}
2052 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2053 					       TPS("fqsend"));
2054 			cond_resched_tasks_rcu_qs();
2055 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2056 			ret = 0; /* Force full wait till next FQS. */
2057 			j = READ_ONCE(jiffies_till_next_fqs);
2058 		} else {
2059 			/* Deal with stray signal. */
2060 			cond_resched_tasks_rcu_qs();
2061 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2062 			WARN_ON(signal_pending(current));
2063 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2064 					       TPS("fqswaitsig"));
2065 			ret = 1; /* Keep old FQS timing. */
2066 			j = jiffies;
2067 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2068 				j = 1;
2069 			else
2070 				j = rcu_state.jiffies_force_qs - j;
2071 			gf = 0;
2072 		}
2073 	}
2074 }
2075 
2076 /*
2077  * Clean up after the old grace period.
2078  */
2079 static noinline void rcu_gp_cleanup(void)
2080 {
2081 	int cpu;
2082 	bool needgp = false;
2083 	unsigned long gp_duration;
2084 	unsigned long new_gp_seq;
2085 	bool offloaded;
2086 	struct rcu_data *rdp;
2087 	struct rcu_node *rnp = rcu_get_root();
2088 	struct swait_queue_head *sq;
2089 
2090 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2091 	raw_spin_lock_irq_rcu_node(rnp);
2092 	rcu_state.gp_end = jiffies;
2093 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2094 	if (gp_duration > rcu_state.gp_max)
2095 		rcu_state.gp_max = gp_duration;
2096 
2097 	/*
2098 	 * We know the grace period is complete, but to everyone else
2099 	 * it appears to still be ongoing.  But it is also the case
2100 	 * that to everyone else it looks like there is nothing that
2101 	 * they can do to advance the grace period.  It is therefore
2102 	 * safe for us to drop the lock in order to mark the grace
2103 	 * period as completed in all of the rcu_node structures.
2104 	 */
2105 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
2106 	raw_spin_unlock_irq_rcu_node(rnp);
2107 
2108 	/*
2109 	 * Propagate new ->gp_seq value to rcu_node structures so that
2110 	 * other CPUs don't have to wait until the start of the next grace
2111 	 * period to process their callbacks.  This also avoids some nasty
2112 	 * RCU grace-period initialization races by forcing the end of
2113 	 * the current grace period to be completely recorded in all of
2114 	 * the rcu_node structures before the beginning of the next grace
2115 	 * period is recorded in any of the rcu_node structures.
2116 	 */
2117 	new_gp_seq = rcu_state.gp_seq;
2118 	rcu_seq_end(&new_gp_seq);
2119 	rcu_for_each_node_breadth_first(rnp) {
2120 		raw_spin_lock_irq_rcu_node(rnp);
2121 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2122 			dump_blkd_tasks(rnp, 10);
2123 		WARN_ON_ONCE(rnp->qsmask);
2124 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2125 		if (!rnp->parent)
2126 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
2127 		rdp = this_cpu_ptr(&rcu_data);
2128 		if (rnp == rdp->mynode)
2129 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2130 		/* smp_mb() provided by prior unlock-lock pair. */
2131 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2132 		// Reset overload indication for CPUs no longer overloaded
2133 		if (rcu_is_leaf_node(rnp))
2134 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2135 				rdp = per_cpu_ptr(&rcu_data, cpu);
2136 				check_cb_ovld_locked(rdp, rnp);
2137 			}
2138 		sq = rcu_nocb_gp_get(rnp);
2139 		raw_spin_unlock_irq_rcu_node(rnp);
2140 		rcu_nocb_gp_cleanup(sq);
2141 		cond_resched_tasks_rcu_qs();
2142 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2143 		rcu_gp_slow(gp_cleanup_delay);
2144 	}
2145 	rnp = rcu_get_root();
2146 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2147 
2148 	/* Declare grace period done, trace first to use old GP number. */
2149 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2150 	rcu_seq_end(&rcu_state.gp_seq);
2151 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2152 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2153 	/* Check for GP requests since above loop. */
2154 	rdp = this_cpu_ptr(&rcu_data);
2155 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2156 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2157 				  TPS("CleanupMore"));
2158 		needgp = true;
2159 	}
2160 	/* Advance CBs to reduce false positives below. */
2161 	offloaded = rcu_rdp_is_offloaded(rdp);
2162 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2163 
2164 		// We get here if a grace period was needed (“needgp”)
2165 		// and the above call to rcu_accelerate_cbs() did not set
2166 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2167 		// the need for another grace period).  The purpose
2168 		// of the “offloaded” check is to avoid invoking
2169 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
2170 		// hold the ->nocb_lock needed to safely access an offloaded
2171 		// ->cblist.  We do not want to acquire that lock because
2172 		// it can be heavily contended during callback floods.
2173 
2174 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2175 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2176 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
2177 	} else {
2178 
2179 		// We get here either if there is no need for an
2180 		// additional grace period or if rcu_accelerate_cbs() has
2181 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
2182 		// So all we need to do is to clear all of the other
2183 		// ->gp_flags bits.
2184 
2185 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2186 	}
2187 	raw_spin_unlock_irq_rcu_node(rnp);
2188 
2189 	// Make synchronize_rcu() users aware of the end of old grace period.
2190 	rcu_sr_normal_gp_cleanup();
2191 
2192 	// If strict, make all CPUs aware of the end of the old grace period.
2193 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2194 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2195 }
2196 
2197 /*
2198  * Body of kthread that handles grace periods.
2199  */
2200 static int __noreturn rcu_gp_kthread(void *unused)
2201 {
2202 	rcu_bind_gp_kthread();
2203 	for (;;) {
2204 
2205 		/* Handle grace-period start. */
2206 		for (;;) {
2207 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2208 					       TPS("reqwait"));
2209 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2210 			swait_event_idle_exclusive(rcu_state.gp_wq,
2211 					 READ_ONCE(rcu_state.gp_flags) &
2212 					 RCU_GP_FLAG_INIT);
2213 			rcu_gp_torture_wait();
2214 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2215 			/* Locking provides needed memory barrier. */
2216 			if (rcu_gp_init())
2217 				break;
2218 			cond_resched_tasks_rcu_qs();
2219 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2220 			WARN_ON(signal_pending(current));
2221 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2222 					       TPS("reqwaitsig"));
2223 		}
2224 
2225 		/* Handle quiescent-state forcing. */
2226 		rcu_gp_fqs_loop();
2227 
2228 		/* Handle grace-period end. */
2229 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2230 		rcu_gp_cleanup();
2231 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2232 	}
2233 }
2234 
2235 /*
2236  * Report a full set of quiescent states to the rcu_state data structure.
2237  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2238  * another grace period is required.  Whether we wake the grace-period
2239  * kthread or it awakens itself for the next round of quiescent-state
2240  * forcing, that kthread will clean up after the just-completed grace
2241  * period.  Note that the caller must hold rnp->lock, which is released
2242  * before return.
2243  */
2244 static void rcu_report_qs_rsp(unsigned long flags)
2245 	__releases(rcu_get_root()->lock)
2246 {
2247 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2248 	WARN_ON_ONCE(!rcu_gp_in_progress());
2249 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2250 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2251 	rcu_gp_kthread_wake();
2252 }
2253 
2254 /*
2255  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2256  * Allows quiescent states for a group of CPUs to be reported at one go
2257  * to the specified rcu_node structure, though all the CPUs in the group
2258  * must be represented by the same rcu_node structure (which need not be a
2259  * leaf rcu_node structure, though it often will be).  The gps parameter
2260  * is the grace-period snapshot, which means that the quiescent states
2261  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2262  * must be held upon entry, and it is released before return.
2263  *
2264  * As a special case, if mask is zero, the bit-already-cleared check is
2265  * disabled.  This allows propagating quiescent state due to resumed tasks
2266  * during grace-period initialization.
2267  */
2268 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2269 			      unsigned long gps, unsigned long flags)
2270 	__releases(rnp->lock)
2271 {
2272 	unsigned long oldmask = 0;
2273 	struct rcu_node *rnp_c;
2274 
2275 	raw_lockdep_assert_held_rcu_node(rnp);
2276 
2277 	/* Walk up the rcu_node hierarchy. */
2278 	for (;;) {
2279 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2280 
2281 			/*
2282 			 * Our bit has already been cleared, or the
2283 			 * relevant grace period is already over, so done.
2284 			 */
2285 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2286 			return;
2287 		}
2288 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2289 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2290 			     rcu_preempt_blocked_readers_cgp(rnp));
2291 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2292 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2293 						 mask, rnp->qsmask, rnp->level,
2294 						 rnp->grplo, rnp->grphi,
2295 						 !!rnp->gp_tasks);
2296 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2297 
2298 			/* Other bits still set at this level, so done. */
2299 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2300 			return;
2301 		}
2302 		rnp->completedqs = rnp->gp_seq;
2303 		mask = rnp->grpmask;
2304 		if (rnp->parent == NULL) {
2305 
2306 			/* No more levels.  Exit loop holding root lock. */
2307 
2308 			break;
2309 		}
2310 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2311 		rnp_c = rnp;
2312 		rnp = rnp->parent;
2313 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2314 		oldmask = READ_ONCE(rnp_c->qsmask);
2315 	}
2316 
2317 	/*
2318 	 * Get here if we are the last CPU to pass through a quiescent
2319 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2320 	 * to clean up and start the next grace period if one is needed.
2321 	 */
2322 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2323 }
2324 
2325 /*
2326  * Record a quiescent state for all tasks that were previously queued
2327  * on the specified rcu_node structure and that were blocking the current
2328  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2329  * irqs disabled, and this lock is released upon return, but irqs remain
2330  * disabled.
2331  */
2332 static void __maybe_unused
2333 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2334 	__releases(rnp->lock)
2335 {
2336 	unsigned long gps;
2337 	unsigned long mask;
2338 	struct rcu_node *rnp_p;
2339 
2340 	raw_lockdep_assert_held_rcu_node(rnp);
2341 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2342 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2343 	    rnp->qsmask != 0) {
2344 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2345 		return;  /* Still need more quiescent states! */
2346 	}
2347 
2348 	rnp->completedqs = rnp->gp_seq;
2349 	rnp_p = rnp->parent;
2350 	if (rnp_p == NULL) {
2351 		/*
2352 		 * Only one rcu_node structure in the tree, so don't
2353 		 * try to report up to its nonexistent parent!
2354 		 */
2355 		rcu_report_qs_rsp(flags);
2356 		return;
2357 	}
2358 
2359 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2360 	gps = rnp->gp_seq;
2361 	mask = rnp->grpmask;
2362 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2363 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2364 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2365 }
2366 
2367 /*
2368  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2369  * structure.  This must be called from the specified CPU.
2370  */
2371 static void
2372 rcu_report_qs_rdp(struct rcu_data *rdp)
2373 {
2374 	unsigned long flags;
2375 	unsigned long mask;
2376 	struct rcu_node *rnp;
2377 
2378 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2379 	rnp = rdp->mynode;
2380 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2381 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2382 	    rdp->gpwrap) {
2383 
2384 		/*
2385 		 * The grace period in which this quiescent state was
2386 		 * recorded has ended, so don't report it upwards.
2387 		 * We will instead need a new quiescent state that lies
2388 		 * within the current grace period.
2389 		 */
2390 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2391 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2392 		return;
2393 	}
2394 	mask = rdp->grpmask;
2395 	rdp->core_needs_qs = false;
2396 	if ((rnp->qsmask & mask) == 0) {
2397 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2398 	} else {
2399 		/*
2400 		 * This GP can't end until cpu checks in, so all of our
2401 		 * callbacks can be processed during the next GP.
