1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 80 .gpwrap = true, 81 #ifdef CONFIG_RCU_NOCB_CPU 82 .cblist.flags = SEGCBLIST_RCU_CORE, 83 #endif 84 }; 85 static struct rcu_state rcu_state = { 86 .level = { &rcu_state.node[0] }, 87 .gp_state = RCU_GP_IDLE, 88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 91 .name = RCU_NAME, 92 .abbr = RCU_ABBR, 93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 96 }; 97 98 /* Dump rcu_node combining tree at boot to verify correct setup. */ 99 static bool dump_tree; 100 module_param(dump_tree, bool, 0444); 101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 103 #ifndef CONFIG_PREEMPT_RT 104 module_param(use_softirq, bool, 0444); 105 #endif 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 117 /* 118 * The rcu_scheduler_active variable is initialized to the value 119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 121 * RCU can assume that there is but one task, allowing RCU to (for example) 122 * optimize synchronize_rcu() to a simple barrier(). When this variable 123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 124 * to detect real grace periods. This variable is also used to suppress 125 * boot-time false positives from lockdep-RCU error checking. Finally, it 126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 127 * is fully initialized, including all of its kthreads having been spawned. 128 */ 129 int rcu_scheduler_active __read_mostly; 130 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132 /* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144 static int rcu_scheduler_fully_active __read_mostly; 145 146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 147 unsigned long gps, unsigned long flags); 148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 149 static void invoke_rcu_core(void); 150 static void rcu_report_exp_rdp(struct rcu_data *rdp); 151 static void sync_sched_exp_online_cleanup(int cpu); 152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 155 static bool rcu_init_invoked(void); 156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 158 159 /* 160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 161 * real-time priority(enabling/disabling) is controlled by 162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 163 */ 164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 165 module_param(kthread_prio, int, 0444); 166 167 /* Delay in jiffies for grace-period initialization delays, debug only. */ 168 169 static int gp_preinit_delay; 170 module_param(gp_preinit_delay, int, 0444); 171 static int gp_init_delay; 172 module_param(gp_init_delay, int, 0444); 173 static int gp_cleanup_delay; 174 module_param(gp_cleanup_delay, int, 0444); 175 176 // Add delay to rcu_read_unlock() for strict grace periods. 177 static int rcu_unlock_delay; 178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 179 module_param(rcu_unlock_delay, int, 0444); 180 #endif 181 182 /* 183 * This rcu parameter is runtime-read-only. It reflects 184 * a minimum allowed number of objects which can be cached 185 * per-CPU. Object size is equal to one page. This value 186 * can be changed at boot time. 187 */ 188 static int rcu_min_cached_objs = 5; 189 module_param(rcu_min_cached_objs, int, 0444); 190 191 // A page shrinker can ask for pages to be freed to make them 192 // available for other parts of the system. This usually happens 193 // under low memory conditions, and in that case we should also 194 // defer page-cache filling for a short time period. 195 // 196 // The default value is 5 seconds, which is long enough to reduce 197 // interference with the shrinker while it asks other systems to 198 // drain their caches. 199 static int rcu_delay_page_cache_fill_msec = 5000; 200 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 201 202 /* Retrieve RCU kthreads priority for rcutorture */ 203 int rcu_get_gp_kthreads_prio(void) 204 { 205 return kthread_prio; 206 } 207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 208 209 /* 210 * Number of grace periods between delays, normalized by the duration of 211 * the delay. The longer the delay, the more the grace periods between 212 * each delay. The reason for this normalization is that it means that, 213 * for non-zero delays, the overall slowdown of grace periods is constant 214 * regardless of the duration of the delay. This arrangement balances 215 * the need for long delays to increase some race probabilities with the 216 * need for fast grace periods to increase other race probabilities. 217 */ 218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 219 220 /* 221 * Return true if an RCU grace period is in progress. The READ_ONCE()s 222 * permit this function to be invoked without holding the root rcu_node 223 * structure's ->lock, but of course results can be subject to change. 224 */ 225 static int rcu_gp_in_progress(void) 226 { 227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 228 } 229 230 /* 231 * Return the number of callbacks queued on the specified CPU. 232 * Handles both the nocbs and normal cases. 233 */ 234 static long rcu_get_n_cbs_cpu(int cpu) 235 { 236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 237 238 if (rcu_segcblist_is_enabled(&rdp->cblist)) 239 return rcu_segcblist_n_cbs(&rdp->cblist); 240 return 0; 241 } 242 243 void rcu_softirq_qs(void) 244 { 245 rcu_qs(); 246 rcu_preempt_deferred_qs(current); 247 rcu_tasks_qs(current, false); 248 } 249 250 /* 251 * Reset the current CPU's ->dynticks counter to indicate that the 252 * newly onlined CPU is no longer in an extended quiescent state. 253 * This will either leave the counter unchanged, or increment it 254 * to the next non-quiescent value. 255 * 256 * The non-atomic test/increment sequence works because the upper bits 257 * of the ->dynticks counter are manipulated only by the corresponding CPU, 258 * or when the corresponding CPU is offline. 259 */ 260 static void rcu_dynticks_eqs_online(void) 261 { 262 if (ct_dynticks() & RCU_DYNTICKS_IDX) 263 return; 264 ct_state_inc(RCU_DYNTICKS_IDX); 265 } 266 267 /* 268 * Snapshot the ->dynticks counter with full ordering so as to allow 269 * stable comparison of this counter with past and future snapshots. 270 */ 271 static int rcu_dynticks_snap(int cpu) 272 { 273 smp_mb(); // Fundamental RCU ordering guarantee. 274 return ct_dynticks_cpu_acquire(cpu); 275 } 276 277 /* 278 * Return true if the snapshot returned from rcu_dynticks_snap() 279 * indicates that RCU is in an extended quiescent state. 280 */ 281 static bool rcu_dynticks_in_eqs(int snap) 282 { 283 return !(snap & RCU_DYNTICKS_IDX); 284 } 285 286 /* 287 * Return true if the CPU corresponding to the specified rcu_data 288 * structure has spent some time in an extended quiescent state since 289 * rcu_dynticks_snap() returned the specified snapshot. 290 */ 291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 292 { 293 return snap != rcu_dynticks_snap(rdp->cpu); 294 } 295 296 /* 297 * Return true if the referenced integer is zero while the specified 298 * CPU remains within a single extended quiescent state. 299 */ 300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 301 { 302 int snap; 303 304 // If not quiescent, force back to earlier extended quiescent state. 305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 306 smp_rmb(); // Order ->dynticks and *vp reads. 307 if (READ_ONCE(*vp)) 308 return false; // Non-zero, so report failure; 309 smp_rmb(); // Order *vp read and ->dynticks re-read. 310 311 // If still in the same extended quiescent state, we are good! 312 return snap == ct_dynticks_cpu(cpu); 313 } 314 315 /* 316 * Let the RCU core know that this CPU has gone through the scheduler, 317 * which is a quiescent state. This is called when the need for a 318 * quiescent state is urgent, so we burn an atomic operation and full 319 * memory barriers to let the RCU core know about it, regardless of what 320 * this CPU might (or might not) do in the near future. 321 * 322 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 323 * 324 * The caller must have disabled interrupts and must not be idle. 325 */ 326 notrace void rcu_momentary_dyntick_idle(void) 327 { 328 int seq; 329 330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 332 /* It is illegal to call this from idle state. */ 333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 334 rcu_preempt_deferred_qs(current); 335 } 336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 337 338 /** 339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 340 * 341 * If the current CPU is idle and running at a first-level (not nested) 342 * interrupt, or directly, from idle, return true. 343 * 344 * The caller must have at least disabled IRQs. 345 */ 346 static int rcu_is_cpu_rrupt_from_idle(void) 347 { 348 long nesting; 349 350 /* 351 * Usually called from the tick; but also used from smp_function_call() 352 * for expedited grace periods. This latter can result in running from 353 * the idle task, instead of an actual IPI. 354 */ 355 lockdep_assert_irqs_disabled(); 356 357 /* Check for counter underflows */ 358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 359 "RCU dynticks_nesting counter underflow!"); 360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 361 "RCU dynticks_nmi_nesting counter underflow/zero!"); 362 363 /* Are we at first interrupt nesting level? */ 364 nesting = ct_dynticks_nmi_nesting(); 365 if (nesting > 1) 366 return false; 367 368 /* 369 * If we're not in an interrupt, we must be in the idle task! 370 */ 371 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 372 373 /* Does CPU appear to be idle from an RCU standpoint? */ 374 return ct_dynticks_nesting() == 0; 375 } 376 377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 378 // Maximum callbacks per rcu_do_batch ... 379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 380 static long blimit = DEFAULT_RCU_BLIMIT; 381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 382 static long qhimark = DEFAULT_RCU_QHIMARK; 383 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 384 static long qlowmark = DEFAULT_RCU_QLOMARK; 385 #define DEFAULT_RCU_QOVLD_MULT 2 386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 388 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 389 390 module_param(blimit, long, 0444); 391 module_param(qhimark, long, 0444); 392 module_param(qlowmark, long, 0444); 393 module_param(qovld, long, 0444); 394 395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 396 static ulong jiffies_till_next_fqs = ULONG_MAX; 397 static bool rcu_kick_kthreads; 398 static int rcu_divisor = 7; 399 module_param(rcu_divisor, int, 0644); 400 401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 403 module_param(rcu_resched_ns, long, 0644); 404 405 /* 406 * How long the grace period must be before we start recruiting 407 * quiescent-state help from rcu_note_context_switch(). 408 */ 409 static ulong jiffies_till_sched_qs = ULONG_MAX; 410 module_param(jiffies_till_sched_qs, ulong, 0444); 411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 413 414 /* 415 * Make sure that we give the grace-period kthread time to detect any 416 * idle CPUs before taking active measures to force quiescent states. 417 * However, don't go below 100 milliseconds, adjusted upwards for really 418 * large systems. 419 */ 420 static void adjust_jiffies_till_sched_qs(void) 421 { 422 unsigned long j; 423 424 /* If jiffies_till_sched_qs was specified, respect the request. */ 425 if (jiffies_till_sched_qs != ULONG_MAX) { 426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 427 return; 428 } 429 /* Otherwise, set to third fqs scan, but bound below on large system. */ 430 j = READ_ONCE(jiffies_till_first_fqs) + 431 2 * READ_ONCE(jiffies_till_next_fqs); 432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 435 WRITE_ONCE(jiffies_to_sched_qs, j); 436 } 437 438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 439 { 440 ulong j; 441 int ret = kstrtoul(val, 0, &j); 442 443 if (!ret) { 444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 445 adjust_jiffies_till_sched_qs(); 446 } 447 return ret; 448 } 449 450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 451 { 452 ulong j; 453 int ret = kstrtoul(val, 0, &j); 454 455 if (!ret) { 456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 457 adjust_jiffies_till_sched_qs(); 458 } 459 return ret; 460 } 461 462 static const struct kernel_param_ops first_fqs_jiffies_ops = { 463 .set = param_set_first_fqs_jiffies, 464 .get = param_get_ulong, 465 }; 466 467 static const struct kernel_param_ops next_fqs_jiffies_ops = { 468 .set = param_set_next_fqs_jiffies, 469 .get = param_get_ulong, 470 }; 471 472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 474 module_param(rcu_kick_kthreads, bool, 0644); 475 476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 477 static int rcu_pending(int user); 478 479 /* 480 * Return the number of RCU GPs completed thus far for debug & stats. 481 */ 482 unsigned long rcu_get_gp_seq(void) 483 { 484 return READ_ONCE(rcu_state.gp_seq); 485 } 486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 487 488 /* 489 * Return the number of RCU expedited batches completed thus far for 490 * debug & stats. Odd numbers mean that a batch is in progress, even 491 * numbers mean idle. The value returned will thus be roughly double 492 * the cumulative batches since boot. 493 */ 494 unsigned long rcu_exp_batches_completed(void) 495 { 496 return rcu_state.expedited_sequence; 497 } 498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 499 500 /* 501 * Return the root node of the rcu_state structure. 502 */ 503 static struct rcu_node *rcu_get_root(void) 504 { 505 return &rcu_state.node[0]; 506 } 507 508 /* 509 * Send along grace-period-related data for rcutorture diagnostics. 510 */ 511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 512 unsigned long *gp_seq) 513 { 514 switch (test_type) { 515 case RCU_FLAVOR: 516 *flags = READ_ONCE(rcu_state.gp_flags); 517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 518 break; 519 default: 520 break; 521 } 522 } 523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 524 525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 526 /* 527 * An empty function that will trigger a reschedule on 528 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 529 */ 530 static void late_wakeup_func(struct irq_work *work) 531 { 532 } 533 534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 535 IRQ_WORK_INIT(late_wakeup_func); 536 537 /* 538 * If either: 539 * 540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 542 * 543 * In these cases the late RCU wake ups aren't supported in the resched loops and our 544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 545 * get re-enabled again. 546 */ 547 noinstr void rcu_irq_work_resched(void) 548 { 549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 550 551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 552 return; 553 554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 555 return; 556 557 instrumentation_begin(); 558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 559 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 560 } 561 instrumentation_end(); 562 } 563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 564 565 #ifdef CONFIG_PROVE_RCU 566 /** 567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 568 */ 569 void rcu_irq_exit_check_preempt(void) 570 { 571 lockdep_assert_irqs_disabled(); 572 573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 574 "RCU dynticks_nesting counter underflow/zero!"); 575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 576 DYNTICK_IRQ_NONIDLE, 577 "Bad RCU dynticks_nmi_nesting counter\n"); 578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 579 "RCU in extended quiescent state!"); 580 } 581 #endif /* #ifdef CONFIG_PROVE_RCU */ 582 583 #ifdef CONFIG_NO_HZ_FULL 584 /** 585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 586 * 587 * The scheduler tick is not normally enabled when CPUs enter the kernel 588 * from nohz_full userspace execution. After all, nohz_full userspace 589 * execution is an RCU quiescent state and the time executing in the kernel 590 * is quite short. Except of course when it isn't. And it is not hard to 591 * cause a large system to spend tens of seconds or even minutes looping 592 * in the kernel, which can cause a number of problems, include RCU CPU 593 * stall warnings. 594 * 595 * Therefore, if a nohz_full CPU fails to report a quiescent state 596 * in a timely manner, the RCU grace-period kthread sets that CPU's 597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 598 * exception will invoke this function, which will turn on the scheduler 599 * tick, which will enable RCU to detect that CPU's quiescent states, 600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 601 * The tick will be disabled once a quiescent state is reported for 602 * this CPU. 603 * 604 * Of course, in carefully tuned systems, there might never be an 605 * interrupt or exception. In that case, the RCU grace-period kthread 606 * will eventually cause one to happen. However, in less carefully 607 * controlled environments, this function allows RCU to get what it 608 * needs without creating otherwise useless interruptions. 609 */ 610 void __rcu_irq_enter_check_tick(void) 611 { 612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 613 614 // If we're here from NMI there's nothing to do. 615 if (in_nmi()) 616 return; 617 618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 620 621 if (!tick_nohz_full_cpu(rdp->cpu) || 622 !READ_ONCE(rdp->rcu_urgent_qs) || 623 READ_ONCE(rdp->rcu_forced_tick)) { 624 // RCU doesn't need nohz_full help from this CPU, or it is 625 // already getting that help. 626 return; 627 } 628 629 // We get here only when not in an extended quiescent state and 630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 631 // already watching and (2) The fact that we are in an interrupt 632 // handler and that the rcu_node lock is an irq-disabled lock 633 // prevents self-deadlock. So we can safely recheck under the lock. 634 // Note that the nohz_full state currently cannot change. 635 raw_spin_lock_rcu_node(rdp->mynode); 636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 637 // A nohz_full CPU is in the kernel and RCU needs a 638 // quiescent state. Turn on the tick! 639 WRITE_ONCE(rdp->rcu_forced_tick, true); 640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 641 } 642 raw_spin_unlock_rcu_node(rdp->mynode); 643 } 644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 645 #endif /* CONFIG_NO_HZ_FULL */ 646 647 /* 648 * Check to see if any future non-offloaded RCU-related work will need 649 * to be done by the current CPU, even if none need be done immediately, 650 * returning 1 if so. This function is part of the RCU implementation; 651 * it is -not- an exported member of the RCU API. This is used by 652 * the idle-entry code to figure out whether it is safe to disable the 653 * scheduler-clock interrupt. 654 * 655 * Just check whether or not this CPU has non-offloaded RCU callbacks 656 * queued. 657 */ 658 int rcu_needs_cpu(void) 659 { 660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 662 } 663 664 /* 665 * If any sort of urgency was applied to the current CPU (for example, 666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 667 * to get to a quiescent state, disable it. 668 */ 669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 670 { 671 raw_lockdep_assert_held_rcu_node(rdp->mynode); 672 WRITE_ONCE(rdp->rcu_urgent_qs, false); 673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 676 WRITE_ONCE(rdp->rcu_forced_tick, false); 677 } 678 } 679 680 /** 681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 682 * 683 * Return @true if RCU is watching the running CPU and @false otherwise. 684 * An @true return means that this CPU can safely enter RCU read-side 685 * critical sections. 686 * 687 * Although calls to rcu_is_watching() from most parts of the kernel 688 * will return @true, there are important exceptions. For example, if the 689 * current CPU is deep within its idle loop, in kernel entry/exit code, 690 * or offline, rcu_is_watching() will return @false. 691 * 692 * Make notrace because it can be called by the internal functions of 693 * ftrace, and making this notrace removes unnecessary recursion calls. 694 */ 695 notrace bool rcu_is_watching(void) 696 { 697 bool ret; 698 699 preempt_disable_notrace(); 700 ret = !rcu_dynticks_curr_cpu_in_eqs(); 701 preempt_enable_notrace(); 702 return ret; 703 } 704 EXPORT_SYMBOL_GPL(rcu_is_watching); 705 706 /* 707 * If a holdout task is actually running, request an urgent quiescent 708 * state from its CPU. This is unsynchronized, so migrations can cause 709 * the request to go to the wrong CPU. Which is OK, all that will happen 710 * is that the CPU's next context switch will be a bit slower and next 711 * time around this task will generate another request. 712 */ 713 void rcu_request_urgent_qs_task(struct task_struct *t) 714 { 715 int cpu; 716 717 barrier(); 718 cpu = task_cpu(t); 719 if (!task_curr(t)) 720 return; /* This task is not running on that CPU. */ 721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 722 } 723 724 /* 725 * When trying to report a quiescent state on behalf of some other CPU, 726 * it is our responsibility to check for and handle potential overflow 727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 728 * After all, the CPU might be in deep idle state, and thus executing no 729 * code whatsoever. 730 */ 731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 732 { 733 raw_lockdep_assert_held_rcu_node(rnp); 734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 735 rnp->gp_seq)) 736 WRITE_ONCE(rdp->gpwrap, true); 737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 739 } 740 741 /* 742 * Snapshot the specified CPU's dynticks counter so that we can later 743 * credit them with an implicit quiescent state. Return 1 if this CPU 744 * is in dynticks idle mode, which is an extended quiescent state. 745 */ 746 static int dyntick_save_progress_counter(struct rcu_data *rdp) 747 { 748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 751 rcu_gpnum_ovf(rdp->mynode, rdp); 752 return 1; 753 } 754 return 0; 755 } 756 757 /* 758 * Returns positive if the specified CPU has passed through a quiescent state 759 * by virtue of being in or having passed through an dynticks idle state since 760 * the last call to dyntick_save_progress_counter() for this same CPU, or by 761 * virtue of having been offline. 