xref: /linux/kernel/rcu/tree.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
68 
69 /* Data structures. */
70 
71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
74 static struct lock_class_key rcu_exp_sched_class[RCU_NUM_LVLS];
75 
76 /*
77  * In order to export the rcu_state name to the tracing tools, it
78  * needs to be added in the __tracepoint_string section.
79  * This requires defining a separate variable tp_<sname>_varname
80  * that points to the string being used, and this will allow
81  * the tracing userspace tools to be able to decipher the string
82  * address to the matching string.
83  */
84 #ifdef CONFIG_TRACING
85 # define DEFINE_RCU_TPS(sname) \
86 static char sname##_varname[] = #sname; \
87 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
88 # define RCU_STATE_NAME(sname) sname##_varname
89 #else
90 # define DEFINE_RCU_TPS(sname)
91 # define RCU_STATE_NAME(sname) __stringify(sname)
92 #endif
93 
94 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
95 DEFINE_RCU_TPS(sname) \
96 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
97 struct rcu_state sname##_state = { \
98 	.level = { &sname##_state.node[0] }, \
99 	.rda = &sname##_data, \
100 	.call = cr, \
101 	.fqs_state = RCU_GP_IDLE, \
102 	.gpnum = 0UL - 300UL, \
103 	.completed = 0UL - 300UL, \
104 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
105 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
106 	.orphan_donetail = &sname##_state.orphan_donelist, \
107 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
108 	.name = RCU_STATE_NAME(sname), \
109 	.abbr = sabbr, \
110 }
111 
112 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
113 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
114 
115 static struct rcu_state *const rcu_state_p;
116 static struct rcu_data __percpu *const rcu_data_p;
117 LIST_HEAD(rcu_struct_flavors);
118 
119 /* Dump rcu_node combining tree at boot to verify correct setup. */
120 static bool dump_tree;
121 module_param(dump_tree, bool, 0444);
122 /* Control rcu_node-tree auto-balancing at boot time. */
123 static bool rcu_fanout_exact;
124 module_param(rcu_fanout_exact, bool, 0444);
125 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
126 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
127 module_param(rcu_fanout_leaf, int, 0444);
128 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
129 /* Number of rcu_nodes at specified level. */
130 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
131 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
132 
133 /*
134  * The rcu_scheduler_active variable transitions from zero to one just
135  * before the first task is spawned.  So when this variable is zero, RCU
136  * can assume that there is but one task, allowing RCU to (for example)
137  * optimize synchronize_sched() to a simple barrier().  When this variable
138  * is one, RCU must actually do all the hard work required to detect real
139  * grace periods.  This variable is also used to suppress boot-time false
140  * positives from lockdep-RCU error checking.
141  */
142 int rcu_scheduler_active __read_mostly;
143 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
144 
145 /*
146  * The rcu_scheduler_fully_active variable transitions from zero to one
147  * during the early_initcall() processing, which is after the scheduler
148  * is capable of creating new tasks.  So RCU processing (for example,
149  * creating tasks for RCU priority boosting) must be delayed until after
150  * rcu_scheduler_fully_active transitions from zero to one.  We also
151  * currently delay invocation of any RCU callbacks until after this point.
152  *
153  * It might later prove better for people registering RCU callbacks during
154  * early boot to take responsibility for these callbacks, but one step at
155  * a time.
156  */
157 static int rcu_scheduler_fully_active __read_mostly;
158 
159 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 static void invoke_rcu_core(void);
163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164 
165 /* rcuc/rcub kthread realtime priority */
166 #ifdef CONFIG_RCU_KTHREAD_PRIO
167 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
168 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
169 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
170 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 module_param(kthread_prio, int, 0644);
172 
173 /* Delay in jiffies for grace-period initialization delays, debug only. */
174 
175 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
176 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
177 module_param(gp_preinit_delay, int, 0644);
178 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
179 static const int gp_preinit_delay;
180 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 
182 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
183 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
184 module_param(gp_init_delay, int, 0644);
185 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186 static const int gp_init_delay;
187 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 
189 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
190 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
191 module_param(gp_cleanup_delay, int, 0644);
192 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193 static const int gp_cleanup_delay;
194 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195 
196 /*
197  * Number of grace periods between delays, normalized by the duration of
198  * the delay.  The longer the the delay, the more the grace periods between
199  * each delay.  The reason for this normalization is that it means that,
200  * for non-zero delays, the overall slowdown of grace periods is constant
201  * regardless of the duration of the delay.  This arrangement balances
202  * the need for long delays to increase some race probabilities with the
203  * need for fast grace periods to increase other race probabilities.
204  */
205 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
206 
207 /*
208  * Track the rcutorture test sequence number and the update version
209  * number within a given test.  The rcutorture_testseq is incremented
210  * on every rcutorture module load and unload, so has an odd value
211  * when a test is running.  The rcutorture_vernum is set to zero
212  * when rcutorture starts and is incremented on each rcutorture update.
213  * These variables enable correlating rcutorture output with the
214  * RCU tracing information.
215  */
216 unsigned long rcutorture_testseq;
217 unsigned long rcutorture_vernum;
218 
219 /*
220  * Compute the mask of online CPUs for the specified rcu_node structure.
221  * This will not be stable unless the rcu_node structure's ->lock is
222  * held, but the bit corresponding to the current CPU will be stable
223  * in most contexts.
224  */
225 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
226 {
227 	return READ_ONCE(rnp->qsmaskinitnext);
228 }
229 
230 /*
231  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
232  * permit this function to be invoked without holding the root rcu_node
233  * structure's ->lock, but of course results can be subject to change.
234  */
235 static int rcu_gp_in_progress(struct rcu_state *rsp)
236 {
237 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
238 }
239 
240 /*
241  * Note a quiescent state.  Because we do not need to know
242  * how many quiescent states passed, just if there was at least
243  * one since the start of the grace period, this just sets a flag.
244  * The caller must have disabled preemption.
245  */
246 void rcu_sched_qs(void)
247 {
248 	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
249 		trace_rcu_grace_period(TPS("rcu_sched"),
250 				       __this_cpu_read(rcu_sched_data.gpnum),
251 				       TPS("cpuqs"));
252 		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
253 	}
254 }
255 
256 void rcu_bh_qs(void)
257 {
258 	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
259 		trace_rcu_grace_period(TPS("rcu_bh"),
260 				       __this_cpu_read(rcu_bh_data.gpnum),
261 				       TPS("cpuqs"));
262 		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
263 	}
264 }
265 
266 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
267 
268 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
269 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
270 	.dynticks = ATOMIC_INIT(1),
271 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
272 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
273 	.dynticks_idle = ATOMIC_INIT(1),
274 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
275 };
276 
277 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
278 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
279 
280 /*
281  * Let the RCU core know that this CPU has gone through the scheduler,
282  * which is a quiescent state.  This is called when the need for a
283  * quiescent state is urgent, so we burn an atomic operation and full
284  * memory barriers to let the RCU core know about it, regardless of what
285  * this CPU might (or might not) do in the near future.
286  *
287  * We inform the RCU core by emulating a zero-duration dyntick-idle
288  * period, which we in turn do by incrementing the ->dynticks counter
289  * by two.
290  */
291 static void rcu_momentary_dyntick_idle(void)
292 {
293 	unsigned long flags;
294 	struct rcu_data *rdp;
295 	struct rcu_dynticks *rdtp;
296 	int resched_mask;
297 	struct rcu_state *rsp;
298 
299 	local_irq_save(flags);
300 
301 	/*
302 	 * Yes, we can lose flag-setting operations.  This is OK, because
303 	 * the flag will be set again after some delay.
304 	 */
305 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
306 	raw_cpu_write(rcu_sched_qs_mask, 0);
307 
308 	/* Find the flavor that needs a quiescent state. */
309 	for_each_rcu_flavor(rsp) {
310 		rdp = raw_cpu_ptr(rsp->rda);
311 		if (!(resched_mask & rsp->flavor_mask))
312 			continue;
313 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 		if (READ_ONCE(rdp->mynode->completed) !=
315 		    READ_ONCE(rdp->cond_resched_completed))
316 			continue;
317 
318 		/*
319 		 * Pretend to be momentarily idle for the quiescent state.
320 		 * This allows the grace-period kthread to record the
321 		 * quiescent state, with no need for this CPU to do anything
322 		 * further.
323 		 */
324 		rdtp = this_cpu_ptr(&rcu_dynticks);
325 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
326 		atomic_add(2, &rdtp->dynticks);  /* QS. */
327 		smp_mb__after_atomic(); /* Later stuff after QS. */
328 		break;
329 	}
330 	local_irq_restore(flags);
331 }
332 
333 /*
334  * Note a context switch.  This is a quiescent state for RCU-sched,
335  * and requires special handling for preemptible RCU.
336  * The caller must have disabled preemption.
337  */
338 void rcu_note_context_switch(void)
339 {
340 	trace_rcu_utilization(TPS("Start context switch"));
341 	rcu_sched_qs();
342 	rcu_preempt_note_context_switch();
343 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
344 		rcu_momentary_dyntick_idle();
345 	trace_rcu_utilization(TPS("End context switch"));
346 }
347 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
348 
349 /*
350  * Register a quiescent state for all RCU flavors.  If there is an
351  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
352  * dyntick-idle quiescent state visible to other CPUs (but only for those
353  * RCU flavors in desperate need of a quiescent state, which will normally
354  * be none of them).  Either way, do a lightweight quiescent state for
355  * all RCU flavors.
356  */
357 void rcu_all_qs(void)
358 {
359 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
360 		rcu_momentary_dyntick_idle();
361 	this_cpu_inc(rcu_qs_ctr);
362 }
363 EXPORT_SYMBOL_GPL(rcu_all_qs);
364 
365 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
366 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
367 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
368 
369 module_param(blimit, long, 0444);
370 module_param(qhimark, long, 0444);
371 module_param(qlowmark, long, 0444);
372 
373 static ulong jiffies_till_first_fqs = ULONG_MAX;
374 static ulong jiffies_till_next_fqs = ULONG_MAX;
375 
376 module_param(jiffies_till_first_fqs, ulong, 0644);
377 module_param(jiffies_till_next_fqs, ulong, 0644);
378 
379 /*
380  * How long the grace period must be before we start recruiting
381  * quiescent-state help from rcu_note_context_switch().
382  */
383 static ulong jiffies_till_sched_qs = HZ / 20;
384 module_param(jiffies_till_sched_qs, ulong, 0644);
385 
386 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
387 				  struct rcu_data *rdp);
388 static void force_qs_rnp(struct rcu_state *rsp,
389 			 int (*f)(struct rcu_data *rsp, bool *isidle,
390 				  unsigned long *maxj),
391 			 bool *isidle, unsigned long *maxj);
392 static void force_quiescent_state(struct rcu_state *rsp);
393 static int rcu_pending(void);
394 
395 /*
396  * Return the number of RCU batches started thus far for debug & stats.
397  */
398 unsigned long rcu_batches_started(void)
399 {
400 	return rcu_state_p->gpnum;
401 }
402 EXPORT_SYMBOL_GPL(rcu_batches_started);
403 
404 /*
405  * Return the number of RCU-sched batches started thus far for debug & stats.
406  */
407 unsigned long rcu_batches_started_sched(void)
408 {
409 	return rcu_sched_state.gpnum;
410 }
411 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
412 
413 /*
414  * Return the number of RCU BH batches started thus far for debug & stats.
415  */
416 unsigned long rcu_batches_started_bh(void)
417 {
418 	return rcu_bh_state.gpnum;
419 }
420 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
421 
422 /*
423  * Return the number of RCU batches completed thus far for debug & stats.
424  */
425 unsigned long rcu_batches_completed(void)
426 {
427 	return rcu_state_p->completed;
428 }
429 EXPORT_SYMBOL_GPL(rcu_batches_completed);
430 
431 /*
432  * Return the number of RCU-sched batches completed thus far for debug & stats.
433  */
434 unsigned long rcu_batches_completed_sched(void)
435 {
436 	return rcu_sched_state.completed;
437 }
438 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
439 
440 /*
441  * Return the number of RCU BH batches completed thus far for debug & stats.
442  */
443 unsigned long rcu_batches_completed_bh(void)
444 {
445 	return rcu_bh_state.completed;
446 }
447 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
448 
449 /*
450  * Force a quiescent state.
451  */
452 void rcu_force_quiescent_state(void)
453 {
454 	force_quiescent_state(rcu_state_p);
455 }
456 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
457 
458 /*
459  * Force a quiescent state for RCU BH.
460  */
461 void rcu_bh_force_quiescent_state(void)
462 {
463 	force_quiescent_state(&rcu_bh_state);
464 }
465 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
466 
467 /*
468  * Force a quiescent state for RCU-sched.
469  */
470 void rcu_sched_force_quiescent_state(void)
471 {
472 	force_quiescent_state(&rcu_sched_state);
473 }
474 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
475 
476 /*
477  * Show the state of the grace-period kthreads.
478  */
479 void show_rcu_gp_kthreads(void)
480 {
481 	struct rcu_state *rsp;
482 
483 	for_each_rcu_flavor(rsp) {
484 		pr_info("%s: wait state: %d ->state: %#lx\n",
485 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
486 		/* sched_show_task(rsp->gp_kthread); */
487 	}
488 }
489 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
490 
491 /*
492  * Record the number of times rcutorture tests have been initiated and
493  * terminated.  This information allows the debugfs tracing stats to be
494  * correlated to the rcutorture messages, even when the rcutorture module
495  * is being repeatedly loaded and unloaded.  In other words, we cannot
496  * store this state in rcutorture itself.
497  */
498 void rcutorture_record_test_transition(void)
499 {
500 	rcutorture_testseq++;
501 	rcutorture_vernum = 0;
502 }
503 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
504 
505 /*
506  * Send along grace-period-related data for rcutorture diagnostics.
507  */
508 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
509 			    unsigned long *gpnum, unsigned long *completed)
510 {
511 	struct rcu_state *rsp = NULL;
512 
513 	switch (test_type) {
514 	case RCU_FLAVOR:
515 		rsp = rcu_state_p;
516 		break;
517 	case RCU_BH_FLAVOR:
518 		rsp = &rcu_bh_state;
519 		break;
520 	case RCU_SCHED_FLAVOR:
521 		rsp = &rcu_sched_state;
522 		break;
523 	default:
524 		break;
525 	}
526 	if (rsp != NULL) {
527 		*flags = READ_ONCE(rsp->gp_flags);
528 		*gpnum = READ_ONCE(rsp->gpnum);
529 		*completed = READ_ONCE(rsp->completed);
530 		return;
531 	}
532 	*flags = 0;
533 	*gpnum = 0;
534 	*completed = 0;
535 }
536 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
537 
538 /*
539  * Record the number of writer passes through the current rcutorture test.
540  * This is also used to correlate debugfs tracing stats with the rcutorture
541  * messages.
542  */
543 void rcutorture_record_progress(unsigned long vernum)
544 {
545 	rcutorture_vernum++;
546 }
547 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
548 
549 /*
550  * Does the CPU have callbacks ready to be invoked?
551  */
552 static int
553 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
554 {
555 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
556 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
557 }
558 
559 /*
560  * Return the root node of the specified rcu_state structure.
561  */
562 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
563 {
564 	return &rsp->node[0];
565 }
566 
567 /*
568  * Is there any need for future grace periods?
569  * Interrupts must be disabled.  If the caller does not hold the root
570  * rnp_node structure's ->lock, the results are advisory only.
571  */
572 static int rcu_future_needs_gp(struct rcu_state *rsp)
573 {
574 	struct rcu_node *rnp = rcu_get_root(rsp);
575 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
576 	int *fp = &rnp->need_future_gp[idx];
577 
578 	return READ_ONCE(*fp);
579 }
580 
581 /*
582  * Does the current CPU require a not-yet-started grace period?
583  * The caller must have disabled interrupts to prevent races with
584  * normal callback registry.
585  */
586 static int
587 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
588 {
589 	int i;
590 
591 	if (rcu_gp_in_progress(rsp))
592 		return 0;  /* No, a grace period is already in progress. */
593 	if (rcu_future_needs_gp(rsp))
594 		return 1;  /* Yes, a no-CBs CPU needs one. */
595 	if (!rdp->nxttail[RCU_NEXT_TAIL])
596 		return 0;  /* No, this is a no-CBs (or offline) CPU. */
597 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
598 		return 1;  /* Yes, this CPU has newly registered callbacks. */
599 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
600 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
601 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
602 				 rdp->nxtcompleted[i]))
603 			return 1;  /* Yes, CBs for future grace period. */
604 	return 0; /* No grace period needed. */
605 }
606 
607 /*
608  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
609  *
610  * If the new value of the ->dynticks_nesting counter now is zero,
611  * we really have entered idle, and must do the appropriate accounting.
612  * The caller must have disabled interrupts.
613  */
614 static void rcu_eqs_enter_common(long long oldval, bool user)
615 {
616 	struct rcu_state *rsp;
617 	struct rcu_data *rdp;
618 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
619 
620 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
621 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
622 	    !user && !is_idle_task(current)) {
623 		struct task_struct *idle __maybe_unused =
624 			idle_task(smp_processor_id());
625 
626 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
627 		ftrace_dump(DUMP_ORIG);
628 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
629 			  current->pid, current->comm,
630 			  idle->pid, idle->comm); /* must be idle task! */
631 	}
632 	for_each_rcu_flavor(rsp) {
633 		rdp = this_cpu_ptr(rsp->rda);
634 		do_nocb_deferred_wakeup(rdp);
635 	}
636 	rcu_prepare_for_idle();
637 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
638 	smp_mb__before_atomic();  /* See above. */
639 	atomic_inc(&rdtp->dynticks);
640 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
641 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
642 		     atomic_read(&rdtp->dynticks) & 0x1);
643 	rcu_dynticks_task_enter();
644 
645 	/*
646 	 * It is illegal to enter an extended quiescent state while
647 	 * in an RCU read-side critical section.