2402 		 *
2403 		 * NOCB kthreads have their own way to deal with that...
2404 		 */
2405 		if (!rcu_rdp_is_offloaded(rdp)) {
2406 			/*
2407 			 * The current GP has not yet ended, so it
2408 			 * should not be possible for rcu_accelerate_cbs()
2409 			 * to return true.  So complain, but don't awaken.
2410 			 */
2411 			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2412 		}
2413 
2414 		rcu_disable_urgency_upon_qs(rdp);
2415 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2416 		/* ^^^ Released rnp->lock */
2417 	}
2418 }
2419 
2420 /*
2421  * Check to see if there is a new grace period of which this CPU
2422  * is not yet aware, and if so, set up local rcu_data state for it.
2423  * Otherwise, see if this CPU has just passed through its first
2424  * quiescent state for this grace period, and record that fact if so.
2425  */
2426 static void
2427 rcu_check_quiescent_state(struct rcu_data *rdp)
2428 {
2429 	/* Check for grace-period ends and beginnings. */
2430 	note_gp_changes(rdp);
2431 
2432 	/*
2433 	 * Does this CPU still need to do its part for current grace period?
2434 	 * If no, return and let the other CPUs do their part as well.
2435 	 */
2436 	if (!rdp->core_needs_qs)
2437 		return;
2438 
2439 	/*
2440 	 * Was there a quiescent state since the beginning of the grace
2441 	 * period? If no, then exit and wait for the next call.
2442 	 */
2443 	if (rdp->cpu_no_qs.b.norm)
2444 		return;
2445 
2446 	/*
2447 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2448 	 * judge of that).
2449 	 */
2450 	rcu_report_qs_rdp(rdp);
2451 }
2452 
2453 /* Return true if callback-invocation time limit exceeded. */
2454 static bool rcu_do_batch_check_time(long count, long tlimit,
2455 				    bool jlimit_check, unsigned long jlimit)
2456 {
2457 	// Invoke local_clock() only once per 32 consecutive callbacks.
2458 	return unlikely(tlimit) &&
2459 	       (!likely(count & 31) ||
2460 		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2461 		 jlimit_check && time_after(jiffies, jlimit))) &&
2462 	       local_clock() >= tlimit;
2463 }
2464 
2465 /*
2466  * Invoke any RCU callbacks that have made it to the end of their grace
2467  * period.  Throttle as specified by rdp->blimit.
2468  */
2469 static void rcu_do_batch(struct rcu_data *rdp)
2470 {
2471 	long bl;
2472 	long count = 0;
2473 	int div;
2474 	bool __maybe_unused empty;
2475 	unsigned long flags;
2476 	unsigned long jlimit;
2477 	bool jlimit_check = false;
2478 	long pending;
2479 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2480 	struct rcu_head *rhp;
2481 	long tlimit = 0;
2482 
2483 	/* If no callbacks are ready, just return. */
2484 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2485 		trace_rcu_batch_start(rcu_state.name,
2486 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2487 		trace_rcu_batch_end(rcu_state.name, 0,
2488 				    !rcu_segcblist_empty(&rdp->cblist),
2489 				    need_resched(), is_idle_task(current),
2490 				    rcu_is_callbacks_kthread(rdp));
2491 		return;
2492 	}
2493 
2494 	/*
2495 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2496 	 * races with call_rcu() from interrupt handlers.  Leave the
2497 	 * callback counts, as rcu_barrier() needs to be conservative.
2498 	 *
2499 	 * Callbacks execution is fully ordered against preceding grace period
2500 	 * completion (materialized by rnp->gp_seq update) thanks to the
2501 	 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2502 	 * advancing. In NOCB mode this ordering is then further relayed through
2503 	 * the nocb locking that protects both callbacks advancing and extraction.
2504 	 */
2505 	rcu_nocb_lock_irqsave(rdp, flags);
2506 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2507 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2508 	div = READ_ONCE(rcu_divisor);
2509 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2510 	bl = max(rdp->blimit, pending >> div);
2511 	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2512 	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2513 		const long npj = NSEC_PER_SEC / HZ;
2514 		long rrn = READ_ONCE(rcu_resched_ns);
2515 
2516 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2517 		tlimit = local_clock() + rrn;
2518 		jlimit = jiffies + (rrn + npj + 1) / npj;
2519 		jlimit_check = true;
2520 	}
2521 	trace_rcu_batch_start(rcu_state.name,
2522 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2523 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2524 	if (rcu_rdp_is_offloaded(rdp))
2525 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2526 
2527 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2528 	rcu_nocb_unlock_irqrestore(rdp, flags);
2529 
2530 	/* Invoke callbacks. */
2531 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2532 	rhp = rcu_cblist_dequeue(&rcl);
2533 
2534 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2535 		rcu_callback_t f;
2536 
2537 		count++;
2538 		debug_rcu_head_unqueue(rhp);
2539 
2540 		rcu_lock_acquire(&rcu_callback_map);
2541 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2542 
2543 		f = rhp->func;
2544 		debug_rcu_head_callback(rhp);
2545 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2546 		f(rhp);
2547 
2548 		rcu_lock_release(&rcu_callback_map);
2549 
2550 		/*
2551 		 * Stop only if limit reached and CPU has something to do.
2552 		 */
2553 		if (in_serving_softirq()) {
2554 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2555 				break;
2556 			/*
2557 			 * Make sure we don't spend too much time here and deprive other
2558 			 * softirq vectors of CPU cycles.
2559 			 */
2560 			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2561 				break;
2562 		} else {
2563 			// In rcuc/rcuoc context, so no worries about
2564 			// depriving other softirq vectors of CPU cycles.
2565 			local_bh_enable();
2566 			lockdep_assert_irqs_enabled();
2567 			cond_resched_tasks_rcu_qs();
2568 			lockdep_assert_irqs_enabled();
2569 			local_bh_disable();
2570 			// But rcuc kthreads can delay quiescent-state
2571 			// reporting, so check time limits for them.
2572 			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2573 			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2574 				rdp->rcu_cpu_has_work = 1;
2575 				break;
2576 			}
2577 		}
2578 	}
2579 
2580 	rcu_nocb_lock_irqsave(rdp, flags);
2581 	rdp->n_cbs_invoked += count;
2582 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2583 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2584 
2585 	/* Update counts and requeue any remaining callbacks. */
2586 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2587 	rcu_segcblist_add_len(&rdp->cblist, -count);
2588 
2589 	/* Reinstate batch limit if we have worked down the excess. */
2590 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2591 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2592 		rdp->blimit = blimit;
2593 
2594 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2595 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2596 		rdp->qlen_last_fqs_check = 0;
2597 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2598 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2599 		rdp->qlen_last_fqs_check = count;
2600 
2601 	/*
2602 	 * The following usually indicates a double call_rcu().  To track
2603 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2604 	 */
2605 	empty = rcu_segcblist_empty(&rdp->cblist);
2606 	WARN_ON_ONCE(count == 0 && !empty);
2607 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2608 		     count != 0 && empty);
2609 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2610 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2611 
2612 	rcu_nocb_unlock_irqrestore(rdp, flags);
2613 
2614 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2615 }
2616 
2617 /*
2618  * This function is invoked from each scheduling-clock interrupt,
2619  * and checks to see if this CPU is in a non-context-switch quiescent
2620  * state, for example, user mode or idle loop.  It also schedules RCU
2621  * core processing.  If the current grace period has gone on too long,
2622  * it will ask the scheduler to manufacture a context switch for the sole
2623  * purpose of providing the needed quiescent state.
2624  */
2625 void rcu_sched_clock_irq(int user)
2626 {
2627 	unsigned long j;
2628 
2629 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2630 		j = jiffies;
2631 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2632 		__this_cpu_write(rcu_data.last_sched_clock, j);
2633 	}
2634 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2635 	lockdep_assert_irqs_disabled();
2636 	raw_cpu_inc(rcu_data.ticks_this_gp);
2637 	/* The load-acquire pairs with the store-release setting to true. */
2638 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2639 		/* Idle and userspace execution already are quiescent states. */
2640 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2641 			set_tsk_need_resched(current);
2642 			set_preempt_need_resched();
2643 		}
2644 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2645 	}
2646 	rcu_flavor_sched_clock_irq(user);
2647 	if (rcu_pending(user))
2648 		invoke_rcu_core();
2649 	if (user || rcu_is_cpu_rrupt_from_idle())
2650 		rcu_note_voluntary_context_switch(current);
2651 	lockdep_assert_irqs_disabled();
2652 
2653 	trace_rcu_utilization(TPS("End scheduler-tick"));
2654 }
2655 
2656 /*
2657  * Scan the leaf rcu_node structures.  For each structure on which all
2658  * CPUs have reported a quiescent state and on which there are tasks
2659  * blocking the current grace period, initiate RCU priority boosting.
2660  * Otherwise, invoke the specified function to check dyntick state for
2661  * each CPU that has not yet reported a quiescent state.
2662  */
2663 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2664 {
2665 	int cpu;
2666 	unsigned long flags;
2667 	struct rcu_node *rnp;
2668 
2669 	rcu_state.cbovld = rcu_state.cbovldnext;
2670 	rcu_state.cbovldnext = false;
2671 	rcu_for_each_leaf_node(rnp) {
2672 		unsigned long mask = 0;
2673 		unsigned long rsmask = 0;
2674 
2675 		cond_resched_tasks_rcu_qs();
2676 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2677 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2678 		if (rnp->qsmask == 0) {
2679 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2680 				/*
2681 				 * No point in scanning bits because they
2682 				 * are all zero.  But we might need to
2683 				 * priority-boost blocked readers.
2684 				 */
2685 				rcu_initiate_boost(rnp, flags);
2686 				/* rcu_initiate_boost() releases rnp->lock */
2687 				continue;
2688 			}
2689 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2690 			continue;
2691 		}
2692 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2693 			struct rcu_data *rdp;
2694 			int ret;
2695 
2696 			rdp = per_cpu_ptr(&rcu_data, cpu);
2697 			ret = f(rdp);
2698 			if (ret > 0) {
2699 				mask |= rdp->grpmask;
2700 				rcu_disable_urgency_upon_qs(rdp);
2701 			}
2702 			if (ret < 0)
2703 				rsmask |= rdp->grpmask;
2704 		}
2705 		if (mask != 0) {
2706 			/* Idle/offline CPUs, report (releases rnp->lock). */
2707 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2708 		} else {
2709 			/* Nothing to do here, so just drop the lock. */
2710 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2711 		}
2712 
2713 		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2714 			resched_cpu(cpu);
2715 	}
2716 }
2717 
2718 /*
2719  * Force quiescent states on reluctant CPUs, and also detect which
2720  * CPUs are in dyntick-idle mode.
2721  */
2722 void rcu_force_quiescent_state(void)
2723 {
2724 	unsigned long flags;
2725 	bool ret;
2726 	struct rcu_node *rnp;
2727 	struct rcu_node *rnp_old = NULL;
2728 
2729 	if (!rcu_gp_in_progress())
2730 		return;
2731 	/* Funnel through hierarchy to reduce memory contention. */
2732 	rnp = raw_cpu_read(rcu_data.mynode);
2733 	for (; rnp != NULL; rnp = rnp->parent) {
2734 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2735 		       !raw_spin_trylock(&rnp->fqslock);
2736 		if (rnp_old != NULL)
2737 			raw_spin_unlock(&rnp_old->fqslock);
2738 		if (ret)
2739 			return;
2740 		rnp_old = rnp;
2741 	}
2742 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2743 
2744 	/* Reached the root of the rcu_node tree, acquire lock. */
2745 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2746 	raw_spin_unlock(&rnp_old->fqslock);
2747 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2748 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2749 		return;  /* Someone beat us to it. */
2750 	}
2751 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2752 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2753 	rcu_gp_kthread_wake();
2754 }
2755 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2756 
2757 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2758 // grace periods.
