1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/trace_events.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 73 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS]; 74 static struct lock_class_key rcu_exp_sched_class[RCU_NUM_LVLS]; 75 76 /* 77 * In order to export the rcu_state name to the tracing tools, it 78 * needs to be added in the __tracepoint_string section. 79 * This requires defining a separate variable tp_<sname>_varname 80 * that points to the string being used, and this will allow 81 * the tracing userspace tools to be able to decipher the string 82 * address to the matching string. 83 */ 84 #ifdef CONFIG_TRACING 85 # define DEFINE_RCU_TPS(sname) \ 86 static char sname##_varname[] = #sname; \ 87 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 88 # define RCU_STATE_NAME(sname) sname##_varname 89 #else 90 # define DEFINE_RCU_TPS(sname) 91 # define RCU_STATE_NAME(sname) __stringify(sname) 92 #endif 93 94 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 95 DEFINE_RCU_TPS(sname) \ 96 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 97 struct rcu_state sname##_state = { \ 98 .level = { &sname##_state.node[0] }, \ 99 .rda = &sname##_data, \ 100 .call = cr, \ 101 .fqs_state = RCU_GP_IDLE, \ 102 .gpnum = 0UL - 300UL, \ 103 .completed = 0UL - 300UL, \ 104 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 105 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 106 .orphan_donetail = &sname##_state.orphan_donelist, \ 107 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 108 .name = RCU_STATE_NAME(sname), \ 109 .abbr = sabbr, \ 110 } 111 112 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 113 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 114 115 static struct rcu_state *const rcu_state_p; 116 static struct rcu_data __percpu *const rcu_data_p; 117 LIST_HEAD(rcu_struct_flavors); 118 119 /* Dump rcu_node combining tree at boot to verify correct setup. */ 120 static bool dump_tree; 121 module_param(dump_tree, bool, 0444); 122 /* Control rcu_node-tree auto-balancing at boot time. */ 123 static bool rcu_fanout_exact; 124 module_param(rcu_fanout_exact, bool, 0444); 125 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 126 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 127 module_param(rcu_fanout_leaf, int, 0444); 128 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 129 /* Number of rcu_nodes at specified level. */ 130 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 131 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 132 133 /* 134 * The rcu_scheduler_active variable transitions from zero to one just 135 * before the first task is spawned. So when this variable is zero, RCU 136 * can assume that there is but one task, allowing RCU to (for example) 137 * optimize synchronize_sched() to a simple barrier(). When this variable 138 * is one, RCU must actually do all the hard work required to detect real 139 * grace periods. This variable is also used to suppress boot-time false 140 * positives from lockdep-RCU error checking. 141 */ 142 int rcu_scheduler_active __read_mostly; 143 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 144 145 /* 146 * The rcu_scheduler_fully_active variable transitions from zero to one 147 * during the early_initcall() processing, which is after the scheduler 148 * is capable of creating new tasks. So RCU processing (for example, 149 * creating tasks for RCU priority boosting) must be delayed until after 150 * rcu_scheduler_fully_active transitions from zero to one. We also 151 * currently delay invocation of any RCU callbacks until after this point. 152 * 153 * It might later prove better for people registering RCU callbacks during 154 * early boot to take responsibility for these callbacks, but one step at 155 * a time. 156 */ 157 static int rcu_scheduler_fully_active __read_mostly; 158 159 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 162 static void invoke_rcu_core(void); 163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 164 165 /* rcuc/rcub kthread realtime priority */ 166 #ifdef CONFIG_RCU_KTHREAD_PRIO 167 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 168 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */ 169 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 170 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */ 171 module_param(kthread_prio, int, 0644); 172 173 /* Delay in jiffies for grace-period initialization delays, debug only. */ 174 175 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT 176 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY; 177 module_param(gp_preinit_delay, int, 0644); 178 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 179 static const int gp_preinit_delay; 180 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 181 182 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 183 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 184 module_param(gp_init_delay, int, 0644); 185 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 186 static const int gp_init_delay; 187 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 188 189 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP 190 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY; 191 module_param(gp_cleanup_delay, int, 0644); 192 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 193 static const int gp_cleanup_delay; 194 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 195 196 /* 197 * Number of grace periods between delays, normalized by the duration of 198 * the delay. The longer the the delay, the more the grace periods between 199 * each delay. The reason for this normalization is that it means that, 200 * for non-zero delays, the overall slowdown of grace periods is constant 201 * regardless of the duration of the delay. This arrangement balances 202 * the need for long delays to increase some race probabilities with the 203 * need for fast grace periods to increase other race probabilities. 204 */ 205 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 206 207 /* 208 * Track the rcutorture test sequence number and the update version 209 * number within a given test. The rcutorture_testseq is incremented 210 * on every rcutorture module load and unload, so has an odd value 211 * when a test is running. The rcutorture_vernum is set to zero 212 * when rcutorture starts and is incremented on each rcutorture update. 213 * These variables enable correlating rcutorture output with the 214 * RCU tracing information. 215 */ 216 unsigned long rcutorture_testseq; 217 unsigned long rcutorture_vernum; 218 219 /* 220 * Compute the mask of online CPUs for the specified rcu_node structure. 221 * This will not be stable unless the rcu_node structure's ->lock is 222 * held, but the bit corresponding to the current CPU will be stable 223 * in most contexts. 224 */ 225 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 226 { 227 return READ_ONCE(rnp->qsmaskinitnext); 228 } 229 230 /* 231 * Return true if an RCU grace period is in progress. The READ_ONCE()s 232 * permit this function to be invoked without holding the root rcu_node 233 * structure's ->lock, but of course results can be subject to change. 234 */ 235 static int rcu_gp_in_progress(struct rcu_state *rsp) 236 { 237 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 238 } 239 240 /* 241 * Note a quiescent state. Because we do not need to know 242 * how many quiescent states passed, just if there was at least 243 * one since the start of the grace period, this just sets a flag. 244 * The caller must have disabled preemption. 245 */ 246 void rcu_sched_qs(void) 247 { 248 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) { 249 trace_rcu_grace_period(TPS("rcu_sched"), 250 __this_cpu_read(rcu_sched_data.gpnum), 251 TPS("cpuqs")); 252 __this_cpu_write(rcu_sched_data.passed_quiesce, 1); 253 } 254 } 255 256 void rcu_bh_qs(void) 257 { 258 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) { 259 trace_rcu_grace_period(TPS("rcu_bh"), 260 __this_cpu_read(rcu_bh_data.gpnum), 261 TPS("cpuqs")); 262 __this_cpu_write(rcu_bh_data.passed_quiesce, 1); 263 } 264 } 265 266 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 267 268 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 269 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 270 .dynticks = ATOMIC_INIT(1), 271 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 272 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 273 .dynticks_idle = ATOMIC_INIT(1), 274 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 275 }; 276 277 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 278 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 279 280 /* 281 * Let the RCU core know that this CPU has gone through the scheduler, 282 * which is a quiescent state. This is called when the need for a 283 * quiescent state is urgent, so we burn an atomic operation and full 284 * memory barriers to let the RCU core know about it, regardless of what 285 * this CPU might (or might not) do in the near future. 286 * 287 * We inform the RCU core by emulating a zero-duration dyntick-idle 288 * period, which we in turn do by incrementing the ->dynticks counter 289 * by two. 290 */ 291 static void rcu_momentary_dyntick_idle(void) 292 { 293 unsigned long flags; 294 struct rcu_data *rdp; 295 struct rcu_dynticks *rdtp; 296 int resched_mask; 297 struct rcu_state *rsp; 298 299 local_irq_save(flags); 300 301 /* 302 * Yes, we can lose flag-setting operations. This is OK, because 303 * the flag will be set again after some delay. 304 */ 305 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 306 raw_cpu_write(rcu_sched_qs_mask, 0); 307 308 /* Find the flavor that needs a quiescent state. */ 309 for_each_rcu_flavor(rsp) { 310 rdp = raw_cpu_ptr(rsp->rda); 311 if (!(resched_mask & rsp->flavor_mask)) 312 continue; 313 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 314 if (READ_ONCE(rdp->mynode->completed) != 315 READ_ONCE(rdp->cond_resched_completed)) 316 continue; 317 318 /* 319 * Pretend to be momentarily idle for the quiescent state. 320 * This allows the grace-period kthread to record the 321 * quiescent state, with no need for this CPU to do anything 322 * further. 323 */ 324 rdtp = this_cpu_ptr(&rcu_dynticks); 325 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 326 atomic_add(2, &rdtp->dynticks); /* QS. */ 327 smp_mb__after_atomic(); /* Later stuff after QS. */ 328 break; 329 } 330 local_irq_restore(flags); 331 } 332 333 /* 334 * Note a context switch. This is a quiescent state for RCU-sched, 335 * and requires special handling for preemptible RCU. 336 * The caller must have disabled preemption. 337 */ 338 void rcu_note_context_switch(void) 339 { 340 trace_rcu_utilization(TPS("Start context switch")); 341 rcu_sched_qs(); 342 rcu_preempt_note_context_switch(); 343 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 344 rcu_momentary_dyntick_idle(); 345 trace_rcu_utilization(TPS("End context switch")); 346 } 347 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 348 349 /* 350 * Register a quiescent state for all RCU flavors. If there is an 351 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 352 * dyntick-idle quiescent state visible to other CPUs (but only for those 353 * RCU flavors in desperate need of a quiescent state, which will normally 354 * be none of them). Either way, do a lightweight quiescent state for 355 * all RCU flavors. 356 */ 357 void rcu_all_qs(void) 358 { 359 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 360 rcu_momentary_dyntick_idle(); 361 this_cpu_inc(rcu_qs_ctr); 362 } 363 EXPORT_SYMBOL_GPL(rcu_all_qs); 364 365 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 366 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 367 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 368 369 module_param(blimit, long, 0444); 370 module_param(qhimark, long, 0444); 371 module_param(qlowmark, long, 0444); 372 373 static ulong jiffies_till_first_fqs = ULONG_MAX; 374 static ulong jiffies_till_next_fqs = ULONG_MAX; 375 376 module_param(jiffies_till_first_fqs, ulong, 0644); 377 module_param(jiffies_till_next_fqs, ulong, 0644); 378 379 /* 380 * How long the grace period must be before we start recruiting 381 * quiescent-state help from rcu_note_context_switch(). 382 */ 383 static ulong jiffies_till_sched_qs = HZ / 20; 384 module_param(jiffies_till_sched_qs, ulong, 0644); 385 386 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 387 struct rcu_data *rdp); 388 static void force_qs_rnp(struct rcu_state *rsp, 389 int (*f)(struct rcu_data *rsp, bool *isidle, 390 unsigned long *maxj), 391 bool *isidle, unsigned long *maxj); 392 static void force_quiescent_state(struct rcu_state *rsp); 393 static int rcu_pending(void); 394 395 /* 396 * Return the number of RCU batches started thus far for debug & stats. 397 */ 398 unsigned long rcu_batches_started(void) 399 { 400 return rcu_state_p->gpnum; 401 } 402 EXPORT_SYMBOL_GPL(rcu_batches_started); 403 404 /* 405 * Return the number of RCU-sched batches started thus far for debug & stats. 406 */ 407 unsigned long rcu_batches_started_sched(void) 408 { 409 return rcu_sched_state.gpnum; 410 } 411 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 412 413 /* 414 * Return the number of RCU BH batches started thus far for debug & stats. 415 */ 416 unsigned long rcu_batches_started_bh(void) 417 { 418 return rcu_bh_state.gpnum; 419 } 420 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 421 422 /* 423 * Return the number of RCU batches completed thus far for debug & stats. 424 */ 425 unsigned long rcu_batches_completed(void) 426 { 427 return rcu_state_p->completed; 428 } 429 EXPORT_SYMBOL_GPL(rcu_batches_completed); 430 431 /* 432 * Return the number of RCU-sched batches completed thus far for debug & stats. 433 */ 434 unsigned long rcu_batches_completed_sched(void) 435 { 436 return rcu_sched_state.completed; 437 } 438 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 439 440 /* 441 * Return the number of RCU BH batches completed thus far for debug & stats. 442 */ 443 unsigned long rcu_batches_completed_bh(void) 444 { 445 return rcu_bh_state.completed; 446 } 447 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 448 449 /* 450 * Force a quiescent state. 451 */ 452 void rcu_force_quiescent_state(void) 453 { 454 force_quiescent_state(rcu_state_p); 455 } 456 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 457 458 /* 459 * Force a quiescent state for RCU BH. 460 */ 461 void rcu_bh_force_quiescent_state(void) 462 { 463 force_quiescent_state(&rcu_bh_state); 464 } 465 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 466 467 /* 468 * Force a quiescent state for RCU-sched. 469 */ 470 void rcu_sched_force_quiescent_state(void) 471 { 472 force_quiescent_state(&rcu_sched_state); 473 } 474 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 475 476 /* 477 * Show the state of the grace-period kthreads. 478 */ 479 void show_rcu_gp_kthreads(void) 480 { 481 struct rcu_state *rsp; 482 483 for_each_rcu_flavor(rsp) { 484 pr_info("%s: wait state: %d ->state: %#lx\n", 485 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 486 /* sched_show_task(rsp->gp_kthread); */ 487 } 488 } 489 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 490 491 /* 492 * Record the number of times rcutorture tests have been initiated and 493 * terminated. This information allows the debugfs tracing stats to be 494 * correlated to the rcutorture messages, even when the rcutorture module 495 * is being repeatedly loaded and unloaded. In other words, we cannot 496 * store this state in rcutorture itself. 497 */ 498 void rcutorture_record_test_transition(void) 499 { 500 rcutorture_testseq++; 501 rcutorture_vernum = 0; 502 } 503 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 504 505 /* 506 * Send along grace-period-related data for rcutorture diagnostics. 507 */ 508 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 509 unsigned long *gpnum, unsigned long *completed) 510 { 511 struct rcu_state *rsp = NULL; 512 513 switch (test_type) { 514 case RCU_FLAVOR: 515 rsp = rcu_state_p; 516 break; 517 case RCU_BH_FLAVOR: 518 rsp = &rcu_bh_state; 519 break; 520 case RCU_SCHED_FLAVOR: 521 rsp = &rcu_sched_state; 522 break; 523 default: 524 break; 525 } 526 if (rsp != NULL) { 527 *flags = READ_ONCE(rsp->gp_flags); 528 *gpnum = READ_ONCE(rsp->gpnum); 529 *completed = READ_ONCE(rsp->completed); 530 return; 531 } 532 *flags = 0; 533 *gpnum = 0; 534 *completed = 0; 535 } 536 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 537 538 /* 539 * Record the number of writer passes through the current rcutorture test. 540 * This is also used to correlate debugfs tracing stats with the rcutorture 541 * messages. 542 */ 543 void rcutorture_record_progress(unsigned long vernum) 544 { 545 rcutorture_vernum++; 546 } 547 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 548 549 /* 550 * Does the CPU have callbacks ready to be invoked? 551 */ 552 static int 553 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 554 { 555 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 556 rdp->nxttail[RCU_DONE_TAIL] != NULL; 557 } 558 559 /* 560 * Return the root node of the specified rcu_state structure. 561 */ 562 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 563 { 564 return &rsp->node[0]; 565 } 566 567 /* 568 * Is there any need for future grace periods? 569 * Interrupts must be disabled. If the caller does not hold the root 570 * rnp_node structure's ->lock, the results are advisory only. 571 */ 572 static int rcu_future_needs_gp(struct rcu_state *rsp) 573 { 574 struct rcu_node *rnp = rcu_get_root(rsp); 575 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 576 int *fp = &rnp->need_future_gp[idx]; 577 578 return READ_ONCE(*fp); 579 } 580 581 /* 582 * Does the current CPU require a not-yet-started grace period? 583 * The caller must have disabled interrupts to prevent races with 584 * normal callback registry. 