762 * 763 * Returns negative if the specified CPU needs a force resched. 764 * 765 * Returns zero otherwise. 766 */ 767 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 768 { 769 unsigned long jtsq; 770 int ret = 0; 771 struct rcu_node *rnp = rdp->mynode; 772 773 /* 774 * If the CPU passed through or entered a dynticks idle phase with 775 * no active irq/NMI handlers, then we can safely pretend that the CPU 776 * already acknowledged the request to pass through a quiescent 777 * state. Either way, that CPU cannot possibly be in an RCU 778 * read-side critical section that started before the beginning 779 * of the current RCU grace period. 780 */ 781 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 782 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 783 rcu_gpnum_ovf(rnp, rdp); 784 return 1; 785 } 786 787 /* 788 * Complain if a CPU that is considered to be offline from RCU's 789 * perspective has not yet reported a quiescent state. After all, 790 * the offline CPU should have reported a quiescent state during 791 * the CPU-offline process, or, failing that, by rcu_gp_init() 792 * if it ran concurrently with either the CPU going offline or the 793 * last task on a leaf rcu_node structure exiting its RCU read-side 794 * critical section while all CPUs corresponding to that structure 795 * are offline. This added warning detects bugs in any of these 796 * code paths. 797 * 798 * The rcu_node structure's ->lock is held here, which excludes 799 * the relevant portions the CPU-hotplug code, the grace-period 800 * initialization code, and the rcu_read_unlock() code paths. 801 * 802 * For more detail, please refer to the "Hotplug CPU" section 803 * of RCU's Requirements documentation. 804 */ 805 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 806 struct rcu_node *rnp1; 807 808 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 809 __func__, rnp->grplo, rnp->grphi, rnp->level, 810 (long)rnp->gp_seq, (long)rnp->completedqs); 811 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 812 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 813 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 814 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 815 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 816 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 817 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 818 return 1; /* Break things loose after complaining. */ 819 } 820 821 /* 822 * A CPU running for an extended time within the kernel can 823 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 824 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 825 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 826 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 827 * variable are safe because the assignments are repeated if this 828 * CPU failed to pass through a quiescent state. This code 829 * also checks .jiffies_resched in case jiffies_to_sched_qs 830 * is set way high. 831 */ 832 jtsq = READ_ONCE(jiffies_to_sched_qs); 833 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 834 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 835 time_after(jiffies, rcu_state.jiffies_resched) || 836 rcu_state.cbovld)) { 837 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 838 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 839 smp_store_release(&rdp->rcu_urgent_qs, true); 840 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 841 WRITE_ONCE(rdp->rcu_urgent_qs, true); 842 } 843 844 /* 845 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 846 * The above code handles this, but only for straight cond_resched(). 847 * And some in-kernel loops check need_resched() before calling 848 * cond_resched(), which defeats the above code for CPUs that are 849 * running in-kernel with scheduling-clock interrupts disabled. 850 * So hit them over the head with the resched_cpu() hammer! 851 */ 852 if (tick_nohz_full_cpu(rdp->cpu) && 853 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 854 rcu_state.cbovld)) { 855 WRITE_ONCE(rdp->rcu_urgent_qs, true); 856 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 857 ret = -1; 858 } 859 860 /* 861 * If more than halfway to RCU CPU stall-warning time, invoke 862 * resched_cpu() more frequently to try to loosen things up a bit. 863 * Also check to see if the CPU is getting hammered with interrupts, 864 * but only once per grace period, just to keep the IPIs down to 865 * a dull roar. 866 */ 867 if (time_after(jiffies, rcu_state.jiffies_resched)) { 868 if (time_after(jiffies, 869 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 870 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 871 ret = -1; 872 } 873 if (IS_ENABLED(CONFIG_IRQ_WORK) && 874 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 875 (rnp->ffmask & rdp->grpmask)) { 876 rdp->rcu_iw_pending = true; 877 rdp->rcu_iw_gp_seq = rnp->gp_seq; 878 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 879 } 880 881 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 882 int cpu = rdp->cpu; 883 struct rcu_snap_record *rsrp; 884 struct kernel_cpustat *kcsp; 885 886 kcsp = &kcpustat_cpu(cpu); 887 888 rsrp = &rdp->snap_record; 889 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 890 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 891 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 892 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 893 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 894 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 895 rsrp->jiffies = jiffies; 896 rsrp->gp_seq = rdp->gp_seq; 897 } 898 } 899 900 return ret; 901 } 902 903 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 904 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 905 unsigned long gp_seq_req, const char *s) 906 { 907 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 908 gp_seq_req, rnp->level, 909 rnp->grplo, rnp->grphi, s); 910 } 911 912 /* 913 * rcu_start_this_gp - Request the start of a particular grace period 914 * @rnp_start: The leaf node of the CPU from which to start. 915 * @rdp: The rcu_data corresponding to the CPU from which to start. 916 * @gp_seq_req: The gp_seq of the grace period to start. 917 * 918 * Start the specified grace period, as needed to handle newly arrived 919 * callbacks. The required future grace periods are recorded in each 920 * rcu_node structure's ->gp_seq_needed field. Returns true if there 921 * is reason to awaken the grace-period kthread. 922 * 923 * The caller must hold the specified rcu_node structure's ->lock, which 924 * is why the caller is responsible for waking the grace-period kthread. 925 * 926 * Returns true if the GP thread needs to be awakened else false. 927 */ 928 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 929 unsigned long gp_seq_req) 930 { 931 bool ret = false; 932 struct rcu_node *rnp; 933 934 /* 935 * Use funnel locking to either acquire the root rcu_node 936 * structure's lock or bail out if the need for this grace period 937 * has already been recorded -- or if that grace period has in 938 * fact already started. If there is already a grace period in 939 * progress in a non-leaf node, no recording is needed because the 940 * end of the grace period will scan the leaf rcu_node structures. 941 * Note that rnp_start->lock must not be released. 942 */ 943 raw_lockdep_assert_held_rcu_node(rnp_start); 944 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 945 for (rnp = rnp_start; 1; rnp = rnp->parent) { 946 if (rnp != rnp_start) 947 raw_spin_lock_rcu_node(rnp); 948 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 949 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 950 (rnp != rnp_start && 951 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 952 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 953 TPS("Prestarted")); 954 goto unlock_out; 955 } 956 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 957 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 958 /* 959 * We just marked the leaf or internal node, and a 960 * grace period is in progress, which means that 961 * rcu_gp_cleanup() will see the marking. Bail to 962 * reduce contention. 963 */ 964 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 965 TPS("Startedleaf")); 966 goto unlock_out; 967 } 968 if (rnp != rnp_start && rnp->parent != NULL) 969 raw_spin_unlock_rcu_node(rnp); 970 if (!rnp->parent) 971 break; /* At root, and perhaps also leaf. */ 972 } 973 974 /* If GP already in progress, just leave, otherwise start one. */ 975 if (rcu_gp_in_progress()) { 976 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 977 goto unlock_out; 978 } 979 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 980 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 981 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 982 if (!READ_ONCE(rcu_state.gp_kthread)) { 983 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 984 goto unlock_out; 985 } 986 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 987 ret = true; /* Caller must wake GP kthread. */ 988 unlock_out: 989 /* Push furthest requested GP to leaf node and rcu_data structure. */ 990 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 991 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 992 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 993 } 994 if (rnp != rnp_start) 995 raw_spin_unlock_rcu_node(rnp); 996 return ret; 997 } 998 999 /* 1000 * Clean up any old requests for the just-ended grace period. Also return 1001 * whether any additional grace periods have been requested. 1002 */ 1003 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1004 { 1005 bool needmore; 1006 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1007 1008 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1009 if (!needmore) 1010 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1011 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1012 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1013 return needmore; 1014 } 1015 1016 static void swake_up_one_online_ipi(void *arg) 1017 { 1018 struct swait_queue_head *wqh = arg; 1019 1020 swake_up_one(wqh); 1021 } 1022 1023 static void swake_up_one_online(struct swait_queue_head *wqh) 1024 { 1025 int cpu = get_cpu(); 1026 1027 /* 1028 * If called from rcutree_report_cpu_starting(), wake up 1029 * is dangerous that late in the CPU-down hotplug process. The 1030 * scheduler might queue an ignored hrtimer. Defer the wake up 1031 * to an online CPU instead. 1032 */ 1033 if (unlikely(cpu_is_offline(cpu))) { 1034 int target; 1035 1036 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU), 1037 cpu_online_mask); 1038 1039 smp_call_function_single(target, swake_up_one_online_ipi, 1040 wqh, 0); 1041 put_cpu(); 1042 } else { 1043 put_cpu(); 1044 swake_up_one(wqh); 1045 } 1046 } 1047 1048 /* 1049 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1050 * interrupt or softirq handler, in which case we just might immediately 1051 * sleep upon return, resulting in a grace-period hang), and don't bother 1052 * awakening when there is nothing for the grace-period kthread to do 1053 * (as in several CPUs raced to awaken, we lost), and finally don't try 1054 * to awaken a kthread that has not yet been created. If all those checks 1055 * are passed, track some debug information and awaken. 1056 * 1057 * So why do the self-wakeup when in an interrupt or softirq handler 1058 * in the grace-period kthread's context? Because the kthread might have 1059 * been interrupted just as it was going to sleep, and just after the final 1060 * pre-sleep check of the awaken condition. In this case, a wakeup really 1061 * is required, and is therefore supplied. 1062 */ 1063 static void rcu_gp_kthread_wake(void) 1064 { 1065 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1066 1067 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1068 !READ_ONCE(rcu_state.gp_flags) || !t) 1069 return; 1070 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1071 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1072 swake_up_one_online(&rcu_state.gp_wq); 1073 } 1074 1075 /* 1076 * If there is room, assign a ->gp_seq number to any callbacks on this 1077 * CPU that have not already been assigned. Also accelerate any callbacks 1078 * that were previously assigned a ->gp_seq number that has since proven 1079 * to be too conservative, which can happen if callbacks get assigned a 1080 * ->gp_seq number while RCU is idle, but with reference to a non-root 1081 * rcu_node structure. This function is idempotent, so it does not hurt 1082 * to call it repeatedly. Returns an flag saying that we should awaken 1083 * the RCU grace-period kthread. 1084 * 1085 * The caller must hold rnp->lock with interrupts disabled. 1086 */ 1087 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1088 { 1089 unsigned long gp_seq_req; 1090 bool ret = false; 1091 1092 rcu_lockdep_assert_cblist_protected(rdp); 1093 raw_lockdep_assert_held_rcu_node(rnp); 1094 1095 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1096 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1097 return false; 1098 1099 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1100 1101 /* 1102 * Callbacks are often registered with incomplete grace-period 1103 * information. Something about the fact that getting exact 1104 * information requires acquiring a global lock... RCU therefore 1105 * makes a conservative estimate of the grace period number at which 1106 * a given callback will become ready to invoke. The following 1107 * code checks this estimate and improves it when possible, thus 1108 * accelerating callback invocation to an earlier grace-period 1109 * number. 1110 */ 1111 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1112 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1113 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1114 1115 /* Trace depending on how much we were able to accelerate. */ 1116 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1117 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1118 else 1119 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1120 1121 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1122 1123 return ret; 1124 } 1125 1126 /* 1127 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1128 * rcu_node structure's ->lock be held. It consults the cached value 1129 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1130 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1131 * while holding the leaf rcu_node structure's ->lock. 1132 */ 1133 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1134 struct rcu_data *rdp) 1135 { 1136 unsigned long c; 1137 bool needwake; 1138 1139 rcu_lockdep_assert_cblist_protected(rdp); 1140 c = rcu_seq_snap(&rcu_state.gp_seq); 1141 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1142 /* Old request still live, so mark recent callbacks. */ 1143 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1144 return; 1145 } 1146 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1147 needwake = rcu_accelerate_cbs(rnp, rdp); 1148 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1149 if (needwake) 1150 rcu_gp_kthread_wake(); 1151 } 1152 1153 /* 1154 * Move any callbacks whose grace period has completed to the 1155 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1156 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1157 * sublist. This function is idempotent, so it does not hurt to 1158 * invoke it repeatedly. As long as it is not invoked -too- often... 1159 * Returns true if the RCU grace-period kthread needs to be awakened. 1160 * 1161 * The caller must hold rnp->lock with interrupts disabled. 1162 */ 1163 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1164 { 1165 rcu_lockdep_assert_cblist_protected(rdp); 1166 raw_lockdep_assert_held_rcu_node(rnp); 1167 1168 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1169 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1170 return false; 1171 1172 /* 1173 * Find all callbacks whose ->gp_seq numbers indicate that they 1174 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1175 */ 1176 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1177 1178 /* Classify any remaining callbacks. */ 1179 return rcu_accelerate_cbs(rnp, rdp); 1180 } 1181 1182 /* 1183 * Move and classify callbacks, but only if doing so won't require 1184 * that the RCU grace-period kthread be awakened. 1185 */ 1186 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1187 struct rcu_data *rdp) 1188 { 1189 rcu_lockdep_assert_cblist_protected(rdp); 1190 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1191 return; 1192 // The grace period cannot end while we hold the rcu_node lock. 1193 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1194 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1195 raw_spin_unlock_rcu_node(rnp); 1196 } 1197 1198 /* 1199 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1200 * quiescent state. This is intended to be invoked when the CPU notices 1201 * a new grace period. 1202 */ 1203 static void rcu_strict_gp_check_qs(void) 1204 { 1205 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1206 rcu_read_lock(); 1207 rcu_read_unlock(); 1208 } 1209 } 1210 1211 /* 1212 * Update CPU-local rcu_data state to record the beginnings and ends of 1213 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1214 * structure corresponding to the current CPU, and must have irqs disabled. 1215 * Returns true if the grace-period kthread needs to be awakened. 1216 */ 1217 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1218 { 1219 bool ret = false; 1220 bool need_qs; 1221 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1222 1223 raw_lockdep_assert_held_rcu_node(rnp); 1224 1225 if (rdp->gp_seq == rnp->gp_seq) 1226 return false; /* Nothing to do. */ 1227 1228 /* Handle the ends of any preceding grace periods first. */ 1229 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1230 unlikely(READ_ONCE(rdp->gpwrap))) { 1231 if (!offloaded) 1232 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1233 rdp->core_needs_qs = false; 1234 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1235 } else { 1236 if (!offloaded) 1237 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1238 if (rdp->core_needs_qs) 1239 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1240 } 1241 1242 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1243 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1244 unlikely(READ_ONCE(rdp->gpwrap))) { 1245 /* 1246 * If the current grace period is waiting for this CPU, 1247 * set up to detect a quiescent state, otherwise don't 1248 * go looking for one. 1249 */ 1250 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1251 need_qs = !!(rnp->qsmask & rdp->grpmask); 1252 rdp->cpu_no_qs.b.norm = need_qs; 1253 rdp->core_needs_qs = need_qs; 1254 zero_cpu_stall_ticks(rdp); 1255 } 1256 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1257 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1258 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1259 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1260 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1261 WRITE_ONCE(rdp->gpwrap, false); 1262 rcu_gpnum_ovf(rnp, rdp); 1263 return ret; 1264 } 1265 1266 static void note_gp_changes(struct rcu_data *rdp) 1267 { 1268 unsigned long flags; 1269 bool needwake; 1270 struct rcu_node *rnp; 1271 1272 local_irq_save(flags); 1273 rnp = rdp->mynode; 1274 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1275 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1276 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1277 local_irq_restore(flags); 1278 return; 1279 } 1280 needwake = __note_gp_changes(rnp, rdp); 1281 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1282 rcu_strict_gp_check_qs(); 1283 if (needwake) 1284 rcu_gp_kthread_wake(); 1285 } 1286 1287 static atomic_t *rcu_gp_slow_suppress; 1288 1289 /* Register a counter to suppress debugging grace-period delays. */ 1290 void rcu_gp_slow_register(atomic_t *rgssp) 1291 { 1292 WARN_ON_ONCE(rcu_gp_slow_suppress); 1293 1294 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1295 } 1296 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1297 1298 /* Unregister a counter, with NULL for not caring which. */ 1299 void rcu_gp_slow_unregister(atomic_t *rgssp) 1300 { 1301 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1302 1303 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1304 } 1305 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1306 1307 static bool rcu_gp_slow_is_suppressed(void) 1308 { 1309 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1310 1311 return rgssp && atomic_read(rgssp); 1312 } 1313 1314 static void rcu_gp_slow(int delay) 1315 { 1316 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1317 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1318 schedule_timeout_idle(delay); 1319 } 1320 1321 static unsigned long sleep_duration; 1322 1323 /* Allow rcutorture to stall the grace-period kthread. */ 1324 void rcu_gp_set_torture_wait(int duration) 1325 { 1326 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1327 WRITE_ONCE(sleep_duration, duration); 1328 } 1329 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1330 1331 /* Actually implement the aforementioned wait. */ 1332 static void rcu_gp_torture_wait(void) 1333 { 1334 unsigned long duration; 1335 1336 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1337 return; 1338 duration = xchg(&sleep_duration, 0UL); 1339 if (duration > 0) { 1340 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1341 schedule_timeout_idle(duration); 1342 pr_alert("%s: Wait complete\n", __func__); 1343 } 1344 } 1345 1346 /* 1347 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1348 * processing. 1349 */ 1350 static void rcu_strict_gp_boundary(void *unused) 1351 { 1352 invoke_rcu_core(); 1353 } 1354 1355 // Make the polled API aware of the beginning of a grace period. 1356 static void rcu_poll_gp_seq_start(unsigned long *snap) 1357 { 1358 struct rcu_node *rnp = rcu_get_root(); 1359 1360 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1361 raw_lockdep_assert_held_rcu_node(rnp); 1362 1363 // If RCU was idle, note beginning of GP. 1364 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1365 rcu_seq_start(&rcu_state.gp_seq_polled); 1366 1367 // Either way, record current state. 