648 	 */
649 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
650 			 "Illegal idle entry in RCU read-side critical section.");
651 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
652 			 "Illegal idle entry in RCU-bh read-side critical section.");
653 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
654 			 "Illegal idle entry in RCU-sched read-side critical section.");
655 }
656 
657 /*
658  * Enter an RCU extended quiescent state, which can be either the
659  * idle loop or adaptive-tickless usermode execution.
660  */
661 static void rcu_eqs_enter(bool user)
662 {
663 	long long oldval;
664 	struct rcu_dynticks *rdtp;
665 
666 	rdtp = this_cpu_ptr(&rcu_dynticks);
667 	oldval = rdtp->dynticks_nesting;
668 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
669 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
670 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
671 		rdtp->dynticks_nesting = 0;
672 		rcu_eqs_enter_common(oldval, user);
673 	} else {
674 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
675 	}
676 }
677 
678 /**
679  * rcu_idle_enter - inform RCU that current CPU is entering idle
680  *
681  * Enter idle mode, in other words, -leave- the mode in which RCU
682  * read-side critical sections can occur.  (Though RCU read-side
683  * critical sections can occur in irq handlers in idle, a possibility
684  * handled by irq_enter() and irq_exit().)
685  *
686  * We crowbar the ->dynticks_nesting field to zero to allow for
687  * the possibility of usermode upcalls having messed up our count
688  * of interrupt nesting level during the prior busy period.
689  */
690 void rcu_idle_enter(void)
691 {
692 	unsigned long flags;
693 
694 	local_irq_save(flags);
695 	rcu_eqs_enter(false);
696 	rcu_sysidle_enter(0);
697 	local_irq_restore(flags);
698 }
699 EXPORT_SYMBOL_GPL(rcu_idle_enter);
700 
701 #ifdef CONFIG_NO_HZ_FULL
702 /**
703  * rcu_user_enter - inform RCU that we are resuming userspace.
704  *
705  * Enter RCU idle mode right before resuming userspace.  No use of RCU
706  * is permitted between this call and rcu_user_exit(). This way the
707  * CPU doesn't need to maintain the tick for RCU maintenance purposes
708  * when the CPU runs in userspace.
709  */
710 void rcu_user_enter(void)
711 {
712 	rcu_eqs_enter(1);
713 }
714 #endif /* CONFIG_NO_HZ_FULL */
715 
716 /**
717  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
718  *
719  * Exit from an interrupt handler, which might possibly result in entering
720  * idle mode, in other words, leaving the mode in which read-side critical
721  * sections can occur.
722  *
723  * This code assumes that the idle loop never does anything that might
724  * result in unbalanced calls to irq_enter() and irq_exit().  If your
725  * architecture violates this assumption, RCU will give you what you
726  * deserve, good and hard.  But very infrequently and irreproducibly.
727  *
728  * Use things like work queues to work around this limitation.
729  *
730  * You have been warned.
731  */
732 void rcu_irq_exit(void)
733 {
734 	unsigned long flags;
735 	long long oldval;
736 	struct rcu_dynticks *rdtp;
737 
738 	local_irq_save(flags);
739 	rdtp = this_cpu_ptr(&rcu_dynticks);
740 	oldval = rdtp->dynticks_nesting;
741 	rdtp->dynticks_nesting--;
742 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
743 		     rdtp->dynticks_nesting < 0);
744 	if (rdtp->dynticks_nesting)
745 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
746 	else
747 		rcu_eqs_enter_common(oldval, true);
748 	rcu_sysidle_enter(1);
749 	local_irq_restore(flags);
750 }
751 
752 /*
753  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
754  *
755  * If the new value of the ->dynticks_nesting counter was previously zero,
756  * we really have exited idle, and must do the appropriate accounting.
757  * The caller must have disabled interrupts.
758  */
759 static void rcu_eqs_exit_common(long long oldval, int user)
760 {
761 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
762 
763 	rcu_dynticks_task_exit();
764 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
765 	atomic_inc(&rdtp->dynticks);
766 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
767 	smp_mb__after_atomic();  /* See above. */
768 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
769 		     !(atomic_read(&rdtp->dynticks) & 0x1));
770 	rcu_cleanup_after_idle();
771 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
772 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
773 	    !user && !is_idle_task(current)) {
774 		struct task_struct *idle __maybe_unused =
775 			idle_task(smp_processor_id());
776 
777 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
778 				  oldval, rdtp->dynticks_nesting);
779 		ftrace_dump(DUMP_ORIG);
780 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
781 			  current->pid, current->comm,
782 			  idle->pid, idle->comm); /* must be idle task! */
783 	}
784 }
785 
786 /*
787  * Exit an RCU extended quiescent state, which can be either the
788  * idle loop or adaptive-tickless usermode execution.
789  */
790 static void rcu_eqs_exit(bool user)
791 {
792 	struct rcu_dynticks *rdtp;
793 	long long oldval;
794 
795 	rdtp = this_cpu_ptr(&rcu_dynticks);
796 	oldval = rdtp->dynticks_nesting;
797 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
798 	if (oldval & DYNTICK_TASK_NEST_MASK) {
799 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
800 	} else {
801 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
802 		rcu_eqs_exit_common(oldval, user);
803 	}
804 }
805 
806 /**
807  * rcu_idle_exit - inform RCU that current CPU is leaving idle
808  *
809  * Exit idle mode, in other words, -enter- the mode in which RCU
810  * read-side critical sections can occur.
811  *
812  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
813  * allow for the possibility of usermode upcalls messing up our count
814  * of interrupt nesting level during the busy period that is just
815  * now starting.
816  */
817 void rcu_idle_exit(void)
818 {
819 	unsigned long flags;
820 
821 	local_irq_save(flags);
822 	rcu_eqs_exit(false);
823 	rcu_sysidle_exit(0);
824 	local_irq_restore(flags);
825 }
826 EXPORT_SYMBOL_GPL(rcu_idle_exit);
827 
828 #ifdef CONFIG_NO_HZ_FULL
829 /**
830  * rcu_user_exit - inform RCU that we are exiting userspace.
831  *
832  * Exit RCU idle mode while entering the kernel because it can
833  * run a RCU read side critical section anytime.
834  */
835 void rcu_user_exit(void)
836 {
837 	rcu_eqs_exit(1);
838 }
839 #endif /* CONFIG_NO_HZ_FULL */
840 
841 /**
842  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
843  *
844  * Enter an interrupt handler, which might possibly result in exiting
845  * idle mode, in other words, entering the mode in which read-side critical
846  * sections can occur.
847  *
848  * Note that the Linux kernel is fully capable of entering an interrupt
849  * handler that it never exits, for example when doing upcalls to
850  * user mode!  This code assumes that the idle loop never does upcalls to
851  * user mode.  If your architecture does do upcalls from the idle loop (or
852  * does anything else that results in unbalanced calls to the irq_enter()
853  * and irq_exit() functions), RCU will give you what you deserve, good
854  * and hard.  But very infrequently and irreproducibly.
855  *
856  * Use things like work queues to work around this limitation.
857  *
858  * You have been warned.
859  */
860 void rcu_irq_enter(void)
861 {
862 	unsigned long flags;
863 	struct rcu_dynticks *rdtp;
864 	long long oldval;
865 
866 	local_irq_save(flags);
867 	rdtp = this_cpu_ptr(&rcu_dynticks);
868 	oldval = rdtp->dynticks_nesting;
869 	rdtp->dynticks_nesting++;
870 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
871 		     rdtp->dynticks_nesting == 0);
872 	if (oldval)
873 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
874 	else
875 		rcu_eqs_exit_common(oldval, true);
876 	rcu_sysidle_exit(1);
877 	local_irq_restore(flags);
878 }
879 
880 /**
881  * rcu_nmi_enter - inform RCU of entry to NMI context
882  *
883  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
884  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
885  * that the CPU is active.  This implementation permits nested NMIs, as
886  * long as the nesting level does not overflow an int.  (You will probably
887  * run out of stack space first.)
888  */
889 void rcu_nmi_enter(void)
890 {
891 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
892 	int incby = 2;
893 
894 	/* Complain about underflow. */
895 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
896 
897 	/*
898 	 * If idle from RCU viewpoint, atomically increment ->dynticks
899 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
900 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
901 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
902 	 * to be in the outermost NMI handler that interrupted an RCU-idle
903 	 * period (observation due to Andy Lutomirski).
904 	 */
905 	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
906 		smp_mb__before_atomic();  /* Force delay from prior write. */
907 		atomic_inc(&rdtp->dynticks);
908 		/* atomic_inc() before later RCU read-side crit sects */
909 		smp_mb__after_atomic();  /* See above. */
910 		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
911 		incby = 1;
912 	}
913 	rdtp->dynticks_nmi_nesting += incby;
914 	barrier();
915 }
916 
917 /**
918  * rcu_nmi_exit - inform RCU of exit from NMI context
919  *
920  * If we are returning from the outermost NMI handler that interrupted an
921  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
922  * to let the RCU grace-period handling know that the CPU is back to
923  * being RCU-idle.
924  */
925 void rcu_nmi_exit(void)
926 {
927 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
928 
929 	/*
930 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
931 	 * (We are exiting an NMI handler, so RCU better be paying attention
932 	 * to us!)
933 	 */
934 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
935 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
936 
937 	/*
938 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
939 	 * leave it in non-RCU-idle state.
940 	 */
941 	if (rdtp->dynticks_nmi_nesting != 1) {
942 		rdtp->dynticks_nmi_nesting -= 2;
943 		return;
944 	}
945 
946 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
947 	rdtp->dynticks_nmi_nesting = 0;
948 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
949 	smp_mb__before_atomic();  /* See above. */
950 	atomic_inc(&rdtp->dynticks);
951 	smp_mb__after_atomic();  /* Force delay to next write. */
952 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
953 }
954 
955 /**
956  * __rcu_is_watching - are RCU read-side critical sections safe?
957  *
958  * Return true if RCU is watching the running CPU, which means that
959  * this CPU can safely enter RCU read-side critical sections.  Unlike
960  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
961  * least disabled preemption.
962  */
963 bool notrace __rcu_is_watching(void)
964 {
965 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
966 }
967 
968 /**
969  * rcu_is_watching - see if RCU thinks that the current CPU is idle
970  *
971  * If the current CPU is in its idle loop and is neither in an interrupt
972  * or NMI handler, return true.
973  */
974 bool notrace rcu_is_watching(void)
975 {
976 	bool ret;
977 
978 	preempt_disable_notrace();
979 	ret = __rcu_is_watching();
980 	preempt_enable_notrace();
981 	return ret;
982 }
983 EXPORT_SYMBOL_GPL(rcu_is_watching);
984 
985 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
986 
987 /*
988  * Is the current CPU online?  Disable preemption to avoid false positives
989  * that could otherwise happen due to the current CPU number being sampled,
990  * this task being preempted, its old CPU being taken offline, resuming
991  * on some other CPU, then determining that its old CPU is now offline.
992  * It is OK to use RCU on an offline processor during initial boot, hence
993  * the check for rcu_scheduler_fully_active.  Note also that it is OK
994  * for a CPU coming online to use RCU for one jiffy prior to marking itself
995  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
996  * offline to continue to use RCU for one jiffy after marking itself
997  * offline in the cpu_online_mask.  This leniency is necessary given the
998  * non-atomic nature of the online and offline processing, for example,
999  * the fact that a CPU enters the scheduler after completing the CPU_DYING
1000  * notifiers.
1001  *
1002  * This is also why RCU internally marks CPUs online during the
1003  * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1004  *
1005  * Disable checking if in an NMI handler because we cannot safely report
1006  * errors from NMI handlers anyway.
1007  */
1008 bool rcu_lockdep_current_cpu_online(void)
1009 {
1010 	struct rcu_data *rdp;
1011 	struct rcu_node *rnp;
1012 	bool ret;
1013 
1014 	if (in_nmi())
1015 		return true;
1016 	preempt_disable();
1017 	rdp = this_cpu_ptr(&rcu_sched_data);
1018 	rnp = rdp->mynode;
1019 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1020 	      !rcu_scheduler_fully_active;
1021 	preempt_enable();
1022 	return ret;
1023 }
1024 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1025 
1026 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1027 
1028 /**
1029  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1030  *
1031  * If the current CPU is idle or running at a first-level (not nested)
1032  * interrupt from idle, return true.  The caller must have at least
1033  * disabled preemption.
1034  */
1035 static int rcu_is_cpu_rrupt_from_idle(void)
1036 {
1037 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1038 }
1039 
1040 /*
1041  * Snapshot the specified CPU's dynticks counter so that we can later
1042  * credit them with an implicit quiescent state.  Return 1 if this CPU
1043  * is in dynticks idle mode, which is an extended quiescent state.
1044  */
1045 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1046 					 bool *isidle, unsigned long *maxj)
1047 {
1048 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1049 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1050 	if ((rdp->dynticks_snap & 0x1) == 0) {
1051 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1052 		return 1;
1053 	} else {
1054 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1055 				 rdp->mynode->gpnum))
1056 			WRITE_ONCE(rdp->gpwrap, true);
1057 		return 0;
1058 	}
1059 }
1060 
1061 /*
1062  * Return true if the specified CPU has passed through a quiescent
1063  * state by virtue of being in or having passed through an dynticks
1064  * idle state since the last call to dyntick_save_progress_counter()
1065  * for this same CPU, or by virtue of having been offline.
1066  */
1067 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1068 				    bool *isidle, unsigned long *maxj)
1069 {
1070 	unsigned int curr;
1071 	int *rcrmp;
1072 	unsigned int snap;
1073 
1074 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1075 	snap = (unsigned int)rdp->dynticks_snap;
1076 
1077 	/*
1078 	 * If the CPU passed through or entered a dynticks idle phase with
1079 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1080 	 * already acknowledged the request to pass through a quiescent
1081 	 * state.  Either way, that CPU cannot possibly be in an RCU
1082 	 * read-side critical section that started before the beginning
1083 	 * of the current RCU grace period.
1084 	 */
1085 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1086 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1087 		rdp->dynticks_fqs++;
1088 		return 1;
1089 	}
1090 
1091 	/*
1092 	 * Check for the CPU being offline, but only if the grace period
1093 	 * is old enough.  We don't need to worry about the CPU changing
1094 	 * state: If we see it offline even once, it has been through a
1095 	 * quiescent state.
1096 	 *
1097 	 * The reason for insisting that the grace period be at least
1098 	 * one jiffy old is that CPUs that are not quite online and that
1099 	 * have just gone offline can still execute RCU read-side critical
1100 	 * sections.
1101 	 */
1102 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1103 		return 0;  /* Grace period is not old enough. */
1104 	barrier();
1105 	if (cpu_is_offline(rdp->cpu)) {
1106 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1107 		rdp->offline_fqs++;
1108 		return 1;
1109 	}
1110 
1111 	/*
1112 	 * A CPU running for an extended time within the kernel can
1113 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1114 	 * even context-switching back and forth between a pair of
1115 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1116 	 * So if the grace period is old enough, make the CPU pay attention.
1117 	 * Note that the unsynchronized assignments to the per-CPU
1118 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1119 	 * bits can be lost, but they will be set again on the next
1120 	 * force-quiescent-state pass.  So lost bit sets do not result
1121 	 * in incorrect behavior, merely in a grace period lasting
1122 	 * a few jiffies longer than it might otherwise.  Because
1123 	 * there are at most four threads involved, and because the
1124 	 * updates are only once every few jiffies, the probability of
1125 	 * lossage (and thus of slight grace-period extension) is
1126 	 * quite low.
1127 	 *
1128 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1129 	 * is set too high, we override with half of the RCU CPU stall
1130 	 * warning delay.
1131 	 */
1132 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1133 	if (ULONG_CMP_GE(jiffies,
1134 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1135 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1136 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1137 			WRITE_ONCE(rdp->cond_resched_completed,
1138 				   READ_ONCE(rdp->mynode->completed));
1139 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1140 			WRITE_ONCE(*rcrmp,
1141 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1142 			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1143 			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1144 		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1145 			/* Time to beat on that CPU again! */
1146 			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1147 			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1148 		}
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static void record_gp_stall_check_time(struct rcu_state *rsp)
1155 {
1156 	unsigned long j = jiffies;
1157 	unsigned long j1;
1158 
1159 	rsp->gp_start = j;
1160 	smp_wmb(); /* Record start time before stall time. */
1161 	j1 = rcu_jiffies_till_stall_check();
1162 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1163 	rsp->jiffies_resched = j + j1 / 2;
1164 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1165 }
1166 
1167 /*
1168  * Complain about starvation of grace-period kthread.
1169  */
1170 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1171 {
1172 	unsigned long gpa;
1173 	unsigned long j;
1174 
1175 	j = jiffies;
1176 	gpa = READ_ONCE(rsp->gp_activity);
1177 	if (j - gpa > 2 * HZ)
1178 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1179 		       rsp->name, j - gpa,
1180 		       rsp->gpnum, rsp->completed,
1181 		       rsp->gp_flags, rsp->gp_state,
1182 		       rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1183 }
1184 
1185 /*
1186  * Dump stacks of all tasks running on stalled CPUs.
