1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include <linux/context_tracking.h> 66 #include "../time/tick-internal.h" 67 68 #include "tree.h" 69 #include "rcu.h" 70 71 #ifdef MODULE_PARAM_PREFIX 72 #undef MODULE_PARAM_PREFIX 73 #endif 74 #define MODULE_PARAM_PREFIX "rcutree." 75 76 /* Data structures. */ 77 78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 79 .gpwrap = true, 80 #ifdef CONFIG_RCU_NOCB_CPU 81 .cblist.flags = SEGCBLIST_RCU_CORE, 82 #endif 83 }; 84 static struct rcu_state rcu_state = { 85 .level = { &rcu_state.node[0] }, 86 .gp_state = RCU_GP_IDLE, 87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 148 static void invoke_rcu_core(void); 149 static void rcu_report_exp_rdp(struct rcu_data *rdp); 150 static void sync_sched_exp_online_cleanup(int cpu); 151 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 152 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 153 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 154 static bool rcu_init_invoked(void); 155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 157 158 /* 159 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 160 * real-time priority(enabling/disabling) is controlled by 161 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 162 */ 163 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 164 module_param(kthread_prio, int, 0444); 165 166 /* Delay in jiffies for grace-period initialization delays, debug only. */ 167 168 static int gp_preinit_delay; 169 module_param(gp_preinit_delay, int, 0444); 170 static int gp_init_delay; 171 module_param(gp_init_delay, int, 0444); 172 static int gp_cleanup_delay; 173 module_param(gp_cleanup_delay, int, 0444); 174 175 // Add delay to rcu_read_unlock() for strict grace periods. 176 static int rcu_unlock_delay; 177 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 178 module_param(rcu_unlock_delay, int, 0444); 179 #endif 180 181 /* 182 * This rcu parameter is runtime-read-only. It reflects 183 * a minimum allowed number of objects which can be cached 184 * per-CPU. Object size is equal to one page. This value 185 * can be changed at boot time. 186 */ 187 static int rcu_min_cached_objs = 5; 188 module_param(rcu_min_cached_objs, int, 0444); 189 190 // A page shrinker can ask for pages to be freed to make them 191 // available for other parts of the system. This usually happens 192 // under low memory conditions, and in that case we should also 193 // defer page-cache filling for a short time period. 194 // 195 // The default value is 5 seconds, which is long enough to reduce 196 // interference with the shrinker while it asks other systems to 197 // drain their caches. 198 static int rcu_delay_page_cache_fill_msec = 5000; 199 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 200 201 /* Retrieve RCU kthreads priority for rcutorture */ 202 int rcu_get_gp_kthreads_prio(void) 203 { 204 return kthread_prio; 205 } 206 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 207 208 /* 209 * Number of grace periods between delays, normalized by the duration of 210 * the delay. The longer the delay, the more the grace periods between 211 * each delay. The reason for this normalization is that it means that, 212 * for non-zero delays, the overall slowdown of grace periods is constant 213 * regardless of the duration of the delay. This arrangement balances 214 * the need for long delays to increase some race probabilities with the 215 * need for fast grace periods to increase other race probabilities. 216 */ 217 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 218 219 /* 220 * Return true if an RCU grace period is in progress. The READ_ONCE()s 221 * permit this function to be invoked without holding the root rcu_node 222 * structure's ->lock, but of course results can be subject to change. 223 */ 224 static int rcu_gp_in_progress(void) 225 { 226 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 227 } 228 229 /* 230 * Return the number of callbacks queued on the specified CPU. 231 * Handles both the nocbs and normal cases. 232 */ 233 static long rcu_get_n_cbs_cpu(int cpu) 234 { 235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 236 237 if (rcu_segcblist_is_enabled(&rdp->cblist)) 238 return rcu_segcblist_n_cbs(&rdp->cblist); 239 return 0; 240 } 241 242 void rcu_softirq_qs(void) 243 { 244 rcu_qs(); 245 rcu_preempt_deferred_qs(current); 246 rcu_tasks_qs(current, false); 247 } 248 249 /* 250 * Reset the current CPU's ->dynticks counter to indicate that the 251 * newly onlined CPU is no longer in an extended quiescent state. 252 * This will either leave the counter unchanged, or increment it 253 * to the next non-quiescent value. 254 * 255 * The non-atomic test/increment sequence works because the upper bits 256 * of the ->dynticks counter are manipulated only by the corresponding CPU, 257 * or when the corresponding CPU is offline. 258 */ 259 static void rcu_dynticks_eqs_online(void) 260 { 261 if (ct_dynticks() & RCU_DYNTICKS_IDX) 262 return; 263 ct_state_inc(RCU_DYNTICKS_IDX); 264 } 265 266 /* 267 * Snapshot the ->dynticks counter with full ordering so as to allow 268 * stable comparison of this counter with past and future snapshots. 269 */ 270 static int rcu_dynticks_snap(int cpu) 271 { 272 smp_mb(); // Fundamental RCU ordering guarantee. 273 return ct_dynticks_cpu_acquire(cpu); 274 } 275 276 /* 277 * Return true if the snapshot returned from rcu_dynticks_snap() 278 * indicates that RCU is in an extended quiescent state. 279 */ 280 static bool rcu_dynticks_in_eqs(int snap) 281 { 282 return !(snap & RCU_DYNTICKS_IDX); 283 } 284 285 /* 286 * Return true if the CPU corresponding to the specified rcu_data 287 * structure has spent some time in an extended quiescent state since 288 * rcu_dynticks_snap() returned the specified snapshot. 289 */ 290 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 291 { 292 return snap != rcu_dynticks_snap(rdp->cpu); 293 } 294 295 /* 296 * Return true if the referenced integer is zero while the specified 297 * CPU remains within a single extended quiescent state. 298 */ 299 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 300 { 301 int snap; 302 303 // If not quiescent, force back to earlier extended quiescent state. 304 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 305 smp_rmb(); // Order ->dynticks and *vp reads. 306 if (READ_ONCE(*vp)) 307 return false; // Non-zero, so report failure; 308 smp_rmb(); // Order *vp read and ->dynticks re-read. 309 310 // If still in the same extended quiescent state, we are good! 311 return snap == ct_dynticks_cpu(cpu); 312 } 313 314 /* 315 * Let the RCU core know that this CPU has gone through the scheduler, 316 * which is a quiescent state. This is called when the need for a 317 * quiescent state is urgent, so we burn an atomic operation and full 318 * memory barriers to let the RCU core know about it, regardless of what 319 * this CPU might (or might not) do in the near future. 320 * 321 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 322 * 323 * The caller must have disabled interrupts and must not be idle. 324 */ 325 notrace void rcu_momentary_dyntick_idle(void) 326 { 327 int seq; 328 329 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 330 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 331 /* It is illegal to call this from idle state. */ 332 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 333 rcu_preempt_deferred_qs(current); 334 } 335 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 336 337 /** 338 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 339 * 340 * If the current CPU is idle and running at a first-level (not nested) 341 * interrupt, or directly, from idle, return true. 342 * 343 * The caller must have at least disabled IRQs. 344 */ 345 static int rcu_is_cpu_rrupt_from_idle(void) 346 { 347 long nesting; 348 349 /* 350 * Usually called from the tick; but also used from smp_function_call() 351 * for expedited grace periods. This latter can result in running from 352 * the idle task, instead of an actual IPI. 353 */ 354 lockdep_assert_irqs_disabled(); 355 356 /* Check for counter underflows */ 357 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 358 "RCU dynticks_nesting counter underflow!"); 359 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 360 "RCU dynticks_nmi_nesting counter underflow/zero!"); 361 362 /* Are we at first interrupt nesting level? */ 363 nesting = ct_dynticks_nmi_nesting(); 364 if (nesting > 1) 365 return false; 366 367 /* 368 * If we're not in an interrupt, we must be in the idle task! 369 */ 370 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 371 372 /* Does CPU appear to be idle from an RCU standpoint? */ 373 return ct_dynticks_nesting() == 0; 374 } 375 376 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 377 // Maximum callbacks per rcu_do_batch ... 378 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 379 static long blimit = DEFAULT_RCU_BLIMIT; 380 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 381 static long qhimark = DEFAULT_RCU_QHIMARK; 382 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 383 static long qlowmark = DEFAULT_RCU_QLOMARK; 384 #define DEFAULT_RCU_QOVLD_MULT 2 385 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 386 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 387 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 388 389 module_param(blimit, long, 0444); 390 module_param(qhimark, long, 0444); 391 module_param(qlowmark, long, 0444); 392 module_param(qovld, long, 0444); 393 394 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 395 static ulong jiffies_till_next_fqs = ULONG_MAX; 396 static bool rcu_kick_kthreads; 397 static int rcu_divisor = 7; 398 module_param(rcu_divisor, int, 0644); 399 400 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 401 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 402 module_param(rcu_resched_ns, long, 0644); 403 404 /* 405 * How long the grace period must be before we start recruiting 406 * quiescent-state help from rcu_note_context_switch(). 407 */ 408 static ulong jiffies_till_sched_qs = ULONG_MAX; 409 module_param(jiffies_till_sched_qs, ulong, 0444); 410 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 411 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 412 413 /* 414 * Make sure that we give the grace-period kthread time to detect any 415 * idle CPUs before taking active measures to force quiescent states. 416 * However, don't go below 100 milliseconds, adjusted upwards for really 417 * large systems. 418 */ 419 static void adjust_jiffies_till_sched_qs(void) 420 { 421 unsigned long j; 422 423 /* If jiffies_till_sched_qs was specified, respect the request. */ 424 if (jiffies_till_sched_qs != ULONG_MAX) { 425 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 426 return; 427 } 428 /* Otherwise, set to third fqs scan, but bound below on large system. */ 429 j = READ_ONCE(jiffies_till_first_fqs) + 430 2 * READ_ONCE(jiffies_till_next_fqs); 431 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 432 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 433 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 434 WRITE_ONCE(jiffies_to_sched_qs, j); 435 } 436 437 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 438 { 439 ulong j; 440 int ret = kstrtoul(val, 0, &j); 441 442 if (!ret) { 443 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 444 adjust_jiffies_till_sched_qs(); 445 } 446 return ret; 447 } 448 449 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 450 { 451 ulong j; 452 int ret = kstrtoul(val, 0, &j); 453 454 if (!ret) { 455 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 456 adjust_jiffies_till_sched_qs(); 457 } 458 return ret; 459 } 460 461 static const struct kernel_param_ops first_fqs_jiffies_ops = { 462 .set = param_set_first_fqs_jiffies, 463 .get = param_get_ulong, 464 }; 465 466 static const struct kernel_param_ops next_fqs_jiffies_ops = { 467 .set = param_set_next_fqs_jiffies, 468 .get = param_get_ulong, 469 }; 470 471 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 472 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 473 module_param(rcu_kick_kthreads, bool, 0644); 474 475 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 476 static int rcu_pending(int user); 477 478 /* 479 * Return the number of RCU GPs completed thus far for debug & stats. 480 */ 481 unsigned long rcu_get_gp_seq(void) 482 { 483 return READ_ONCE(rcu_state.gp_seq); 484 } 485 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 486 487 /* 488 * Return the number of RCU expedited batches completed thus far for 489 * debug & stats. Odd numbers mean that a batch is in progress, even 490 * numbers mean idle. The value returned will thus be roughly double 491 * the cumulative batches since boot. 492 */ 493 unsigned long rcu_exp_batches_completed(void) 494 { 495 return rcu_state.expedited_sequence; 496 } 497 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 498 499 /* 500 * Return the root node of the rcu_state structure. 501 */ 502 static struct rcu_node *rcu_get_root(void) 503 { 504 return &rcu_state.node[0]; 505 } 506 507 /* 508 * Send along grace-period-related data for rcutorture diagnostics. 509 */ 510 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 511 unsigned long *gp_seq) 512 { 513 switch (test_type) { 514 case RCU_FLAVOR: 515 *flags = READ_ONCE(rcu_state.gp_flags); 516 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 517 break; 518 default: 519 break; 520 } 521 } 522 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 523 524 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 525 /* 526 * An empty function that will trigger a reschedule on 527 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 528 */ 529 static void late_wakeup_func(struct irq_work *work) 530 { 531 } 532 533 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 534 IRQ_WORK_INIT(late_wakeup_func); 535 536 /* 537 * If either: 538 * 539 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 540 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 541 * 542 * In these cases the late RCU wake ups aren't supported in the resched loops and our 543 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 544 * get re-enabled again. 545 */ 546 noinstr void rcu_irq_work_resched(void) 547 { 548 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 549 550 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 551 return; 552 553 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 554 return; 555 556 instrumentation_begin(); 557 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 558 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 559 } 560 instrumentation_end(); 561 } 562 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 563 564 #ifdef CONFIG_PROVE_RCU 565 /** 566 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 567 */ 568 void rcu_irq_exit_check_preempt(void) 569 { 570 lockdep_assert_irqs_disabled(); 571 572 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 573 "RCU dynticks_nesting counter underflow/zero!"); 574 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 575 DYNTICK_IRQ_NONIDLE, 576 "Bad RCU dynticks_nmi_nesting counter\n"); 577 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 578 "RCU in extended quiescent state!"); 579 } 580 #endif /* #ifdef CONFIG_PROVE_RCU */ 581 582 #ifdef CONFIG_NO_HZ_FULL 583 /** 584 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 585 * 586 * The scheduler tick is not normally enabled when CPUs enter the kernel 587 * from nohz_full userspace execution. After all, nohz_full userspace 588 * execution is an RCU quiescent state and the time executing in the kernel 589 * is quite short. Except of course when it isn't. And it is not hard to 590 * cause a large system to spend tens of seconds or even minutes looping 591 * in the kernel, which can cause a number of problems, include RCU CPU 592 * stall warnings. 593 * 594 * Therefore, if a nohz_full CPU fails to report a quiescent state 595 * in a timely manner, the RCU grace-period kthread sets that CPU's 596 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 597 * exception will invoke this function, which will turn on the scheduler 598 * tick, which will enable RCU to detect that CPU's quiescent states, 599 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 600 * The tick will be disabled once a quiescent state is reported for 601 * this CPU. 602 * 603 * Of course, in carefully tuned systems, there might never be an 604 * interrupt or exception. In that case, the RCU grace-period kthread 605 * will eventually cause one to happen. However, in less carefully 606 * controlled environments, this function allows RCU to get what it 607 * needs without creating otherwise useless interruptions. 608 */ 609 void __rcu_irq_enter_check_tick(void) 610 { 611 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 612 613 // If we're here from NMI there's nothing to do. 614 if (in_nmi()) 615 return; 616 617 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 618 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 619 620 if (!tick_nohz_full_cpu(rdp->cpu) || 621 !READ_ONCE(rdp->rcu_urgent_qs) || 622 READ_ONCE(rdp->rcu_forced_tick)) { 623 // RCU doesn't need nohz_full help from this CPU, or it is 624 // already getting that help. 625 return; 626 } 627 628 // We get here only when not in an extended quiescent state and 629 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 630 // already watching and (2) The fact that we are in an interrupt 631 // handler and that the rcu_node lock is an irq-disabled lock 632 // prevents self-deadlock. So we can safely recheck under the lock. 633 // Note that the nohz_full state currently cannot change. 634 raw_spin_lock_rcu_node(rdp->mynode); 635 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 636 // A nohz_full CPU is in the kernel and RCU needs a 637 // quiescent state. Turn on the tick! 638 WRITE_ONCE(rdp->rcu_forced_tick, true); 639 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 640 } 641 raw_spin_unlock_rcu_node(rdp->mynode); 642 } 643 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 644 #endif /* CONFIG_NO_HZ_FULL */ 645 646 /* 647 * Check to see if any future non-offloaded RCU-related work will need 648 * to be done by the current CPU, even if none need be done immediately, 649 * returning 1 if so. This function is part of the RCU implementation; 650 * it is -not- an exported member of the RCU API. This is used by 651 * the idle-entry code to figure out whether it is safe to disable the 652 * scheduler-clock interrupt. 653 * 654 * Just check whether or not this CPU has non-offloaded RCU callbacks 655 * queued. 656 */ 657 int rcu_needs_cpu(void) 658 { 659 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 660 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 661 } 662 663 /* 664 * If any sort of urgency was applied to the current CPU (for example, 665 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 666 * to get to a quiescent state, disable it. 667 */ 668 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 669 { 670 raw_lockdep_assert_held_rcu_node(rdp->mynode); 671 WRITE_ONCE(rdp->rcu_urgent_qs, false); 672 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 673 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 674 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 675 WRITE_ONCE(rdp->rcu_forced_tick, false); 676 } 677 } 678 679 /** 680 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 681 * 682 * Return @true if RCU is watching the running CPU and @false otherwise. 683 * An @true return means that this CPU can safely enter RCU read-side 684 * critical sections. 685 * 686 * Although calls to rcu_is_watching() from most parts of the kernel 687 * will return @true, there are important exceptions. For example, if the 688 * current CPU is deep within its idle loop, in kernel entry/exit code, 689 * or offline, rcu_is_watching() will return @false. 690 * 691 * Make notrace because it can be called by the internal functions of 692 * ftrace, and making this notrace removes unnecessary recursion calls. 693 */ 694 notrace bool rcu_is_watching(void) 695 { 696 bool ret; 697 698 preempt_disable_notrace(); 699 ret = !rcu_dynticks_curr_cpu_in_eqs(); 700 preempt_enable_notrace(); 701 return ret; 702 } 703 EXPORT_SYMBOL_GPL(rcu_is_watching); 704 705 /* 706 * If a holdout task is actually running, request an urgent quiescent 707 * state from its CPU. This is unsynchronized, so migrations can cause 708 * the request to go to the wrong CPU. Which is OK, all that will happen 709 * is that the CPU's next context switch will be a bit slower and next 710 * time around this task will generate another request. 711 */ 712 void rcu_request_urgent_qs_task(struct task_struct *t) 713 { 714 int cpu; 715 716 barrier(); 717 cpu = task_cpu(t); 718 if (!task_curr(t)) 719 return; /* This task is not running on that CPU. */ 720 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 721 } 722 723 /* 724 * When trying to report a quiescent state on behalf of some other CPU, 725 * it is our responsibility to check for and handle potential overflow 726 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 727 * After all, the CPU might be in deep idle state, and thus executing no 728 * code whatsoever. 729 */ 730 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 731 { 732 raw_lockdep_assert_held_rcu_node(rnp); 733 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 734 rnp->gp_seq)) 735 WRITE_ONCE(rdp->gpwrap, true); 736 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 737 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 738 } 739 740 /* 741 * Snapshot the specified CPU's dynticks counter so that we can later 742 * credit them with an implicit quiescent state. Return 1 if this CPU 743 * is in dynticks idle mode, which is an extended quiescent state. 