1368 *snap = rcu_state.gp_seq_polled; 1369 } 1370 1371 // Make the polled API aware of the end of a grace period. 1372 static void rcu_poll_gp_seq_end(unsigned long *snap) 1373 { 1374 struct rcu_node *rnp = rcu_get_root(); 1375 1376 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1377 raw_lockdep_assert_held_rcu_node(rnp); 1378 1379 // If the previously noted GP is still in effect, record the 1380 // end of that GP. Either way, zero counter to avoid counter-wrap 1381 // problems. 1382 if (*snap && *snap == rcu_state.gp_seq_polled) { 1383 rcu_seq_end(&rcu_state.gp_seq_polled); 1384 rcu_state.gp_seq_polled_snap = 0; 1385 rcu_state.gp_seq_polled_exp_snap = 0; 1386 } else { 1387 *snap = 0; 1388 } 1389 } 1390 1391 // Make the polled API aware of the beginning of a grace period, but 1392 // where caller does not hold the root rcu_node structure's lock. 1393 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1394 { 1395 unsigned long flags; 1396 struct rcu_node *rnp = rcu_get_root(); 1397 1398 if (rcu_init_invoked()) { 1399 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1400 lockdep_assert_irqs_enabled(); 1401 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1402 } 1403 rcu_poll_gp_seq_start(snap); 1404 if (rcu_init_invoked()) 1405 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1406 } 1407 1408 // Make the polled API aware of the end of a grace period, but where 1409 // caller does not hold the root rcu_node structure's lock. 1410 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1411 { 1412 unsigned long flags; 1413 struct rcu_node *rnp = rcu_get_root(); 1414 1415 if (rcu_init_invoked()) { 1416 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1417 lockdep_assert_irqs_enabled(); 1418 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1419 } 1420 rcu_poll_gp_seq_end(snap); 1421 if (rcu_init_invoked()) 1422 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1423 } 1424 1425 /* 1426 * Initialize a new grace period. Return false if no grace period required. 1427 */ 1428 static noinline_for_stack bool rcu_gp_init(void) 1429 { 1430 unsigned long flags; 1431 unsigned long oldmask; 1432 unsigned long mask; 1433 struct rcu_data *rdp; 1434 struct rcu_node *rnp = rcu_get_root(); 1435 1436 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1437 raw_spin_lock_irq_rcu_node(rnp); 1438 if (!READ_ONCE(rcu_state.gp_flags)) { 1439 /* Spurious wakeup, tell caller to go back to sleep. */ 1440 raw_spin_unlock_irq_rcu_node(rnp); 1441 return false; 1442 } 1443 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1444 1445 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1446 /* 1447 * Grace period already in progress, don't start another. 1448 * Not supposed to be able to happen. 1449 */ 1450 raw_spin_unlock_irq_rcu_node(rnp); 1451 return false; 1452 } 1453 1454 /* Advance to a new grace period and initialize state. */ 1455 record_gp_stall_check_time(); 1456 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1457 rcu_seq_start(&rcu_state.gp_seq); 1458 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1459 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1460 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1461 raw_spin_unlock_irq_rcu_node(rnp); 1462 1463 /* 1464 * Apply per-leaf buffered online and offline operations to 1465 * the rcu_node tree. Note that this new grace period need not 1466 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1467 * offlining path, when combined with checks in this function, 1468 * will handle CPUs that are currently going offline or that will 1469 * go offline later. Please also refer to "Hotplug CPU" section 1470 * of RCU's Requirements documentation. 1471 */ 1472 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1473 /* Exclude CPU hotplug operations. */ 1474 rcu_for_each_leaf_node(rnp) { 1475 local_irq_save(flags); 1476 arch_spin_lock(&rcu_state.ofl_lock); 1477 raw_spin_lock_rcu_node(rnp); 1478 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1479 !rnp->wait_blkd_tasks) { 1480 /* Nothing to do on this leaf rcu_node structure. */ 1481 raw_spin_unlock_rcu_node(rnp); 1482 arch_spin_unlock(&rcu_state.ofl_lock); 1483 local_irq_restore(flags); 1484 continue; 1485 } 1486 1487 /* Record old state, apply changes to ->qsmaskinit field. */ 1488 oldmask = rnp->qsmaskinit; 1489 rnp->qsmaskinit = rnp->qsmaskinitnext; 1490 1491 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1492 if (!oldmask != !rnp->qsmaskinit) { 1493 if (!oldmask) { /* First online CPU for rcu_node. */ 1494 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1495 rcu_init_new_rnp(rnp); 1496 } else if (rcu_preempt_has_tasks(rnp)) { 1497 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1498 } else { /* Last offline CPU and can propagate. */ 1499 rcu_cleanup_dead_rnp(rnp); 1500 } 1501 } 1502 1503 /* 1504 * If all waited-on tasks from prior grace period are 1505 * done, and if all this rcu_node structure's CPUs are 1506 * still offline, propagate up the rcu_node tree and 1507 * clear ->wait_blkd_tasks. Otherwise, if one of this 1508 * rcu_node structure's CPUs has since come back online, 1509 * simply clear ->wait_blkd_tasks. 1510 */ 1511 if (rnp->wait_blkd_tasks && 1512 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1513 rnp->wait_blkd_tasks = false; 1514 if (!rnp->qsmaskinit) 1515 rcu_cleanup_dead_rnp(rnp); 1516 } 1517 1518 raw_spin_unlock_rcu_node(rnp); 1519 arch_spin_unlock(&rcu_state.ofl_lock); 1520 local_irq_restore(flags); 1521 } 1522 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1523 1524 /* 1525 * Set the quiescent-state-needed bits in all the rcu_node 1526 * structures for all currently online CPUs in breadth-first 1527 * order, starting from the root rcu_node structure, relying on the 1528 * layout of the tree within the rcu_state.node[] array. Note that 1529 * other CPUs will access only the leaves of the hierarchy, thus 1530 * seeing that no grace period is in progress, at least until the 1531 * corresponding leaf node has been initialized. 1532 * 1533 * The grace period cannot complete until the initialization 1534 * process finishes, because this kthread handles both. 1535 */ 1536 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1537 rcu_for_each_node_breadth_first(rnp) { 1538 rcu_gp_slow(gp_init_delay); 1539 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1540 rdp = this_cpu_ptr(&rcu_data); 1541 rcu_preempt_check_blocked_tasks(rnp); 1542 rnp->qsmask = rnp->qsmaskinit; 1543 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1544 if (rnp == rdp->mynode) 1545 (void)__note_gp_changes(rnp, rdp); 1546 rcu_preempt_boost_start_gp(rnp); 1547 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1548 rnp->level, rnp->grplo, 1549 rnp->grphi, rnp->qsmask); 1550 /* Quiescent states for tasks on any now-offline CPUs. */ 1551 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1552 rnp->rcu_gp_init_mask = mask; 1553 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1554 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1555 else 1556 raw_spin_unlock_irq_rcu_node(rnp); 1557 cond_resched_tasks_rcu_qs(); 1558 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1559 } 1560 1561 // If strict, make all CPUs aware of new grace period. 1562 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1563 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1564 1565 return true; 1566 } 1567 1568 /* 1569 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1570 * time. 1571 */ 1572 static bool rcu_gp_fqs_check_wake(int *gfp) 1573 { 1574 struct rcu_node *rnp = rcu_get_root(); 1575 1576 // If under overload conditions, force an immediate FQS scan. 1577 if (*gfp & RCU_GP_FLAG_OVLD) 1578 return true; 1579 1580 // Someone like call_rcu() requested a force-quiescent-state scan. 1581 *gfp = READ_ONCE(rcu_state.gp_flags); 1582 if (*gfp & RCU_GP_FLAG_FQS) 1583 return true; 1584 1585 // The current grace period has completed. 1586 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1587 return true; 1588 1589 return false; 1590 } 1591 1592 /* 1593 * Do one round of quiescent-state forcing. 1594 */ 1595 static void rcu_gp_fqs(bool first_time) 1596 { 1597 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1598 struct rcu_node *rnp = rcu_get_root(); 1599 1600 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1601 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1602 1603 WARN_ON_ONCE(nr_fqs > 3); 1604 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1605 if (nr_fqs) { 1606 if (nr_fqs == 1) { 1607 WRITE_ONCE(rcu_state.jiffies_stall, 1608 jiffies + rcu_jiffies_till_stall_check()); 1609 } 1610 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1611 } 1612 1613 if (first_time) { 1614 /* Collect dyntick-idle snapshots. */ 1615 force_qs_rnp(dyntick_save_progress_counter); 1616 } else { 1617 /* Handle dyntick-idle and offline CPUs. */ 1618 force_qs_rnp(rcu_implicit_dynticks_qs); 1619 } 1620 /* Clear flag to prevent immediate re-entry. */ 1621 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1622 raw_spin_lock_irq_rcu_node(rnp); 1623 WRITE_ONCE(rcu_state.gp_flags, 1624 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1625 raw_spin_unlock_irq_rcu_node(rnp); 1626 } 1627 } 1628 1629 /* 1630 * Loop doing repeated quiescent-state forcing until the grace period ends. 1631 */ 1632 static noinline_for_stack void rcu_gp_fqs_loop(void) 1633 { 1634 bool first_gp_fqs = true; 1635 int gf = 0; 1636 unsigned long j; 1637 int ret; 1638 struct rcu_node *rnp = rcu_get_root(); 1639 1640 j = READ_ONCE(jiffies_till_first_fqs); 1641 if (rcu_state.cbovld) 1642 gf = RCU_GP_FLAG_OVLD; 1643 ret = 0; 1644 for (;;) { 1645 if (rcu_state.cbovld) { 1646 j = (j + 2) / 3; 1647 if (j <= 0) 1648 j = 1; 1649 } 1650 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1651 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1652 /* 1653 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1654 * update; required for stall checks. 1655 */ 1656 smp_wmb(); 1657 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1658 jiffies + (j ? 3 * j : 2)); 1659 } 1660 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1661 TPS("fqswait")); 1662 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1663 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1664 rcu_gp_fqs_check_wake(&gf), j); 1665 rcu_gp_torture_wait(); 1666 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1667 /* Locking provides needed memory barriers. */ 1668 /* 1669 * Exit the loop if the root rcu_node structure indicates that the grace period 1670 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1671 * is required only for single-node rcu_node trees because readers blocking 1672 * the current grace period are queued only on leaf rcu_node structures. 1673 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1674 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1675 * the corresponding leaf nodes have passed through their quiescent state. 1676 */ 1677 if (!READ_ONCE(rnp->qsmask) && 1678 !rcu_preempt_blocked_readers_cgp(rnp)) 1679 break; 1680 /* If time for quiescent-state forcing, do it. */ 1681 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1682 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1683 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1684 TPS("fqsstart")); 1685 rcu_gp_fqs(first_gp_fqs); 1686 gf = 0; 1687 if (first_gp_fqs) { 1688 first_gp_fqs = false; 1689 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1690 } 1691 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1692 TPS("fqsend")); 1693 cond_resched_tasks_rcu_qs(); 1694 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1695 ret = 0; /* Force full wait till next FQS. */ 1696 j = READ_ONCE(jiffies_till_next_fqs); 1697 } else { 1698 /* Deal with stray signal. */ 1699 cond_resched_tasks_rcu_qs(); 1700 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1701 WARN_ON(signal_pending(current)); 1702 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1703 TPS("fqswaitsig")); 1704 ret = 1; /* Keep old FQS timing. */ 1705 j = jiffies; 1706 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1707 j = 1; 1708 else 1709 j = rcu_state.jiffies_force_qs - j; 1710 gf = 0; 1711 } 1712 } 1713 } 1714 1715 /* 1716 * Clean up after the old grace period. 1717 */ 1718 static noinline void rcu_gp_cleanup(void) 1719 { 1720 int cpu; 1721 bool needgp = false; 1722 unsigned long gp_duration; 1723 unsigned long new_gp_seq; 1724 bool offloaded; 1725 struct rcu_data *rdp; 1726 struct rcu_node *rnp = rcu_get_root(); 1727 struct swait_queue_head *sq; 1728 1729 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1730 raw_spin_lock_irq_rcu_node(rnp); 1731 rcu_state.gp_end = jiffies; 1732 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1733 if (gp_duration > rcu_state.gp_max) 1734 rcu_state.gp_max = gp_duration; 1735 1736 /* 1737 * We know the grace period is complete, but to everyone else 1738 * it appears to still be ongoing. But it is also the case 1739 * that to everyone else it looks like there is nothing that 1740 * they can do to advance the grace period. It is therefore 1741 * safe for us to drop the lock in order to mark the grace 1742 * period as completed in all of the rcu_node structures. 1743 */ 1744 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1745 raw_spin_unlock_irq_rcu_node(rnp); 1746 1747 /* 1748 * Propagate new ->gp_seq value to rcu_node structures so that 1749 * other CPUs don't have to wait until the start of the next grace 1750 * period to process their callbacks. This also avoids some nasty 1751 * RCU grace-period initialization races by forcing the end of 1752 * the current grace period to be completely recorded in all of 1753 * the rcu_node structures before the beginning of the next grace 1754 * period is recorded in any of the rcu_node structures. 1755 */ 1756 new_gp_seq = rcu_state.gp_seq; 1757 rcu_seq_end(&new_gp_seq); 1758 rcu_for_each_node_breadth_first(rnp) { 1759 raw_spin_lock_irq_rcu_node(rnp); 1760 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1761 dump_blkd_tasks(rnp, 10); 1762 WARN_ON_ONCE(rnp->qsmask); 1763 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1764 if (!rnp->parent) 1765 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1766 rdp = this_cpu_ptr(&rcu_data); 1767 if (rnp == rdp->mynode) 1768 needgp = __note_gp_changes(rnp, rdp) || needgp; 1769 /* smp_mb() provided by prior unlock-lock pair. */ 1770 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1771 // Reset overload indication for CPUs no longer overloaded 1772 if (rcu_is_leaf_node(rnp)) 1773 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1774 rdp = per_cpu_ptr(&rcu_data, cpu); 1775 check_cb_ovld_locked(rdp, rnp); 1776 } 1777 sq = rcu_nocb_gp_get(rnp); 1778 raw_spin_unlock_irq_rcu_node(rnp); 1779 rcu_nocb_gp_cleanup(sq); 1780 cond_resched_tasks_rcu_qs(); 1781 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1782 rcu_gp_slow(gp_cleanup_delay); 1783 } 1784 rnp = rcu_get_root(); 1785 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1786 1787 /* Declare grace period done, trace first to use old GP number. */ 1788 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1789 rcu_seq_end(&rcu_state.gp_seq); 1790 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1791 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1792 /* Check for GP requests since above loop. */ 1793 rdp = this_cpu_ptr(&rcu_data); 1794 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1795 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1796 TPS("CleanupMore")); 1797 needgp = true; 1798 } 1799 /* Advance CBs to reduce false positives below. */ 1800 offloaded = rcu_rdp_is_offloaded(rdp); 1801 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1802 1803 // We get here if a grace period was needed (“needgp”) 1804 // and the above call to rcu_accelerate_cbs() did not set 1805 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1806 // the need for another grace period). The purpose 1807 // of the “offloaded” check is to avoid invoking 1808 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1809 // hold the ->nocb_lock needed to safely access an offloaded 1810 // ->cblist. We do not want to acquire that lock because 1811 // it can be heavily contended during callback floods. 1812 1813 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1814 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1815 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1816 } else { 1817 1818 // We get here either if there is no need for an 1819 // additional grace period or if rcu_accelerate_cbs() has 1820 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1821 // So all we need to do is to clear all of the other 1822 // ->gp_flags bits. 1823 1824 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1825 } 1826 raw_spin_unlock_irq_rcu_node(rnp); 1827 1828 // If strict, make all CPUs aware of the end of the old grace period. 1829 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1830 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1831 } 1832 1833 /* 1834 * Body of kthread that handles grace periods. 1835 */ 1836 static int __noreturn rcu_gp_kthread(void *unused) 1837 { 1838 rcu_bind_gp_kthread(); 1839 for (;;) { 1840 1841 /* Handle grace-period start. */ 1842 for (;;) { 1843 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1844 TPS("reqwait")); 1845 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1846 swait_event_idle_exclusive(rcu_state.gp_wq, 1847 READ_ONCE(rcu_state.gp_flags) & 1848 RCU_GP_FLAG_INIT); 1849 rcu_gp_torture_wait(); 1850 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1851 /* Locking provides needed memory barrier. */ 1852 if (rcu_gp_init()) 1853 break; 1854 cond_resched_tasks_rcu_qs(); 1855 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1856 WARN_ON(signal_pending(current)); 1857 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1858 TPS("reqwaitsig")); 1859 } 1860 1861 /* Handle quiescent-state forcing. */ 1862 rcu_gp_fqs_loop(); 1863 1864 /* Handle grace-period end. */ 1865 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1866 rcu_gp_cleanup(); 1867 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1868 } 1869 } 1870 1871 /* 1872 * Report a full set of quiescent states to the rcu_state data structure. 1873 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1874 * another grace period is required. Whether we wake the grace-period 1875 * kthread or it awakens itself for the next round of quiescent-state 1876 * forcing, that kthread will clean up after the just-completed grace 1877 * period. Note that the caller must hold rnp->lock, which is released 1878 * before return. 1879 */ 1880 static void rcu_report_qs_rsp(unsigned long flags) 1881 __releases(rcu_get_root()->lock) 1882 { 1883 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1884 WARN_ON_ONCE(!rcu_gp_in_progress()); 1885 WRITE_ONCE(rcu_state.gp_flags, 1886 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1887 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1888 rcu_gp_kthread_wake(); 1889 } 1890 1891 /* 1892 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1893 * Allows quiescent states for a group of CPUs to be reported at one go 1894 * to the specified rcu_node structure, though all the CPUs in the group 1895 * must be represented by the same rcu_node structure (which need not be a 1896 * leaf rcu_node structure, though it often will be). The gps parameter 1897 * is the grace-period snapshot, which means that the quiescent states 1898 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1899 * must be held upon entry, and it is released before return. 1900 * 1901 * As a special case, if mask is zero, the bit-already-cleared check is 1902 * disabled. This allows propagating quiescent state due to resumed tasks 1903 * during grace-period initialization. 1904 */ 1905 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1906 unsigned long gps, unsigned long flags) 1907 __releases(rnp->lock) 1908 { 1909 unsigned long oldmask = 0; 1910 struct rcu_node *rnp_c; 1911 1912 raw_lockdep_assert_held_rcu_node(rnp); 1913 1914 /* Walk up the rcu_node hierarchy. */ 1915 for (;;) { 1916 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1917 1918 /* 1919 * Our bit has already been cleared, or the 1920 * relevant grace period is already over, so done. 1921 */ 1922 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1923 return; 1924 } 1925 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1926 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1927 rcu_preempt_blocked_readers_cgp(rnp)); 1928 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1929 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1930 mask, rnp->qsmask, rnp->level, 1931 rnp->grplo, rnp->grphi, 1932 !!rnp->gp_tasks); 1933 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1934 1935 /* Other bits still set at this level, so done. */ 1936 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1937 return; 1938 } 1939 rnp->completedqs = rnp->gp_seq; 1940 mask = rnp->grpmask; 1941 if (rnp->parent == NULL) { 1942 1943 /* No more levels. Exit loop holding root lock. */ 1944 1945 break; 1946 } 1947 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1948 rnp_c = rnp; 1949 rnp = rnp->parent; 1950 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1951 oldmask = READ_ONCE(rnp_c->qsmask); 1952 } 1953 1954 /* 1955 * Get here if we are the last CPU to pass through a quiescent 1956 * state for this grace period. Invoke rcu_report_qs_rsp() 1957 * to clean up and start the next grace period if one is needed. 1958 */ 1959 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1960 } 1961 1962 /* 1963 * Record a quiescent state for all tasks that were previously queued 1964 * on the specified rcu_node structure and that were blocking the current 1965 * RCU grace period. The caller must hold the corresponding rnp->lock with 1966 * irqs disabled, and this lock is released upon return, but irqs remain 1967 * disabled. 1968 */ 1969 static void __maybe_unused 1970 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1971 __releases(rnp->lock) 1972 { 1973 unsigned long gps; 1974 unsigned long mask; 1975 struct rcu_node *rnp_p; 1976 1977 raw_lockdep_assert_held_rcu_node(rnp); 1978 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1979 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1980 rnp->qsmask != 0) { 1981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1982 return; /* Still need more quiescent states! */ 1983 } 1984 1985 rnp->completedqs = rnp->gp_seq; 1986 rnp_p = rnp->parent; 1987 if (rnp_p == NULL) { 1988 /* 1989 * Only one rcu_node structure in the tree, so don't 1990 * try to report up to its nonexistent parent! 