xref: /linux/kernel/rcu/tree.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68 
69 #include "tree.h"
70 #include "rcu.h"
71 
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76 
77 /* Data structures. */
78 
79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 	.gpwrap = true,
81 #ifdef CONFIG_RCU_NOCB_CPU
82 	.cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 	.level = { &rcu_state.node[0] },
87 	.gp_state = RCU_GP_IDLE,
88 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 
117 /*
118  * The rcu_scheduler_active variable is initialized to the value
119  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121  * RCU can assume that there is but one task, allowing RCU to (for example)
122  * optimize synchronize_rcu() to a simple barrier().  When this variable
123  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124  * to detect real grace periods.  This variable is also used to suppress
125  * boot-time false positives from lockdep-RCU error checking.  Finally, it
126  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127  * is fully initialized, including all of its kthreads having been spawned.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 			      unsigned long gps, unsigned long flags);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155 static bool rcu_init_invoked(void);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 
159 /*
160  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161  * real-time priority(enabling/disabling) is controlled by
162  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163  */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166 
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168 
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175 
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181 
182 /*
183  * This rcu parameter is runtime-read-only. It reflects
184  * a minimum allowed number of objects which can be cached
185  * per-CPU. Object size is equal to one page. This value
186  * can be changed at boot time.
187  */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190 
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201 
202 /* Retrieve RCU kthreads priority for rcutorture */
203 int rcu_get_gp_kthreads_prio(void)
204 {
205 	return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208 
209 /*
210  * Number of grace periods between delays, normalized by the duration of
211  * the delay.  The longer the delay, the more the grace periods between
212  * each delay.  The reason for this normalization is that it means that,
213  * for non-zero delays, the overall slowdown of grace periods is constant
214  * regardless of the duration of the delay.  This arrangement balances
215  * the need for long delays to increase some race probabilities with the
216  * need for fast grace periods to increase other race probabilities.
217  */
218 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
219 
220 /*
221  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
222  * permit this function to be invoked without holding the root rcu_node
223  * structure's ->lock, but of course results can be subject to change.
224  */
225 static int rcu_gp_in_progress(void)
226 {
227 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228 }
229 
230 /*
231  * Return the number of callbacks queued on the specified CPU.
232  * Handles both the nocbs and normal cases.
233  */
234 static long rcu_get_n_cbs_cpu(int cpu)
235 {
236 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237 
238 	if (rcu_segcblist_is_enabled(&rdp->cblist))
239 		return rcu_segcblist_n_cbs(&rdp->cblist);
240 	return 0;
241 }
242 
243 void rcu_softirq_qs(void)
244 {
245 	rcu_qs();
246 	rcu_preempt_deferred_qs(current);
247 	rcu_tasks_qs(current, false);
248 }
249 
250 /*
251  * Reset the current CPU's ->dynticks counter to indicate that the
252  * newly onlined CPU is no longer in an extended quiescent state.
253  * This will either leave the counter unchanged, or increment it
254  * to the next non-quiescent value.
255  *
256  * The non-atomic test/increment sequence works because the upper bits
257  * of the ->dynticks counter are manipulated only by the corresponding CPU,
258  * or when the corresponding CPU is offline.
259  */
260 static void rcu_dynticks_eqs_online(void)
261 {
262 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 		return;
264 	ct_state_inc(RCU_DYNTICKS_IDX);
265 }
266 
267 /*
268  * Snapshot the ->dynticks counter with full ordering so as to allow
269  * stable comparison of this counter with past and future snapshots.
270  */
271 static int rcu_dynticks_snap(int cpu)
272 {
273 	smp_mb();  // Fundamental RCU ordering guarantee.
274 	return ct_dynticks_cpu_acquire(cpu);
275 }
276 
277 /*
278  * Return true if the snapshot returned from rcu_dynticks_snap()
279  * indicates that RCU is in an extended quiescent state.
280  */
281 static bool rcu_dynticks_in_eqs(int snap)
282 {
283 	return !(snap & RCU_DYNTICKS_IDX);
284 }
285 
286 /*
287  * Return true if the CPU corresponding to the specified rcu_data
288  * structure has spent some time in an extended quiescent state since
289  * rcu_dynticks_snap() returned the specified snapshot.
290  */
291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292 {
293 	return snap != rcu_dynticks_snap(rdp->cpu);
294 }
295 
296 /*
297  * Return true if the referenced integer is zero while the specified
298  * CPU remains within a single extended quiescent state.
299  */
300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301 {
302 	int snap;
303 
304 	// If not quiescent, force back to earlier extended quiescent state.
305 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 	smp_rmb(); // Order ->dynticks and *vp reads.
307 	if (READ_ONCE(*vp))
308 		return false;  // Non-zero, so report failure;
309 	smp_rmb(); // Order *vp read and ->dynticks re-read.
310 
311 	// If still in the same extended quiescent state, we are good!
312 	return snap == ct_dynticks_cpu(cpu);
313 }
314 
315 /*
316  * Let the RCU core know that this CPU has gone through the scheduler,
317  * which is a quiescent state.  This is called when the need for a
318  * quiescent state is urgent, so we burn an atomic operation and full
319  * memory barriers to let the RCU core know about it, regardless of what
320  * this CPU might (or might not) do in the near future.
321  *
322  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323  *
324  * The caller must have disabled interrupts and must not be idle.