1187  */
1188 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1189 {
1190 	int cpu;
1191 	unsigned long flags;
1192 	struct rcu_node *rnp;
1193 
1194 	rcu_for_each_leaf_node(rsp, rnp) {
1195 		raw_spin_lock_irqsave(&rnp->lock, flags);
1196 		if (rnp->qsmask != 0) {
1197 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1198 				if (rnp->qsmask & (1UL << cpu))
1199 					dump_cpu_task(rnp->grplo + cpu);
1200 		}
1201 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1202 	}
1203 }
1204 
1205 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1206 {
1207 	int cpu;
1208 	long delta;
1209 	unsigned long flags;
1210 	unsigned long gpa;
1211 	unsigned long j;
1212 	int ndetected = 0;
1213 	struct rcu_node *rnp = rcu_get_root(rsp);
1214 	long totqlen = 0;
1215 
1216 	/* Only let one CPU complain about others per time interval. */
1217 
1218 	raw_spin_lock_irqsave(&rnp->lock, flags);
1219 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1220 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1221 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1222 		return;
1223 	}
1224 	WRITE_ONCE(rsp->jiffies_stall,
1225 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1226 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1227 
1228 	/*
1229 	 * OK, time to rat on our buddy...
1230 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1231 	 * RCU CPU stall warnings.
1232 	 */
1233 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1234 	       rsp->name);
1235 	print_cpu_stall_info_begin();
1236 	rcu_for_each_leaf_node(rsp, rnp) {
1237 		raw_spin_lock_irqsave(&rnp->lock, flags);
1238 		ndetected += rcu_print_task_stall(rnp);
1239 		if (rnp->qsmask != 0) {
1240 			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1241 				if (rnp->qsmask & (1UL << cpu)) {
1242 					print_cpu_stall_info(rsp,
1243 							     rnp->grplo + cpu);
1244 					ndetected++;
1245 				}
1246 		}
1247 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1248 	}
1249 
1250 	print_cpu_stall_info_end();
1251 	for_each_possible_cpu(cpu)
1252 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1253 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1254 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1255 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1256 	if (ndetected) {
1257 		rcu_dump_cpu_stacks(rsp);
1258 	} else {
1259 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1260 		    READ_ONCE(rsp->completed) == gpnum) {
1261 			pr_err("INFO: Stall ended before state dump start\n");
1262 		} else {
1263 			j = jiffies;
1264 			gpa = READ_ONCE(rsp->gp_activity);
1265 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1266 			       rsp->name, j - gpa, j, gpa,
1267 			       jiffies_till_next_fqs,
1268 			       rcu_get_root(rsp)->qsmask);
1269 			/* In this case, the current CPU might be at fault. */
1270 			sched_show_task(current);
1271 		}
1272 	}
1273 
1274 	/* Complain about tasks blocking the grace period. */
1275 	rcu_print_detail_task_stall(rsp);
1276 
1277 	rcu_check_gp_kthread_starvation(rsp);
1278 
1279 	force_quiescent_state(rsp);  /* Kick them all. */
1280 }
1281 
1282 static void print_cpu_stall(struct rcu_state *rsp)
1283 {
1284 	int cpu;
1285 	unsigned long flags;
1286 	struct rcu_node *rnp = rcu_get_root(rsp);
1287 	long totqlen = 0;
1288 
1289 	/*
1290 	 * OK, time to rat on ourselves...
1291 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1292 	 * RCU CPU stall warnings.
1293 	 */
1294 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1295 	print_cpu_stall_info_begin();
1296 	print_cpu_stall_info(rsp, smp_processor_id());
1297 	print_cpu_stall_info_end();
1298 	for_each_possible_cpu(cpu)
1299 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1300 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1301 		jiffies - rsp->gp_start,
1302 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1303 
1304 	rcu_check_gp_kthread_starvation(rsp);
1305 
1306 	rcu_dump_cpu_stacks(rsp);
1307 
1308 	raw_spin_lock_irqsave(&rnp->lock, flags);
1309 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1310 		WRITE_ONCE(rsp->jiffies_stall,
1311 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1312 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1313 
1314 	/*
1315 	 * Attempt to revive the RCU machinery by forcing a context switch.
1316 	 *
1317 	 * A context switch would normally allow the RCU state machine to make
1318 	 * progress and it could be we're stuck in kernel space without context
1319 	 * switches for an entirely unreasonable amount of time.
1320 	 */
1321 	resched_cpu(smp_processor_id());
1322 }
1323 
1324 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1325 {
1326 	unsigned long completed;
1327 	unsigned long gpnum;
1328 	unsigned long gps;
1329 	unsigned long j;
1330 	unsigned long js;
1331 	struct rcu_node *rnp;
1332 
1333 	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1334 		return;
1335 	j = jiffies;
1336 
1337 	/*
1338 	 * Lots of memory barriers to reject false positives.
1339 	 *
1340 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1341 	 * then rsp->gp_start, and finally rsp->completed.  These values
1342 	 * are updated in the opposite order with memory barriers (or
1343 	 * equivalent) during grace-period initialization and cleanup.
1344 	 * Now, a false positive can occur if we get an new value of
1345 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1346 	 * the memory barriers, the only way that this can happen is if one
1347 	 * grace period ends and another starts between these two fetches.
1348 	 * Detect this by comparing rsp->completed with the previous fetch
1349 	 * from rsp->gpnum.
1350 	 *
1351 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1352 	 * and rsp->gp_start suffice to forestall false positives.
1353 	 */
1354 	gpnum = READ_ONCE(rsp->gpnum);
1355 	smp_rmb(); /* Pick up ->gpnum first... */
1356 	js = READ_ONCE(rsp->jiffies_stall);
1357 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1358 	gps = READ_ONCE(rsp->gp_start);
1359 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1360 	completed = READ_ONCE(rsp->completed);
1361 	if (ULONG_CMP_GE(completed, gpnum) ||
1362 	    ULONG_CMP_LT(j, js) ||
1363 	    ULONG_CMP_GE(gps, js))
1364 		return; /* No stall or GP completed since entering function. */
1365 	rnp = rdp->mynode;
1366 	if (rcu_gp_in_progress(rsp) &&
1367 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1368 
1369 		/* We haven't checked in, so go dump stack. */
1370 		print_cpu_stall(rsp);
1371 
1372 	} else if (rcu_gp_in_progress(rsp) &&
1373 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1374 
1375 		/* They had a few time units to dump stack, so complain. */
1376 		print_other_cpu_stall(rsp, gpnum);
1377 	}
1378 }
1379 
1380 /**
1381  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1382  *
1383  * Set the stall-warning timeout way off into the future, thus preventing
1384  * any RCU CPU stall-warning messages from appearing in the current set of
1385  * RCU grace periods.
1386  *
1387  * The caller must disable hard irqs.
1388  */
1389 void rcu_cpu_stall_reset(void)
1390 {
1391 	struct rcu_state *rsp;
1392 
1393 	for_each_rcu_flavor(rsp)
1394 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1395 }
1396 
1397 /*
1398  * Initialize the specified rcu_data structure's default callback list
1399  * to empty.  The default callback list is the one that is not used by
1400  * no-callbacks CPUs.
1401  */
1402 static void init_default_callback_list(struct rcu_data *rdp)
1403 {
1404 	int i;
1405 
1406 	rdp->nxtlist = NULL;
1407 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1408 		rdp->nxttail[i] = &rdp->nxtlist;
1409 }
1410 
1411 /*
1412  * Initialize the specified rcu_data structure's callback list to empty.
1413  */
1414 static void init_callback_list(struct rcu_data *rdp)
1415 {
1416 	if (init_nocb_callback_list(rdp))
1417 		return;
1418 	init_default_callback_list(rdp);
1419 }
1420 
1421 /*
1422  * Determine the value that ->completed will have at the end of the
1423  * next subsequent grace period.  This is used to tag callbacks so that
1424  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1425  * been dyntick-idle for an extended period with callbacks under the
1426  * influence of RCU_FAST_NO_HZ.
1427  *
1428  * The caller must hold rnp->lock with interrupts disabled.
1429  */
1430 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1431 				       struct rcu_node *rnp)
1432 {
1433 	/*
1434 	 * If RCU is idle, we just wait for the next grace period.
1435 	 * But we can only be sure that RCU is idle if we are looking
1436 	 * at the root rcu_node structure -- otherwise, a new grace
1437 	 * period might have started, but just not yet gotten around
1438 	 * to initializing the current non-root rcu_node structure.
1439 	 */
1440 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1441 		return rnp->completed + 1;
1442 
1443 	/*
1444 	 * Otherwise, wait for a possible partial grace period and
1445 	 * then the subsequent full grace period.
1446 	 */
1447 	return rnp->completed + 2;
1448 }
1449 
1450 /*
1451  * Trace-event helper function for rcu_start_future_gp() and
1452  * rcu_nocb_wait_gp().
1453  */
1454 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1455 				unsigned long c, const char *s)
1456 {
1457 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1458 				      rnp->completed, c, rnp->level,
1459 				      rnp->grplo, rnp->grphi, s);
1460 }
1461 
1462 /*
1463  * Start some future grace period, as needed to handle newly arrived
1464  * callbacks.  The required future grace periods are recorded in each
1465  * rcu_node structure's ->need_future_gp field.  Returns true if there
1466  * is reason to awaken the grace-period kthread.
1467  *
1468  * The caller must hold the specified rcu_node structure's ->lock.
1469  */
1470 static bool __maybe_unused
1471 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1472 		    unsigned long *c_out)
1473 {
1474 	unsigned long c;
1475 	int i;
1476 	bool ret = false;
1477 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1478 
1479 	/*
1480 	 * Pick up grace-period number for new callbacks.  If this
1481 	 * grace period is already marked as needed, return to the caller.
1482 	 */
1483 	c = rcu_cbs_completed(rdp->rsp, rnp);
1484 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1485 	if (rnp->need_future_gp[c & 0x1]) {
1486 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1487 		goto out;
1488 	}
1489 
1490 	/*
1491 	 * If either this rcu_node structure or the root rcu_node structure
1492 	 * believe that a grace period is in progress, then we must wait
1493 	 * for the one following, which is in "c".  Because our request
1494 	 * will be noticed at the end of the current grace period, we don't
1495 	 * need to explicitly start one.  We only do the lockless check
1496 	 * of rnp_root's fields if the current rcu_node structure thinks
1497 	 * there is no grace period in flight, and because we hold rnp->lock,
1498 	 * the only possible change is when rnp_root's two fields are
1499 	 * equal, in which case rnp_root->gpnum might be concurrently
1500 	 * incremented.  But that is OK, as it will just result in our
1501 	 * doing some extra useless work.
1502 	 */
1503 	if (rnp->gpnum != rnp->completed ||
1504 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1505 		rnp->need_future_gp[c & 0x1]++;
1506 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1507 		goto out;
1508 	}
1509 
1510 	/*
1511 	 * There might be no grace period in progress.  If we don't already
1512 	 * hold it, acquire the root rcu_node structure's lock in order to
1513 	 * start one (if needed).
1514 	 */
1515 	if (rnp != rnp_root) {
1516 		raw_spin_lock(&rnp_root->lock);
1517 		smp_mb__after_unlock_lock();
1518 	}
1519 
1520 	/*
1521 	 * Get a new grace-period number.  If there really is no grace
1522 	 * period in progress, it will be smaller than the one we obtained
1523 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1524 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1525 	 */
1526 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1527 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1528 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1529 			rdp->nxtcompleted[i] = c;
1530 
1531 	/*
1532 	 * If the needed for the required grace period is already
1533 	 * recorded, trace and leave.
1534 	 */
1535 	if (rnp_root->need_future_gp[c & 0x1]) {
1536 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1537 		goto unlock_out;
1538 	}
1539 
1540 	/* Record the need for the future grace period. */
1541 	rnp_root->need_future_gp[c & 0x1]++;
1542 
1543 	/* If a grace period is not already in progress, start one. */
1544 	if (rnp_root->gpnum != rnp_root->completed) {
1545 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1546 	} else {
1547 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1548 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1549 	}
1550 unlock_out:
1551 	if (rnp != rnp_root)
1552 		raw_spin_unlock(&rnp_root->lock);
1553 out:
1554 	if (c_out != NULL)
1555 		*c_out = c;
1556 	return ret;
1557 }
1558 
1559 /*
1560  * Clean up any old requests for the just-ended grace period.  Also return
1561  * whether any additional grace periods have been requested.  Also invoke
1562  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1563  * waiting for this grace period to complete.
1564  */
1565 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1566 {
1567 	int c = rnp->completed;
1568 	int needmore;
1569 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1570 
1571 	rcu_nocb_gp_cleanup(rsp, rnp);
1572 	rnp->need_future_gp[c & 0x1] = 0;
1573 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1574 	trace_rcu_future_gp(rnp, rdp, c,
1575 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1576 	return needmore;
1577 }
1578 
1579 /*
1580  * Awaken the grace-period kthread for the specified flavor of RCU.
1581  * Don't do a self-awaken, and don't bother awakening when there is
1582  * nothing for the grace-period kthread to do (as in several CPUs
1583  * raced to awaken, and we lost), and finally don't try to awaken
1584  * a kthread that has not yet been created.
1585  */
1586 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1587 {
1588 	if (current == rsp->gp_kthread ||
1589 	    !READ_ONCE(rsp->gp_flags) ||
1590 	    !rsp->gp_kthread)
1591 		return;
1592 	wake_up(&rsp->gp_wq);
1593 }
1594 
1595 /*
1596  * If there is room, assign a ->completed number to any callbacks on
1597  * this CPU that have not already been assigned.  Also accelerate any
1598  * callbacks that were previously assigned a ->completed number that has
1599  * since proven to be too conservative, which can happen if callbacks get
1600  * assigned a ->completed number while RCU is idle, but with reference to
1601  * a non-root rcu_node structure.  This function is idempotent, so it does
1602  * not hurt to call it repeatedly.  Returns an flag saying that we should
1603  * awaken the RCU grace-period kthread.
1604  *
1605  * The caller must hold rnp->lock with interrupts disabled.
1606  */
1607 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1608 			       struct rcu_data *rdp)
1609 {
1610 	unsigned long c;
1611 	int i;
1612 	bool ret;
1613 
1614 	/* If the CPU has no callbacks, nothing to do. */
1615 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1616 		return false;
1617 
1618 	/*
1619 	 * Starting from the sublist containing the callbacks most
1620 	 * recently assigned a ->completed number and working down, find the
1621 	 * first sublist that is not assignable to an upcoming grace period.
1622 	 * Such a sublist has something in it (first two tests) and has
1623 	 * a ->completed number assigned that will complete sooner than
1624 	 * the ->completed number for newly arrived callbacks (last test).
1625 	 *
1626 	 * The key point is that any later sublist can be assigned the
1627 	 * same ->completed number as the newly arrived callbacks, which
1628 	 * means that the callbacks in any of these later sublist can be
1629 	 * grouped into a single sublist, whether or not they have already
1630 	 * been assigned a ->completed number.
1631 	 */
1632 	c = rcu_cbs_completed(rsp, rnp);
1633 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1634 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1635 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1636 			break;
1637 
1638 	/*
1639 	 * If there are no sublist for unassigned callbacks, leave.
1640 	 * At the same time, advance "i" one sublist, so that "i" will
1641 	 * index into the sublist where all the remaining callbacks should
1642 	 * be grouped into.
1643 	 */
1644 	if (++i >= RCU_NEXT_TAIL)
1645 		return false;
1646 
1647 	/*
1648 	 * Assign all subsequent callbacks' ->completed number to the next
1649 	 * full grace period and group them all in the sublist initially
1650 	 * indexed by "i".
1651 	 */
1652 	for (; i <= RCU_NEXT_TAIL; i++) {
1653 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1654 		rdp->nxtcompleted[i] = c;
1655 	}
1656 	/* Record any needed additional grace periods. */
1657 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1658 
1659 	/* Trace depending on how much we were able to accelerate. */
1660 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1661 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1662 	else
1663 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1664 	return ret;
1665 }
1666 
1667 /*
1668  * Move any callbacks whose grace period has completed to the
1669  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1670  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1671  * sublist.  This function is idempotent, so it does not hurt to
1672  * invoke it repeatedly.  As long as it is not invoked -too- often...
1673  * Returns true if the RCU grace-period kthread needs to be awakened.
1674  *
1675  * The caller must hold rnp->lock with interrupts disabled.
1676  */
1677 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1678 			    struct rcu_data *rdp)
1679 {
1680 	int i, j;
1681 
1682 	/* If the CPU has no callbacks, nothing to do. */
1683 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1684 		return false;
1685 
1686 	/*
1687 	 * Find all callbacks whose ->completed numbers indicate that they
1688 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1689 	 */
1690 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1691 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1692 			break;
1693 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1694 	}
1695 	/* Clean up any sublist tail pointers that were misordered above. */
1696 	for (j = RCU_WAIT_TAIL; j < i; j++)
1697 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1698 
1699 	/* Copy down callbacks to fill in empty sublists. */
1700 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1701 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1702 			break;
1703 		rdp->nxttail[j] = rdp->nxttail[i];
1704 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1705 	}
1706 
1707 	/* Classify any remaining callbacks. */
1708 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1709 }
1710 
1711 /*
1712  * Update CPU-local rcu_data state to record the beginnings and ends of
1713  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1714  * structure corresponding to the current CPU, and must have irqs disabled.
1715  * Returns true if the grace-period kthread needs to be awakened.