744 */ 745 static int dyntick_save_progress_counter(struct rcu_data *rdp) 746 { 747 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 748 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 749 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 750 rcu_gpnum_ovf(rdp->mynode, rdp); 751 return 1; 752 } 753 return 0; 754 } 755 756 /* 757 * Return true if the specified CPU has passed through a quiescent 758 * state by virtue of being in or having passed through an dynticks 759 * idle state since the last call to dyntick_save_progress_counter() 760 * for this same CPU, or by virtue of having been offline. 761 */ 762 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 763 { 764 unsigned long jtsq; 765 struct rcu_node *rnp = rdp->mynode; 766 767 /* 768 * If the CPU passed through or entered a dynticks idle phase with 769 * no active irq/NMI handlers, then we can safely pretend that the CPU 770 * already acknowledged the request to pass through a quiescent 771 * state. Either way, that CPU cannot possibly be in an RCU 772 * read-side critical section that started before the beginning 773 * of the current RCU grace period. 774 */ 775 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 776 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 777 rcu_gpnum_ovf(rnp, rdp); 778 return 1; 779 } 780 781 /* 782 * Complain if a CPU that is considered to be offline from RCU's 783 * perspective has not yet reported a quiescent state. After all, 784 * the offline CPU should have reported a quiescent state during 785 * the CPU-offline process, or, failing that, by rcu_gp_init() 786 * if it ran concurrently with either the CPU going offline or the 787 * last task on a leaf rcu_node structure exiting its RCU read-side 788 * critical section while all CPUs corresponding to that structure 789 * are offline. This added warning detects bugs in any of these 790 * code paths. 791 * 792 * The rcu_node structure's ->lock is held here, which excludes 793 * the relevant portions the CPU-hotplug code, the grace-period 794 * initialization code, and the rcu_read_unlock() code paths. 795 * 796 * For more detail, please refer to the "Hotplug CPU" section 797 * of RCU's Requirements documentation. 798 */ 799 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 800 struct rcu_node *rnp1; 801 802 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 803 __func__, rnp->grplo, rnp->grphi, rnp->level, 804 (long)rnp->gp_seq, (long)rnp->completedqs); 805 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 806 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 807 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 808 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 809 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 810 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 811 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 812 return 1; /* Break things loose after complaining. */ 813 } 814 815 /* 816 * A CPU running for an extended time within the kernel can 817 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 818 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 819 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 820 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 821 * variable are safe because the assignments are repeated if this 822 * CPU failed to pass through a quiescent state. This code 823 * also checks .jiffies_resched in case jiffies_to_sched_qs 824 * is set way high. 825 */ 826 jtsq = READ_ONCE(jiffies_to_sched_qs); 827 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 828 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 829 time_after(jiffies, rcu_state.jiffies_resched) || 830 rcu_state.cbovld)) { 831 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 832 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 833 smp_store_release(&rdp->rcu_urgent_qs, true); 834 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 835 WRITE_ONCE(rdp->rcu_urgent_qs, true); 836 } 837 838 /* 839 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 840 * The above code handles this, but only for straight cond_resched(). 841 * And some in-kernel loops check need_resched() before calling 842 * cond_resched(), which defeats the above code for CPUs that are 843 * running in-kernel with scheduling-clock interrupts disabled. 844 * So hit them over the head with the resched_cpu() hammer! 845 */ 846 if (tick_nohz_full_cpu(rdp->cpu) && 847 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 848 rcu_state.cbovld)) { 849 WRITE_ONCE(rdp->rcu_urgent_qs, true); 850 resched_cpu(rdp->cpu); 851 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 852 } 853 854 /* 855 * If more than halfway to RCU CPU stall-warning time, invoke 856 * resched_cpu() more frequently to try to loosen things up a bit. 857 * Also check to see if the CPU is getting hammered with interrupts, 858 * but only once per grace period, just to keep the IPIs down to 859 * a dull roar. 860 */ 861 if (time_after(jiffies, rcu_state.jiffies_resched)) { 862 if (time_after(jiffies, 863 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 864 resched_cpu(rdp->cpu); 865 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 866 } 867 if (IS_ENABLED(CONFIG_IRQ_WORK) && 868 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 869 (rnp->ffmask & rdp->grpmask)) { 870 rdp->rcu_iw_pending = true; 871 rdp->rcu_iw_gp_seq = rnp->gp_seq; 872 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 873 } 874 875 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 876 int cpu = rdp->cpu; 877 struct rcu_snap_record *rsrp; 878 struct kernel_cpustat *kcsp; 879 880 kcsp = &kcpustat_cpu(cpu); 881 882 rsrp = &rdp->snap_record; 883 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 884 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 885 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 886 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 887 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 888 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 889 rsrp->jiffies = jiffies; 890 rsrp->gp_seq = rdp->gp_seq; 891 } 892 } 893 894 return 0; 895 } 896 897 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 898 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 899 unsigned long gp_seq_req, const char *s) 900 { 901 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 902 gp_seq_req, rnp->level, 903 rnp->grplo, rnp->grphi, s); 904 } 905 906 /* 907 * rcu_start_this_gp - Request the start of a particular grace period 908 * @rnp_start: The leaf node of the CPU from which to start. 909 * @rdp: The rcu_data corresponding to the CPU from which to start. 910 * @gp_seq_req: The gp_seq of the grace period to start. 911 * 912 * Start the specified grace period, as needed to handle newly arrived 913 * callbacks. The required future grace periods are recorded in each 914 * rcu_node structure's ->gp_seq_needed field. Returns true if there 915 * is reason to awaken the grace-period kthread. 916 * 917 * The caller must hold the specified rcu_node structure's ->lock, which 918 * is why the caller is responsible for waking the grace-period kthread. 919 * 920 * Returns true if the GP thread needs to be awakened else false. 921 */ 922 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 923 unsigned long gp_seq_req) 924 { 925 bool ret = false; 926 struct rcu_node *rnp; 927 928 /* 929 * Use funnel locking to either acquire the root rcu_node 930 * structure's lock or bail out if the need for this grace period 931 * has already been recorded -- or if that grace period has in 932 * fact already started. If there is already a grace period in 933 * progress in a non-leaf node, no recording is needed because the 934 * end of the grace period will scan the leaf rcu_node structures. 935 * Note that rnp_start->lock must not be released. 936 */ 937 raw_lockdep_assert_held_rcu_node(rnp_start); 938 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 939 for (rnp = rnp_start; 1; rnp = rnp->parent) { 940 if (rnp != rnp_start) 941 raw_spin_lock_rcu_node(rnp); 942 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 943 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 944 (rnp != rnp_start && 945 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 946 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 947 TPS("Prestarted")); 948 goto unlock_out; 949 } 950 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 951 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 952 /* 953 * We just marked the leaf or internal node, and a 954 * grace period is in progress, which means that 955 * rcu_gp_cleanup() will see the marking. Bail to 956 * reduce contention. 957 */ 958 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 959 TPS("Startedleaf")); 960 goto unlock_out; 961 } 962 if (rnp != rnp_start && rnp->parent != NULL) 963 raw_spin_unlock_rcu_node(rnp); 964 if (!rnp->parent) 965 break; /* At root, and perhaps also leaf. */ 966 } 967 968 /* If GP already in progress, just leave, otherwise start one. */ 969 if (rcu_gp_in_progress()) { 970 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 971 goto unlock_out; 972 } 973 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 974 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 975 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 976 if (!READ_ONCE(rcu_state.gp_kthread)) { 977 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 978 goto unlock_out; 979 } 980 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 981 ret = true; /* Caller must wake GP kthread. */ 982 unlock_out: 983 /* Push furthest requested GP to leaf node and rcu_data structure. */ 984 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 985 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 986 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 987 } 988 if (rnp != rnp_start) 989 raw_spin_unlock_rcu_node(rnp); 990 return ret; 991 } 992 993 /* 994 * Clean up any old requests for the just-ended grace period. Also return 995 * whether any additional grace periods have been requested. 996 */ 997 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 998 { 999 bool needmore; 1000 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1001 1002 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1003 if (!needmore) 1004 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1005 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1006 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1007 return needmore; 1008 } 1009 1010 /* 1011 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1012 * interrupt or softirq handler, in which case we just might immediately 1013 * sleep upon return, resulting in a grace-period hang), and don't bother 1014 * awakening when there is nothing for the grace-period kthread to do 1015 * (as in several CPUs raced to awaken, we lost), and finally don't try 1016 * to awaken a kthread that has not yet been created. If all those checks 1017 * are passed, track some debug information and awaken. 1018 * 1019 * So why do the self-wakeup when in an interrupt or softirq handler 1020 * in the grace-period kthread's context? Because the kthread might have 1021 * been interrupted just as it was going to sleep, and just after the final 1022 * pre-sleep check of the awaken condition. In this case, a wakeup really 1023 * is required, and is therefore supplied. 1024 */ 1025 static void rcu_gp_kthread_wake(void) 1026 { 1027 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1028 1029 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1030 !READ_ONCE(rcu_state.gp_flags) || !t) 1031 return; 1032 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1033 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1034 swake_up_one(&rcu_state.gp_wq); 1035 } 1036 1037 /* 1038 * If there is room, assign a ->gp_seq number to any callbacks on this 1039 * CPU that have not already been assigned. Also accelerate any callbacks 1040 * that were previously assigned a ->gp_seq number that has since proven 1041 * to be too conservative, which can happen if callbacks get assigned a 1042 * ->gp_seq number while RCU is idle, but with reference to a non-root 1043 * rcu_node structure. This function is idempotent, so it does not hurt 1044 * to call it repeatedly. Returns an flag saying that we should awaken 1045 * the RCU grace-period kthread. 1046 * 1047 * The caller must hold rnp->lock with interrupts disabled. 1048 */ 1049 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1050 { 1051 unsigned long gp_seq_req; 1052 bool ret = false; 1053 1054 rcu_lockdep_assert_cblist_protected(rdp); 1055 raw_lockdep_assert_held_rcu_node(rnp); 1056 1057 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1058 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1059 return false; 1060 1061 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1062 1063 /* 1064 * Callbacks are often registered with incomplete grace-period 1065 * information. Something about the fact that getting exact 1066 * information requires acquiring a global lock... RCU therefore 1067 * makes a conservative estimate of the grace period number at which 1068 * a given callback will become ready to invoke. The following 1069 * code checks this estimate and improves it when possible, thus 1070 * accelerating callback invocation to an earlier grace-period 1071 * number. 1072 */ 1073 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1074 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1075 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1076 1077 /* Trace depending on how much we were able to accelerate. */ 1078 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1079 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1080 else 1081 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1082 1083 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1084 1085 return ret; 1086 } 1087 1088 /* 1089 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1090 * rcu_node structure's ->lock be held. It consults the cached value 1091 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1092 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1093 * while holding the leaf rcu_node structure's ->lock. 1094 */ 1095 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1096 struct rcu_data *rdp) 1097 { 1098 unsigned long c; 1099 bool needwake; 1100 1101 rcu_lockdep_assert_cblist_protected(rdp); 1102 c = rcu_seq_snap(&rcu_state.gp_seq); 1103 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1104 /* Old request still live, so mark recent callbacks. */ 1105 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1106 return; 1107 } 1108 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1109 needwake = rcu_accelerate_cbs(rnp, rdp); 1110 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1111 if (needwake) 1112 rcu_gp_kthread_wake(); 1113 } 1114 1115 /* 1116 * Move any callbacks whose grace period has completed to the 1117 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1118 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1119 * sublist. This function is idempotent, so it does not hurt to 1120 * invoke it repeatedly. As long as it is not invoked -too- often... 1121 * Returns true if the RCU grace-period kthread needs to be awakened. 1122 * 1123 * The caller must hold rnp->lock with interrupts disabled. 1124 */ 1125 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1126 { 1127 rcu_lockdep_assert_cblist_protected(rdp); 1128 raw_lockdep_assert_held_rcu_node(rnp); 1129 1130 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1131 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1132 return false; 1133 1134 /* 1135 * Find all callbacks whose ->gp_seq numbers indicate that they 1136 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1137 */ 1138 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1139 1140 /* Classify any remaining callbacks. */ 1141 return rcu_accelerate_cbs(rnp, rdp); 1142 } 1143 1144 /* 1145 * Move and classify callbacks, but only if doing so won't require 1146 * that the RCU grace-period kthread be awakened. 1147 */ 1148 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1149 struct rcu_data *rdp) 1150 { 1151 rcu_lockdep_assert_cblist_protected(rdp); 1152 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1153 return; 1154 // The grace period cannot end while we hold the rcu_node lock. 1155 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1156 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1157 raw_spin_unlock_rcu_node(rnp); 1158 } 1159 1160 /* 1161 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1162 * quiescent state. This is intended to be invoked when the CPU notices 1163 * a new grace period. 1164 */ 1165 static void rcu_strict_gp_check_qs(void) 1166 { 1167 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1168 rcu_read_lock(); 1169 rcu_read_unlock(); 1170 } 1171 } 1172 1173 /* 1174 * Update CPU-local rcu_data state to record the beginnings and ends of 1175 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1176 * structure corresponding to the current CPU, and must have irqs disabled. 1177 * Returns true if the grace-period kthread needs to be awakened. 1178 */ 1179 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1180 { 1181 bool ret = false; 1182 bool need_qs; 1183 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1184 1185 raw_lockdep_assert_held_rcu_node(rnp); 1186 1187 if (rdp->gp_seq == rnp->gp_seq) 1188 return false; /* Nothing to do. */ 1189 1190 /* Handle the ends of any preceding grace periods first. */ 1191 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1192 unlikely(READ_ONCE(rdp->gpwrap))) { 1193 if (!offloaded) 1194 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1195 rdp->core_needs_qs = false; 1196 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1197 } else { 1198 if (!offloaded) 1199 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1200 if (rdp->core_needs_qs) 1201 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1202 } 1203 1204 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1205 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1206 unlikely(READ_ONCE(rdp->gpwrap))) { 1207 /* 1208 * If the current grace period is waiting for this CPU, 1209 * set up to detect a quiescent state, otherwise don't 1210 * go looking for one. 1211 */ 1212 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1213 need_qs = !!(rnp->qsmask & rdp->grpmask); 1214 rdp->cpu_no_qs.b.norm = need_qs; 1215 rdp->core_needs_qs = need_qs; 1216 zero_cpu_stall_ticks(rdp); 1217 } 1218 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1219 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1220 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1221 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1222 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1223 WRITE_ONCE(rdp->gpwrap, false); 1224 rcu_gpnum_ovf(rnp, rdp); 1225 return ret; 1226 } 1227 1228 static void note_gp_changes(struct rcu_data *rdp) 1229 { 1230 unsigned long flags; 1231 bool needwake; 1232 struct rcu_node *rnp; 1233 1234 local_irq_save(flags); 1235 rnp = rdp->mynode; 1236 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1237 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1238 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1239 local_irq_restore(flags); 1240 return; 1241 } 1242 needwake = __note_gp_changes(rnp, rdp); 1243 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1244 rcu_strict_gp_check_qs(); 1245 if (needwake) 1246 rcu_gp_kthread_wake(); 1247 } 1248 1249 static atomic_t *rcu_gp_slow_suppress; 1250 1251 /* Register a counter to suppress debugging grace-period delays. */ 1252 void rcu_gp_slow_register(atomic_t *rgssp) 1253 { 1254 WARN_ON_ONCE(rcu_gp_slow_suppress); 1255 1256 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1257 } 1258 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1259 1260 /* Unregister a counter, with NULL for not caring which. */ 1261 void rcu_gp_slow_unregister(atomic_t *rgssp) 1262 { 1263 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1264 1265 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1266 } 1267 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1268 1269 static bool rcu_gp_slow_is_suppressed(void) 1270 { 1271 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1272 1273 return rgssp && atomic_read(rgssp); 1274 } 1275 1276 static void rcu_gp_slow(int delay) 1277 { 1278 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1279 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1280 schedule_timeout_idle(delay); 1281 } 1282 1283 static unsigned long sleep_duration; 1284 1285 /* Allow rcutorture to stall the grace-period kthread. */ 1286 void rcu_gp_set_torture_wait(int duration) 1287 { 1288 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1289 WRITE_ONCE(sleep_duration, duration); 1290 } 1291 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1292 1293 /* Actually implement the aforementioned wait. */ 1294 static void rcu_gp_torture_wait(void) 1295 { 1296 unsigned long duration; 1297 1298 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1299 return; 1300 duration = xchg(&sleep_duration, 0UL); 1301 if (duration > 0) { 1302 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1303 schedule_timeout_idle(duration); 1304 pr_alert("%s: Wait complete\n", __func__); 1305 } 1306 } 1307 1308 /* 1309 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1310 * processing. 1311 */ 1312 static void rcu_strict_gp_boundary(void *unused) 1313 { 1314 invoke_rcu_core(); 1315 } 1316 1317 // Make the polled API aware of the beginning of a grace period. 1318 static void rcu_poll_gp_seq_start(unsigned long *snap) 1319 { 1320 struct rcu_node *rnp = rcu_get_root(); 1321 1322 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1323 raw_lockdep_assert_held_rcu_node(rnp); 1324 1325 // If RCU was idle, note beginning of GP. 1326 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1327 rcu_seq_start(&rcu_state.gp_seq_polled); 1328 1329 // Either way, record current state. 