325  */
326 notrace void rcu_momentary_dyntick_idle(void)
327 {
328 	int seq;
329 
330 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332 	/* It is illegal to call this from idle state. */
333 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 	rcu_preempt_deferred_qs(current);
335 }
336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337 
338 /**
339  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340  *
341  * If the current CPU is idle and running at a first-level (not nested)
342  * interrupt, or directly, from idle, return true.
343  *
344  * The caller must have at least disabled IRQs.
345  */
346 static int rcu_is_cpu_rrupt_from_idle(void)
347 {
348 	long nesting;
349 
350 	/*
351 	 * Usually called from the tick; but also used from smp_function_call()
352 	 * for expedited grace periods. This latter can result in running from
353 	 * the idle task, instead of an actual IPI.
354 	 */
355 	lockdep_assert_irqs_disabled();
356 
357 	/* Check for counter underflows */
358 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 			 "RCU dynticks_nesting counter underflow!");
360 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
362 
363 	/* Are we at first interrupt nesting level? */
364 	nesting = ct_dynticks_nmi_nesting();
365 	if (nesting > 1)
366 		return false;
367 
368 	/*
369 	 * If we're not in an interrupt, we must be in the idle task!
370 	 */
371 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
372 
373 	/* Does CPU appear to be idle from an RCU standpoint? */
374 	return ct_dynticks_nesting() == 0;
375 }
376 
377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 				// Maximum callbacks per rcu_do_batch ...
379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380 static long blimit = DEFAULT_RCU_BLIMIT;
381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382 static long qhimark = DEFAULT_RCU_QHIMARK;
383 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
384 static long qlowmark = DEFAULT_RCU_QLOMARK;
385 #define DEFAULT_RCU_QOVLD_MULT 2
386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
389 
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 module_param(qovld, long, 0444);
394 
395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
397 static bool rcu_kick_kthreads;
398 static int rcu_divisor = 7;
399 module_param(rcu_divisor, int, 0644);
400 
401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403 module_param(rcu_resched_ns, long, 0644);
404 
405 /*
406  * How long the grace period must be before we start recruiting
407  * quiescent-state help from rcu_note_context_switch().
408  */
409 static ulong jiffies_till_sched_qs = ULONG_MAX;
410 module_param(jiffies_till_sched_qs, ulong, 0444);
411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413 
414 /*
415  * Make sure that we give the grace-period kthread time to detect any
416  * idle CPUs before taking active measures to force quiescent states.
417  * However, don't go below 100 milliseconds, adjusted upwards for really
418  * large systems.
419  */
420 static void adjust_jiffies_till_sched_qs(void)
421 {
422 	unsigned long j;
423 
424 	/* If jiffies_till_sched_qs was specified, respect the request. */
425 	if (jiffies_till_sched_qs != ULONG_MAX) {
426 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 		return;
428 	}
429 	/* Otherwise, set to third fqs scan, but bound below on large system. */
430 	j = READ_ONCE(jiffies_till_first_fqs) +
431 		      2 * READ_ONCE(jiffies_till_next_fqs);
432 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 	WRITE_ONCE(jiffies_to_sched_qs, j);
436 }
437 
438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439 {
440 	ulong j;
441 	int ret = kstrtoul(val, 0, &j);
442 
443 	if (!ret) {
444 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 		adjust_jiffies_till_sched_qs();
446 	}
447 	return ret;
448 }
449 
450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451 {
452 	ulong j;
453 	int ret = kstrtoul(val, 0, &j);
454 
455 	if (!ret) {
456 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 		adjust_jiffies_till_sched_qs();
458 	}
459 	return ret;
460 }
461 
462 static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 	.set = param_set_first_fqs_jiffies,
464 	.get = param_get_ulong,
465 };
466 
467 static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 	.set = param_set_next_fqs_jiffies,
469 	.get = param_get_ulong,
470 };
471 
472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474 module_param(rcu_kick_kthreads, bool, 0644);
475 
476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477 static int rcu_pending(int user);
478 
479 /*
480  * Return the number of RCU GPs completed thus far for debug & stats.
481  */
482 unsigned long rcu_get_gp_seq(void)
483 {
484 	return READ_ONCE(rcu_state.gp_seq);
485 }
486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487 
488 /*
489  * Return the number of RCU expedited batches completed thus far for
490  * debug & stats.  Odd numbers mean that a batch is in progress, even
491  * numbers mean idle.  The value returned will thus be roughly double
492  * the cumulative batches since boot.
493  */
494 unsigned long rcu_exp_batches_completed(void)
495 {
496 	return rcu_state.expedited_sequence;
497 }
498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499 
500 /*
501  * Return the root node of the rcu_state structure.
502  */
503 static struct rcu_node *rcu_get_root(void)
504 {
505 	return &rcu_state.node[0];
506 }
507 
508 /*
509  * Send along grace-period-related data for rcutorture diagnostics.
510  */
511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 			    unsigned long *gp_seq)
513 {
514 	switch (test_type) {
515 	case RCU_FLAVOR:
516 		*flags = READ_ONCE(rcu_state.gp_flags);
517 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518 		break;
519 	default:
520 		break;
521 	}
522 }
523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524 
525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526 /*
527  * An empty function that will trigger a reschedule on
528  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529  */
530 static void late_wakeup_func(struct irq_work *work)
531 {
532 }
533 
534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 	IRQ_WORK_INIT(late_wakeup_func);
536 
537 /*
538  * If either:
539  *
540  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542  *
543  * In these cases the late RCU wake ups aren't supported in the resched loops and our
544  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545  * get re-enabled again.