1716  */
1717 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1718 			      struct rcu_data *rdp)
1719 {
1720 	bool ret;
1721 
1722 	/* Handle the ends of any preceding grace periods first. */
1723 	if (rdp->completed == rnp->completed &&
1724 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1725 
1726 		/* No grace period end, so just accelerate recent callbacks. */
1727 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1728 
1729 	} else {
1730 
1731 		/* Advance callbacks. */
1732 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1733 
1734 		/* Remember that we saw this grace-period completion. */
1735 		rdp->completed = rnp->completed;
1736 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1737 	}
1738 
1739 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1740 		/*
1741 		 * If the current grace period is waiting for this CPU,
1742 		 * set up to detect a quiescent state, otherwise don't
1743 		 * go looking for one.
1744 		 */
1745 		rdp->gpnum = rnp->gpnum;
1746 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1747 		rdp->passed_quiesce = 0;
1748 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1749 		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1750 		zero_cpu_stall_ticks(rdp);
1751 		WRITE_ONCE(rdp->gpwrap, false);
1752 	}
1753 	return ret;
1754 }
1755 
1756 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1757 {
1758 	unsigned long flags;
1759 	bool needwake;
1760 	struct rcu_node *rnp;
1761 
1762 	local_irq_save(flags);
1763 	rnp = rdp->mynode;
1764 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1765 	     rdp->completed == READ_ONCE(rnp->completed) &&
1766 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1767 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1768 		local_irq_restore(flags);
1769 		return;
1770 	}
1771 	smp_mb__after_unlock_lock();
1772 	needwake = __note_gp_changes(rsp, rnp, rdp);
1773 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1774 	if (needwake)
1775 		rcu_gp_kthread_wake(rsp);
1776 }
1777 
1778 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1779 {
1780 	if (delay > 0 &&
1781 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1782 		schedule_timeout_uninterruptible(delay);
1783 }
1784 
1785 /*
1786  * Initialize a new grace period.  Return 0 if no grace period required.
1787  */
1788 static int rcu_gp_init(struct rcu_state *rsp)
1789 {
1790 	unsigned long oldmask;
1791 	struct rcu_data *rdp;
1792 	struct rcu_node *rnp = rcu_get_root(rsp);
1793 
1794 	WRITE_ONCE(rsp->gp_activity, jiffies);
1795 	raw_spin_lock_irq(&rnp->lock);
1796 	smp_mb__after_unlock_lock();
1797 	if (!READ_ONCE(rsp->gp_flags)) {
1798 		/* Spurious wakeup, tell caller to go back to sleep.  */
1799 		raw_spin_unlock_irq(&rnp->lock);
1800 		return 0;
1801 	}
1802 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1803 
1804 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1805 		/*
1806 		 * Grace period already in progress, don't start another.
1807 		 * Not supposed to be able to happen.
1808 		 */
1809 		raw_spin_unlock_irq(&rnp->lock);
1810 		return 0;
1811 	}
1812 
1813 	/* Advance to a new grace period and initialize state. */
1814 	record_gp_stall_check_time(rsp);
1815 	/* Record GP times before starting GP, hence smp_store_release(). */
1816 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1817 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1818 	raw_spin_unlock_irq(&rnp->lock);
1819 
1820 	/*
1821 	 * Apply per-leaf buffered online and offline operations to the
1822 	 * rcu_node tree.  Note that this new grace period need not wait
1823 	 * for subsequent online CPUs, and that quiescent-state forcing
1824 	 * will handle subsequent offline CPUs.
1825 	 */
1826 	rcu_for_each_leaf_node(rsp, rnp) {
1827 		rcu_gp_slow(rsp, gp_preinit_delay);
1828 		raw_spin_lock_irq(&rnp->lock);
1829 		smp_mb__after_unlock_lock();
1830 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1831 		    !rnp->wait_blkd_tasks) {
1832 			/* Nothing to do on this leaf rcu_node structure. */
1833 			raw_spin_unlock_irq(&rnp->lock);
1834 			continue;
1835 		}
1836 
1837 		/* Record old state, apply changes to ->qsmaskinit field. */
1838 		oldmask = rnp->qsmaskinit;
1839 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1840 
1841 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1842 		if (!oldmask != !rnp->qsmaskinit) {
1843 			if (!oldmask) /* First online CPU for this rcu_node. */
1844 				rcu_init_new_rnp(rnp);
1845 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1846 				rnp->wait_blkd_tasks = true;
1847 			else /* Last offline CPU and can propagate. */
1848 				rcu_cleanup_dead_rnp(rnp);
1849 		}
1850 
1851 		/*
1852 		 * If all waited-on tasks from prior grace period are
1853 		 * done, and if all this rcu_node structure's CPUs are
1854 		 * still offline, propagate up the rcu_node tree and
1855 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1856 		 * rcu_node structure's CPUs has since come back online,
1857 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1858 		 * checks for this, so just call it unconditionally).
1859 		 */
1860 		if (rnp->wait_blkd_tasks &&
1861 		    (!rcu_preempt_has_tasks(rnp) ||
1862 		     rnp->qsmaskinit)) {
1863 			rnp->wait_blkd_tasks = false;
1864 			rcu_cleanup_dead_rnp(rnp);
1865 		}
1866 
1867 		raw_spin_unlock_irq(&rnp->lock);
1868 	}
1869 
1870 	/*
1871 	 * Set the quiescent-state-needed bits in all the rcu_node
1872 	 * structures for all currently online CPUs in breadth-first order,
1873 	 * starting from the root rcu_node structure, relying on the layout
1874 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1875 	 * will access only the leaves of the hierarchy, thus seeing that no
1876 	 * grace period is in progress, at least until the corresponding
1877 	 * leaf node has been initialized.  In addition, we have excluded
1878 	 * CPU-hotplug operations.
1879 	 *
1880 	 * The grace period cannot complete until the initialization
1881 	 * process finishes, because this kthread handles both.
1882 	 */
1883 	rcu_for_each_node_breadth_first(rsp, rnp) {
1884 		rcu_gp_slow(rsp, gp_init_delay);
1885 		raw_spin_lock_irq(&rnp->lock);
1886 		smp_mb__after_unlock_lock();
1887 		rdp = this_cpu_ptr(rsp->rda);
1888 		rcu_preempt_check_blocked_tasks(rnp);
1889 		rnp->qsmask = rnp->qsmaskinit;
1890 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1891 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1892 			WRITE_ONCE(rnp->completed, rsp->completed);
1893 		if (rnp == rdp->mynode)
1894 			(void)__note_gp_changes(rsp, rnp, rdp);
1895 		rcu_preempt_boost_start_gp(rnp);
1896 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1897 					    rnp->level, rnp->grplo,
1898 					    rnp->grphi, rnp->qsmask);
1899 		raw_spin_unlock_irq(&rnp->lock);
1900 		cond_resched_rcu_qs();
1901 		WRITE_ONCE(rsp->gp_activity, jiffies);
1902 	}
1903 
1904 	return 1;
1905 }
1906 
1907 /*
1908  * Helper function for wait_event_interruptible_timeout() wakeup
1909  * at force-quiescent-state time.
1910  */
1911 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1912 {
1913 	struct rcu_node *rnp = rcu_get_root(rsp);
1914 
1915 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1916 	*gfp = READ_ONCE(rsp->gp_flags);
1917 	if (*gfp & RCU_GP_FLAG_FQS)
1918 		return true;
1919 
1920 	/* The current grace period has completed. */
1921 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1922 		return true;
1923 
1924 	return false;
1925 }
1926 
1927 /*
1928  * Do one round of quiescent-state forcing.
1929  */
1930 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1931 {
1932 	int fqs_state = fqs_state_in;
1933 	bool isidle = false;
1934 	unsigned long maxj;
1935 	struct rcu_node *rnp = rcu_get_root(rsp);
1936 
1937 	WRITE_ONCE(rsp->gp_activity, jiffies);
1938 	rsp->n_force_qs++;
1939 	if (fqs_state == RCU_SAVE_DYNTICK) {
1940 		/* Collect dyntick-idle snapshots. */
1941 		if (is_sysidle_rcu_state(rsp)) {
1942 			isidle = true;
1943 			maxj = jiffies - ULONG_MAX / 4;
1944 		}
1945 		force_qs_rnp(rsp, dyntick_save_progress_counter,
1946 			     &isidle, &maxj);
1947 		rcu_sysidle_report_gp(rsp, isidle, maxj);
1948 		fqs_state = RCU_FORCE_QS;
1949 	} else {
1950 		/* Handle dyntick-idle and offline CPUs. */
1951 		isidle = true;
1952 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1953 	}
1954 	/* Clear flag to prevent immediate re-entry. */
1955 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1956 		raw_spin_lock_irq(&rnp->lock);
1957 		smp_mb__after_unlock_lock();
1958 		WRITE_ONCE(rsp->gp_flags,
1959 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1960 		raw_spin_unlock_irq(&rnp->lock);
1961 	}
1962 	return fqs_state;
1963 }
1964 
1965 /*
1966  * Clean up after the old grace period.
1967  */
1968 static void rcu_gp_cleanup(struct rcu_state *rsp)
1969 {
1970 	unsigned long gp_duration;
1971 	bool needgp = false;
1972 	int nocb = 0;
1973 	struct rcu_data *rdp;
1974 	struct rcu_node *rnp = rcu_get_root(rsp);
1975 
1976 	WRITE_ONCE(rsp->gp_activity, jiffies);
1977 	raw_spin_lock_irq(&rnp->lock);
1978 	smp_mb__after_unlock_lock();
1979 	gp_duration = jiffies - rsp->gp_start;
1980 	if (gp_duration > rsp->gp_max)
1981 		rsp->gp_max = gp_duration;
1982 
1983 	/*
1984 	 * We know the grace period is complete, but to everyone else
1985 	 * it appears to still be ongoing.  But it is also the case
1986 	 * that to everyone else it looks like there is nothing that
1987 	 * they can do to advance the grace period.  It is therefore
1988 	 * safe for us to drop the lock in order to mark the grace
1989 	 * period as completed in all of the rcu_node structures.
1990 	 */
1991 	raw_spin_unlock_irq(&rnp->lock);
1992 
1993 	/*
1994 	 * Propagate new ->completed value to rcu_node structures so
1995 	 * that other CPUs don't have to wait until the start of the next
1996 	 * grace period to process their callbacks.  This also avoids
1997 	 * some nasty RCU grace-period initialization races by forcing
1998 	 * the end of the current grace period to be completely recorded in
1999 	 * all of the rcu_node structures before the beginning of the next
2000 	 * grace period is recorded in any of the rcu_node structures.
2001 	 */
2002 	rcu_for_each_node_breadth_first(rsp, rnp) {
2003 		raw_spin_lock_irq(&rnp->lock);
2004 		smp_mb__after_unlock_lock();
2005 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2006 		WARN_ON_ONCE(rnp->qsmask);
2007 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2008 		rdp = this_cpu_ptr(rsp->rda);
2009 		if (rnp == rdp->mynode)
2010 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2011 		/* smp_mb() provided by prior unlock-lock pair. */
2012 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2013 		raw_spin_unlock_irq(&rnp->lock);
2014 		cond_resched_rcu_qs();
2015 		WRITE_ONCE(rsp->gp_activity, jiffies);
2016 		rcu_gp_slow(rsp, gp_cleanup_delay);
2017 	}
2018 	rnp = rcu_get_root(rsp);
2019 	raw_spin_lock_irq(&rnp->lock);
2020 	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2021 	rcu_nocb_gp_set(rnp, nocb);
2022 
2023 	/* Declare grace period done. */
2024 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2025 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2026 	rsp->fqs_state = RCU_GP_IDLE;
2027 	rdp = this_cpu_ptr(rsp->rda);
2028 	/* Advance CBs to reduce false positives below. */
2029 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2030 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2031 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2032 		trace_rcu_grace_period(rsp->name,
2033 				       READ_ONCE(rsp->gpnum),
2034 				       TPS("newreq"));
2035 	}
2036 	raw_spin_unlock_irq(&rnp->lock);
2037 }
2038 
2039 /*
2040  * Body of kthread that handles grace periods.
2041  */
2042 static int __noreturn rcu_gp_kthread(void *arg)
2043 {
2044 	int fqs_state;
2045 	int gf;
2046 	unsigned long j;
2047 	int ret;
2048 	struct rcu_state *rsp = arg;
2049 	struct rcu_node *rnp = rcu_get_root(rsp);
2050 
2051 	rcu_bind_gp_kthread();
2052 	for (;;) {
2053 
2054 		/* Handle grace-period start. */
2055 		for (;;) {
2056 			trace_rcu_grace_period(rsp->name,
2057 					       READ_ONCE(rsp->gpnum),
2058 					       TPS("reqwait"));
2059 			rsp->gp_state = RCU_GP_WAIT_GPS;
2060 			wait_event_interruptible(rsp->gp_wq,
2061 						 READ_ONCE(rsp->gp_flags) &
2062 						 RCU_GP_FLAG_INIT);
2063 			rsp->gp_state = RCU_GP_DONE_GPS;
2064 			/* Locking provides needed memory barrier. */
2065 			if (rcu_gp_init(rsp))
2066 				break;
2067 			cond_resched_rcu_qs();
2068 			WRITE_ONCE(rsp->gp_activity, jiffies);
2069 			WARN_ON(signal_pending(current));
2070 			trace_rcu_grace_period(rsp->name,
2071 					       READ_ONCE(rsp->gpnum),
2072 					       TPS("reqwaitsig"));
2073 		}
2074 
2075 		/* Handle quiescent-state forcing. */
2076 		fqs_state = RCU_SAVE_DYNTICK;
2077 		j = jiffies_till_first_fqs;
2078 		if (j > HZ) {
2079 			j = HZ;
2080 			jiffies_till_first_fqs = HZ;
2081 		}
2082 		ret = 0;
2083 		for (;;) {
2084 			if (!ret)
2085 				rsp->jiffies_force_qs = jiffies + j;
2086 			trace_rcu_grace_period(rsp->name,
2087 					       READ_ONCE(rsp->gpnum),
2088 					       TPS("fqswait"));
2089 			rsp->gp_state = RCU_GP_WAIT_FQS;
2090 			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2091 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2092 			rsp->gp_state = RCU_GP_DOING_FQS;
2093 			/* Locking provides needed memory barriers. */
2094 			/* If grace period done, leave loop. */
2095 			if (!READ_ONCE(rnp->qsmask) &&
2096 			    !rcu_preempt_blocked_readers_cgp(rnp))
2097 				break;
2098 			/* If time for quiescent-state forcing, do it. */
2099 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2100 			    (gf & RCU_GP_FLAG_FQS)) {
2101 				trace_rcu_grace_period(rsp->name,
2102 						       READ_ONCE(rsp->gpnum),
2103 						       TPS("fqsstart"));
2104 				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2105 				trace_rcu_grace_period(rsp->name,
2106 						       READ_ONCE(rsp->gpnum),
2107 						       TPS("fqsend"));
2108 				cond_resched_rcu_qs();
2109 				WRITE_ONCE(rsp->gp_activity, jiffies);
2110 			} else {
2111 				/* Deal with stray signal. */
2112 				cond_resched_rcu_qs();
2113 				WRITE_ONCE(rsp->gp_activity, jiffies);
2114 				WARN_ON(signal_pending(current));
2115 				trace_rcu_grace_period(rsp->name,
2116 						       READ_ONCE(rsp->gpnum),
2117 						       TPS("fqswaitsig"));
2118 			}
2119 			j = jiffies_till_next_fqs;
2120 			if (j > HZ) {
2121 				j = HZ;
2122 				jiffies_till_next_fqs = HZ;
2123 			} else if (j < 1) {
2124 				j = 1;
2125 				jiffies_till_next_fqs = 1;
2126 			}
2127 		}
2128 
2129 		/* Handle grace-period end. */
2130 		rsp->gp_state = RCU_GP_CLEANUP;
2131 		rcu_gp_cleanup(rsp);
2132 		rsp->gp_state = RCU_GP_CLEANED;
2133 	}
2134 }
2135 
2136 /*
2137  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2138  * in preparation for detecting the next grace period.  The caller must hold
2139  * the root node's ->lock and hard irqs must be disabled.
2140  *
2141  * Note that it is legal for a dying CPU (which is marked as offline) to
2142  * invoke this function.  This can happen when the dying CPU reports its
2143  * quiescent state.
2144  *
2145  * Returns true if the grace-period kthread must be awakened.
2146  */
2147 static bool
2148 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2149 		      struct rcu_data *rdp)
2150 {
2151 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2152 		/*
2153 		 * Either we have not yet spawned the grace-period
2154 		 * task, this CPU does not need another grace period,
2155 		 * or a grace period is already in progress.
2156 		 * Either way, don't start a new grace period.
2157 		 */
2158 		return false;
2159 	}
2160 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2161 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2162 			       TPS("newreq"));
2163 
2164 	/*
2165 	 * We can't do wakeups while holding the rnp->lock, as that
2166 	 * could cause possible deadlocks with the rq->lock. Defer
2167 	 * the wakeup to our caller.
2168 	 */
2169 	return true;
2170 }
2171 
2172 /*
2173  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2174  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2175  * is invoked indirectly from rcu_advance_cbs(), which would result in
2176  * endless recursion -- or would do so if it wasn't for the self-deadlock
2177  * that is encountered beforehand.
2178  *
2179  * Returns true if the grace-period kthread needs to be awakened.