1330 *snap = rcu_state.gp_seq_polled; 1331 } 1332 1333 // Make the polled API aware of the end of a grace period. 1334 static void rcu_poll_gp_seq_end(unsigned long *snap) 1335 { 1336 struct rcu_node *rnp = rcu_get_root(); 1337 1338 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1339 raw_lockdep_assert_held_rcu_node(rnp); 1340 1341 // If the previously noted GP is still in effect, record the 1342 // end of that GP. Either way, zero counter to avoid counter-wrap 1343 // problems. 1344 if (*snap && *snap == rcu_state.gp_seq_polled) { 1345 rcu_seq_end(&rcu_state.gp_seq_polled); 1346 rcu_state.gp_seq_polled_snap = 0; 1347 rcu_state.gp_seq_polled_exp_snap = 0; 1348 } else { 1349 *snap = 0; 1350 } 1351 } 1352 1353 // Make the polled API aware of the beginning of a grace period, but 1354 // where caller does not hold the root rcu_node structure's lock. 1355 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1356 { 1357 unsigned long flags; 1358 struct rcu_node *rnp = rcu_get_root(); 1359 1360 if (rcu_init_invoked()) { 1361 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1362 lockdep_assert_irqs_enabled(); 1363 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1364 } 1365 rcu_poll_gp_seq_start(snap); 1366 if (rcu_init_invoked()) 1367 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1368 } 1369 1370 // Make the polled API aware of the end of a grace period, but where 1371 // caller does not hold the root rcu_node structure's lock. 1372 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1373 { 1374 unsigned long flags; 1375 struct rcu_node *rnp = rcu_get_root(); 1376 1377 if (rcu_init_invoked()) { 1378 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1379 lockdep_assert_irqs_enabled(); 1380 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1381 } 1382 rcu_poll_gp_seq_end(snap); 1383 if (rcu_init_invoked()) 1384 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1385 } 1386 1387 /* 1388 * Initialize a new grace period. Return false if no grace period required. 1389 */ 1390 static noinline_for_stack bool rcu_gp_init(void) 1391 { 1392 unsigned long flags; 1393 unsigned long oldmask; 1394 unsigned long mask; 1395 struct rcu_data *rdp; 1396 struct rcu_node *rnp = rcu_get_root(); 1397 1398 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1399 raw_spin_lock_irq_rcu_node(rnp); 1400 if (!READ_ONCE(rcu_state.gp_flags)) { 1401 /* Spurious wakeup, tell caller to go back to sleep. */ 1402 raw_spin_unlock_irq_rcu_node(rnp); 1403 return false; 1404 } 1405 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1406 1407 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1408 /* 1409 * Grace period already in progress, don't start another. 1410 * Not supposed to be able to happen. 1411 */ 1412 raw_spin_unlock_irq_rcu_node(rnp); 1413 return false; 1414 } 1415 1416 /* Advance to a new grace period and initialize state. */ 1417 record_gp_stall_check_time(); 1418 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1419 rcu_seq_start(&rcu_state.gp_seq); 1420 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1421 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1422 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1423 raw_spin_unlock_irq_rcu_node(rnp); 1424 1425 /* 1426 * Apply per-leaf buffered online and offline operations to 1427 * the rcu_node tree. Note that this new grace period need not 1428 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1429 * offlining path, when combined with checks in this function, 1430 * will handle CPUs that are currently going offline or that will 1431 * go offline later. Please also refer to "Hotplug CPU" section 1432 * of RCU's Requirements documentation. 1433 */ 1434 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1435 /* Exclude CPU hotplug operations. */ 1436 rcu_for_each_leaf_node(rnp) { 1437 local_irq_save(flags); 1438 arch_spin_lock(&rcu_state.ofl_lock); 1439 raw_spin_lock_rcu_node(rnp); 1440 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1441 !rnp->wait_blkd_tasks) { 1442 /* Nothing to do on this leaf rcu_node structure. */ 1443 raw_spin_unlock_rcu_node(rnp); 1444 arch_spin_unlock(&rcu_state.ofl_lock); 1445 local_irq_restore(flags); 1446 continue; 1447 } 1448 1449 /* Record old state, apply changes to ->qsmaskinit field. */ 1450 oldmask = rnp->qsmaskinit; 1451 rnp->qsmaskinit = rnp->qsmaskinitnext; 1452 1453 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1454 if (!oldmask != !rnp->qsmaskinit) { 1455 if (!oldmask) { /* First online CPU for rcu_node. */ 1456 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1457 rcu_init_new_rnp(rnp); 1458 } else if (rcu_preempt_has_tasks(rnp)) { 1459 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1460 } else { /* Last offline CPU and can propagate. */ 1461 rcu_cleanup_dead_rnp(rnp); 1462 } 1463 } 1464 1465 /* 1466 * If all waited-on tasks from prior grace period are 1467 * done, and if all this rcu_node structure's CPUs are 1468 * still offline, propagate up the rcu_node tree and 1469 * clear ->wait_blkd_tasks. Otherwise, if one of this 1470 * rcu_node structure's CPUs has since come back online, 1471 * simply clear ->wait_blkd_tasks. 1472 */ 1473 if (rnp->wait_blkd_tasks && 1474 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1475 rnp->wait_blkd_tasks = false; 1476 if (!rnp->qsmaskinit) 1477 rcu_cleanup_dead_rnp(rnp); 1478 } 1479 1480 raw_spin_unlock_rcu_node(rnp); 1481 arch_spin_unlock(&rcu_state.ofl_lock); 1482 local_irq_restore(flags); 1483 } 1484 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1485 1486 /* 1487 * Set the quiescent-state-needed bits in all the rcu_node 1488 * structures for all currently online CPUs in breadth-first 1489 * order, starting from the root rcu_node structure, relying on the 1490 * layout of the tree within the rcu_state.node[] array. Note that 1491 * other CPUs will access only the leaves of the hierarchy, thus 1492 * seeing that no grace period is in progress, at least until the 1493 * corresponding leaf node has been initialized. 1494 * 1495 * The grace period cannot complete until the initialization 1496 * process finishes, because this kthread handles both. 1497 */ 1498 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1499 rcu_for_each_node_breadth_first(rnp) { 1500 rcu_gp_slow(gp_init_delay); 1501 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1502 rdp = this_cpu_ptr(&rcu_data); 1503 rcu_preempt_check_blocked_tasks(rnp); 1504 rnp->qsmask = rnp->qsmaskinit; 1505 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1506 if (rnp == rdp->mynode) 1507 (void)__note_gp_changes(rnp, rdp); 1508 rcu_preempt_boost_start_gp(rnp); 1509 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1510 rnp->level, rnp->grplo, 1511 rnp->grphi, rnp->qsmask); 1512 /* Quiescent states for tasks on any now-offline CPUs. */ 1513 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1514 rnp->rcu_gp_init_mask = mask; 1515 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1516 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1517 else 1518 raw_spin_unlock_irq_rcu_node(rnp); 1519 cond_resched_tasks_rcu_qs(); 1520 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1521 } 1522 1523 // If strict, make all CPUs aware of new grace period. 1524 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1525 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1526 1527 return true; 1528 } 1529 1530 /* 1531 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1532 * time. 1533 */ 1534 static bool rcu_gp_fqs_check_wake(int *gfp) 1535 { 1536 struct rcu_node *rnp = rcu_get_root(); 1537 1538 // If under overload conditions, force an immediate FQS scan. 1539 if (*gfp & RCU_GP_FLAG_OVLD) 1540 return true; 1541 1542 // Someone like call_rcu() requested a force-quiescent-state scan. 1543 *gfp = READ_ONCE(rcu_state.gp_flags); 1544 if (*gfp & RCU_GP_FLAG_FQS) 1545 return true; 1546 1547 // The current grace period has completed. 1548 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1549 return true; 1550 1551 return false; 1552 } 1553 1554 /* 1555 * Do one round of quiescent-state forcing. 1556 */ 1557 static void rcu_gp_fqs(bool first_time) 1558 { 1559 struct rcu_node *rnp = rcu_get_root(); 1560 1561 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1562 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1563 if (first_time) { 1564 /* Collect dyntick-idle snapshots. */ 1565 force_qs_rnp(dyntick_save_progress_counter); 1566 } else { 1567 /* Handle dyntick-idle and offline CPUs. */ 1568 force_qs_rnp(rcu_implicit_dynticks_qs); 1569 } 1570 /* Clear flag to prevent immediate re-entry. */ 1571 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1572 raw_spin_lock_irq_rcu_node(rnp); 1573 WRITE_ONCE(rcu_state.gp_flags, 1574 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1575 raw_spin_unlock_irq_rcu_node(rnp); 1576 } 1577 } 1578 1579 /* 1580 * Loop doing repeated quiescent-state forcing until the grace period ends. 1581 */ 1582 static noinline_for_stack void rcu_gp_fqs_loop(void) 1583 { 1584 bool first_gp_fqs = true; 1585 int gf = 0; 1586 unsigned long j; 1587 int ret; 1588 struct rcu_node *rnp = rcu_get_root(); 1589 1590 j = READ_ONCE(jiffies_till_first_fqs); 1591 if (rcu_state.cbovld) 1592 gf = RCU_GP_FLAG_OVLD; 1593 ret = 0; 1594 for (;;) { 1595 if (rcu_state.cbovld) { 1596 j = (j + 2) / 3; 1597 if (j <= 0) 1598 j = 1; 1599 } 1600 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1601 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1602 /* 1603 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1604 * update; required for stall checks. 1605 */ 1606 smp_wmb(); 1607 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1608 jiffies + (j ? 3 * j : 2)); 1609 } 1610 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1611 TPS("fqswait")); 1612 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1613 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1614 rcu_gp_fqs_check_wake(&gf), j); 1615 rcu_gp_torture_wait(); 1616 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1617 /* Locking provides needed memory barriers. */ 1618 /* 1619 * Exit the loop if the root rcu_node structure indicates that the grace period 1620 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1621 * is required only for single-node rcu_node trees because readers blocking 1622 * the current grace period are queued only on leaf rcu_node structures. 1623 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1624 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1625 * the corresponding leaf nodes have passed through their quiescent state. 1626 */ 1627 if (!READ_ONCE(rnp->qsmask) && 1628 !rcu_preempt_blocked_readers_cgp(rnp)) 1629 break; 1630 /* If time for quiescent-state forcing, do it. */ 1631 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1632 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1633 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1634 TPS("fqsstart")); 1635 rcu_gp_fqs(first_gp_fqs); 1636 gf = 0; 1637 if (first_gp_fqs) { 1638 first_gp_fqs = false; 1639 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1640 } 1641 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1642 TPS("fqsend")); 1643 cond_resched_tasks_rcu_qs(); 1644 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1645 ret = 0; /* Force full wait till next FQS. */ 1646 j = READ_ONCE(jiffies_till_next_fqs); 1647 } else { 1648 /* Deal with stray signal. */ 1649 cond_resched_tasks_rcu_qs(); 1650 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1651 WARN_ON(signal_pending(current)); 1652 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1653 TPS("fqswaitsig")); 1654 ret = 1; /* Keep old FQS timing. */ 1655 j = jiffies; 1656 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1657 j = 1; 1658 else 1659 j = rcu_state.jiffies_force_qs - j; 1660 gf = 0; 1661 } 1662 } 1663 } 1664 1665 /* 1666 * Clean up after the old grace period. 1667 */ 1668 static noinline void rcu_gp_cleanup(void) 1669 { 1670 int cpu; 1671 bool needgp = false; 1672 unsigned long gp_duration; 1673 unsigned long new_gp_seq; 1674 bool offloaded; 1675 struct rcu_data *rdp; 1676 struct rcu_node *rnp = rcu_get_root(); 1677 struct swait_queue_head *sq; 1678 1679 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1680 raw_spin_lock_irq_rcu_node(rnp); 1681 rcu_state.gp_end = jiffies; 1682 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1683 if (gp_duration > rcu_state.gp_max) 1684 rcu_state.gp_max = gp_duration; 1685 1686 /* 1687 * We know the grace period is complete, but to everyone else 1688 * it appears to still be ongoing. But it is also the case 1689 * that to everyone else it looks like there is nothing that 1690 * they can do to advance the grace period. It is therefore 1691 * safe for us to drop the lock in order to mark the grace 1692 * period as completed in all of the rcu_node structures. 1693 */ 1694 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1695 raw_spin_unlock_irq_rcu_node(rnp); 1696 1697 /* 1698 * Propagate new ->gp_seq value to rcu_node structures so that 1699 * other CPUs don't have to wait until the start of the next grace 1700 * period to process their callbacks. This also avoids some nasty 1701 * RCU grace-period initialization races by forcing the end of 1702 * the current grace period to be completely recorded in all of 1703 * the rcu_node structures before the beginning of the next grace 1704 * period is recorded in any of the rcu_node structures. 1705 */ 1706 new_gp_seq = rcu_state.gp_seq; 1707 rcu_seq_end(&new_gp_seq); 1708 rcu_for_each_node_breadth_first(rnp) { 1709 raw_spin_lock_irq_rcu_node(rnp); 1710 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1711 dump_blkd_tasks(rnp, 10); 1712 WARN_ON_ONCE(rnp->qsmask); 1713 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1714 if (!rnp->parent) 1715 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1716 rdp = this_cpu_ptr(&rcu_data); 1717 if (rnp == rdp->mynode) 1718 needgp = __note_gp_changes(rnp, rdp) || needgp; 1719 /* smp_mb() provided by prior unlock-lock pair. */ 1720 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1721 // Reset overload indication for CPUs no longer overloaded 1722 if (rcu_is_leaf_node(rnp)) 1723 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1724 rdp = per_cpu_ptr(&rcu_data, cpu); 1725 check_cb_ovld_locked(rdp, rnp); 1726 } 1727 sq = rcu_nocb_gp_get(rnp); 1728 raw_spin_unlock_irq_rcu_node(rnp); 1729 rcu_nocb_gp_cleanup(sq); 1730 cond_resched_tasks_rcu_qs(); 1731 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1732 rcu_gp_slow(gp_cleanup_delay); 1733 } 1734 rnp = rcu_get_root(); 1735 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1736 1737 /* Declare grace period done, trace first to use old GP number. */ 1738 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1739 rcu_seq_end(&rcu_state.gp_seq); 1740 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1741 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1742 /* Check for GP requests since above loop. */ 1743 rdp = this_cpu_ptr(&rcu_data); 1744 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1745 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1746 TPS("CleanupMore")); 1747 needgp = true; 1748 } 1749 /* Advance CBs to reduce false positives below. */ 1750 offloaded = rcu_rdp_is_offloaded(rdp); 1751 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1752 1753 // We get here if a grace period was needed (“needgp”) 1754 // and the above call to rcu_accelerate_cbs() did not set 1755 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1756 // the need for another grace period). The purpose 1757 // of the “offloaded” check is to avoid invoking 1758 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1759 // hold the ->nocb_lock needed to safely access an offloaded 1760 // ->cblist. We do not want to acquire that lock because 1761 // it can be heavily contended during callback floods. 1762 1763 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1764 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1765 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1766 } else { 1767 1768 // We get here either if there is no need for an 1769 // additional grace period or if rcu_accelerate_cbs() has 1770 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1771 // So all we need to do is to clear all of the other 1772 // ->gp_flags bits. 1773 1774 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1775 } 1776 raw_spin_unlock_irq_rcu_node(rnp); 1777 1778 // If strict, make all CPUs aware of the end of the old grace period. 1779 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1780 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1781 } 1782 1783 /* 1784 * Body of kthread that handles grace periods. 1785 */ 1786 static int __noreturn rcu_gp_kthread(void *unused) 1787 { 1788 rcu_bind_gp_kthread(); 1789 for (;;) { 1790 1791 /* Handle grace-period start. */ 1792 for (;;) { 1793 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1794 TPS("reqwait")); 1795 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1796 swait_event_idle_exclusive(rcu_state.gp_wq, 1797 READ_ONCE(rcu_state.gp_flags) & 1798 RCU_GP_FLAG_INIT); 1799 rcu_gp_torture_wait(); 1800 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1801 /* Locking provides needed memory barrier. */ 1802 if (rcu_gp_init()) 1803 break; 1804 cond_resched_tasks_rcu_qs(); 1805 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1806 WARN_ON(signal_pending(current)); 1807 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1808 TPS("reqwaitsig")); 1809 } 1810 1811 /* Handle quiescent-state forcing. */ 1812 rcu_gp_fqs_loop(); 1813 1814 /* Handle grace-period end. */ 1815 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1816 rcu_gp_cleanup(); 1817 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1818 } 1819 } 1820 1821 /* 1822 * Report a full set of quiescent states to the rcu_state data structure. 1823 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1824 * another grace period is required. Whether we wake the grace-period 1825 * kthread or it awakens itself for the next round of quiescent-state 1826 * forcing, that kthread will clean up after the just-completed grace 1827 * period. Note that the caller must hold rnp->lock, which is released 1828 * before return. 1829 */ 1830 static void rcu_report_qs_rsp(unsigned long flags) 1831 __releases(rcu_get_root()->lock) 1832 { 1833 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1834 WARN_ON_ONCE(!rcu_gp_in_progress()); 1835 WRITE_ONCE(rcu_state.gp_flags, 1836 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1837 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1838 rcu_gp_kthread_wake(); 1839 } 1840 1841 /* 1842 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1843 * Allows quiescent states for a group of CPUs to be reported at one go 1844 * to the specified rcu_node structure, though all the CPUs in the group 1845 * must be represented by the same rcu_node structure (which need not be a 1846 * leaf rcu_node structure, though it often will be). The gps parameter 1847 * is the grace-period snapshot, which means that the quiescent states 1848 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1849 * must be held upon entry, and it is released before return. 1850 * 1851 * As a special case, if mask is zero, the bit-already-cleared check is 1852 * disabled. This allows propagating quiescent state due to resumed tasks 1853 * during grace-period initialization. 1854 */ 1855 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1856 unsigned long gps, unsigned long flags) 1857 __releases(rnp->lock) 1858 { 1859 unsigned long oldmask = 0; 1860 struct rcu_node *rnp_c; 1861 1862 raw_lockdep_assert_held_rcu_node(rnp); 1863 1864 /* Walk up the rcu_node hierarchy. */ 1865 for (;;) { 1866 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1867 1868 /* 1869 * Our bit has already been cleared, or the 1870 * relevant grace period is already over, so done. 1871 */ 1872 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1873 return; 1874 } 1875 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1876 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1877 rcu_preempt_blocked_readers_cgp(rnp)); 1878 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1879 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1880 mask, rnp->qsmask, rnp->level, 1881 rnp->grplo, rnp->grphi, 1882 !!rnp->gp_tasks); 1883 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1884 1885 /* Other bits still set at this level, so done. */ 1886 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1887 return; 1888 } 1889 rnp->completedqs = rnp->gp_seq; 1890 mask = rnp->grpmask; 1891 if (rnp->parent == NULL) { 1892 1893 /* No more levels. Exit loop holding root lock. */ 1894 1895 break; 1896 } 1897 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1898 rnp_c = rnp; 1899 rnp = rnp->parent; 1900 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1901 oldmask = READ_ONCE(rnp_c->qsmask); 1902 } 1903 1904 /* 1905 * Get here if we are the last CPU to pass through a quiescent 1906 * state for this grace period. Invoke rcu_report_qs_rsp() 1907 * to clean up and start the next grace period if one is needed. 1908 */ 1909 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1910 } 1911 1912 /* 1913 * Record a quiescent state for all tasks that were previously queued 1914 * on the specified rcu_node structure and that were blocking the current 1915 * RCU grace period. The caller must hold the corresponding rnp->lock with 1916 * irqs disabled, and this lock is released upon return, but irqs remain 1917 * disabled. 