546  */
547 noinstr void rcu_irq_work_resched(void)
548 {
549 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550 
551 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 		return;
553 
554 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 		return;
556 
557 	instrumentation_begin();
558 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 	}
561 	instrumentation_end();
562 }
563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564 
565 #ifdef CONFIG_PROVE_RCU
566 /**
567  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568  */
569 void rcu_irq_exit_check_preempt(void)
570 {
571 	lockdep_assert_irqs_disabled();
572 
573 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 			 "RCU dynticks_nesting counter underflow/zero!");
575 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 			 DYNTICK_IRQ_NONIDLE,
577 			 "Bad RCU  dynticks_nmi_nesting counter\n");
578 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 			 "RCU in extended quiescent state!");
580 }
581 #endif /* #ifdef CONFIG_PROVE_RCU */
582 
583 #ifdef CONFIG_NO_HZ_FULL
584 /**
585  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586  *
587  * The scheduler tick is not normally enabled when CPUs enter the kernel
588  * from nohz_full userspace execution.  After all, nohz_full userspace
589  * execution is an RCU quiescent state and the time executing in the kernel
590  * is quite short.  Except of course when it isn't.  And it is not hard to
591  * cause a large system to spend tens of seconds or even minutes looping
592  * in the kernel, which can cause a number of problems, include RCU CPU
593  * stall warnings.
594  *
595  * Therefore, if a nohz_full CPU fails to report a quiescent state
596  * in a timely manner, the RCU grace-period kthread sets that CPU's
597  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598  * exception will invoke this function, which will turn on the scheduler
599  * tick, which will enable RCU to detect that CPU's quiescent states,
600  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601  * The tick will be disabled once a quiescent state is reported for
602  * this CPU.
603  *
604  * Of course, in carefully tuned systems, there might never be an
605  * interrupt or exception.  In that case, the RCU grace-period kthread
606  * will eventually cause one to happen.  However, in less carefully
607  * controlled environments, this function allows RCU to get what it
608  * needs without creating otherwise useless interruptions.
609  */
610 void __rcu_irq_enter_check_tick(void)
611 {
612 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613 
614 	// If we're here from NMI there's nothing to do.
615 	if (in_nmi())
616 		return;
617 
618 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620 
621 	if (!tick_nohz_full_cpu(rdp->cpu) ||
622 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
623 	    READ_ONCE(rdp->rcu_forced_tick)) {
624 		// RCU doesn't need nohz_full help from this CPU, or it is
625 		// already getting that help.
626 		return;
627 	}
628 
629 	// We get here only when not in an extended quiescent state and
630 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
631 	// already watching and (2) The fact that we are in an interrupt
632 	// handler and that the rcu_node lock is an irq-disabled lock
633 	// prevents self-deadlock.  So we can safely recheck under the lock.
634 	// Note that the nohz_full state currently cannot change.
635 	raw_spin_lock_rcu_node(rdp->mynode);
636 	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 		// A nohz_full CPU is in the kernel and RCU needs a
638 		// quiescent state.  Turn on the tick!
639 		WRITE_ONCE(rdp->rcu_forced_tick, true);
640 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 	}
642 	raw_spin_unlock_rcu_node(rdp->mynode);
643 }
644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645 #endif /* CONFIG_NO_HZ_FULL */
646 
647 /*
648  * Check to see if any future non-offloaded RCU-related work will need
649  * to be done by the current CPU, even if none need be done immediately,
650  * returning 1 if so.  This function is part of the RCU implementation;
651  * it is -not- an exported member of the RCU API.  This is used by
652  * the idle-entry code to figure out whether it is safe to disable the
653  * scheduler-clock interrupt.
654  *
655  * Just check whether or not this CPU has non-offloaded RCU callbacks
656  * queued.
657  */
658 int rcu_needs_cpu(void)
659 {
660 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662 }
663 
664 /*
665  * If any sort of urgency was applied to the current CPU (for example,
666  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667  * to get to a quiescent state, disable it.
668  */
669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670 {
671 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676 		WRITE_ONCE(rdp->rcu_forced_tick, false);
677 	}
678 }
679 
680 /**
681  * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682  *
683  * Return @true if RCU is watching the running CPU and @false otherwise.
684  * An @true return means that this CPU can safely enter RCU read-side
685  * critical sections.
686  *
687  * Although calls to rcu_is_watching() from most parts of the kernel
688  * will return @true, there are important exceptions.  For example, if the
689  * current CPU is deep within its idle loop, in kernel entry/exit code,
690  * or offline, rcu_is_watching() will return @false.
691  *
692  * Make notrace because it can be called by the internal functions of
693  * ftrace, and making this notrace removes unnecessary recursion calls.
694  */
695 notrace bool rcu_is_watching(void)
696 {
697 	bool ret;
698 
699 	preempt_disable_notrace();
700 	ret = !rcu_dynticks_curr_cpu_in_eqs();
701 	preempt_enable_notrace();
702 	return ret;
703 }
704 EXPORT_SYMBOL_GPL(rcu_is_watching);
705 
706 /*
707  * If a holdout task is actually running, request an urgent quiescent
708  * state from its CPU.  This is unsynchronized, so migrations can cause
709  * the request to go to the wrong CPU.  Which is OK, all that will happen
710  * is that the CPU's next context switch will be a bit slower and next
711  * time around this task will generate another request.