2759 static void strict_work_handler(struct work_struct *work)
2760 {
2761 	rcu_read_lock();
2762 	rcu_read_unlock();
2763 }
2764 
2765 /* Perform RCU core processing work for the current CPU.  */
2766 static __latent_entropy void rcu_core(void)
2767 {
2768 	unsigned long flags;
2769 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2770 	struct rcu_node *rnp = rdp->mynode;
2771 
2772 	if (cpu_is_offline(smp_processor_id()))
2773 		return;
2774 	trace_rcu_utilization(TPS("Start RCU core"));
2775 	WARN_ON_ONCE(!rdp->beenonline);
2776 
2777 	/* Report any deferred quiescent states if preemption enabled. */
2778 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2779 		rcu_preempt_deferred_qs(current);
2780 	} else if (rcu_preempt_need_deferred_qs(current)) {
2781 		set_tsk_need_resched(current);
2782 		set_preempt_need_resched();
2783 	}
2784 
2785 	/* Update RCU state based on any recent quiescent states. */
2786 	rcu_check_quiescent_state(rdp);
2787 
2788 	/* No grace period and unregistered callbacks? */
2789 	if (!rcu_gp_in_progress() &&
2790 	    rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) {
2791 		local_irq_save(flags);
2792 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2793 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2794 		local_irq_restore(flags);
2795 	}
2796 
2797 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2798 
2799 	/* If there are callbacks ready, invoke them. */
2800 	if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2801 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2802 		rcu_do_batch(rdp);
2803 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2804 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2805 			invoke_rcu_core();
2806 	}
2807 
2808 	/* Do any needed deferred wakeups of rcuo kthreads. */
2809 	do_nocb_deferred_wakeup(rdp);
2810 	trace_rcu_utilization(TPS("End RCU core"));
2811 
2812 	// If strict GPs, schedule an RCU reader in a clean environment.
2813 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2814 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2815 }
2816 
2817 static void rcu_core_si(void)
2818 {
2819 	rcu_core();
2820 }
2821 
2822 static void rcu_wake_cond(struct task_struct *t, int status)
2823 {
2824 	/*
2825 	 * If the thread is yielding, only wake it when this
2826 	 * is invoked from idle
2827 	 */
2828 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2829 		wake_up_process(t);
2830 }
2831 
2832 static void invoke_rcu_core_kthread(void)
2833 {
2834 	struct task_struct *t;
2835 	unsigned long flags;
2836 
2837 	local_irq_save(flags);
2838 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2839 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2840 	if (t != NULL && t != current)
2841 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2842 	local_irq_restore(flags);
2843 }
2844 
2845 /*
2846  * Wake up this CPU's rcuc kthread to do RCU core processing.
2847  */
2848 static void invoke_rcu_core(void)
2849 {
2850 	if (!cpu_online(smp_processor_id()))
2851 		return;
2852 	if (use_softirq)
2853 		raise_softirq(RCU_SOFTIRQ);
2854 	else
2855 		invoke_rcu_core_kthread();
2856 }
2857 
2858 static void rcu_cpu_kthread_park(unsigned int cpu)
2859 {
2860 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2861 }
2862 
2863 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2864 {
2865 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2866 }
2867 
2868 /*
2869  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2870  * the RCU softirq used in configurations of RCU that do not support RCU
2871  * priority boosting.
2872  */
2873 static void rcu_cpu_kthread(unsigned int cpu)
2874 {
2875 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2876 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2877 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2878 	int spincnt;
2879 
2880 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2881 	for (spincnt = 0; spincnt < 10; spincnt++) {
2882 		WRITE_ONCE(*j, jiffies);
2883 		local_bh_disable();
2884 		*statusp = RCU_KTHREAD_RUNNING;
2885 		local_irq_disable();
2886 		work = *workp;
2887 		WRITE_ONCE(*workp, 0);
2888 		local_irq_enable();
2889 		if (work)
2890 			rcu_core();
2891 		local_bh_enable();
2892 		if (!READ_ONCE(*workp)) {
2893 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2894 			*statusp = RCU_KTHREAD_WAITING;
2895 			return;
2896 		}
2897 	}
2898 	*statusp = RCU_KTHREAD_YIELDING;
2899 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2900 	schedule_timeout_idle(2);
2901 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2902 	*statusp = RCU_KTHREAD_WAITING;
2903 	WRITE_ONCE(*j, jiffies);
2904 }
2905 
2906 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2907 	.store			= &rcu_data.rcu_cpu_kthread_task,
2908 	.thread_should_run	= rcu_cpu_kthread_should_run,
2909 	.thread_fn		= rcu_cpu_kthread,
2910 	.thread_comm		= "rcuc/%u",
2911 	.setup			= rcu_cpu_kthread_setup,
2912 	.park			= rcu_cpu_kthread_park,
2913 };
2914 
2915 /*
2916  * Spawn per-CPU RCU core processing kthreads.
2917  */
2918 static int __init rcu_spawn_core_kthreads(void)
2919 {
2920 	int cpu;
2921 
2922 	for_each_possible_cpu(cpu)
2923 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2924 	if (use_softirq)
2925 		return 0;
2926 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2927 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2928 	return 0;
2929 }
2930 
2931 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2932 {
2933 	rcu_segcblist_enqueue(&rdp->cblist, head);
2934 	if (__is_kvfree_rcu_offset((unsigned long)func))
2935 		trace_rcu_kvfree_callback(rcu_state.name, head,
2936 					 (unsigned long)func,
2937 					 rcu_segcblist_n_cbs(&rdp->cblist));
2938 	else
2939 		trace_rcu_callback(rcu_state.name, head,
2940 				   rcu_segcblist_n_cbs(&rdp->cblist));
2941 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2942 }
2943 
2944 /*
2945  * Handle any core-RCU processing required by a call_rcu() invocation.
2946  */
2947 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2948 			  rcu_callback_t func, unsigned long flags)
2949 {
2950 	rcutree_enqueue(rdp, head, func);
2951 	/*
2952 	 * If called from an extended quiescent state, invoke the RCU
2953 	 * core in order to force a re-evaluation of RCU's idleness.
2954 	 */
2955 	if (!rcu_is_watching())
2956 		invoke_rcu_core();
2957 
2958 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2959 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2960 		return;
2961 
2962 	/*
2963 	 * Force the grace period if too many callbacks or too long waiting.
2964 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2965 	 * if some other CPU has recently done so.  Also, don't bother
2966 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2967 	 * is the only one waiting for a grace period to complete.
2968 	 */
2969 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2970 		     rdp->qlen_last_fqs_check + qhimark)) {
2971 
2972 		/* Are we ignoring a completed grace period? */
2973 		note_gp_changes(rdp);
2974 
2975 		/* Start a new grace period if one not already started. */
2976 		if (!rcu_gp_in_progress()) {
2977 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2978 		} else {
2979 			/* Give the grace period a kick. */
2980 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2981 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2982 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2983 				rcu_force_quiescent_state();
2984 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2985 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2986 		}
2987 	}
2988 }
2989 
2990 /*
2991  * RCU callback function to leak a callback.
2992  */
2993 static void rcu_leak_callback(struct rcu_head *rhp)
2994 {
2995 }
2996 
2997 /*
2998  * Check and if necessary update the leaf rcu_node structure's
2999  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3000  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
3001  * structure's ->lock.
3002  */
3003 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3004 {
3005 	raw_lockdep_assert_held_rcu_node(rnp);
3006 	if (qovld_calc <= 0)
3007 		return; // Early boot and wildcard value set.
3008 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
3009 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3010 	else
3011 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3012 }
3013 
3014 /*
3015  * Check and if necessary update the leaf rcu_node structure's
3016  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3017  * number of queued RCU callbacks.  No locks need be held, but the
3018  * caller must have disabled interrupts.
3019  *
3020  * Note that this function ignores the possibility that there are a lot
3021  * of callbacks all of which have already seen the end of their respective
3022  * grace periods.  This omission is due to the need for no-CBs CPUs to
3023  * be holding ->nocb_lock to do this check, which is too heavy for a
3024  * common-case operation.
3025  */
3026 static void check_cb_ovld(struct rcu_data *rdp)
3027 {
3028 	struct rcu_node *const rnp = rdp->mynode;
3029 
3030 	if (qovld_calc <= 0 ||
3031 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3032 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3033 		return; // Early boot wildcard value or already set correctly.
3034 	raw_spin_lock_rcu_node(rnp);
3035 	check_cb_ovld_locked(rdp, rnp);
3036 	raw_spin_unlock_rcu_node(rnp);
3037 }
3038 
3039 static void
3040 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
3041 {
3042 	static atomic_t doublefrees;
3043 	unsigned long flags;
3044 	bool lazy;
3045 	struct rcu_data *rdp;
3046 
3047 	/* Misaligned rcu_head! */
3048 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3049 
3050 	if (debug_rcu_head_queue(head)) {
3051 		/*
3052 		 * Probable double call_rcu(), so leak the callback.
3053 		 * Use rcu:rcu_callback trace event to find the previous
3054 		 * time callback was passed to call_rcu().
3055 		 */
3056 		if (atomic_inc_return(&doublefrees) < 4) {
3057 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3058 			mem_dump_obj(head);
3059 		}
3060 		WRITE_ONCE(head->func, rcu_leak_callback);
3061 		return;
3062 	}
3063 	head->func = func;
3064 	head->next = NULL;
3065 	kasan_record_aux_stack_noalloc(head);
3066 
3067 	local_irq_save(flags);
3068 	rdp = this_cpu_ptr(&rcu_data);
3069 	RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!");
3070 
3071 	lazy = lazy_in && !rcu_async_should_hurry();
3072 
3073 	/* Add the callback to our list. */
3074 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3075 		// This can trigger due to call_rcu() from offline CPU:
3076 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3077 		WARN_ON_ONCE(!rcu_is_watching());
3078 		// Very early boot, before rcu_init().  Initialize if needed
3079 		// and then drop through to queue the callback.
3080 		if (rcu_segcblist_empty(&rdp->cblist))
3081 			rcu_segcblist_init(&rdp->cblist);
3082 	}
3083 
3084 	check_cb_ovld(rdp);
3085 
3086 	if (unlikely(rcu_rdp_is_offloaded(rdp)))
3087 		call_rcu_nocb(rdp, head, func, flags, lazy);
3088 	else
3089 		call_rcu_core(rdp, head, func, flags);
3090 	local_irq_restore(flags);
3091 }
3092 
3093 #ifdef CONFIG_RCU_LAZY
3094 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
3095 module_param(enable_rcu_lazy, bool, 0444);
3096 
3097 /**
3098  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
3099  * flush all lazy callbacks (including the new one) to the main ->cblist while
3100  * doing so.
3101  *
3102  * @head: structure to be used for queueing the RCU updates.
3103  * @func: actual callback function to be invoked after the grace period
3104  *
3105  * The callback function will be invoked some time after a full grace
3106  * period elapses, in other words after all pre-existing RCU read-side
3107  * critical sections have completed.