2180  */
2181 static bool rcu_start_gp(struct rcu_state *rsp)
2182 {
2183 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2184 	struct rcu_node *rnp = rcu_get_root(rsp);
2185 	bool ret = false;
2186 
2187 	/*
2188 	 * If there is no grace period in progress right now, any
2189 	 * callbacks we have up to this point will be satisfied by the
2190 	 * next grace period.  Also, advancing the callbacks reduces the
2191 	 * probability of false positives from cpu_needs_another_gp()
2192 	 * resulting in pointless grace periods.  So, advance callbacks
2193 	 * then start the grace period!
2194 	 */
2195 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2196 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2197 	return ret;
2198 }
2199 
2200 /*
2201  * Report a full set of quiescent states to the specified rcu_state
2202  * data structure.  This involves cleaning up after the prior grace
2203  * period and letting rcu_start_gp() start up the next grace period
2204  * if one is needed.  Note that the caller must hold rnp->lock, which
2205  * is released before return.
2206  */
2207 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2208 	__releases(rcu_get_root(rsp)->lock)
2209 {
2210 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2211 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2212 	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2213 	rcu_gp_kthread_wake(rsp);
2214 }
2215 
2216 /*
2217  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2218  * Allows quiescent states for a group of CPUs to be reported at one go
2219  * to the specified rcu_node structure, though all the CPUs in the group
2220  * must be represented by the same rcu_node structure (which need not be a
2221  * leaf rcu_node structure, though it often will be).  The gps parameter
2222  * is the grace-period snapshot, which means that the quiescent states
2223  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2224  * must be held upon entry, and it is released before return.
2225  */
2226 static void
2227 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2228 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2229 	__releases(rnp->lock)
2230 {
2231 	unsigned long oldmask = 0;
2232 	struct rcu_node *rnp_c;
2233 
2234 	/* Walk up the rcu_node hierarchy. */
2235 	for (;;) {
2236 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2237 
2238 			/*
2239 			 * Our bit has already been cleared, or the
2240 			 * relevant grace period is already over, so done.
2241 			 */
2242 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2243 			return;
2244 		}
2245 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2246 		rnp->qsmask &= ~mask;
2247 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2248 						 mask, rnp->qsmask, rnp->level,
2249 						 rnp->grplo, rnp->grphi,
2250 						 !!rnp->gp_tasks);
2251 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2252 
2253 			/* Other bits still set at this level, so done. */
2254 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2255 			return;
2256 		}
2257 		mask = rnp->grpmask;
2258 		if (rnp->parent == NULL) {
2259 
2260 			/* No more levels.  Exit loop holding root lock. */
2261 
2262 			break;
2263 		}
2264 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2265 		rnp_c = rnp;
2266 		rnp = rnp->parent;
2267 		raw_spin_lock_irqsave(&rnp->lock, flags);
2268 		smp_mb__after_unlock_lock();
2269 		oldmask = rnp_c->qsmask;
2270 	}
2271 
2272 	/*
2273 	 * Get here if we are the last CPU to pass through a quiescent
2274 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2275 	 * to clean up and start the next grace period if one is needed.
2276 	 */
2277 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2278 }
2279 
2280 /*
2281  * Record a quiescent state for all tasks that were previously queued
2282  * on the specified rcu_node structure and that were blocking the current
2283  * RCU grace period.  The caller must hold the specified rnp->lock with
2284  * irqs disabled, and this lock is released upon return, but irqs remain
2285  * disabled.
2286  */
2287 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2288 				      struct rcu_node *rnp, unsigned long flags)
2289 	__releases(rnp->lock)
2290 {
2291 	unsigned long gps;
2292 	unsigned long mask;
2293 	struct rcu_node *rnp_p;
2294 
2295 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2296 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2297 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2298 		return;  /* Still need more quiescent states! */
2299 	}
2300 
2301 	rnp_p = rnp->parent;
2302 	if (rnp_p == NULL) {
2303 		/*
2304 		 * Only one rcu_node structure in the tree, so don't
2305 		 * try to report up to its nonexistent parent!
2306 		 */
2307 		rcu_report_qs_rsp(rsp, flags);
2308 		return;
2309 	}
2310 
2311 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2312 	gps = rnp->gpnum;
2313 	mask = rnp->grpmask;
2314 	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
2315 	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
2316 	smp_mb__after_unlock_lock();
2317 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2318 }
2319 
2320 /*
2321  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2322  * structure.  This must be either called from the specified CPU, or
2323  * called when the specified CPU is known to be offline (and when it is
2324  * also known that no other CPU is concurrently trying to help the offline
2325  * CPU).  The lastcomp argument is used to make sure we are still in the
2326  * grace period of interest.  We don't want to end the current grace period
2327  * based on quiescent states detected in an earlier grace period!
2328  */
2329 static void
2330 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2331 {
2332 	unsigned long flags;
2333 	unsigned long mask;
2334 	bool needwake;
2335 	struct rcu_node *rnp;
2336 
2337 	rnp = rdp->mynode;
2338 	raw_spin_lock_irqsave(&rnp->lock, flags);
2339 	smp_mb__after_unlock_lock();
2340 	if ((rdp->passed_quiesce == 0 &&
2341 	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2342 	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2343 	    rdp->gpwrap) {
2344 
2345 		/*
2346 		 * The grace period in which this quiescent state was
2347 		 * recorded has ended, so don't report it upwards.
2348 		 * We will instead need a new quiescent state that lies
2349 		 * within the current grace period.
2350 		 */
2351 		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2352 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2353 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2354 		return;
2355 	}
2356 	mask = rdp->grpmask;
2357 	if ((rnp->qsmask & mask) == 0) {
2358 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2359 	} else {
2360 		rdp->qs_pending = 0;
2361 
2362 		/*
2363 		 * This GP can't end until cpu checks in, so all of our
2364 		 * callbacks can be processed during the next GP.
2365 		 */
2366 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2367 
2368 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2369 		/* ^^^ Released rnp->lock */
2370 		if (needwake)
2371 			rcu_gp_kthread_wake(rsp);
2372 	}
2373 }
2374 
2375 /*
2376  * Check to see if there is a new grace period of which this CPU
2377  * is not yet aware, and if so, set up local rcu_data state for it.
2378  * Otherwise, see if this CPU has just passed through its first
2379  * quiescent state for this grace period, and record that fact if so.
2380  */
2381 static void
2382 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2383 {
2384 	/* Check for grace-period ends and beginnings. */
2385 	note_gp_changes(rsp, rdp);
2386 
2387 	/*
2388 	 * Does this CPU still need to do its part for current grace period?
2389 	 * If no, return and let the other CPUs do their part as well.
2390 	 */
2391 	if (!rdp->qs_pending)
2392 		return;
2393 
2394 	/*
2395 	 * Was there a quiescent state since the beginning of the grace
2396 	 * period? If no, then exit and wait for the next call.
2397 	 */
2398 	if (!rdp->passed_quiesce &&
2399 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2400 		return;
2401 
2402 	/*
2403 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2404 	 * judge of that).
2405 	 */
2406 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2407 }
2408 
2409 /*
2410  * Send the specified CPU's RCU callbacks to the orphanage.  The
2411  * specified CPU must be offline, and the caller must hold the
2412  * ->orphan_lock.
2413  */
2414 static void
2415 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2416 			  struct rcu_node *rnp, struct rcu_data *rdp)
2417 {
2418 	/* No-CBs CPUs do not have orphanable callbacks. */
2419 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2420 		return;
2421 
2422 	/*
2423 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2424 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2425 	 * cannot be running now.  Thus no memory barrier is required.
2426 	 */
2427 	if (rdp->nxtlist != NULL) {
2428 		rsp->qlen_lazy += rdp->qlen_lazy;
2429 		rsp->qlen += rdp->qlen;
2430 		rdp->n_cbs_orphaned += rdp->qlen;
2431 		rdp->qlen_lazy = 0;
2432 		WRITE_ONCE(rdp->qlen, 0);
2433 	}
2434 
2435 	/*
2436 	 * Next, move those callbacks still needing a grace period to
2437 	 * the orphanage, where some other CPU will pick them up.
2438 	 * Some of the callbacks might have gone partway through a grace
2439 	 * period, but that is too bad.  They get to start over because we
2440 	 * cannot assume that grace periods are synchronized across CPUs.
2441 	 * We don't bother updating the ->nxttail[] array yet, instead
2442 	 * we just reset the whole thing later on.
2443 	 */
2444 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2445 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2446 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2447 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2448 	}
2449 
2450 	/*
2451 	 * Then move the ready-to-invoke callbacks to the orphanage,
2452 	 * where some other CPU will pick them up.  These will not be
2453 	 * required to pass though another grace period: They are done.
2454 	 */
2455 	if (rdp->nxtlist != NULL) {
2456 		*rsp->orphan_donetail = rdp->nxtlist;
2457 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2458 	}
2459 
2460 	/*
2461 	 * Finally, initialize the rcu_data structure's list to empty and
2462 	 * disallow further callbacks on this CPU.
2463 	 */
2464 	init_callback_list(rdp);
2465 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2466 }
2467 
2468 /*
2469  * Adopt the RCU callbacks from the specified rcu_state structure's
2470  * orphanage.  The caller must hold the ->orphan_lock.
2471  */
2472 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2473 {
2474 	int i;
2475 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2476 
2477 	/* No-CBs CPUs are handled specially. */
2478 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2479 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2480 		return;
2481 
2482 	/* Do the accounting first. */
2483 	rdp->qlen_lazy += rsp->qlen_lazy;
2484 	rdp->qlen += rsp->qlen;
2485 	rdp->n_cbs_adopted += rsp->qlen;
2486 	if (rsp->qlen_lazy != rsp->qlen)
2487 		rcu_idle_count_callbacks_posted();
2488 	rsp->qlen_lazy = 0;
2489 	rsp->qlen = 0;
2490 
2491 	/*
2492 	 * We do not need a memory barrier here because the only way we
2493 	 * can get here if there is an rcu_barrier() in flight is if
2494 	 * we are the task doing the rcu_barrier().
2495 	 */
2496 
2497 	/* First adopt the ready-to-invoke callbacks. */
2498 	if (rsp->orphan_donelist != NULL) {
2499 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2500 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2501 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2502 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2503 				rdp->nxttail[i] = rsp->orphan_donetail;
2504 		rsp->orphan_donelist = NULL;
2505 		rsp->orphan_donetail = &rsp->orphan_donelist;
2506 	}
2507 
2508 	/* And then adopt the callbacks that still need a grace period. */
2509 	if (rsp->orphan_nxtlist != NULL) {
2510 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2511 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2512 		rsp->orphan_nxtlist = NULL;
2513 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2514 	}
2515 }
2516 
2517 /*
2518  * Trace the fact that this CPU is going offline.
2519  */
2520 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2521 {
2522 	RCU_TRACE(unsigned long mask);
2523 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2524 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2525 
2526 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2527 		return;
2528 
2529 	RCU_TRACE(mask = rdp->grpmask);
2530 	trace_rcu_grace_period(rsp->name,
2531 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2532 			       TPS("cpuofl"));
2533 }
2534 
2535 /*
2536  * All CPUs for the specified rcu_node structure have gone offline,
2537  * and all tasks that were preempted within an RCU read-side critical
2538  * section while running on one of those CPUs have since exited their RCU
2539  * read-side critical section.  Some other CPU is reporting this fact with
2540  * the specified rcu_node structure's ->lock held and interrupts disabled.
2541  * This function therefore goes up the tree of rcu_node structures,
2542  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2543  * the leaf rcu_node structure's ->qsmaskinit field has already been
2544  * updated
2545  *
2546  * This function does check that the specified rcu_node structure has
2547  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2548  * prematurely.  That said, invoking it after the fact will cost you
2549  * a needless lock acquisition.  So once it has done its work, don't
2550  * invoke it again.
2551  */
2552 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2553 {
2554 	long mask;
2555 	struct rcu_node *rnp = rnp_leaf;
2556 
2557 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2558 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2559 		return;
2560 	for (;;) {
2561 		mask = rnp->grpmask;
2562 		rnp = rnp->parent;
2563 		if (!rnp)
2564 			break;
2565 		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2566 		smp_mb__after_unlock_lock(); /* GP memory ordering. */
2567 		rnp->qsmaskinit &= ~mask;
2568 		rnp->qsmask &= ~mask;
2569 		if (rnp->qsmaskinit) {
2570 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2571 			return;
2572 		}
2573 		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2574 	}
2575 }
2576 
2577 /*
2578  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2579  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
2580  * bit masks.
2581  */
2582 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2583 {
2584 	unsigned long flags;
2585 	unsigned long mask;
2586 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2587 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2588 
2589 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2590 		return;
2591 
2592 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2593 	mask = rdp->grpmask;
2594 	raw_spin_lock_irqsave(&rnp->lock, flags);
2595 	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
2596 	rnp->qsmaskinitnext &= ~mask;
2597 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2598 }
2599 
2600 /*
2601  * The CPU has been completely removed, and some other CPU is reporting
2602  * this fact from process context.  Do the remainder of the cleanup,
2603  * including orphaning the outgoing CPU's RCU callbacks, and also
2604  * adopting them.  There can only be one CPU hotplug operation at a time,
2605  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2606  */
2607 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2608 {
2609 	unsigned long flags;
2610 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2611 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2612 
2613 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2614 		return;
2615 
2616 	/* Adjust any no-longer-needed kthreads. */
2617 	rcu_boost_kthread_setaffinity(rnp, -1);
2618 
2619 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2620 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2621 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2622 	rcu_adopt_orphan_cbs(rsp, flags);
2623 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2624 
2625 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2626 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2627 		  cpu, rdp->qlen, rdp->nxtlist);
2628 }
2629 
2630 /*
2631  * Invoke any RCU callbacks that have made it to the end of their grace
2632  * period.  Thottle as specified by rdp->blimit.
2633  */
2634 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2635 {
2636 	unsigned long flags;
2637 	struct rcu_head *next, *list, **tail;
2638 	long bl, count, count_lazy;
2639 	int i;
2640 
2641 	/* If no callbacks are ready, just return. */
2642 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2643 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2644 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2645 				    need_resched(), is_idle_task(current),
2646 				    rcu_is_callbacks_kthread());
2647 		return;
2648 	}
2649 
2650 	/*
2651 	 * Extract the list of ready callbacks, disabling to prevent
2652 	 * races with call_rcu() from interrupt handlers.
2653 	 */
2654 	local_irq_save(flags);
2655 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2656 	bl = rdp->blimit;
2657 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2658 	list = rdp->nxtlist;
2659 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2660 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2661 	tail = rdp->nxttail[RCU_DONE_TAIL];
2662 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2663 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2664 			rdp->nxttail[i] = &rdp->nxtlist;
2665 	local_irq_restore(flags);
2666 
2667 	/* Invoke callbacks. */
2668 	count = count_lazy = 0;
2669 	while (list) {
2670 		next = list->next;
2671 		prefetch(next);
2672 		debug_rcu_head_unqueue(list);
2673 		if (__rcu_reclaim(rsp->name, list))
2674 			count_lazy++;
2675 		list = next;
2676 		/* Stop only if limit reached and CPU has something to do. */
2677 		if (++count >= bl &&
2678 		    (need_resched() ||
2679 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2680 			break;
2681 	}
2682 
2683 	local_irq_save(flags);
2684 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2685 			    is_idle_task(current),
2686 			    rcu_is_callbacks_kthread());
2687 
2688 	/* Update count, and requeue any remaining callbacks. */
2689 	if (list != NULL) {
2690 		*tail = rdp->nxtlist;
2691 		rdp->nxtlist = list;
2692 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2693 			if (&rdp->nxtlist == rdp->nxttail[i])
2694 				rdp->nxttail[i] = tail;
2695 			else
2696 				break;
2697 	}
2698 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2699 	rdp->qlen_lazy -= count_lazy;
2700 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2701 	rdp->n_cbs_invoked += count;
2702 
2703 	/* Reinstate batch limit if we have worked down the excess. */
2704 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2705 		rdp->blimit = blimit;
2706 
2707 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2708 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2709 		rdp->qlen_last_fqs_check = 0;
2710 		rdp->n_force_qs_snap = rsp->n_force_qs;
2711 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2712 		rdp->qlen_last_fqs_check = rdp->qlen;
2713 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2714 
2715 	local_irq_restore(flags);
2716 
2717 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2718 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2719 		invoke_rcu_core();
2720 }
2721 
2722 /*
2723  * Check to see if this CPU is in a non-context-switch quiescent state
2724  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725  * Also schedule RCU core processing.
2726  *
2727  * This function must be called from hardirq context.  It is normally
2728  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2729  * false, there is no point in invoking rcu_check_callbacks().
2730  */
2731 void rcu_check_callbacks(int user)
2732 {
2733 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2734 	increment_cpu_stall_ticks();
2735 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2736 
2737 		/*
2738 		 * Get here if this CPU took its interrupt from user
2739 		 * mode or from the idle loop, and if this is not a
2740 		 * nested interrupt.  In this case, the CPU is in
2741 		 * a quiescent state, so note it.
2742 		 *
2743 		 * No memory barrier is required here because both
2744 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2745 		 * variables that other CPUs neither access nor modify,
2746 		 * at least not while the corresponding CPU is online.
2747 		 */
2748 
2749 		rcu_sched_qs();
2750 		rcu_bh_qs();
2751 
2752 	} else if (!in_softirq()) {
2753 
2754 		/*
2755 		 * Get here if this CPU did not take its interrupt from
2756 		 * softirq, in other words, if it is not interrupting
2757 		 * a rcu_bh read-side critical section.  This is an _bh
2758 		 * critical section, so note it.