712  */
713 void rcu_request_urgent_qs_task(struct task_struct *t)
714 {
715 	int cpu;
716 
717 	barrier();
718 	cpu = task_cpu(t);
719 	if (!task_curr(t))
720 		return; /* This task is not running on that CPU. */
721 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722 }
723 
724 /*
725  * When trying to report a quiescent state on behalf of some other CPU,
726  * it is our responsibility to check for and handle potential overflow
727  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728  * After all, the CPU might be in deep idle state, and thus executing no
729  * code whatsoever.
730  */
731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732 {
733 	raw_lockdep_assert_held_rcu_node(rnp);
734 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 			 rnp->gp_seq))
736 		WRITE_ONCE(rdp->gpwrap, true);
737 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739 }
740 
741 /*
742  * Snapshot the specified CPU's dynticks counter so that we can later
743  * credit them with an implicit quiescent state.  Return 1 if this CPU
744  * is in dynticks idle mode, which is an extended quiescent state.
745  */
746 static int dyntick_save_progress_counter(struct rcu_data *rdp)
747 {
748 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751 		rcu_gpnum_ovf(rdp->mynode, rdp);
752 		return 1;
753 	}
754 	return 0;
755 }
756 
757 /*
758  * Returns positive if the specified CPU has passed through a quiescent state
759  * by virtue of being in or having passed through an dynticks idle state since
760  * the last call to dyntick_save_progress_counter() for this same CPU, or by
761  * virtue of having been offline.
762  *
763  * Returns negative if the specified CPU needs a force resched.
764  *
765  * Returns zero otherwise.
766  */
767 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
768 {
769 	unsigned long jtsq;
770 	int ret = 0;
771 	struct rcu_node *rnp = rdp->mynode;
772 
773 	/*
774 	 * If the CPU passed through or entered a dynticks idle phase with
775 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
776 	 * already acknowledged the request to pass through a quiescent
777 	 * state.  Either way, that CPU cannot possibly be in an RCU
778 	 * read-side critical section that started before the beginning
779 	 * of the current RCU grace period.
780 	 */
781 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
782 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
783 		rcu_gpnum_ovf(rnp, rdp);
784 		return 1;
785 	}
786 
787 	/*
788 	 * Complain if a CPU that is considered to be offline from RCU's
789 	 * perspective has not yet reported a quiescent state.  After all,
790 	 * the offline CPU should have reported a quiescent state during
791 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
792 	 * if it ran concurrently with either the CPU going offline or the
793 	 * last task on a leaf rcu_node structure exiting its RCU read-side
794 	 * critical section while all CPUs corresponding to that structure
795 	 * are offline.  This added warning detects bugs in any of these
796 	 * code paths.
797 	 *
798 	 * The rcu_node structure's ->lock is held here, which excludes
799 	 * the relevant portions the CPU-hotplug code, the grace-period
800 	 * initialization code, and the rcu_read_unlock() code paths.
801 	 *
802 	 * For more detail, please refer to the "Hotplug CPU" section
803 	 * of RCU's Requirements documentation.
804 	 */
805 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
806 		struct rcu_node *rnp1;
807 
808 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
809 			__func__, rnp->grplo, rnp->grphi, rnp->level,
810 			(long)rnp->gp_seq, (long)rnp->completedqs);
811 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
812 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
813 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
814 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
815 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
816 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
817 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
818 		return 1; /* Break things loose after complaining. */
819 	}
820 
821 	/*
822 	 * A CPU running for an extended time within the kernel can
823 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
824 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
825 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
826 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
827 	 * variable are safe because the assignments are repeated if this
828 	 * CPU failed to pass through a quiescent state.  This code
829 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
830 	 * is set way high.
831 	 */
832 	jtsq = READ_ONCE(jiffies_to_sched_qs);
833 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
834 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
835 	     time_after(jiffies, rcu_state.jiffies_resched) ||
836 	     rcu_state.cbovld)) {
837 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
838 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
839 		smp_store_release(&rdp->rcu_urgent_qs, true);
840 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
841 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
842 	}
843 
844 	/*
845 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
846 	 * The above code handles this, but only for straight cond_resched().
847 	 * And some in-kernel loops check need_resched() before calling
848 	 * cond_resched(), which defeats the above code for CPUs that are
849 	 * running in-kernel with scheduling-clock interrupts disabled.
850 	 * So hit them over the head with the resched_cpu() hammer!
851 	 */
852 	if (tick_nohz_full_cpu(rdp->cpu) &&
853 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
854 	     rcu_state.cbovld)) {
855 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
856 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
857 		ret = -1;
858 	}
859 
860 	/*
861 	 * If more than halfway to RCU CPU stall-warning time, invoke
862 	 * resched_cpu() more frequently to try to loosen things up a bit.
863 	 * Also check to see if the CPU is getting hammered with interrupts,
864 	 * but only once per grace period, just to keep the IPIs down to
865 	 * a dull roar.