1991 */ 1992 rcu_report_qs_rsp(flags); 1993 return; 1994 } 1995 1996 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1997 gps = rnp->gp_seq; 1998 mask = rnp->grpmask; 1999 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2000 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2001 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2002 } 2003 2004 /* 2005 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2006 * structure. This must be called from the specified CPU. 2007 */ 2008 static void 2009 rcu_report_qs_rdp(struct rcu_data *rdp) 2010 { 2011 unsigned long flags; 2012 unsigned long mask; 2013 bool needacc = false; 2014 struct rcu_node *rnp; 2015 2016 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2017 rnp = rdp->mynode; 2018 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2019 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2020 rdp->gpwrap) { 2021 2022 /* 2023 * The grace period in which this quiescent state was 2024 * recorded has ended, so don't report it upwards. 2025 * We will instead need a new quiescent state that lies 2026 * within the current grace period. 2027 */ 2028 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2029 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2030 return; 2031 } 2032 mask = rdp->grpmask; 2033 rdp->core_needs_qs = false; 2034 if ((rnp->qsmask & mask) == 0) { 2035 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2036 } else { 2037 /* 2038 * This GP can't end until cpu checks in, so all of our 2039 * callbacks can be processed during the next GP. 2040 * 2041 * NOCB kthreads have their own way to deal with that... 2042 */ 2043 if (!rcu_rdp_is_offloaded(rdp)) { 2044 /* 2045 * The current GP has not yet ended, so it 2046 * should not be possible for rcu_accelerate_cbs() 2047 * to return true. So complain, but don't awaken. 2048 */ 2049 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2050 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2051 /* 2052 * ...but NOCB kthreads may miss or delay callbacks acceleration 2053 * if in the middle of a (de-)offloading process. 2054 */ 2055 needacc = true; 2056 } 2057 2058 rcu_disable_urgency_upon_qs(rdp); 2059 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2060 /* ^^^ Released rnp->lock */ 2061 2062 if (needacc) { 2063 rcu_nocb_lock_irqsave(rdp, flags); 2064 rcu_accelerate_cbs_unlocked(rnp, rdp); 2065 rcu_nocb_unlock_irqrestore(rdp, flags); 2066 } 2067 } 2068 } 2069 2070 /* 2071 * Check to see if there is a new grace period of which this CPU 2072 * is not yet aware, and if so, set up local rcu_data state for it. 2073 * Otherwise, see if this CPU has just passed through its first 2074 * quiescent state for this grace period, and record that fact if so. 2075 */ 2076 static void 2077 rcu_check_quiescent_state(struct rcu_data *rdp) 2078 { 2079 /* Check for grace-period ends and beginnings. */ 2080 note_gp_changes(rdp); 2081 2082 /* 2083 * Does this CPU still need to do its part for current grace period? 2084 * If no, return and let the other CPUs do their part as well. 2085 */ 2086 if (!rdp->core_needs_qs) 2087 return; 2088 2089 /* 2090 * Was there a quiescent state since the beginning of the grace 2091 * period? If no, then exit and wait for the next call. 2092 */ 2093 if (rdp->cpu_no_qs.b.norm) 2094 return; 2095 2096 /* 2097 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2098 * judge of that). 2099 */ 2100 rcu_report_qs_rdp(rdp); 2101 } 2102 2103 /* Return true if callback-invocation time limit exceeded. */ 2104 static bool rcu_do_batch_check_time(long count, long tlimit, 2105 bool jlimit_check, unsigned long jlimit) 2106 { 2107 // Invoke local_clock() only once per 32 consecutive callbacks. 2108 return unlikely(tlimit) && 2109 (!likely(count & 31) || 2110 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2111 jlimit_check && time_after(jiffies, jlimit))) && 2112 local_clock() >= tlimit; 2113 } 2114 2115 /* 2116 * Invoke any RCU callbacks that have made it to the end of their grace 2117 * period. Throttle as specified by rdp->blimit. 2118 */ 2119 static void rcu_do_batch(struct rcu_data *rdp) 2120 { 2121 long bl; 2122 long count = 0; 2123 int div; 2124 bool __maybe_unused empty; 2125 unsigned long flags; 2126 unsigned long jlimit; 2127 bool jlimit_check = false; 2128 long pending; 2129 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2130 struct rcu_head *rhp; 2131 long tlimit = 0; 2132 2133 /* If no callbacks are ready, just return. */ 2134 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2135 trace_rcu_batch_start(rcu_state.name, 2136 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2137 trace_rcu_batch_end(rcu_state.name, 0, 2138 !rcu_segcblist_empty(&rdp->cblist), 2139 need_resched(), is_idle_task(current), 2140 rcu_is_callbacks_kthread(rdp)); 2141 return; 2142 } 2143 2144 /* 2145 * Extract the list of ready callbacks, disabling IRQs to prevent 2146 * races with call_rcu() from interrupt handlers. Leave the 2147 * callback counts, as rcu_barrier() needs to be conservative. 2148 */ 2149 rcu_nocb_lock_irqsave(rdp, flags); 2150 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2151 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2152 div = READ_ONCE(rcu_divisor); 2153 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2154 bl = max(rdp->blimit, pending >> div); 2155 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2156 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2157 const long npj = NSEC_PER_SEC / HZ; 2158 long rrn = READ_ONCE(rcu_resched_ns); 2159 2160 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2161 tlimit = local_clock() + rrn; 2162 jlimit = jiffies + (rrn + npj + 1) / npj; 2163 jlimit_check = true; 2164 } 2165 trace_rcu_batch_start(rcu_state.name, 2166 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2167 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2168 if (rcu_rdp_is_offloaded(rdp)) 2169 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2170 2171 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2172 rcu_nocb_unlock_irqrestore(rdp, flags); 2173 2174 /* Invoke callbacks. */ 2175 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2176 rhp = rcu_cblist_dequeue(&rcl); 2177 2178 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2179 rcu_callback_t f; 2180 2181 count++; 2182 debug_rcu_head_unqueue(rhp); 2183 2184 rcu_lock_acquire(&rcu_callback_map); 2185 trace_rcu_invoke_callback(rcu_state.name, rhp); 2186 2187 f = rhp->func; 2188 debug_rcu_head_callback(rhp); 2189 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2190 f(rhp); 2191 2192 rcu_lock_release(&rcu_callback_map); 2193 2194 /* 2195 * Stop only if limit reached and CPU has something to do. 2196 */ 2197 if (in_serving_softirq()) { 2198 if (count >= bl && (need_resched() || !is_idle_task(current))) 2199 break; 2200 /* 2201 * Make sure we don't spend too much time here and deprive other 2202 * softirq vectors of CPU cycles. 2203 */ 2204 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2205 break; 2206 } else { 2207 // In rcuc/rcuoc context, so no worries about 2208 // depriving other softirq vectors of CPU cycles. 2209 local_bh_enable(); 2210 lockdep_assert_irqs_enabled(); 2211 cond_resched_tasks_rcu_qs(); 2212 lockdep_assert_irqs_enabled(); 2213 local_bh_disable(); 2214 // But rcuc kthreads can delay quiescent-state 2215 // reporting, so check time limits for them. 2216 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2217 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2218 rdp->rcu_cpu_has_work = 1; 2219 break; 2220 } 2221 } 2222 } 2223 2224 rcu_nocb_lock_irqsave(rdp, flags); 2225 rdp->n_cbs_invoked += count; 2226 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2227 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2228 2229 /* Update counts and requeue any remaining callbacks. */ 2230 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2231 rcu_segcblist_add_len(&rdp->cblist, -count); 2232 2233 /* Reinstate batch limit if we have worked down the excess. */ 2234 count = rcu_segcblist_n_cbs(&rdp->cblist); 2235 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2236 rdp->blimit = blimit; 2237 2238 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2239 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2240 rdp->qlen_last_fqs_check = 0; 2241 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2242 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2243 rdp->qlen_last_fqs_check = count; 2244 2245 /* 2246 * The following usually indicates a double call_rcu(). To track 2247 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2248 */ 2249 empty = rcu_segcblist_empty(&rdp->cblist); 2250 WARN_ON_ONCE(count == 0 && !empty); 2251 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2252 count != 0 && empty); 2253 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2254 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2255 2256 rcu_nocb_unlock_irqrestore(rdp, flags); 2257 2258 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2259 } 2260 2261 /* 2262 * This function is invoked from each scheduling-clock interrupt, 2263 * and checks to see if this CPU is in a non-context-switch quiescent 2264 * state, for example, user mode or idle loop. It also schedules RCU 2265 * core processing. If the current grace period has gone on too long, 2266 * it will ask the scheduler to manufacture a context switch for the sole 2267 * purpose of providing the needed quiescent state. 2268 */ 2269 void rcu_sched_clock_irq(int user) 2270 { 2271 unsigned long j; 2272 2273 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2274 j = jiffies; 2275 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2276 __this_cpu_write(rcu_data.last_sched_clock, j); 2277 } 2278 trace_rcu_utilization(TPS("Start scheduler-tick")); 2279 lockdep_assert_irqs_disabled(); 2280 raw_cpu_inc(rcu_data.ticks_this_gp); 2281 /* The load-acquire pairs with the store-release setting to true. */ 2282 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2283 /* Idle and userspace execution already are quiescent states. */ 2284 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2285 set_tsk_need_resched(current); 2286 set_preempt_need_resched(); 2287 } 2288 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2289 } 2290 rcu_flavor_sched_clock_irq(user); 2291 if (rcu_pending(user)) 2292 invoke_rcu_core(); 2293 if (user || rcu_is_cpu_rrupt_from_idle()) 2294 rcu_note_voluntary_context_switch(current); 2295 lockdep_assert_irqs_disabled(); 2296 2297 trace_rcu_utilization(TPS("End scheduler-tick")); 2298 } 2299 2300 /* 2301 * Scan the leaf rcu_node structures. For each structure on which all 2302 * CPUs have reported a quiescent state and on which there are tasks 2303 * blocking the current grace period, initiate RCU priority boosting. 2304 * Otherwise, invoke the specified function to check dyntick state for 2305 * each CPU that has not yet reported a quiescent state. 2306 */ 2307 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2308 { 2309 int cpu; 2310 unsigned long flags; 2311 struct rcu_node *rnp; 2312 2313 rcu_state.cbovld = rcu_state.cbovldnext; 2314 rcu_state.cbovldnext = false; 2315 rcu_for_each_leaf_node(rnp) { 2316 unsigned long mask = 0; 2317 unsigned long rsmask = 0; 2318 2319 cond_resched_tasks_rcu_qs(); 2320 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2321 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2322 if (rnp->qsmask == 0) { 2323 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2324 /* 2325 * No point in scanning bits because they 2326 * are all zero. But we might need to 2327 * priority-boost blocked readers. 2328 */ 2329 rcu_initiate_boost(rnp, flags); 2330 /* rcu_initiate_boost() releases rnp->lock */ 2331 continue; 2332 } 2333 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2334 continue; 2335 } 2336 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2337 struct rcu_data *rdp; 2338 int ret; 2339 2340 rdp = per_cpu_ptr(&rcu_data, cpu); 2341 ret = f(rdp); 2342 if (ret > 0) { 2343 mask |= rdp->grpmask; 2344 rcu_disable_urgency_upon_qs(rdp); 2345 } 2346 if (ret < 0) 2347 rsmask |= rdp->grpmask; 2348 } 2349 if (mask != 0) { 2350 /* Idle/offline CPUs, report (releases rnp->lock). */ 2351 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2352 } else { 2353 /* Nothing to do here, so just drop the lock. */ 2354 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2355 } 2356 2357 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) 2358 resched_cpu(cpu); 2359 } 2360 } 2361 2362 /* 2363 * Force quiescent states on reluctant CPUs, and also detect which 2364 * CPUs are in dyntick-idle mode. 2365 */ 2366 void rcu_force_quiescent_state(void) 2367 { 2368 unsigned long flags; 2369 bool ret; 2370 struct rcu_node *rnp; 2371 struct rcu_node *rnp_old = NULL; 2372 2373 if (!rcu_gp_in_progress()) 2374 return; 2375 /* Funnel through hierarchy to reduce memory contention. */ 2376 rnp = raw_cpu_read(rcu_data.mynode); 2377 for (; rnp != NULL; rnp = rnp->parent) { 2378 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2379 !raw_spin_trylock(&rnp->fqslock); 2380 if (rnp_old != NULL) 2381 raw_spin_unlock(&rnp_old->fqslock); 2382 if (ret) 2383 return; 2384 rnp_old = rnp; 2385 } 2386 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2387 2388 /* Reached the root of the rcu_node tree, acquire lock. */ 2389 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2390 raw_spin_unlock(&rnp_old->fqslock); 2391 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2392 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2393 return; /* Someone beat us to it. */ 2394 } 2395 WRITE_ONCE(rcu_state.gp_flags, 2396 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2397 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2398 rcu_gp_kthread_wake(); 2399 } 2400 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2401 2402 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2403 // grace periods. 2404 static void strict_work_handler(struct work_struct *work) 2405 { 2406 rcu_read_lock(); 2407 rcu_read_unlock(); 2408 } 2409 2410 /* Perform RCU core processing work for the current CPU. */ 2411 static __latent_entropy void rcu_core(void) 2412 { 2413 unsigned long flags; 2414 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2415 struct rcu_node *rnp = rdp->mynode; 2416 /* 2417 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2418 * Therefore this function can race with concurrent NOCB (de-)offloading 2419 * on this CPU and the below condition must be considered volatile. 2420 * However if we race with: 2421 * 2422 * _ Offloading: In the worst case we accelerate or process callbacks 2423 * concurrently with NOCB kthreads. We are guaranteed to 2424 * call rcu_nocb_lock() if that happens. 2425 * 2426 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2427 * processing. This is fine because the early stage 2428 * of deoffloading invokes rcu_core() after setting 2429 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2430 * what could have been dismissed without the need to wait 2431 * for the next rcu_pending() check in the next jiffy. 2432 */ 2433 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2434 2435 if (cpu_is_offline(smp_processor_id())) 2436 return; 2437 trace_rcu_utilization(TPS("Start RCU core")); 2438 WARN_ON_ONCE(!rdp->beenonline); 2439 2440 /* Report any deferred quiescent states if preemption enabled. */ 2441 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2442 rcu_preempt_deferred_qs(current); 2443 } else if (rcu_preempt_need_deferred_qs(current)) { 2444 set_tsk_need_resched(current); 2445 set_preempt_need_resched(); 2446 } 2447 2448 /* Update RCU state based on any recent quiescent states. */ 2449 rcu_check_quiescent_state(rdp); 2450 2451 /* No grace period and unregistered callbacks? */ 2452 if (!rcu_gp_in_progress() && 2453 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2454 rcu_nocb_lock_irqsave(rdp, flags); 2455 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2456 rcu_accelerate_cbs_unlocked(rnp, rdp); 2457 rcu_nocb_unlock_irqrestore(rdp, flags); 2458 } 2459 2460 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2461 2462 /* If there are callbacks ready, invoke them. */ 2463 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2464 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2465 rcu_do_batch(rdp); 2466 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2467 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2468 invoke_rcu_core(); 2469 } 2470 2471 /* Do any needed deferred wakeups of rcuo kthreads. */ 2472 do_nocb_deferred_wakeup(rdp); 2473 trace_rcu_utilization(TPS("End RCU core")); 2474 2475 // If strict GPs, schedule an RCU reader in a clean environment. 2476 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2477 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2478 } 2479 2480 static void rcu_core_si(struct softirq_action *h) 2481 { 2482 rcu_core(); 2483 } 2484 2485 static void rcu_wake_cond(struct task_struct *t, int status) 2486 { 2487 /* 2488 * If the thread is yielding, only wake it when this 2489 * is invoked from idle 2490 */ 2491 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2492 wake_up_process(t); 2493 } 2494 2495 static void invoke_rcu_core_kthread(void) 2496 { 2497 struct task_struct *t; 2498 unsigned long flags; 2499 2500 local_irq_save(flags); 2501 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2502 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2503 if (t != NULL && t != current) 2504 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2505 local_irq_restore(flags); 2506 } 2507 2508 /* 2509 * Wake up this CPU's rcuc kthread to do RCU core processing. 2510 */ 2511 static void invoke_rcu_core(void) 2512 { 2513 if (!cpu_online(smp_processor_id())) 2514 return; 2515 if (use_softirq) 2516 raise_softirq(RCU_SOFTIRQ); 2517 else 2518 invoke_rcu_core_kthread(); 2519 } 2520 2521 static void rcu_cpu_kthread_park(unsigned int cpu) 2522 { 2523 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2524 } 2525 2526 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2527 { 2528 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2529 } 2530 2531 /* 2532 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2533 * the RCU softirq used in configurations of RCU that do not support RCU 2534 * priority boosting. 2535 */ 2536 static void rcu_cpu_kthread(unsigned int cpu) 2537 { 2538 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2539 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2540 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2541 int spincnt; 2542 2543 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2544 for (spincnt = 0; spincnt < 10; spincnt++) { 2545 WRITE_ONCE(*j, jiffies); 2546 local_bh_disable(); 2547 *statusp = RCU_KTHREAD_RUNNING; 2548 local_irq_disable(); 2549 work = *workp; 2550 WRITE_ONCE(*workp, 0); 2551 local_irq_enable(); 2552 if (work) 2553 rcu_core(); 2554 local_bh_enable(); 2555 if (!READ_ONCE(*workp)) { 2556 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2557 *statusp = RCU_KTHREAD_WAITING; 2558 return; 2559 } 2560 } 2561 *statusp = RCU_KTHREAD_YIELDING; 2562 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2563 schedule_timeout_idle(2); 2564 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2565 *statusp = RCU_KTHREAD_WAITING; 2566 WRITE_ONCE(*j, jiffies); 2567 } 2568 2569 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2570 .store = &rcu_data.rcu_cpu_kthread_task, 2571 .thread_should_run = rcu_cpu_kthread_should_run, 2572 .thread_fn = rcu_cpu_kthread, 2573 .thread_comm = "rcuc/%u", 2574 .setup = rcu_cpu_kthread_setup, 2575 .park = rcu_cpu_kthread_park, 2576 }; 2577 2578 /* 2579 * Spawn per-CPU RCU core processing kthreads. 2580 */ 2581 static int __init rcu_spawn_core_kthreads(void) 2582 { 2583 int cpu; 2584 2585 for_each_possible_cpu(cpu) 2586 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2587 if (use_softirq) 2588 return 0; 2589 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2590 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2591 return 0; 2592 } 2593 2594 /* 2595 * Handle any core-RCU processing required by a call_rcu() invocation. 2596 */ 2597 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2598 unsigned long flags) 2599 { 2600 /* 2601 * If called from an extended quiescent state, invoke the RCU 2602 * core in order to force a re-evaluation of RCU's idleness. 2603 */ 2604 if (!rcu_is_watching()) 2605 invoke_rcu_core(); 2606 2607 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2608 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2609 return; 2610 2611 /* 2612 * Force the grace period if too many callbacks or too long waiting. 2613 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2614 * if some other CPU has recently done so. Also, don't bother 2615 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2616 * is the only one waiting for a grace period to complete. 2617 */ 2618 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2619 rdp->qlen_last_fqs_check + qhimark)) { 2620 2621 /* Are we ignoring a completed grace period? */ 2622 note_gp_changes(rdp); 2623 2624 /* Start a new grace period if one not already started. */ 2625 if (!rcu_gp_in_progress()) { 2626 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2627 } else { 2628 /* Give the grace period a kick. */ 2629 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2630 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2631 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2632 rcu_force_quiescent_state(); 2633 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2634 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2635 } 2636 } 2637 } 2638 2639 /* 2640 * RCU callback function to leak a callback. 2641 */ 2642 static void rcu_leak_callback(struct rcu_head *rhp) 2643 { 2644 } 2645 2646 /* 2647 * Check and if necessary update the leaf rcu_node structure's 2648 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2649 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2650 * structure's ->lock. 2651 */ 2652 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2653 { 2654 raw_lockdep_assert_held_rcu_node(rnp); 2655 if (qovld_calc <= 0) 2656 return; // Early boot and wildcard value set. 2657 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2658 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2659 else 2660 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2661 } 2662 2663 /* 2664 * Check and if necessary update the leaf rcu_node structure's 2665 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2666 * number of queued RCU callbacks. No locks need be held, but the 2667 * caller must have disabled interrupts. 