2759 		 */
2760 
2761 		rcu_bh_qs();
2762 	}
2763 	rcu_preempt_check_callbacks();
2764 	if (rcu_pending())
2765 		invoke_rcu_core();
2766 	if (user)
2767 		rcu_note_voluntary_context_switch(current);
2768 	trace_rcu_utilization(TPS("End scheduler-tick"));
2769 }
2770 
2771 /*
2772  * Scan the leaf rcu_node structures, processing dyntick state for any that
2773  * have not yet encountered a quiescent state, using the function specified.
2774  * Also initiate boosting for any threads blocked on the root rcu_node.
2775  *
2776  * The caller must have suppressed start of new grace periods.
2777  */
2778 static void force_qs_rnp(struct rcu_state *rsp,
2779 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2780 				  unsigned long *maxj),
2781 			 bool *isidle, unsigned long *maxj)
2782 {
2783 	unsigned long bit;
2784 	int cpu;
2785 	unsigned long flags;
2786 	unsigned long mask;
2787 	struct rcu_node *rnp;
2788 
2789 	rcu_for_each_leaf_node(rsp, rnp) {
2790 		cond_resched_rcu_qs();
2791 		mask = 0;
2792 		raw_spin_lock_irqsave(&rnp->lock, flags);
2793 		smp_mb__after_unlock_lock();
2794 		if (rnp->qsmask == 0) {
2795 			if (rcu_state_p == &rcu_sched_state ||
2796 			    rsp != rcu_state_p ||
2797 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2798 				/*
2799 				 * No point in scanning bits because they
2800 				 * are all zero.  But we might need to
2801 				 * priority-boost blocked readers.
2802 				 */
2803 				rcu_initiate_boost(rnp, flags);
2804 				/* rcu_initiate_boost() releases rnp->lock */
2805 				continue;
2806 			}
2807 			if (rnp->parent &&
2808 			    (rnp->parent->qsmask & rnp->grpmask)) {
2809 				/*
2810 				 * Race between grace-period
2811 				 * initialization and task exiting RCU
2812 				 * read-side critical section: Report.
2813 				 */
2814 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2815 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2816 				continue;
2817 			}
2818 		}
2819 		cpu = rnp->grplo;
2820 		bit = 1;
2821 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2822 			if ((rnp->qsmask & bit) != 0) {
2823 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2824 					mask |= bit;
2825 			}
2826 		}
2827 		if (mask != 0) {
2828 			/* Idle/offline CPUs, report (releases rnp->lock. */
2829 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2830 		} else {
2831 			/* Nothing to do here, so just drop the lock. */
2832 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2833 		}
2834 	}
2835 }
2836 
2837 /*
2838  * Force quiescent states on reluctant CPUs, and also detect which
2839  * CPUs are in dyntick-idle mode.
2840  */
2841 static void force_quiescent_state(struct rcu_state *rsp)
2842 {
2843 	unsigned long flags;
2844 	bool ret;
2845 	struct rcu_node *rnp;
2846 	struct rcu_node *rnp_old = NULL;
2847 
2848 	/* Funnel through hierarchy to reduce memory contention. */
2849 	rnp = __this_cpu_read(rsp->rda->mynode);
2850 	for (; rnp != NULL; rnp = rnp->parent) {
2851 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2852 		      !raw_spin_trylock(&rnp->fqslock);
2853 		if (rnp_old != NULL)
2854 			raw_spin_unlock(&rnp_old->fqslock);
2855 		if (ret) {
2856 			rsp->n_force_qs_lh++;
2857 			return;
2858 		}
2859 		rnp_old = rnp;
2860 	}
2861 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2862 
2863 	/* Reached the root of the rcu_node tree, acquire lock. */
2864 	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2865 	smp_mb__after_unlock_lock();
2866 	raw_spin_unlock(&rnp_old->fqslock);
2867 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2868 		rsp->n_force_qs_lh++;
2869 		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2870 		return;  /* Someone beat us to it. */
2871 	}
2872 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2873 	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2874 	rcu_gp_kthread_wake(rsp);
2875 }
2876 
2877 /*
2878  * This does the RCU core processing work for the specified rcu_state
2879  * and rcu_data structures.  This may be called only from the CPU to
2880  * whom the rdp belongs.
2881  */
2882 static void
2883 __rcu_process_callbacks(struct rcu_state *rsp)
2884 {
2885 	unsigned long flags;
2886 	bool needwake;
2887 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2888 
2889 	WARN_ON_ONCE(rdp->beenonline == 0);
2890 
2891 	/* Update RCU state based on any recent quiescent states. */
2892 	rcu_check_quiescent_state(rsp, rdp);
2893 
2894 	/* Does this CPU require a not-yet-started grace period? */
2895 	local_irq_save(flags);
2896 	if (cpu_needs_another_gp(rsp, rdp)) {
2897 		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2898 		needwake = rcu_start_gp(rsp);
2899 		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2900 		if (needwake)
2901 			rcu_gp_kthread_wake(rsp);
2902 	} else {
2903 		local_irq_restore(flags);
2904 	}
2905 
2906 	/* If there are callbacks ready, invoke them. */
2907 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2908 		invoke_rcu_callbacks(rsp, rdp);
2909 
2910 	/* Do any needed deferred wakeups of rcuo kthreads. */
2911 	do_nocb_deferred_wakeup(rdp);
2912 }
2913 
2914 /*
2915  * Do RCU core processing for the current CPU.
2916  */
2917 static void rcu_process_callbacks(struct softirq_action *unused)
2918 {
2919 	struct rcu_state *rsp;
2920 
2921 	if (cpu_is_offline(smp_processor_id()))
2922 		return;
2923 	trace_rcu_utilization(TPS("Start RCU core"));
2924 	for_each_rcu_flavor(rsp)
2925 		__rcu_process_callbacks(rsp);
2926 	trace_rcu_utilization(TPS("End RCU core"));
2927 }
2928 
2929 /*
2930  * Schedule RCU callback invocation.  If the specified type of RCU
2931  * does not support RCU priority boosting, just do a direct call,
2932  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2933  * are running on the current CPU with softirqs disabled, the
2934  * rcu_cpu_kthread_task cannot disappear out from under us.
2935  */
2936 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2937 {
2938 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2939 		return;
2940 	if (likely(!rsp->boost)) {
2941 		rcu_do_batch(rsp, rdp);
2942 		return;
2943 	}
2944 	invoke_rcu_callbacks_kthread();
2945 }
2946 
2947 static void invoke_rcu_core(void)
2948 {
2949 	if (cpu_online(smp_processor_id()))
2950 		raise_softirq(RCU_SOFTIRQ);
2951 }
2952 
2953 /*
2954  * Handle any core-RCU processing required by a call_rcu() invocation.
2955  */
2956 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2957 			    struct rcu_head *head, unsigned long flags)
2958 {
2959 	bool needwake;
2960 
2961 	/*
2962 	 * If called from an extended quiescent state, invoke the RCU
2963 	 * core in order to force a re-evaluation of RCU's idleness.
2964 	 */
2965 	if (!rcu_is_watching())
2966 		invoke_rcu_core();
2967 
2968 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2969 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2970 		return;
2971 
2972 	/*
2973 	 * Force the grace period if too many callbacks or too long waiting.
2974 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2975 	 * if some other CPU has recently done so.  Also, don't bother
2976 	 * invoking force_quiescent_state() if the newly enqueued callback
2977 	 * is the only one waiting for a grace period to complete.
2978 	 */
2979 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2980 
2981 		/* Are we ignoring a completed grace period? */
2982 		note_gp_changes(rsp, rdp);
2983 
2984 		/* Start a new grace period if one not already started. */
2985 		if (!rcu_gp_in_progress(rsp)) {
2986 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2987 
2988 			raw_spin_lock(&rnp_root->lock);
2989 			smp_mb__after_unlock_lock();
2990 			needwake = rcu_start_gp(rsp);
2991 			raw_spin_unlock(&rnp_root->lock);
2992 			if (needwake)
2993 				rcu_gp_kthread_wake(rsp);
2994 		} else {
2995 			/* Give the grace period a kick. */
2996 			rdp->blimit = LONG_MAX;
2997 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2998 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2999 				force_quiescent_state(rsp);
3000 			rdp->n_force_qs_snap = rsp->n_force_qs;
3001 			rdp->qlen_last_fqs_check = rdp->qlen;
3002 		}
3003 	}
3004 }
3005 
3006 /*
3007  * RCU callback function to leak a callback.
3008  */
3009 static void rcu_leak_callback(struct rcu_head *rhp)
3010 {
3011 }
3012 
3013 /*
3014  * Helper function for call_rcu() and friends.  The cpu argument will
3015  * normally be -1, indicating "currently running CPU".  It may specify
3016  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3017  * is expected to specify a CPU.
3018  */
3019 static void
3020 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3021 	   struct rcu_state *rsp, int cpu, bool lazy)
3022 {
3023 	unsigned long flags;
3024 	struct rcu_data *rdp;
3025 
3026 	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3027 	if (debug_rcu_head_queue(head)) {
3028 		/* Probable double call_rcu(), so leak the callback. */
3029 		WRITE_ONCE(head->func, rcu_leak_callback);
3030 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3031 		return;
3032 	}
3033 	head->func = func;
3034 	head->next = NULL;
3035 
3036 	/*
3037 	 * Opportunistically note grace-period endings and beginnings.
3038 	 * Note that we might see a beginning right after we see an
3039 	 * end, but never vice versa, since this CPU has to pass through
3040 	 * a quiescent state betweentimes.
3041 	 */
3042 	local_irq_save(flags);
3043 	rdp = this_cpu_ptr(rsp->rda);
3044 
3045 	/* Add the callback to our list. */
3046 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3047 		int offline;
3048 
3049 		if (cpu != -1)
3050 			rdp = per_cpu_ptr(rsp->rda, cpu);
3051 		if (likely(rdp->mynode)) {
3052 			/* Post-boot, so this should be for a no-CBs CPU. */
3053 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3054 			WARN_ON_ONCE(offline);
3055 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3056 			local_irq_restore(flags);
3057 			return;
3058 		}
3059 		/*
3060 		 * Very early boot, before rcu_init().  Initialize if needed
3061 		 * and then drop through to queue the callback.
3062 		 */
3063 		BUG_ON(cpu != -1);
3064 		WARN_ON_ONCE(!rcu_is_watching());
3065 		if (!likely(rdp->nxtlist))
3066 			init_default_callback_list(rdp);
3067 	}
3068 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3069 	if (lazy)
3070 		rdp->qlen_lazy++;
3071 	else
3072 		rcu_idle_count_callbacks_posted();
3073 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3074 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3075 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3076 
3077 	if (__is_kfree_rcu_offset((unsigned long)func))
3078 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3079 					 rdp->qlen_lazy, rdp->qlen);
3080 	else
3081 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3082 
3083 	/* Go handle any RCU core processing required. */
3084 	__call_rcu_core(rsp, rdp, head, flags);
3085 	local_irq_restore(flags);
3086 }
3087 
3088 /*
3089  * Queue an RCU-sched callback for invocation after a grace period.
3090  */
3091 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3092 {
3093 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3094 }
3095 EXPORT_SYMBOL_GPL(call_rcu_sched);
3096 
3097 /*
3098  * Queue an RCU callback for invocation after a quicker grace period.
3099  */
3100 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3101 {
3102 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3103 }
3104 EXPORT_SYMBOL_GPL(call_rcu_bh);
3105 
3106 /*
3107  * Queue an RCU callback for lazy invocation after a grace period.
3108  * This will likely be later named something like "call_rcu_lazy()",
3109  * but this change will require some way of tagging the lazy RCU
3110  * callbacks in the list of pending callbacks. Until then, this
3111  * function may only be called from __kfree_rcu().
3112  */
3113 void kfree_call_rcu(struct rcu_head *head,
3114 		    void (*func)(struct rcu_head *rcu))
3115 {
3116 	__call_rcu(head, func, rcu_state_p, -1, 1);
3117 }
3118 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3119 
3120 /*
3121  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3122  * any blocking grace-period wait automatically implies a grace period
3123  * if there is only one CPU online at any point time during execution
3124  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3125  * occasionally incorrectly indicate that there are multiple CPUs online
3126  * when there was in fact only one the whole time, as this just adds
3127  * some overhead: RCU still operates correctly.
3128  */
3129 static inline int rcu_blocking_is_gp(void)
3130 {
3131 	int ret;
3132 
3133 	might_sleep();  /* Check for RCU read-side critical section. */
3134 	preempt_disable();
3135 	ret = num_online_cpus() <= 1;
3136 	preempt_enable();
3137 	return ret;
3138 }
3139 
3140 /**
3141  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3142  *
3143  * Control will return to the caller some time after a full rcu-sched
3144  * grace period has elapsed, in other words after all currently executing
3145  * rcu-sched read-side critical sections have completed.   These read-side
3146  * critical sections are delimited by rcu_read_lock_sched() and
3147  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3148  * local_irq_disable(), and so on may be used in place of
3149  * rcu_read_lock_sched().
3150  *
3151  * This means that all preempt_disable code sequences, including NMI and
3152  * non-threaded hardware-interrupt handlers, in progress on entry will
3153  * have completed before this primitive returns.  However, this does not
3154  * guarantee that softirq handlers will have completed, since in some
3155  * kernels, these handlers can run in process context, and can block.
3156  *
3157  * Note that this guarantee implies further memory-ordering guarantees.
3158  * On systems with more than one CPU, when synchronize_sched() returns,
3159  * each CPU is guaranteed to have executed a full memory barrier since the
3160  * end of its last RCU-sched read-side critical section whose beginning
3161  * preceded the call to synchronize_sched().  In addition, each CPU having
3162  * an RCU read-side critical section that extends beyond the return from
3163  * synchronize_sched() is guaranteed to have executed a full memory barrier
3164  * after the beginning of synchronize_sched() and before the beginning of
3165  * that RCU read-side critical section.  Note that these guarantees include
3166  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3167  * that are executing in the kernel.
3168  *
3169  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3170  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3171  * to have executed a full memory barrier during the execution of
3172  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3173  * again only if the system has more than one CPU).
3174  *
3175  * This primitive provides the guarantees made by the (now removed)
3176  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3177  * guarantees that rcu_read_lock() sections will have completed.
3178  * In "classic RCU", these two guarantees happen to be one and
3179  * the same, but can differ in realtime RCU implementations.
3180  */
3181 void synchronize_sched(void)
3182 {
3183 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3184 			 lock_is_held(&rcu_lock_map) ||
3185 			 lock_is_held(&rcu_sched_lock_map),
3186 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3187 	if (rcu_blocking_is_gp())
3188 		return;
3189 	if (rcu_gp_is_expedited())
3190 		synchronize_sched_expedited();
3191 	else
3192 		wait_rcu_gp(call_rcu_sched);
3193 }
3194 EXPORT_SYMBOL_GPL(synchronize_sched);
3195 
3196 /**
3197  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3198  *
3199  * Control will return to the caller some time after a full rcu_bh grace
3200  * period has elapsed, in other words after all currently executing rcu_bh
3201  * read-side critical sections have completed.  RCU read-side critical
3202  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3203  * and may be nested.
3204  *
3205  * See the description of synchronize_sched() for more detailed information
3206  * on memory ordering guarantees.
3207  */
3208 void synchronize_rcu_bh(void)
3209 {
3210 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3211 			 lock_is_held(&rcu_lock_map) ||
3212 			 lock_is_held(&rcu_sched_lock_map),
3213 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3214 	if (rcu_blocking_is_gp())
3215 		return;
3216 	if (rcu_gp_is_expedited())
3217 		synchronize_rcu_bh_expedited();
3218 	else
3219 		wait_rcu_gp(call_rcu_bh);
3220 }
3221 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3222 
3223 /**
3224  * get_state_synchronize_rcu - Snapshot current RCU state
3225  *
3226  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3227  * to determine whether or not a full grace period has elapsed in the
3228  * meantime.
3229  */
3230 unsigned long get_state_synchronize_rcu(void)
3231 {
3232 	/*
3233 	 * Any prior manipulation of RCU-protected data must happen
3234 	 * before the load from ->gpnum.
3235 	 */
3236 	smp_mb();  /* ^^^ */
3237 
3238 	/*
3239 	 * Make sure this load happens before the purportedly
3240 	 * time-consuming work between get_state_synchronize_rcu()
3241 	 * and cond_synchronize_rcu().
3242 	 */
3243 	return smp_load_acquire(&rcu_state_p->gpnum);
3244 }
3245 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3246 
3247 /**
3248  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3249  *
3250  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3251  *
3252  * If a full RCU grace period has elapsed since the earlier call to
3253  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3254  * synchronize_rcu() to wait for a full grace period.
3255  *
3256  * Yes, this function does not take counter wrap into account.  But
3257  * counter wrap is harmless.  If the counter wraps, we have waited for
3258  * more than 2 billion grace periods (and way more on a 64-bit system!),
3259  * so waiting for one additional grace period should be just fine.
3260  */
3261 void cond_synchronize_rcu(unsigned long oldstate)
3262 {
3263 	unsigned long newstate;
3264 
3265 	/*
3266 	 * Ensure that this load happens before any RCU-destructive
3267 	 * actions the caller might carry out after we return.