3108  *
3109  * Use this API instead of call_rcu() if you don't want the callback to be
3110  * invoked after very long periods of time, which can happen on systems without
3111  * memory pressure and on systems which are lightly loaded or mostly idle.
3112  * This function will cause callbacks to be invoked sooner than later at the
3113  * expense of extra power. Other than that, this function is identical to, and
3114  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
3115  * ordering and other functionality.
3116  */
3117 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
3118 {
3119 	__call_rcu_common(head, func, false);
3120 }
3121 EXPORT_SYMBOL_GPL(call_rcu_hurry);
3122 #else
3123 #define enable_rcu_lazy		false
3124 #endif
3125 
3126 /**
3127  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3128  * By default the callbacks are 'lazy' and are kept hidden from the main
3129  * ->cblist to prevent starting of grace periods too soon.
3130  * If you desire grace periods to start very soon, use call_rcu_hurry().
3131  *
3132  * @head: structure to be used for queueing the RCU updates.
3133  * @func: actual callback function to be invoked after the grace period
3134  *
3135  * The callback function will be invoked some time after a full grace
3136  * period elapses, in other words after all pre-existing RCU read-side
3137  * critical sections have completed.  However, the callback function
3138  * might well execute concurrently with RCU read-side critical sections
3139  * that started after call_rcu() was invoked.
3140  *
3141  * RCU read-side critical sections are delimited by rcu_read_lock()
3142  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3143  * v5.0 and later, regions of code across which interrupts, preemption,
3144  * or softirqs have been disabled also serve as RCU read-side critical
3145  * sections.  This includes hardware interrupt handlers, softirq handlers,
3146  * and NMI handlers.
3147  *
3148  * Note that all CPUs must agree that the grace period extended beyond
3149  * all pre-existing RCU read-side critical section.  On systems with more
3150  * than one CPU, this means that when "func()" is invoked, each CPU is
3151  * guaranteed to have executed a full memory barrier since the end of its
3152  * last RCU read-side critical section whose beginning preceded the call
3153  * to call_rcu().  It also means that each CPU executing an RCU read-side
3154  * critical section that continues beyond the start of "func()" must have
3155  * executed a memory barrier after the call_rcu() but before the beginning
3156  * of that RCU read-side critical section.  Note that these guarantees
3157  * include CPUs that are offline, idle, or executing in user mode, as
3158  * well as CPUs that are executing in the kernel.
3159  *
3160  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3161  * resulting RCU callback function "func()", then both CPU A and CPU B are
3162  * guaranteed to execute a full memory barrier during the time interval
3163  * between the call to call_rcu() and the invocation of "func()" -- even
3164  * if CPU A and CPU B are the same CPU (but again only if the system has
3165  * more than one CPU).
3166  *
3167  * Implementation of these memory-ordering guarantees is described here:
3168  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3169  */
3170 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3171 {
3172 	__call_rcu_common(head, func, enable_rcu_lazy);
3173 }
3174 EXPORT_SYMBOL_GPL(call_rcu);
3175 
3176 /*
3177  * During early boot, any blocking grace-period wait automatically
3178  * implies a grace period.
3179  *
3180  * Later on, this could in theory be the case for kernels built with
3181  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3182  * is not a common case.  Furthermore, this optimization would cause
3183  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3184  * grace-period optimization is ignored once the scheduler is running.
3185  */
3186 static int rcu_blocking_is_gp(void)
3187 {
3188 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3189 		might_sleep();
3190 		return false;
3191 	}
3192 	return true;
3193 }
3194 
3195 /*
3196  * Helper function for the synchronize_rcu() API.
3197  */
3198 static void synchronize_rcu_normal(void)
3199 {
3200 	struct rcu_synchronize rs;
3201 
3202 	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
3203 
3204 	if (!READ_ONCE(rcu_normal_wake_from_gp)) {
3205 		wait_rcu_gp(call_rcu_hurry);
3206 		goto trace_complete_out;
3207 	}
3208 
3209 	init_rcu_head_on_stack(&rs.head);
3210 	init_completion(&rs.completion);
3211 
3212 	/*
3213 	 * This code might be preempted, therefore take a GP
3214 	 * snapshot before adding a request.
3215 	 */
3216 	if (IS_ENABLED(CONFIG_PROVE_RCU))
3217 		rs.head.func = (void *) get_state_synchronize_rcu();
3218 
3219 	rcu_sr_normal_add_req(&rs);
3220 
3221 	/* Kick a GP and start waiting. */
3222 	(void) start_poll_synchronize_rcu();
3223 
3224 	/* Now we can wait. */
3225 	wait_for_completion(&rs.completion);
3226 	destroy_rcu_head_on_stack(&rs.head);
3227 
3228 trace_complete_out:
3229 	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
3230 }
3231 
3232 /**
3233  * synchronize_rcu - wait until a grace period has elapsed.
3234  *
3235  * Control will return to the caller some time after a full grace
3236  * period has elapsed, in other words after all currently executing RCU
3237  * read-side critical sections have completed.  Note, however, that
3238  * upon return from synchronize_rcu(), the caller might well be executing
3239  * concurrently with new RCU read-side critical sections that began while
3240  * synchronize_rcu() was waiting.
3241  *
3242  * RCU read-side critical sections are delimited by rcu_read_lock()
3243  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3244  * v5.0 and later, regions of code across which interrupts, preemption,
3245  * or softirqs have been disabled also serve as RCU read-side critical
3246  * sections.  This includes hardware interrupt handlers, softirq handlers,
3247  * and NMI handlers.
3248  *
3249  * Note that this guarantee implies further memory-ordering guarantees.
3250  * On systems with more than one CPU, when synchronize_rcu() returns,
3251  * each CPU is guaranteed to have executed a full memory barrier since
3252  * the end of its last RCU read-side critical section whose beginning
3253  * preceded the call to synchronize_rcu().  In addition, each CPU having
3254  * an RCU read-side critical section that extends beyond the return from
3255  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3256  * after the beginning of synchronize_rcu() and before the beginning of
3257  * that RCU read-side critical section.  Note that these guarantees include
3258  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3259  * that are executing in the kernel.
3260  *
3261  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3262  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3263  * to have executed a full memory barrier during the execution of
3264  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3265  * again only if the system has more than one CPU).
3266  *
3267  * Implementation of these memory-ordering guarantees is described here:
3268  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3269  */
3270 void synchronize_rcu(void)
3271 {
3272 	unsigned long flags;
3273 	struct rcu_node *rnp;
3274 
3275 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3276 			 lock_is_held(&rcu_lock_map) ||
3277 			 lock_is_held(&rcu_sched_lock_map),
3278 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3279 	if (!rcu_blocking_is_gp()) {
3280 		if (rcu_gp_is_expedited())
3281 			synchronize_rcu_expedited();
3282 		else
3283 			synchronize_rcu_normal();
3284 		return;
3285 	}
3286 
3287 	// Context allows vacuous grace periods.
3288 	// Note well that this code runs with !PREEMPT && !SMP.
3289 	// In addition, all code that advances grace periods runs at
3290 	// process level.  Therefore, this normal GP overlaps with other
3291 	// normal GPs only by being fully nested within them, which allows
3292 	// reuse of ->gp_seq_polled_snap.
3293 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3294 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3295 
3296 	// Update the normal grace-period counters to record
3297 	// this grace period, but only those used by the boot CPU.
3298 	// The rcu_scheduler_starting() will take care of the rest of
3299 	// these counters.
3300 	local_irq_save(flags);
3301 	WARN_ON_ONCE(num_online_cpus() > 1);
3302 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3303 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3304 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3305 	local_irq_restore(flags);
3306 }
3307 EXPORT_SYMBOL_GPL(synchronize_rcu);
3308 
3309 /**
3310  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3311  * @rgosp: Place to put state cookie
3312  *
3313  * Stores into @rgosp a value that will always be treated by functions
3314  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3315  * has already completed.
3316  */
3317 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3318 {
3319 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3320 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3321 }
3322 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3323 
3324 /**
3325  * get_state_synchronize_rcu - Snapshot current RCU state
3326  *
3327  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3328  * or poll_state_synchronize_rcu() to determine whether or not a full
3329  * grace period has elapsed in the meantime.
3330  */
3331 unsigned long get_state_synchronize_rcu(void)
3332 {
3333 	/*
3334 	 * Any prior manipulation of RCU-protected data must happen
3335 	 * before the load from ->gp_seq.
3336 	 */
3337 	smp_mb();  /* ^^^ */
3338 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3339 }
3340 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3341 
3342 /**
3343  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3344  * @rgosp: location to place combined normal/expedited grace-period state
3345  *
3346  * Places the normal and expedited grace-period states in @rgosp.  This
3347  * state value can be passed to a later call to cond_synchronize_rcu_full()
3348  * or poll_state_synchronize_rcu_full() to determine whether or not a
3349  * grace period (whether normal or expedited) has elapsed in the meantime.
3350  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3351  * long, but is guaranteed to see all grace periods.  In contrast, the
3352  * combined state occupies less memory, but can sometimes fail to take
3353  * grace periods into account.
3354  *
3355  * This does not guarantee that the needed grace period will actually
3356  * start.
3357  */
3358 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3359 {
3360 	struct rcu_node *rnp = rcu_get_root();
3361 
3362 	/*
3363 	 * Any prior manipulation of RCU-protected data must happen
3364 	 * before the loads from ->gp_seq and ->expedited_sequence.
3365 	 */
3366 	smp_mb();  /* ^^^ */
3367 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3368 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3369 }
3370 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3371 
3372 /*
3373  * Helper function for start_poll_synchronize_rcu() and
3374  * start_poll_synchronize_rcu_full().
3375  */
3376 static void start_poll_synchronize_rcu_common(void)
3377 {
3378 	unsigned long flags;
3379 	bool needwake;
3380 	struct rcu_data *rdp;
3381 	struct rcu_node *rnp;
3382 
3383 	local_irq_save(flags);
3384 	rdp = this_cpu_ptr(&rcu_data);
3385 	rnp = rdp->mynode;
3386 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3387 	// Note it is possible for a grace period to have elapsed between
3388 	// the above call to get_state_synchronize_rcu() and the below call
3389 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3390 	// get a grace period that no one needed.  These accesses are ordered
3391 	// by smp_mb(), and we are accessing them in the opposite order
3392 	// from which they are updated at grace-period start, as required.
3393 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3394 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3395 	if (needwake)
3396 		rcu_gp_kthread_wake();
3397 }
3398 
3399 /**
3400  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3401  *
3402  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3403  * or poll_state_synchronize_rcu() to determine whether or not a full
3404  * grace period has elapsed in the meantime.  If the needed grace period
3405  * is not already slated to start, notifies RCU core of the need for that
3406  * grace period.
3407  */
3408 unsigned long start_poll_synchronize_rcu(void)
3409 {
3410 	unsigned long gp_seq = get_state_synchronize_rcu();
3411 
3412 	start_poll_synchronize_rcu_common();
3413 	return gp_seq;
3414 }
3415 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3416 
3417 /**
3418  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3419  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3420  *
3421  * Places the normal and expedited grace-period states in *@rgos.  This
3422  * state value can be passed to a later call to cond_synchronize_rcu_full()
3423  * or poll_state_synchronize_rcu_full() to determine whether or not a
3424  * grace period (whether normal or expedited) has elapsed in the meantime.
3425  * If the needed grace period is not already slated to start, notifies
3426  * RCU core of the need for that grace period.