2668 * 2669 * Note that this function ignores the possibility that there are a lot 2670 * of callbacks all of which have already seen the end of their respective 2671 * grace periods. This omission is due to the need for no-CBs CPUs to 2672 * be holding ->nocb_lock to do this check, which is too heavy for a 2673 * common-case operation. 2674 */ 2675 static void check_cb_ovld(struct rcu_data *rdp) 2676 { 2677 struct rcu_node *const rnp = rdp->mynode; 2678 2679 if (qovld_calc <= 0 || 2680 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2681 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2682 return; // Early boot wildcard value or already set correctly. 2683 raw_spin_lock_rcu_node(rnp); 2684 check_cb_ovld_locked(rdp, rnp); 2685 raw_spin_unlock_rcu_node(rnp); 2686 } 2687 2688 static void 2689 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2690 { 2691 static atomic_t doublefrees; 2692 unsigned long flags; 2693 bool lazy; 2694 struct rcu_data *rdp; 2695 bool was_alldone; 2696 2697 /* Misaligned rcu_head! */ 2698 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2699 2700 if (debug_rcu_head_queue(head)) { 2701 /* 2702 * Probable double call_rcu(), so leak the callback. 2703 * Use rcu:rcu_callback trace event to find the previous 2704 * time callback was passed to call_rcu(). 2705 */ 2706 if (atomic_inc_return(&doublefrees) < 4) { 2707 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2708 mem_dump_obj(head); 2709 } 2710 WRITE_ONCE(head->func, rcu_leak_callback); 2711 return; 2712 } 2713 head->func = func; 2714 head->next = NULL; 2715 kasan_record_aux_stack_noalloc(head); 2716 local_irq_save(flags); 2717 rdp = this_cpu_ptr(&rcu_data); 2718 lazy = lazy_in && !rcu_async_should_hurry(); 2719 2720 /* Add the callback to our list. */ 2721 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2722 // This can trigger due to call_rcu() from offline CPU: 2723 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2724 WARN_ON_ONCE(!rcu_is_watching()); 2725 // Very early boot, before rcu_init(). Initialize if needed 2726 // and then drop through to queue the callback. 2727 if (rcu_segcblist_empty(&rdp->cblist)) 2728 rcu_segcblist_init(&rdp->cblist); 2729 } 2730 2731 check_cb_ovld(rdp); 2732 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2733 return; // Enqueued onto ->nocb_bypass, so just leave. 2734 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2735 rcu_segcblist_enqueue(&rdp->cblist, head); 2736 if (__is_kvfree_rcu_offset((unsigned long)func)) 2737 trace_rcu_kvfree_callback(rcu_state.name, head, 2738 (unsigned long)func, 2739 rcu_segcblist_n_cbs(&rdp->cblist)); 2740 else 2741 trace_rcu_callback(rcu_state.name, head, 2742 rcu_segcblist_n_cbs(&rdp->cblist)); 2743 2744 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2745 2746 /* Go handle any RCU core processing required. */ 2747 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2748 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2749 } else { 2750 __call_rcu_core(rdp, head, flags); 2751 local_irq_restore(flags); 2752 } 2753 } 2754 2755 #ifdef CONFIG_RCU_LAZY 2756 /** 2757 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2758 * flush all lazy callbacks (including the new one) to the main ->cblist while 2759 * doing so. 2760 * 2761 * @head: structure to be used for queueing the RCU updates. 2762 * @func: actual callback function to be invoked after the grace period 2763 * 2764 * The callback function will be invoked some time after a full grace 2765 * period elapses, in other words after all pre-existing RCU read-side 2766 * critical sections have completed. 2767 * 2768 * Use this API instead of call_rcu() if you don't want the callback to be 2769 * invoked after very long periods of time, which can happen on systems without 2770 * memory pressure and on systems which are lightly loaded or mostly idle. 2771 * This function will cause callbacks to be invoked sooner than later at the 2772 * expense of extra power. Other than that, this function is identical to, and 2773 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2774 * ordering and other functionality. 2775 */ 2776 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2777 { 2778 __call_rcu_common(head, func, false); 2779 } 2780 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2781 #endif 2782 2783 /** 2784 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2785 * By default the callbacks are 'lazy' and are kept hidden from the main 2786 * ->cblist to prevent starting of grace periods too soon. 2787 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2788 * 2789 * @head: structure to be used for queueing the RCU updates. 2790 * @func: actual callback function to be invoked after the grace period 2791 * 2792 * The callback function will be invoked some time after a full grace 2793 * period elapses, in other words after all pre-existing RCU read-side 2794 * critical sections have completed. However, the callback function 2795 * might well execute concurrently with RCU read-side critical sections 2796 * that started after call_rcu() was invoked. 2797 * 2798 * RCU read-side critical sections are delimited by rcu_read_lock() 2799 * and rcu_read_unlock(), and may be nested. In addition, but only in 2800 * v5.0 and later, regions of code across which interrupts, preemption, 2801 * or softirqs have been disabled also serve as RCU read-side critical 2802 * sections. This includes hardware interrupt handlers, softirq handlers, 2803 * and NMI handlers. 2804 * 2805 * Note that all CPUs must agree that the grace period extended beyond 2806 * all pre-existing RCU read-side critical section. On systems with more 2807 * than one CPU, this means that when "func()" is invoked, each CPU is 2808 * guaranteed to have executed a full memory barrier since the end of its 2809 * last RCU read-side critical section whose beginning preceded the call 2810 * to call_rcu(). It also means that each CPU executing an RCU read-side 2811 * critical section that continues beyond the start of "func()" must have 2812 * executed a memory barrier after the call_rcu() but before the beginning 2813 * of that RCU read-side critical section. Note that these guarantees 2814 * include CPUs that are offline, idle, or executing in user mode, as 2815 * well as CPUs that are executing in the kernel. 2816 * 2817 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2818 * resulting RCU callback function "func()", then both CPU A and CPU B are 2819 * guaranteed to execute a full memory barrier during the time interval 2820 * between the call to call_rcu() and the invocation of "func()" -- even 2821 * if CPU A and CPU B are the same CPU (but again only if the system has 2822 * more than one CPU). 2823 * 2824 * Implementation of these memory-ordering guarantees is described here: 2825 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2826 */ 2827 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2828 { 2829 __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2830 } 2831 EXPORT_SYMBOL_GPL(call_rcu); 2832 2833 /* Maximum number of jiffies to wait before draining a batch. */ 2834 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2835 #define KFREE_N_BATCHES 2 2836 #define FREE_N_CHANNELS 2 2837 2838 /** 2839 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2840 * @list: List node. All blocks are linked between each other 2841 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2842 * @nr_records: Number of active pointers in the array 2843 * @records: Array of the kvfree_rcu() pointers 2844 */ 2845 struct kvfree_rcu_bulk_data { 2846 struct list_head list; 2847 struct rcu_gp_oldstate gp_snap; 2848 unsigned long nr_records; 2849 void *records[]; 2850 }; 2851 2852 /* 2853 * This macro defines how many entries the "records" array 2854 * will contain. It is based on the fact that the size of 2855 * kvfree_rcu_bulk_data structure becomes exactly one page. 2856 */ 2857 #define KVFREE_BULK_MAX_ENTR \ 2858 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2859 2860 /** 2861 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2862 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2863 * @head_free: List of kfree_rcu() objects waiting for a grace period 2864 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 2865 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2866 * @krcp: Pointer to @kfree_rcu_cpu structure 2867 */ 2868 2869 struct kfree_rcu_cpu_work { 2870 struct rcu_work rcu_work; 2871 struct rcu_head *head_free; 2872 struct rcu_gp_oldstate head_free_gp_snap; 2873 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2874 struct kfree_rcu_cpu *krcp; 2875 }; 2876 2877 /** 2878 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2879 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2880 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2881 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2882 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2883 * @lock: Synchronize access to this structure 2884 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2885 * @initialized: The @rcu_work fields have been initialized 2886 * @head_count: Number of objects in rcu_head singular list 2887 * @bulk_count: Number of objects in bulk-list 2888 * @bkvcache: 2889 * A simple cache list that contains objects for reuse purpose. 2890 * In order to save some per-cpu space the list is singular. 2891 * Even though it is lockless an access has to be protected by the 2892 * per-cpu lock. 2893 * @page_cache_work: A work to refill the cache when it is empty 2894 * @backoff_page_cache_fill: Delay cache refills 2895 * @work_in_progress: Indicates that page_cache_work is running 2896 * @hrtimer: A hrtimer for scheduling a page_cache_work 2897 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2898 * 2899 * This is a per-CPU structure. The reason that it is not included in 2900 * the rcu_data structure is to permit this code to be extracted from 2901 * the RCU files. Such extraction could allow further optimization of 2902 * the interactions with the slab allocators. 2903 */ 2904 struct kfree_rcu_cpu { 2905 // Objects queued on a linked list 2906 // through their rcu_head structures. 2907 struct rcu_head *head; 2908 unsigned long head_gp_snap; 2909 atomic_t head_count; 2910 2911 // Objects queued on a bulk-list. 2912 struct list_head bulk_head[FREE_N_CHANNELS]; 2913 atomic_t bulk_count[FREE_N_CHANNELS]; 2914 2915 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2916 raw_spinlock_t lock; 2917 struct delayed_work monitor_work; 2918 bool initialized; 2919 2920 struct delayed_work page_cache_work; 2921 atomic_t backoff_page_cache_fill; 2922 atomic_t work_in_progress; 2923 struct hrtimer hrtimer; 2924 2925 struct llist_head bkvcache; 2926 int nr_bkv_objs; 2927 }; 2928 2929 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2930 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2931 }; 2932 2933 static __always_inline void 2934 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2935 { 2936 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2937 int i; 2938 2939 for (i = 0; i < bhead->nr_records; i++) 2940 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2941 #endif 2942 } 2943 2944 static inline struct kfree_rcu_cpu * 2945 krc_this_cpu_lock(unsigned long *flags) 2946 { 2947 struct kfree_rcu_cpu *krcp; 2948 2949 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2950 krcp = this_cpu_ptr(&krc); 2951 raw_spin_lock(&krcp->lock); 2952 2953 return krcp; 2954 } 2955 2956 static inline void 2957 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2958 { 2959 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2960 } 2961 2962 static inline struct kvfree_rcu_bulk_data * 2963 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2964 { 2965 if (!krcp->nr_bkv_objs) 2966 return NULL; 2967 2968 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2969 return (struct kvfree_rcu_bulk_data *) 2970 llist_del_first(&krcp->bkvcache); 2971 } 2972 2973 static inline bool 2974 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2975 struct kvfree_rcu_bulk_data *bnode) 2976 { 2977 // Check the limit. 2978 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2979 return false; 2980 2981 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2982 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2983 return true; 2984 } 2985 2986 static int 2987 drain_page_cache(struct kfree_rcu_cpu *krcp) 2988 { 2989 unsigned long flags; 2990 struct llist_node *page_list, *pos, *n; 2991 int freed = 0; 2992 2993 if (!rcu_min_cached_objs) 2994 return 0; 2995 2996 raw_spin_lock_irqsave(&krcp->lock, flags); 2997 page_list = llist_del_all(&krcp->bkvcache); 2998 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2999 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3000 3001 llist_for_each_safe(pos, n, page_list) { 3002 free_page((unsigned long)pos); 3003 freed++; 3004 } 3005 3006 return freed; 3007 } 3008 3009 static void 3010 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 3011 struct kvfree_rcu_bulk_data *bnode, int idx) 3012 { 3013 unsigned long flags; 3014 int i; 3015 3016 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 3017 debug_rcu_bhead_unqueue(bnode); 3018 rcu_lock_acquire(&rcu_callback_map); 3019 if (idx == 0) { // kmalloc() / kfree(). 3020 trace_rcu_invoke_kfree_bulk_callback( 3021 rcu_state.name, bnode->nr_records, 3022 bnode->records); 3023 3024 kfree_bulk(bnode->nr_records, bnode->records); 3025 } else { // vmalloc() / vfree(). 3026 for (i = 0; i < bnode->nr_records; i++) { 3027 trace_rcu_invoke_kvfree_callback( 3028 rcu_state.name, bnode->records[i], 0); 3029 3030 vfree(bnode->records[i]); 3031 } 3032 } 3033 rcu_lock_release(&rcu_callback_map); 3034 } 3035 3036 raw_spin_lock_irqsave(&krcp->lock, flags); 3037 if (put_cached_bnode(krcp, bnode)) 3038 bnode = NULL; 3039 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3040 3041 if (bnode) 3042 free_page((unsigned long) bnode); 3043 3044 cond_resched_tasks_rcu_qs(); 3045 } 3046 3047 static void 3048 kvfree_rcu_list(struct rcu_head *head) 3049 { 3050 struct rcu_head *next; 3051 3052 for (; head; head = next) { 3053 void *ptr = (void *) head->func; 3054 unsigned long offset = (void *) head - ptr; 3055 3056 next = head->next; 3057 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3058 rcu_lock_acquire(&rcu_callback_map); 3059 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3060 3061 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3062 kvfree(ptr); 3063 3064 rcu_lock_release(&rcu_callback_map); 3065 cond_resched_tasks_rcu_qs(); 3066 } 3067 } 3068 3069 /* 3070 * This function is invoked in workqueue context after a grace period. 3071 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3072 */ 3073 static void kfree_rcu_work(struct work_struct *work) 3074 { 3075 unsigned long flags; 3076 struct kvfree_rcu_bulk_data *bnode, *n; 3077 struct list_head bulk_head[FREE_N_CHANNELS]; 3078 struct rcu_head *head; 3079 struct kfree_rcu_cpu *krcp; 3080 struct kfree_rcu_cpu_work *krwp; 3081 struct rcu_gp_oldstate head_gp_snap; 3082 int i; 3083 3084 krwp = container_of(to_rcu_work(work), 3085 struct kfree_rcu_cpu_work, rcu_work); 3086 krcp = krwp->krcp; 3087 3088 raw_spin_lock_irqsave(&krcp->lock, flags); 3089 // Channels 1 and 2. 3090 for (i = 0; i < FREE_N_CHANNELS; i++) 3091 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3092 3093 // Channel 3. 3094 head = krwp->head_free; 3095 krwp->head_free = NULL; 3096 head_gp_snap = krwp->head_free_gp_snap; 3097 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3098 3099 // Handle the first two channels. 3100 for (i = 0; i < FREE_N_CHANNELS; i++) { 3101 // Start from the tail page, so a GP is likely passed for it. 3102 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3103 kvfree_rcu_bulk(krcp, bnode, i); 3104 } 3105 3106 /* 3107 * This is used when the "bulk" path can not be used for the 3108 * double-argument of kvfree_rcu(). This happens when the 3109 * page-cache is empty, which means that objects are instead 3110 * queued on a linked list through their rcu_head structures. 3111 * This list is named "Channel 3". 3112 */ 3113 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3114 kvfree_rcu_list(head); 3115 } 3116 3117 static bool 3118 need_offload_krc(struct kfree_rcu_cpu *krcp) 3119 { 3120 int i; 3121 3122 for (i = 0; i < FREE_N_CHANNELS; i++) 3123 if (!list_empty(&krcp->bulk_head[i])) 3124 return true; 3125 3126 return !!READ_ONCE(krcp->head); 3127 } 3128 3129 static bool 3130 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3131 { 3132 int i; 3133 3134 for (i = 0; i < FREE_N_CHANNELS; i++) 3135 if (!list_empty(&krwp->bulk_head_free[i])) 3136 return true; 3137 3138 return !!krwp->head_free; 3139 } 3140 3141 static int krc_count(struct kfree_rcu_cpu *krcp) 3142 { 3143 int sum = atomic_read(&krcp->head_count); 3144 int i; 3145 3146 for (i = 0; i < FREE_N_CHANNELS; i++) 3147 sum += atomic_read(&krcp->bulk_count[i]); 3148 3149 return sum; 3150 } 3151 3152 static void 3153 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3154 { 3155 long delay, delay_left; 3156 3157 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3158 if (delayed_work_pending(&krcp->monitor_work)) { 3159 delay_left = krcp->monitor_work.timer.expires - jiffies; 3160 if (delay < delay_left) 3161 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3162 return; 3163 } 3164 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3165 } 3166 3167 static void 3168 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3169 { 3170 struct list_head bulk_ready[FREE_N_CHANNELS]; 3171 struct kvfree_rcu_bulk_data *bnode, *n; 3172 struct rcu_head *head_ready = NULL; 3173 unsigned long flags; 3174 int i; 3175 3176 raw_spin_lock_irqsave(&krcp->lock, flags); 3177 for (i = 0; i < FREE_N_CHANNELS; i++) { 3178 INIT_LIST_HEAD(&bulk_ready[i]); 3179 3180 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3181 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3182 break; 3183 3184 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3185 list_move(&bnode->list, &bulk_ready[i]); 3186 } 3187 } 3188 3189 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3190 head_ready = krcp->head; 3191 atomic_set(&krcp->head_count, 0); 3192 WRITE_ONCE(krcp->head, NULL); 3193 } 3194 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3195 3196 for (i = 0; i < FREE_N_CHANNELS; i++) { 3197 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3198 kvfree_rcu_bulk(krcp, bnode, i); 3199 } 3200 3201 if (head_ready) 3202 kvfree_rcu_list(head_ready); 3203 } 3204 3205 /* 3206 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3207 */ 3208 static void kfree_rcu_monitor(struct work_struct *work) 3209 { 3210 struct kfree_rcu_cpu *krcp = container_of(work, 3211 struct kfree_rcu_cpu, monitor_work.work); 3212 unsigned long flags; 3213 int i, j; 3214 3215 // Drain ready for reclaim. 3216 kvfree_rcu_drain_ready(krcp); 3217 3218 raw_spin_lock_irqsave(&krcp->lock, flags); 3219 3220 // Attempt to start a new batch. 3221 for (i = 0; i < KFREE_N_BATCHES; i++) { 3222 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3223 3224 // Try to detach bulk_head or head and attach it, only when 3225 // all channels are free. Any channel is not free means at krwp 3226 // there is on-going rcu work to handle krwp's free business. 3227 if (need_wait_for_krwp_work(krwp)) 3228 continue; 3229 3230 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3231 if (need_offload_krc(krcp)) { 3232 // Channel 1 corresponds to the SLAB-pointer bulk path. 3233 // Channel 2 corresponds to vmalloc-pointer bulk path. 3234 for (j = 0; j < FREE_N_CHANNELS; j++) { 3235 if (list_empty(&krwp->bulk_head_free[j])) { 3236 atomic_set(&krcp->bulk_count[j], 0); 3237 list_replace_init(&krcp->bulk_head[j], 3238 &krwp->bulk_head_free[j]); 3239 } 3240 } 3241 3242 // Channel 3 corresponds to both SLAB and vmalloc 3243 // objects queued on the linked list. 3244 if (!krwp->head_free) { 3245 krwp->head_free = krcp->head; 3246 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3247 atomic_set(&krcp->head_count, 0); 3248 WRITE_ONCE(krcp->head, NULL); 3249 } 3250 3251 // One work is per one batch, so there are three 3252 // "free channels", the batch can handle. It can 3253 // be that the work is in the pending state when 3254 // channels have been detached following by each 3255 // other. 3256 queue_rcu_work(system_wq, &krwp->rcu_work); 3257 } 3258 } 3259 3260 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3261 3262 // If there is nothing to detach, it means that our job is 3263 // successfully done here. In case of having at least one 3264 // of the channels that is still busy we should rearm the 3265 // work to repeat an attempt. Because previous batches are 3266 // still in progress. 3267 if (need_offload_krc(krcp)) 3268 schedule_delayed_monitor_work(krcp); 3269 } 3270 3271 static enum hrtimer_restart 3272 schedule_page_work_fn(struct hrtimer *t) 3273 { 3274 struct kfree_rcu_cpu *krcp = 3275 container_of(t, struct kfree_rcu_cpu, hrtimer); 3276 3277 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3278 return HRTIMER_NORESTART; 3279 } 3280 3281 static void fill_page_cache_func(struct work_struct *work) 3282 { 3283 struct kvfree_rcu_bulk_data *bnode; 3284 struct kfree_rcu_cpu *krcp = 3285 container_of(work, struct kfree_rcu_cpu, 3286 page_cache_work.work); 3287 unsigned long flags; 3288 int nr_pages; 3289 bool pushed; 3290 int i; 3291 3292 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3293 1 : rcu_min_cached_objs; 3294 3295 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3296 bnode = (struct kvfree_rcu_bulk_data *) 3297 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3298 3299 if (!bnode) 3300 break; 3301 3302 raw_spin_lock_irqsave(&krcp->lock, flags); 3303 pushed = put_cached_bnode(krcp, bnode); 3304 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3305 3306 if (!pushed) { 3307 free_page((unsigned long) bnode); 3308 break; 3309 } 3310 } 3311 3312 atomic_set(&krcp->work_in_progress, 0); 3313 atomic_set(&krcp->backoff_page_cache_fill, 0); 3314 } 3315 3316 static void 3317 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3318 { 3319 // If cache disabled, bail out. 3320 if (!rcu_min_cached_objs) 3321 return; 3322 3323 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3324 !atomic_xchg(&krcp->work_in_progress, 1)) { 3325 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3326 queue_delayed_work(system_wq, 3327 &krcp->page_cache_work, 3328 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3329 } else { 3330 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3331 krcp->hrtimer.function = schedule_page_work_fn; 3332 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3333 } 3334 } 3335 } 3336 3337 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3338 // state specified by flags. If can_alloc is true, the caller must 3339 // be schedulable and not be holding any locks or mutexes that might be 3340 // acquired by the memory allocator or anything that it might invoke. 