3268 	 */
3269 	newstate = smp_load_acquire(&rcu_state_p->completed);
3270 	if (ULONG_CMP_GE(oldstate, newstate))
3271 		synchronize_rcu();
3272 }
3273 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3274 
3275 /**
3276  * get_state_synchronize_sched - Snapshot current RCU-sched state
3277  *
3278  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3279  * to determine whether or not a full grace period has elapsed in the
3280  * meantime.
3281  */
3282 unsigned long get_state_synchronize_sched(void)
3283 {
3284 	/*
3285 	 * Any prior manipulation of RCU-protected data must happen
3286 	 * before the load from ->gpnum.
3287 	 */
3288 	smp_mb();  /* ^^^ */
3289 
3290 	/*
3291 	 * Make sure this load happens before the purportedly
3292 	 * time-consuming work between get_state_synchronize_sched()
3293 	 * and cond_synchronize_sched().
3294 	 */
3295 	return smp_load_acquire(&rcu_sched_state.gpnum);
3296 }
3297 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3298 
3299 /**
3300  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3301  *
3302  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3303  *
3304  * If a full RCU-sched grace period has elapsed since the earlier call to
3305  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3306  * synchronize_sched() to wait for a full grace period.
3307  *
3308  * Yes, this function does not take counter wrap into account.  But
3309  * counter wrap is harmless.  If the counter wraps, we have waited for
3310  * more than 2 billion grace periods (and way more on a 64-bit system!),
3311  * so waiting for one additional grace period should be just fine.
3312  */
3313 void cond_synchronize_sched(unsigned long oldstate)
3314 {
3315 	unsigned long newstate;
3316 
3317 	/*
3318 	 * Ensure that this load happens before any RCU-destructive
3319 	 * actions the caller might carry out after we return.
3320 	 */
3321 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3322 	if (ULONG_CMP_GE(oldstate, newstate))
3323 		synchronize_sched();
3324 }
3325 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3326 
3327 /* Adjust sequence number for start of update-side operation. */
3328 static void rcu_seq_start(unsigned long *sp)
3329 {
3330 	WRITE_ONCE(*sp, *sp + 1);
3331 	smp_mb(); /* Ensure update-side operation after counter increment. */
3332 	WARN_ON_ONCE(!(*sp & 0x1));
3333 }
3334 
3335 /* Adjust sequence number for end of update-side operation. */
3336 static void rcu_seq_end(unsigned long *sp)
3337 {
3338 	smp_mb(); /* Ensure update-side operation before counter increment. */
3339 	WRITE_ONCE(*sp, *sp + 1);
3340 	WARN_ON_ONCE(*sp & 0x1);
3341 }
3342 
3343 /* Take a snapshot of the update side's sequence number. */
3344 static unsigned long rcu_seq_snap(unsigned long *sp)
3345 {
3346 	unsigned long s;
3347 
3348 	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3349 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3350 	smp_mb(); /* Above access must not bleed into critical section. */
3351 	return s;
3352 }
3353 
3354 /*
3355  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3356  * full update-side operation has occurred.
3357  */
3358 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3359 {
3360 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3361 }
3362 
3363 /* Wrapper functions for expedited grace periods.  */
3364 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3365 {
3366 	rcu_seq_start(&rsp->expedited_sequence);
3367 }
3368 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3369 {
3370 	rcu_seq_end(&rsp->expedited_sequence);
3371 	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3372 }
3373 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3374 {
3375 	return rcu_seq_snap(&rsp->expedited_sequence);
3376 }
3377 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3378 {
3379 	return rcu_seq_done(&rsp->expedited_sequence, s);
3380 }
3381 
3382 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3383 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3384 			       struct rcu_data *rdp,
3385 			       atomic_long_t *stat, unsigned long s)
3386 {
3387 	if (rcu_exp_gp_seq_done(rsp, s)) {
3388 		if (rnp)
3389 			mutex_unlock(&rnp->exp_funnel_mutex);
3390 		else if (rdp)
3391 			mutex_unlock(&rdp->exp_funnel_mutex);
3392 		/* Ensure test happens before caller kfree(). */
3393 		smp_mb__before_atomic(); /* ^^^ */
3394 		atomic_long_inc(stat);
3395 		return true;
3396 	}
3397 	return false;
3398 }
3399 
3400 /*
3401  * Funnel-lock acquisition for expedited grace periods.  Returns a
3402  * pointer to the root rcu_node structure, or NULL if some other
3403  * task did the expedited grace period for us.
3404  */
3405 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3406 {
3407 	struct rcu_data *rdp;
3408 	struct rcu_node *rnp0;
3409 	struct rcu_node *rnp1 = NULL;
3410 
3411 	/*
3412 	 * First try directly acquiring the root lock in order to reduce
3413 	 * latency in the common case where expedited grace periods are
3414 	 * rare.  We check mutex_is_locked() to avoid pathological levels of
3415 	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3416 	 */
3417 	rnp0 = rcu_get_root(rsp);
3418 	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3419 		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3420 			if (sync_exp_work_done(rsp, rnp0, NULL,
3421 					       &rsp->expedited_workdone0, s))
3422 				return NULL;
3423 			return rnp0;
3424 		}
3425 	}
3426 
3427 	/*
3428 	 * Each pass through the following loop works its way
3429 	 * up the rcu_node tree, returning if others have done the
3430 	 * work or otherwise falls through holding the root rnp's
3431 	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
3432 	 * can be inexact, as it is just promoting locality and is not
3433 	 * strictly needed for correctness.
3434 	 */
3435 	rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3436 	if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
3437 		return NULL;
3438 	mutex_lock(&rdp->exp_funnel_mutex);
3439 	rnp0 = rdp->mynode;
3440 	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3441 		if (sync_exp_work_done(rsp, rnp1, rdp,
3442 				       &rsp->expedited_workdone2, s))
3443 			return NULL;
3444 		mutex_lock(&rnp0->exp_funnel_mutex);
3445 		if (rnp1)
3446 			mutex_unlock(&rnp1->exp_funnel_mutex);
3447 		else
3448 			mutex_unlock(&rdp->exp_funnel_mutex);
3449 		rnp1 = rnp0;
3450 	}
3451 	if (sync_exp_work_done(rsp, rnp1, rdp,
3452 			       &rsp->expedited_workdone3, s))
3453 		return NULL;
3454 	return rnp1;
3455 }
3456 
3457 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3458 static int synchronize_sched_expedited_cpu_stop(void *data)
3459 {
3460 	struct rcu_data *rdp = data;
3461 	struct rcu_state *rsp = rdp->rsp;
3462 
3463 	/* We are here: If we are last, do the wakeup. */
3464 	rdp->exp_done = true;
3465 	if (atomic_dec_and_test(&rsp->expedited_need_qs))
3466 		wake_up(&rsp->expedited_wq);
3467 	return 0;
3468 }
3469 
3470 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3471 {
3472 	int cpu;
3473 	unsigned long jiffies_stall;
3474 	unsigned long jiffies_start;
3475 	struct rcu_data *rdp;
3476 	int ret;
3477 
3478 	jiffies_stall = rcu_jiffies_till_stall_check();
3479 	jiffies_start = jiffies;
3480 
3481 	for (;;) {
3482 		ret = wait_event_interruptible_timeout(
3483 				rsp->expedited_wq,
3484 				!atomic_read(&rsp->expedited_need_qs),
3485 				jiffies_stall);
3486 		if (ret > 0)
3487 			return;
3488 		if (ret < 0) {
3489 			/* Hit a signal, disable CPU stall warnings. */
3490 			wait_event(rsp->expedited_wq,
3491 				   !atomic_read(&rsp->expedited_need_qs));
3492 			return;
3493 		}
3494 		pr_err("INFO: %s detected expedited stalls on CPUs: {",
3495 		       rsp->name);
3496 		for_each_online_cpu(cpu) {
3497 			rdp = per_cpu_ptr(rsp->rda, cpu);
3498 
3499 			if (rdp->exp_done)
3500 				continue;
3501 			pr_cont(" %d", cpu);
3502 		}
3503 		pr_cont(" } %lu jiffies s: %lu\n",
3504 			jiffies - jiffies_start, rsp->expedited_sequence);
3505 		for_each_online_cpu(cpu) {
3506 			rdp = per_cpu_ptr(rsp->rda, cpu);
3507 
3508 			if (rdp->exp_done)
3509 				continue;
3510 			dump_cpu_task(cpu);
3511 		}
3512 		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3513 	}
3514 }
3515 
3516 /**
3517  * synchronize_sched_expedited - Brute-force RCU-sched grace period
3518  *
3519  * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3520  * approach to force the grace period to end quickly.  This consumes
3521  * significant time on all CPUs and is unfriendly to real-time workloads,
3522  * so is thus not recommended for any sort of common-case code.  In fact,
3523  * if you are using synchronize_sched_expedited() in a loop, please
3524  * restructure your code to batch your updates, and then use a single
3525  * synchronize_sched() instead.
3526  *
3527  * This implementation can be thought of as an application of sequence
3528  * locking to expedited grace periods, but using the sequence counter to
3529  * determine when someone else has already done the work instead of for
3530  * retrying readers.
3531  */
3532 void synchronize_sched_expedited(void)
3533 {
3534 	int cpu;
3535 	unsigned long s;
3536 	struct rcu_node *rnp;
3537 	struct rcu_state *rsp = &rcu_sched_state;
3538 
3539 	/* Take a snapshot of the sequence number.  */
3540 	s = rcu_exp_gp_seq_snap(rsp);
3541 
3542 	if (!try_get_online_cpus()) {
3543 		/* CPU hotplug operation in flight, fall back to normal GP. */
3544 		wait_rcu_gp(call_rcu_sched);
3545 		atomic_long_inc(&rsp->expedited_normal);
3546 		return;
3547 	}
3548 	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3549 
3550 	rnp = exp_funnel_lock(rsp, s);
3551 	if (rnp == NULL) {
3552 		put_online_cpus();
3553 		return;  /* Someone else did our work for us. */
3554 	}
3555 
3556 	rcu_exp_gp_seq_start(rsp);
3557 
3558 	/* Stop each CPU that is online, non-idle, and not us. */
3559 	init_waitqueue_head(&rsp->expedited_wq);
3560 	atomic_set(&rsp->expedited_need_qs, 1); /* Extra count avoids race. */
3561 	for_each_online_cpu(cpu) {
3562 		struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3563 		struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3564 
3565 		rdp->exp_done = false;
3566 
3567 		/* Skip our CPU and any idle CPUs. */
3568 		if (raw_smp_processor_id() == cpu ||
3569 		    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3570 			continue;
3571 		atomic_inc(&rsp->expedited_need_qs);
3572 		stop_one_cpu_nowait(cpu, synchronize_sched_expedited_cpu_stop,
3573 				    rdp, &rdp->exp_stop_work);
3574 	}
3575 
3576 	/* Remove extra count and, if necessary, wait for CPUs to stop. */
3577 	if (!atomic_dec_and_test(&rsp->expedited_need_qs))
3578 		synchronize_sched_expedited_wait(rsp);
3579 
3580 	rcu_exp_gp_seq_end(rsp);
3581 	mutex_unlock(&rnp->exp_funnel_mutex);
3582 
3583 	put_online_cpus();
3584 }
3585 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3586 
3587 /*
3588  * Check to see if there is any immediate RCU-related work to be done
3589  * by the current CPU, for the specified type of RCU, returning 1 if so.
3590  * The checks are in order of increasing expense: checks that can be
3591  * carried out against CPU-local state are performed first.  However,
3592  * we must check for CPU stalls first, else we might not get a chance.
3593  */
3594 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3595 {
3596 	struct rcu_node *rnp = rdp->mynode;
3597 
3598 	rdp->n_rcu_pending++;
3599 
3600 	/* Check for CPU stalls, if enabled. */
3601 	check_cpu_stall(rsp, rdp);
3602 
3603 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3604 	if (rcu_nohz_full_cpu(rsp))
3605 		return 0;
3606 
3607 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3608 	if (rcu_scheduler_fully_active &&
3609 	    rdp->qs_pending && !rdp->passed_quiesce &&
3610 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3611 		rdp->n_rp_qs_pending++;
3612 	} else if (rdp->qs_pending &&
3613 		   (rdp->passed_quiesce ||
3614 		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3615 		rdp->n_rp_report_qs++;
3616 		return 1;
3617 	}
3618 
3619 	/* Does this CPU have callbacks ready to invoke? */
3620 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3621 		rdp->n_rp_cb_ready++;
3622 		return 1;
3623 	}
3624 
3625 	/* Has RCU gone idle with this CPU needing another grace period? */
3626 	if (cpu_needs_another_gp(rsp, rdp)) {
3627 		rdp->n_rp_cpu_needs_gp++;
3628 		return 1;
3629 	}
3630 
3631 	/* Has another RCU grace period completed?  */
3632 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3633 		rdp->n_rp_gp_completed++;
3634 		return 1;
3635 	}
3636 
3637 	/* Has a new RCU grace period started? */
3638 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3639 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3640 		rdp->n_rp_gp_started++;
3641 		return 1;
3642 	}
3643 
3644 	/* Does this CPU need a deferred NOCB wakeup? */
3645 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3646 		rdp->n_rp_nocb_defer_wakeup++;
3647 		return 1;
3648 	}
3649 
3650 	/* nothing to do */
3651 	rdp->n_rp_need_nothing++;
3652 	return 0;
3653 }
3654 
3655 /*
3656  * Check to see if there is any immediate RCU-related work to be done
3657  * by the current CPU, returning 1 if so.  This function is part of the
3658  * RCU implementation; it is -not- an exported member of the RCU API.
3659  */
3660 static int rcu_pending(void)
3661 {
3662 	struct rcu_state *rsp;
3663 
3664 	for_each_rcu_flavor(rsp)
3665 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3666 			return 1;
3667 	return 0;
3668 }
3669 
3670 /*
3671  * Return true if the specified CPU has any callback.  If all_lazy is
3672  * non-NULL, store an indication of whether all callbacks are lazy.
3673  * (If there are no callbacks, all of them are deemed to be lazy.)
3674  */
3675 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3676 {
3677 	bool al = true;
3678 	bool hc = false;
3679 	struct rcu_data *rdp;
3680 	struct rcu_state *rsp;
3681 
3682 	for_each_rcu_flavor(rsp) {
3683 		rdp = this_cpu_ptr(rsp->rda);
3684 		if (!rdp->nxtlist)
3685 			continue;
3686 		hc = true;
3687 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3688 			al = false;
3689 			break;
3690 		}
3691 	}
3692 	if (all_lazy)
3693 		*all_lazy = al;
3694 	return hc;
3695 }
3696 
3697 /*
3698  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3699  * the compiler is expected to optimize this away.
3700  */
3701 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3702 			       int cpu, unsigned long done)
3703 {
3704 	trace_rcu_barrier(rsp->name, s, cpu,
3705 			  atomic_read(&rsp->barrier_cpu_count), done);
3706 }
3707 
3708 /*
3709  * RCU callback function for _rcu_barrier().  If we are last, wake
3710  * up the task executing _rcu_barrier().
3711  */
3712 static void rcu_barrier_callback(struct rcu_head *rhp)
3713 {
3714 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3715 	struct rcu_state *rsp = rdp->rsp;
3716 
3717 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3718 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3719 		complete(&rsp->barrier_completion);
3720 	} else {
3721 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3722 	}
3723 }
3724 
3725 /*
3726  * Called with preemption disabled, and from cross-cpu IRQ context.
3727  */
3728 static void rcu_barrier_func(void *type)
3729 {
3730 	struct rcu_state *rsp = type;
3731 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3732 
3733 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3734 	atomic_inc(&rsp->barrier_cpu_count);
3735 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3736 }
3737 
3738 /*
3739  * Orchestrate the specified type of RCU barrier, waiting for all
3740  * RCU callbacks of the specified type to complete.
3741  */
3742 static void _rcu_barrier(struct rcu_state *rsp)
3743 {
3744 	int cpu;
3745 	struct rcu_data *rdp;
3746 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3747 
3748 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3749 
3750 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3751 	mutex_lock(&rsp->barrier_mutex);
3752 
3753 	/* Did someone else do our work for us? */
3754 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3755 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3756 		smp_mb(); /* caller's subsequent code after above check. */
3757 		mutex_unlock(&rsp->barrier_mutex);
3758 		return;
3759 	}
3760 
3761 	/* Mark the start of the barrier operation. */
3762 	rcu_seq_start(&rsp->barrier_sequence);
3763 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3764 
3765 	/*
3766 	 * Initialize the count to one rather than to zero in order to
3767 	 * avoid a too-soon return to zero in case of a short grace period
3768 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3769 	 * to ensure that no offline CPU has callbacks queued.
3770 	 */
3771 	init_completion(&rsp->barrier_completion);
3772 	atomic_set(&rsp->barrier_cpu_count, 1);
3773 	get_online_cpus();
3774 
3775 	/*
3776 	 * Force each CPU with callbacks to register a new callback.
3777 	 * When that callback is invoked, we will know that all of the
3778 	 * corresponding CPU's preceding callbacks have been invoked.
3779 	 */
3780 	for_each_possible_cpu(cpu) {
3781 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3782 			continue;
3783 		rdp = per_cpu_ptr(rsp->rda, cpu);
3784 		if (rcu_is_nocb_cpu(cpu)) {
3785 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3786 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3787 						   rsp->barrier_sequence);
3788 			} else {
3789 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3790 						   rsp->barrier_sequence);
3791 				smp_mb__before_atomic();
3792 				atomic_inc(&rsp->barrier_cpu_count);
3793 				__call_rcu(&rdp->barrier_head,
3794 					   rcu_barrier_callback, rsp, cpu, 0);
3795 			}
3796 		} else if (READ_ONCE(rdp->qlen)) {
3797 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3798 					   rsp->barrier_sequence);
3799 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3800 		} else {
3801 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3802 					   rsp->barrier_sequence);
3803 		}
3804 	}
3805 	put_online_cpus();
3806 
3807 	/*
3808 	 * Now that we have an rcu_barrier_callback() callback on each
3809 	 * CPU, and thus each counted, remove the initial count.