866 	 */
867 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
868 		if (time_after(jiffies,
869 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
870 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
871 			ret = -1;
872 		}
873 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
874 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
875 		    (rnp->ffmask & rdp->grpmask)) {
876 			rdp->rcu_iw_pending = true;
877 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
878 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
879 		}
880 
881 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
882 			int cpu = rdp->cpu;
883 			struct rcu_snap_record *rsrp;
884 			struct kernel_cpustat *kcsp;
885 
886 			kcsp = &kcpustat_cpu(cpu);
887 
888 			rsrp = &rdp->snap_record;
889 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
890 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
891 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
892 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
893 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
894 			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
895 			rsrp->jiffies = jiffies;
896 			rsrp->gp_seq = rdp->gp_seq;
897 		}
898 	}
899 
900 	return ret;
901 }
902 
903 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
904 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
905 			      unsigned long gp_seq_req, const char *s)
906 {
907 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
908 				      gp_seq_req, rnp->level,
909 				      rnp->grplo, rnp->grphi, s);
910 }
911 
912 /*
913  * rcu_start_this_gp - Request the start of a particular grace period
914  * @rnp_start: The leaf node of the CPU from which to start.
915  * @rdp: The rcu_data corresponding to the CPU from which to start.
916  * @gp_seq_req: The gp_seq of the grace period to start.
917  *
918  * Start the specified grace period, as needed to handle newly arrived
919  * callbacks.  The required future grace periods are recorded in each
920  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
921  * is reason to awaken the grace-period kthread.
922  *
923  * The caller must hold the specified rcu_node structure's ->lock, which
924  * is why the caller is responsible for waking the grace-period kthread.
925  *
926  * Returns true if the GP thread needs to be awakened else false.
927  */
928 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
929 			      unsigned long gp_seq_req)
930 {
931 	bool ret = false;
932 	struct rcu_node *rnp;
933 
934 	/*
935 	 * Use funnel locking to either acquire the root rcu_node
936 	 * structure's lock or bail out if the need for this grace period
937 	 * has already been recorded -- or if that grace period has in
938 	 * fact already started.  If there is already a grace period in
939 	 * progress in a non-leaf node, no recording is needed because the
940 	 * end of the grace period will scan the leaf rcu_node structures.
941 	 * Note that rnp_start->lock must not be released.
942 	 */
943 	raw_lockdep_assert_held_rcu_node(rnp_start);
944 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
945 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
946 		if (rnp != rnp_start)
947 			raw_spin_lock_rcu_node(rnp);
948 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
949 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
950 		    (rnp != rnp_start &&
951 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
952 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
953 					  TPS("Prestarted"));
954 			goto unlock_out;
955 		}
956 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
957 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
958 			/*
959 			 * We just marked the leaf or internal node, and a
960 			 * grace period is in progress, which means that
961 			 * rcu_gp_cleanup() will see the marking.  Bail to
962 			 * reduce contention.
963 			 */
964 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
965 					  TPS("Startedleaf"));
966 			goto unlock_out;
967 		}
968 		if (rnp != rnp_start && rnp->parent != NULL)
969 			raw_spin_unlock_rcu_node(rnp);
970 		if (!rnp->parent)
971 			break;  /* At root, and perhaps also leaf. */
972 	}
973 
974 	/* If GP already in progress, just leave, otherwise start one. */
975 	if (rcu_gp_in_progress()) {
976 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
977 		goto unlock_out;
978 	}
979 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
980 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
981 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
982 	if (!READ_ONCE(rcu_state.gp_kthread)) {
983 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
984 		goto unlock_out;
985 	}
986 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
987 	ret = true;  /* Caller must wake GP kthread. */
988 unlock_out:
989 	/* Push furthest requested GP to leaf node and rcu_data structure. */
990 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
991 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
992 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
993 	}
994 	if (rnp != rnp_start)
995 		raw_spin_unlock_rcu_node(rnp);
996 	return ret;
997 }
998 
999 /*
1000  * Clean up any old requests for the just-ended grace period.  Also return
1001  * whether any additional grace periods have been requested.
1002  */
1003 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1004 {
1005 	bool needmore;
1006 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1007 
1008 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009 	if (!needmore)
1010 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1011 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1012 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1013 	return needmore;
1014 }
1015 
1016 /*
1017  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1018  * interrupt or softirq handler, in which case we just might immediately
1019  * sleep upon return, resulting in a grace-period hang), and don't bother
1020  * awakening when there is nothing for the grace-period kthread to do
1021  * (as in several CPUs raced to awaken, we lost), and finally don't try
1022  * to awaken a kthread that has not yet been created.  If all those checks
1023  * are passed, track some debug information and awaken.
1024  *
1025  * So why do the self-wakeup when in an interrupt or softirq handler
1026  * in the grace-period kthread's context?  Because the kthread might have
1027  * been interrupted just as it was going to sleep, and just after the final
1028  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1029  * is required, and is therefore supplied.
1030  */
1031 static void rcu_gp_kthread_wake(void)
1032 {
1033 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1034 
1035 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1036 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1037 		return;
1038 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1039 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1040 	swake_up_one(&rcu_state.gp_wq);
1041 }
1042 
1043 /*
1044  * If there is room, assign a ->gp_seq number to any callbacks on this
1045  * CPU that have not already been assigned.  Also accelerate any callbacks
1046  * that were previously assigned a ->gp_seq number that has since proven
1047  * to be too conservative, which can happen if callbacks get assigned a
1048  * ->gp_seq number while RCU is idle, but with reference to a non-root
1049  * rcu_node structure.  This function is idempotent, so it does not hurt
1050  * to call it repeatedly.  Returns an flag saying that we should awaken
1051  * the RCU grace-period kthread.