3341 // Returns true if ptr was successfully recorded, else the caller must 3342 // use a fallback. 3343 static inline bool 3344 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3345 unsigned long *flags, void *ptr, bool can_alloc) 3346 { 3347 struct kvfree_rcu_bulk_data *bnode; 3348 int idx; 3349 3350 *krcp = krc_this_cpu_lock(flags); 3351 if (unlikely(!(*krcp)->initialized)) 3352 return false; 3353 3354 idx = !!is_vmalloc_addr(ptr); 3355 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3356 struct kvfree_rcu_bulk_data, list); 3357 3358 /* Check if a new block is required. */ 3359 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3360 bnode = get_cached_bnode(*krcp); 3361 if (!bnode && can_alloc) { 3362 krc_this_cpu_unlock(*krcp, *flags); 3363 3364 // __GFP_NORETRY - allows a light-weight direct reclaim 3365 // what is OK from minimizing of fallback hitting point of 3366 // view. Apart of that it forbids any OOM invoking what is 3367 // also beneficial since we are about to release memory soon. 3368 // 3369 // __GFP_NOMEMALLOC - prevents from consuming of all the 3370 // memory reserves. Please note we have a fallback path. 3371 // 3372 // __GFP_NOWARN - it is supposed that an allocation can 3373 // be failed under low memory or high memory pressure 3374 // scenarios. 3375 bnode = (struct kvfree_rcu_bulk_data *) 3376 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3377 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3378 } 3379 3380 if (!bnode) 3381 return false; 3382 3383 // Initialize the new block and attach it. 3384 bnode->nr_records = 0; 3385 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3386 } 3387 3388 // Finally insert and update the GP for this page. 3389 bnode->records[bnode->nr_records++] = ptr; 3390 get_state_synchronize_rcu_full(&bnode->gp_snap); 3391 atomic_inc(&(*krcp)->bulk_count[idx]); 3392 3393 return true; 3394 } 3395 3396 /* 3397 * Queue a request for lazy invocation of the appropriate free routine 3398 * after a grace period. Please note that three paths are maintained, 3399 * two for the common case using arrays of pointers and a third one that 3400 * is used only when the main paths cannot be used, for example, due to 3401 * memory pressure. 3402 * 3403 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3404 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3405 * be free'd in workqueue context. This allows us to: batch requests together to 3406 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3407 */ 3408 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3409 { 3410 unsigned long flags; 3411 struct kfree_rcu_cpu *krcp; 3412 bool success; 3413 3414 /* 3415 * Please note there is a limitation for the head-less 3416 * variant, that is why there is a clear rule for such 3417 * objects: it can be used from might_sleep() context 3418 * only. For other places please embed an rcu_head to 3419 * your data. 3420 */ 3421 if (!head) 3422 might_sleep(); 3423 3424 // Queue the object but don't yet schedule the batch. 3425 if (debug_rcu_head_queue(ptr)) { 3426 // Probable double kfree_rcu(), just leak. 3427 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3428 __func__, head); 3429 3430 // Mark as success and leave. 3431 return; 3432 } 3433 3434 kasan_record_aux_stack_noalloc(ptr); 3435 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3436 if (!success) { 3437 run_page_cache_worker(krcp); 3438 3439 if (head == NULL) 3440 // Inline if kvfree_rcu(one_arg) call. 3441 goto unlock_return; 3442 3443 head->func = ptr; 3444 head->next = krcp->head; 3445 WRITE_ONCE(krcp->head, head); 3446 atomic_inc(&krcp->head_count); 3447 3448 // Take a snapshot for this krcp. 3449 krcp->head_gp_snap = get_state_synchronize_rcu(); 3450 success = true; 3451 } 3452 3453 /* 3454 * The kvfree_rcu() caller considers the pointer freed at this point 3455 * and likely removes any references to it. Since the actual slab 3456 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore 3457 * this object (no scanning or false positives reporting). 3458 */ 3459 kmemleak_ignore(ptr); 3460 3461 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3462 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3463 schedule_delayed_monitor_work(krcp); 3464 3465 unlock_return: 3466 krc_this_cpu_unlock(krcp, flags); 3467 3468 /* 3469 * Inline kvfree() after synchronize_rcu(). We can do 3470 * it from might_sleep() context only, so the current 3471 * CPU can pass the QS state. 3472 */ 3473 if (!success) { 3474 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3475 synchronize_rcu(); 3476 kvfree(ptr); 3477 } 3478 } 3479 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3480 3481 static unsigned long 3482 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3483 { 3484 int cpu; 3485 unsigned long count = 0; 3486 3487 /* Snapshot count of all CPUs */ 3488 for_each_possible_cpu(cpu) { 3489 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3490 3491 count += krc_count(krcp); 3492 count += READ_ONCE(krcp->nr_bkv_objs); 3493 atomic_set(&krcp->backoff_page_cache_fill, 1); 3494 } 3495 3496 return count == 0 ? SHRINK_EMPTY : count; 3497 } 3498 3499 static unsigned long 3500 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3501 { 3502 int cpu, freed = 0; 3503 3504 for_each_possible_cpu(cpu) { 3505 int count; 3506 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3507 3508 count = krc_count(krcp); 3509 count += drain_page_cache(krcp); 3510 kfree_rcu_monitor(&krcp->monitor_work.work); 3511 3512 sc->nr_to_scan -= count; 3513 freed += count; 3514 3515 if (sc->nr_to_scan <= 0) 3516 break; 3517 } 3518 3519 return freed == 0 ? SHRINK_STOP : freed; 3520 } 3521 3522 void __init kfree_rcu_scheduler_running(void) 3523 { 3524 int cpu; 3525 3526 for_each_possible_cpu(cpu) { 3527 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3528 3529 if (need_offload_krc(krcp)) 3530 schedule_delayed_monitor_work(krcp); 3531 } 3532 } 3533 3534 /* 3535 * During early boot, any blocking grace-period wait automatically 3536 * implies a grace period. 3537 * 3538 * Later on, this could in theory be the case for kernels built with 3539 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3540 * is not a common case. Furthermore, this optimization would cause 3541 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3542 * grace-period optimization is ignored once the scheduler is running. 3543 */ 3544 static int rcu_blocking_is_gp(void) 3545 { 3546 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3547 might_sleep(); 3548 return false; 3549 } 3550 return true; 3551 } 3552 3553 /** 3554 * synchronize_rcu - wait until a grace period has elapsed. 3555 * 3556 * Control will return to the caller some time after a full grace 3557 * period has elapsed, in other words after all currently executing RCU 3558 * read-side critical sections have completed. Note, however, that 3559 * upon return from synchronize_rcu(), the caller might well be executing 3560 * concurrently with new RCU read-side critical sections that began while 3561 * synchronize_rcu() was waiting. 3562 * 3563 * RCU read-side critical sections are delimited by rcu_read_lock() 3564 * and rcu_read_unlock(), and may be nested. In addition, but only in 3565 * v5.0 and later, regions of code across which interrupts, preemption, 3566 * or softirqs have been disabled also serve as RCU read-side critical 3567 * sections. This includes hardware interrupt handlers, softirq handlers, 3568 * and NMI handlers. 3569 * 3570 * Note that this guarantee implies further memory-ordering guarantees. 3571 * On systems with more than one CPU, when synchronize_rcu() returns, 3572 * each CPU is guaranteed to have executed a full memory barrier since 3573 * the end of its last RCU read-side critical section whose beginning 3574 * preceded the call to synchronize_rcu(). In addition, each CPU having 3575 * an RCU read-side critical section that extends beyond the return from 3576 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3577 * after the beginning of synchronize_rcu() and before the beginning of 3578 * that RCU read-side critical section. Note that these guarantees include 3579 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3580 * that are executing in the kernel. 3581 * 3582 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3583 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3584 * to have executed a full memory barrier during the execution of 3585 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3586 * again only if the system has more than one CPU). 3587 * 3588 * Implementation of these memory-ordering guarantees is described here: 3589 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3590 */ 3591 void synchronize_rcu(void) 3592 { 3593 unsigned long flags; 3594 struct rcu_node *rnp; 3595 3596 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3597 lock_is_held(&rcu_lock_map) || 3598 lock_is_held(&rcu_sched_lock_map), 3599 "Illegal synchronize_rcu() in RCU read-side critical section"); 3600 if (!rcu_blocking_is_gp()) { 3601 if (rcu_gp_is_expedited()) 3602 synchronize_rcu_expedited(); 3603 else 3604 wait_rcu_gp(call_rcu_hurry); 3605 return; 3606 } 3607 3608 // Context allows vacuous grace periods. 3609 // Note well that this code runs with !PREEMPT && !SMP. 3610 // In addition, all code that advances grace periods runs at 3611 // process level. Therefore, this normal GP overlaps with other 3612 // normal GPs only by being fully nested within them, which allows 3613 // reuse of ->gp_seq_polled_snap. 3614 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3615 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3616 3617 // Update the normal grace-period counters to record 3618 // this grace period, but only those used by the boot CPU. 3619 // The rcu_scheduler_starting() will take care of the rest of 3620 // these counters. 3621 local_irq_save(flags); 3622 WARN_ON_ONCE(num_online_cpus() > 1); 3623 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3624 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3625 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3626 local_irq_restore(flags); 3627 } 3628 EXPORT_SYMBOL_GPL(synchronize_rcu); 3629 3630 /** 3631 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3632 * @rgosp: Place to put state cookie 3633 * 3634 * Stores into @rgosp a value that will always be treated by functions 3635 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3636 * has already completed. 3637 */ 3638 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3639 { 3640 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3641 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3642 } 3643 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3644 3645 /** 3646 * get_state_synchronize_rcu - Snapshot current RCU state 3647 * 3648 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3649 * or poll_state_synchronize_rcu() to determine whether or not a full 3650 * grace period has elapsed in the meantime. 3651 */ 3652 unsigned long get_state_synchronize_rcu(void) 3653 { 3654 /* 3655 * Any prior manipulation of RCU-protected data must happen 3656 * before the load from ->gp_seq. 3657 */ 3658 smp_mb(); /* ^^^ */ 3659 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3660 } 3661 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3662 3663 /** 3664 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3665 * @rgosp: location to place combined normal/expedited grace-period state 3666 * 3667 * Places the normal and expedited grace-period states in @rgosp. This 3668 * state value can be passed to a later call to cond_synchronize_rcu_full() 3669 * or poll_state_synchronize_rcu_full() to determine whether or not a 3670 * grace period (whether normal or expedited) has elapsed in the meantime. 3671 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3672 * long, but is guaranteed to see all grace periods. In contrast, the 3673 * combined state occupies less memory, but can sometimes fail to take 3674 * grace periods into account. 3675 * 3676 * This does not guarantee that the needed grace period will actually 3677 * start. 3678 */ 3679 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3680 { 3681 struct rcu_node *rnp = rcu_get_root(); 3682 3683 /* 3684 * Any prior manipulation of RCU-protected data must happen 3685 * before the loads from ->gp_seq and ->expedited_sequence. 3686 */ 3687 smp_mb(); /* ^^^ */ 3688 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3689 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3690 } 3691 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3692 3693 /* 3694 * Helper function for start_poll_synchronize_rcu() and 3695 * start_poll_synchronize_rcu_full(). 3696 */ 3697 static void start_poll_synchronize_rcu_common(void) 3698 { 3699 unsigned long flags; 3700 bool needwake; 3701 struct rcu_data *rdp; 3702 struct rcu_node *rnp; 3703 3704 lockdep_assert_irqs_enabled(); 3705 local_irq_save(flags); 3706 rdp = this_cpu_ptr(&rcu_data); 3707 rnp = rdp->mynode; 3708 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3709 // Note it is possible for a grace period to have elapsed between 3710 // the above call to get_state_synchronize_rcu() and the below call 3711 // to rcu_seq_snap. This is OK, the worst that happens is that we 3712 // get a grace period that no one needed. These accesses are ordered 3713 // by smp_mb(), and we are accessing them in the opposite order 3714 // from which they are updated at grace-period start, as required. 3715 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3716 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3717 if (needwake) 3718 rcu_gp_kthread_wake(); 3719 } 3720 3721 /** 3722 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3723 * 3724 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3725 * or poll_state_synchronize_rcu() to determine whether or not a full 3726 * grace period has elapsed in the meantime. If the needed grace period 3727 * is not already slated to start, notifies RCU core of the need for that 3728 * grace period. 3729 * 3730 * Interrupts must be enabled for the case where it is necessary to awaken 3731 * the grace-period kthread. 3732 */ 3733 unsigned long start_poll_synchronize_rcu(void) 3734 { 3735 unsigned long gp_seq = get_state_synchronize_rcu(); 3736 3737 start_poll_synchronize_rcu_common(); 3738 return gp_seq; 3739 } 3740 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3741 3742 /** 3743 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3744 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3745 * 3746 * Places the normal and expedited grace-period states in *@rgos. This 3747 * state value can be passed to a later call to cond_synchronize_rcu_full() 3748 * or poll_state_synchronize_rcu_full() to determine whether or not a 3749 * grace period (whether normal or expedited) has elapsed in the meantime. 3750 * If the needed grace period is not already slated to start, notifies 3751 * RCU core of the need for that grace period. 3752 * 3753 * Interrupts must be enabled for the case where it is necessary to awaken 3754 * the grace-period kthread. 3755 */ 3756 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3757 { 3758 get_state_synchronize_rcu_full(rgosp); 3759 3760 start_poll_synchronize_rcu_common(); 3761 } 3762 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3763 3764 /** 3765 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3766 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3767 * 3768 * If a full RCU grace period has elapsed since the earlier call from 3769 * which @oldstate was obtained, return @true, otherwise return @false. 3770 * If @false is returned, it is the caller's responsibility to invoke this 3771 * function later on until it does return @true. Alternatively, the caller 3772 * can explicitly wait for a grace period, for example, by passing @oldstate 3773 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3774 * on the one hand or by directly invoking either synchronize_rcu() or 3775 * synchronize_rcu_expedited() on the other. 3776 * 3777 * Yes, this function does not take counter wrap into account. 3778 * But counter wrap is harmless. If the counter wraps, we have waited for 3779 * more than a billion grace periods (and way more on a 64-bit system!). 3780 * Those needing to keep old state values for very long time periods 3781 * (many hours even on 32-bit systems) should check them occasionally and 3782 * either refresh them or set a flag indicating that the grace period has 3783 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3784 * to get a guaranteed-completed grace-period state. 3785 * 3786 * In addition, because oldstate compresses the grace-period state for 3787 * both normal and expedited grace periods into a single unsigned long, 3788 * it can miss a grace period when synchronize_rcu() runs concurrently 3789 * with synchronize_rcu_expedited(). If this is unacceptable, please 3790 * instead use the _full() variant of these polling APIs. 3791 * 3792 * This function provides the same memory-ordering guarantees that 3793 * would be provided by a synchronize_rcu() that was invoked at the call 3794 * to the function that provided @oldstate, and that returned at the end 3795 * of this function. 3796 */ 3797 bool poll_state_synchronize_rcu(unsigned long oldstate) 3798 { 3799 if (oldstate == RCU_GET_STATE_COMPLETED || 3800 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3801 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3802 return true; 3803 } 3804 return false; 3805 } 3806 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3807 3808 /** 3809 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3810 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3811 * 3812 * If a full RCU grace period has elapsed since the earlier call from 3813 * which *rgosp was obtained, return @true, otherwise return @false. 3814 * If @false is returned, it is the caller's responsibility to invoke this 3815 * function later on until it does return @true. Alternatively, the caller 3816 * can explicitly wait for a grace period, for example, by passing @rgosp 3817 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3818 * 3819 * Yes, this function does not take counter wrap into account. 3820 * But counter wrap is harmless. If the counter wraps, we have waited 3821 * for more than a billion grace periods (and way more on a 64-bit 3822 * system!). Those needing to keep rcu_gp_oldstate values for very 3823 * long time periods (many hours even on 32-bit systems) should check 3824 * them occasionally and either refresh them or set a flag indicating 3825 * that the grace period has completed. Alternatively, they can use 3826 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3827 * grace-period state. 3828 * 3829 * This function provides the same memory-ordering guarantees that would 3830 * be provided by a synchronize_rcu() that was invoked at the call to 3831 * the function that provided @rgosp, and that returned at the end of this 3832 * function. And this guarantee requires that the root rcu_node structure's 3833 * ->gp_seq field be checked instead of that of the rcu_state structure. 3834 * The problem is that the just-ending grace-period's callbacks can be 3835 * invoked between the time that the root rcu_node structure's ->gp_seq 3836 * field is updated and the time that the rcu_state structure's ->gp_seq 3837 * field is updated. Therefore, if a single synchronize_rcu() is to 3838 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3839 * then the root rcu_node structure is the one that needs to be polled. 3840 */ 3841 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3842 { 3843 struct rcu_node *rnp = rcu_get_root(); 3844 3845 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3846 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3847 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3848 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3849 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3850 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3851 return true; 3852 } 3853 return false; 3854 } 3855 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3856 3857 /** 3858 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3859 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3860 * 3861 * If a full RCU grace period has elapsed since the earlier call to 3862 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3863 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3864 * 3865 * Yes, this function does not take counter wrap into account. 3866 * But counter wrap is harmless. If the counter wraps, we have waited for 3867 * more than 2 billion grace periods (and way more on a 64-bit system!), 3868 * so waiting for a couple of additional grace periods should be just fine. 3869 * 3870 * This function provides the same memory-ordering guarantees that 3871 * would be provided by a synchronize_rcu() that was invoked at the call 3872 * to the function that provided @oldstate and that returned at the end 3873 * of this function. 3874 */ 3875 void cond_synchronize_rcu(unsigned long oldstate) 3876 { 3877 if (!poll_state_synchronize_rcu(oldstate)) 3878 synchronize_rcu(); 3879 } 3880 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3881 3882 /** 3883 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3884 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3885 * 3886 * If a full RCU grace period has elapsed since the call to 3887 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3888 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3889 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3890 * for a full grace period. 