585 */ 586 static int 587 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 588 { 589 int i; 590 591 if (rcu_gp_in_progress(rsp)) 592 return 0; /* No, a grace period is already in progress. */ 593 if (rcu_future_needs_gp(rsp)) 594 return 1; /* Yes, a no-CBs CPU needs one. */ 595 if (!rdp->nxttail[RCU_NEXT_TAIL]) 596 return 0; /* No, this is a no-CBs (or offline) CPU. */ 597 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 598 return 1; /* Yes, this CPU has newly registered callbacks. */ 599 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 600 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 601 ULONG_CMP_LT(READ_ONCE(rsp->completed), 602 rdp->nxtcompleted[i])) 603 return 1; /* Yes, CBs for future grace period. */ 604 return 0; /* No grace period needed. */ 605 } 606 607 /* 608 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 609 * 610 * If the new value of the ->dynticks_nesting counter now is zero, 611 * we really have entered idle, and must do the appropriate accounting. 612 * The caller must have disabled interrupts. 613 */ 614 static void rcu_eqs_enter_common(long long oldval, bool user) 615 { 616 struct rcu_state *rsp; 617 struct rcu_data *rdp; 618 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 619 620 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 621 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 622 !user && !is_idle_task(current)) { 623 struct task_struct *idle __maybe_unused = 624 idle_task(smp_processor_id()); 625 626 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 627 ftrace_dump(DUMP_ORIG); 628 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 629 current->pid, current->comm, 630 idle->pid, idle->comm); /* must be idle task! */ 631 } 632 for_each_rcu_flavor(rsp) { 633 rdp = this_cpu_ptr(rsp->rda); 634 do_nocb_deferred_wakeup(rdp); 635 } 636 rcu_prepare_for_idle(); 637 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 638 smp_mb__before_atomic(); /* See above. */ 639 atomic_inc(&rdtp->dynticks); 640 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 641 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 642 atomic_read(&rdtp->dynticks) & 0x1); 643 rcu_dynticks_task_enter(); 644 645 /* 646 * It is illegal to enter an extended quiescent state while 647 * in an RCU read-side critical section. 648 */ 649 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 650 "Illegal idle entry in RCU read-side critical section."); 651 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 652 "Illegal idle entry in RCU-bh read-side critical section."); 653 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 654 "Illegal idle entry in RCU-sched read-side critical section."); 655 } 656 657 /* 658 * Enter an RCU extended quiescent state, which can be either the 659 * idle loop or adaptive-tickless usermode execution. 660 */ 661 static void rcu_eqs_enter(bool user) 662 { 663 long long oldval; 664 struct rcu_dynticks *rdtp; 665 666 rdtp = this_cpu_ptr(&rcu_dynticks); 667 oldval = rdtp->dynticks_nesting; 668 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 669 (oldval & DYNTICK_TASK_NEST_MASK) == 0); 670 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 671 rdtp->dynticks_nesting = 0; 672 rcu_eqs_enter_common(oldval, user); 673 } else { 674 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 675 } 676 } 677 678 /** 679 * rcu_idle_enter - inform RCU that current CPU is entering idle 680 * 681 * Enter idle mode, in other words, -leave- the mode in which RCU 682 * read-side critical sections can occur. (Though RCU read-side 683 * critical sections can occur in irq handlers in idle, a possibility 684 * handled by irq_enter() and irq_exit().) 685 * 686 * We crowbar the ->dynticks_nesting field to zero to allow for 687 * the possibility of usermode upcalls having messed up our count 688 * of interrupt nesting level during the prior busy period. 689 */ 690 void rcu_idle_enter(void) 691 { 692 unsigned long flags; 693 694 local_irq_save(flags); 695 rcu_eqs_enter(false); 696 rcu_sysidle_enter(0); 697 local_irq_restore(flags); 698 } 699 EXPORT_SYMBOL_GPL(rcu_idle_enter); 700 701 #ifdef CONFIG_NO_HZ_FULL 702 /** 703 * rcu_user_enter - inform RCU that we are resuming userspace. 704 * 705 * Enter RCU idle mode right before resuming userspace. No use of RCU 706 * is permitted between this call and rcu_user_exit(). This way the 707 * CPU doesn't need to maintain the tick for RCU maintenance purposes 708 * when the CPU runs in userspace. 709 */ 710 void rcu_user_enter(void) 711 { 712 rcu_eqs_enter(1); 713 } 714 #endif /* CONFIG_NO_HZ_FULL */ 715 716 /** 717 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 718 * 719 * Exit from an interrupt handler, which might possibly result in entering 720 * idle mode, in other words, leaving the mode in which read-side critical 721 * sections can occur. 722 * 723 * This code assumes that the idle loop never does anything that might 724 * result in unbalanced calls to irq_enter() and irq_exit(). If your 725 * architecture violates this assumption, RCU will give you what you 726 * deserve, good and hard. But very infrequently and irreproducibly. 727 * 728 * Use things like work queues to work around this limitation. 729 * 730 * You have been warned. 731 */ 732 void rcu_irq_exit(void) 733 { 734 unsigned long flags; 735 long long oldval; 736 struct rcu_dynticks *rdtp; 737 738 local_irq_save(flags); 739 rdtp = this_cpu_ptr(&rcu_dynticks); 740 oldval = rdtp->dynticks_nesting; 741 rdtp->dynticks_nesting--; 742 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 743 rdtp->dynticks_nesting < 0); 744 if (rdtp->dynticks_nesting) 745 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 746 else 747 rcu_eqs_enter_common(oldval, true); 748 rcu_sysidle_enter(1); 749 local_irq_restore(flags); 750 } 751 752 /* 753 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 754 * 755 * If the new value of the ->dynticks_nesting counter was previously zero, 756 * we really have exited idle, and must do the appropriate accounting. 757 * The caller must have disabled interrupts. 758 */ 759 static void rcu_eqs_exit_common(long long oldval, int user) 760 { 761 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 762 763 rcu_dynticks_task_exit(); 764 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 765 atomic_inc(&rdtp->dynticks); 766 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 767 smp_mb__after_atomic(); /* See above. */ 768 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 769 !(atomic_read(&rdtp->dynticks) & 0x1)); 770 rcu_cleanup_after_idle(); 771 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 772 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 773 !user && !is_idle_task(current)) { 774 struct task_struct *idle __maybe_unused = 775 idle_task(smp_processor_id()); 776 777 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 778 oldval, rdtp->dynticks_nesting); 779 ftrace_dump(DUMP_ORIG); 780 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 781 current->pid, current->comm, 782 idle->pid, idle->comm); /* must be idle task! */ 783 } 784 } 785 786 /* 787 * Exit an RCU extended quiescent state, which can be either the 788 * idle loop or adaptive-tickless usermode execution. 789 */ 790 static void rcu_eqs_exit(bool user) 791 { 792 struct rcu_dynticks *rdtp; 793 long long oldval; 794 795 rdtp = this_cpu_ptr(&rcu_dynticks); 796 oldval = rdtp->dynticks_nesting; 797 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 798 if (oldval & DYNTICK_TASK_NEST_MASK) { 799 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 800 } else { 801 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 802 rcu_eqs_exit_common(oldval, user); 803 } 804 } 805 806 /** 807 * rcu_idle_exit - inform RCU that current CPU is leaving idle 808 * 809 * Exit idle mode, in other words, -enter- the mode in which RCU 810 * read-side critical sections can occur. 811 * 812 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 813 * allow for the possibility of usermode upcalls messing up our count 814 * of interrupt nesting level during the busy period that is just 815 * now starting. 816 */ 817 void rcu_idle_exit(void) 818 { 819 unsigned long flags; 820 821 local_irq_save(flags); 822 rcu_eqs_exit(false); 823 rcu_sysidle_exit(0); 824 local_irq_restore(flags); 825 } 826 EXPORT_SYMBOL_GPL(rcu_idle_exit); 827 828 #ifdef CONFIG_NO_HZ_FULL 829 /** 830 * rcu_user_exit - inform RCU that we are exiting userspace. 831 * 832 * Exit RCU idle mode while entering the kernel because it can 833 * run a RCU read side critical section anytime. 834 */ 835 void rcu_user_exit(void) 836 { 837 rcu_eqs_exit(1); 838 } 839 #endif /* CONFIG_NO_HZ_FULL */ 840 841 /** 842 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 843 * 844 * Enter an interrupt handler, which might possibly result in exiting 845 * idle mode, in other words, entering the mode in which read-side critical 846 * sections can occur. 847 * 848 * Note that the Linux kernel is fully capable of entering an interrupt 849 * handler that it never exits, for example when doing upcalls to 850 * user mode! This code assumes that the idle loop never does upcalls to 851 * user mode. If your architecture does do upcalls from the idle loop (or 852 * does anything else that results in unbalanced calls to the irq_enter() 853 * and irq_exit() functions), RCU will give you what you deserve, good 854 * and hard. But very infrequently and irreproducibly. 855 * 856 * Use things like work queues to work around this limitation. 857 * 858 * You have been warned. 859 */ 860 void rcu_irq_enter(void) 861 { 862 unsigned long flags; 863 struct rcu_dynticks *rdtp; 864 long long oldval; 865 866 local_irq_save(flags); 867 rdtp = this_cpu_ptr(&rcu_dynticks); 868 oldval = rdtp->dynticks_nesting; 869 rdtp->dynticks_nesting++; 870 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 871 rdtp->dynticks_nesting == 0); 872 if (oldval) 873 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 874 else 875 rcu_eqs_exit_common(oldval, true); 876 rcu_sysidle_exit(1); 877 local_irq_restore(flags); 878 } 879 880 /** 881 * rcu_nmi_enter - inform RCU of entry to NMI context 882 * 883 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 884 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 885 * that the CPU is active. This implementation permits nested NMIs, as 886 * long as the nesting level does not overflow an int. (You will probably 887 * run out of stack space first.) 888 */ 889 void rcu_nmi_enter(void) 890 { 891 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 892 int incby = 2; 893 894 /* Complain about underflow. */ 895 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 896 897 /* 898 * If idle from RCU viewpoint, atomically increment ->dynticks 899 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 900 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 901 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 902 * to be in the outermost NMI handler that interrupted an RCU-idle 903 * period (observation due to Andy Lutomirski). 904 */ 905 if (!(atomic_read(&rdtp->dynticks) & 0x1)) { 906 smp_mb__before_atomic(); /* Force delay from prior write. */ 907 atomic_inc(&rdtp->dynticks); 908 /* atomic_inc() before later RCU read-side crit sects */ 909 smp_mb__after_atomic(); /* See above. */ 910 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 911 incby = 1; 912 } 913 rdtp->dynticks_nmi_nesting += incby; 914 barrier(); 915 } 916 917 /** 918 * rcu_nmi_exit - inform RCU of exit from NMI context 919 * 920 * If we are returning from the outermost NMI handler that interrupted an 921 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 922 * to let the RCU grace-period handling know that the CPU is back to 923 * being RCU-idle. 924 */ 925 void rcu_nmi_exit(void) 926 { 927 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 928 929 /* 930 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 931 * (We are exiting an NMI handler, so RCU better be paying attention 932 * to us!) 933 */ 934 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 935 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 936 937 /* 938 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 939 * leave it in non-RCU-idle state. 940 */ 941 if (rdtp->dynticks_nmi_nesting != 1) { 942 rdtp->dynticks_nmi_nesting -= 2; 943 return; 944 } 945 946 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 947 rdtp->dynticks_nmi_nesting = 0; 948 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 949 smp_mb__before_atomic(); /* See above. */ 950 atomic_inc(&rdtp->dynticks); 951 smp_mb__after_atomic(); /* Force delay to next write. */ 952 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 953 } 954 955 /** 956 * __rcu_is_watching - are RCU read-side critical sections safe? 957 * 958 * Return true if RCU is watching the running CPU, which means that 959 * this CPU can safely enter RCU read-side critical sections. Unlike 960 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 961 * least disabled preemption. 962 */ 963 bool notrace __rcu_is_watching(void) 964 { 965 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 966 } 967 968 /** 969 * rcu_is_watching - see if RCU thinks that the current CPU is idle 970 * 971 * If the current CPU is in its idle loop and is neither in an interrupt 972 * or NMI handler, return true. 973 */ 974 bool notrace rcu_is_watching(void) 975 { 976 bool ret; 977 978 preempt_disable_notrace(); 979 ret = __rcu_is_watching(); 980 preempt_enable_notrace(); 981 return ret; 982 } 983 EXPORT_SYMBOL_GPL(rcu_is_watching); 984 985 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 986 987 /* 988 * Is the current CPU online? Disable preemption to avoid false positives 989 * that could otherwise happen due to the current CPU number being sampled, 990 * this task being preempted, its old CPU being taken offline, resuming 991 * on some other CPU, then determining that its old CPU is now offline. 992 * It is OK to use RCU on an offline processor during initial boot, hence 993 * the check for rcu_scheduler_fully_active. Note also that it is OK 994 * for a CPU coming online to use RCU for one jiffy prior to marking itself 995 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 996 * offline to continue to use RCU for one jiffy after marking itself 997 * offline in the cpu_online_mask. This leniency is necessary given the 998 * non-atomic nature of the online and offline processing, for example, 999 * the fact that a CPU enters the scheduler after completing the CPU_DYING 1000 * notifiers. 1001 * 1002 * This is also why RCU internally marks CPUs online during the 1003 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 1004 * 1005 * Disable checking if in an NMI handler because we cannot safely report 1006 * errors from NMI handlers anyway. 1007 */ 1008 bool rcu_lockdep_current_cpu_online(void) 1009 { 1010 struct rcu_data *rdp; 1011 struct rcu_node *rnp; 1012 bool ret; 1013 1014 if (in_nmi()) 1015 return true; 1016 preempt_disable(); 1017 rdp = this_cpu_ptr(&rcu_sched_data); 1018 rnp = rdp->mynode; 1019 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1020 !rcu_scheduler_fully_active; 1021 preempt_enable(); 1022 return ret; 1023 } 1024 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1025 1026 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1027 1028 /** 1029 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1030 * 1031 * If the current CPU is idle or running at a first-level (not nested) 1032 * interrupt from idle, return true. The caller must have at least 1033 * disabled preemption. 1034 */ 1035 static int rcu_is_cpu_rrupt_from_idle(void) 1036 { 1037 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1038 } 1039 1040 /* 1041 * Snapshot the specified CPU's dynticks counter so that we can later 1042 * credit them with an implicit quiescent state. Return 1 if this CPU 1043 * is in dynticks idle mode, which is an extended quiescent state. 1044 */ 1045 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1046 bool *isidle, unsigned long *maxj) 1047 { 1048 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 1049 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1050 if ((rdp->dynticks_snap & 0x1) == 0) { 1051 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1052 return 1; 1053 } else { 1054 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1055 rdp->mynode->gpnum)) 1056 WRITE_ONCE(rdp->gpwrap, true); 1057 return 0; 1058 } 1059 } 1060 1061 /* 1062 * Return true if the specified CPU has passed through a quiescent 1063 * state by virtue of being in or having passed through an dynticks 1064 * idle state since the last call to dyntick_save_progress_counter() 1065 * for this same CPU, or by virtue of having been offline. 1066 */ 1067 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1068 bool *isidle, unsigned long *maxj) 1069 { 1070 unsigned int curr; 1071 int *rcrmp; 1072 unsigned int snap; 1073 1074 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 1075 snap = (unsigned int)rdp->dynticks_snap; 1076 1077 /* 1078 * If the CPU passed through or entered a dynticks idle phase with 1079 * no active irq/NMI handlers, then we can safely pretend that the CPU 1080 * already acknowledged the request to pass through a quiescent 1081 * state. Either way, that CPU cannot possibly be in an RCU 1082 * read-side critical section that started before the beginning 1083 * of the current RCU grace period. 1084 */ 1085 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 1086 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1087 rdp->dynticks_fqs++; 1088 return 1; 1089 } 1090 1091 /* 1092 * Check for the CPU being offline, but only if the grace period 1093 * is old enough. We don't need to worry about the CPU changing 1094 * state: If we see it offline even once, it has been through a 1095 * quiescent state. 1096 * 1097 * The reason for insisting that the grace period be at least 1098 * one jiffy old is that CPUs that are not quite online and that 1099 * have just gone offline can still execute RCU read-side critical 1100 * sections. 1101 */ 1102 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 1103 return 0; /* Grace period is not old enough. */ 1104 barrier(); 1105 if (cpu_is_offline(rdp->cpu)) { 1106 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1107 rdp->offline_fqs++; 1108 return 1; 1109 } 1110 1111 /* 1112 * A CPU running for an extended time within the kernel can 1113 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1114 * even context-switching back and forth between a pair of 1115 * in-kernel CPU-bound tasks cannot advance grace periods. 