1918 */ 1919 static void __maybe_unused 1920 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1921 __releases(rnp->lock) 1922 { 1923 unsigned long gps; 1924 unsigned long mask; 1925 struct rcu_node *rnp_p; 1926 1927 raw_lockdep_assert_held_rcu_node(rnp); 1928 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1929 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1930 rnp->qsmask != 0) { 1931 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1932 return; /* Still need more quiescent states! */ 1933 } 1934 1935 rnp->completedqs = rnp->gp_seq; 1936 rnp_p = rnp->parent; 1937 if (rnp_p == NULL) { 1938 /* 1939 * Only one rcu_node structure in the tree, so don't 1940 * try to report up to its nonexistent parent! 1941 */ 1942 rcu_report_qs_rsp(flags); 1943 return; 1944 } 1945 1946 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1947 gps = rnp->gp_seq; 1948 mask = rnp->grpmask; 1949 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1950 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1951 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1952 } 1953 1954 /* 1955 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1956 * structure. This must be called from the specified CPU. 1957 */ 1958 static void 1959 rcu_report_qs_rdp(struct rcu_data *rdp) 1960 { 1961 unsigned long flags; 1962 unsigned long mask; 1963 bool needacc = false; 1964 struct rcu_node *rnp; 1965 1966 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 1967 rnp = rdp->mynode; 1968 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1969 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1970 rdp->gpwrap) { 1971 1972 /* 1973 * The grace period in which this quiescent state was 1974 * recorded has ended, so don't report it upwards. 1975 * We will instead need a new quiescent state that lies 1976 * within the current grace period. 1977 */ 1978 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1979 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1980 return; 1981 } 1982 mask = rdp->grpmask; 1983 rdp->core_needs_qs = false; 1984 if ((rnp->qsmask & mask) == 0) { 1985 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1986 } else { 1987 /* 1988 * This GP can't end until cpu checks in, so all of our 1989 * callbacks can be processed during the next GP. 1990 * 1991 * NOCB kthreads have their own way to deal with that... 1992 */ 1993 if (!rcu_rdp_is_offloaded(rdp)) { 1994 /* 1995 * The current GP has not yet ended, so it 1996 * should not be possible for rcu_accelerate_cbs() 1997 * to return true. So complain, but don't awaken. 1998 */ 1999 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2000 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2001 /* 2002 * ...but NOCB kthreads may miss or delay callbacks acceleration 2003 * if in the middle of a (de-)offloading process. 2004 */ 2005 needacc = true; 2006 } 2007 2008 rcu_disable_urgency_upon_qs(rdp); 2009 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2010 /* ^^^ Released rnp->lock */ 2011 2012 if (needacc) { 2013 rcu_nocb_lock_irqsave(rdp, flags); 2014 rcu_accelerate_cbs_unlocked(rnp, rdp); 2015 rcu_nocb_unlock_irqrestore(rdp, flags); 2016 } 2017 } 2018 } 2019 2020 /* 2021 * Check to see if there is a new grace period of which this CPU 2022 * is not yet aware, and if so, set up local rcu_data state for it. 2023 * Otherwise, see if this CPU has just passed through its first 2024 * quiescent state for this grace period, and record that fact if so. 2025 */ 2026 static void 2027 rcu_check_quiescent_state(struct rcu_data *rdp) 2028 { 2029 /* Check for grace-period ends and beginnings. */ 2030 note_gp_changes(rdp); 2031 2032 /* 2033 * Does this CPU still need to do its part for current grace period? 2034 * If no, return and let the other CPUs do their part as well. 2035 */ 2036 if (!rdp->core_needs_qs) 2037 return; 2038 2039 /* 2040 * Was there a quiescent state since the beginning of the grace 2041 * period? If no, then exit and wait for the next call. 2042 */ 2043 if (rdp->cpu_no_qs.b.norm) 2044 return; 2045 2046 /* 2047 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2048 * judge of that). 2049 */ 2050 rcu_report_qs_rdp(rdp); 2051 } 2052 2053 /* Return true if callback-invocation time limit exceeded. */ 2054 static bool rcu_do_batch_check_time(long count, long tlimit, 2055 bool jlimit_check, unsigned long jlimit) 2056 { 2057 // Invoke local_clock() only once per 32 consecutive callbacks. 2058 return unlikely(tlimit) && 2059 (!likely(count & 31) || 2060 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2061 jlimit_check && time_after(jiffies, jlimit))) && 2062 local_clock() >= tlimit; 2063 } 2064 2065 /* 2066 * Invoke any RCU callbacks that have made it to the end of their grace 2067 * period. Throttle as specified by rdp->blimit. 2068 */ 2069 static void rcu_do_batch(struct rcu_data *rdp) 2070 { 2071 long bl; 2072 long count = 0; 2073 int div; 2074 bool __maybe_unused empty; 2075 unsigned long flags; 2076 unsigned long jlimit; 2077 bool jlimit_check = false; 2078 long pending; 2079 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2080 struct rcu_head *rhp; 2081 long tlimit = 0; 2082 2083 /* If no callbacks are ready, just return. */ 2084 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2085 trace_rcu_batch_start(rcu_state.name, 2086 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2087 trace_rcu_batch_end(rcu_state.name, 0, 2088 !rcu_segcblist_empty(&rdp->cblist), 2089 need_resched(), is_idle_task(current), 2090 rcu_is_callbacks_kthread(rdp)); 2091 return; 2092 } 2093 2094 /* 2095 * Extract the list of ready callbacks, disabling IRQs to prevent 2096 * races with call_rcu() from interrupt handlers. Leave the 2097 * callback counts, as rcu_barrier() needs to be conservative. 2098 */ 2099 rcu_nocb_lock_irqsave(rdp, flags); 2100 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2101 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2102 div = READ_ONCE(rcu_divisor); 2103 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2104 bl = max(rdp->blimit, pending >> div); 2105 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2106 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2107 const long npj = NSEC_PER_SEC / HZ; 2108 long rrn = READ_ONCE(rcu_resched_ns); 2109 2110 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2111 tlimit = local_clock() + rrn; 2112 jlimit = jiffies + (rrn + npj + 1) / npj; 2113 jlimit_check = true; 2114 } 2115 trace_rcu_batch_start(rcu_state.name, 2116 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2117 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2118 if (rcu_rdp_is_offloaded(rdp)) 2119 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2120 2121 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2122 rcu_nocb_unlock_irqrestore(rdp, flags); 2123 2124 /* Invoke callbacks. */ 2125 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2126 rhp = rcu_cblist_dequeue(&rcl); 2127 2128 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2129 rcu_callback_t f; 2130 2131 count++; 2132 debug_rcu_head_unqueue(rhp); 2133 2134 rcu_lock_acquire(&rcu_callback_map); 2135 trace_rcu_invoke_callback(rcu_state.name, rhp); 2136 2137 f = rhp->func; 2138 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2139 f(rhp); 2140 2141 rcu_lock_release(&rcu_callback_map); 2142 2143 /* 2144 * Stop only if limit reached and CPU has something to do. 2145 */ 2146 if (in_serving_softirq()) { 2147 if (count >= bl && (need_resched() || !is_idle_task(current))) 2148 break; 2149 /* 2150 * Make sure we don't spend too much time here and deprive other 2151 * softirq vectors of CPU cycles. 2152 */ 2153 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2154 break; 2155 } else { 2156 // In rcuc/rcuoc context, so no worries about 2157 // depriving other softirq vectors of CPU cycles. 2158 local_bh_enable(); 2159 lockdep_assert_irqs_enabled(); 2160 cond_resched_tasks_rcu_qs(); 2161 lockdep_assert_irqs_enabled(); 2162 local_bh_disable(); 2163 // But rcuc kthreads can delay quiescent-state 2164 // reporting, so check time limits for them. 2165 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2166 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2167 rdp->rcu_cpu_has_work = 1; 2168 break; 2169 } 2170 } 2171 } 2172 2173 rcu_nocb_lock_irqsave(rdp, flags); 2174 rdp->n_cbs_invoked += count; 2175 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2176 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2177 2178 /* Update counts and requeue any remaining callbacks. */ 2179 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2180 rcu_segcblist_add_len(&rdp->cblist, -count); 2181 2182 /* Reinstate batch limit if we have worked down the excess. */ 2183 count = rcu_segcblist_n_cbs(&rdp->cblist); 2184 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2185 rdp->blimit = blimit; 2186 2187 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2188 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2189 rdp->qlen_last_fqs_check = 0; 2190 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2191 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2192 rdp->qlen_last_fqs_check = count; 2193 2194 /* 2195 * The following usually indicates a double call_rcu(). To track 2196 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2197 */ 2198 empty = rcu_segcblist_empty(&rdp->cblist); 2199 WARN_ON_ONCE(count == 0 && !empty); 2200 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2201 count != 0 && empty); 2202 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2203 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2204 2205 rcu_nocb_unlock_irqrestore(rdp, flags); 2206 2207 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2208 } 2209 2210 /* 2211 * This function is invoked from each scheduling-clock interrupt, 2212 * and checks to see if this CPU is in a non-context-switch quiescent 2213 * state, for example, user mode or idle loop. It also schedules RCU 2214 * core processing. If the current grace period has gone on too long, 2215 * it will ask the scheduler to manufacture a context switch for the sole 2216 * purpose of providing the needed quiescent state. 2217 */ 2218 void rcu_sched_clock_irq(int user) 2219 { 2220 unsigned long j; 2221 2222 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2223 j = jiffies; 2224 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2225 __this_cpu_write(rcu_data.last_sched_clock, j); 2226 } 2227 trace_rcu_utilization(TPS("Start scheduler-tick")); 2228 lockdep_assert_irqs_disabled(); 2229 raw_cpu_inc(rcu_data.ticks_this_gp); 2230 /* The load-acquire pairs with the store-release setting to true. */ 2231 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2232 /* Idle and userspace execution already are quiescent states. */ 2233 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2234 set_tsk_need_resched(current); 2235 set_preempt_need_resched(); 2236 } 2237 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2238 } 2239 rcu_flavor_sched_clock_irq(user); 2240 if (rcu_pending(user)) 2241 invoke_rcu_core(); 2242 if (user || rcu_is_cpu_rrupt_from_idle()) 2243 rcu_note_voluntary_context_switch(current); 2244 lockdep_assert_irqs_disabled(); 2245 2246 trace_rcu_utilization(TPS("End scheduler-tick")); 2247 } 2248 2249 /* 2250 * Scan the leaf rcu_node structures. For each structure on which all 2251 * CPUs have reported a quiescent state and on which there are tasks 2252 * blocking the current grace period, initiate RCU priority boosting. 2253 * Otherwise, invoke the specified function to check dyntick state for 2254 * each CPU that has not yet reported a quiescent state. 2255 */ 2256 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2257 { 2258 int cpu; 2259 unsigned long flags; 2260 unsigned long mask; 2261 struct rcu_data *rdp; 2262 struct rcu_node *rnp; 2263 2264 rcu_state.cbovld = rcu_state.cbovldnext; 2265 rcu_state.cbovldnext = false; 2266 rcu_for_each_leaf_node(rnp) { 2267 cond_resched_tasks_rcu_qs(); 2268 mask = 0; 2269 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2270 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2271 if (rnp->qsmask == 0) { 2272 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2273 /* 2274 * No point in scanning bits because they 2275 * are all zero. But we might need to 2276 * priority-boost blocked readers. 2277 */ 2278 rcu_initiate_boost(rnp, flags); 2279 /* rcu_initiate_boost() releases rnp->lock */ 2280 continue; 2281 } 2282 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2283 continue; 2284 } 2285 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2286 rdp = per_cpu_ptr(&rcu_data, cpu); 2287 if (f(rdp)) { 2288 mask |= rdp->grpmask; 2289 rcu_disable_urgency_upon_qs(rdp); 2290 } 2291 } 2292 if (mask != 0) { 2293 /* Idle/offline CPUs, report (releases rnp->lock). */ 2294 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2295 } else { 2296 /* Nothing to do here, so just drop the lock. */ 2297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2298 } 2299 } 2300 } 2301 2302 /* 2303 * Force quiescent states on reluctant CPUs, and also detect which 2304 * CPUs are in dyntick-idle mode. 2305 */ 2306 void rcu_force_quiescent_state(void) 2307 { 2308 unsigned long flags; 2309 bool ret; 2310 struct rcu_node *rnp; 2311 struct rcu_node *rnp_old = NULL; 2312 2313 /* Funnel through hierarchy to reduce memory contention. */ 2314 rnp = raw_cpu_read(rcu_data.mynode); 2315 for (; rnp != NULL; rnp = rnp->parent) { 2316 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2317 !raw_spin_trylock(&rnp->fqslock); 2318 if (rnp_old != NULL) 2319 raw_spin_unlock(&rnp_old->fqslock); 2320 if (ret) 2321 return; 2322 rnp_old = rnp; 2323 } 2324 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2325 2326 /* Reached the root of the rcu_node tree, acquire lock. */ 2327 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2328 raw_spin_unlock(&rnp_old->fqslock); 2329 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2330 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2331 return; /* Someone beat us to it. */ 2332 } 2333 WRITE_ONCE(rcu_state.gp_flags, 2334 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2335 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2336 rcu_gp_kthread_wake(); 2337 } 2338 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2339 2340 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2341 // grace periods. 2342 static void strict_work_handler(struct work_struct *work) 2343 { 2344 rcu_read_lock(); 2345 rcu_read_unlock(); 2346 } 2347 2348 /* Perform RCU core processing work for the current CPU. */ 2349 static __latent_entropy void rcu_core(void) 2350 { 2351 unsigned long flags; 2352 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2353 struct rcu_node *rnp = rdp->mynode; 2354 /* 2355 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2356 * Therefore this function can race with concurrent NOCB (de-)offloading 2357 * on this CPU and the below condition must be considered volatile. 2358 * However if we race with: 2359 * 2360 * _ Offloading: In the worst case we accelerate or process callbacks 2361 * concurrently with NOCB kthreads. We are guaranteed to 2362 * call rcu_nocb_lock() if that happens. 2363 * 2364 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2365 * processing. This is fine because the early stage 2366 * of deoffloading invokes rcu_core() after setting 2367 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2368 * what could have been dismissed without the need to wait 2369 * for the next rcu_pending() check in the next jiffy. 2370 */ 2371 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2372 2373 if (cpu_is_offline(smp_processor_id())) 2374 return; 2375 trace_rcu_utilization(TPS("Start RCU core")); 2376 WARN_ON_ONCE(!rdp->beenonline); 2377 2378 /* Report any deferred quiescent states if preemption enabled. */ 2379 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2380 rcu_preempt_deferred_qs(current); 2381 } else if (rcu_preempt_need_deferred_qs(current)) { 2382 set_tsk_need_resched(current); 2383 set_preempt_need_resched(); 2384 } 2385 2386 /* Update RCU state based on any recent quiescent states. */ 2387 rcu_check_quiescent_state(rdp); 2388 2389 /* No grace period and unregistered callbacks? */ 2390 if (!rcu_gp_in_progress() && 2391 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2392 rcu_nocb_lock_irqsave(rdp, flags); 2393 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2394 rcu_accelerate_cbs_unlocked(rnp, rdp); 2395 rcu_nocb_unlock_irqrestore(rdp, flags); 2396 } 2397 2398 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2399 2400 /* If there are callbacks ready, invoke them. */ 2401 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2402 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2403 rcu_do_batch(rdp); 2404 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2405 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2406 invoke_rcu_core(); 2407 } 2408 2409 /* Do any needed deferred wakeups of rcuo kthreads. */ 2410 do_nocb_deferred_wakeup(rdp); 2411 trace_rcu_utilization(TPS("End RCU core")); 2412 2413 // If strict GPs, schedule an RCU reader in a clean environment. 2414 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2415 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2416 } 2417 2418 static void rcu_core_si(struct softirq_action *h) 2419 { 2420 rcu_core(); 2421 } 2422 2423 static void rcu_wake_cond(struct task_struct *t, int status) 2424 { 2425 /* 2426 * If the thread is yielding, only wake it when this 2427 * is invoked from idle 2428 */ 2429 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2430 wake_up_process(t); 2431 } 2432 2433 static void invoke_rcu_core_kthread(void) 2434 { 2435 struct task_struct *t; 2436 unsigned long flags; 2437 2438 local_irq_save(flags); 2439 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2440 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2441 if (t != NULL && t != current) 2442 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2443 local_irq_restore(flags); 2444 } 2445 2446 /* 2447 * Wake up this CPU's rcuc kthread to do RCU core processing. 2448 */ 2449 static void invoke_rcu_core(void) 2450 { 2451 if (!cpu_online(smp_processor_id())) 2452 return; 2453 if (use_softirq) 2454 raise_softirq(RCU_SOFTIRQ); 2455 else 2456 invoke_rcu_core_kthread(); 2457 } 2458 2459 static void rcu_cpu_kthread_park(unsigned int cpu) 2460 { 2461 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2462 } 2463 2464 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2465 { 2466 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2467 } 2468 2469 /* 2470 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2471 * the RCU softirq used in configurations of RCU that do not support RCU 2472 * priority boosting. 2473 */ 2474 static void rcu_cpu_kthread(unsigned int cpu) 2475 { 2476 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2477 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2478 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2479 int spincnt; 2480 2481 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2482 for (spincnt = 0; spincnt < 10; spincnt++) { 2483 WRITE_ONCE(*j, jiffies); 2484 local_bh_disable(); 2485 *statusp = RCU_KTHREAD_RUNNING; 2486 local_irq_disable(); 2487 work = *workp; 2488 WRITE_ONCE(*workp, 0); 2489 local_irq_enable(); 2490 if (work) 2491 rcu_core(); 2492 local_bh_enable(); 2493 if (!READ_ONCE(*workp)) { 2494 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2495 *statusp = RCU_KTHREAD_WAITING; 2496 return; 2497 } 2498 } 2499 *statusp = RCU_KTHREAD_YIELDING; 2500 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2501 schedule_timeout_idle(2); 2502 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2503 *statusp = RCU_KTHREAD_WAITING; 2504 WRITE_ONCE(*j, jiffies); 2505 } 2506 2507 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2508 .store = &rcu_data.rcu_cpu_kthread_task, 2509 .thread_should_run = rcu_cpu_kthread_should_run, 2510 .thread_fn = rcu_cpu_kthread, 2511 .thread_comm = "rcuc/%u", 2512 .setup = rcu_cpu_kthread_setup, 2513 .park = rcu_cpu_kthread_park, 2514 }; 2515 2516 /* 2517 * Spawn per-CPU RCU core processing kthreads. 2518 */ 2519 static int __init rcu_spawn_core_kthreads(void) 2520 { 2521 int cpu; 2522 2523 for_each_possible_cpu(cpu) 2524 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2525 if (use_softirq) 2526 return 0; 2527 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2528 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2529 return 0; 2530 } 2531 2532 /* 2533 * Handle any core-RCU processing required by a call_rcu() invocation. 2534 */ 2535 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2536 unsigned long flags) 2537 { 2538 /* 2539 * If called from an extended quiescent state, invoke the RCU 2540 * core in order to force a re-evaluation of RCU's idleness. 2541 */ 2542 if (!rcu_is_watching()) 2543 invoke_rcu_core(); 2544 2545 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2546 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2547 return; 2548 2549 /* 2550 * Force the grace period if too many callbacks or too long waiting. 2551 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2552 * if some other CPU has recently done so. Also, don't bother 2553 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2554 * is the only one waiting for a grace period to complete. 2555 */ 2556 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2557 rdp->qlen_last_fqs_check + qhimark)) { 2558 2559 /* Are we ignoring a completed grace period? */ 2560 note_gp_changes(rdp); 2561 2562 /* Start a new grace period if one not already started. */ 2563 if (!rcu_gp_in_progress()) { 2564 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2565 } else { 2566 /* Give the grace period a kick. */ 2567 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2568 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2569 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2570 rcu_force_quiescent_state(); 2571 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2572 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2573 } 2574 } 2575 } 2576 2577 /* 2578 * RCU callback function to leak a callback. 