3427  */
3428 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3429 {
3430 	get_state_synchronize_rcu_full(rgosp);
3431 
3432 	start_poll_synchronize_rcu_common();
3433 }
3434 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3435 
3436 /**
3437  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3438  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3439  *
3440  * If a full RCU grace period has elapsed since the earlier call from
3441  * which @oldstate was obtained, return @true, otherwise return @false.
3442  * If @false is returned, it is the caller's responsibility to invoke this
3443  * function later on until it does return @true.  Alternatively, the caller
3444  * can explicitly wait for a grace period, for example, by passing @oldstate
3445  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3446  * on the one hand or by directly invoking either synchronize_rcu() or
3447  * synchronize_rcu_expedited() on the other.
3448  *
3449  * Yes, this function does not take counter wrap into account.
3450  * But counter wrap is harmless.  If the counter wraps, we have waited for
3451  * more than a billion grace periods (and way more on a 64-bit system!).
3452  * Those needing to keep old state values for very long time periods
3453  * (many hours even on 32-bit systems) should check them occasionally and
3454  * either refresh them or set a flag indicating that the grace period has
3455  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3456  * to get a guaranteed-completed grace-period state.
3457  *
3458  * In addition, because oldstate compresses the grace-period state for
3459  * both normal and expedited grace periods into a single unsigned long,
3460  * it can miss a grace period when synchronize_rcu() runs concurrently
3461  * with synchronize_rcu_expedited().  If this is unacceptable, please
3462  * instead use the _full() variant of these polling APIs.
3463  *
3464  * This function provides the same memory-ordering guarantees that
3465  * would be provided by a synchronize_rcu() that was invoked at the call
3466  * to the function that provided @oldstate, and that returned at the end
3467  * of this function.
3468  */
3469 bool poll_state_synchronize_rcu(unsigned long oldstate)
3470 {
3471 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3472 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3473 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3474 		return true;
3475 	}
3476 	return false;
3477 }
3478 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3479 
3480 /**
3481  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3482  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3483  *
3484  * If a full RCU grace period has elapsed since the earlier call from
3485  * which *rgosp was obtained, return @true, otherwise return @false.
3486  * If @false is returned, it is the caller's responsibility to invoke this
3487  * function later on until it does return @true.  Alternatively, the caller
3488  * can explicitly wait for a grace period, for example, by passing @rgosp
3489  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3490  *
3491  * Yes, this function does not take counter wrap into account.
3492  * But counter wrap is harmless.  If the counter wraps, we have waited
3493  * for more than a billion grace periods (and way more on a 64-bit
3494  * system!).  Those needing to keep rcu_gp_oldstate values for very
3495  * long time periods (many hours even on 32-bit systems) should check
3496  * them occasionally and either refresh them or set a flag indicating
3497  * that the grace period has completed.  Alternatively, they can use
3498  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3499  * grace-period state.
3500  *
3501  * This function provides the same memory-ordering guarantees that would
3502  * be provided by a synchronize_rcu() that was invoked at the call to
3503  * the function that provided @rgosp, and that returned at the end of this
3504  * function.  And this guarantee requires that the root rcu_node structure's
3505  * ->gp_seq field be checked instead of that of the rcu_state structure.
3506  * The problem is that the just-ending grace-period's callbacks can be
3507  * invoked between the time that the root rcu_node structure's ->gp_seq
3508  * field is updated and the time that the rcu_state structure's ->gp_seq
3509  * field is updated.  Therefore, if a single synchronize_rcu() is to
3510  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3511  * then the root rcu_node structure is the one that needs to be polled.
3512  */
3513 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3514 {
3515 	struct rcu_node *rnp = rcu_get_root();
3516 
3517 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3518 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3519 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3520 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3521 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3522 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3523 		return true;
3524 	}
3525 	return false;
3526 }
3527 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3528 
3529 /**
3530  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3531  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3532  *
3533  * If a full RCU grace period has elapsed since the earlier call to
3534  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3535  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3536  *
3537  * Yes, this function does not take counter wrap into account.
3538  * But counter wrap is harmless.  If the counter wraps, we have waited for
3539  * more than 2 billion grace periods (and way more on a 64-bit system!),
3540  * so waiting for a couple of additional grace periods should be just fine.
3541  *
3542  * This function provides the same memory-ordering guarantees that
3543  * would be provided by a synchronize_rcu() that was invoked at the call
3544  * to the function that provided @oldstate and that returned at the end
3545  * of this function.
3546  */
3547 void cond_synchronize_rcu(unsigned long oldstate)
3548 {
3549 	if (!poll_state_synchronize_rcu(oldstate))
3550 		synchronize_rcu();
3551 }
3552 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3553 
3554 /**
3555  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3556  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3557  *
3558  * If a full RCU grace period has elapsed since the call to
3559  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3560  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3561  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3562  * for a full grace period.
3563  *
3564  * Yes, this function does not take counter wrap into account.
3565  * But counter wrap is harmless.  If the counter wraps, we have waited for
3566  * more than 2 billion grace periods (and way more on a 64-bit system!),
3567  * so waiting for a couple of additional grace periods should be just fine.
3568  *
3569  * This function provides the same memory-ordering guarantees that
3570  * would be provided by a synchronize_rcu() that was invoked at the call
3571  * to the function that provided @rgosp and that returned at the end of
3572  * this function.
3573  */
3574 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3575 {
3576 	if (!poll_state_synchronize_rcu_full(rgosp))
3577 		synchronize_rcu();
3578 }
3579 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3580 
3581 /*
3582  * Check to see if there is any immediate RCU-related work to be done by
3583  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3584  * in order of increasing expense: checks that can be carried out against
3585  * CPU-local state are performed first.  However, we must check for CPU
3586  * stalls first, else we might not get a chance.
3587  */
3588 static int rcu_pending(int user)
3589 {
3590 	bool gp_in_progress;
3591 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3592 	struct rcu_node *rnp = rdp->mynode;
3593 
3594 	lockdep_assert_irqs_disabled();
3595 
3596 	/* Check for CPU stalls, if enabled. */
3597 	check_cpu_stall(rdp);
3598 
3599 	/* Does this CPU need a deferred NOCB wakeup? */
3600 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3601 		return 1;
3602 
3603 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3604 	gp_in_progress = rcu_gp_in_progress();
3605 	if ((user || rcu_is_cpu_rrupt_from_idle() ||
3606 	     (gp_in_progress &&
3607 	      time_before(jiffies, READ_ONCE(rcu_state.gp_start) +
3608 			  nohz_full_patience_delay_jiffies))) &&
3609 	    rcu_nohz_full_cpu())
3610 		return 0;
3611 
3612 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3613 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3614 		return 1;
3615 
3616 	/* Does this CPU have callbacks ready to invoke? */
3617 	if (!rcu_rdp_is_offloaded(rdp) &&
3618 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3619 		return 1;
3620 
3621 	/* Has RCU gone idle with this CPU needing another grace period? */
3622 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3623 	    !rcu_rdp_is_offloaded(rdp) &&
3624 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3625 		return 1;
3626 
3627 	/* Have RCU grace period completed or started?  */
3628 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3629 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3630 		return 1;
3631 
3632 	/* nothing to do */
3633 	return 0;
3634 }
3635 
3636 /*
3637  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3638  * the compiler is expected to optimize this away.
3639  */
3640 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3641 {
3642 	trace_rcu_barrier(rcu_state.name, s, cpu,
3643 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3644 }
3645 
3646 /*
3647  * RCU callback function for rcu_barrier().  If we are last, wake
3648  * up the task executing rcu_barrier().
3649  *
3650  * Note that the value of rcu_state.barrier_sequence must be captured
3651  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3652  * other CPUs might count the value down to zero before this CPU gets
3653  * around to invoking rcu_barrier_trace(), which might result in bogus
3654  * data from the next instance of rcu_barrier().
3655  */
3656 static void rcu_barrier_callback(struct rcu_head *rhp)
3657 {
3658 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3659 
3660 	rhp->next = rhp; // Mark the callback as having been invoked.
3661 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3662 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3663 		complete(&rcu_state.barrier_completion);
3664 	} else {
3665 		rcu_barrier_trace(TPS("CB"), -1, s);
3666 	}
3667 }
3668 
3669 /*
3670  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3671  */
3672 static void rcu_barrier_entrain(struct rcu_data *rdp)
3673 {
3674 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3675 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3676 	bool wake_nocb = false;
3677 	bool was_alldone = false;
3678 
3679 	lockdep_assert_held(&rcu_state.barrier_lock);
3680 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3681 		return;
3682 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3683 	rdp->barrier_head.func = rcu_barrier_callback;
3684 	debug_rcu_head_queue(&rdp->barrier_head);
3685 	rcu_nocb_lock(rdp);
3686 	/*
3687 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3688 	 * queue. This way we don't wait for bypass timer that can reach seconds
3689 	 * if it's fully lazy.
3690 	 */
3691 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3692 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3693 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3694 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3695 		atomic_inc(&rcu_state.barrier_cpu_count);
3696 	} else {
3697 		debug_rcu_head_unqueue(&rdp->barrier_head);
3698 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3699 	}
3700 	rcu_nocb_unlock(rdp);
3701 	if (wake_nocb)
3702 		wake_nocb_gp(rdp, false);
3703 	smp_store_release(&rdp->barrier_seq_snap, gseq);
3704 }
3705 
3706 /*
3707  * Called with preemption disabled, and from cross-cpu IRQ context.
3708  */
3709 static void rcu_barrier_handler(void *cpu_in)
3710 {
3711 	uintptr_t cpu = (uintptr_t)cpu_in;
3712 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3713 
3714 	lockdep_assert_irqs_disabled();
3715 	WARN_ON_ONCE(cpu != rdp->cpu);
3716 	WARN_ON_ONCE(cpu != smp_processor_id());
3717 	raw_spin_lock(&rcu_state.barrier_lock);
3718 	rcu_barrier_entrain(rdp);
3719 	raw_spin_unlock(&rcu_state.barrier_lock);
3720 }
3721 
3722 /**
3723  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3724  *
3725  * Note that this primitive does not necessarily wait for an RCU grace period
3726  * to complete.  For example, if there are no RCU callbacks queued anywhere
3727  * in the system, then rcu_barrier() is within its rights to return
3728  * immediately, without waiting for anything, much less an RCU grace period.
3729  */
3730 void rcu_barrier(void)
3731 {
3732 	uintptr_t cpu;
3733 	unsigned long flags;
3734 	unsigned long gseq;
3735 	struct rcu_data *rdp;
3736 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3737 
3738 	rcu_barrier_trace(TPS("Begin"), -1, s);
3739 
3740 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3741 	mutex_lock(&rcu_state.barrier_mutex);
3742 
3743 	/* Did someone else do our work for us? */
3744 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3745 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
3746 		smp_mb(); /* caller's subsequent code after above check. */
3747 		mutex_unlock(&rcu_state.barrier_mutex);
3748 		return;
3749 	}
3750 
3751 	/* Mark the start of the barrier operation. */
3752 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3753 	rcu_seq_start(&rcu_state.barrier_sequence);
3754 	gseq = rcu_state.barrier_sequence;
3755 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3756 
3757 	/*
3758 	 * Initialize the count to two rather than to zero in order
3759 	 * to avoid a too-soon return to zero in case of an immediate
3760 	 * invocation of the just-enqueued callback (or preemption of
3761 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3762 	 * offline non-offloaded CPU has callbacks queued.