1116 * So if the grace period is old enough, make the CPU pay attention. 1117 * Note that the unsynchronized assignments to the per-CPU 1118 * rcu_sched_qs_mask variable are safe. Yes, setting of 1119 * bits can be lost, but they will be set again on the next 1120 * force-quiescent-state pass. So lost bit sets do not result 1121 * in incorrect behavior, merely in a grace period lasting 1122 * a few jiffies longer than it might otherwise. Because 1123 * there are at most four threads involved, and because the 1124 * updates are only once every few jiffies, the probability of 1125 * lossage (and thus of slight grace-period extension) is 1126 * quite low. 1127 * 1128 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1129 * is set too high, we override with half of the RCU CPU stall 1130 * warning delay. 1131 */ 1132 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1133 if (ULONG_CMP_GE(jiffies, 1134 rdp->rsp->gp_start + jiffies_till_sched_qs) || 1135 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1136 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1137 WRITE_ONCE(rdp->cond_resched_completed, 1138 READ_ONCE(rdp->mynode->completed)); 1139 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1140 WRITE_ONCE(*rcrmp, 1141 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask); 1142 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1143 rdp->rsp->jiffies_resched += 5; /* Enable beating. */ 1144 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1145 /* Time to beat on that CPU again! */ 1146 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1147 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1148 } 1149 } 1150 1151 return 0; 1152 } 1153 1154 static void record_gp_stall_check_time(struct rcu_state *rsp) 1155 { 1156 unsigned long j = jiffies; 1157 unsigned long j1; 1158 1159 rsp->gp_start = j; 1160 smp_wmb(); /* Record start time before stall time. */ 1161 j1 = rcu_jiffies_till_stall_check(); 1162 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1163 rsp->jiffies_resched = j + j1 / 2; 1164 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1165 } 1166 1167 /* 1168 * Complain about starvation of grace-period kthread. 1169 */ 1170 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1171 { 1172 unsigned long gpa; 1173 unsigned long j; 1174 1175 j = jiffies; 1176 gpa = READ_ONCE(rsp->gp_activity); 1177 if (j - gpa > 2 * HZ) 1178 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n", 1179 rsp->name, j - gpa, 1180 rsp->gpnum, rsp->completed, 1181 rsp->gp_flags, rsp->gp_state, 1182 rsp->gp_kthread ? rsp->gp_kthread->state : 0); 1183 } 1184 1185 /* 1186 * Dump stacks of all tasks running on stalled CPUs. 1187 */ 1188 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1189 { 1190 int cpu; 1191 unsigned long flags; 1192 struct rcu_node *rnp; 1193 1194 rcu_for_each_leaf_node(rsp, rnp) { 1195 raw_spin_lock_irqsave(&rnp->lock, flags); 1196 if (rnp->qsmask != 0) { 1197 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1198 if (rnp->qsmask & (1UL << cpu)) 1199 dump_cpu_task(rnp->grplo + cpu); 1200 } 1201 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1202 } 1203 } 1204 1205 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1206 { 1207 int cpu; 1208 long delta; 1209 unsigned long flags; 1210 unsigned long gpa; 1211 unsigned long j; 1212 int ndetected = 0; 1213 struct rcu_node *rnp = rcu_get_root(rsp); 1214 long totqlen = 0; 1215 1216 /* Only let one CPU complain about others per time interval. */ 1217 1218 raw_spin_lock_irqsave(&rnp->lock, flags); 1219 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1220 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1221 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1222 return; 1223 } 1224 WRITE_ONCE(rsp->jiffies_stall, 1225 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1226 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1227 1228 /* 1229 * OK, time to rat on our buddy... 1230 * See Documentation/RCU/stallwarn.txt for info on how to debug 1231 * RCU CPU stall warnings. 1232 */ 1233 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1234 rsp->name); 1235 print_cpu_stall_info_begin(); 1236 rcu_for_each_leaf_node(rsp, rnp) { 1237 raw_spin_lock_irqsave(&rnp->lock, flags); 1238 ndetected += rcu_print_task_stall(rnp); 1239 if (rnp->qsmask != 0) { 1240 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1241 if (rnp->qsmask & (1UL << cpu)) { 1242 print_cpu_stall_info(rsp, 1243 rnp->grplo + cpu); 1244 ndetected++; 1245 } 1246 } 1247 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1248 } 1249 1250 print_cpu_stall_info_end(); 1251 for_each_possible_cpu(cpu) 1252 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1253 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1254 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1255 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1256 if (ndetected) { 1257 rcu_dump_cpu_stacks(rsp); 1258 } else { 1259 if (READ_ONCE(rsp->gpnum) != gpnum || 1260 READ_ONCE(rsp->completed) == gpnum) { 1261 pr_err("INFO: Stall ended before state dump start\n"); 1262 } else { 1263 j = jiffies; 1264 gpa = READ_ONCE(rsp->gp_activity); 1265 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1266 rsp->name, j - gpa, j, gpa, 1267 jiffies_till_next_fqs, 1268 rcu_get_root(rsp)->qsmask); 1269 /* In this case, the current CPU might be at fault. */ 1270 sched_show_task(current); 1271 } 1272 } 1273 1274 /* Complain about tasks blocking the grace period. */ 1275 rcu_print_detail_task_stall(rsp); 1276 1277 rcu_check_gp_kthread_starvation(rsp); 1278 1279 force_quiescent_state(rsp); /* Kick them all. */ 1280 } 1281 1282 static void print_cpu_stall(struct rcu_state *rsp) 1283 { 1284 int cpu; 1285 unsigned long flags; 1286 struct rcu_node *rnp = rcu_get_root(rsp); 1287 long totqlen = 0; 1288 1289 /* 1290 * OK, time to rat on ourselves... 1291 * See Documentation/RCU/stallwarn.txt for info on how to debug 1292 * RCU CPU stall warnings. 1293 */ 1294 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1295 print_cpu_stall_info_begin(); 1296 print_cpu_stall_info(rsp, smp_processor_id()); 1297 print_cpu_stall_info_end(); 1298 for_each_possible_cpu(cpu) 1299 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1300 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1301 jiffies - rsp->gp_start, 1302 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1303 1304 rcu_check_gp_kthread_starvation(rsp); 1305 1306 rcu_dump_cpu_stacks(rsp); 1307 1308 raw_spin_lock_irqsave(&rnp->lock, flags); 1309 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1310 WRITE_ONCE(rsp->jiffies_stall, 1311 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1312 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1313 1314 /* 1315 * Attempt to revive the RCU machinery by forcing a context switch. 1316 * 1317 * A context switch would normally allow the RCU state machine to make 1318 * progress and it could be we're stuck in kernel space without context 1319 * switches for an entirely unreasonable amount of time. 1320 */ 1321 resched_cpu(smp_processor_id()); 1322 } 1323 1324 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1325 { 1326 unsigned long completed; 1327 unsigned long gpnum; 1328 unsigned long gps; 1329 unsigned long j; 1330 unsigned long js; 1331 struct rcu_node *rnp; 1332 1333 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1334 return; 1335 j = jiffies; 1336 1337 /* 1338 * Lots of memory barriers to reject false positives. 1339 * 1340 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1341 * then rsp->gp_start, and finally rsp->completed. These values 1342 * are updated in the opposite order with memory barriers (or 1343 * equivalent) during grace-period initialization and cleanup. 1344 * Now, a false positive can occur if we get an new value of 1345 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1346 * the memory barriers, the only way that this can happen is if one 1347 * grace period ends and another starts between these two fetches. 1348 * Detect this by comparing rsp->completed with the previous fetch 1349 * from rsp->gpnum. 1350 * 1351 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1352 * and rsp->gp_start suffice to forestall false positives. 1353 */ 1354 gpnum = READ_ONCE(rsp->gpnum); 1355 smp_rmb(); /* Pick up ->gpnum first... */ 1356 js = READ_ONCE(rsp->jiffies_stall); 1357 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1358 gps = READ_ONCE(rsp->gp_start); 1359 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1360 completed = READ_ONCE(rsp->completed); 1361 if (ULONG_CMP_GE(completed, gpnum) || 1362 ULONG_CMP_LT(j, js) || 1363 ULONG_CMP_GE(gps, js)) 1364 return; /* No stall or GP completed since entering function. */ 1365 rnp = rdp->mynode; 1366 if (rcu_gp_in_progress(rsp) && 1367 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1368 1369 /* We haven't checked in, so go dump stack. */ 1370 print_cpu_stall(rsp); 1371 1372 } else if (rcu_gp_in_progress(rsp) && 1373 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1374 1375 /* They had a few time units to dump stack, so complain. */ 1376 print_other_cpu_stall(rsp, gpnum); 1377 } 1378 } 1379 1380 /** 1381 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1382 * 1383 * Set the stall-warning timeout way off into the future, thus preventing 1384 * any RCU CPU stall-warning messages from appearing in the current set of 1385 * RCU grace periods. 1386 * 1387 * The caller must disable hard irqs. 1388 */ 1389 void rcu_cpu_stall_reset(void) 1390 { 1391 struct rcu_state *rsp; 1392 1393 for_each_rcu_flavor(rsp) 1394 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1395 } 1396 1397 /* 1398 * Initialize the specified rcu_data structure's default callback list 1399 * to empty. The default callback list is the one that is not used by 1400 * no-callbacks CPUs. 1401 */ 1402 static void init_default_callback_list(struct rcu_data *rdp) 1403 { 1404 int i; 1405 1406 rdp->nxtlist = NULL; 1407 for (i = 0; i < RCU_NEXT_SIZE; i++) 1408 rdp->nxttail[i] = &rdp->nxtlist; 1409 } 1410 1411 /* 1412 * Initialize the specified rcu_data structure's callback list to empty. 1413 */ 1414 static void init_callback_list(struct rcu_data *rdp) 1415 { 1416 if (init_nocb_callback_list(rdp)) 1417 return; 1418 init_default_callback_list(rdp); 1419 } 1420 1421 /* 1422 * Determine the value that ->completed will have at the end of the 1423 * next subsequent grace period. This is used to tag callbacks so that 1424 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1425 * been dyntick-idle for an extended period with callbacks under the 1426 * influence of RCU_FAST_NO_HZ. 1427 * 1428 * The caller must hold rnp->lock with interrupts disabled. 1429 */ 1430 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1431 struct rcu_node *rnp) 1432 { 1433 /* 1434 * If RCU is idle, we just wait for the next grace period. 1435 * But we can only be sure that RCU is idle if we are looking 1436 * at the root rcu_node structure -- otherwise, a new grace 1437 * period might have started, but just not yet gotten around 1438 * to initializing the current non-root rcu_node structure. 1439 */ 1440 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1441 return rnp->completed + 1; 1442 1443 /* 1444 * Otherwise, wait for a possible partial grace period and 1445 * then the subsequent full grace period. 1446 */ 1447 return rnp->completed + 2; 1448 } 1449 1450 /* 1451 * Trace-event helper function for rcu_start_future_gp() and 1452 * rcu_nocb_wait_gp(). 1453 */ 1454 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1455 unsigned long c, const char *s) 1456 { 1457 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1458 rnp->completed, c, rnp->level, 1459 rnp->grplo, rnp->grphi, s); 1460 } 1461 1462 /* 1463 * Start some future grace period, as needed to handle newly arrived 1464 * callbacks. The required future grace periods are recorded in each 1465 * rcu_node structure's ->need_future_gp field. Returns true if there 1466 * is reason to awaken the grace-period kthread. 1467 * 1468 * The caller must hold the specified rcu_node structure's ->lock. 1469 */ 1470 static bool __maybe_unused 1471 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1472 unsigned long *c_out) 1473 { 1474 unsigned long c; 1475 int i; 1476 bool ret = false; 1477 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1478 1479 /* 1480 * Pick up grace-period number for new callbacks. If this 1481 * grace period is already marked as needed, return to the caller. 1482 */ 1483 c = rcu_cbs_completed(rdp->rsp, rnp); 1484 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1485 if (rnp->need_future_gp[c & 0x1]) { 1486 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1487 goto out; 1488 } 1489 1490 /* 1491 * If either this rcu_node structure or the root rcu_node structure 1492 * believe that a grace period is in progress, then we must wait 1493 * for the one following, which is in "c". Because our request 1494 * will be noticed at the end of the current grace period, we don't 1495 * need to explicitly start one. We only do the lockless check 1496 * of rnp_root's fields if the current rcu_node structure thinks 1497 * there is no grace period in flight, and because we hold rnp->lock, 1498 * the only possible change is when rnp_root's two fields are 1499 * equal, in which case rnp_root->gpnum might be concurrently 1500 * incremented. But that is OK, as it will just result in our 1501 * doing some extra useless work. 1502 */ 1503 if (rnp->gpnum != rnp->completed || 1504 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1505 rnp->need_future_gp[c & 0x1]++; 1506 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1507 goto out; 1508 } 1509 1510 /* 1511 * There might be no grace period in progress. If we don't already 1512 * hold it, acquire the root rcu_node structure's lock in order to 1513 * start one (if needed). 1514 */ 1515 if (rnp != rnp_root) { 1516 raw_spin_lock(&rnp_root->lock); 1517 smp_mb__after_unlock_lock(); 1518 } 1519 1520 /* 1521 * Get a new grace-period number. If there really is no grace 1522 * period in progress, it will be smaller than the one we obtained 1523 * earlier. Adjust callbacks as needed. Note that even no-CBs 1524 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1525 */ 1526 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1527 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1528 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1529 rdp->nxtcompleted[i] = c; 1530 1531 /* 1532 * If the needed for the required grace period is already 1533 * recorded, trace and leave. 1534 */ 1535 if (rnp_root->need_future_gp[c & 0x1]) { 1536 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1537 goto unlock_out; 1538 } 1539 1540 /* Record the need for the future grace period. */ 1541 rnp_root->need_future_gp[c & 0x1]++; 1542 1543 /* If a grace period is not already in progress, start one. */ 1544 if (rnp_root->gpnum != rnp_root->completed) { 1545 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1546 } else { 1547 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1548 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1549 } 1550 unlock_out: 1551 if (rnp != rnp_root) 1552 raw_spin_unlock(&rnp_root->lock); 1553 out: 1554 if (c_out != NULL) 1555 *c_out = c; 1556 return ret; 1557 } 1558 1559 /* 1560 * Clean up any old requests for the just-ended grace period. Also return 1561 * whether any additional grace periods have been requested. Also invoke 1562 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1563 * waiting for this grace period to complete. 1564 */ 1565 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1566 { 1567 int c = rnp->completed; 1568 int needmore; 1569 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1570 1571 rcu_nocb_gp_cleanup(rsp, rnp); 1572 rnp->need_future_gp[c & 0x1] = 0; 1573 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1574 trace_rcu_future_gp(rnp, rdp, c, 1575 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1576 return needmore; 1577 } 1578 1579 /* 1580 * Awaken the grace-period kthread for the specified flavor of RCU. 1581 * Don't do a self-awaken, and don't bother awakening when there is 1582 * nothing for the grace-period kthread to do (as in several CPUs 1583 * raced to awaken, and we lost), and finally don't try to awaken 1584 * a kthread that has not yet been created. 1585 */ 1586 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1587 { 1588 if (current == rsp->gp_kthread || 1589 !READ_ONCE(rsp->gp_flags) || 1590 !rsp->gp_kthread) 1591 return; 1592 wake_up(&rsp->gp_wq); 1593 } 1594 1595 /* 1596 * If there is room, assign a ->completed number to any callbacks on 1597 * this CPU that have not already been assigned. Also accelerate any 1598 * callbacks that were previously assigned a ->completed number that has 1599 * since proven to be too conservative, which can happen if callbacks get 1600 * assigned a ->completed number while RCU is idle, but with reference to 1601 * a non-root rcu_node structure. This function is idempotent, so it does 1602 * not hurt to call it repeatedly. Returns an flag saying that we should 1603 * awaken the RCU grace-period kthread. 1604 * 1605 * The caller must hold rnp->lock with interrupts disabled. 1606 */ 1607 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1608 struct rcu_data *rdp) 1609 { 1610 unsigned long c; 1611 int i; 1612 bool ret; 1613 1614 /* If the CPU has no callbacks, nothing to do. */ 1615 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1616 return false; 1617 1618 /* 1619 * Starting from the sublist containing the callbacks most 1620 * recently assigned a ->completed number and working down, find the 1621 * first sublist that is not assignable to an upcoming grace period. 1622 * Such a sublist has something in it (first two tests) and has 1623 * a ->completed number assigned that will complete sooner than 1624 * the ->completed number for newly arrived callbacks (last test). 