2579 */ 2580 static void rcu_leak_callback(struct rcu_head *rhp) 2581 { 2582 } 2583 2584 /* 2585 * Check and if necessary update the leaf rcu_node structure's 2586 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2587 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2588 * structure's ->lock. 2589 */ 2590 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2591 { 2592 raw_lockdep_assert_held_rcu_node(rnp); 2593 if (qovld_calc <= 0) 2594 return; // Early boot and wildcard value set. 2595 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2596 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2597 else 2598 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2599 } 2600 2601 /* 2602 * Check and if necessary update the leaf rcu_node structure's 2603 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2604 * number of queued RCU callbacks. No locks need be held, but the 2605 * caller must have disabled interrupts. 2606 * 2607 * Note that this function ignores the possibility that there are a lot 2608 * of callbacks all of which have already seen the end of their respective 2609 * grace periods. This omission is due to the need for no-CBs CPUs to 2610 * be holding ->nocb_lock to do this check, which is too heavy for a 2611 * common-case operation. 2612 */ 2613 static void check_cb_ovld(struct rcu_data *rdp) 2614 { 2615 struct rcu_node *const rnp = rdp->mynode; 2616 2617 if (qovld_calc <= 0 || 2618 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2619 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2620 return; // Early boot wildcard value or already set correctly. 2621 raw_spin_lock_rcu_node(rnp); 2622 check_cb_ovld_locked(rdp, rnp); 2623 raw_spin_unlock_rcu_node(rnp); 2624 } 2625 2626 static void 2627 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2628 { 2629 static atomic_t doublefrees; 2630 unsigned long flags; 2631 bool lazy; 2632 struct rcu_data *rdp; 2633 bool was_alldone; 2634 2635 /* Misaligned rcu_head! */ 2636 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2637 2638 if (debug_rcu_head_queue(head)) { 2639 /* 2640 * Probable double call_rcu(), so leak the callback. 2641 * Use rcu:rcu_callback trace event to find the previous 2642 * time callback was passed to call_rcu(). 2643 */ 2644 if (atomic_inc_return(&doublefrees) < 4) { 2645 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2646 mem_dump_obj(head); 2647 } 2648 WRITE_ONCE(head->func, rcu_leak_callback); 2649 return; 2650 } 2651 head->func = func; 2652 head->next = NULL; 2653 kasan_record_aux_stack_noalloc(head); 2654 local_irq_save(flags); 2655 rdp = this_cpu_ptr(&rcu_data); 2656 lazy = lazy_in && !rcu_async_should_hurry(); 2657 2658 /* Add the callback to our list. */ 2659 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2660 // This can trigger due to call_rcu() from offline CPU: 2661 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2662 WARN_ON_ONCE(!rcu_is_watching()); 2663 // Very early boot, before rcu_init(). Initialize if needed 2664 // and then drop through to queue the callback. 2665 if (rcu_segcblist_empty(&rdp->cblist)) 2666 rcu_segcblist_init(&rdp->cblist); 2667 } 2668 2669 check_cb_ovld(rdp); 2670 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2671 return; // Enqueued onto ->nocb_bypass, so just leave. 2672 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2673 rcu_segcblist_enqueue(&rdp->cblist, head); 2674 if (__is_kvfree_rcu_offset((unsigned long)func)) 2675 trace_rcu_kvfree_callback(rcu_state.name, head, 2676 (unsigned long)func, 2677 rcu_segcblist_n_cbs(&rdp->cblist)); 2678 else 2679 trace_rcu_callback(rcu_state.name, head, 2680 rcu_segcblist_n_cbs(&rdp->cblist)); 2681 2682 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2683 2684 /* Go handle any RCU core processing required. */ 2685 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2686 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2687 } else { 2688 __call_rcu_core(rdp, head, flags); 2689 local_irq_restore(flags); 2690 } 2691 } 2692 2693 #ifdef CONFIG_RCU_LAZY 2694 /** 2695 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2696 * flush all lazy callbacks (including the new one) to the main ->cblist while 2697 * doing so. 2698 * 2699 * @head: structure to be used for queueing the RCU updates. 2700 * @func: actual callback function to be invoked after the grace period 2701 * 2702 * The callback function will be invoked some time after a full grace 2703 * period elapses, in other words after all pre-existing RCU read-side 2704 * critical sections have completed. 2705 * 2706 * Use this API instead of call_rcu() if you don't want the callback to be 2707 * invoked after very long periods of time, which can happen on systems without 2708 * memory pressure and on systems which are lightly loaded or mostly idle. 2709 * This function will cause callbacks to be invoked sooner than later at the 2710 * expense of extra power. Other than that, this function is identical to, and 2711 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2712 * ordering and other functionality. 2713 */ 2714 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2715 { 2716 return __call_rcu_common(head, func, false); 2717 } 2718 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2719 #endif 2720 2721 /** 2722 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2723 * By default the callbacks are 'lazy' and are kept hidden from the main 2724 * ->cblist to prevent starting of grace periods too soon. 2725 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2726 * 2727 * @head: structure to be used for queueing the RCU updates. 2728 * @func: actual callback function to be invoked after the grace period 2729 * 2730 * The callback function will be invoked some time after a full grace 2731 * period elapses, in other words after all pre-existing RCU read-side 2732 * critical sections have completed. However, the callback function 2733 * might well execute concurrently with RCU read-side critical sections 2734 * that started after call_rcu() was invoked. 2735 * 2736 * RCU read-side critical sections are delimited by rcu_read_lock() 2737 * and rcu_read_unlock(), and may be nested. In addition, but only in 2738 * v5.0 and later, regions of code across which interrupts, preemption, 2739 * or softirqs have been disabled also serve as RCU read-side critical 2740 * sections. This includes hardware interrupt handlers, softirq handlers, 2741 * and NMI handlers. 2742 * 2743 * Note that all CPUs must agree that the grace period extended beyond 2744 * all pre-existing RCU read-side critical section. On systems with more 2745 * than one CPU, this means that when "func()" is invoked, each CPU is 2746 * guaranteed to have executed a full memory barrier since the end of its 2747 * last RCU read-side critical section whose beginning preceded the call 2748 * to call_rcu(). It also means that each CPU executing an RCU read-side 2749 * critical section that continues beyond the start of "func()" must have 2750 * executed a memory barrier after the call_rcu() but before the beginning 2751 * of that RCU read-side critical section. Note that these guarantees 2752 * include CPUs that are offline, idle, or executing in user mode, as 2753 * well as CPUs that are executing in the kernel. 2754 * 2755 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2756 * resulting RCU callback function "func()", then both CPU A and CPU B are 2757 * guaranteed to execute a full memory barrier during the time interval 2758 * between the call to call_rcu() and the invocation of "func()" -- even 2759 * if CPU A and CPU B are the same CPU (but again only if the system has 2760 * more than one CPU). 2761 * 2762 * Implementation of these memory-ordering guarantees is described here: 2763 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2764 */ 2765 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2766 { 2767 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2768 } 2769 EXPORT_SYMBOL_GPL(call_rcu); 2770 2771 /* Maximum number of jiffies to wait before draining a batch. */ 2772 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2773 #define KFREE_N_BATCHES 2 2774 #define FREE_N_CHANNELS 2 2775 2776 /** 2777 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2778 * @list: List node. All blocks are linked between each other 2779 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2780 * @nr_records: Number of active pointers in the array 2781 * @records: Array of the kvfree_rcu() pointers 2782 */ 2783 struct kvfree_rcu_bulk_data { 2784 struct list_head list; 2785 struct rcu_gp_oldstate gp_snap; 2786 unsigned long nr_records; 2787 void *records[]; 2788 }; 2789 2790 /* 2791 * This macro defines how many entries the "records" array 2792 * will contain. It is based on the fact that the size of 2793 * kvfree_rcu_bulk_data structure becomes exactly one page. 2794 */ 2795 #define KVFREE_BULK_MAX_ENTR \ 2796 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2797 2798 /** 2799 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2800 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2801 * @head_free: List of kfree_rcu() objects waiting for a grace period 2802 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 2803 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2804 * @krcp: Pointer to @kfree_rcu_cpu structure 2805 */ 2806 2807 struct kfree_rcu_cpu_work { 2808 struct rcu_work rcu_work; 2809 struct rcu_head *head_free; 2810 struct rcu_gp_oldstate head_free_gp_snap; 2811 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2812 struct kfree_rcu_cpu *krcp; 2813 }; 2814 2815 /** 2816 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2817 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2818 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2819 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2820 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2821 * @lock: Synchronize access to this structure 2822 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2823 * @initialized: The @rcu_work fields have been initialized 2824 * @head_count: Number of objects in rcu_head singular list 2825 * @bulk_count: Number of objects in bulk-list 2826 * @bkvcache: 2827 * A simple cache list that contains objects for reuse purpose. 2828 * In order to save some per-cpu space the list is singular. 2829 * Even though it is lockless an access has to be protected by the 2830 * per-cpu lock. 2831 * @page_cache_work: A work to refill the cache when it is empty 2832 * @backoff_page_cache_fill: Delay cache refills 2833 * @work_in_progress: Indicates that page_cache_work is running 2834 * @hrtimer: A hrtimer for scheduling a page_cache_work 2835 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2836 * 2837 * This is a per-CPU structure. The reason that it is not included in 2838 * the rcu_data structure is to permit this code to be extracted from 2839 * the RCU files. Such extraction could allow further optimization of 2840 * the interactions with the slab allocators. 2841 */ 2842 struct kfree_rcu_cpu { 2843 // Objects queued on a linked list 2844 // through their rcu_head structures. 2845 struct rcu_head *head; 2846 unsigned long head_gp_snap; 2847 atomic_t head_count; 2848 2849 // Objects queued on a bulk-list. 2850 struct list_head bulk_head[FREE_N_CHANNELS]; 2851 atomic_t bulk_count[FREE_N_CHANNELS]; 2852 2853 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2854 raw_spinlock_t lock; 2855 struct delayed_work monitor_work; 2856 bool initialized; 2857 2858 struct delayed_work page_cache_work; 2859 atomic_t backoff_page_cache_fill; 2860 atomic_t work_in_progress; 2861 struct hrtimer hrtimer; 2862 2863 struct llist_head bkvcache; 2864 int nr_bkv_objs; 2865 }; 2866 2867 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2868 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2869 }; 2870 2871 static __always_inline void 2872 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2873 { 2874 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2875 int i; 2876 2877 for (i = 0; i < bhead->nr_records; i++) 2878 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2879 #endif 2880 } 2881 2882 static inline struct kfree_rcu_cpu * 2883 krc_this_cpu_lock(unsigned long *flags) 2884 { 2885 struct kfree_rcu_cpu *krcp; 2886 2887 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2888 krcp = this_cpu_ptr(&krc); 2889 raw_spin_lock(&krcp->lock); 2890 2891 return krcp; 2892 } 2893 2894 static inline void 2895 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2896 { 2897 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2898 } 2899 2900 static inline struct kvfree_rcu_bulk_data * 2901 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2902 { 2903 if (!krcp->nr_bkv_objs) 2904 return NULL; 2905 2906 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2907 return (struct kvfree_rcu_bulk_data *) 2908 llist_del_first(&krcp->bkvcache); 2909 } 2910 2911 static inline bool 2912 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2913 struct kvfree_rcu_bulk_data *bnode) 2914 { 2915 // Check the limit. 2916 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2917 return false; 2918 2919 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2920 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2921 return true; 2922 } 2923 2924 static int 2925 drain_page_cache(struct kfree_rcu_cpu *krcp) 2926 { 2927 unsigned long flags; 2928 struct llist_node *page_list, *pos, *n; 2929 int freed = 0; 2930 2931 if (!rcu_min_cached_objs) 2932 return 0; 2933 2934 raw_spin_lock_irqsave(&krcp->lock, flags); 2935 page_list = llist_del_all(&krcp->bkvcache); 2936 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2937 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2938 2939 llist_for_each_safe(pos, n, page_list) { 2940 free_page((unsigned long)pos); 2941 freed++; 2942 } 2943 2944 return freed; 2945 } 2946 2947 static void 2948 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 2949 struct kvfree_rcu_bulk_data *bnode, int idx) 2950 { 2951 unsigned long flags; 2952 int i; 2953 2954 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 2955 debug_rcu_bhead_unqueue(bnode); 2956 rcu_lock_acquire(&rcu_callback_map); 2957 if (idx == 0) { // kmalloc() / kfree(). 2958 trace_rcu_invoke_kfree_bulk_callback( 2959 rcu_state.name, bnode->nr_records, 2960 bnode->records); 2961 2962 kfree_bulk(bnode->nr_records, bnode->records); 2963 } else { // vmalloc() / vfree(). 2964 for (i = 0; i < bnode->nr_records; i++) { 2965 trace_rcu_invoke_kvfree_callback( 2966 rcu_state.name, bnode->records[i], 0); 2967 2968 vfree(bnode->records[i]); 2969 } 2970 } 2971 rcu_lock_release(&rcu_callback_map); 2972 } 2973 2974 raw_spin_lock_irqsave(&krcp->lock, flags); 2975 if (put_cached_bnode(krcp, bnode)) 2976 bnode = NULL; 2977 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2978 2979 if (bnode) 2980 free_page((unsigned long) bnode); 2981 2982 cond_resched_tasks_rcu_qs(); 2983 } 2984 2985 static void 2986 kvfree_rcu_list(struct rcu_head *head) 2987 { 2988 struct rcu_head *next; 2989 2990 for (; head; head = next) { 2991 void *ptr = (void *) head->func; 2992 unsigned long offset = (void *) head - ptr; 2993 2994 next = head->next; 2995 debug_rcu_head_unqueue((struct rcu_head *)ptr); 2996 rcu_lock_acquire(&rcu_callback_map); 2997 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 2998 2999 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3000 kvfree(ptr); 3001 3002 rcu_lock_release(&rcu_callback_map); 3003 cond_resched_tasks_rcu_qs(); 3004 } 3005 } 3006 3007 /* 3008 * This function is invoked in workqueue context after a grace period. 3009 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3010 */ 3011 static void kfree_rcu_work(struct work_struct *work) 3012 { 3013 unsigned long flags; 3014 struct kvfree_rcu_bulk_data *bnode, *n; 3015 struct list_head bulk_head[FREE_N_CHANNELS]; 3016 struct rcu_head *head; 3017 struct kfree_rcu_cpu *krcp; 3018 struct kfree_rcu_cpu_work *krwp; 3019 struct rcu_gp_oldstate head_gp_snap; 3020 int i; 3021 3022 krwp = container_of(to_rcu_work(work), 3023 struct kfree_rcu_cpu_work, rcu_work); 3024 krcp = krwp->krcp; 3025 3026 raw_spin_lock_irqsave(&krcp->lock, flags); 3027 // Channels 1 and 2. 3028 for (i = 0; i < FREE_N_CHANNELS; i++) 3029 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3030 3031 // Channel 3. 3032 head = krwp->head_free; 3033 krwp->head_free = NULL; 3034 head_gp_snap = krwp->head_free_gp_snap; 3035 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3036 3037 // Handle the first two channels. 3038 for (i = 0; i < FREE_N_CHANNELS; i++) { 3039 // Start from the tail page, so a GP is likely passed for it. 3040 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3041 kvfree_rcu_bulk(krcp, bnode, i); 3042 } 3043 3044 /* 3045 * This is used when the "bulk" path can not be used for the 3046 * double-argument of kvfree_rcu(). This happens when the 3047 * page-cache is empty, which means that objects are instead 3048 * queued on a linked list through their rcu_head structures. 3049 * This list is named "Channel 3". 3050 */ 3051 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3052 kvfree_rcu_list(head); 3053 } 3054 3055 static bool 3056 need_offload_krc(struct kfree_rcu_cpu *krcp) 3057 { 3058 int i; 3059 3060 for (i = 0; i < FREE_N_CHANNELS; i++) 3061 if (!list_empty(&krcp->bulk_head[i])) 3062 return true; 3063 3064 return !!READ_ONCE(krcp->head); 3065 } 3066 3067 static bool 3068 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3069 { 3070 int i; 3071 3072 for (i = 0; i < FREE_N_CHANNELS; i++) 3073 if (!list_empty(&krwp->bulk_head_free[i])) 3074 return true; 3075 3076 return !!krwp->head_free; 3077 } 3078 3079 static int krc_count(struct kfree_rcu_cpu *krcp) 3080 { 3081 int sum = atomic_read(&krcp->head_count); 3082 int i; 3083 3084 for (i = 0; i < FREE_N_CHANNELS; i++) 3085 sum += atomic_read(&krcp->bulk_count[i]); 3086 3087 return sum; 3088 } 3089 3090 static void 3091 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3092 { 3093 long delay, delay_left; 3094 3095 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3096 if (delayed_work_pending(&krcp->monitor_work)) { 3097 delay_left = krcp->monitor_work.timer.expires - jiffies; 3098 if (delay < delay_left) 3099 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3100 return; 3101 } 3102 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3103 } 3104 3105 static void 3106 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3107 { 3108 struct list_head bulk_ready[FREE_N_CHANNELS]; 3109 struct kvfree_rcu_bulk_data *bnode, *n; 3110 struct rcu_head *head_ready = NULL; 3111 unsigned long flags; 3112 int i; 3113 3114 raw_spin_lock_irqsave(&krcp->lock, flags); 3115 for (i = 0; i < FREE_N_CHANNELS; i++) { 3116 INIT_LIST_HEAD(&bulk_ready[i]); 3117 3118 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3119 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3120 break; 3121 3122 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3123 list_move(&bnode->list, &bulk_ready[i]); 3124 } 3125 } 3126 3127 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3128 head_ready = krcp->head; 3129 atomic_set(&krcp->head_count, 0); 3130 WRITE_ONCE(krcp->head, NULL); 3131 } 3132 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3133 3134 for (i = 0; i < FREE_N_CHANNELS; i++) { 3135 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3136 kvfree_rcu_bulk(krcp, bnode, i); 3137 } 3138 3139 if (head_ready) 3140 kvfree_rcu_list(head_ready); 3141 } 3142 3143 /* 3144 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3145 */ 3146 static void kfree_rcu_monitor(struct work_struct *work) 3147 { 3148 struct kfree_rcu_cpu *krcp = container_of(work, 3149 struct kfree_rcu_cpu, monitor_work.work); 3150 unsigned long flags; 3151 int i, j; 3152 3153 // Drain ready for reclaim. 3154 kvfree_rcu_drain_ready(krcp); 3155 3156 raw_spin_lock_irqsave(&krcp->lock, flags); 3157 3158 // Attempt to start a new batch. 3159 for (i = 0; i < KFREE_N_BATCHES; i++) { 3160 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3161 3162 // Try to detach bulk_head or head and attach it, only when 3163 // all channels are free. Any channel is not free means at krwp 3164 // there is on-going rcu work to handle krwp's free business. 3165 if (need_wait_for_krwp_work(krwp)) 3166 continue; 3167 3168 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3169 if (need_offload_krc(krcp)) { 3170 // Channel 1 corresponds to the SLAB-pointer bulk path. 3171 // Channel 2 corresponds to vmalloc-pointer bulk path. 3172 for (j = 0; j < FREE_N_CHANNELS; j++) { 3173 if (list_empty(&krwp->bulk_head_free[j])) { 3174 atomic_set(&krcp->bulk_count[j], 0); 3175 list_replace_init(&krcp->bulk_head[j], 3176 &krwp->bulk_head_free[j]); 3177 } 3178 } 3179 3180 // Channel 3 corresponds to both SLAB and vmalloc 3181 // objects queued on the linked list. 3182 if (!krwp->head_free) { 3183 krwp->head_free = krcp->head; 3184 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3185 atomic_set(&krcp->head_count, 0); 3186 WRITE_ONCE(krcp->head, NULL); 3187 } 3188 3189 // One work is per one batch, so there are three 3190 // "free channels", the batch can handle. It can 3191 // be that the work is in the pending state when 3192 // channels have been detached following by each 3193 // other. 3194 queue_rcu_work(system_wq, &krwp->rcu_work); 3195 } 3196 } 3197 3198 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3199 3200 // If there is nothing to detach, it means that our job is 3201 // successfully done here. In case of having at least one 3202 // of the channels that is still busy we should rearm the 3203 // work to repeat an attempt. Because previous batches are 3204 // still in progress. 