3763 	 */
3764 	init_completion(&rcu_state.barrier_completion);
3765 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3766 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3767 
3768 	/*
3769 	 * Force each CPU with callbacks to register a new callback.
3770 	 * When that callback is invoked, we will know that all of the
3771 	 * corresponding CPU's preceding callbacks have been invoked.
3772 	 */
3773 	for_each_possible_cpu(cpu) {
3774 		rdp = per_cpu_ptr(&rcu_data, cpu);
3775 retry:
3776 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
3777 			continue;
3778 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3779 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
3780 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3781 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3782 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
3783 			continue;
3784 		}
3785 		if (!rcu_rdp_cpu_online(rdp)) {
3786 			rcu_barrier_entrain(rdp);
3787 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3788 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3789 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
3790 			continue;
3791 		}
3792 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3793 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
3794 			schedule_timeout_uninterruptible(1);
3795 			goto retry;
3796 		}
3797 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3798 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
3799 	}
3800 
3801 	/*
3802 	 * Now that we have an rcu_barrier_callback() callback on each
3803 	 * CPU, and thus each counted, remove the initial count.
3804 	 */
3805 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3806 		complete(&rcu_state.barrier_completion);
3807 
3808 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3809 	wait_for_completion(&rcu_state.barrier_completion);
3810 
3811 	/* Mark the end of the barrier operation. */
3812 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3813 	rcu_seq_end(&rcu_state.barrier_sequence);
3814 	gseq = rcu_state.barrier_sequence;
3815 	for_each_possible_cpu(cpu) {
3816 		rdp = per_cpu_ptr(&rcu_data, cpu);
3817 
3818 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3819 	}
3820 
3821 	/* Other rcu_barrier() invocations can now safely proceed. */
3822 	mutex_unlock(&rcu_state.barrier_mutex);
3823 }
3824 EXPORT_SYMBOL_GPL(rcu_barrier);
3825 
3826 static unsigned long rcu_barrier_last_throttle;
3827 
3828 /**
3829  * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
3830  *
3831  * This can be thought of as guard rails around rcu_barrier() that
3832  * permits unrestricted userspace use, at least assuming the hardware's
3833  * try_cmpxchg() is robust.  There will be at most one call per second to
3834  * rcu_barrier() system-wide from use of this function, which means that
3835  * callers might needlessly wait a second or three.
3836  *
3837  * This is intended for use by test suites to avoid OOM by flushing RCU
3838  * callbacks from the previous test before starting the next.  See the
3839  * rcutree.do_rcu_barrier module parameter for more information.
3840  *
3841  * Why not simply make rcu_barrier() more scalable?  That might be
3842  * the eventual endpoint, but let's keep it simple for the time being.
3843  * Note that the module parameter infrastructure serializes calls to a
3844  * given .set() function, but should concurrent .set() invocation ever be
3845  * possible, we are ready!
3846  */
3847 static void rcu_barrier_throttled(void)
3848 {
3849 	unsigned long j = jiffies;
3850 	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
3851 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3852 
3853 	while (time_in_range(j, old, old + HZ / 16) ||
3854 	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
3855 		schedule_timeout_idle(HZ / 16);
3856 		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3857 			smp_mb(); /* caller's subsequent code after above check. */
3858 			return;
3859 		}
3860 		j = jiffies;
3861 		old = READ_ONCE(rcu_barrier_last_throttle);
3862 	}
3863 	rcu_barrier();
3864 }
3865 
3866 /*
3867  * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
3868  * request arrives.  We insist on a true value to allow for possible
3869  * future expansion.
3870  */
3871 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
3872 {
3873 	bool b;
3874 	int ret;
3875 
3876 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
3877 		return -EAGAIN;
3878 	ret = kstrtobool(val, &b);
3879 	if (!ret && b) {
3880 		atomic_inc((atomic_t *)kp->arg);
3881 		rcu_barrier_throttled();
3882 		atomic_dec((atomic_t *)kp->arg);
3883 	}
3884 	return ret;
3885 }
3886 
3887 /*
3888  * Output the number of outstanding rcutree.do_rcu_barrier requests.
3889  */
3890 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
3891 {
3892 	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
3893 }
3894 
3895 static const struct kernel_param_ops do_rcu_barrier_ops = {
3896 	.set = param_set_do_rcu_barrier,
3897 	.get = param_get_do_rcu_barrier,
3898 };
3899 static atomic_t do_rcu_barrier;
3900 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
3901 
3902 /*
3903  * Compute the mask of online CPUs for the specified rcu_node structure.
3904  * This will not be stable unless the rcu_node structure's ->lock is
3905  * held, but the bit corresponding to the current CPU will be stable
3906  * in most contexts.
3907  */
3908 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
3909 {
3910 	return READ_ONCE(rnp->qsmaskinitnext);
3911 }
3912 
3913 /*
3914  * Is the CPU corresponding to the specified rcu_data structure online
3915  * from RCU's perspective?  This perspective is given by that structure's
3916  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
3917  */
3918 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
3919 {
3920 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
3921 }
3922 
3923 bool rcu_cpu_online(int cpu)
3924 {
3925 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3926 
3927 	return rcu_rdp_cpu_online(rdp);
3928 }
3929 
3930 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
3931 
3932 /*
3933  * Is the current CPU online as far as RCU is concerned?
3934  *
3935  * Disable preemption to avoid false positives that could otherwise
3936  * happen due to the current CPU number being sampled, this task being
3937  * preempted, its old CPU being taken offline, resuming on some other CPU,
3938  * then determining that its old CPU is now offline.
3939  *
3940  * Disable checking if in an NMI handler because we cannot safely
3941  * report errors from NMI handlers anyway.  In addition, it is OK to use
3942  * RCU on an offline processor during initial boot, hence the check for
3943  * rcu_scheduler_fully_active.
3944  */
3945 bool rcu_lockdep_current_cpu_online(void)
3946 {
3947 	struct rcu_data *rdp;
3948 	bool ret = false;
3949 
3950 	if (in_nmi() || !rcu_scheduler_fully_active)
3951 		return true;
3952 	preempt_disable_notrace();
3953 	rdp = this_cpu_ptr(&rcu_data);
3954 	/*
3955 	 * Strictly, we care here about the case where the current CPU is
3956 	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
3957 	 * not being up to date. So arch_spin_is_locked() might have a
3958 	 * false positive if it's held by some *other* CPU, but that's
3959 	 * OK because that just means a false *negative* on the warning.
3960 	 */
3961 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
3962 		ret = true;
3963 	preempt_enable_notrace();
3964 	return ret;
3965 }
3966 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
3967 
3968 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
3969 
3970 // Has rcu_init() been invoked?  This is used (for example) to determine
3971 // whether spinlocks may be acquired safely.
3972 static bool rcu_init_invoked(void)
3973 {
3974 	return !!READ_ONCE(rcu_state.n_online_cpus);
3975 }
3976 
3977 /*
3978  * All CPUs for the specified rcu_node structure have gone offline,
3979  * and all tasks that were preempted within an RCU read-side critical
3980  * section while running on one of those CPUs have since exited their RCU
3981  * read-side critical section.  Some other CPU is reporting this fact with
3982  * the specified rcu_node structure's ->lock held and interrupts disabled.
3983  * This function therefore goes up the tree of rcu_node structures,
3984  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
3985  * the leaf rcu_node structure's ->qsmaskinit field has already been
3986  * updated.
3987  *
3988  * This function does check that the specified rcu_node structure has
3989  * all CPUs offline and no blocked tasks, so it is OK to invoke it
3990  * prematurely.  That said, invoking it after the fact will cost you
3991  * a needless lock acquisition.  So once it has done its work, don't
3992  * invoke it again.
3993  */
3994 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
3995 {
3996 	long mask;
3997 	struct rcu_node *rnp = rnp_leaf;
3998 
3999 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4000 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4001 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4002 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4003 		return;
4004 	for (;;) {
4005 		mask = rnp->grpmask;
4006 		rnp = rnp->parent;
4007 		if (!rnp)
4008 			break;
4009 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4010 		rnp->qsmaskinit &= ~mask;
4011 		/* Between grace periods, so better already be zero! */
4012 		WARN_ON_ONCE(rnp->qsmask);
4013 		if (rnp->qsmaskinit) {
4014 			raw_spin_unlock_rcu_node(rnp);
4015 			/* irqs remain disabled. */
4016 			return;
4017 		}
4018 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4019 	}
4020 }
4021 
4022 /*
4023  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4024  * first CPU in a given leaf rcu_node structure coming online.  The caller
4025  * must hold the corresponding leaf rcu_node ->lock with interrupts
4026  * disabled.
4027  */
4028 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4029 {
4030 	long mask;
4031 	long oldmask;
4032 	struct rcu_node *rnp = rnp_leaf;
4033 
4034 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4035 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4036 	for (;;) {
4037 		mask = rnp->grpmask;
4038 		rnp = rnp->parent;
4039 		if (rnp == NULL)
4040 			return;
4041 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4042 		oldmask = rnp->qsmaskinit;
4043 		rnp->qsmaskinit |= mask;
4044 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4045 		if (oldmask)
4046 			return;
4047 	}
4048 }
4049 
4050 /*
4051  * Do boot-time initialization of a CPU's per-CPU RCU data.
4052  */
4053 static void __init
4054 rcu_boot_init_percpu_data(int cpu)
4055 {
4056 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4057 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4058 
4059 	/* Set up local state, ensuring consistent view of global state. */
4060 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4061 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4062 	WARN_ON_ONCE(ct->nesting != 1);
4063 	WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu)));
4064 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4065 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4066 	rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
4067 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4068 	rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
4069 	rdp->last_sched_clock = jiffies;
4070 	rdp->cpu = cpu;
4071 	rcu_boot_init_nocb_percpu_data(rdp);
4072 }
4073 
4074 static void rcu_thread_affine_rnp(struct task_struct *t, struct rcu_node *rnp)
4075 {
4076 	cpumask_var_t affinity;
4077 	int cpu;
4078 
4079 	if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
4080 		return;
4081 
4082 	for_each_leaf_node_possible_cpu(rnp, cpu)
4083 		cpumask_set_cpu(cpu, affinity);
4084 
4085 	kthread_affine_preferred(t, affinity);
4086 
4087 	free_cpumask_var(affinity);
4088 }
4089 
4090 struct kthread_worker *rcu_exp_gp_kworker;
4091 
4092 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4093 {
4094 	struct kthread_worker *kworker;
4095 	const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4096 	struct sched_param param = { .sched_priority = kthread_prio };
4097 	int rnp_index = rnp - rcu_get_root();
4098 
4099 	if (rnp->exp_kworker)
4100 		return;
4101 
4102 	kworker = kthread_create_worker(0, name, rnp_index);
4103 	if (IS_ERR_OR_NULL(kworker)) {
4104 		pr_err("Failed to create par gp kworker on %d/%d\n",
4105 		       rnp->grplo, rnp->grphi);
4106 		return;
4107 	}
4108 	WRITE_ONCE(rnp->exp_kworker, kworker);
4109 
4110 	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4111 		sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
4112 
4113 	rcu_thread_affine_rnp(kworker->task, rnp);
4114 	wake_up_process(kworker->task);
4115 }
4116 
4117 static void __init rcu_start_exp_gp_kworker(void)
4118 {
4119 	const char *name = "rcu_exp_gp_kthread_worker";
4120 	struct sched_param param = { .sched_priority = kthread_prio };
4121 
4122 	rcu_exp_gp_kworker = kthread_run_worker(0, name);
4123 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4124 		pr_err("Failed to create %s!\n", name);
4125 		rcu_exp_gp_kworker = NULL;
4126 		return;
4127 	}
4128 
4129 	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4130 		sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4131 }
4132 
4133 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4134 {
4135 	if (rcu_scheduler_fully_active) {
4136 		mutex_lock(&rnp->kthread_mutex);
4137 		rcu_spawn_one_boost_kthread(rnp);
4138 		rcu_spawn_exp_par_gp_kworker(rnp);
4139 		mutex_unlock(&rnp->kthread_mutex);
4140 	}
4141 }
4142 
4143 /*
4144  * Invoked early in the CPU-online process, when pretty much all services
4145  * are available.  The incoming CPU is not present.