3891 * 3892 * Yes, this function does not take counter wrap into account. 3893 * But counter wrap is harmless. If the counter wraps, we have waited for 3894 * more than 2 billion grace periods (and way more on a 64-bit system!), 3895 * so waiting for a couple of additional grace periods should be just fine. 3896 * 3897 * This function provides the same memory-ordering guarantees that 3898 * would be provided by a synchronize_rcu() that was invoked at the call 3899 * to the function that provided @rgosp and that returned at the end of 3900 * this function. 3901 */ 3902 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3903 { 3904 if (!poll_state_synchronize_rcu_full(rgosp)) 3905 synchronize_rcu(); 3906 } 3907 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3908 3909 /* 3910 * Check to see if there is any immediate RCU-related work to be done by 3911 * the current CPU, returning 1 if so and zero otherwise. The checks are 3912 * in order of increasing expense: checks that can be carried out against 3913 * CPU-local state are performed first. However, we must check for CPU 3914 * stalls first, else we might not get a chance. 3915 */ 3916 static int rcu_pending(int user) 3917 { 3918 bool gp_in_progress; 3919 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3920 struct rcu_node *rnp = rdp->mynode; 3921 3922 lockdep_assert_irqs_disabled(); 3923 3924 /* Check for CPU stalls, if enabled. */ 3925 check_cpu_stall(rdp); 3926 3927 /* Does this CPU need a deferred NOCB wakeup? */ 3928 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3929 return 1; 3930 3931 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3932 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3933 return 0; 3934 3935 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3936 gp_in_progress = rcu_gp_in_progress(); 3937 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3938 return 1; 3939 3940 /* Does this CPU have callbacks ready to invoke? */ 3941 if (!rcu_rdp_is_offloaded(rdp) && 3942 rcu_segcblist_ready_cbs(&rdp->cblist)) 3943 return 1; 3944 3945 /* Has RCU gone idle with this CPU needing another grace period? */ 3946 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3947 !rcu_rdp_is_offloaded(rdp) && 3948 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3949 return 1; 3950 3951 /* Have RCU grace period completed or started? */ 3952 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3953 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3954 return 1; 3955 3956 /* nothing to do */ 3957 return 0; 3958 } 3959 3960 /* 3961 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3962 * the compiler is expected to optimize this away. 3963 */ 3964 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3965 { 3966 trace_rcu_barrier(rcu_state.name, s, cpu, 3967 atomic_read(&rcu_state.barrier_cpu_count), done); 3968 } 3969 3970 /* 3971 * RCU callback function for rcu_barrier(). If we are last, wake 3972 * up the task executing rcu_barrier(). 3973 * 3974 * Note that the value of rcu_state.barrier_sequence must be captured 3975 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3976 * other CPUs might count the value down to zero before this CPU gets 3977 * around to invoking rcu_barrier_trace(), which might result in bogus 3978 * data from the next instance of rcu_barrier(). 3979 */ 3980 static void rcu_barrier_callback(struct rcu_head *rhp) 3981 { 3982 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3983 3984 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3985 rcu_barrier_trace(TPS("LastCB"), -1, s); 3986 complete(&rcu_state.barrier_completion); 3987 } else { 3988 rcu_barrier_trace(TPS("CB"), -1, s); 3989 } 3990 } 3991 3992 /* 3993 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3994 */ 3995 static void rcu_barrier_entrain(struct rcu_data *rdp) 3996 { 3997 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3998 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3999 bool wake_nocb = false; 4000 bool was_alldone = false; 4001 4002 lockdep_assert_held(&rcu_state.barrier_lock); 4003 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 4004 return; 4005 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 4006 rdp->barrier_head.func = rcu_barrier_callback; 4007 debug_rcu_head_queue(&rdp->barrier_head); 4008 rcu_nocb_lock(rdp); 4009 /* 4010 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 4011 * queue. This way we don't wait for bypass timer that can reach seconds 4012 * if it's fully lazy. 4013 */ 4014 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 4015 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 4016 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 4017 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 4018 atomic_inc(&rcu_state.barrier_cpu_count); 4019 } else { 4020 debug_rcu_head_unqueue(&rdp->barrier_head); 4021 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 4022 } 4023 rcu_nocb_unlock(rdp); 4024 if (wake_nocb) 4025 wake_nocb_gp(rdp, false); 4026 smp_store_release(&rdp->barrier_seq_snap, gseq); 4027 } 4028 4029 /* 4030 * Called with preemption disabled, and from cross-cpu IRQ context. 4031 */ 4032 static void rcu_barrier_handler(void *cpu_in) 4033 { 4034 uintptr_t cpu = (uintptr_t)cpu_in; 4035 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4036 4037 lockdep_assert_irqs_disabled(); 4038 WARN_ON_ONCE(cpu != rdp->cpu); 4039 WARN_ON_ONCE(cpu != smp_processor_id()); 4040 raw_spin_lock(&rcu_state.barrier_lock); 4041 rcu_barrier_entrain(rdp); 4042 raw_spin_unlock(&rcu_state.barrier_lock); 4043 } 4044 4045 /** 4046 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4047 * 4048 * Note that this primitive does not necessarily wait for an RCU grace period 4049 * to complete. For example, if there are no RCU callbacks queued anywhere 4050 * in the system, then rcu_barrier() is within its rights to return 4051 * immediately, without waiting for anything, much less an RCU grace period. 4052 */ 4053 void rcu_barrier(void) 4054 { 4055 uintptr_t cpu; 4056 unsigned long flags; 4057 unsigned long gseq; 4058 struct rcu_data *rdp; 4059 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4060 4061 rcu_barrier_trace(TPS("Begin"), -1, s); 4062 4063 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4064 mutex_lock(&rcu_state.barrier_mutex); 4065 4066 /* Did someone else do our work for us? */ 4067 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4068 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4069 smp_mb(); /* caller's subsequent code after above check. */ 4070 mutex_unlock(&rcu_state.barrier_mutex); 4071 return; 4072 } 4073 4074 /* Mark the start of the barrier operation. */ 4075 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4076 rcu_seq_start(&rcu_state.barrier_sequence); 4077 gseq = rcu_state.barrier_sequence; 4078 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4079 4080 /* 4081 * Initialize the count to two rather than to zero in order 4082 * to avoid a too-soon return to zero in case of an immediate 4083 * invocation of the just-enqueued callback (or preemption of 4084 * this task). Exclude CPU-hotplug operations to ensure that no 4085 * offline non-offloaded CPU has callbacks queued. 4086 */ 4087 init_completion(&rcu_state.barrier_completion); 4088 atomic_set(&rcu_state.barrier_cpu_count, 2); 4089 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4090 4091 /* 4092 * Force each CPU with callbacks to register a new callback. 4093 * When that callback is invoked, we will know that all of the 4094 * corresponding CPU's preceding callbacks have been invoked. 4095 */ 4096 for_each_possible_cpu(cpu) { 4097 rdp = per_cpu_ptr(&rcu_data, cpu); 4098 retry: 4099 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4100 continue; 4101 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4102 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4103 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4104 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4105 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4106 continue; 4107 } 4108 if (!rcu_rdp_cpu_online(rdp)) { 4109 rcu_barrier_entrain(rdp); 4110 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4111 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4112 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4113 continue; 4114 } 4115 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4116 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4117 schedule_timeout_uninterruptible(1); 4118 goto retry; 4119 } 4120 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4121 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4122 } 4123 4124 /* 4125 * Now that we have an rcu_barrier_callback() callback on each 4126 * CPU, and thus each counted, remove the initial count. 4127 */ 4128 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4129 complete(&rcu_state.barrier_completion); 4130 4131 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4132 wait_for_completion(&rcu_state.barrier_completion); 4133 4134 /* Mark the end of the barrier operation. */ 4135 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4136 rcu_seq_end(&rcu_state.barrier_sequence); 4137 gseq = rcu_state.barrier_sequence; 4138 for_each_possible_cpu(cpu) { 4139 rdp = per_cpu_ptr(&rcu_data, cpu); 4140 4141 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4142 } 4143 4144 /* Other rcu_barrier() invocations can now safely proceed. */ 4145 mutex_unlock(&rcu_state.barrier_mutex); 4146 } 4147 EXPORT_SYMBOL_GPL(rcu_barrier); 4148 4149 static unsigned long rcu_barrier_last_throttle; 4150 4151 /** 4152 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 4153 * 4154 * This can be thought of as guard rails around rcu_barrier() that 4155 * permits unrestricted userspace use, at least assuming the hardware's 4156 * try_cmpxchg() is robust. There will be at most one call per second to 4157 * rcu_barrier() system-wide from use of this function, which means that 4158 * callers might needlessly wait a second or three. 4159 * 4160 * This is intended for use by test suites to avoid OOM by flushing RCU 4161 * callbacks from the previous test before starting the next. See the 4162 * rcutree.do_rcu_barrier module parameter for more information. 4163 * 4164 * Why not simply make rcu_barrier() more scalable? That might be 4165 * the eventual endpoint, but let's keep it simple for the time being. 4166 * Note that the module parameter infrastructure serializes calls to a 4167 * given .set() function, but should concurrent .set() invocation ever be 4168 * possible, we are ready! 4169 */ 4170 static void rcu_barrier_throttled(void) 4171 { 4172 unsigned long j = jiffies; 4173 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 4174 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4175 4176 while (time_in_range(j, old, old + HZ / 16) || 4177 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 4178 schedule_timeout_idle(HZ / 16); 4179 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4180 smp_mb(); /* caller's subsequent code after above check. */ 4181 return; 4182 } 4183 j = jiffies; 4184 old = READ_ONCE(rcu_barrier_last_throttle); 4185 } 4186 rcu_barrier(); 4187 } 4188 4189 /* 4190 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 4191 * request arrives. We insist on a true value to allow for possible 4192 * future expansion. 4193 */ 4194 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 4195 { 4196 bool b; 4197 int ret; 4198 4199 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 4200 return -EAGAIN; 4201 ret = kstrtobool(val, &b); 4202 if (!ret && b) { 4203 atomic_inc((atomic_t *)kp->arg); 4204 rcu_barrier_throttled(); 4205 atomic_dec((atomic_t *)kp->arg); 4206 } 4207 return ret; 4208 } 4209 4210 /* 4211 * Output the number of outstanding rcutree.do_rcu_barrier requests. 4212 */ 4213 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 4214 { 4215 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 4216 } 4217 4218 static const struct kernel_param_ops do_rcu_barrier_ops = { 4219 .set = param_set_do_rcu_barrier, 4220 .get = param_get_do_rcu_barrier, 4221 }; 4222 static atomic_t do_rcu_barrier; 4223 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 4224 4225 /* 4226 * Compute the mask of online CPUs for the specified rcu_node structure. 4227 * This will not be stable unless the rcu_node structure's ->lock is 4228 * held, but the bit corresponding to the current CPU will be stable 4229 * in most contexts. 4230 */ 4231 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4232 { 4233 return READ_ONCE(rnp->qsmaskinitnext); 4234 } 4235 4236 /* 4237 * Is the CPU corresponding to the specified rcu_data structure online 4238 * from RCU's perspective? This perspective is given by that structure's 4239 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4240 */ 4241 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4242 { 4243 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4244 } 4245 4246 bool rcu_cpu_online(int cpu) 4247 { 4248 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4249 4250 return rcu_rdp_cpu_online(rdp); 4251 } 4252 4253 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4254 4255 /* 4256 * Is the current CPU online as far as RCU is concerned? 4257 * 4258 * Disable preemption to avoid false positives that could otherwise 4259 * happen due to the current CPU number being sampled, this task being 4260 * preempted, its old CPU being taken offline, resuming on some other CPU, 4261 * then determining that its old CPU is now offline. 4262 * 4263 * Disable checking if in an NMI handler because we cannot safely 4264 * report errors from NMI handlers anyway. In addition, it is OK to use 4265 * RCU on an offline processor during initial boot, hence the check for 4266 * rcu_scheduler_fully_active. 4267 */ 4268 bool rcu_lockdep_current_cpu_online(void) 4269 { 4270 struct rcu_data *rdp; 4271 bool ret = false; 4272 4273 if (in_nmi() || !rcu_scheduler_fully_active) 4274 return true; 4275 preempt_disable_notrace(); 4276 rdp = this_cpu_ptr(&rcu_data); 4277 /* 4278 * Strictly, we care here about the case where the current CPU is 4279 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 4280 * not being up to date. So arch_spin_is_locked() might have a 4281 * false positive if it's held by some *other* CPU, but that's 4282 * OK because that just means a false *negative* on the warning. 4283 */ 4284 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4285 ret = true; 4286 preempt_enable_notrace(); 4287 return ret; 4288 } 4289 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4290 4291 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4292 4293 // Has rcu_init() been invoked? This is used (for example) to determine 4294 // whether spinlocks may be acquired safely. 4295 static bool rcu_init_invoked(void) 4296 { 4297 return !!rcu_state.n_online_cpus; 4298 } 4299 4300 /* 4301 * All CPUs for the specified rcu_node structure have gone offline, 4302 * and all tasks that were preempted within an RCU read-side critical 4303 * section while running on one of those CPUs have since exited their RCU 4304 * read-side critical section. Some other CPU is reporting this fact with 4305 * the specified rcu_node structure's ->lock held and interrupts disabled. 4306 * This function therefore goes up the tree of rcu_node structures, 4307 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4308 * the leaf rcu_node structure's ->qsmaskinit field has already been 4309 * updated. 4310 * 4311 * This function does check that the specified rcu_node structure has 4312 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4313 * prematurely. That said, invoking it after the fact will cost you 4314 * a needless lock acquisition. So once it has done its work, don't 4315 * invoke it again. 4316 */ 4317 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4318 { 4319 long mask; 4320 struct rcu_node *rnp = rnp_leaf; 4321 4322 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4323 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4324 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4325 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4326 return; 4327 for (;;) { 4328 mask = rnp->grpmask; 4329 rnp = rnp->parent; 4330 if (!rnp) 4331 break; 4332 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4333 rnp->qsmaskinit &= ~mask; 4334 /* Between grace periods, so better already be zero! */ 4335 WARN_ON_ONCE(rnp->qsmask); 4336 if (rnp->qsmaskinit) { 4337 raw_spin_unlock_rcu_node(rnp); 4338 /* irqs remain disabled. */ 4339 return; 4340 } 4341 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4342 } 4343 } 4344 4345 /* 4346 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4347 * first CPU in a given leaf rcu_node structure coming online. The caller 4348 * must hold the corresponding leaf rcu_node ->lock with interrupts 4349 * disabled. 4350 */ 4351 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4352 { 4353 long mask; 4354 long oldmask; 4355 struct rcu_node *rnp = rnp_leaf; 4356 4357 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4358 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4359 for (;;) { 4360 mask = rnp->grpmask; 4361 rnp = rnp->parent; 4362 if (rnp == NULL) 4363 return; 4364 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4365 oldmask = rnp->qsmaskinit; 4366 rnp->qsmaskinit |= mask; 4367 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4368 if (oldmask) 4369 return; 4370 } 4371 } 4372 4373 /* 4374 * Do boot-time initialization of a CPU's per-CPU RCU data. 4375 */ 4376 static void __init 4377 rcu_boot_init_percpu_data(int cpu) 4378 { 4379 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4380 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4381 4382 /* Set up local state, ensuring consistent view of global state. */ 4383 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4384 INIT_WORK(&rdp->strict_work, strict_work_handler); 4385 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4386 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4387 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4388 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4389 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4390 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4391 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4392 rdp->last_sched_clock = jiffies; 4393 rdp->cpu = cpu; 4394 rcu_boot_init_nocb_percpu_data(rdp); 4395 } 4396 4397 /* 4398 * Invoked early in the CPU-online process, when pretty much all services 4399 * are available. The incoming CPU is not present. 4400 * 4401 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4402 * offline event can be happening at a given time. Note also that we can 4403 * accept some slop in the rsp->gp_seq access due to the fact that this 4404 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4405 * And any offloaded callbacks are being numbered elsewhere. 4406 */ 4407 int rcutree_prepare_cpu(unsigned int cpu) 4408 { 4409 unsigned long flags; 4410 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4411 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4412 struct rcu_node *rnp = rcu_get_root(); 4413 4414 /* Set up local state, ensuring consistent view of global state. */ 4415 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4416 rdp->qlen_last_fqs_check = 0; 4417 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4418 rdp->blimit = blimit; 4419 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4420 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4421 4422 /* 4423 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4424 * (re-)initialized. 4425 */ 4426 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4427 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4428 4429 /* 4430 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4431 * propagation up the rcu_node tree will happen at the beginning 4432 * of the next grace period. 4433 */ 4434 rnp = rdp->mynode; 4435 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4436 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4437 rdp->gp_seq_needed = rdp->gp_seq; 4438 rdp->cpu_no_qs.b.norm = true; 4439 rdp->core_needs_qs = false; 4440 rdp->rcu_iw_pending = false; 4441 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4442 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4443 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4444 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4445 rcu_spawn_one_boost_kthread(rnp); 4446 rcu_spawn_cpu_nocb_kthread(cpu); 4447 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4448 4449 return 0; 4450 } 4451 4452 /* 4453 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4454 */ 4455 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4456 { 4457 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4458 4459 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4460 } 4461 4462 /* 4463 * Has the specified (known valid) CPU ever been fully online? 4464 */ 4465 bool rcu_cpu_beenfullyonline(int cpu) 4466 { 4467 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4468 4469 return smp_load_acquire(&rdp->beenonline); 4470 } 4471 4472 /* 4473 * Near the end of the CPU-online process. Pretty much all services 4474 * enabled, and the CPU is now very much alive. 4475 */ 4476 int rcutree_online_cpu(unsigned int cpu) 4477 { 4478 unsigned long flags; 4479 struct rcu_data *rdp; 4480 struct rcu_node *rnp; 4481 4482 rdp = per_cpu_ptr(&rcu_data, cpu); 4483 rnp = rdp->mynode; 4484 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4485 rnp->ffmask |= rdp->grpmask; 4486 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4487 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4488 return 0; /* Too early in boot for scheduler work. */ 4489 sync_sched_exp_online_cleanup(cpu); 4490 rcutree_affinity_setting(cpu, -1); 4491 4492 // Stop-machine done, so allow nohz_full to disable tick. 4493 tick_dep_clear(TICK_DEP_BIT_RCU); 4494 return 0; 4495 } 4496 4497 /* 4498 * Mark the specified CPU as being online so that subsequent grace periods 4499 * (both expedited and normal) will wait on it. Note that this means that 4500 * incoming CPUs are not allowed to use RCU read-side critical sections 4501 * until this function is called. Failing to observe this restriction 4502 * will result in lockdep splats. 