3205 if (need_offload_krc(krcp)) 3206 schedule_delayed_monitor_work(krcp); 3207 } 3208 3209 static enum hrtimer_restart 3210 schedule_page_work_fn(struct hrtimer *t) 3211 { 3212 struct kfree_rcu_cpu *krcp = 3213 container_of(t, struct kfree_rcu_cpu, hrtimer); 3214 3215 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3216 return HRTIMER_NORESTART; 3217 } 3218 3219 static void fill_page_cache_func(struct work_struct *work) 3220 { 3221 struct kvfree_rcu_bulk_data *bnode; 3222 struct kfree_rcu_cpu *krcp = 3223 container_of(work, struct kfree_rcu_cpu, 3224 page_cache_work.work); 3225 unsigned long flags; 3226 int nr_pages; 3227 bool pushed; 3228 int i; 3229 3230 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3231 1 : rcu_min_cached_objs; 3232 3233 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3234 bnode = (struct kvfree_rcu_bulk_data *) 3235 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3236 3237 if (!bnode) 3238 break; 3239 3240 raw_spin_lock_irqsave(&krcp->lock, flags); 3241 pushed = put_cached_bnode(krcp, bnode); 3242 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3243 3244 if (!pushed) { 3245 free_page((unsigned long) bnode); 3246 break; 3247 } 3248 } 3249 3250 atomic_set(&krcp->work_in_progress, 0); 3251 atomic_set(&krcp->backoff_page_cache_fill, 0); 3252 } 3253 3254 static void 3255 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3256 { 3257 // If cache disabled, bail out. 3258 if (!rcu_min_cached_objs) 3259 return; 3260 3261 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3262 !atomic_xchg(&krcp->work_in_progress, 1)) { 3263 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3264 queue_delayed_work(system_wq, 3265 &krcp->page_cache_work, 3266 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3267 } else { 3268 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3269 krcp->hrtimer.function = schedule_page_work_fn; 3270 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3271 } 3272 } 3273 } 3274 3275 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3276 // state specified by flags. If can_alloc is true, the caller must 3277 // be schedulable and not be holding any locks or mutexes that might be 3278 // acquired by the memory allocator or anything that it might invoke. 3279 // Returns true if ptr was successfully recorded, else the caller must 3280 // use a fallback. 3281 static inline bool 3282 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3283 unsigned long *flags, void *ptr, bool can_alloc) 3284 { 3285 struct kvfree_rcu_bulk_data *bnode; 3286 int idx; 3287 3288 *krcp = krc_this_cpu_lock(flags); 3289 if (unlikely(!(*krcp)->initialized)) 3290 return false; 3291 3292 idx = !!is_vmalloc_addr(ptr); 3293 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3294 struct kvfree_rcu_bulk_data, list); 3295 3296 /* Check if a new block is required. */ 3297 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3298 bnode = get_cached_bnode(*krcp); 3299 if (!bnode && can_alloc) { 3300 krc_this_cpu_unlock(*krcp, *flags); 3301 3302 // __GFP_NORETRY - allows a light-weight direct reclaim 3303 // what is OK from minimizing of fallback hitting point of 3304 // view. Apart of that it forbids any OOM invoking what is 3305 // also beneficial since we are about to release memory soon. 3306 // 3307 // __GFP_NOMEMALLOC - prevents from consuming of all the 3308 // memory reserves. Please note we have a fallback path. 3309 // 3310 // __GFP_NOWARN - it is supposed that an allocation can 3311 // be failed under low memory or high memory pressure 3312 // scenarios. 3313 bnode = (struct kvfree_rcu_bulk_data *) 3314 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3315 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3316 } 3317 3318 if (!bnode) 3319 return false; 3320 3321 // Initialize the new block and attach it. 3322 bnode->nr_records = 0; 3323 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3324 } 3325 3326 // Finally insert and update the GP for this page. 3327 bnode->records[bnode->nr_records++] = ptr; 3328 get_state_synchronize_rcu_full(&bnode->gp_snap); 3329 atomic_inc(&(*krcp)->bulk_count[idx]); 3330 3331 return true; 3332 } 3333 3334 /* 3335 * Queue a request for lazy invocation of the appropriate free routine 3336 * after a grace period. Please note that three paths are maintained, 3337 * two for the common case using arrays of pointers and a third one that 3338 * is used only when the main paths cannot be used, for example, due to 3339 * memory pressure. 3340 * 3341 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3342 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3343 * be free'd in workqueue context. This allows us to: batch requests together to 3344 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3345 */ 3346 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3347 { 3348 unsigned long flags; 3349 struct kfree_rcu_cpu *krcp; 3350 bool success; 3351 3352 /* 3353 * Please note there is a limitation for the head-less 3354 * variant, that is why there is a clear rule for such 3355 * objects: it can be used from might_sleep() context 3356 * only. For other places please embed an rcu_head to 3357 * your data. 3358 */ 3359 if (!head) 3360 might_sleep(); 3361 3362 // Queue the object but don't yet schedule the batch. 3363 if (debug_rcu_head_queue(ptr)) { 3364 // Probable double kfree_rcu(), just leak. 3365 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3366 __func__, head); 3367 3368 // Mark as success and leave. 3369 return; 3370 } 3371 3372 kasan_record_aux_stack_noalloc(ptr); 3373 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3374 if (!success) { 3375 run_page_cache_worker(krcp); 3376 3377 if (head == NULL) 3378 // Inline if kvfree_rcu(one_arg) call. 3379 goto unlock_return; 3380 3381 head->func = ptr; 3382 head->next = krcp->head; 3383 WRITE_ONCE(krcp->head, head); 3384 atomic_inc(&krcp->head_count); 3385 3386 // Take a snapshot for this krcp. 3387 krcp->head_gp_snap = get_state_synchronize_rcu(); 3388 success = true; 3389 } 3390 3391 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3392 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3393 schedule_delayed_monitor_work(krcp); 3394 3395 unlock_return: 3396 krc_this_cpu_unlock(krcp, flags); 3397 3398 /* 3399 * Inline kvfree() after synchronize_rcu(). We can do 3400 * it from might_sleep() context only, so the current 3401 * CPU can pass the QS state. 3402 */ 3403 if (!success) { 3404 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3405 synchronize_rcu(); 3406 kvfree(ptr); 3407 } 3408 } 3409 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3410 3411 static unsigned long 3412 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3413 { 3414 int cpu; 3415 unsigned long count = 0; 3416 3417 /* Snapshot count of all CPUs */ 3418 for_each_possible_cpu(cpu) { 3419 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3420 3421 count += krc_count(krcp); 3422 count += READ_ONCE(krcp->nr_bkv_objs); 3423 atomic_set(&krcp->backoff_page_cache_fill, 1); 3424 } 3425 3426 return count == 0 ? SHRINK_EMPTY : count; 3427 } 3428 3429 static unsigned long 3430 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3431 { 3432 int cpu, freed = 0; 3433 3434 for_each_possible_cpu(cpu) { 3435 int count; 3436 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3437 3438 count = krc_count(krcp); 3439 count += drain_page_cache(krcp); 3440 kfree_rcu_monitor(&krcp->monitor_work.work); 3441 3442 sc->nr_to_scan -= count; 3443 freed += count; 3444 3445 if (sc->nr_to_scan <= 0) 3446 break; 3447 } 3448 3449 return freed == 0 ? SHRINK_STOP : freed; 3450 } 3451 3452 static struct shrinker kfree_rcu_shrinker = { 3453 .count_objects = kfree_rcu_shrink_count, 3454 .scan_objects = kfree_rcu_shrink_scan, 3455 .batch = 0, 3456 .seeks = DEFAULT_SEEKS, 3457 }; 3458 3459 void __init kfree_rcu_scheduler_running(void) 3460 { 3461 int cpu; 3462 3463 for_each_possible_cpu(cpu) { 3464 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3465 3466 if (need_offload_krc(krcp)) 3467 schedule_delayed_monitor_work(krcp); 3468 } 3469 } 3470 3471 /* 3472 * During early boot, any blocking grace-period wait automatically 3473 * implies a grace period. 3474 * 3475 * Later on, this could in theory be the case for kernels built with 3476 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3477 * is not a common case. Furthermore, this optimization would cause 3478 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3479 * grace-period optimization is ignored once the scheduler is running. 3480 */ 3481 static int rcu_blocking_is_gp(void) 3482 { 3483 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3484 might_sleep(); 3485 return false; 3486 } 3487 return true; 3488 } 3489 3490 /** 3491 * synchronize_rcu - wait until a grace period has elapsed. 3492 * 3493 * Control will return to the caller some time after a full grace 3494 * period has elapsed, in other words after all currently executing RCU 3495 * read-side critical sections have completed. Note, however, that 3496 * upon return from synchronize_rcu(), the caller might well be executing 3497 * concurrently with new RCU read-side critical sections that began while 3498 * synchronize_rcu() was waiting. 3499 * 3500 * RCU read-side critical sections are delimited by rcu_read_lock() 3501 * and rcu_read_unlock(), and may be nested. In addition, but only in 3502 * v5.0 and later, regions of code across which interrupts, preemption, 3503 * or softirqs have been disabled also serve as RCU read-side critical 3504 * sections. This includes hardware interrupt handlers, softirq handlers, 3505 * and NMI handlers. 3506 * 3507 * Note that this guarantee implies further memory-ordering guarantees. 3508 * On systems with more than one CPU, when synchronize_rcu() returns, 3509 * each CPU is guaranteed to have executed a full memory barrier since 3510 * the end of its last RCU read-side critical section whose beginning 3511 * preceded the call to synchronize_rcu(). In addition, each CPU having 3512 * an RCU read-side critical section that extends beyond the return from 3513 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3514 * after the beginning of synchronize_rcu() and before the beginning of 3515 * that RCU read-side critical section. Note that these guarantees include 3516 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3517 * that are executing in the kernel. 3518 * 3519 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3520 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3521 * to have executed a full memory barrier during the execution of 3522 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3523 * again only if the system has more than one CPU). 3524 * 3525 * Implementation of these memory-ordering guarantees is described here: 3526 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3527 */ 3528 void synchronize_rcu(void) 3529 { 3530 unsigned long flags; 3531 struct rcu_node *rnp; 3532 3533 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3534 lock_is_held(&rcu_lock_map) || 3535 lock_is_held(&rcu_sched_lock_map), 3536 "Illegal synchronize_rcu() in RCU read-side critical section"); 3537 if (!rcu_blocking_is_gp()) { 3538 if (rcu_gp_is_expedited()) 3539 synchronize_rcu_expedited(); 3540 else 3541 wait_rcu_gp(call_rcu_hurry); 3542 return; 3543 } 3544 3545 // Context allows vacuous grace periods. 3546 // Note well that this code runs with !PREEMPT && !SMP. 3547 // In addition, all code that advances grace periods runs at 3548 // process level. Therefore, this normal GP overlaps with other 3549 // normal GPs only by being fully nested within them, which allows 3550 // reuse of ->gp_seq_polled_snap. 3551 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3552 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3553 3554 // Update the normal grace-period counters to record 3555 // this grace period, but only those used by the boot CPU. 3556 // The rcu_scheduler_starting() will take care of the rest of 3557 // these counters. 3558 local_irq_save(flags); 3559 WARN_ON_ONCE(num_online_cpus() > 1); 3560 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3561 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3562 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3563 local_irq_restore(flags); 3564 } 3565 EXPORT_SYMBOL_GPL(synchronize_rcu); 3566 3567 /** 3568 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3569 * @rgosp: Place to put state cookie 3570 * 3571 * Stores into @rgosp a value that will always be treated by functions 3572 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3573 * has already completed. 3574 */ 3575 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3576 { 3577 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3578 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3579 } 3580 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3581 3582 /** 3583 * get_state_synchronize_rcu - Snapshot current RCU state 3584 * 3585 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3586 * or poll_state_synchronize_rcu() to determine whether or not a full 3587 * grace period has elapsed in the meantime. 3588 */ 3589 unsigned long get_state_synchronize_rcu(void) 3590 { 3591 /* 3592 * Any prior manipulation of RCU-protected data must happen 3593 * before the load from ->gp_seq. 3594 */ 3595 smp_mb(); /* ^^^ */ 3596 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3597 } 3598 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3599 3600 /** 3601 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3602 * @rgosp: location to place combined normal/expedited grace-period state 3603 * 3604 * Places the normal and expedited grace-period states in @rgosp. This 3605 * state value can be passed to a later call to cond_synchronize_rcu_full() 3606 * or poll_state_synchronize_rcu_full() to determine whether or not a 3607 * grace period (whether normal or expedited) has elapsed in the meantime. 3608 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3609 * long, but is guaranteed to see all grace periods. In contrast, the 3610 * combined state occupies less memory, but can sometimes fail to take 3611 * grace periods into account. 3612 * 3613 * This does not guarantee that the needed grace period will actually 3614 * start. 3615 */ 3616 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3617 { 3618 struct rcu_node *rnp = rcu_get_root(); 3619 3620 /* 3621 * Any prior manipulation of RCU-protected data must happen 3622 * before the loads from ->gp_seq and ->expedited_sequence. 3623 */ 3624 smp_mb(); /* ^^^ */ 3625 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3626 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3627 } 3628 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3629 3630 /* 3631 * Helper function for start_poll_synchronize_rcu() and 3632 * start_poll_synchronize_rcu_full(). 3633 */ 3634 static void start_poll_synchronize_rcu_common(void) 3635 { 3636 unsigned long flags; 3637 bool needwake; 3638 struct rcu_data *rdp; 3639 struct rcu_node *rnp; 3640 3641 lockdep_assert_irqs_enabled(); 3642 local_irq_save(flags); 3643 rdp = this_cpu_ptr(&rcu_data); 3644 rnp = rdp->mynode; 3645 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3646 // Note it is possible for a grace period to have elapsed between 3647 // the above call to get_state_synchronize_rcu() and the below call 3648 // to rcu_seq_snap. This is OK, the worst that happens is that we 3649 // get a grace period that no one needed. These accesses are ordered 3650 // by smp_mb(), and we are accessing them in the opposite order 3651 // from which they are updated at grace-period start, as required. 3652 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3653 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3654 if (needwake) 3655 rcu_gp_kthread_wake(); 3656 } 3657 3658 /** 3659 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3660 * 3661 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3662 * or poll_state_synchronize_rcu() to determine whether or not a full 3663 * grace period has elapsed in the meantime. If the needed grace period 3664 * is not already slated to start, notifies RCU core of the need for that 3665 * grace period. 3666 * 3667 * Interrupts must be enabled for the case where it is necessary to awaken 3668 * the grace-period kthread. 3669 */ 3670 unsigned long start_poll_synchronize_rcu(void) 3671 { 3672 unsigned long gp_seq = get_state_synchronize_rcu(); 3673 3674 start_poll_synchronize_rcu_common(); 3675 return gp_seq; 3676 } 3677 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3678 3679 /** 3680 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3681 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3682 * 3683 * Places the normal and expedited grace-period states in *@rgos. This 3684 * state value can be passed to a later call to cond_synchronize_rcu_full() 3685 * or poll_state_synchronize_rcu_full() to determine whether or not a 3686 * grace period (whether normal or expedited) has elapsed in the meantime. 3687 * If the needed grace period is not already slated to start, notifies 3688 * RCU core of the need for that grace period. 3689 * 3690 * Interrupts must be enabled for the case where it is necessary to awaken 3691 * the grace-period kthread. 3692 */ 3693 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3694 { 3695 get_state_synchronize_rcu_full(rgosp); 3696 3697 start_poll_synchronize_rcu_common(); 3698 } 3699 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3700 3701 /** 3702 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3703 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3704 * 3705 * If a full RCU grace period has elapsed since the earlier call from 3706 * which @oldstate was obtained, return @true, otherwise return @false. 3707 * If @false is returned, it is the caller's responsibility to invoke this 3708 * function later on until it does return @true. Alternatively, the caller 3709 * can explicitly wait for a grace period, for example, by passing @oldstate 3710 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3711 * on the one hand or by directly invoking either synchronize_rcu() or 3712 * synchronize_rcu_expedited() on the other. 3713 * 3714 * Yes, this function does not take counter wrap into account. 3715 * But counter wrap is harmless. If the counter wraps, we have waited for 3716 * more than a billion grace periods (and way more on a 64-bit system!). 3717 * Those needing to keep old state values for very long time periods 3718 * (many hours even on 32-bit systems) should check them occasionally and 3719 * either refresh them or set a flag indicating that the grace period has 3720 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3721 * to get a guaranteed-completed grace-period state. 3722 * 3723 * In addition, because oldstate compresses the grace-period state for 3724 * both normal and expedited grace periods into a single unsigned long, 3725 * it can miss a grace period when synchronize_rcu() runs concurrently 3726 * with synchronize_rcu_expedited(). If this is unacceptable, please 3727 * instead use the _full() variant of these polling APIs. 3728 * 3729 * This function provides the same memory-ordering guarantees that 3730 * would be provided by a synchronize_rcu() that was invoked at the call 3731 * to the function that provided @oldstate, and that returned at the end 3732 * of this function. 3733 */ 3734 bool poll_state_synchronize_rcu(unsigned long oldstate) 3735 { 3736 if (oldstate == RCU_GET_STATE_COMPLETED || 3737 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3738 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3739 return true; 3740 } 3741 return false; 3742 } 3743 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3744 3745 /** 3746 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3747 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3748 * 3749 * If a full RCU grace period has elapsed since the earlier call from 3750 * which *rgosp was obtained, return @true, otherwise return @false. 3751 * If @false is returned, it is the caller's responsibility to invoke this 3752 * function later on until it does return @true. Alternatively, the caller 3753 * can explicitly wait for a grace period, for example, by passing @rgosp 3754 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3755 * 3756 * Yes, this function does not take counter wrap into account. 3757 * But counter wrap is harmless. If the counter wraps, we have waited 3758 * for more than a billion grace periods (and way more on a 64-bit 3759 * system!). Those needing to keep rcu_gp_oldstate values for very 3760 * long time periods (many hours even on 32-bit systems) should check 3761 * them occasionally and either refresh them or set a flag indicating 3762 * that the grace period has completed. Alternatively, they can use 3763 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3764 * grace-period state. 3765 * 3766 * This function provides the same memory-ordering guarantees that would 3767 * be provided by a synchronize_rcu() that was invoked at the call to 3768 * the function that provided @rgosp, and that returned at the end of this 3769 * function. And this guarantee requires that the root rcu_node structure's 3770 * ->gp_seq field be checked instead of that of the rcu_state structure. 3771 * The problem is that the just-ending grace-period's callbacks can be 3772 * invoked between the time that the root rcu_node structure's ->gp_seq 3773 * field is updated and the time that the rcu_state structure's ->gp_seq 3774 * field is updated. Therefore, if a single synchronize_rcu() is to 3775 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3776 * then the root rcu_node structure is the one that needs to be polled. 