4146  *
4147  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4148  * offline event can be happening at a given time.  Note also that we can
4149  * accept some slop in the rsp->gp_seq access due to the fact that this
4150  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4151  * And any offloaded callbacks are being numbered elsewhere.
4152  */
4153 int rcutree_prepare_cpu(unsigned int cpu)
4154 {
4155 	unsigned long flags;
4156 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4157 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4158 	struct rcu_node *rnp = rcu_get_root();
4159 
4160 	/* Set up local state, ensuring consistent view of global state. */
4161 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4162 	rdp->qlen_last_fqs_check = 0;
4163 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4164 	rdp->blimit = blimit;
4165 	ct->nesting = 1;	/* CPU not up, no tearing. */
4166 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4167 
4168 	/*
4169 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4170 	 * (re-)initialized.
4171 	 */
4172 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4173 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4174 
4175 	/*
4176 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4177 	 * propagation up the rcu_node tree will happen at the beginning
4178 	 * of the next grace period.
4179 	 */
4180 	rnp = rdp->mynode;
4181 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4182 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4183 	rdp->gp_seq_needed = rdp->gp_seq;
4184 	rdp->cpu_no_qs.b.norm = true;
4185 	rdp->core_needs_qs = false;
4186 	rdp->rcu_iw_pending = false;
4187 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4188 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4189 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4190 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4191 	rcu_spawn_rnp_kthreads(rnp);
4192 	rcu_spawn_cpu_nocb_kthread(cpu);
4193 	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
4194 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4195 
4196 	return 0;
4197 }
4198 
4199 /*
4200  * Has the specified (known valid) CPU ever been fully online?
4201  */
4202 bool rcu_cpu_beenfullyonline(int cpu)
4203 {
4204 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4205 
4206 	return smp_load_acquire(&rdp->beenonline);
4207 }
4208 
4209 /*
4210  * Near the end of the CPU-online process.  Pretty much all services
4211  * enabled, and the CPU is now very much alive.
4212  */
4213 int rcutree_online_cpu(unsigned int cpu)
4214 {
4215 	unsigned long flags;
4216 	struct rcu_data *rdp;
4217 	struct rcu_node *rnp;
4218 
4219 	rdp = per_cpu_ptr(&rcu_data, cpu);
4220 	rnp = rdp->mynode;
4221 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4222 	rnp->ffmask |= rdp->grpmask;
4223 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4224 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4225 		return 0; /* Too early in boot for scheduler work. */
4226 	sync_sched_exp_online_cleanup(cpu);
4227 
4228 	// Stop-machine done, so allow nohz_full to disable tick.
4229 	tick_dep_clear(TICK_DEP_BIT_RCU);
4230 	return 0;
4231 }
4232 
4233 /*
4234  * Mark the specified CPU as being online so that subsequent grace periods
4235  * (both expedited and normal) will wait on it.  Note that this means that
4236  * incoming CPUs are not allowed to use RCU read-side critical sections
4237  * until this function is called.  Failing to observe this restriction
4238  * will result in lockdep splats.
4239  *
4240  * Note that this function is special in that it is invoked directly
4241  * from the incoming CPU rather than from the cpuhp_step mechanism.
4242  * This is because this function must be invoked at a precise location.
4243  * This incoming CPU must not have enabled interrupts yet.
4244  *
4245  * This mirrors the effects of rcutree_report_cpu_dead().
4246  */
4247 void rcutree_report_cpu_starting(unsigned int cpu)
4248 {
4249 	unsigned long mask;
4250 	struct rcu_data *rdp;
4251 	struct rcu_node *rnp;
4252 	bool newcpu;
4253 
4254 	lockdep_assert_irqs_disabled();
4255 	rdp = per_cpu_ptr(&rcu_data, cpu);
4256 	if (rdp->cpu_started)
4257 		return;
4258 	rdp->cpu_started = true;
4259 
4260 	rnp = rdp->mynode;
4261 	mask = rdp->grpmask;
4262 	arch_spin_lock(&rcu_state.ofl_lock);
4263 	rcu_watching_online();
4264 	raw_spin_lock(&rcu_state.barrier_lock);
4265 	raw_spin_lock_rcu_node(rnp);
4266 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4267 	raw_spin_unlock(&rcu_state.barrier_lock);
4268 	newcpu = !(rnp->expmaskinitnext & mask);
4269 	rnp->expmaskinitnext |= mask;
4270 	/* Allow lockless access for expedited grace periods. */
4271 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4272 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4273 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4274 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4275 	rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
4276 
4277 	/* An incoming CPU should never be blocking a grace period. */
4278 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4279 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4280 		unsigned long flags;
4281 
4282 		local_irq_save(flags);
4283 		rcu_disable_urgency_upon_qs(rdp);
4284 		/* Report QS -after- changing ->qsmaskinitnext! */
4285 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4286 	} else {
4287 		raw_spin_unlock_rcu_node(rnp);
4288 	}
4289 	arch_spin_unlock(&rcu_state.ofl_lock);
4290 	smp_store_release(&rdp->beenonline, true);
4291 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4292 }
4293 
4294 /*
4295  * The outgoing function has no further need of RCU, so remove it from
4296  * the rcu_node tree's ->qsmaskinitnext bit masks.
4297  *
4298  * Note that this function is special in that it is invoked directly
4299  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4300  * This is because this function must be invoked at a precise location.
4301  *
4302  * This mirrors the effect of rcutree_report_cpu_starting().
4303  */
4304 void rcutree_report_cpu_dead(void)
4305 {
4306 	unsigned long flags;
4307 	unsigned long mask;
4308 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4309 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4310 
4311 	/*
4312 	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4313 	 * may introduce a new READ-side while it is actually off the QS masks.
4314 	 */
4315 	lockdep_assert_irqs_disabled();
4316 	// Do any dangling deferred wakeups.
4317 	do_nocb_deferred_wakeup(rdp);
4318 
4319 	rcu_preempt_deferred_qs(current);
4320 
4321 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4322 	mask = rdp->grpmask;
4323 	arch_spin_lock(&rcu_state.ofl_lock);
4324 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4325 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4326 	rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
4327 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4328 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4329 		rcu_disable_urgency_upon_qs(rdp);
4330 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4331 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4332 	}
4333 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4334 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4335 	arch_spin_unlock(&rcu_state.ofl_lock);
4336 	rdp->cpu_started = false;
4337 }
4338 
4339 #ifdef CONFIG_HOTPLUG_CPU
4340 /*
4341  * The outgoing CPU has just passed through the dying-idle state, and we
4342  * are being invoked from the CPU that was IPIed to continue the offline
4343  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4344  */
4345 void rcutree_migrate_callbacks(int cpu)
4346 {
4347 	unsigned long flags;
4348 	struct rcu_data *my_rdp;
4349 	struct rcu_node *my_rnp;
4350 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4351 	bool needwake;
4352 
4353 	if (rcu_rdp_is_offloaded(rdp))
4354 		return;
4355 
4356 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4357 	if (rcu_segcblist_empty(&rdp->cblist)) {
4358 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4359 		return;  /* No callbacks to migrate. */
4360 	}
4361 
4362 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4363 	rcu_barrier_entrain(rdp);
4364 	my_rdp = this_cpu_ptr(&rcu_data);
4365 	my_rnp = my_rdp->mynode;
4366 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4367 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4368 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4369 	/* Leverage recent GPs and set GP for new callbacks. */
4370 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4371 		   rcu_advance_cbs(my_rnp, my_rdp);
4372 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4373 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4374 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4375 	rcu_segcblist_disable(&rdp->cblist);
4376 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4377 	check_cb_ovld_locked(my_rdp, my_rnp);
4378 	if (rcu_rdp_is_offloaded(my_rdp)) {
4379 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4380 		__call_rcu_nocb_wake(my_rdp, true, flags);
4381 	} else {
4382 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4383 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4384 	}
4385 	local_irq_restore(flags);
4386 	if (needwake)
4387 		rcu_gp_kthread_wake();
4388 	lockdep_assert_irqs_enabled();
4389 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4390 		  !rcu_segcblist_empty(&rdp->cblist),
4391 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4392 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4393 		  rcu_segcblist_first_cb(&rdp->cblist));
4394 }
4395 
4396 /*
4397  * The CPU has been completely removed, and some other CPU is reporting
4398  * this fact from process context.  Do the remainder of the cleanup.
4399  * There can only be one CPU hotplug operation at a time, so no need for
4400  * explicit locking.
4401  */
4402 int rcutree_dead_cpu(unsigned int cpu)
4403 {
4404 	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
4405 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4406 	// Stop-machine done, so allow nohz_full to disable tick.
4407 	tick_dep_clear(TICK_DEP_BIT_RCU);
4408 	return 0;
4409 }
4410 
4411 /*
4412  * Near the end of the offline process.  Trace the fact that this CPU
4413  * is going offline.
4414  */
4415 int rcutree_dying_cpu(unsigned int cpu)
4416 {
4417 	bool blkd;
4418 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4419 	struct rcu_node *rnp = rdp->mynode;
4420 
4421 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4422 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4423 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4424 	return 0;
4425 }
4426 
4427 /*
4428  * Near the beginning of the process.  The CPU is still very much alive
4429  * with pretty much all services enabled.
4430  */
4431 int rcutree_offline_cpu(unsigned int cpu)
4432 {
4433 	unsigned long flags;
4434 	struct rcu_data *rdp;
4435 	struct rcu_node *rnp;
4436 
4437 	rdp = per_cpu_ptr(&rcu_data, cpu);
4438 	rnp = rdp->mynode;
4439 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4440 	rnp->ffmask &= ~rdp->grpmask;
4441 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4442 
4443 	// nohz_full CPUs need the tick for stop-machine to work quickly
4444 	tick_dep_set(TICK_DEP_BIT_RCU);
4445 	return 0;
4446 }
4447 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
4448 
4449 /*
4450  * On non-huge systems, use expedited RCU grace periods to make suspend
4451  * and hibernation run faster.
4452  */
4453 static int rcu_pm_notify(struct notifier_block *self,
4454 			 unsigned long action, void *hcpu)
4455 {
4456 	switch (action) {
4457 	case PM_HIBERNATION_PREPARE:
4458 	case PM_SUSPEND_PREPARE:
4459 		rcu_async_hurry();
4460 		rcu_expedite_gp();
4461 		break;
4462 	case PM_POST_HIBERNATION:
4463 	case PM_POST_SUSPEND:
4464 		rcu_unexpedite_gp();
4465 		rcu_async_relax();
4466 		break;
4467 	default:
4468 		break;
4469 	}
4470 	return NOTIFY_OK;
4471 }
4472 
4473 /*
4474  * Spawn the kthreads that handle RCU's grace periods.