4503 * 4504 * Note that this function is special in that it is invoked directly 4505 * from the incoming CPU rather than from the cpuhp_step mechanism. 4506 * This is because this function must be invoked at a precise location. 4507 * This incoming CPU must not have enabled interrupts yet. 4508 * 4509 * This mirrors the effects of rcutree_report_cpu_dead(). 4510 */ 4511 void rcutree_report_cpu_starting(unsigned int cpu) 4512 { 4513 unsigned long mask; 4514 struct rcu_data *rdp; 4515 struct rcu_node *rnp; 4516 bool newcpu; 4517 4518 lockdep_assert_irqs_disabled(); 4519 rdp = per_cpu_ptr(&rcu_data, cpu); 4520 if (rdp->cpu_started) 4521 return; 4522 rdp->cpu_started = true; 4523 4524 rnp = rdp->mynode; 4525 mask = rdp->grpmask; 4526 arch_spin_lock(&rcu_state.ofl_lock); 4527 rcu_dynticks_eqs_online(); 4528 raw_spin_lock(&rcu_state.barrier_lock); 4529 raw_spin_lock_rcu_node(rnp); 4530 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4531 raw_spin_unlock(&rcu_state.barrier_lock); 4532 newcpu = !(rnp->expmaskinitnext & mask); 4533 rnp->expmaskinitnext |= mask; 4534 /* Allow lockless access for expedited grace periods. */ 4535 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4536 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4537 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4538 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4539 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4540 4541 /* An incoming CPU should never be blocking a grace period. */ 4542 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4543 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4544 unsigned long flags; 4545 4546 local_irq_save(flags); 4547 rcu_disable_urgency_upon_qs(rdp); 4548 /* Report QS -after- changing ->qsmaskinitnext! */ 4549 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4550 } else { 4551 raw_spin_unlock_rcu_node(rnp); 4552 } 4553 arch_spin_unlock(&rcu_state.ofl_lock); 4554 smp_store_release(&rdp->beenonline, true); 4555 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4556 } 4557 4558 /* 4559 * The outgoing function has no further need of RCU, so remove it from 4560 * the rcu_node tree's ->qsmaskinitnext bit masks. 4561 * 4562 * Note that this function is special in that it is invoked directly 4563 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4564 * This is because this function must be invoked at a precise location. 4565 * 4566 * This mirrors the effect of rcutree_report_cpu_starting(). 4567 */ 4568 void rcutree_report_cpu_dead(void) 4569 { 4570 unsigned long flags; 4571 unsigned long mask; 4572 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4573 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4574 4575 /* 4576 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 4577 * may introduce a new READ-side while it is actually off the QS masks. 4578 */ 4579 lockdep_assert_irqs_disabled(); 4580 // Do any dangling deferred wakeups. 4581 do_nocb_deferred_wakeup(rdp); 4582 4583 rcu_preempt_deferred_qs(current); 4584 4585 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4586 mask = rdp->grpmask; 4587 arch_spin_lock(&rcu_state.ofl_lock); 4588 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4589 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4590 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4591 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4592 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4593 rcu_disable_urgency_upon_qs(rdp); 4594 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4595 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4596 } 4597 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4598 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4599 arch_spin_unlock(&rcu_state.ofl_lock); 4600 rdp->cpu_started = false; 4601 } 4602 4603 #ifdef CONFIG_HOTPLUG_CPU 4604 /* 4605 * The outgoing CPU has just passed through the dying-idle state, and we 4606 * are being invoked from the CPU that was IPIed to continue the offline 4607 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4608 */ 4609 void rcutree_migrate_callbacks(int cpu) 4610 { 4611 unsigned long flags; 4612 struct rcu_data *my_rdp; 4613 struct rcu_node *my_rnp; 4614 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4615 bool needwake; 4616 4617 if (rcu_rdp_is_offloaded(rdp) || 4618 rcu_segcblist_empty(&rdp->cblist)) 4619 return; /* No callbacks to migrate. */ 4620 4621 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4622 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4623 rcu_barrier_entrain(rdp); 4624 my_rdp = this_cpu_ptr(&rcu_data); 4625 my_rnp = my_rdp->mynode; 4626 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4627 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4628 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4629 /* Leverage recent GPs and set GP for new callbacks. */ 4630 needwake = rcu_advance_cbs(my_rnp, rdp) || 4631 rcu_advance_cbs(my_rnp, my_rdp); 4632 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4633 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4634 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4635 rcu_segcblist_disable(&rdp->cblist); 4636 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4637 check_cb_ovld_locked(my_rdp, my_rnp); 4638 if (rcu_rdp_is_offloaded(my_rdp)) { 4639 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4640 __call_rcu_nocb_wake(my_rdp, true, flags); 4641 } else { 4642 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4643 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4644 } 4645 if (needwake) 4646 rcu_gp_kthread_wake(); 4647 lockdep_assert_irqs_enabled(); 4648 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4649 !rcu_segcblist_empty(&rdp->cblist), 4650 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4651 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4652 rcu_segcblist_first_cb(&rdp->cblist)); 4653 } 4654 4655 /* 4656 * The CPU has been completely removed, and some other CPU is reporting 4657 * this fact from process context. Do the remainder of the cleanup. 4658 * There can only be one CPU hotplug operation at a time, so no need for 4659 * explicit locking. 4660 */ 4661 int rcutree_dead_cpu(unsigned int cpu) 4662 { 4663 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4664 // Stop-machine done, so allow nohz_full to disable tick. 4665 tick_dep_clear(TICK_DEP_BIT_RCU); 4666 return 0; 4667 } 4668 4669 /* 4670 * Near the end of the offline process. Trace the fact that this CPU 4671 * is going offline. 4672 */ 4673 int rcutree_dying_cpu(unsigned int cpu) 4674 { 4675 bool blkd; 4676 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4677 struct rcu_node *rnp = rdp->mynode; 4678 4679 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4680 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4681 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4682 return 0; 4683 } 4684 4685 /* 4686 * Near the beginning of the process. The CPU is still very much alive 4687 * with pretty much all services enabled. 4688 */ 4689 int rcutree_offline_cpu(unsigned int cpu) 4690 { 4691 unsigned long flags; 4692 struct rcu_data *rdp; 4693 struct rcu_node *rnp; 4694 4695 rdp = per_cpu_ptr(&rcu_data, cpu); 4696 rnp = rdp->mynode; 4697 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4698 rnp->ffmask &= ~rdp->grpmask; 4699 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4700 4701 rcutree_affinity_setting(cpu, cpu); 4702 4703 // nohz_full CPUs need the tick for stop-machine to work quickly 4704 tick_dep_set(TICK_DEP_BIT_RCU); 4705 return 0; 4706 } 4707 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 4708 4709 /* 4710 * On non-huge systems, use expedited RCU grace periods to make suspend 4711 * and hibernation run faster. 4712 */ 4713 static int rcu_pm_notify(struct notifier_block *self, 4714 unsigned long action, void *hcpu) 4715 { 4716 switch (action) { 4717 case PM_HIBERNATION_PREPARE: 4718 case PM_SUSPEND_PREPARE: 4719 rcu_async_hurry(); 4720 rcu_expedite_gp(); 4721 break; 4722 case PM_POST_HIBERNATION: 4723 case PM_POST_SUSPEND: 4724 rcu_unexpedite_gp(); 4725 rcu_async_relax(); 4726 break; 4727 default: 4728 break; 4729 } 4730 return NOTIFY_OK; 4731 } 4732 4733 #ifdef CONFIG_RCU_EXP_KTHREAD 4734 struct kthread_worker *rcu_exp_gp_kworker; 4735 struct kthread_worker *rcu_exp_par_gp_kworker; 4736 4737 static void __init rcu_start_exp_gp_kworkers(void) 4738 { 4739 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4740 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4741 struct sched_param param = { .sched_priority = kthread_prio }; 4742 4743 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4744 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4745 pr_err("Failed to create %s!\n", gp_kworker_name); 4746 return; 4747 } 4748 4749 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4750 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4751 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4752 kthread_destroy_worker(rcu_exp_gp_kworker); 4753 return; 4754 } 4755 4756 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4757 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4758 ¶m); 4759 } 4760 4761 static inline void rcu_alloc_par_gp_wq(void) 4762 { 4763 } 4764 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4765 struct workqueue_struct *rcu_par_gp_wq; 4766 4767 static void __init rcu_start_exp_gp_kworkers(void) 4768 { 4769 } 4770 4771 static inline void rcu_alloc_par_gp_wq(void) 4772 { 4773 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4774 WARN_ON(!rcu_par_gp_wq); 4775 } 4776 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4777 4778 /* 4779 * Spawn the kthreads that handle RCU's grace periods. 4780 */ 4781 static int __init rcu_spawn_gp_kthread(void) 4782 { 4783 unsigned long flags; 4784 struct rcu_node *rnp; 4785 struct sched_param sp; 4786 struct task_struct *t; 4787 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4788 4789 rcu_scheduler_fully_active = 1; 4790 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4791 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4792 return 0; 4793 if (kthread_prio) { 4794 sp.sched_priority = kthread_prio; 4795 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4796 } 4797 rnp = rcu_get_root(); 4798 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4799 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4800 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4801 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4802 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4803 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4804 wake_up_process(t); 4805 /* This is a pre-SMP initcall, we expect a single CPU */ 4806 WARN_ON(num_online_cpus() > 1); 4807 /* 4808 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4809 * due to rcu_scheduler_fully_active. 4810 */ 4811 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4812 rcu_spawn_one_boost_kthread(rdp->mynode); 4813 rcu_spawn_core_kthreads(); 4814 /* Create kthread worker for expedited GPs */ 4815 rcu_start_exp_gp_kworkers(); 4816 return 0; 4817 } 4818 early_initcall(rcu_spawn_gp_kthread); 4819 4820 /* 4821 * This function is invoked towards the end of the scheduler's 4822 * initialization process. Before this is called, the idle task might 4823 * contain synchronous grace-period primitives (during which time, this idle 4824 * task is booting the system, and such primitives are no-ops). After this 4825 * function is called, any synchronous grace-period primitives are run as 4826 * expedited, with the requesting task driving the grace period forward. 4827 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4828 * runtime RCU functionality. 4829 */ 4830 void rcu_scheduler_starting(void) 4831 { 4832 unsigned long flags; 4833 struct rcu_node *rnp; 4834 4835 WARN_ON(num_online_cpus() != 1); 4836 WARN_ON(nr_context_switches() > 0); 4837 rcu_test_sync_prims(); 4838 4839 // Fix up the ->gp_seq counters. 4840 local_irq_save(flags); 4841 rcu_for_each_node_breadth_first(rnp) 4842 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4843 local_irq_restore(flags); 4844 4845 // Switch out of early boot mode. 4846 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4847 rcu_test_sync_prims(); 4848 } 4849 4850 /* 4851 * Helper function for rcu_init() that initializes the rcu_state structure. 4852 */ 4853 static void __init rcu_init_one(void) 4854 { 4855 static const char * const buf[] = RCU_NODE_NAME_INIT; 4856 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4857 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4858 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4859 4860 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4861 int cpustride = 1; 4862 int i; 4863 int j; 4864 struct rcu_node *rnp; 4865 4866 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4867 4868 /* Silence gcc 4.8 false positive about array index out of range. */ 4869 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4870 panic("rcu_init_one: rcu_num_lvls out of range"); 4871 4872 /* Initialize the level-tracking arrays. */ 4873 4874 for (i = 1; i < rcu_num_lvls; i++) 4875 rcu_state.level[i] = 4876 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4877 rcu_init_levelspread(levelspread, num_rcu_lvl); 4878 4879 /* Initialize the elements themselves, starting from the leaves. */ 4880 4881 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4882 cpustride *= levelspread[i]; 4883 rnp = rcu_state.level[i]; 4884 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4885 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4886 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4887 &rcu_node_class[i], buf[i]); 4888 raw_spin_lock_init(&rnp->fqslock); 4889 lockdep_set_class_and_name(&rnp->fqslock, 4890 &rcu_fqs_class[i], fqs[i]); 4891 rnp->gp_seq = rcu_state.gp_seq; 4892 rnp->gp_seq_needed = rcu_state.gp_seq; 4893 rnp->completedqs = rcu_state.gp_seq; 4894 rnp->qsmask = 0; 4895 rnp->qsmaskinit = 0; 4896 rnp->grplo = j * cpustride; 4897 rnp->grphi = (j + 1) * cpustride - 1; 4898 if (rnp->grphi >= nr_cpu_ids) 4899 rnp->grphi = nr_cpu_ids - 1; 4900 if (i == 0) { 4901 rnp->grpnum = 0; 4902 rnp->grpmask = 0; 4903 rnp->parent = NULL; 4904 } else { 4905 rnp->grpnum = j % levelspread[i - 1]; 4906 rnp->grpmask = BIT(rnp->grpnum); 4907 rnp->parent = rcu_state.level[i - 1] + 4908 j / levelspread[i - 1]; 4909 } 4910 rnp->level = i; 4911 INIT_LIST_HEAD(&rnp->blkd_tasks); 4912 rcu_init_one_nocb(rnp); 4913 init_waitqueue_head(&rnp->exp_wq[0]); 4914 init_waitqueue_head(&rnp->exp_wq[1]); 4915 init_waitqueue_head(&rnp->exp_wq[2]); 4916 init_waitqueue_head(&rnp->exp_wq[3]); 4917 spin_lock_init(&rnp->exp_lock); 4918 mutex_init(&rnp->boost_kthread_mutex); 4919 raw_spin_lock_init(&rnp->exp_poll_lock); 4920 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4921 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4922 } 4923 } 4924 4925 init_swait_queue_head(&rcu_state.gp_wq); 4926 init_swait_queue_head(&rcu_state.expedited_wq); 4927 rnp = rcu_first_leaf_node(); 4928 for_each_possible_cpu(i) { 4929 while (i > rnp->grphi) 4930 rnp++; 4931 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4932 rcu_boot_init_percpu_data(i); 4933 } 4934 } 4935 4936 /* 4937 * Force priority from the kernel command-line into range. 4938 */ 4939 static void __init sanitize_kthread_prio(void) 4940 { 4941 int kthread_prio_in = kthread_prio; 4942 4943 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4944 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4945 kthread_prio = 2; 4946 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4947 kthread_prio = 1; 4948 else if (kthread_prio < 0) 4949 kthread_prio = 0; 4950 else if (kthread_prio > 99) 4951 kthread_prio = 99; 4952 4953 if (kthread_prio != kthread_prio_in) 4954 pr_alert("%s: Limited prio to %d from %d\n", 4955 __func__, kthread_prio, kthread_prio_in); 4956 } 4957 4958 /* 4959 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4960 * replace the definitions in tree.h because those are needed to size 4961 * the ->node array in the rcu_state structure. 4962 */ 4963 void rcu_init_geometry(void) 4964 { 4965 ulong d; 4966 int i; 4967 static unsigned long old_nr_cpu_ids; 4968 int rcu_capacity[RCU_NUM_LVLS]; 4969 static bool initialized; 4970 4971 if (initialized) { 4972 /* 4973 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4974 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4975 */ 4976 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4977 return; 4978 } 4979 4980 old_nr_cpu_ids = nr_cpu_ids; 4981 initialized = true; 4982 4983 /* 4984 * Initialize any unspecified boot parameters. 4985 * The default values of jiffies_till_first_fqs and 4986 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4987 * value, which is a function of HZ, then adding one for each 4988 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4989 */ 4990 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4991 if (jiffies_till_first_fqs == ULONG_MAX) 4992 jiffies_till_first_fqs = d; 4993 if (jiffies_till_next_fqs == ULONG_MAX) 4994 jiffies_till_next_fqs = d; 4995 adjust_jiffies_till_sched_qs(); 4996 4997 /* If the compile-time values are accurate, just leave. */ 4998 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4999 nr_cpu_ids == NR_CPUS) 5000 return; 5001 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 5002 rcu_fanout_leaf, nr_cpu_ids); 5003 5004 /* 5005 * The boot-time rcu_fanout_leaf parameter must be at least two 5006 * and cannot exceed the number of bits in the rcu_node masks. 5007 * Complain and fall back to the compile-time values if this 5008 * limit is exceeded. 5009 */ 5010 if (rcu_fanout_leaf < 2 || 5011 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 5012 rcu_fanout_leaf = RCU_FANOUT_LEAF; 5013 WARN_ON(1); 5014 return; 5015 } 5016 5017 /* 5018 * Compute number of nodes that can be handled an rcu_node tree 5019 * with the given number of levels. 5020 */ 5021 rcu_capacity[0] = rcu_fanout_leaf; 5022 for (i = 1; i < RCU_NUM_LVLS; i++) 5023 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 5024 5025 /* 5026 * The tree must be able to accommodate the configured number of CPUs. 5027 * If this limit is exceeded, fall back to the compile-time values. 5028 */ 5029 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 5030 rcu_fanout_leaf = RCU_FANOUT_LEAF; 5031 WARN_ON(1); 5032 return; 5033 } 5034 5035 /* Calculate the number of levels in the tree. */ 5036 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 5037 } 5038 rcu_num_lvls = i + 1; 5039 5040 /* Calculate the number of rcu_nodes at each level of the tree. */ 5041 for (i = 0; i < rcu_num_lvls; i++) { 5042 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 5043 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 5044 } 5045 5046 /* Calculate the total number of rcu_node structures. */ 5047 rcu_num_nodes = 0; 5048 for (i = 0; i < rcu_num_lvls; i++) 5049 rcu_num_nodes += num_rcu_lvl[i]; 5050 } 5051 5052 /* 5053 * Dump out the structure of the rcu_node combining tree associated 5054 * with the rcu_state structure. 5055 */ 5056 static void __init rcu_dump_rcu_node_tree(void) 5057 { 5058 int level = 0; 5059 struct rcu_node *rnp; 5060 5061 pr_info("rcu_node tree layout dump\n"); 5062 pr_info(" "); 5063 rcu_for_each_node_breadth_first(rnp) { 5064 if (rnp->level != level) { 5065 pr_cont("\n"); 5066 pr_info(" "); 5067 level = rnp->level; 5068 } 5069 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 5070 } 5071 pr_cont("\n"); 5072 } 5073 5074 struct workqueue_struct *rcu_gp_wq; 5075 5076 static void __init kfree_rcu_batch_init(void) 5077 { 5078 int cpu; 5079 int i, j; 5080 struct shrinker *kfree_rcu_shrinker; 5081 5082 /* Clamp it to [0:100] seconds interval. */ 5083 if (rcu_delay_page_cache_fill_msec < 0 || 5084 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 5085 5086 rcu_delay_page_cache_fill_msec = 5087 clamp(rcu_delay_page_cache_fill_msec, 0, 5088 (int) (100 * MSEC_PER_SEC)); 5089 5090 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 5091 rcu_delay_page_cache_fill_msec); 5092 } 5093 5094 for_each_possible_cpu(cpu) { 5095 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 5096 5097 for (i = 0; i < KFREE_N_BATCHES; i++) { 5098 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 5099 krcp->krw_arr[i].krcp = krcp; 5100 5101 for (j = 0; j < FREE_N_CHANNELS; j++) 5102 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 5103 } 5104 5105 for (i = 0; i < FREE_N_CHANNELS; i++) 5106 INIT_LIST_HEAD(&krcp->bulk_head[i]); 5107 5108 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 5109 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 5110 krcp->initialized = true; 5111 } 5112 5113 kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree"); 5114 if (!kfree_rcu_shrinker) { 5115 pr_err("Failed to allocate kfree_rcu() shrinker!\n"); 5116 return; 5117 } 5118 5119 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; 5120 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; 5121 5122 shrinker_register(kfree_rcu_shrinker); 5123 } 5124 5125 void __init rcu_init(void) 5126 { 5127 int cpu = smp_processor_id(); 5128 5129 rcu_early_boot_tests(); 5130 5131 kfree_rcu_batch_init(); 5132 rcu_bootup_announce(); 5133 sanitize_kthread_prio(); 5134 rcu_init_geometry(); 5135 rcu_init_one(); 5136 if (dump_tree) 5137 rcu_dump_rcu_node_tree(); 5138 if (use_softirq) 5139 open_softirq(RCU_SOFTIRQ, rcu_core_si); 5140 5141 /* 5142 * We don't need protection against CPU-hotplug here because 5143 * this is called early in boot, before either interrupts 5144 * or the scheduler are operational. 5145 */ 5146 pm_notifier(rcu_pm_notify, 0); 5147 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 5148 rcutree_prepare_cpu(cpu); 5149 rcutree_report_cpu_starting(cpu); 5150 rcutree_online_cpu(cpu); 5151 5152 /* Create workqueue for Tree SRCU and for expedited GPs. */ 5153 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 5154 WARN_ON(!rcu_gp_wq); 5155 rcu_alloc_par_gp_wq(); 5156 5157 /* Fill in default value for rcutree.qovld boot parameter. */ 5158 /* -After- the rcu_node ->lock fields are initialized! */ 5159 if (qovld < 0) 5160 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5161 else 5162 qovld_calc = qovld; 5163 5164 // Kick-start in case any polled grace periods started early. 5165 (void)start_poll_synchronize_rcu_expedited(); 5166 5167 rcu_test_sync_prims(); 5168 } 5169 5170 #include "tree_stall.h" 5171 #include "tree_exp.h" 5172 #include "tree_nocb.h" 5173 #include "tree_plugin.h" 5174