3777 */ 3778 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3779 { 3780 struct rcu_node *rnp = rcu_get_root(); 3781 3782 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3783 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3784 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3785 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3786 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3787 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3788 return true; 3789 } 3790 return false; 3791 } 3792 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3793 3794 /** 3795 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3796 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3797 * 3798 * If a full RCU grace period has elapsed since the earlier call to 3799 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3800 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3801 * 3802 * Yes, this function does not take counter wrap into account. 3803 * But counter wrap is harmless. If the counter wraps, we have waited for 3804 * more than 2 billion grace periods (and way more on a 64-bit system!), 3805 * so waiting for a couple of additional grace periods should be just fine. 3806 * 3807 * This function provides the same memory-ordering guarantees that 3808 * would be provided by a synchronize_rcu() that was invoked at the call 3809 * to the function that provided @oldstate and that returned at the end 3810 * of this function. 3811 */ 3812 void cond_synchronize_rcu(unsigned long oldstate) 3813 { 3814 if (!poll_state_synchronize_rcu(oldstate)) 3815 synchronize_rcu(); 3816 } 3817 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3818 3819 /** 3820 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3821 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3822 * 3823 * If a full RCU grace period has elapsed since the call to 3824 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3825 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3826 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3827 * for a full grace period. 3828 * 3829 * Yes, this function does not take counter wrap into account. 3830 * But counter wrap is harmless. If the counter wraps, we have waited for 3831 * more than 2 billion grace periods (and way more on a 64-bit system!), 3832 * so waiting for a couple of additional grace periods should be just fine. 3833 * 3834 * This function provides the same memory-ordering guarantees that 3835 * would be provided by a synchronize_rcu() that was invoked at the call 3836 * to the function that provided @rgosp and that returned at the end of 3837 * this function. 3838 */ 3839 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3840 { 3841 if (!poll_state_synchronize_rcu_full(rgosp)) 3842 synchronize_rcu(); 3843 } 3844 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3845 3846 /* 3847 * Check to see if there is any immediate RCU-related work to be done by 3848 * the current CPU, returning 1 if so and zero otherwise. The checks are 3849 * in order of increasing expense: checks that can be carried out against 3850 * CPU-local state are performed first. However, we must check for CPU 3851 * stalls first, else we might not get a chance. 3852 */ 3853 static int rcu_pending(int user) 3854 { 3855 bool gp_in_progress; 3856 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3857 struct rcu_node *rnp = rdp->mynode; 3858 3859 lockdep_assert_irqs_disabled(); 3860 3861 /* Check for CPU stalls, if enabled. */ 3862 check_cpu_stall(rdp); 3863 3864 /* Does this CPU need a deferred NOCB wakeup? */ 3865 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3866 return 1; 3867 3868 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3869 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3870 return 0; 3871 3872 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3873 gp_in_progress = rcu_gp_in_progress(); 3874 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3875 return 1; 3876 3877 /* Does this CPU have callbacks ready to invoke? */ 3878 if (!rcu_rdp_is_offloaded(rdp) && 3879 rcu_segcblist_ready_cbs(&rdp->cblist)) 3880 return 1; 3881 3882 /* Has RCU gone idle with this CPU needing another grace period? */ 3883 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3884 !rcu_rdp_is_offloaded(rdp) && 3885 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3886 return 1; 3887 3888 /* Have RCU grace period completed or started? */ 3889 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3890 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3891 return 1; 3892 3893 /* nothing to do */ 3894 return 0; 3895 } 3896 3897 /* 3898 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3899 * the compiler is expected to optimize this away. 3900 */ 3901 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3902 { 3903 trace_rcu_barrier(rcu_state.name, s, cpu, 3904 atomic_read(&rcu_state.barrier_cpu_count), done); 3905 } 3906 3907 /* 3908 * RCU callback function for rcu_barrier(). If we are last, wake 3909 * up the task executing rcu_barrier(). 3910 * 3911 * Note that the value of rcu_state.barrier_sequence must be captured 3912 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3913 * other CPUs might count the value down to zero before this CPU gets 3914 * around to invoking rcu_barrier_trace(), which might result in bogus 3915 * data from the next instance of rcu_barrier(). 3916 */ 3917 static void rcu_barrier_callback(struct rcu_head *rhp) 3918 { 3919 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3920 3921 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3922 rcu_barrier_trace(TPS("LastCB"), -1, s); 3923 complete(&rcu_state.barrier_completion); 3924 } else { 3925 rcu_barrier_trace(TPS("CB"), -1, s); 3926 } 3927 } 3928 3929 /* 3930 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3931 */ 3932 static void rcu_barrier_entrain(struct rcu_data *rdp) 3933 { 3934 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3935 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3936 bool wake_nocb = false; 3937 bool was_alldone = false; 3938 3939 lockdep_assert_held(&rcu_state.barrier_lock); 3940 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3941 return; 3942 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3943 rdp->barrier_head.func = rcu_barrier_callback; 3944 debug_rcu_head_queue(&rdp->barrier_head); 3945 rcu_nocb_lock(rdp); 3946 /* 3947 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3948 * queue. This way we don't wait for bypass timer that can reach seconds 3949 * if it's fully lazy. 3950 */ 3951 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3952 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3953 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3954 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3955 atomic_inc(&rcu_state.barrier_cpu_count); 3956 } else { 3957 debug_rcu_head_unqueue(&rdp->barrier_head); 3958 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3959 } 3960 rcu_nocb_unlock(rdp); 3961 if (wake_nocb) 3962 wake_nocb_gp(rdp, false); 3963 smp_store_release(&rdp->barrier_seq_snap, gseq); 3964 } 3965 3966 /* 3967 * Called with preemption disabled, and from cross-cpu IRQ context. 3968 */ 3969 static void rcu_barrier_handler(void *cpu_in) 3970 { 3971 uintptr_t cpu = (uintptr_t)cpu_in; 3972 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3973 3974 lockdep_assert_irqs_disabled(); 3975 WARN_ON_ONCE(cpu != rdp->cpu); 3976 WARN_ON_ONCE(cpu != smp_processor_id()); 3977 raw_spin_lock(&rcu_state.barrier_lock); 3978 rcu_barrier_entrain(rdp); 3979 raw_spin_unlock(&rcu_state.barrier_lock); 3980 } 3981 3982 /** 3983 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3984 * 3985 * Note that this primitive does not necessarily wait for an RCU grace period 3986 * to complete. For example, if there are no RCU callbacks queued anywhere 3987 * in the system, then rcu_barrier() is within its rights to return 3988 * immediately, without waiting for anything, much less an RCU grace period. 3989 */ 3990 void rcu_barrier(void) 3991 { 3992 uintptr_t cpu; 3993 unsigned long flags; 3994 unsigned long gseq; 3995 struct rcu_data *rdp; 3996 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3997 3998 rcu_barrier_trace(TPS("Begin"), -1, s); 3999 4000 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4001 mutex_lock(&rcu_state.barrier_mutex); 4002 4003 /* Did someone else do our work for us? */ 4004 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4005 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4006 smp_mb(); /* caller's subsequent code after above check. */ 4007 mutex_unlock(&rcu_state.barrier_mutex); 4008 return; 4009 } 4010 4011 /* Mark the start of the barrier operation. */ 4012 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4013 rcu_seq_start(&rcu_state.barrier_sequence); 4014 gseq = rcu_state.barrier_sequence; 4015 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4016 4017 /* 4018 * Initialize the count to two rather than to zero in order 4019 * to avoid a too-soon return to zero in case of an immediate 4020 * invocation of the just-enqueued callback (or preemption of 4021 * this task). Exclude CPU-hotplug operations to ensure that no 4022 * offline non-offloaded CPU has callbacks queued. 4023 */ 4024 init_completion(&rcu_state.barrier_completion); 4025 atomic_set(&rcu_state.barrier_cpu_count, 2); 4026 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4027 4028 /* 4029 * Force each CPU with callbacks to register a new callback. 4030 * When that callback is invoked, we will know that all of the 4031 * corresponding CPU's preceding callbacks have been invoked. 4032 */ 4033 for_each_possible_cpu(cpu) { 4034 rdp = per_cpu_ptr(&rcu_data, cpu); 4035 retry: 4036 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4037 continue; 4038 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4039 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4040 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4041 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4042 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4043 continue; 4044 } 4045 if (!rcu_rdp_cpu_online(rdp)) { 4046 rcu_barrier_entrain(rdp); 4047 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4048 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4049 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4050 continue; 4051 } 4052 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4053 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4054 schedule_timeout_uninterruptible(1); 4055 goto retry; 4056 } 4057 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4058 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4059 } 4060 4061 /* 4062 * Now that we have an rcu_barrier_callback() callback on each 4063 * CPU, and thus each counted, remove the initial count. 4064 */ 4065 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4066 complete(&rcu_state.barrier_completion); 4067 4068 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4069 wait_for_completion(&rcu_state.barrier_completion); 4070 4071 /* Mark the end of the barrier operation. */ 4072 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4073 rcu_seq_end(&rcu_state.barrier_sequence); 4074 gseq = rcu_state.barrier_sequence; 4075 for_each_possible_cpu(cpu) { 4076 rdp = per_cpu_ptr(&rcu_data, cpu); 4077 4078 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4079 } 4080 4081 /* Other rcu_barrier() invocations can now safely proceed. */ 4082 mutex_unlock(&rcu_state.barrier_mutex); 4083 } 4084 EXPORT_SYMBOL_GPL(rcu_barrier); 4085 4086 /* 4087 * Compute the mask of online CPUs for the specified rcu_node structure. 4088 * This will not be stable unless the rcu_node structure's ->lock is 4089 * held, but the bit corresponding to the current CPU will be stable 4090 * in most contexts. 4091 */ 4092 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4093 { 4094 return READ_ONCE(rnp->qsmaskinitnext); 4095 } 4096 4097 /* 4098 * Is the CPU corresponding to the specified rcu_data structure online 4099 * from RCU's perspective? This perspective is given by that structure's 4100 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4101 */ 4102 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4103 { 4104 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4105 } 4106 4107 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4108 4109 /* 4110 * Is the current CPU online as far as RCU is concerned? 4111 * 4112 * Disable preemption to avoid false positives that could otherwise 4113 * happen due to the current CPU number being sampled, this task being 4114 * preempted, its old CPU being taken offline, resuming on some other CPU, 4115 * then determining that its old CPU is now offline. 4116 * 4117 * Disable checking if in an NMI handler because we cannot safely 4118 * report errors from NMI handlers anyway. In addition, it is OK to use 4119 * RCU on an offline processor during initial boot, hence the check for 4120 * rcu_scheduler_fully_active. 4121 */ 4122 bool rcu_lockdep_current_cpu_online(void) 4123 { 4124 struct rcu_data *rdp; 4125 bool ret = false; 4126 4127 if (in_nmi() || !rcu_scheduler_fully_active) 4128 return true; 4129 preempt_disable_notrace(); 4130 rdp = this_cpu_ptr(&rcu_data); 4131 /* 4132 * Strictly, we care here about the case where the current CPU is 4133 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 4134 * not being up to date. So arch_spin_is_locked() might have a 4135 * false positive if it's held by some *other* CPU, but that's 4136 * OK because that just means a false *negative* on the warning. 4137 */ 4138 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4139 ret = true; 4140 preempt_enable_notrace(); 4141 return ret; 4142 } 4143 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4144 4145 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4146 4147 // Has rcu_init() been invoked? This is used (for example) to determine 4148 // whether spinlocks may be acquired safely. 4149 static bool rcu_init_invoked(void) 4150 { 4151 return !!rcu_state.n_online_cpus; 4152 } 4153 4154 /* 4155 * Near the end of the offline process. Trace the fact that this CPU 4156 * is going offline. 4157 */ 4158 int rcutree_dying_cpu(unsigned int cpu) 4159 { 4160 bool blkd; 4161 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4162 struct rcu_node *rnp = rdp->mynode; 4163 4164 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4165 return 0; 4166 4167 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4168 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4169 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4170 return 0; 4171 } 4172 4173 /* 4174 * All CPUs for the specified rcu_node structure have gone offline, 4175 * and all tasks that were preempted within an RCU read-side critical 4176 * section while running on one of those CPUs have since exited their RCU 4177 * read-side critical section. Some other CPU is reporting this fact with 4178 * the specified rcu_node structure's ->lock held and interrupts disabled. 4179 * This function therefore goes up the tree of rcu_node structures, 4180 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4181 * the leaf rcu_node structure's ->qsmaskinit field has already been 4182 * updated. 4183 * 4184 * This function does check that the specified rcu_node structure has 4185 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4186 * prematurely. That said, invoking it after the fact will cost you 4187 * a needless lock acquisition. So once it has done its work, don't 4188 * invoke it again. 4189 */ 4190 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4191 { 4192 long mask; 4193 struct rcu_node *rnp = rnp_leaf; 4194 4195 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4196 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4197 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4198 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4199 return; 4200 for (;;) { 4201 mask = rnp->grpmask; 4202 rnp = rnp->parent; 4203 if (!rnp) 4204 break; 4205 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4206 rnp->qsmaskinit &= ~mask; 4207 /* Between grace periods, so better already be zero! */ 4208 WARN_ON_ONCE(rnp->qsmask); 4209 if (rnp->qsmaskinit) { 4210 raw_spin_unlock_rcu_node(rnp); 4211 /* irqs remain disabled. */ 4212 return; 4213 } 4214 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4215 } 4216 } 4217 4218 /* 4219 * The CPU has been completely removed, and some other CPU is reporting 4220 * this fact from process context. Do the remainder of the cleanup. 4221 * There can only be one CPU hotplug operation at a time, so no need for 4222 * explicit locking. 4223 */ 4224 int rcutree_dead_cpu(unsigned int cpu) 4225 { 4226 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4227 return 0; 4228 4229 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4230 // Stop-machine done, so allow nohz_full to disable tick. 4231 tick_dep_clear(TICK_DEP_BIT_RCU); 4232 return 0; 4233 } 4234 4235 /* 4236 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4237 * first CPU in a given leaf rcu_node structure coming online. The caller 4238 * must hold the corresponding leaf rcu_node ->lock with interrupts 4239 * disabled. 4240 */ 4241 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4242 { 4243 long mask; 4244 long oldmask; 4245 struct rcu_node *rnp = rnp_leaf; 4246 4247 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4248 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4249 for (;;) { 4250 mask = rnp->grpmask; 4251 rnp = rnp->parent; 4252 if (rnp == NULL) 4253 return; 4254 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4255 oldmask = rnp->qsmaskinit; 4256 rnp->qsmaskinit |= mask; 4257 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4258 if (oldmask) 4259 return; 4260 } 4261 } 4262 4263 /* 4264 * Do boot-time initialization of a CPU's per-CPU RCU data. 4265 */ 4266 static void __init 4267 rcu_boot_init_percpu_data(int cpu) 4268 { 4269 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4270 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4271 4272 /* Set up local state, ensuring consistent view of global state. */ 4273 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4274 INIT_WORK(&rdp->strict_work, strict_work_handler); 4275 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4276 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4277 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4278 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4279 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4280 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4281 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4282 rdp->last_sched_clock = jiffies; 4283 rdp->cpu = cpu; 4284 rcu_boot_init_nocb_percpu_data(rdp); 4285 } 4286 4287 /* 4288 * Invoked early in the CPU-online process, when pretty much all services 4289 * are available. The incoming CPU is not present. 4290 * 4291 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4292 * offline event can be happening at a given time. Note also that we can 4293 * accept some slop in the rsp->gp_seq access due to the fact that this 4294 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4295 * And any offloaded callbacks are being numbered elsewhere. 4296 */ 4297 int rcutree_prepare_cpu(unsigned int cpu) 4298 { 4299 unsigned long flags; 4300 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4301 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4302 struct rcu_node *rnp = rcu_get_root(); 4303 4304 /* Set up local state, ensuring consistent view of global state. */ 4305 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4306 rdp->qlen_last_fqs_check = 0; 4307 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4308 rdp->blimit = blimit; 4309 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4310 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4311 4312 /* 4313 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4314 * (re-)initialized. 4315 */ 4316 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4317 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4318 4319 /* 4320 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4321 * propagation up the rcu_node tree will happen at the beginning 4322 * of the next grace period. 4323 */ 4324 rnp = rdp->mynode; 4325 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4326 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4327 rdp->gp_seq_needed = rdp->gp_seq; 4328 rdp->cpu_no_qs.b.norm = true; 4329 rdp->core_needs_qs = false; 4330 rdp->rcu_iw_pending = false; 4331 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4332 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4333 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4334 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4335 rcu_spawn_one_boost_kthread(rnp); 4336 rcu_spawn_cpu_nocb_kthread(cpu); 4337 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4338 4339 return 0; 4340 } 4341 4342 /* 4343 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4344 */ 4345 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4346 { 4347 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4348 4349 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4350 } 4351 4352 /* 4353 * Has the specified (known valid) CPU ever been fully online? 4354 */ 4355 bool rcu_cpu_beenfullyonline(int cpu) 4356 { 4357 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4358 4359 return smp_load_acquire(&rdp->beenonline); 4360 } 4361 4362 /* 4363 * Near the end of the CPU-online process. Pretty much all services 4364 * enabled, and the CPU is now very much alive. 