1052  *
1053  * The caller must hold rnp->lock with interrupts disabled.
1054  */
1055 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1056 {
1057 	unsigned long gp_seq_req;
1058 	bool ret = false;
1059 
1060 	rcu_lockdep_assert_cblist_protected(rdp);
1061 	raw_lockdep_assert_held_rcu_node(rnp);
1062 
1063 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1064 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1065 		return false;
1066 
1067 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1068 
1069 	/*
1070 	 * Callbacks are often registered with incomplete grace-period
1071 	 * information.  Something about the fact that getting exact
1072 	 * information requires acquiring a global lock...  RCU therefore
1073 	 * makes a conservative estimate of the grace period number at which
1074 	 * a given callback will become ready to invoke.	The following
1075 	 * code checks this estimate and improves it when possible, thus
1076 	 * accelerating callback invocation to an earlier grace-period
1077 	 * number.
1078 	 */
1079 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1080 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1081 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1082 
1083 	/* Trace depending on how much we were able to accelerate. */
1084 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1085 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1086 	else
1087 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1088 
1089 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1090 
1091 	return ret;
1092 }
1093 
1094 /*
1095  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1096  * rcu_node structure's ->lock be held.  It consults the cached value
1097  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1098  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1099  * while holding the leaf rcu_node structure's ->lock.
1100  */
1101 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1102 					struct rcu_data *rdp)
1103 {
1104 	unsigned long c;
1105 	bool needwake;
1106 
1107 	rcu_lockdep_assert_cblist_protected(rdp);
1108 	c = rcu_seq_snap(&rcu_state.gp_seq);
1109 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1110 		/* Old request still live, so mark recent callbacks. */
1111 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1112 		return;
1113 	}
1114 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1115 	needwake = rcu_accelerate_cbs(rnp, rdp);
1116 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1117 	if (needwake)
1118 		rcu_gp_kthread_wake();
1119 }
1120 
1121 /*
1122  * Move any callbacks whose grace period has completed to the
1123  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1124  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1125  * sublist.  This function is idempotent, so it does not hurt to
1126  * invoke it repeatedly.  As long as it is not invoked -too- often...
1127  * Returns true if the RCU grace-period kthread needs to be awakened.
1128  *
1129  * The caller must hold rnp->lock with interrupts disabled.
1130  */
1131 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1132 {
1133 	rcu_lockdep_assert_cblist_protected(rdp);
1134 	raw_lockdep_assert_held_rcu_node(rnp);
1135 
1136 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1137 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1138 		return false;
1139 
1140 	/*
1141 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1142 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1143 	 */
1144 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1145 
1146 	/* Classify any remaining callbacks. */
1147 	return rcu_accelerate_cbs(rnp, rdp);
1148 }
1149 
1150 /*
1151  * Move and classify callbacks, but only if doing so won't require
1152  * that the RCU grace-period kthread be awakened.
1153  */
1154 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1155 						  struct rcu_data *rdp)
1156 {
1157 	rcu_lockdep_assert_cblist_protected(rdp);
1158 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1159 		return;
1160 	// The grace period cannot end while we hold the rcu_node lock.
1161 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1162 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1163 	raw_spin_unlock_rcu_node(rnp);
1164 }
1165 
1166 /*
1167  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1168  * quiescent state.  This is intended to be invoked when the CPU notices
1169  * a new grace period.
1170  */
1171 static void rcu_strict_gp_check_qs(void)
1172 {
1173 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1174 		rcu_read_lock();
1175 		rcu_read_unlock();
1176 	}
1177 }
1178 
1179 /*
1180  * Update CPU-local rcu_data state to record the beginnings and ends of
1181  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1182  * structure corresponding to the current CPU, and must have irqs disabled.
1183  * Returns true if the grace-period kthread needs to be awakened.
1184  */
1185 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1186 {
1187 	bool ret = false;
1188 	bool need_qs;
1189 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1190 
1191 	raw_lockdep_assert_held_rcu_node(rnp);
1192 
1193 	if (rdp->gp_seq == rnp->gp_seq)
1194 		return false; /* Nothing to do. */
1195 
1196 	/* Handle the ends of any preceding grace periods first. */
1197 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1198 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1199 		if (!offloaded)
1200 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1201 		rdp->core_needs_qs = false;
1202 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1203 	} else {
1204 		if (!offloaded)
1205 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1206 		if (rdp->core_needs_qs)
1207 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1208 	}
1209 
1210 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1211 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1212 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1213 		/*
1214 		 * If the current grace period is waiting for this CPU,
1215 		 * set up to detect a quiescent state, otherwise don't
1216 		 * go looking for one.