1625 * 1626 * The key point is that any later sublist can be assigned the 1627 * same ->completed number as the newly arrived callbacks, which 1628 * means that the callbacks in any of these later sublist can be 1629 * grouped into a single sublist, whether or not they have already 1630 * been assigned a ->completed number. 1631 */ 1632 c = rcu_cbs_completed(rsp, rnp); 1633 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1634 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1635 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1636 break; 1637 1638 /* 1639 * If there are no sublist for unassigned callbacks, leave. 1640 * At the same time, advance "i" one sublist, so that "i" will 1641 * index into the sublist where all the remaining callbacks should 1642 * be grouped into. 1643 */ 1644 if (++i >= RCU_NEXT_TAIL) 1645 return false; 1646 1647 /* 1648 * Assign all subsequent callbacks' ->completed number to the next 1649 * full grace period and group them all in the sublist initially 1650 * indexed by "i". 1651 */ 1652 for (; i <= RCU_NEXT_TAIL; i++) { 1653 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1654 rdp->nxtcompleted[i] = c; 1655 } 1656 /* Record any needed additional grace periods. */ 1657 ret = rcu_start_future_gp(rnp, rdp, NULL); 1658 1659 /* Trace depending on how much we were able to accelerate. */ 1660 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1661 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1662 else 1663 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1664 return ret; 1665 } 1666 1667 /* 1668 * Move any callbacks whose grace period has completed to the 1669 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1670 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1671 * sublist. This function is idempotent, so it does not hurt to 1672 * invoke it repeatedly. As long as it is not invoked -too- often... 1673 * Returns true if the RCU grace-period kthread needs to be awakened. 1674 * 1675 * The caller must hold rnp->lock with interrupts disabled. 1676 */ 1677 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1678 struct rcu_data *rdp) 1679 { 1680 int i, j; 1681 1682 /* If the CPU has no callbacks, nothing to do. */ 1683 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1684 return false; 1685 1686 /* 1687 * Find all callbacks whose ->completed numbers indicate that they 1688 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1689 */ 1690 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1691 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1692 break; 1693 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1694 } 1695 /* Clean up any sublist tail pointers that were misordered above. */ 1696 for (j = RCU_WAIT_TAIL; j < i; j++) 1697 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1698 1699 /* Copy down callbacks to fill in empty sublists. */ 1700 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1701 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1702 break; 1703 rdp->nxttail[j] = rdp->nxttail[i]; 1704 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1705 } 1706 1707 /* Classify any remaining callbacks. */ 1708 return rcu_accelerate_cbs(rsp, rnp, rdp); 1709 } 1710 1711 /* 1712 * Update CPU-local rcu_data state to record the beginnings and ends of 1713 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1714 * structure corresponding to the current CPU, and must have irqs disabled. 1715 * Returns true if the grace-period kthread needs to be awakened. 1716 */ 1717 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1718 struct rcu_data *rdp) 1719 { 1720 bool ret; 1721 1722 /* Handle the ends of any preceding grace periods first. */ 1723 if (rdp->completed == rnp->completed && 1724 !unlikely(READ_ONCE(rdp->gpwrap))) { 1725 1726 /* No grace period end, so just accelerate recent callbacks. */ 1727 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1728 1729 } else { 1730 1731 /* Advance callbacks. */ 1732 ret = rcu_advance_cbs(rsp, rnp, rdp); 1733 1734 /* Remember that we saw this grace-period completion. */ 1735 rdp->completed = rnp->completed; 1736 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1737 } 1738 1739 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1740 /* 1741 * If the current grace period is waiting for this CPU, 1742 * set up to detect a quiescent state, otherwise don't 1743 * go looking for one. 1744 */ 1745 rdp->gpnum = rnp->gpnum; 1746 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1747 rdp->passed_quiesce = 0; 1748 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1749 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1750 zero_cpu_stall_ticks(rdp); 1751 WRITE_ONCE(rdp->gpwrap, false); 1752 } 1753 return ret; 1754 } 1755 1756 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1757 { 1758 unsigned long flags; 1759 bool needwake; 1760 struct rcu_node *rnp; 1761 1762 local_irq_save(flags); 1763 rnp = rdp->mynode; 1764 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1765 rdp->completed == READ_ONCE(rnp->completed) && 1766 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1767 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1768 local_irq_restore(flags); 1769 return; 1770 } 1771 smp_mb__after_unlock_lock(); 1772 needwake = __note_gp_changes(rsp, rnp, rdp); 1773 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1774 if (needwake) 1775 rcu_gp_kthread_wake(rsp); 1776 } 1777 1778 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1779 { 1780 if (delay > 0 && 1781 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1782 schedule_timeout_uninterruptible(delay); 1783 } 1784 1785 /* 1786 * Initialize a new grace period. Return 0 if no grace period required. 1787 */ 1788 static int rcu_gp_init(struct rcu_state *rsp) 1789 { 1790 unsigned long oldmask; 1791 struct rcu_data *rdp; 1792 struct rcu_node *rnp = rcu_get_root(rsp); 1793 1794 WRITE_ONCE(rsp->gp_activity, jiffies); 1795 raw_spin_lock_irq(&rnp->lock); 1796 smp_mb__after_unlock_lock(); 1797 if (!READ_ONCE(rsp->gp_flags)) { 1798 /* Spurious wakeup, tell caller to go back to sleep. */ 1799 raw_spin_unlock_irq(&rnp->lock); 1800 return 0; 1801 } 1802 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1803 1804 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1805 /* 1806 * Grace period already in progress, don't start another. 1807 * Not supposed to be able to happen. 1808 */ 1809 raw_spin_unlock_irq(&rnp->lock); 1810 return 0; 1811 } 1812 1813 /* Advance to a new grace period and initialize state. */ 1814 record_gp_stall_check_time(rsp); 1815 /* Record GP times before starting GP, hence smp_store_release(). */ 1816 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1817 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1818 raw_spin_unlock_irq(&rnp->lock); 1819 1820 /* 1821 * Apply per-leaf buffered online and offline operations to the 1822 * rcu_node tree. Note that this new grace period need not wait 1823 * for subsequent online CPUs, and that quiescent-state forcing 1824 * will handle subsequent offline CPUs. 1825 */ 1826 rcu_for_each_leaf_node(rsp, rnp) { 1827 rcu_gp_slow(rsp, gp_preinit_delay); 1828 raw_spin_lock_irq(&rnp->lock); 1829 smp_mb__after_unlock_lock(); 1830 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1831 !rnp->wait_blkd_tasks) { 1832 /* Nothing to do on this leaf rcu_node structure. */ 1833 raw_spin_unlock_irq(&rnp->lock); 1834 continue; 1835 } 1836 1837 /* Record old state, apply changes to ->qsmaskinit field. */ 1838 oldmask = rnp->qsmaskinit; 1839 rnp->qsmaskinit = rnp->qsmaskinitnext; 1840 1841 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1842 if (!oldmask != !rnp->qsmaskinit) { 1843 if (!oldmask) /* First online CPU for this rcu_node. */ 1844 rcu_init_new_rnp(rnp); 1845 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 1846 rnp->wait_blkd_tasks = true; 1847 else /* Last offline CPU and can propagate. */ 1848 rcu_cleanup_dead_rnp(rnp); 1849 } 1850 1851 /* 1852 * If all waited-on tasks from prior grace period are 1853 * done, and if all this rcu_node structure's CPUs are 1854 * still offline, propagate up the rcu_node tree and 1855 * clear ->wait_blkd_tasks. Otherwise, if one of this 1856 * rcu_node structure's CPUs has since come back online, 1857 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 1858 * checks for this, so just call it unconditionally). 1859 */ 1860 if (rnp->wait_blkd_tasks && 1861 (!rcu_preempt_has_tasks(rnp) || 1862 rnp->qsmaskinit)) { 1863 rnp->wait_blkd_tasks = false; 1864 rcu_cleanup_dead_rnp(rnp); 1865 } 1866 1867 raw_spin_unlock_irq(&rnp->lock); 1868 } 1869 1870 /* 1871 * Set the quiescent-state-needed bits in all the rcu_node 1872 * structures for all currently online CPUs in breadth-first order, 1873 * starting from the root rcu_node structure, relying on the layout 1874 * of the tree within the rsp->node[] array. Note that other CPUs 1875 * will access only the leaves of the hierarchy, thus seeing that no 1876 * grace period is in progress, at least until the corresponding 1877 * leaf node has been initialized. In addition, we have excluded 1878 * CPU-hotplug operations. 1879 * 1880 * The grace period cannot complete until the initialization 1881 * process finishes, because this kthread handles both. 1882 */ 1883 rcu_for_each_node_breadth_first(rsp, rnp) { 1884 rcu_gp_slow(rsp, gp_init_delay); 1885 raw_spin_lock_irq(&rnp->lock); 1886 smp_mb__after_unlock_lock(); 1887 rdp = this_cpu_ptr(rsp->rda); 1888 rcu_preempt_check_blocked_tasks(rnp); 1889 rnp->qsmask = rnp->qsmaskinit; 1890 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 1891 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 1892 WRITE_ONCE(rnp->completed, rsp->completed); 1893 if (rnp == rdp->mynode) 1894 (void)__note_gp_changes(rsp, rnp, rdp); 1895 rcu_preempt_boost_start_gp(rnp); 1896 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1897 rnp->level, rnp->grplo, 1898 rnp->grphi, rnp->qsmask); 1899 raw_spin_unlock_irq(&rnp->lock); 1900 cond_resched_rcu_qs(); 1901 WRITE_ONCE(rsp->gp_activity, jiffies); 1902 } 1903 1904 return 1; 1905 } 1906 1907 /* 1908 * Helper function for wait_event_interruptible_timeout() wakeup 1909 * at force-quiescent-state time. 1910 */ 1911 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 1912 { 1913 struct rcu_node *rnp = rcu_get_root(rsp); 1914 1915 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1916 *gfp = READ_ONCE(rsp->gp_flags); 1917 if (*gfp & RCU_GP_FLAG_FQS) 1918 return true; 1919 1920 /* The current grace period has completed. */ 1921 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1922 return true; 1923 1924 return false; 1925 } 1926 1927 /* 1928 * Do one round of quiescent-state forcing. 1929 */ 1930 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1931 { 1932 int fqs_state = fqs_state_in; 1933 bool isidle = false; 1934 unsigned long maxj; 1935 struct rcu_node *rnp = rcu_get_root(rsp); 1936 1937 WRITE_ONCE(rsp->gp_activity, jiffies); 1938 rsp->n_force_qs++; 1939 if (fqs_state == RCU_SAVE_DYNTICK) { 1940 /* Collect dyntick-idle snapshots. */ 1941 if (is_sysidle_rcu_state(rsp)) { 1942 isidle = true; 1943 maxj = jiffies - ULONG_MAX / 4; 1944 } 1945 force_qs_rnp(rsp, dyntick_save_progress_counter, 1946 &isidle, &maxj); 1947 rcu_sysidle_report_gp(rsp, isidle, maxj); 1948 fqs_state = RCU_FORCE_QS; 1949 } else { 1950 /* Handle dyntick-idle and offline CPUs. */ 1951 isidle = true; 1952 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1953 } 1954 /* Clear flag to prevent immediate re-entry. */ 1955 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1956 raw_spin_lock_irq(&rnp->lock); 1957 smp_mb__after_unlock_lock(); 1958 WRITE_ONCE(rsp->gp_flags, 1959 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 1960 raw_spin_unlock_irq(&rnp->lock); 1961 } 1962 return fqs_state; 1963 } 1964 1965 /* 1966 * Clean up after the old grace period. 1967 */ 1968 static void rcu_gp_cleanup(struct rcu_state *rsp) 1969 { 1970 unsigned long gp_duration; 1971 bool needgp = false; 1972 int nocb = 0; 1973 struct rcu_data *rdp; 1974 struct rcu_node *rnp = rcu_get_root(rsp); 1975 1976 WRITE_ONCE(rsp->gp_activity, jiffies); 1977 raw_spin_lock_irq(&rnp->lock); 1978 smp_mb__after_unlock_lock(); 1979 gp_duration = jiffies - rsp->gp_start; 1980 if (gp_duration > rsp->gp_max) 1981 rsp->gp_max = gp_duration; 1982 1983 /* 1984 * We know the grace period is complete, but to everyone else 1985 * it appears to still be ongoing. But it is also the case 1986 * that to everyone else it looks like there is nothing that 1987 * they can do to advance the grace period. It is therefore 1988 * safe for us to drop the lock in order to mark the grace 1989 * period as completed in all of the rcu_node structures. 1990 */ 1991 raw_spin_unlock_irq(&rnp->lock); 1992 1993 /* 1994 * Propagate new ->completed value to rcu_node structures so 1995 * that other CPUs don't have to wait until the start of the next 1996 * grace period to process their callbacks. This also avoids 1997 * some nasty RCU grace-period initialization races by forcing 1998 * the end of the current grace period to be completely recorded in 1999 * all of the rcu_node structures before the beginning of the next 2000 * grace period is recorded in any of the rcu_node structures. 2001 */ 2002 rcu_for_each_node_breadth_first(rsp, rnp) { 2003 raw_spin_lock_irq(&rnp->lock); 2004 smp_mb__after_unlock_lock(); 2005 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2006 WARN_ON_ONCE(rnp->qsmask); 2007 WRITE_ONCE(rnp->completed, rsp->gpnum); 2008 rdp = this_cpu_ptr(rsp->rda); 2009 if (rnp == rdp->mynode) 2010 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2011 /* smp_mb() provided by prior unlock-lock pair. */ 2012 nocb += rcu_future_gp_cleanup(rsp, rnp); 2013 raw_spin_unlock_irq(&rnp->lock); 2014 cond_resched_rcu_qs(); 2015 WRITE_ONCE(rsp->gp_activity, jiffies); 2016 rcu_gp_slow(rsp, gp_cleanup_delay); 2017 } 2018 rnp = rcu_get_root(rsp); 2019 raw_spin_lock_irq(&rnp->lock); 2020 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */ 2021 rcu_nocb_gp_set(rnp, nocb); 2022 2023 /* Declare grace period done. */ 2024 WRITE_ONCE(rsp->completed, rsp->gpnum); 2025 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2026 rsp->fqs_state = RCU_GP_IDLE; 2027 rdp = this_cpu_ptr(rsp->rda); 2028 /* Advance CBs to reduce false positives below. */ 2029 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2030 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2031 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2032 trace_rcu_grace_period(rsp->name, 2033 READ_ONCE(rsp->gpnum), 2034 TPS("newreq")); 2035 } 2036 raw_spin_unlock_irq(&rnp->lock); 2037 } 2038 2039 /* 2040 * Body of kthread that handles grace periods. 2041 */ 2042 static int __noreturn rcu_gp_kthread(void *arg) 2043 { 2044 int fqs_state; 2045 int gf; 2046 unsigned long j; 2047 int ret; 2048 struct rcu_state *rsp = arg; 2049 struct rcu_node *rnp = rcu_get_root(rsp); 2050 2051 rcu_bind_gp_kthread(); 2052 for (;;) { 2053 2054 /* Handle grace-period start. */ 2055 for (;;) { 2056 trace_rcu_grace_period(rsp->name, 2057 READ_ONCE(rsp->gpnum), 2058 TPS("reqwait")); 2059 rsp->gp_state = RCU_GP_WAIT_GPS; 2060 wait_event_interruptible(rsp->gp_wq, 2061 READ_ONCE(rsp->gp_flags) & 2062 RCU_GP_FLAG_INIT); 2063 rsp->gp_state = RCU_GP_DONE_GPS; 2064 /* Locking provides needed memory barrier. */ 2065 if (rcu_gp_init(rsp)) 2066 break; 2067 cond_resched_rcu_qs(); 2068 WRITE_ONCE(rsp->gp_activity, jiffies); 2069 WARN_ON(signal_pending(current)); 2070 trace_rcu_grace_period(rsp->name, 2071 READ_ONCE(rsp->gpnum), 2072 TPS("reqwaitsig")); 2073 } 2074 2075 /* Handle quiescent-state forcing. */ 2076 fqs_state = RCU_SAVE_DYNTICK; 2077 j = jiffies_till_first_fqs; 2078 if (j > HZ) { 2079 j = HZ; 2080 jiffies_till_first_fqs = HZ; 2081 } 2082 ret = 0; 2083 for (;;) { 2084 if (!ret) 2085 rsp->jiffies_force_qs = jiffies + j; 2086 trace_rcu_grace_period(rsp->name, 2087 READ_ONCE(rsp->gpnum), 2088 TPS("fqswait")); 2089 rsp->gp_state = RCU_GP_WAIT_FQS; 2090 ret = wait_event_interruptible_timeout(rsp->gp_wq, 2091 rcu_gp_fqs_check_wake(rsp, &gf), j); 2092 rsp->gp_state = RCU_GP_DOING_FQS; 2093 /* Locking provides needed memory barriers. */ 2094 /* If grace period done, leave loop. */ 2095 if (!READ_ONCE(rnp->qsmask) && 2096 !rcu_preempt_blocked_readers_cgp(rnp)) 2097 break; 2098 /* If time for quiescent-state forcing, do it. */ 2099 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2100 (gf & RCU_GP_FLAG_FQS)) { 2101 trace_rcu_grace_period(rsp->name, 2102 READ_ONCE(rsp->gpnum), 2103 TPS("fqsstart")); 2104 fqs_state = rcu_gp_fqs(rsp, fqs_state); 2105 trace_rcu_grace_period(rsp->name, 2106 READ_ONCE(rsp->gpnum), 2107 TPS("fqsend")); 2108 cond_resched_rcu_qs(); 2109 WRITE_ONCE(rsp->gp_activity, jiffies); 2110 } else { 2111 /* Deal with stray signal. */ 2112 cond_resched_rcu_qs(); 2113 WRITE_ONCE(rsp->gp_activity, jiffies); 2114 WARN_ON(signal_pending(current)); 2115 trace_rcu_grace_period(rsp->name, 2116 READ_ONCE(rsp->gpnum), 2117 TPS("fqswaitsig")); 2118 } 2119 j = jiffies_till_next_fqs; 2120 if (j > HZ) { 2121 j = HZ; 2122 jiffies_till_next_fqs = HZ; 2123 } else if (j < 1) { 2124 j = 1; 2125 jiffies_till_next_fqs = 1; 2126 } 2127 } 2128 2129 /* Handle grace-period end. */ 2130 rsp->gp_state = RCU_GP_CLEANUP; 2131 rcu_gp_cleanup(rsp); 2132 rsp->gp_state = RCU_GP_CLEANED; 2133 } 2134 } 2135 2136 /* 2137 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2138 * in preparation for detecting the next grace period. The caller must hold 2139 * the root node's ->lock and hard irqs must be disabled. 2140 * 2141 * Note that it is legal for a dying CPU (which is marked as offline) to 2142 * invoke this function. This can happen when the dying CPU reports its 2143 * quiescent state. 2144 * 2145 * Returns true if the grace-period kthread must be awakened. 2146 */ 2147 static bool 2148 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2149 struct rcu_data *rdp) 2150 { 2151 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2152 /* 2153 * Either we have not yet spawned the grace-period 2154 * task, this CPU does not need another grace period, 2155 * or a grace period is already in progress. 2156 * Either way, don't start a new grace period. 