3810 	 */
3811 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3812 		complete(&rsp->barrier_completion);
3813 
3814 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3815 	wait_for_completion(&rsp->barrier_completion);
3816 
3817 	/* Mark the end of the barrier operation. */
3818 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3819 	rcu_seq_end(&rsp->barrier_sequence);
3820 
3821 	/* Other rcu_barrier() invocations can now safely proceed. */
3822 	mutex_unlock(&rsp->barrier_mutex);
3823 }
3824 
3825 /**
3826  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3827  */
3828 void rcu_barrier_bh(void)
3829 {
3830 	_rcu_barrier(&rcu_bh_state);
3831 }
3832 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3833 
3834 /**
3835  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3836  */
3837 void rcu_barrier_sched(void)
3838 {
3839 	_rcu_barrier(&rcu_sched_state);
3840 }
3841 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3842 
3843 /*
3844  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3845  * first CPU in a given leaf rcu_node structure coming online.  The caller
3846  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3847  * disabled.
3848  */
3849 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3850 {
3851 	long mask;
3852 	struct rcu_node *rnp = rnp_leaf;
3853 
3854 	for (;;) {
3855 		mask = rnp->grpmask;
3856 		rnp = rnp->parent;
3857 		if (rnp == NULL)
3858 			return;
3859 		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3860 		rnp->qsmaskinit |= mask;
3861 		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3862 	}
3863 }
3864 
3865 /*
3866  * Do boot-time initialization of a CPU's per-CPU RCU data.
3867  */
3868 static void __init
3869 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3870 {
3871 	static struct lock_class_key rcu_exp_sched_rdp_class;
3872 	unsigned long flags;
3873 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3874 	struct rcu_node *rnp = rcu_get_root(rsp);
3875 
3876 	/* Set up local state, ensuring consistent view of global state. */
3877 	raw_spin_lock_irqsave(&rnp->lock, flags);
3878 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3879 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3880 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3881 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3882 	rdp->cpu = cpu;
3883 	rdp->rsp = rsp;
3884 	mutex_init(&rdp->exp_funnel_mutex);
3885 	rcu_boot_init_nocb_percpu_data(rdp);
3886 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3887 	if (rsp == &rcu_sched_state)
3888 		lockdep_set_class_and_name(&rdp->exp_funnel_mutex,
3889 					   &rcu_exp_sched_rdp_class,
3890 					   "rcu_data_exp_sched");
3891 }
3892 
3893 /*
3894  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3895  * offline event can be happening at a given time.  Note also that we
3896  * can accept some slop in the rsp->completed access due to the fact
3897  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3898  */
3899 static void
3900 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3901 {
3902 	unsigned long flags;
3903 	unsigned long mask;
3904 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3905 	struct rcu_node *rnp = rcu_get_root(rsp);
3906 
3907 	/* Set up local state, ensuring consistent view of global state. */
3908 	raw_spin_lock_irqsave(&rnp->lock, flags);
3909 	rdp->beenonline = 1;	 /* We have now been online. */
3910 	rdp->qlen_last_fqs_check = 0;
3911 	rdp->n_force_qs_snap = rsp->n_force_qs;
3912 	rdp->blimit = blimit;
3913 	if (!rdp->nxtlist)
3914 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3915 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3916 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3917 	atomic_set(&rdp->dynticks->dynticks,
3918 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3919 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3920 
3921 	/*
3922 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3923 	 * propagation up the rcu_node tree will happen at the beginning
3924 	 * of the next grace period.
3925 	 */
3926 	rnp = rdp->mynode;
3927 	mask = rdp->grpmask;
3928 	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
3929 	smp_mb__after_unlock_lock();
3930 	rnp->qsmaskinitnext |= mask;
3931 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3932 	rdp->completed = rnp->completed;
3933 	rdp->passed_quiesce = false;
3934 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3935 	rdp->qs_pending = false;
3936 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3937 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3938 }
3939 
3940 static void rcu_prepare_cpu(int cpu)
3941 {
3942 	struct rcu_state *rsp;
3943 
3944 	for_each_rcu_flavor(rsp)
3945 		rcu_init_percpu_data(cpu, rsp);
3946 }
3947 
3948 /*
3949  * Handle CPU online/offline notification events.
3950  */
3951 int rcu_cpu_notify(struct notifier_block *self,
3952 		   unsigned long action, void *hcpu)
3953 {
3954 	long cpu = (long)hcpu;
3955 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3956 	struct rcu_node *rnp = rdp->mynode;
3957 	struct rcu_state *rsp;
3958 
3959 	switch (action) {
3960 	case CPU_UP_PREPARE:
3961 	case CPU_UP_PREPARE_FROZEN:
3962 		rcu_prepare_cpu(cpu);
3963 		rcu_prepare_kthreads(cpu);
3964 		rcu_spawn_all_nocb_kthreads(cpu);
3965 		break;
3966 	case CPU_ONLINE:
3967 	case CPU_DOWN_FAILED:
3968 		rcu_boost_kthread_setaffinity(rnp, -1);
3969 		break;
3970 	case CPU_DOWN_PREPARE:
3971 		rcu_boost_kthread_setaffinity(rnp, cpu);
3972 		break;
3973 	case CPU_DYING:
3974 	case CPU_DYING_FROZEN:
3975 		for_each_rcu_flavor(rsp)
3976 			rcu_cleanup_dying_cpu(rsp);
3977 		break;
3978 	case CPU_DYING_IDLE:
3979 		for_each_rcu_flavor(rsp) {
3980 			rcu_cleanup_dying_idle_cpu(cpu, rsp);
3981 		}
3982 		break;
3983 	case CPU_DEAD:
3984 	case CPU_DEAD_FROZEN:
3985 	case CPU_UP_CANCELED:
3986 	case CPU_UP_CANCELED_FROZEN:
3987 		for_each_rcu_flavor(rsp) {
3988 			rcu_cleanup_dead_cpu(cpu, rsp);
3989 			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3990 		}
3991 		break;
3992 	default:
3993 		break;
3994 	}
3995 	return NOTIFY_OK;
3996 }
3997 
3998 static int rcu_pm_notify(struct notifier_block *self,
3999 			 unsigned long action, void *hcpu)
4000 {
4001 	switch (action) {
4002 	case PM_HIBERNATION_PREPARE:
4003 	case PM_SUSPEND_PREPARE:
4004 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4005 			rcu_expedite_gp();
4006 		break;
4007 	case PM_POST_HIBERNATION:
4008 	case PM_POST_SUSPEND:
4009 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4010 			rcu_unexpedite_gp();
4011 		break;
4012 	default:
4013 		break;
4014 	}
4015 	return NOTIFY_OK;
4016 }
4017 
4018 /*
4019  * Spawn the kthreads that handle each RCU flavor's grace periods.
4020  */
4021 static int __init rcu_spawn_gp_kthread(void)
4022 {
4023 	unsigned long flags;
4024 	int kthread_prio_in = kthread_prio;
4025 	struct rcu_node *rnp;
4026 	struct rcu_state *rsp;
4027 	struct sched_param sp;
4028 	struct task_struct *t;
4029 
4030 	/* Force priority into range. */
4031 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4032 		kthread_prio = 1;
4033 	else if (kthread_prio < 0)
4034 		kthread_prio = 0;
4035 	else if (kthread_prio > 99)
4036 		kthread_prio = 99;
4037 	if (kthread_prio != kthread_prio_in)
4038 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4039 			 kthread_prio, kthread_prio_in);
4040 
4041 	rcu_scheduler_fully_active = 1;
4042 	for_each_rcu_flavor(rsp) {
4043 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4044 		BUG_ON(IS_ERR(t));
4045 		rnp = rcu_get_root(rsp);
4046 		raw_spin_lock_irqsave(&rnp->lock, flags);
4047 		rsp->gp_kthread = t;
4048 		if (kthread_prio) {
4049 			sp.sched_priority = kthread_prio;
4050 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4051 		}
4052 		wake_up_process(t);
4053 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
4054 	}
4055 	rcu_spawn_nocb_kthreads();
4056 	rcu_spawn_boost_kthreads();
4057 	return 0;
4058 }
4059 early_initcall(rcu_spawn_gp_kthread);
4060 
4061 /*
4062  * This function is invoked towards the end of the scheduler's initialization
4063  * process.  Before this is called, the idle task might contain
4064  * RCU read-side critical sections (during which time, this idle
4065  * task is booting the system).  After this function is called, the
4066  * idle tasks are prohibited from containing RCU read-side critical
4067  * sections.  This function also enables RCU lockdep checking.
4068  */
4069 void rcu_scheduler_starting(void)
4070 {
4071 	WARN_ON(num_online_cpus() != 1);
4072 	WARN_ON(nr_context_switches() > 0);
4073 	rcu_scheduler_active = 1;
4074 }
4075 
4076 /*
4077  * Compute the per-level fanout, either using the exact fanout specified
4078  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4079  */
4080 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4081 {
4082 	int i;
4083 
4084 	if (rcu_fanout_exact) {
4085 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4086 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4087 			levelspread[i] = RCU_FANOUT;
4088 	} else {
4089 		int ccur;
4090 		int cprv;
4091 
4092 		cprv = nr_cpu_ids;
4093 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4094 			ccur = levelcnt[i];
4095 			levelspread[i] = (cprv + ccur - 1) / ccur;
4096 			cprv = ccur;
4097 		}
4098 	}
4099 }
4100 
4101 /*
4102  * Helper function for rcu_init() that initializes one rcu_state structure.
4103  */
4104 static void __init rcu_init_one(struct rcu_state *rsp,
4105 		struct rcu_data __percpu *rda)
4106 {
4107 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4108 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4109 	static const char * const exp[] = RCU_EXP_NAME_INIT;
4110 	static const char * const exp_sched[] = RCU_EXP_SCHED_NAME_INIT;
4111 	static u8 fl_mask = 0x1;
4112 
4113 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4114 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4115 	int cpustride = 1;
4116 	int i;
4117 	int j;
4118 	struct rcu_node *rnp;
4119 
4120 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4121 
4122 	/* Silence gcc 4.8 false positive about array index out of range. */
4123 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4124 		panic("rcu_init_one: rcu_num_lvls out of range");
4125 
4126 	/* Initialize the level-tracking arrays. */
4127 
4128 	for (i = 0; i < rcu_num_lvls; i++)
4129 		levelcnt[i] = num_rcu_lvl[i];
4130 	for (i = 1; i < rcu_num_lvls; i++)
4131 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4132 	rcu_init_levelspread(levelspread, levelcnt);
4133 	rsp->flavor_mask = fl_mask;
4134 	fl_mask <<= 1;
4135 
4136 	/* Initialize the elements themselves, starting from the leaves. */
4137 
4138 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4139 		cpustride *= levelspread[i];
4140 		rnp = rsp->level[i];
4141 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4142 			raw_spin_lock_init(&rnp->lock);
4143 			lockdep_set_class_and_name(&rnp->lock,
4144 						   &rcu_node_class[i], buf[i]);
4145 			raw_spin_lock_init(&rnp->fqslock);
4146 			lockdep_set_class_and_name(&rnp->fqslock,
4147 						   &rcu_fqs_class[i], fqs[i]);
4148 			rnp->gpnum = rsp->gpnum;
4149 			rnp->completed = rsp->completed;
4150 			rnp->qsmask = 0;
4151 			rnp->qsmaskinit = 0;
4152 			rnp->grplo = j * cpustride;
4153 			rnp->grphi = (j + 1) * cpustride - 1;
4154 			if (rnp->grphi >= nr_cpu_ids)
4155 				rnp->grphi = nr_cpu_ids - 1;
4156 			if (i == 0) {
4157 				rnp->grpnum = 0;
4158 				rnp->grpmask = 0;
4159 				rnp->parent = NULL;
4160 			} else {
4161 				rnp->grpnum = j % levelspread[i - 1];
4162 				rnp->grpmask = 1UL << rnp->grpnum;
4163 				rnp->parent = rsp->level[i - 1] +
4164 					      j / levelspread[i - 1];
4165 			}
4166 			rnp->level = i;
4167 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4168 			rcu_init_one_nocb(rnp);
4169 			mutex_init(&rnp->exp_funnel_mutex);
4170 			if (rsp == &rcu_sched_state)
4171 				lockdep_set_class_and_name(
4172 					&rnp->exp_funnel_mutex,
4173 					&rcu_exp_sched_class[i], exp_sched[i]);
4174 			else
4175 				lockdep_set_class_and_name(
4176 					&rnp->exp_funnel_mutex,
4177 					&rcu_exp_class[i], exp[i]);
4178 		}
4179 	}
4180 
4181 	init_waitqueue_head(&rsp->gp_wq);
4182 	rnp = rsp->level[rcu_num_lvls - 1];
4183 	for_each_possible_cpu(i) {
4184 		while (i > rnp->grphi)
4185 			rnp++;
4186 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4187 		rcu_boot_init_percpu_data(i, rsp);
4188 	}
4189 	list_add(&rsp->flavors, &rcu_struct_flavors);
4190 }
4191 
4192 /*
4193  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4194  * replace the definitions in tree.h because those are needed to size
4195  * the ->node array in the rcu_state structure.
4196  */
4197 static void __init rcu_init_geometry(void)
4198 {
4199 	ulong d;
4200 	int i;
4201 	int rcu_capacity[RCU_NUM_LVLS];
4202 
4203 	/*
4204 	 * Initialize any unspecified boot parameters.
4205 	 * The default values of jiffies_till_first_fqs and
4206 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4207 	 * value, which is a function of HZ, then adding one for each
4208 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4209 	 */
4210 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4211 	if (jiffies_till_first_fqs == ULONG_MAX)
4212 		jiffies_till_first_fqs = d;
4213 	if (jiffies_till_next_fqs == ULONG_MAX)
4214 		jiffies_till_next_fqs = d;
4215 
4216 	/* If the compile-time values are accurate, just leave. */
4217 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4218 	    nr_cpu_ids == NR_CPUS)
4219 		return;
4220 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4221 		rcu_fanout_leaf, nr_cpu_ids);
4222 
4223 	/*
4224 	 * The boot-time rcu_fanout_leaf parameter is only permitted
4225 	 * to increase the leaf-level fanout, not decrease it.  Of course,
4226 	 * the leaf-level fanout cannot exceed the number of bits in
4227 	 * the rcu_node masks.  Complain and fall back to the compile-
4228 	 * time values if these limits are exceeded.
4229 	 */
4230 	if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
4231 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4232 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4233 		WARN_ON(1);
4234 		return;
4235 	}
4236 
4237 	/*
4238 	 * Compute number of nodes that can be handled an rcu_node tree
4239 	 * with the given number of levels.
4240 	 */
4241 	rcu_capacity[0] = rcu_fanout_leaf;
4242 	for (i = 1; i < RCU_NUM_LVLS; i++)
4243 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4244 
4245 	/*
4246 	 * The tree must be able to accommodate the configured number of CPUs.
4247 	 * If this limit is exceeded than we have a serious problem elsewhere.
4248 	 */
4249 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1])
4250 		panic("rcu_init_geometry: rcu_capacity[] is too small");
4251 
4252 	/* Calculate the number of levels in the tree. */
4253 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4254 	}
4255 	rcu_num_lvls = i + 1;
4256 
4257 	/* Calculate the number of rcu_nodes at each level of the tree. */
4258 	for (i = 0; i < rcu_num_lvls; i++) {
4259 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4260 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4261 	}
4262 
4263 	/* Calculate the total number of rcu_node structures. */
4264 	rcu_num_nodes = 0;
4265 	for (i = 0; i < rcu_num_lvls; i++)
4266 		rcu_num_nodes += num_rcu_lvl[i];
4267 }
4268 
4269 /*
4270  * Dump out the structure of the rcu_node combining tree associated
4271  * with the rcu_state structure referenced by rsp.
4272  */
4273 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4274 {
4275 	int level = 0;
4276 	struct rcu_node *rnp;
4277 
4278 	pr_info("rcu_node tree layout dump\n");
4279 	pr_info(" ");
4280 	rcu_for_each_node_breadth_first(rsp, rnp) {
4281 		if (rnp->level != level) {
4282 			pr_cont("\n");
4283 			pr_info(" ");
4284 			level = rnp->level;
4285 		}
4286 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4287 	}
4288 	pr_cont("\n");
4289 }
4290 
4291 void __init rcu_init(void)
4292 {
4293 	int cpu;
4294 
4295 	rcu_early_boot_tests();
4296 
4297 	rcu_bootup_announce();
4298 	rcu_init_geometry();
4299 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4300 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4301 	if (dump_tree)
4302 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4303 	__rcu_init_preempt();
4304 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4305 
4306 	/*
4307 	 * We don't need protection against CPU-hotplug here because
4308 	 * this is called early in boot, before either interrupts
4309 	 * or the scheduler are operational.
4310 	 */
4311 	cpu_notifier(rcu_cpu_notify, 0);
4312 	pm_notifier(rcu_pm_notify, 0);
4313 	for_each_online_cpu(cpu)
4314 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4315 }
4316 
4317 #include "tree_plugin.h"
4318