1217 		 */
1218 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1219 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1220 		rdp->cpu_no_qs.b.norm = need_qs;
1221 		rdp->core_needs_qs = need_qs;
1222 		zero_cpu_stall_ticks(rdp);
1223 	}
1224 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1225 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1226 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1227 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1228 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1229 	WRITE_ONCE(rdp->gpwrap, false);
1230 	rcu_gpnum_ovf(rnp, rdp);
1231 	return ret;
1232 }
1233 
1234 static void note_gp_changes(struct rcu_data *rdp)
1235 {
1236 	unsigned long flags;
1237 	bool needwake;
1238 	struct rcu_node *rnp;
1239 
1240 	local_irq_save(flags);
1241 	rnp = rdp->mynode;
1242 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1243 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1244 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1245 		local_irq_restore(flags);
1246 		return;
1247 	}
1248 	needwake = __note_gp_changes(rnp, rdp);
1249 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1250 	rcu_strict_gp_check_qs();
1251 	if (needwake)
1252 		rcu_gp_kthread_wake();
1253 }
1254 
1255 static atomic_t *rcu_gp_slow_suppress;
1256 
1257 /* Register a counter to suppress debugging grace-period delays. */
1258 void rcu_gp_slow_register(atomic_t *rgssp)
1259 {
1260 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1261 
1262 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1263 }
1264 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1265 
1266 /* Unregister a counter, with NULL for not caring which. */
1267 void rcu_gp_slow_unregister(atomic_t *rgssp)
1268 {
1269 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1270 
1271 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1272 }
1273 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1274 
1275 static bool rcu_gp_slow_is_suppressed(void)
1276 {
1277 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1278 
1279 	return rgssp && atomic_read(rgssp);
1280 }
1281 
1282 static void rcu_gp_slow(int delay)
1283 {
1284 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1285 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1286 		schedule_timeout_idle(delay);
1287 }
1288 
1289 static unsigned long sleep_duration;
1290 
1291 /* Allow rcutorture to stall the grace-period kthread. */
1292 void rcu_gp_set_torture_wait(int duration)
1293 {
1294 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1295 		WRITE_ONCE(sleep_duration, duration);
1296 }
1297 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1298 
1299 /* Actually implement the aforementioned wait. */
1300 static void rcu_gp_torture_wait(void)
1301 {
1302 	unsigned long duration;
1303 
1304 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1305 		return;
1306 	duration = xchg(&sleep_duration, 0UL);
1307 	if (duration > 0) {
1308 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1309 		schedule_timeout_idle(duration);
1310 		pr_alert("%s: Wait complete\n", __func__);
1311 	}
1312 }
1313 
1314 /*
1315  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1316  * processing.
1317  */
1318 static void rcu_strict_gp_boundary(void *unused)
1319 {
1320 	invoke_rcu_core();
1321 }
1322 
1323 // Make the polled API aware of the beginning of a grace period.
1324 static void rcu_poll_gp_seq_start(unsigned long *snap)
1325 {
1326 	struct rcu_node *rnp = rcu_get_root();
1327 
1328 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1329 		raw_lockdep_assert_held_rcu_node(rnp);
1330 
1331 	// If RCU was idle, note beginning of GP.
1332 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1333 		rcu_seq_start(&rcu_state.gp_seq_polled);
1334 
1335 	// Either way, record current state.
1336 	*snap = rcu_state.gp_seq_polled;
1337 }
1338 
1339 // Make the polled API aware of the end of a grace period.
1340 static void rcu_poll_gp_seq_end(unsigned long *snap)
1341 {
1342 	struct rcu_node *rnp = rcu_get_root();
1343 
1344 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1345 		raw_lockdep_assert_held_rcu_node(rnp);
1346 
1347 	// If the previously noted GP is still in effect, record the
1348 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1349 	// problems.
1350 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1351 		rcu_seq_end(&rcu_state.gp_seq_polled);
1352 		rcu_state.gp_seq_polled_snap = 0;
1353 		rcu_state.gp_seq_polled_exp_snap = 0;
1354 	} else {
1355 		*snap = 0;
1356 	}
1357 }
1358 
1359 // Make the polled API aware of the beginning of a grace period, but
1360 // where caller does not hold the root rcu_node structure's lock.
1361 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1362 {
1363 	unsigned long flags;
1364 	struct rcu_node *rnp = rcu_get_root();
1365 
1366 	if (rcu_init_invoked()) {
1367 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1368 			lockdep_assert_irqs_enabled();
1369 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1370 	}
1371 	rcu_poll_gp_seq_start(snap);
1372 	if (rcu_init_invoked())
1373 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1374 }
1375 
1376 // Make the polled API aware of the end of a grace period, but where
1377 // caller does not hold the root rcu_node structure's lock.
1378 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1379 {
1380 	unsigned long flags;
1381 	struct rcu_node *rnp = rcu_get_root();
1382 
1383 	if (rcu_init_invoked()) {
1384 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1385 			lockdep_assert_irqs_enabled();
1386 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1387 	}
1388 	rcu_poll_gp_seq_end(snap);
1389 	if (rcu_init_invoked())
1390 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1391 }
1392 
1393 /*
1394  * Initialize a new grace period.  Return false if no grace period required.
1395  */
1396 static noinline_for_stack bool rcu_gp_init(void)
1397 {
1398 	unsigned long flags;
1399 	unsigned long oldmask;
1400 	unsigned long mask;
1401 	struct rcu_data *rdp;
1402 	struct rcu_node *rnp = rcu_get_root();
1403 
1404 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1405 	raw_spin_lock_irq_rcu_node(rnp);
1406 	if (!READ_ONCE(rcu_state.gp_flags)) {
1407 		/* Spurious wakeup, tell caller to go back to sleep.  */
1408 		raw_spin_unlock_irq_rcu_node(rnp);
1409 		return false;
1410 	}
1411 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1412 
1413 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1414 		/*
1415 		 * Grace period already in progress, don't start another.