2157 */ 2158 return false; 2159 } 2160 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2161 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2162 TPS("newreq")); 2163 2164 /* 2165 * We can't do wakeups while holding the rnp->lock, as that 2166 * could cause possible deadlocks with the rq->lock. Defer 2167 * the wakeup to our caller. 2168 */ 2169 return true; 2170 } 2171 2172 /* 2173 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2174 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2175 * is invoked indirectly from rcu_advance_cbs(), which would result in 2176 * endless recursion -- or would do so if it wasn't for the self-deadlock 2177 * that is encountered beforehand. 2178 * 2179 * Returns true if the grace-period kthread needs to be awakened. 2180 */ 2181 static bool rcu_start_gp(struct rcu_state *rsp) 2182 { 2183 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2184 struct rcu_node *rnp = rcu_get_root(rsp); 2185 bool ret = false; 2186 2187 /* 2188 * If there is no grace period in progress right now, any 2189 * callbacks we have up to this point will be satisfied by the 2190 * next grace period. Also, advancing the callbacks reduces the 2191 * probability of false positives from cpu_needs_another_gp() 2192 * resulting in pointless grace periods. So, advance callbacks 2193 * then start the grace period! 2194 */ 2195 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2196 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2197 return ret; 2198 } 2199 2200 /* 2201 * Report a full set of quiescent states to the specified rcu_state 2202 * data structure. This involves cleaning up after the prior grace 2203 * period and letting rcu_start_gp() start up the next grace period 2204 * if one is needed. Note that the caller must hold rnp->lock, which 2205 * is released before return. 2206 */ 2207 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2208 __releases(rcu_get_root(rsp)->lock) 2209 { 2210 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2211 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2212 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2213 rcu_gp_kthread_wake(rsp); 2214 } 2215 2216 /* 2217 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2218 * Allows quiescent states for a group of CPUs to be reported at one go 2219 * to the specified rcu_node structure, though all the CPUs in the group 2220 * must be represented by the same rcu_node structure (which need not be a 2221 * leaf rcu_node structure, though it often will be). The gps parameter 2222 * is the grace-period snapshot, which means that the quiescent states 2223 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2224 * must be held upon entry, and it is released before return. 2225 */ 2226 static void 2227 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2228 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2229 __releases(rnp->lock) 2230 { 2231 unsigned long oldmask = 0; 2232 struct rcu_node *rnp_c; 2233 2234 /* Walk up the rcu_node hierarchy. */ 2235 for (;;) { 2236 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2237 2238 /* 2239 * Our bit has already been cleared, or the 2240 * relevant grace period is already over, so done. 2241 */ 2242 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2243 return; 2244 } 2245 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2246 rnp->qsmask &= ~mask; 2247 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2248 mask, rnp->qsmask, rnp->level, 2249 rnp->grplo, rnp->grphi, 2250 !!rnp->gp_tasks); 2251 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2252 2253 /* Other bits still set at this level, so done. */ 2254 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2255 return; 2256 } 2257 mask = rnp->grpmask; 2258 if (rnp->parent == NULL) { 2259 2260 /* No more levels. Exit loop holding root lock. */ 2261 2262 break; 2263 } 2264 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2265 rnp_c = rnp; 2266 rnp = rnp->parent; 2267 raw_spin_lock_irqsave(&rnp->lock, flags); 2268 smp_mb__after_unlock_lock(); 2269 oldmask = rnp_c->qsmask; 2270 } 2271 2272 /* 2273 * Get here if we are the last CPU to pass through a quiescent 2274 * state for this grace period. Invoke rcu_report_qs_rsp() 2275 * to clean up and start the next grace period if one is needed. 2276 */ 2277 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2278 } 2279 2280 /* 2281 * Record a quiescent state for all tasks that were previously queued 2282 * on the specified rcu_node structure and that were blocking the current 2283 * RCU grace period. The caller must hold the specified rnp->lock with 2284 * irqs disabled, and this lock is released upon return, but irqs remain 2285 * disabled. 2286 */ 2287 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2288 struct rcu_node *rnp, unsigned long flags) 2289 __releases(rnp->lock) 2290 { 2291 unsigned long gps; 2292 unsigned long mask; 2293 struct rcu_node *rnp_p; 2294 2295 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2296 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2297 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2298 return; /* Still need more quiescent states! */ 2299 } 2300 2301 rnp_p = rnp->parent; 2302 if (rnp_p == NULL) { 2303 /* 2304 * Only one rcu_node structure in the tree, so don't 2305 * try to report up to its nonexistent parent! 2306 */ 2307 rcu_report_qs_rsp(rsp, flags); 2308 return; 2309 } 2310 2311 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2312 gps = rnp->gpnum; 2313 mask = rnp->grpmask; 2314 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2315 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */ 2316 smp_mb__after_unlock_lock(); 2317 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2318 } 2319 2320 /* 2321 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2322 * structure. This must be either called from the specified CPU, or 2323 * called when the specified CPU is known to be offline (and when it is 2324 * also known that no other CPU is concurrently trying to help the offline 2325 * CPU). The lastcomp argument is used to make sure we are still in the 2326 * grace period of interest. We don't want to end the current grace period 2327 * based on quiescent states detected in an earlier grace period! 2328 */ 2329 static void 2330 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2331 { 2332 unsigned long flags; 2333 unsigned long mask; 2334 bool needwake; 2335 struct rcu_node *rnp; 2336 2337 rnp = rdp->mynode; 2338 raw_spin_lock_irqsave(&rnp->lock, flags); 2339 smp_mb__after_unlock_lock(); 2340 if ((rdp->passed_quiesce == 0 && 2341 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) || 2342 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum || 2343 rdp->gpwrap) { 2344 2345 /* 2346 * The grace period in which this quiescent state was 2347 * recorded has ended, so don't report it upwards. 2348 * We will instead need a new quiescent state that lies 2349 * within the current grace period. 2350 */ 2351 rdp->passed_quiesce = 0; /* need qs for new gp. */ 2352 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2353 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2354 return; 2355 } 2356 mask = rdp->grpmask; 2357 if ((rnp->qsmask & mask) == 0) { 2358 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2359 } else { 2360 rdp->qs_pending = 0; 2361 2362 /* 2363 * This GP can't end until cpu checks in, so all of our 2364 * callbacks can be processed during the next GP. 2365 */ 2366 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2367 2368 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2369 /* ^^^ Released rnp->lock */ 2370 if (needwake) 2371 rcu_gp_kthread_wake(rsp); 2372 } 2373 } 2374 2375 /* 2376 * Check to see if there is a new grace period of which this CPU 2377 * is not yet aware, and if so, set up local rcu_data state for it. 2378 * Otherwise, see if this CPU has just passed through its first 2379 * quiescent state for this grace period, and record that fact if so. 2380 */ 2381 static void 2382 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2383 { 2384 /* Check for grace-period ends and beginnings. */ 2385 note_gp_changes(rsp, rdp); 2386 2387 /* 2388 * Does this CPU still need to do its part for current grace period? 2389 * If no, return and let the other CPUs do their part as well. 2390 */ 2391 if (!rdp->qs_pending) 2392 return; 2393 2394 /* 2395 * Was there a quiescent state since the beginning of the grace 2396 * period? If no, then exit and wait for the next call. 2397 */ 2398 if (!rdp->passed_quiesce && 2399 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) 2400 return; 2401 2402 /* 2403 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2404 * judge of that). 2405 */ 2406 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2407 } 2408 2409 /* 2410 * Send the specified CPU's RCU callbacks to the orphanage. The 2411 * specified CPU must be offline, and the caller must hold the 2412 * ->orphan_lock. 2413 */ 2414 static void 2415 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2416 struct rcu_node *rnp, struct rcu_data *rdp) 2417 { 2418 /* No-CBs CPUs do not have orphanable callbacks. */ 2419 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2420 return; 2421 2422 /* 2423 * Orphan the callbacks. First adjust the counts. This is safe 2424 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2425 * cannot be running now. Thus no memory barrier is required. 2426 */ 2427 if (rdp->nxtlist != NULL) { 2428 rsp->qlen_lazy += rdp->qlen_lazy; 2429 rsp->qlen += rdp->qlen; 2430 rdp->n_cbs_orphaned += rdp->qlen; 2431 rdp->qlen_lazy = 0; 2432 WRITE_ONCE(rdp->qlen, 0); 2433 } 2434 2435 /* 2436 * Next, move those callbacks still needing a grace period to 2437 * the orphanage, where some other CPU will pick them up. 2438 * Some of the callbacks might have gone partway through a grace 2439 * period, but that is too bad. They get to start over because we 2440 * cannot assume that grace periods are synchronized across CPUs. 2441 * We don't bother updating the ->nxttail[] array yet, instead 2442 * we just reset the whole thing later on. 2443 */ 2444 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2445 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2446 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2447 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2448 } 2449 2450 /* 2451 * Then move the ready-to-invoke callbacks to the orphanage, 2452 * where some other CPU will pick them up. These will not be 2453 * required to pass though another grace period: They are done. 2454 */ 2455 if (rdp->nxtlist != NULL) { 2456 *rsp->orphan_donetail = rdp->nxtlist; 2457 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2458 } 2459 2460 /* 2461 * Finally, initialize the rcu_data structure's list to empty and 2462 * disallow further callbacks on this CPU. 2463 */ 2464 init_callback_list(rdp); 2465 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2466 } 2467 2468 /* 2469 * Adopt the RCU callbacks from the specified rcu_state structure's 2470 * orphanage. The caller must hold the ->orphan_lock. 2471 */ 2472 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2473 { 2474 int i; 2475 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2476 2477 /* No-CBs CPUs are handled specially. */ 2478 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2479 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2480 return; 2481 2482 /* Do the accounting first. */ 2483 rdp->qlen_lazy += rsp->qlen_lazy; 2484 rdp->qlen += rsp->qlen; 2485 rdp->n_cbs_adopted += rsp->qlen; 2486 if (rsp->qlen_lazy != rsp->qlen) 2487 rcu_idle_count_callbacks_posted(); 2488 rsp->qlen_lazy = 0; 2489 rsp->qlen = 0; 2490 2491 /* 2492 * We do not need a memory barrier here because the only way we 2493 * can get here if there is an rcu_barrier() in flight is if 2494 * we are the task doing the rcu_barrier(). 2495 */ 2496 2497 /* First adopt the ready-to-invoke callbacks. */ 2498 if (rsp->orphan_donelist != NULL) { 2499 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2500 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2501 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2502 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2503 rdp->nxttail[i] = rsp->orphan_donetail; 2504 rsp->orphan_donelist = NULL; 2505 rsp->orphan_donetail = &rsp->orphan_donelist; 2506 } 2507 2508 /* And then adopt the callbacks that still need a grace period. */ 2509 if (rsp->orphan_nxtlist != NULL) { 2510 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2511 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2512 rsp->orphan_nxtlist = NULL; 2513 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2514 } 2515 } 2516 2517 /* 2518 * Trace the fact that this CPU is going offline. 2519 */ 2520 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2521 { 2522 RCU_TRACE(unsigned long mask); 2523 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2524 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2525 2526 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2527 return; 2528 2529 RCU_TRACE(mask = rdp->grpmask); 2530 trace_rcu_grace_period(rsp->name, 2531 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2532 TPS("cpuofl")); 2533 } 2534 2535 /* 2536 * All CPUs for the specified rcu_node structure have gone offline, 2537 * and all tasks that were preempted within an RCU read-side critical 2538 * section while running on one of those CPUs have since exited their RCU 2539 * read-side critical section. Some other CPU is reporting this fact with 2540 * the specified rcu_node structure's ->lock held and interrupts disabled. 2541 * This function therefore goes up the tree of rcu_node structures, 2542 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2543 * the leaf rcu_node structure's ->qsmaskinit field has already been 2544 * updated 2545 * 2546 * This function does check that the specified rcu_node structure has 2547 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2548 * prematurely. That said, invoking it after the fact will cost you 2549 * a needless lock acquisition. So once it has done its work, don't 2550 * invoke it again. 2551 */ 2552 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2553 { 2554 long mask; 2555 struct rcu_node *rnp = rnp_leaf; 2556 2557 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2558 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2559 return; 2560 for (;;) { 2561 mask = rnp->grpmask; 2562 rnp = rnp->parent; 2563 if (!rnp) 2564 break; 2565 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2566 smp_mb__after_unlock_lock(); /* GP memory ordering. */ 2567 rnp->qsmaskinit &= ~mask; 2568 rnp->qsmask &= ~mask; 2569 if (rnp->qsmaskinit) { 2570 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2571 return; 2572 } 2573 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2574 } 2575 } 2576 2577 /* 2578 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 2579 * function. We now remove it from the rcu_node tree's ->qsmaskinit 2580 * bit masks. 2581 */ 2582 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 2583 { 2584 unsigned long flags; 2585 unsigned long mask; 2586 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2587 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2588 2589 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2590 return; 2591 2592 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 2593 mask = rdp->grpmask; 2594 raw_spin_lock_irqsave(&rnp->lock, flags); 2595 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */ 2596 rnp->qsmaskinitnext &= ~mask; 2597 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2598 } 2599 2600 /* 2601 * The CPU has been completely removed, and some other CPU is reporting 2602 * this fact from process context. Do the remainder of the cleanup, 2603 * including orphaning the outgoing CPU's RCU callbacks, and also 2604 * adopting them. There can only be one CPU hotplug operation at a time, 2605 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2606 */ 2607 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2608 { 2609 unsigned long flags; 2610 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2611 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2612 2613 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2614 return; 2615 2616 /* Adjust any no-longer-needed kthreads. */ 2617 rcu_boost_kthread_setaffinity(rnp, -1); 2618 2619 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2620 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2621 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2622 rcu_adopt_orphan_cbs(rsp, flags); 2623 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2624 2625 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2626 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2627 cpu, rdp->qlen, rdp->nxtlist); 2628 } 2629 2630 /* 2631 * Invoke any RCU callbacks that have made it to the end of their grace 2632 * period. Thottle as specified by rdp->blimit. 2633 */ 2634 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2635 { 2636 unsigned long flags; 2637 struct rcu_head *next, *list, **tail; 2638 long bl, count, count_lazy; 2639 int i; 2640 2641 /* If no callbacks are ready, just return. */ 2642 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2643 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2644 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist), 2645 need_resched(), is_idle_task(current), 2646 rcu_is_callbacks_kthread()); 2647 return; 2648 } 2649 2650 /* 2651 * Extract the list of ready callbacks, disabling to prevent 2652 * races with call_rcu() from interrupt handlers. 