4475  */
4476 static int __init rcu_spawn_gp_kthread(void)
4477 {
4478 	unsigned long flags;
4479 	struct rcu_node *rnp;
4480 	struct sched_param sp;
4481 	struct task_struct *t;
4482 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4483 
4484 	rcu_scheduler_fully_active = 1;
4485 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4486 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4487 		return 0;
4488 	if (kthread_prio) {
4489 		sp.sched_priority = kthread_prio;
4490 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4491 	}
4492 	rnp = rcu_get_root();
4493 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4494 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4495 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4496 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4497 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4498 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4499 	wake_up_process(t);
4500 	/* This is a pre-SMP initcall, we expect a single CPU */
4501 	WARN_ON(num_online_cpus() > 1);
4502 	/*
4503 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4504 	 * due to rcu_scheduler_fully_active.
4505 	 */
4506 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4507 	rcu_spawn_rnp_kthreads(rdp->mynode);
4508 	rcu_spawn_core_kthreads();
4509 	/* Create kthread worker for expedited GPs */
4510 	rcu_start_exp_gp_kworker();
4511 	return 0;
4512 }
4513 early_initcall(rcu_spawn_gp_kthread);
4514 
4515 /*
4516  * This function is invoked towards the end of the scheduler's
4517  * initialization process.  Before this is called, the idle task might
4518  * contain synchronous grace-period primitives (during which time, this idle
4519  * task is booting the system, and such primitives are no-ops).  After this
4520  * function is called, any synchronous grace-period primitives are run as
4521  * expedited, with the requesting task driving the grace period forward.
4522  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4523  * runtime RCU functionality.
4524  */
4525 void rcu_scheduler_starting(void)
4526 {
4527 	unsigned long flags;
4528 	struct rcu_node *rnp;
4529 
4530 	WARN_ON(num_online_cpus() != 1);
4531 	WARN_ON(nr_context_switches() > 0);
4532 	rcu_test_sync_prims();
4533 
4534 	// Fix up the ->gp_seq counters.
4535 	local_irq_save(flags);
4536 	rcu_for_each_node_breadth_first(rnp)
4537 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4538 	local_irq_restore(flags);
4539 
4540 	// Switch out of early boot mode.
4541 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4542 	rcu_test_sync_prims();
4543 }
4544 
4545 /*
4546  * Helper function for rcu_init() that initializes the rcu_state structure.
4547  */
4548 static void __init rcu_init_one(void)
4549 {
4550 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4551 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4552 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4553 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4554 
4555 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4556 	int cpustride = 1;
4557 	int i;
4558 	int j;
4559 	struct rcu_node *rnp;
4560 
4561 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4562 
4563 	/* Silence gcc 4.8 false positive about array index out of range. */
4564 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4565 		panic("rcu_init_one: rcu_num_lvls out of range");
4566 
4567 	/* Initialize the level-tracking arrays. */
4568 
4569 	for (i = 1; i < rcu_num_lvls; i++)
4570 		rcu_state.level[i] =
4571 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4572 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4573 
4574 	/* Initialize the elements themselves, starting from the leaves. */
4575 
4576 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4577 		cpustride *= levelspread[i];
4578 		rnp = rcu_state.level[i];
4579 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4580 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4581 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4582 						   &rcu_node_class[i], buf[i]);
4583 			raw_spin_lock_init(&rnp->fqslock);
4584 			lockdep_set_class_and_name(&rnp->fqslock,
4585 						   &rcu_fqs_class[i], fqs[i]);
4586 			rnp->gp_seq = rcu_state.gp_seq;
4587 			rnp->gp_seq_needed = rcu_state.gp_seq;
4588 			rnp->completedqs = rcu_state.gp_seq;
4589 			rnp->qsmask = 0;
4590 			rnp->qsmaskinit = 0;
4591 			rnp->grplo = j * cpustride;
4592 			rnp->grphi = (j + 1) * cpustride - 1;
4593 			if (rnp->grphi >= nr_cpu_ids)
4594 				rnp->grphi = nr_cpu_ids - 1;
4595 			if (i == 0) {
4596 				rnp->grpnum = 0;
4597 				rnp->grpmask = 0;
4598 				rnp->parent = NULL;
4599 			} else {
4600 				rnp->grpnum = j % levelspread[i - 1];
4601 				rnp->grpmask = BIT(rnp->grpnum);
4602 				rnp->parent = rcu_state.level[i - 1] +
4603 					      j / levelspread[i - 1];
4604 			}
4605 			rnp->level = i;
4606 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4607 			rcu_init_one_nocb(rnp);
4608 			init_waitqueue_head(&rnp->exp_wq[0]);
4609 			init_waitqueue_head(&rnp->exp_wq[1]);
4610 			init_waitqueue_head(&rnp->exp_wq[2]);
4611 			init_waitqueue_head(&rnp->exp_wq[3]);
4612 			spin_lock_init(&rnp->exp_lock);
4613 			mutex_init(&rnp->kthread_mutex);
4614 			raw_spin_lock_init(&rnp->exp_poll_lock);
4615 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4616 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4617 		}
4618 	}
4619 
4620 	init_swait_queue_head(&rcu_state.gp_wq);
4621 	init_swait_queue_head(&rcu_state.expedited_wq);
4622 	rnp = rcu_first_leaf_node();
4623 	for_each_possible_cpu(i) {
4624 		while (i > rnp->grphi)
4625 			rnp++;
4626 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4627 		per_cpu_ptr(&rcu_data, i)->barrier_head.next =
4628 			&per_cpu_ptr(&rcu_data, i)->barrier_head;
4629 		rcu_boot_init_percpu_data(i);
4630 	}
4631 }
4632 
4633 /*
4634  * Force priority from the kernel command-line into range.
4635  */
4636 static void __init sanitize_kthread_prio(void)
4637 {
4638 	int kthread_prio_in = kthread_prio;
4639 
4640 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4641 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4642 		kthread_prio = 2;
4643 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4644 		kthread_prio = 1;
4645 	else if (kthread_prio < 0)
4646 		kthread_prio = 0;
4647 	else if (kthread_prio > 99)
4648 		kthread_prio = 99;
4649 
4650 	if (kthread_prio != kthread_prio_in)
4651 		pr_alert("%s: Limited prio to %d from %d\n",
4652 			 __func__, kthread_prio, kthread_prio_in);
4653 }
4654 
4655 /*
4656  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4657  * replace the definitions in tree.h because those are needed to size
4658  * the ->node array in the rcu_state structure.
4659  */
4660 void rcu_init_geometry(void)
4661 {
4662 	ulong d;
4663 	int i;
4664 	static unsigned long old_nr_cpu_ids;
4665 	int rcu_capacity[RCU_NUM_LVLS];
4666 	static bool initialized;
4667 
4668 	if (initialized) {
4669 		/*
4670 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4671 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4672 		 */
4673 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4674 		return;
4675 	}
4676 
4677 	old_nr_cpu_ids = nr_cpu_ids;
4678 	initialized = true;
4679 
4680 	/*
4681 	 * Initialize any unspecified boot parameters.
4682 	 * The default values of jiffies_till_first_fqs and
4683 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4684 	 * value, which is a function of HZ, then adding one for each
4685 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4686 	 */
4687 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4688 	if (jiffies_till_first_fqs == ULONG_MAX)
4689 		jiffies_till_first_fqs = d;
4690 	if (jiffies_till_next_fqs == ULONG_MAX)
4691 		jiffies_till_next_fqs = d;
4692 	adjust_jiffies_till_sched_qs();
4693 
4694 	/* If the compile-time values are accurate, just leave. */
4695 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4696 	    nr_cpu_ids == NR_CPUS)
4697 		return;
4698 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4699 		rcu_fanout_leaf, nr_cpu_ids);
4700 
4701 	/*
4702 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4703 	 * and cannot exceed the number of bits in the rcu_node masks.
4704 	 * Complain and fall back to the compile-time values if this
4705 	 * limit is exceeded.
4706 	 */
4707 	if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
4708 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4709 		WARN_ON(1);
4710 		return;
4711 	}
4712 
4713 	/*
4714 	 * Compute number of nodes that can be handled an rcu_node tree
4715 	 * with the given number of levels.
4716 	 */
4717 	rcu_capacity[0] = rcu_fanout_leaf;
4718 	for (i = 1; i < RCU_NUM_LVLS; i++)
4719 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4720 
4721 	/*
4722 	 * The tree must be able to accommodate the configured number of CPUs.
4723 	 * If this limit is exceeded, fall back to the compile-time values.
4724 	 */
4725 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4726 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4727 		WARN_ON(1);
4728 		return;
4729 	}
4730 
4731 	/* Calculate the number of levels in the tree. */
4732 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4733 	}
4734 	rcu_num_lvls = i + 1;
4735 
4736 	/* Calculate the number of rcu_nodes at each level of the tree. */
4737 	for (i = 0; i < rcu_num_lvls; i++) {
4738 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4739 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4740 	}
4741 
4742 	/* Calculate the total number of rcu_node structures. */
4743 	rcu_num_nodes = 0;
4744 	for (i = 0; i < rcu_num_lvls; i++)
4745 		rcu_num_nodes += num_rcu_lvl[i];
4746 }
4747 
4748 /*
4749  * Dump out the structure of the rcu_node combining tree associated
4750  * with the rcu_state structure.
4751  */
4752 static void __init rcu_dump_rcu_node_tree(void)
4753 {
4754 	int level = 0;
4755 	struct rcu_node *rnp;
4756 
4757 	pr_info("rcu_node tree layout dump\n");
4758 	pr_info(" ");
4759 	rcu_for_each_node_breadth_first(rnp) {
4760 		if (rnp->level != level) {
4761 			pr_cont("\n");
4762 			pr_info(" ");
4763 			level = rnp->level;
4764 		}
4765 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4766 	}
4767 	pr_cont("\n");
4768 }
4769 
4770 struct workqueue_struct *rcu_gp_wq;
4771 
4772 void __init rcu_init(void)
4773 {
4774 	int cpu = smp_processor_id();
4775 
4776 	rcu_early_boot_tests();
4777 
4778 	rcu_bootup_announce();
4779 	sanitize_kthread_prio();
4780 	rcu_init_geometry();
4781 	rcu_init_one();
4782 	if (dump_tree)
4783 		rcu_dump_rcu_node_tree();
4784 	if (use_softirq)
4785 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4786 
4787 	/*
4788 	 * We don't need protection against CPU-hotplug here because
4789 	 * this is called early in boot, before either interrupts
4790 	 * or the scheduler are operational.
4791 	 */
4792 	pm_notifier(rcu_pm_notify, 0);
4793 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4794 	rcutree_prepare_cpu(cpu);
4795 	rcutree_report_cpu_starting(cpu);
4796 	rcutree_online_cpu(cpu);
4797 
4798 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4799 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4800 	WARN_ON(!rcu_gp_wq);
4801 
4802 	sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
4803 	WARN_ON(!sync_wq);
4804 
4805 	/* Fill in default value for rcutree.qovld boot parameter. */
4806 	/* -After- the rcu_node ->lock fields are initialized! */
4807 	if (qovld < 0)
4808 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4809 	else
4810 		qovld_calc = qovld;
4811 
4812 	// Kick-start in case any polled grace periods started early.
4813 	(void)start_poll_synchronize_rcu_expedited();
4814 
4815 	rcu_test_sync_prims();
4816 
4817 	tasks_cblist_init_generic();
4818 }
4819 
4820 #include "tree_stall.h"
4821 #include "tree_exp.h"
4822 #include "tree_nocb.h"
4823 #include "tree_plugin.h"
4824