4365 */ 4366 int rcutree_online_cpu(unsigned int cpu) 4367 { 4368 unsigned long flags; 4369 struct rcu_data *rdp; 4370 struct rcu_node *rnp; 4371 4372 rdp = per_cpu_ptr(&rcu_data, cpu); 4373 rnp = rdp->mynode; 4374 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4375 rnp->ffmask |= rdp->grpmask; 4376 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4377 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4378 return 0; /* Too early in boot for scheduler work. */ 4379 sync_sched_exp_online_cleanup(cpu); 4380 rcutree_affinity_setting(cpu, -1); 4381 4382 // Stop-machine done, so allow nohz_full to disable tick. 4383 tick_dep_clear(TICK_DEP_BIT_RCU); 4384 return 0; 4385 } 4386 4387 /* 4388 * Near the beginning of the process. The CPU is still very much alive 4389 * with pretty much all services enabled. 4390 */ 4391 int rcutree_offline_cpu(unsigned int cpu) 4392 { 4393 unsigned long flags; 4394 struct rcu_data *rdp; 4395 struct rcu_node *rnp; 4396 4397 rdp = per_cpu_ptr(&rcu_data, cpu); 4398 rnp = rdp->mynode; 4399 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4400 rnp->ffmask &= ~rdp->grpmask; 4401 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4402 4403 rcutree_affinity_setting(cpu, cpu); 4404 4405 // nohz_full CPUs need the tick for stop-machine to work quickly 4406 tick_dep_set(TICK_DEP_BIT_RCU); 4407 return 0; 4408 } 4409 4410 /* 4411 * Mark the specified CPU as being online so that subsequent grace periods 4412 * (both expedited and normal) will wait on it. Note that this means that 4413 * incoming CPUs are not allowed to use RCU read-side critical sections 4414 * until this function is called. Failing to observe this restriction 4415 * will result in lockdep splats. 4416 * 4417 * Note that this function is special in that it is invoked directly 4418 * from the incoming CPU rather than from the cpuhp_step mechanism. 4419 * This is because this function must be invoked at a precise location. 4420 * This incoming CPU must not have enabled interrupts yet. 4421 */ 4422 void rcu_cpu_starting(unsigned int cpu) 4423 { 4424 unsigned long mask; 4425 struct rcu_data *rdp; 4426 struct rcu_node *rnp; 4427 bool newcpu; 4428 4429 lockdep_assert_irqs_disabled(); 4430 rdp = per_cpu_ptr(&rcu_data, cpu); 4431 if (rdp->cpu_started) 4432 return; 4433 rdp->cpu_started = true; 4434 4435 rnp = rdp->mynode; 4436 mask = rdp->grpmask; 4437 arch_spin_lock(&rcu_state.ofl_lock); 4438 rcu_dynticks_eqs_online(); 4439 raw_spin_lock(&rcu_state.barrier_lock); 4440 raw_spin_lock_rcu_node(rnp); 4441 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4442 raw_spin_unlock(&rcu_state.barrier_lock); 4443 newcpu = !(rnp->expmaskinitnext & mask); 4444 rnp->expmaskinitnext |= mask; 4445 /* Allow lockless access for expedited grace periods. */ 4446 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4447 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4448 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4449 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4450 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4451 4452 /* An incoming CPU should never be blocking a grace period. */ 4453 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4454 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4455 unsigned long flags; 4456 4457 local_irq_save(flags); 4458 rcu_disable_urgency_upon_qs(rdp); 4459 /* Report QS -after- changing ->qsmaskinitnext! */ 4460 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4461 } else { 4462 raw_spin_unlock_rcu_node(rnp); 4463 } 4464 arch_spin_unlock(&rcu_state.ofl_lock); 4465 smp_store_release(&rdp->beenonline, true); 4466 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4467 } 4468 4469 /* 4470 * The outgoing function has no further need of RCU, so remove it from 4471 * the rcu_node tree's ->qsmaskinitnext bit masks. 4472 * 4473 * Note that this function is special in that it is invoked directly 4474 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4475 * This is because this function must be invoked at a precise location. 4476 */ 4477 void rcu_report_dead(unsigned int cpu) 4478 { 4479 unsigned long flags, seq_flags; 4480 unsigned long mask; 4481 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4482 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4483 4484 // Do any dangling deferred wakeups. 4485 do_nocb_deferred_wakeup(rdp); 4486 4487 rcu_preempt_deferred_qs(current); 4488 4489 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4490 mask = rdp->grpmask; 4491 local_irq_save(seq_flags); 4492 arch_spin_lock(&rcu_state.ofl_lock); 4493 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4494 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4495 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4496 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4497 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4498 rcu_disable_urgency_upon_qs(rdp); 4499 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4500 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4501 } 4502 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4503 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4504 arch_spin_unlock(&rcu_state.ofl_lock); 4505 local_irq_restore(seq_flags); 4506 4507 rdp->cpu_started = false; 4508 } 4509 4510 #ifdef CONFIG_HOTPLUG_CPU 4511 /* 4512 * The outgoing CPU has just passed through the dying-idle state, and we 4513 * are being invoked from the CPU that was IPIed to continue the offline 4514 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4515 */ 4516 void rcutree_migrate_callbacks(int cpu) 4517 { 4518 unsigned long flags; 4519 struct rcu_data *my_rdp; 4520 struct rcu_node *my_rnp; 4521 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4522 bool needwake; 4523 4524 if (rcu_rdp_is_offloaded(rdp) || 4525 rcu_segcblist_empty(&rdp->cblist)) 4526 return; /* No callbacks to migrate. */ 4527 4528 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4529 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4530 rcu_barrier_entrain(rdp); 4531 my_rdp = this_cpu_ptr(&rcu_data); 4532 my_rnp = my_rdp->mynode; 4533 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4534 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4535 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4536 /* Leverage recent GPs and set GP for new callbacks. */ 4537 needwake = rcu_advance_cbs(my_rnp, rdp) || 4538 rcu_advance_cbs(my_rnp, my_rdp); 4539 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4540 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4541 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4542 rcu_segcblist_disable(&rdp->cblist); 4543 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4544 check_cb_ovld_locked(my_rdp, my_rnp); 4545 if (rcu_rdp_is_offloaded(my_rdp)) { 4546 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4547 __call_rcu_nocb_wake(my_rdp, true, flags); 4548 } else { 4549 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4550 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4551 } 4552 if (needwake) 4553 rcu_gp_kthread_wake(); 4554 lockdep_assert_irqs_enabled(); 4555 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4556 !rcu_segcblist_empty(&rdp->cblist), 4557 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4558 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4559 rcu_segcblist_first_cb(&rdp->cblist)); 4560 } 4561 #endif 4562 4563 /* 4564 * On non-huge systems, use expedited RCU grace periods to make suspend 4565 * and hibernation run faster. 4566 */ 4567 static int rcu_pm_notify(struct notifier_block *self, 4568 unsigned long action, void *hcpu) 4569 { 4570 switch (action) { 4571 case PM_HIBERNATION_PREPARE: 4572 case PM_SUSPEND_PREPARE: 4573 rcu_async_hurry(); 4574 rcu_expedite_gp(); 4575 break; 4576 case PM_POST_HIBERNATION: 4577 case PM_POST_SUSPEND: 4578 rcu_unexpedite_gp(); 4579 rcu_async_relax(); 4580 break; 4581 default: 4582 break; 4583 } 4584 return NOTIFY_OK; 4585 } 4586 4587 #ifdef CONFIG_RCU_EXP_KTHREAD 4588 struct kthread_worker *rcu_exp_gp_kworker; 4589 struct kthread_worker *rcu_exp_par_gp_kworker; 4590 4591 static void __init rcu_start_exp_gp_kworkers(void) 4592 { 4593 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4594 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4595 struct sched_param param = { .sched_priority = kthread_prio }; 4596 4597 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4598 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4599 pr_err("Failed to create %s!\n", gp_kworker_name); 4600 return; 4601 } 4602 4603 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4604 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4605 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4606 kthread_destroy_worker(rcu_exp_gp_kworker); 4607 return; 4608 } 4609 4610 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4611 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4612 ¶m); 4613 } 4614 4615 static inline void rcu_alloc_par_gp_wq(void) 4616 { 4617 } 4618 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4619 struct workqueue_struct *rcu_par_gp_wq; 4620 4621 static void __init rcu_start_exp_gp_kworkers(void) 4622 { 4623 } 4624 4625 static inline void rcu_alloc_par_gp_wq(void) 4626 { 4627 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4628 WARN_ON(!rcu_par_gp_wq); 4629 } 4630 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4631 4632 /* 4633 * Spawn the kthreads that handle RCU's grace periods. 4634 */ 4635 static int __init rcu_spawn_gp_kthread(void) 4636 { 4637 unsigned long flags; 4638 struct rcu_node *rnp; 4639 struct sched_param sp; 4640 struct task_struct *t; 4641 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4642 4643 rcu_scheduler_fully_active = 1; 4644 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4645 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4646 return 0; 4647 if (kthread_prio) { 4648 sp.sched_priority = kthread_prio; 4649 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4650 } 4651 rnp = rcu_get_root(); 4652 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4653 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4654 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4655 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4656 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4657 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4658 wake_up_process(t); 4659 /* This is a pre-SMP initcall, we expect a single CPU */ 4660 WARN_ON(num_online_cpus() > 1); 4661 /* 4662 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4663 * due to rcu_scheduler_fully_active. 4664 */ 4665 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4666 rcu_spawn_one_boost_kthread(rdp->mynode); 4667 rcu_spawn_core_kthreads(); 4668 /* Create kthread worker for expedited GPs */ 4669 rcu_start_exp_gp_kworkers(); 4670 return 0; 4671 } 4672 early_initcall(rcu_spawn_gp_kthread); 4673 4674 /* 4675 * This function is invoked towards the end of the scheduler's 4676 * initialization process. Before this is called, the idle task might 4677 * contain synchronous grace-period primitives (during which time, this idle 4678 * task is booting the system, and such primitives are no-ops). After this 4679 * function is called, any synchronous grace-period primitives are run as 4680 * expedited, with the requesting task driving the grace period forward. 4681 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4682 * runtime RCU functionality. 4683 */ 4684 void rcu_scheduler_starting(void) 4685 { 4686 unsigned long flags; 4687 struct rcu_node *rnp; 4688 4689 WARN_ON(num_online_cpus() != 1); 4690 WARN_ON(nr_context_switches() > 0); 4691 rcu_test_sync_prims(); 4692 4693 // Fix up the ->gp_seq counters. 4694 local_irq_save(flags); 4695 rcu_for_each_node_breadth_first(rnp) 4696 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4697 local_irq_restore(flags); 4698 4699 // Switch out of early boot mode. 4700 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4701 rcu_test_sync_prims(); 4702 } 4703 4704 /* 4705 * Helper function for rcu_init() that initializes the rcu_state structure. 4706 */ 4707 static void __init rcu_init_one(void) 4708 { 4709 static const char * const buf[] = RCU_NODE_NAME_INIT; 4710 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4711 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4712 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4713 4714 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4715 int cpustride = 1; 4716 int i; 4717 int j; 4718 struct rcu_node *rnp; 4719 4720 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4721 4722 /* Silence gcc 4.8 false positive about array index out of range. */ 4723 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4724 panic("rcu_init_one: rcu_num_lvls out of range"); 4725 4726 /* Initialize the level-tracking arrays. */ 4727 4728 for (i = 1; i < rcu_num_lvls; i++) 4729 rcu_state.level[i] = 4730 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4731 rcu_init_levelspread(levelspread, num_rcu_lvl); 4732 4733 /* Initialize the elements themselves, starting from the leaves. */ 4734 4735 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4736 cpustride *= levelspread[i]; 4737 rnp = rcu_state.level[i]; 4738 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4739 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4740 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4741 &rcu_node_class[i], buf[i]); 4742 raw_spin_lock_init(&rnp->fqslock); 4743 lockdep_set_class_and_name(&rnp->fqslock, 4744 &rcu_fqs_class[i], fqs[i]); 4745 rnp->gp_seq = rcu_state.gp_seq; 4746 rnp->gp_seq_needed = rcu_state.gp_seq; 4747 rnp->completedqs = rcu_state.gp_seq; 4748 rnp->qsmask = 0; 4749 rnp->qsmaskinit = 0; 4750 rnp->grplo = j * cpustride; 4751 rnp->grphi = (j + 1) * cpustride - 1; 4752 if (rnp->grphi >= nr_cpu_ids) 4753 rnp->grphi = nr_cpu_ids - 1; 4754 if (i == 0) { 4755 rnp->grpnum = 0; 4756 rnp->grpmask = 0; 4757 rnp->parent = NULL; 4758 } else { 4759 rnp->grpnum = j % levelspread[i - 1]; 4760 rnp->grpmask = BIT(rnp->grpnum); 4761 rnp->parent = rcu_state.level[i - 1] + 4762 j / levelspread[i - 1]; 4763 } 4764 rnp->level = i; 4765 INIT_LIST_HEAD(&rnp->blkd_tasks); 4766 rcu_init_one_nocb(rnp); 4767 init_waitqueue_head(&rnp->exp_wq[0]); 4768 init_waitqueue_head(&rnp->exp_wq[1]); 4769 init_waitqueue_head(&rnp->exp_wq[2]); 4770 init_waitqueue_head(&rnp->exp_wq[3]); 4771 spin_lock_init(&rnp->exp_lock); 4772 mutex_init(&rnp->boost_kthread_mutex); 4773 raw_spin_lock_init(&rnp->exp_poll_lock); 4774 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4775 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4776 } 4777 } 4778 4779 init_swait_queue_head(&rcu_state.gp_wq); 4780 init_swait_queue_head(&rcu_state.expedited_wq); 4781 rnp = rcu_first_leaf_node(); 4782 for_each_possible_cpu(i) { 4783 while (i > rnp->grphi) 4784 rnp++; 4785 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4786 rcu_boot_init_percpu_data(i); 4787 } 4788 } 4789 4790 /* 4791 * Force priority from the kernel command-line into range. 4792 */ 4793 static void __init sanitize_kthread_prio(void) 4794 { 4795 int kthread_prio_in = kthread_prio; 4796 4797 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4798 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4799 kthread_prio = 2; 4800 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4801 kthread_prio = 1; 4802 else if (kthread_prio < 0) 4803 kthread_prio = 0; 4804 else if (kthread_prio > 99) 4805 kthread_prio = 99; 4806 4807 if (kthread_prio != kthread_prio_in) 4808 pr_alert("%s: Limited prio to %d from %d\n", 4809 __func__, kthread_prio, kthread_prio_in); 4810 } 4811 4812 /* 4813 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4814 * replace the definitions in tree.h because those are needed to size 4815 * the ->node array in the rcu_state structure. 4816 */ 4817 void rcu_init_geometry(void) 4818 { 4819 ulong d; 4820 int i; 4821 static unsigned long old_nr_cpu_ids; 4822 int rcu_capacity[RCU_NUM_LVLS]; 4823 static bool initialized; 4824 4825 if (initialized) { 4826 /* 4827 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4828 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4829 */ 4830 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4831 return; 4832 } 4833 4834 old_nr_cpu_ids = nr_cpu_ids; 4835 initialized = true; 4836 4837 /* 4838 * Initialize any unspecified boot parameters. 4839 * The default values of jiffies_till_first_fqs and 4840 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4841 * value, which is a function of HZ, then adding one for each 4842 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4843 */ 4844 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4845 if (jiffies_till_first_fqs == ULONG_MAX) 4846 jiffies_till_first_fqs = d; 4847 if (jiffies_till_next_fqs == ULONG_MAX) 4848 jiffies_till_next_fqs = d; 4849 adjust_jiffies_till_sched_qs(); 4850 4851 /* If the compile-time values are accurate, just leave. */ 4852 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4853 nr_cpu_ids == NR_CPUS) 4854 return; 4855 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4856 rcu_fanout_leaf, nr_cpu_ids); 4857 4858 /* 4859 * The boot-time rcu_fanout_leaf parameter must be at least two 4860 * and cannot exceed the number of bits in the rcu_node masks. 4861 * Complain and fall back to the compile-time values if this 4862 * limit is exceeded. 4863 */ 4864 if (rcu_fanout_leaf < 2 || 4865 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4866 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4867 WARN_ON(1); 4868 return; 4869 } 4870 4871 /* 4872 * Compute number of nodes that can be handled an rcu_node tree 4873 * with the given number of levels. 4874 */ 4875 rcu_capacity[0] = rcu_fanout_leaf; 4876 for (i = 1; i < RCU_NUM_LVLS; i++) 4877 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4878 4879 /* 4880 * The tree must be able to accommodate the configured number of CPUs. 4881 * If this limit is exceeded, fall back to the compile-time values. 4882 */ 4883 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4884 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4885 WARN_ON(1); 4886 return; 4887 } 4888 4889 /* Calculate the number of levels in the tree. */ 4890 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4891 } 4892 rcu_num_lvls = i + 1; 4893 4894 /* Calculate the number of rcu_nodes at each level of the tree. */ 4895 for (i = 0; i < rcu_num_lvls; i++) { 4896 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4897 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4898 } 4899 4900 /* Calculate the total number of rcu_node structures. */ 4901 rcu_num_nodes = 0; 4902 for (i = 0; i < rcu_num_lvls; i++) 4903 rcu_num_nodes += num_rcu_lvl[i]; 4904 } 4905 4906 /* 4907 * Dump out the structure of the rcu_node combining tree associated 4908 * with the rcu_state structure. 4909 */ 4910 static void __init rcu_dump_rcu_node_tree(void) 4911 { 4912 int level = 0; 4913 struct rcu_node *rnp; 4914 4915 pr_info("rcu_node tree layout dump\n"); 4916 pr_info(" "); 4917 rcu_for_each_node_breadth_first(rnp) { 4918 if (rnp->level != level) { 4919 pr_cont("\n"); 4920 pr_info(" "); 4921 level = rnp->level; 4922 } 4923 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4924 } 4925 pr_cont("\n"); 4926 } 4927 4928 struct workqueue_struct *rcu_gp_wq; 4929 4930 static void __init kfree_rcu_batch_init(void) 4931 { 4932 int cpu; 4933 int i, j; 4934 4935 /* Clamp it to [0:100] seconds interval. */ 4936 if (rcu_delay_page_cache_fill_msec < 0 || 4937 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4938 4939 rcu_delay_page_cache_fill_msec = 4940 clamp(rcu_delay_page_cache_fill_msec, 0, 4941 (int) (100 * MSEC_PER_SEC)); 4942 4943 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4944 rcu_delay_page_cache_fill_msec); 4945 } 4946 4947 for_each_possible_cpu(cpu) { 4948 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4949 4950 for (i = 0; i < KFREE_N_BATCHES; i++) { 4951 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4952 krcp->krw_arr[i].krcp = krcp; 4953 4954 for (j = 0; j < FREE_N_CHANNELS; j++) 4955 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 4956 } 4957 4958 for (i = 0; i < FREE_N_CHANNELS; i++) 4959 INIT_LIST_HEAD(&krcp->bulk_head[i]); 4960 4961 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4962 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4963 krcp->initialized = true; 4964 } 4965 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4966 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4967 } 4968 4969 void __init rcu_init(void) 4970 { 4971 int cpu = smp_processor_id(); 4972 4973 rcu_early_boot_tests(); 4974 4975 kfree_rcu_batch_init(); 4976 rcu_bootup_announce(); 4977 sanitize_kthread_prio(); 4978 rcu_init_geometry(); 4979 rcu_init_one(); 4980 if (dump_tree) 4981 rcu_dump_rcu_node_tree(); 4982 if (use_softirq) 4983 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4984 4985 /* 4986 * We don't need protection against CPU-hotplug here because 4987 * this is called early in boot, before either interrupts 4988 * or the scheduler are operational. 4989 */ 4990 pm_notifier(rcu_pm_notify, 0); 4991 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4992 rcutree_prepare_cpu(cpu); 4993 rcu_cpu_starting(cpu); 4994 rcutree_online_cpu(cpu); 4995 4996 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4997 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4998 WARN_ON(!rcu_gp_wq); 4999 rcu_alloc_par_gp_wq(); 5000 5001 /* Fill in default value for rcutree.qovld boot parameter. */ 5002 /* -After- the rcu_node ->lock fields are initialized! */ 5003 if (qovld < 0) 5004 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5005 else 5006 qovld_calc = qovld; 5007 5008 // Kick-start in case any polled grace periods started early. 5009 (void)start_poll_synchronize_rcu_expedited(); 5010 5011 rcu_test_sync_prims(); 5012 } 5013 5014 #include "tree_stall.h" 5015 #include "tree_exp.h" 5016 #include "tree_nocb.h" 5017 #include "tree_plugin.h" 5018