2653 */ 2654 local_irq_save(flags); 2655 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2656 bl = rdp->blimit; 2657 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2658 list = rdp->nxtlist; 2659 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2660 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2661 tail = rdp->nxttail[RCU_DONE_TAIL]; 2662 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2663 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2664 rdp->nxttail[i] = &rdp->nxtlist; 2665 local_irq_restore(flags); 2666 2667 /* Invoke callbacks. */ 2668 count = count_lazy = 0; 2669 while (list) { 2670 next = list->next; 2671 prefetch(next); 2672 debug_rcu_head_unqueue(list); 2673 if (__rcu_reclaim(rsp->name, list)) 2674 count_lazy++; 2675 list = next; 2676 /* Stop only if limit reached and CPU has something to do. */ 2677 if (++count >= bl && 2678 (need_resched() || 2679 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2680 break; 2681 } 2682 2683 local_irq_save(flags); 2684 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2685 is_idle_task(current), 2686 rcu_is_callbacks_kthread()); 2687 2688 /* Update count, and requeue any remaining callbacks. */ 2689 if (list != NULL) { 2690 *tail = rdp->nxtlist; 2691 rdp->nxtlist = list; 2692 for (i = 0; i < RCU_NEXT_SIZE; i++) 2693 if (&rdp->nxtlist == rdp->nxttail[i]) 2694 rdp->nxttail[i] = tail; 2695 else 2696 break; 2697 } 2698 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2699 rdp->qlen_lazy -= count_lazy; 2700 WRITE_ONCE(rdp->qlen, rdp->qlen - count); 2701 rdp->n_cbs_invoked += count; 2702 2703 /* Reinstate batch limit if we have worked down the excess. */ 2704 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2705 rdp->blimit = blimit; 2706 2707 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2708 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2709 rdp->qlen_last_fqs_check = 0; 2710 rdp->n_force_qs_snap = rsp->n_force_qs; 2711 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2712 rdp->qlen_last_fqs_check = rdp->qlen; 2713 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2714 2715 local_irq_restore(flags); 2716 2717 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2718 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2719 invoke_rcu_core(); 2720 } 2721 2722 /* 2723 * Check to see if this CPU is in a non-context-switch quiescent state 2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2725 * Also schedule RCU core processing. 2726 * 2727 * This function must be called from hardirq context. It is normally 2728 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2729 * false, there is no point in invoking rcu_check_callbacks(). 2730 */ 2731 void rcu_check_callbacks(int user) 2732 { 2733 trace_rcu_utilization(TPS("Start scheduler-tick")); 2734 increment_cpu_stall_ticks(); 2735 if (user || rcu_is_cpu_rrupt_from_idle()) { 2736 2737 /* 2738 * Get here if this CPU took its interrupt from user 2739 * mode or from the idle loop, and if this is not a 2740 * nested interrupt. In this case, the CPU is in 2741 * a quiescent state, so note it. 2742 * 2743 * No memory barrier is required here because both 2744 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2745 * variables that other CPUs neither access nor modify, 2746 * at least not while the corresponding CPU is online. 2747 */ 2748 2749 rcu_sched_qs(); 2750 rcu_bh_qs(); 2751 2752 } else if (!in_softirq()) { 2753 2754 /* 2755 * Get here if this CPU did not take its interrupt from 2756 * softirq, in other words, if it is not interrupting 2757 * a rcu_bh read-side critical section. This is an _bh 2758 * critical section, so note it. 2759 */ 2760 2761 rcu_bh_qs(); 2762 } 2763 rcu_preempt_check_callbacks(); 2764 if (rcu_pending()) 2765 invoke_rcu_core(); 2766 if (user) 2767 rcu_note_voluntary_context_switch(current); 2768 trace_rcu_utilization(TPS("End scheduler-tick")); 2769 } 2770 2771 /* 2772 * Scan the leaf rcu_node structures, processing dyntick state for any that 2773 * have not yet encountered a quiescent state, using the function specified. 2774 * Also initiate boosting for any threads blocked on the root rcu_node. 2775 * 2776 * The caller must have suppressed start of new grace periods. 2777 */ 2778 static void force_qs_rnp(struct rcu_state *rsp, 2779 int (*f)(struct rcu_data *rsp, bool *isidle, 2780 unsigned long *maxj), 2781 bool *isidle, unsigned long *maxj) 2782 { 2783 unsigned long bit; 2784 int cpu; 2785 unsigned long flags; 2786 unsigned long mask; 2787 struct rcu_node *rnp; 2788 2789 rcu_for_each_leaf_node(rsp, rnp) { 2790 cond_resched_rcu_qs(); 2791 mask = 0; 2792 raw_spin_lock_irqsave(&rnp->lock, flags); 2793 smp_mb__after_unlock_lock(); 2794 if (rnp->qsmask == 0) { 2795 if (rcu_state_p == &rcu_sched_state || 2796 rsp != rcu_state_p || 2797 rcu_preempt_blocked_readers_cgp(rnp)) { 2798 /* 2799 * No point in scanning bits because they 2800 * are all zero. But we might need to 2801 * priority-boost blocked readers. 2802 */ 2803 rcu_initiate_boost(rnp, flags); 2804 /* rcu_initiate_boost() releases rnp->lock */ 2805 continue; 2806 } 2807 if (rnp->parent && 2808 (rnp->parent->qsmask & rnp->grpmask)) { 2809 /* 2810 * Race between grace-period 2811 * initialization and task exiting RCU 2812 * read-side critical section: Report. 2813 */ 2814 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2815 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2816 continue; 2817 } 2818 } 2819 cpu = rnp->grplo; 2820 bit = 1; 2821 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2822 if ((rnp->qsmask & bit) != 0) { 2823 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2824 mask |= bit; 2825 } 2826 } 2827 if (mask != 0) { 2828 /* Idle/offline CPUs, report (releases rnp->lock. */ 2829 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2830 } else { 2831 /* Nothing to do here, so just drop the lock. */ 2832 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2833 } 2834 } 2835 } 2836 2837 /* 2838 * Force quiescent states on reluctant CPUs, and also detect which 2839 * CPUs are in dyntick-idle mode. 2840 */ 2841 static void force_quiescent_state(struct rcu_state *rsp) 2842 { 2843 unsigned long flags; 2844 bool ret; 2845 struct rcu_node *rnp; 2846 struct rcu_node *rnp_old = NULL; 2847 2848 /* Funnel through hierarchy to reduce memory contention. */ 2849 rnp = __this_cpu_read(rsp->rda->mynode); 2850 for (; rnp != NULL; rnp = rnp->parent) { 2851 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2852 !raw_spin_trylock(&rnp->fqslock); 2853 if (rnp_old != NULL) 2854 raw_spin_unlock(&rnp_old->fqslock); 2855 if (ret) { 2856 rsp->n_force_qs_lh++; 2857 return; 2858 } 2859 rnp_old = rnp; 2860 } 2861 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2862 2863 /* Reached the root of the rcu_node tree, acquire lock. */ 2864 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2865 smp_mb__after_unlock_lock(); 2866 raw_spin_unlock(&rnp_old->fqslock); 2867 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2868 rsp->n_force_qs_lh++; 2869 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2870 return; /* Someone beat us to it. */ 2871 } 2872 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2873 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2874 rcu_gp_kthread_wake(rsp); 2875 } 2876 2877 /* 2878 * This does the RCU core processing work for the specified rcu_state 2879 * and rcu_data structures. This may be called only from the CPU to 2880 * whom the rdp belongs. 2881 */ 2882 static void 2883 __rcu_process_callbacks(struct rcu_state *rsp) 2884 { 2885 unsigned long flags; 2886 bool needwake; 2887 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2888 2889 WARN_ON_ONCE(rdp->beenonline == 0); 2890 2891 /* Update RCU state based on any recent quiescent states. */ 2892 rcu_check_quiescent_state(rsp, rdp); 2893 2894 /* Does this CPU require a not-yet-started grace period? */ 2895 local_irq_save(flags); 2896 if (cpu_needs_another_gp(rsp, rdp)) { 2897 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2898 needwake = rcu_start_gp(rsp); 2899 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2900 if (needwake) 2901 rcu_gp_kthread_wake(rsp); 2902 } else { 2903 local_irq_restore(flags); 2904 } 2905 2906 /* If there are callbacks ready, invoke them. */ 2907 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2908 invoke_rcu_callbacks(rsp, rdp); 2909 2910 /* Do any needed deferred wakeups of rcuo kthreads. */ 2911 do_nocb_deferred_wakeup(rdp); 2912 } 2913 2914 /* 2915 * Do RCU core processing for the current CPU. 2916 */ 2917 static void rcu_process_callbacks(struct softirq_action *unused) 2918 { 2919 struct rcu_state *rsp; 2920 2921 if (cpu_is_offline(smp_processor_id())) 2922 return; 2923 trace_rcu_utilization(TPS("Start RCU core")); 2924 for_each_rcu_flavor(rsp) 2925 __rcu_process_callbacks(rsp); 2926 trace_rcu_utilization(TPS("End RCU core")); 2927 } 2928 2929 /* 2930 * Schedule RCU callback invocation. If the specified type of RCU 2931 * does not support RCU priority boosting, just do a direct call, 2932 * otherwise wake up the per-CPU kernel kthread. Note that because we 2933 * are running on the current CPU with softirqs disabled, the 2934 * rcu_cpu_kthread_task cannot disappear out from under us. 2935 */ 2936 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2937 { 2938 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2939 return; 2940 if (likely(!rsp->boost)) { 2941 rcu_do_batch(rsp, rdp); 2942 return; 2943 } 2944 invoke_rcu_callbacks_kthread(); 2945 } 2946 2947 static void invoke_rcu_core(void) 2948 { 2949 if (cpu_online(smp_processor_id())) 2950 raise_softirq(RCU_SOFTIRQ); 2951 } 2952 2953 /* 2954 * Handle any core-RCU processing required by a call_rcu() invocation. 2955 */ 2956 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2957 struct rcu_head *head, unsigned long flags) 2958 { 2959 bool needwake; 2960 2961 /* 2962 * If called from an extended quiescent state, invoke the RCU 2963 * core in order to force a re-evaluation of RCU's idleness. 2964 */ 2965 if (!rcu_is_watching()) 2966 invoke_rcu_core(); 2967 2968 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2969 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2970 return; 2971 2972 /* 2973 * Force the grace period if too many callbacks or too long waiting. 2974 * Enforce hysteresis, and don't invoke force_quiescent_state() 2975 * if some other CPU has recently done so. Also, don't bother 2976 * invoking force_quiescent_state() if the newly enqueued callback 2977 * is the only one waiting for a grace period to complete. 2978 */ 2979 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2980 2981 /* Are we ignoring a completed grace period? */ 2982 note_gp_changes(rsp, rdp); 2983 2984 /* Start a new grace period if one not already started. */ 2985 if (!rcu_gp_in_progress(rsp)) { 2986 struct rcu_node *rnp_root = rcu_get_root(rsp); 2987 2988 raw_spin_lock(&rnp_root->lock); 2989 smp_mb__after_unlock_lock(); 2990 needwake = rcu_start_gp(rsp); 2991 raw_spin_unlock(&rnp_root->lock); 2992 if (needwake) 2993 rcu_gp_kthread_wake(rsp); 2994 } else { 2995 /* Give the grace period a kick. */ 2996 rdp->blimit = LONG_MAX; 2997 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2998 *rdp->nxttail[RCU_DONE_TAIL] != head) 2999 force_quiescent_state(rsp); 3000 rdp->n_force_qs_snap = rsp->n_force_qs; 3001 rdp->qlen_last_fqs_check = rdp->qlen; 3002 } 3003 } 3004 } 3005 3006 /* 3007 * RCU callback function to leak a callback. 3008 */ 3009 static void rcu_leak_callback(struct rcu_head *rhp) 3010 { 3011 } 3012 3013 /* 3014 * Helper function for call_rcu() and friends. The cpu argument will 3015 * normally be -1, indicating "currently running CPU". It may specify 3016 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3017 * is expected to specify a CPU. 3018 */ 3019 static void 3020 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 3021 struct rcu_state *rsp, int cpu, bool lazy) 3022 { 3023 unsigned long flags; 3024 struct rcu_data *rdp; 3025 3026 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */ 3027 if (debug_rcu_head_queue(head)) { 3028 /* Probable double call_rcu(), so leak the callback. */ 3029 WRITE_ONCE(head->func, rcu_leak_callback); 3030 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 3031 return; 3032 } 3033 head->func = func; 3034 head->next = NULL; 3035 3036 /* 3037 * Opportunistically note grace-period endings and beginnings. 3038 * Note that we might see a beginning right after we see an 3039 * end, but never vice versa, since this CPU has to pass through 3040 * a quiescent state betweentimes. 3041 */ 3042 local_irq_save(flags); 3043 rdp = this_cpu_ptr(rsp->rda); 3044 3045 /* Add the callback to our list. */ 3046 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 3047 int offline; 3048 3049 if (cpu != -1) 3050 rdp = per_cpu_ptr(rsp->rda, cpu); 3051 if (likely(rdp->mynode)) { 3052 /* Post-boot, so this should be for a no-CBs CPU. */ 3053 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3054 WARN_ON_ONCE(offline); 3055 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3056 local_irq_restore(flags); 3057 return; 3058 } 3059 /* 3060 * Very early boot, before rcu_init(). Initialize if needed 3061 * and then drop through to queue the callback. 3062 */ 3063 BUG_ON(cpu != -1); 3064 WARN_ON_ONCE(!rcu_is_watching()); 3065 if (!likely(rdp->nxtlist)) 3066 init_default_callback_list(rdp); 3067 } 3068 WRITE_ONCE(rdp->qlen, rdp->qlen + 1); 3069 if (lazy) 3070 rdp->qlen_lazy++; 3071 else 3072 rcu_idle_count_callbacks_posted(); 3073 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3074 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3075 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3076 3077 if (__is_kfree_rcu_offset((unsigned long)func)) 3078 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3079 rdp->qlen_lazy, rdp->qlen); 3080 else 3081 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3082 3083 /* Go handle any RCU core processing required. */ 3084 __call_rcu_core(rsp, rdp, head, flags); 3085 local_irq_restore(flags); 3086 } 3087 3088 /* 3089 * Queue an RCU-sched callback for invocation after a grace period. 3090 */ 3091 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 3092 { 3093 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3094 } 3095 EXPORT_SYMBOL_GPL(call_rcu_sched); 3096 3097 /* 3098 * Queue an RCU callback for invocation after a quicker grace period. 3099 */ 3100 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 3101 { 3102 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3103 } 3104 EXPORT_SYMBOL_GPL(call_rcu_bh); 3105 3106 /* 3107 * Queue an RCU callback for lazy invocation after a grace period. 3108 * This will likely be later named something like "call_rcu_lazy()", 3109 * but this change will require some way of tagging the lazy RCU 3110 * callbacks in the list of pending callbacks. Until then, this 3111 * function may only be called from __kfree_rcu(). 3112 */ 3113 void kfree_call_rcu(struct rcu_head *head, 3114 void (*func)(struct rcu_head *rcu)) 3115 { 3116 __call_rcu(head, func, rcu_state_p, -1, 1); 3117 } 3118 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3119 3120 /* 3121 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3122 * any blocking grace-period wait automatically implies a grace period 3123 * if there is only one CPU online at any point time during execution 3124 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3125 * occasionally incorrectly indicate that there are multiple CPUs online 3126 * when there was in fact only one the whole time, as this just adds 3127 * some overhead: RCU still operates correctly. 3128 */ 3129 static inline int rcu_blocking_is_gp(void) 3130 { 3131 int ret; 3132 3133 might_sleep(); /* Check for RCU read-side critical section. */ 3134 preempt_disable(); 3135 ret = num_online_cpus() <= 1; 3136 preempt_enable(); 3137 return ret; 3138 } 3139 3140 /** 3141 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3142 * 3143 * Control will return to the caller some time after a full rcu-sched 3144 * grace period has elapsed, in other words after all currently executing 3145 * rcu-sched read-side critical sections have completed. These read-side 3146 * critical sections are delimited by rcu_read_lock_sched() and 3147 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3148 * local_irq_disable(), and so on may be used in place of 3149 * rcu_read_lock_sched(). 3150 * 3151 * This means that all preempt_disable code sequences, including NMI and 3152 * non-threaded hardware-interrupt handlers, in progress on entry will 3153 * have completed before this primitive returns. However, this does not 3154 * guarantee that softirq handlers will have completed, since in some 3155 * kernels, these handlers can run in process context, and can block. 3156 * 3157 * Note that this guarantee implies further memory-ordering guarantees. 3158 * On systems with more than one CPU, when synchronize_sched() returns, 3159 * each CPU is guaranteed to have executed a full memory barrier since the 3160 * end of its last RCU-sched read-side critical section whose beginning 3161 * preceded the call to synchronize_sched(). In addition, each CPU having 3162 * an RCU read-side critical section that extends beyond the return from 3163 * synchronize_sched() is guaranteed to have executed a full memory barrier 3164 * after the beginning of synchronize_sched() and before the beginning of 3165 * that RCU read-side critical section. Note that these guarantees include 3166 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3167 * that are executing in the kernel. 3168 * 3169 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3170 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3171 * to have executed a full memory barrier during the execution of 3172 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3173 * again only if the system has more than one CPU). 3174 * 3175 * This primitive provides the guarantees made by the (now removed) 3176 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3177 * guarantees that rcu_read_lock() sections will have completed. 3178 * In "classic RCU", these two guarantees happen to be one and 3179 * the same, but can differ in realtime RCU implementations. 3180 */ 3181 void synchronize_sched(void) 3182 { 3183 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3184 lock_is_held(&rcu_lock_map) || 3185 lock_is_held(&rcu_sched_lock_map), 3186 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3187 if (rcu_blocking_is_gp()) 3188 return; 3189 if (rcu_gp_is_expedited()) 3190 synchronize_sched_expedited(); 3191 else 3192 wait_rcu_gp(call_rcu_sched); 3193 } 3194 EXPORT_SYMBOL_GPL(synchronize_sched); 3195 3196 /** 3197 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3198 * 3199 * Control will return to the caller some time after a full rcu_bh grace 3200 * period has elapsed, in other words after all currently executing rcu_bh 3201 * read-side critical sections have completed. RCU read-side critical 3202 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3203 * and may be nested. 3204 * 3205 * See the description of synchronize_sched() for more detailed information 3206 * on memory ordering guarantees. 3207 */ 3208 void synchronize_rcu_bh(void) 3209 { 3210 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3211 lock_is_held(&rcu_lock_map) || 3212 lock_is_held(&rcu_sched_lock_map), 3213 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3214 if (rcu_blocking_is_gp()) 3215 return; 3216 if (rcu_gp_is_expedited()) 3217 synchronize_rcu_bh_expedited(); 3218 else 3219 wait_rcu_gp(call_rcu_bh); 3220 } 3221 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3222 3223 /** 3224 * get_state_synchronize_rcu - Snapshot current RCU state 3225 * 3226 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3227 * to determine whether or not a full grace period has elapsed in the 3228 * meantime. 3229 */ 3230 unsigned long get_state_synchronize_rcu(void) 3231 { 3232 /* 3233 * Any prior manipulation of RCU-protected data must happen 3234 * before the load from ->gpnum. 3235 */ 3236 smp_mb(); /* ^^^ */ 3237 3238 /* 3239 * Make sure this load happens before the purportedly 3240 * time-consuming work between get_state_synchronize_rcu() 3241 * and cond_synchronize_rcu(). 3242 */ 3243 return smp_load_acquire(&rcu_state_p->gpnum); 3244 } 3245 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3246 3247 /** 3248 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3249 * 3250 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3251 * 3252 * If a full RCU grace period has elapsed since the earlier call to 3253 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3254 * synchronize_rcu() to wait for a full grace period. 3255 * 3256 * Yes, this function does not take counter wrap into account. But 3257 * counter wrap is harmless. If the counter wraps, we have waited for 3258 * more than 2 billion grace periods (and way more on a 64-bit system!), 3259 * so waiting for one additional grace period should be just fine. 3260 */ 3261 void cond_synchronize_rcu(unsigned long oldstate) 3262 { 3263 unsigned long newstate; 3264 3265 /* 3266 * Ensure that this load happens before any RCU-destructive 3267 * actions the caller might carry out after we return. 3268 */ 3269 newstate = smp_load_acquire(&rcu_state_p->completed); 3270 if (ULONG_CMP_GE(oldstate, newstate)) 3271 synchronize_rcu(); 3272 } 3273 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3274 3275 /** 3276 * get_state_synchronize_sched - Snapshot current RCU-sched state 3277 * 3278 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3279 * to determine whether or not a full grace period has elapsed in the 3280 * meantime. 3281 */ 3282 unsigned long get_state_synchronize_sched(void) 3283 { 3284 /* 3285 * Any prior manipulation of RCU-protected data must happen 3286 * before the load from ->gpnum. 3287 */ 3288 smp_mb(); /* ^^^ */ 3289 3290 /* 3291 * Make sure this load happens before the purportedly 3292 * time-consuming work between get_state_synchronize_sched() 3293 * and cond_synchronize_sched(). 3294 */ 3295 return smp_load_acquire(&rcu_sched_state.gpnum); 3296 } 3297 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3298 3299 /** 3300 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3301 * 3302 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3303 * 3304 * If a full RCU-sched grace period has elapsed since the earlier call to 3305 * get_state_synchronize_sched(), just return. Otherwise, invoke 3306 * synchronize_sched() to wait for a full grace period. 3307 * 3308 * Yes, this function does not take counter wrap into account. But 3309 * counter wrap is harmless. If the counter wraps, we have waited for 3310 * more than 2 billion grace periods (and way more on a 64-bit system!), 3311 * so waiting for one additional grace period should be just fine. 3312 */ 3313 void cond_synchronize_sched(unsigned long oldstate) 3314 { 3315 unsigned long newstate; 3316 3317 /* 3318 * Ensure that this load happens before any RCU-destructive 3319 * actions the caller might carry out after we return. 3320 */ 3321 newstate = smp_load_acquire(&rcu_sched_state.completed); 3322 if (ULONG_CMP_GE(oldstate, newstate)) 3323 synchronize_sched(); 3324 } 3325 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3326 3327 /* Adjust sequence number for start of update-side operation. */ 3328 static void rcu_seq_start(unsigned long *sp) 3329 { 3330 WRITE_ONCE(*sp, *sp + 1); 3331 smp_mb(); /* Ensure update-side operation after counter increment. */ 3332 WARN_ON_ONCE(!(*sp & 0x1)); 3333 } 3334 3335 /* Adjust sequence number for end of update-side operation. */ 3336 static void rcu_seq_end(unsigned long *sp) 3337 { 3338 smp_mb(); /* Ensure update-side operation before counter increment. */ 3339 WRITE_ONCE(*sp, *sp + 1); 3340 WARN_ON_ONCE(*sp & 0x1); 3341 } 3342 3343 /* Take a snapshot of the update side's sequence number. */ 3344 static unsigned long rcu_seq_snap(unsigned long *sp) 3345 { 3346 unsigned long s; 3347 3348 smp_mb(); /* Caller's modifications seen first by other CPUs. */ 3349 s = (READ_ONCE(*sp) + 3) & ~0x1; 3350 smp_mb(); /* Above access must not bleed into critical section. */ 3351 return s; 3352 } 3353 3354 /* 3355 * Given a snapshot from rcu_seq_snap(), determine whether or not a 3356 * full update-side operation has occurred. 3357 */ 3358 static bool rcu_seq_done(unsigned long *sp, unsigned long s) 3359 { 3360 return ULONG_CMP_GE(READ_ONCE(*sp), s); 3361 } 3362 3363 /* Wrapper functions for expedited grace periods. */ 3364 static void rcu_exp_gp_seq_start(struct rcu_state *rsp) 3365 { 3366 rcu_seq_start(&rsp->expedited_sequence); 3367 } 3368 static void rcu_exp_gp_seq_end(struct rcu_state *rsp) 3369 { 3370 rcu_seq_end(&rsp->expedited_sequence); 3371 smp_mb(); /* Ensure that consecutive grace periods serialize. */ 3372 } 3373 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp) 3374 { 3375 return rcu_seq_snap(&rsp->expedited_sequence); 3376 } 3377 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s) 3378 { 3379 return rcu_seq_done(&rsp->expedited_sequence, s); 3380 } 3381 3382 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */ 3383 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp, 3384 struct rcu_data *rdp, 3385 atomic_long_t *stat, unsigned long s) 3386 { 3387 if (rcu_exp_gp_seq_done(rsp, s)) { 3388 if (rnp) 3389 mutex_unlock(&rnp->exp_funnel_mutex); 3390 else if (rdp) 3391 mutex_unlock(&rdp->exp_funnel_mutex); 3392 /* Ensure test happens before caller kfree(). */ 3393 smp_mb__before_atomic(); /* ^^^ */ 3394 atomic_long_inc(stat); 3395 return true; 3396 } 3397 return false; 3398 } 3399 3400 /* 3401 * Funnel-lock acquisition for expedited grace periods. Returns a 3402 * pointer to the root rcu_node structure, or NULL if some other 3403 * task did the expedited grace period for us. 3404 */ 3405 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s) 3406 { 3407 struct rcu_data *rdp; 3408 struct rcu_node *rnp0; 3409 struct rcu_node *rnp1 = NULL; 3410 3411 /* 3412 * First try directly acquiring the root lock in order to reduce 3413 * latency in the common case where expedited grace periods are 3414 * rare. We check mutex_is_locked() to avoid pathological levels of 3415 * memory contention on ->exp_funnel_mutex in the heavy-load case. 3416 */ 3417 rnp0 = rcu_get_root(rsp); 3418 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) { 3419 if (mutex_trylock(&rnp0->exp_funnel_mutex)) { 3420 if (sync_exp_work_done(rsp, rnp0, NULL, 3421 &rsp->expedited_workdone0, s)) 3422 return NULL; 3423 return rnp0; 3424 } 3425 } 3426 3427 /* 3428 * Each pass through the following loop works its way 3429 * up the rcu_node tree, returning if others have done the 3430 * work or otherwise falls through holding the root rnp's 3431 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure 3432 * can be inexact, as it is just promoting locality and is not 3433 * strictly needed for correctness. 3434 */ 3435 rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id()); 3436 if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s)) 3437 return NULL; 3438 mutex_lock(&rdp->exp_funnel_mutex); 3439 rnp0 = rdp->mynode; 3440 for (; rnp0 != NULL; rnp0 = rnp0->parent) { 3441 if (sync_exp_work_done(rsp, rnp1, rdp, 3442 &rsp->expedited_workdone2, s)) 3443 return NULL; 3444 mutex_lock(&rnp0->exp_funnel_mutex); 3445 if (rnp1) 3446 mutex_unlock(&rnp1->exp_funnel_mutex); 3447 else 3448 mutex_unlock(&rdp->exp_funnel_mutex); 3449 rnp1 = rnp0; 3450 } 3451 if (sync_exp_work_done(rsp, rnp1, rdp, 3452 &rsp->expedited_workdone3, s)) 3453 return NULL; 3454 return rnp1; 3455 } 3456 3457 /* Invoked on each online non-idle CPU for expedited quiescent state. */ 3458 static int synchronize_sched_expedited_cpu_stop(void *data) 3459 { 3460 struct rcu_data *rdp = data; 3461 struct rcu_state *rsp = rdp->rsp; 3462 3463 /* We are here: If we are last, do the wakeup. */ 3464 rdp->exp_done = true; 3465 if (atomic_dec_and_test(&rsp->expedited_need_qs)) 3466 wake_up(&rsp->expedited_wq); 3467 return 0; 3468 } 3469 3470 static void synchronize_sched_expedited_wait(struct rcu_state *rsp) 3471 { 3472 int cpu; 3473 unsigned long jiffies_stall; 3474 unsigned long jiffies_start; 3475 struct rcu_data *rdp; 3476 int ret; 3477 3478 jiffies_stall = rcu_jiffies_till_stall_check(); 3479 jiffies_start = jiffies; 3480 3481 for (;;) { 3482 ret = wait_event_interruptible_timeout( 3483 rsp->expedited_wq, 3484 !atomic_read(&rsp->expedited_need_qs), 3485 jiffies_stall); 3486 if (ret > 0) 3487 return; 3488 if (ret < 0) { 3489 /* Hit a signal, disable CPU stall warnings. */ 3490 wait_event(rsp->expedited_wq, 3491 !atomic_read(&rsp->expedited_need_qs)); 3492 return; 3493 } 3494 pr_err("INFO: %s detected expedited stalls on CPUs: {", 3495 rsp->name); 3496 for_each_online_cpu(cpu) { 3497 rdp = per_cpu_ptr(rsp->rda, cpu); 3498 3499 if (rdp->exp_done) 3500 continue; 3501 pr_cont(" %d", cpu); 3502 } 3503 pr_cont(" } %lu jiffies s: %lu\n", 3504 jiffies - jiffies_start, rsp->expedited_sequence); 3505 for_each_online_cpu(cpu) { 3506 rdp = per_cpu_ptr(rsp->rda, cpu); 3507 3508 if (rdp->exp_done) 3509 continue; 3510 dump_cpu_task(cpu); 3511 } 3512 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3; 3513 } 3514 } 3515 3516 /** 3517 * synchronize_sched_expedited - Brute-force RCU-sched grace period 3518 * 3519 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 3520 * approach to force the grace period to end quickly. This consumes 3521 * significant time on all CPUs and is unfriendly to real-time workloads, 3522 * so is thus not recommended for any sort of common-case code. In fact, 3523 * if you are using synchronize_sched_expedited() in a loop, please 3524 * restructure your code to batch your updates, and then use a single 3525 * synchronize_sched() instead. 3526 * 3527 * This implementation can be thought of as an application of sequence 3528 * locking to expedited grace periods, but using the sequence counter to 3529 * determine when someone else has already done the work instead of for 3530 * retrying readers. 3531 */ 3532 void synchronize_sched_expedited(void) 3533 { 3534 int cpu; 3535 unsigned long s; 3536 struct rcu_node *rnp; 3537 struct rcu_state *rsp = &rcu_sched_state; 3538 3539 /* Take a snapshot of the sequence number. */ 3540 s = rcu_exp_gp_seq_snap(rsp); 3541 3542 if (!try_get_online_cpus()) { 3543 /* CPU hotplug operation in flight, fall back to normal GP. */ 3544 wait_rcu_gp(call_rcu_sched); 3545 atomic_long_inc(&rsp->expedited_normal); 3546 return; 3547 } 3548 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 3549 3550 rnp = exp_funnel_lock(rsp, s); 3551 if (rnp == NULL) { 3552 put_online_cpus(); 3553 return; /* Someone else did our work for us. */ 3554 } 3555 3556 rcu_exp_gp_seq_start(rsp); 3557 3558 /* Stop each CPU that is online, non-idle, and not us. */ 3559 init_waitqueue_head(&rsp->expedited_wq); 3560 atomic_set(&rsp->expedited_need_qs, 1); /* Extra count avoids race. */ 3561 for_each_online_cpu(cpu) { 3562 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3563 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 3564 3565 rdp->exp_done = false; 3566 3567 /* Skip our CPU and any idle CPUs. */ 3568 if (raw_smp_processor_id() == cpu || 3569 !(atomic_add_return(0, &rdtp->dynticks) & 0x1)) 3570 continue; 3571 atomic_inc(&rsp->expedited_need_qs); 3572 stop_one_cpu_nowait(cpu, synchronize_sched_expedited_cpu_stop, 3573 rdp, &rdp->exp_stop_work); 3574 } 3575 3576 /* Remove extra count and, if necessary, wait for CPUs to stop. */ 3577 if (!atomic_dec_and_test(&rsp->expedited_need_qs)) 3578 synchronize_sched_expedited_wait(rsp); 3579 3580 rcu_exp_gp_seq_end(rsp); 3581 mutex_unlock(&rnp->exp_funnel_mutex); 3582 3583 put_online_cpus(); 3584 } 3585 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 3586 3587 /* 3588 * Check to see if there is any immediate RCU-related work to be done 3589 * by the current CPU, for the specified type of RCU, returning 1 if so. 3590 * The checks are in order of increasing expense: checks that can be 3591 * carried out against CPU-local state are performed first. However, 3592 * we must check for CPU stalls first, else we might not get a chance. 3593 */ 3594 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3595 { 3596 struct rcu_node *rnp = rdp->mynode; 3597 3598 rdp->n_rcu_pending++; 3599 3600 /* Check for CPU stalls, if enabled. */ 3601 check_cpu_stall(rsp, rdp); 3602 3603 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3604 if (rcu_nohz_full_cpu(rsp)) 3605 return 0; 3606 3607 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3608 if (rcu_scheduler_fully_active && 3609 rdp->qs_pending && !rdp->passed_quiesce && 3610 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3611 rdp->n_rp_qs_pending++; 3612 } else if (rdp->qs_pending && 3613 (rdp->passed_quiesce || 3614 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) { 3615 rdp->n_rp_report_qs++; 3616 return 1; 3617 } 3618 3619 /* Does this CPU have callbacks ready to invoke? */ 3620 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3621 rdp->n_rp_cb_ready++; 3622 return 1; 3623 } 3624 3625 /* Has RCU gone idle with this CPU needing another grace period? */ 3626 if (cpu_needs_another_gp(rsp, rdp)) { 3627 rdp->n_rp_cpu_needs_gp++; 3628 return 1; 3629 } 3630 3631 /* Has another RCU grace period completed? */ 3632 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3633 rdp->n_rp_gp_completed++; 3634 return 1; 3635 } 3636 3637 /* Has a new RCU grace period started? */ 3638 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3639 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3640 rdp->n_rp_gp_started++; 3641 return 1; 3642 } 3643 3644 /* Does this CPU need a deferred NOCB wakeup? */ 3645 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3646 rdp->n_rp_nocb_defer_wakeup++; 3647 return 1; 3648 } 3649 3650 /* nothing to do */ 3651 rdp->n_rp_need_nothing++; 3652 return 0; 3653 } 3654 3655 /* 3656 * Check to see if there is any immediate RCU-related work to be done 3657 * by the current CPU, returning 1 if so. This function is part of the 3658 * RCU implementation; it is -not- an exported member of the RCU API. 3659 */ 3660 static int rcu_pending(void) 3661 { 3662 struct rcu_state *rsp; 3663 3664 for_each_rcu_flavor(rsp) 3665 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3666 return 1; 3667 return 0; 3668 } 3669 3670 /* 3671 * Return true if the specified CPU has any callback. If all_lazy is 3672 * non-NULL, store an indication of whether all callbacks are lazy. 3673 * (If there are no callbacks, all of them are deemed to be lazy.) 3674 */ 3675 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3676 { 3677 bool al = true; 3678 bool hc = false; 3679 struct rcu_data *rdp; 3680 struct rcu_state *rsp; 3681 3682 for_each_rcu_flavor(rsp) { 3683 rdp = this_cpu_ptr(rsp->rda); 3684 if (!rdp->nxtlist) 3685 continue; 3686 hc = true; 3687 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3688 al = false; 3689 break; 3690 } 3691 } 3692 if (all_lazy) 3693 *all_lazy = al; 3694 return hc; 3695 } 3696 3697 /* 3698 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3699 * the compiler is expected to optimize this away. 3700 */ 3701 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3702 int cpu, unsigned long done) 3703 { 3704 trace_rcu_barrier(rsp->name, s, cpu, 3705 atomic_read(&rsp->barrier_cpu_count), done); 3706 } 3707 3708 /* 3709 * RCU callback function for _rcu_barrier(). If we are last, wake 3710 * up the task executing _rcu_barrier(). 3711 */ 3712 static void rcu_barrier_callback(struct rcu_head *rhp) 3713 { 3714 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3715 struct rcu_state *rsp = rdp->rsp; 3716 3717 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3718 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 3719 complete(&rsp->barrier_completion); 3720 } else { 3721 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 3722 } 3723 } 3724 3725 /* 3726 * Called with preemption disabled, and from cross-cpu IRQ context. 3727 */ 3728 static void rcu_barrier_func(void *type) 3729 { 3730 struct rcu_state *rsp = type; 3731 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3732 3733 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 3734 atomic_inc(&rsp->barrier_cpu_count); 3735 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3736 } 3737 3738 /* 3739 * Orchestrate the specified type of RCU barrier, waiting for all 3740 * RCU callbacks of the specified type to complete. 3741 */ 3742 static void _rcu_barrier(struct rcu_state *rsp) 3743 { 3744 int cpu; 3745 struct rcu_data *rdp; 3746 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3747 3748 _rcu_barrier_trace(rsp, "Begin", -1, s); 3749 3750 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3751 mutex_lock(&rsp->barrier_mutex); 3752 3753 /* Did someone else do our work for us? */ 3754 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3755 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 3756 smp_mb(); /* caller's subsequent code after above check. */ 3757 mutex_unlock(&rsp->barrier_mutex); 3758 return; 3759 } 3760 3761 /* Mark the start of the barrier operation. */ 3762 rcu_seq_start(&rsp->barrier_sequence); 3763 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 3764 3765 /* 3766 * Initialize the count to one rather than to zero in order to 3767 * avoid a too-soon return to zero in case of a short grace period 3768 * (or preemption of this task). Exclude CPU-hotplug operations 3769 * to ensure that no offline CPU has callbacks queued. 3770 */ 3771 init_completion(&rsp->barrier_completion); 3772 atomic_set(&rsp->barrier_cpu_count, 1); 3773 get_online_cpus(); 3774 3775 /* 3776 * Force each CPU with callbacks to register a new callback. 3777 * When that callback is invoked, we will know that all of the 3778 * corresponding CPU's preceding callbacks have been invoked. 3779 */ 3780 for_each_possible_cpu(cpu) { 3781 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3782 continue; 3783 rdp = per_cpu_ptr(rsp->rda, cpu); 3784 if (rcu_is_nocb_cpu(cpu)) { 3785 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3786 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3787 rsp->barrier_sequence); 3788 } else { 3789 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3790 rsp->barrier_sequence); 3791 smp_mb__before_atomic(); 3792 atomic_inc(&rsp->barrier_cpu_count); 3793 __call_rcu(&rdp->barrier_head, 3794 rcu_barrier_callback, rsp, cpu, 0); 3795 } 3796 } else if (READ_ONCE(rdp->qlen)) { 3797 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3798 rsp->barrier_sequence); 3799 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3800 } else { 3801 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3802 rsp->barrier_sequence); 3803 } 3804 } 3805 put_online_cpus(); 3806 3807 /* 3808 * Now that we have an rcu_barrier_callback() callback on each 3809 * CPU, and thus each counted, remove the initial count. 3810 */ 3811 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3812 complete(&rsp->barrier_completion); 3813 3814 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3815 wait_for_completion(&rsp->barrier_completion); 3816 3817 /* Mark the end of the barrier operation. */ 3818 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 3819 rcu_seq_end(&rsp->barrier_sequence); 3820 3821 /* Other rcu_barrier() invocations can now safely proceed. */ 3822 mutex_unlock(&rsp->barrier_mutex); 3823 } 3824 3825 /** 3826 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3827 */ 3828 void rcu_barrier_bh(void) 3829 { 3830 _rcu_barrier(&rcu_bh_state); 3831 } 3832 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3833 3834 /** 3835 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3836 */ 3837 void rcu_barrier_sched(void) 3838 { 3839 _rcu_barrier(&rcu_sched_state); 3840 } 3841 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3842 3843 /* 3844 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3845 * first CPU in a given leaf rcu_node structure coming online. The caller 3846 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3847 * disabled. 3848 */ 3849 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3850 { 3851 long mask; 3852 struct rcu_node *rnp = rnp_leaf; 3853 3854 for (;;) { 3855 mask = rnp->grpmask; 3856 rnp = rnp->parent; 3857 if (rnp == NULL) 3858 return; 3859 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */ 3860 rnp->qsmaskinit |= mask; 3861 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */ 3862 } 3863 } 3864 3865 /* 3866 * Do boot-time initialization of a CPU's per-CPU RCU data. 3867 */ 3868 static void __init 3869 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3870 { 3871 static struct lock_class_key rcu_exp_sched_rdp_class; 3872 unsigned long flags; 3873 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3874 struct rcu_node *rnp = rcu_get_root(rsp); 3875 3876 /* Set up local state, ensuring consistent view of global state. */ 3877 raw_spin_lock_irqsave(&rnp->lock, flags); 3878 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3879 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3880 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3881 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3882 rdp->cpu = cpu; 3883 rdp->rsp = rsp; 3884 mutex_init(&rdp->exp_funnel_mutex); 3885 rcu_boot_init_nocb_percpu_data(rdp); 3886 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3887 if (rsp == &rcu_sched_state) 3888 lockdep_set_class_and_name(&rdp->exp_funnel_mutex, 3889 &rcu_exp_sched_rdp_class, 3890 "rcu_data_exp_sched"); 3891 } 3892 3893 /* 3894 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3895 * offline event can be happening at a given time. Note also that we 3896 * can accept some slop in the rsp->completed access due to the fact 3897 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3898 */ 3899 static void 3900 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3901 { 3902 unsigned long flags; 3903 unsigned long mask; 3904 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3905 struct rcu_node *rnp = rcu_get_root(rsp); 3906 3907 /* Set up local state, ensuring consistent view of global state. */ 3908 raw_spin_lock_irqsave(&rnp->lock, flags); 3909 rdp->beenonline = 1; /* We have now been online. */ 3910 rdp->qlen_last_fqs_check = 0; 3911 rdp->n_force_qs_snap = rsp->n_force_qs; 3912 rdp->blimit = blimit; 3913 if (!rdp->nxtlist) 3914 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3915 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3916 rcu_sysidle_init_percpu_data(rdp->dynticks); 3917 atomic_set(&rdp->dynticks->dynticks, 3918 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3919 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3920 3921 /* 3922 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3923 * propagation up the rcu_node tree will happen at the beginning 3924 * of the next grace period. 3925 */ 3926 rnp = rdp->mynode; 3927 mask = rdp->grpmask; 3928 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3929 smp_mb__after_unlock_lock(); 3930 rnp->qsmaskinitnext |= mask; 3931 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3932 rdp->completed = rnp->completed; 3933 rdp->passed_quiesce = false; 3934 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu); 3935 rdp->qs_pending = false; 3936 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3937 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3938 } 3939 3940 static void rcu_prepare_cpu(int cpu) 3941 { 3942 struct rcu_state *rsp; 3943 3944 for_each_rcu_flavor(rsp) 3945 rcu_init_percpu_data(cpu, rsp); 3946 } 3947 3948 /* 3949 * Handle CPU online/offline notification events. 3950 */ 3951 int rcu_cpu_notify(struct notifier_block *self, 3952 unsigned long action, void *hcpu) 3953 { 3954 long cpu = (long)hcpu; 3955 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3956 struct rcu_node *rnp = rdp->mynode; 3957 struct rcu_state *rsp; 3958 3959 switch (action) { 3960 case CPU_UP_PREPARE: 3961 case CPU_UP_PREPARE_FROZEN: 3962 rcu_prepare_cpu(cpu); 3963 rcu_prepare_kthreads(cpu); 3964 rcu_spawn_all_nocb_kthreads(cpu); 3965 break; 3966 case CPU_ONLINE: 3967 case CPU_DOWN_FAILED: 3968 rcu_boost_kthread_setaffinity(rnp, -1); 3969 break; 3970 case CPU_DOWN_PREPARE: 3971 rcu_boost_kthread_setaffinity(rnp, cpu); 3972 break; 3973 case CPU_DYING: 3974 case CPU_DYING_FROZEN: 3975 for_each_rcu_flavor(rsp) 3976 rcu_cleanup_dying_cpu(rsp); 3977 break; 3978 case CPU_DYING_IDLE: 3979 for_each_rcu_flavor(rsp) { 3980 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3981 } 3982 break; 3983 case CPU_DEAD: 3984 case CPU_DEAD_FROZEN: 3985 case CPU_UP_CANCELED: 3986 case CPU_UP_CANCELED_FROZEN: 3987 for_each_rcu_flavor(rsp) { 3988 rcu_cleanup_dead_cpu(cpu, rsp); 3989 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3990 } 3991 break; 3992 default: 3993 break; 3994 } 3995 return NOTIFY_OK; 3996 } 3997 3998 static int rcu_pm_notify(struct notifier_block *self, 3999 unsigned long action, void *hcpu) 4000 { 4001 switch (action) { 4002 case PM_HIBERNATION_PREPARE: 4003 case PM_SUSPEND_PREPARE: 4004 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4005 rcu_expedite_gp(); 4006 break; 4007 case PM_POST_HIBERNATION: 4008 case PM_POST_SUSPEND: 4009 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4010 rcu_unexpedite_gp(); 4011 break; 4012 default: 4013 break; 4014 } 4015 return NOTIFY_OK; 4016 } 4017 4018 /* 4019 * Spawn the kthreads that handle each RCU flavor's grace periods. 4020 */ 4021 static int __init rcu_spawn_gp_kthread(void) 4022 { 4023 unsigned long flags; 4024 int kthread_prio_in = kthread_prio; 4025 struct rcu_node *rnp; 4026 struct rcu_state *rsp; 4027 struct sched_param sp; 4028 struct task_struct *t; 4029 4030 /* Force priority into range. */ 4031 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4032 kthread_prio = 1; 4033 else if (kthread_prio < 0) 4034 kthread_prio = 0; 4035 else if (kthread_prio > 99) 4036 kthread_prio = 99; 4037 if (kthread_prio != kthread_prio_in) 4038 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4039 kthread_prio, kthread_prio_in); 4040 4041 rcu_scheduler_fully_active = 1; 4042 for_each_rcu_flavor(rsp) { 4043 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 4044 BUG_ON(IS_ERR(t)); 4045 rnp = rcu_get_root(rsp); 4046 raw_spin_lock_irqsave(&rnp->lock, flags); 4047 rsp->gp_kthread = t; 4048 if (kthread_prio) { 4049 sp.sched_priority = kthread_prio; 4050 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4051 } 4052 wake_up_process(t); 4053 raw_spin_unlock_irqrestore(&rnp->lock, flags); 4054 } 4055 rcu_spawn_nocb_kthreads(); 4056 rcu_spawn_boost_kthreads(); 4057 return 0; 4058 } 4059 early_initcall(rcu_spawn_gp_kthread); 4060 4061 /* 4062 * This function is invoked towards the end of the scheduler's initialization 4063 * process. Before this is called, the idle task might contain 4064 * RCU read-side critical sections (during which time, this idle 4065 * task is booting the system). After this function is called, the 4066 * idle tasks are prohibited from containing RCU read-side critical 4067 * sections. This function also enables RCU lockdep checking. 4068 */ 4069 void rcu_scheduler_starting(void) 4070 { 4071 WARN_ON(num_online_cpus() != 1); 4072 WARN_ON(nr_context_switches() > 0); 4073 rcu_scheduler_active = 1; 4074 } 4075 4076 /* 4077 * Compute the per-level fanout, either using the exact fanout specified 4078 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 4079 */ 4080 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt) 4081 { 4082 int i; 4083 4084 if (rcu_fanout_exact) { 4085 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 4086 for (i = rcu_num_lvls - 2; i >= 0; i--) 4087 levelspread[i] = RCU_FANOUT; 4088 } else { 4089 int ccur; 4090 int cprv; 4091 4092 cprv = nr_cpu_ids; 4093 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4094 ccur = levelcnt[i]; 4095 levelspread[i] = (cprv + ccur - 1) / ccur; 4096 cprv = ccur; 4097 } 4098 } 4099 } 4100 4101 /* 4102 * Helper function for rcu_init() that initializes one rcu_state structure. 4103 */ 4104 static void __init rcu_init_one(struct rcu_state *rsp, 4105 struct rcu_data __percpu *rda) 4106 { 4107 static const char * const buf[] = RCU_NODE_NAME_INIT; 4108 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4109 static const char * const exp[] = RCU_EXP_NAME_INIT; 4110 static const char * const exp_sched[] = RCU_EXP_SCHED_NAME_INIT; 4111 static u8 fl_mask = 0x1; 4112 4113 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */ 4114 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4115 int cpustride = 1; 4116 int i; 4117 int j; 4118 struct rcu_node *rnp; 4119 4120 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4121 4122 /* Silence gcc 4.8 false positive about array index out of range. */ 4123 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4124 panic("rcu_init_one: rcu_num_lvls out of range"); 4125 4126 /* Initialize the level-tracking arrays. */ 4127 4128 for (i = 0; i < rcu_num_lvls; i++) 4129 levelcnt[i] = num_rcu_lvl[i]; 4130 for (i = 1; i < rcu_num_lvls; i++) 4131 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1]; 4132 rcu_init_levelspread(levelspread, levelcnt); 4133 rsp->flavor_mask = fl_mask; 4134 fl_mask <<= 1; 4135 4136 /* Initialize the elements themselves, starting from the leaves. */ 4137 4138 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4139 cpustride *= levelspread[i]; 4140 rnp = rsp->level[i]; 4141 for (j = 0; j < levelcnt[i]; j++, rnp++) { 4142 raw_spin_lock_init(&rnp->lock); 4143 lockdep_set_class_and_name(&rnp->lock, 4144 &rcu_node_class[i], buf[i]); 4145 raw_spin_lock_init(&rnp->fqslock); 4146 lockdep_set_class_and_name(&rnp->fqslock, 4147 &rcu_fqs_class[i], fqs[i]); 4148 rnp->gpnum = rsp->gpnum; 4149 rnp->completed = rsp->completed; 4150 rnp->qsmask = 0; 4151 rnp->qsmaskinit = 0; 4152 rnp->grplo = j * cpustride; 4153 rnp->grphi = (j + 1) * cpustride - 1; 4154 if (rnp->grphi >= nr_cpu_ids) 4155 rnp->grphi = nr_cpu_ids - 1; 4156 if (i == 0) { 4157 rnp->grpnum = 0; 4158 rnp->grpmask = 0; 4159 rnp->parent = NULL; 4160 } else { 4161 rnp->grpnum = j % levelspread[i - 1]; 4162 rnp->grpmask = 1UL << rnp->grpnum; 4163 rnp->parent = rsp->level[i - 1] + 4164 j / levelspread[i - 1]; 4165 } 4166 rnp->level = i; 4167 INIT_LIST_HEAD(&rnp->blkd_tasks); 4168 rcu_init_one_nocb(rnp); 4169 mutex_init(&rnp->exp_funnel_mutex); 4170 if (rsp == &rcu_sched_state) 4171 lockdep_set_class_and_name( 4172 &rnp->exp_funnel_mutex, 4173 &rcu_exp_sched_class[i], exp_sched[i]); 4174 else 4175 lockdep_set_class_and_name( 4176 &rnp->exp_funnel_mutex, 4177 &rcu_exp_class[i], exp[i]); 4178 } 4179 } 4180 4181 init_waitqueue_head(&rsp->gp_wq); 4182 rnp = rsp->level[rcu_num_lvls - 1]; 4183 for_each_possible_cpu(i) { 4184 while (i > rnp->grphi) 4185 rnp++; 4186 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4187 rcu_boot_init_percpu_data(i, rsp); 4188 } 4189 list_add(&rsp->flavors, &rcu_struct_flavors); 4190 } 4191 4192 /* 4193 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4194 * replace the definitions in tree.h because those are needed to size 4195 * the ->node array in the rcu_state structure. 4196 */ 4197 static void __init rcu_init_geometry(void) 4198 { 4199 ulong d; 4200 int i; 4201 int rcu_capacity[RCU_NUM_LVLS]; 4202 4203 /* 4204 * Initialize any unspecified boot parameters. 4205 * The default values of jiffies_till_first_fqs and 4206 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4207 * value, which is a function of HZ, then adding one for each 4208 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4209 */ 4210 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4211 if (jiffies_till_first_fqs == ULONG_MAX) 4212 jiffies_till_first_fqs = d; 4213 if (jiffies_till_next_fqs == ULONG_MAX) 4214 jiffies_till_next_fqs = d; 4215 4216 /* If the compile-time values are accurate, just leave. */ 4217 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4218 nr_cpu_ids == NR_CPUS) 4219 return; 4220 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4221 rcu_fanout_leaf, nr_cpu_ids); 4222 4223 /* 4224 * The boot-time rcu_fanout_leaf parameter is only permitted 4225 * to increase the leaf-level fanout, not decrease it. Of course, 4226 * the leaf-level fanout cannot exceed the number of bits in 4227 * the rcu_node masks. Complain and fall back to the compile- 4228 * time values if these limits are exceeded. 4229 */ 4230 if (rcu_fanout_leaf < RCU_FANOUT_LEAF || 4231 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4232 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4233 WARN_ON(1); 4234 return; 4235 } 4236 4237 /* 4238 * Compute number of nodes that can be handled an rcu_node tree 4239 * with the given number of levels. 4240 */ 4241 rcu_capacity[0] = rcu_fanout_leaf; 4242 for (i = 1; i < RCU_NUM_LVLS; i++) 4243 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4244 4245 /* 4246 * The tree must be able to accommodate the configured number of CPUs. 4247 * If this limit is exceeded than we have a serious problem elsewhere. 4248 */ 4249 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) 4250 panic("rcu_init_geometry: rcu_capacity[] is too small"); 4251 4252 /* Calculate the number of levels in the tree. */ 4253 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4254 } 4255 rcu_num_lvls = i + 1; 4256 4257 /* Calculate the number of rcu_nodes at each level of the tree. */ 4258 for (i = 0; i < rcu_num_lvls; i++) { 4259 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4260 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4261 } 4262 4263 /* Calculate the total number of rcu_node structures. */ 4264 rcu_num_nodes = 0; 4265 for (i = 0; i < rcu_num_lvls; i++) 4266 rcu_num_nodes += num_rcu_lvl[i]; 4267 } 4268 4269 /* 4270 * Dump out the structure of the rcu_node combining tree associated 4271 * with the rcu_state structure referenced by rsp. 4272 */ 4273 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4274 { 4275 int level = 0; 4276 struct rcu_node *rnp; 4277 4278 pr_info("rcu_node tree layout dump\n"); 4279 pr_info(" "); 4280 rcu_for_each_node_breadth_first(rsp, rnp) { 4281 if (rnp->level != level) { 4282 pr_cont("\n"); 4283 pr_info(" "); 4284 level = rnp->level; 4285 } 4286 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4287 } 4288 pr_cont("\n"); 4289 } 4290 4291 void __init rcu_init(void) 4292 { 4293 int cpu; 4294 4295 rcu_early_boot_tests(); 4296 4297 rcu_bootup_announce(); 4298 rcu_init_geometry(); 4299 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 4300 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 4301 if (dump_tree) 4302 rcu_dump_rcu_node_tree(&rcu_sched_state); 4303 __rcu_init_preempt(); 4304 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4305 4306 /* 4307 * We don't need protection against CPU-hotplug here because 4308 * this is called early in boot, before either interrupts 4309 * or the scheduler are operational. 4310 */ 4311 cpu_notifier(rcu_cpu_notify, 0); 4312 pm_notifier(rcu_pm_notify, 0); 4313 for_each_online_cpu(cpu) 4314 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 4315 } 4316 4317 #include "tree_plugin.h" 4318