1416 		 * Not supposed to be able to happen.
1417 		 */
1418 		raw_spin_unlock_irq_rcu_node(rnp);
1419 		return false;
1420 	}
1421 
1422 	/* Advance to a new grace period and initialize state. */
1423 	record_gp_stall_check_time();
1424 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1425 	rcu_seq_start(&rcu_state.gp_seq);
1426 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1427 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1428 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1429 	raw_spin_unlock_irq_rcu_node(rnp);
1430 
1431 	/*
1432 	 * Apply per-leaf buffered online and offline operations to
1433 	 * the rcu_node tree. Note that this new grace period need not
1434 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1435 	 * offlining path, when combined with checks in this function,
1436 	 * will handle CPUs that are currently going offline or that will
1437 	 * go offline later.  Please also refer to "Hotplug CPU" section
1438 	 * of RCU's Requirements documentation.
1439 	 */
1440 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1441 	/* Exclude CPU hotplug operations. */
1442 	rcu_for_each_leaf_node(rnp) {
1443 		local_irq_save(flags);
1444 		arch_spin_lock(&rcu_state.ofl_lock);
1445 		raw_spin_lock_rcu_node(rnp);
1446 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1447 		    !rnp->wait_blkd_tasks) {
1448 			/* Nothing to do on this leaf rcu_node structure. */
1449 			raw_spin_unlock_rcu_node(rnp);
1450 			arch_spin_unlock(&rcu_state.ofl_lock);
1451 			local_irq_restore(flags);
1452 			continue;
1453 		}
1454 
1455 		/* Record old state, apply changes to ->qsmaskinit field. */
1456 		oldmask = rnp->qsmaskinit;
1457 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1458 
1459 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1460 		if (!oldmask != !rnp->qsmaskinit) {
1461 			if (!oldmask) { /* First online CPU for rcu_node. */
1462 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1463 					rcu_init_new_rnp(rnp);
1464 			} else if (rcu_preempt_has_tasks(rnp)) {
1465 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1466 			} else { /* Last offline CPU and can propagate. */
1467 				rcu_cleanup_dead_rnp(rnp);
1468 			}
1469 		}
1470 
1471 		/*
1472 		 * If all waited-on tasks from prior grace period are
1473 		 * done, and if all this rcu_node structure's CPUs are
1474 		 * still offline, propagate up the rcu_node tree and
1475 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1476 		 * rcu_node structure's CPUs has since come back online,
1477 		 * simply clear ->wait_blkd_tasks.
1478 		 */
1479 		if (rnp->wait_blkd_tasks &&
1480 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1481 			rnp->wait_blkd_tasks = false;
1482 			if (!rnp->qsmaskinit)
1483 				rcu_cleanup_dead_rnp(rnp);
1484 		}
1485 
1486 		raw_spin_unlock_rcu_node(rnp);
1487 		arch_spin_unlock(&rcu_state.ofl_lock);
1488 		local_irq_restore(flags);
1489 	}
1490 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1491 
1492 	/*
1493 	 * Set the quiescent-state-needed bits in all the rcu_node
1494 	 * structures for all currently online CPUs in breadth-first
1495 	 * order, starting from the root rcu_node structure, relying on the
1496 	 * layout of the tree within the rcu_state.node[] array.  Note that
1497 	 * other CPUs will access only the leaves of the hierarchy, thus
1498 	 * seeing that no grace period is in progress, at least until the
1499 	 * corresponding leaf node has been initialized.
1500 	 *
1501 	 * The grace period cannot complete until the initialization
1502 	 * process finishes, because this kthread handles both.
1503 	 */
1504 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1505 	rcu_for_each_node_breadth_first(rnp) {
1506 		rcu_gp_slow(gp_init_delay);
1507 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1508 		rdp = this_cpu_ptr(&rcu_data);
1509 		rcu_preempt_check_blocked_tasks(rnp);
1510 		rnp->qsmask = rnp->qsmaskinit;
1511 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1512 		if (rnp == rdp->mynode)
1513 			(void)__note_gp_changes(rnp, rdp);
1514 		rcu_preempt_boost_start_gp(rnp);
1515 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1516 					    rnp->level, rnp->grplo,
1517 					    rnp->grphi, rnp->qsmask);
1518 		/* Quiescent states for tasks on any now-offline CPUs. */
1519 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1520 		rnp->rcu_gp_init_mask = mask;
1521 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1522 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1523 		else
1524 			raw_spin_unlock_irq_rcu_node(rnp);
1525 		cond_resched_tasks_rcu_qs();
1526 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1527 	}
1528 
1529 	// If strict, make all CPUs aware of new grace period.
1530 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1531 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1532 
1533 	return true;
1534 }
1535 
1536 /*
1537  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1538  * time.
1539  */
1540 static bool rcu_gp_fqs_check_wake(int *gfp)
1541 {
1542 	struct rcu_node *rnp = rcu_get_root();
1543 
1544 	// If under overload conditions, force an immediate FQS scan.
1545 	if (*gfp & RCU_GP_FLAG_OVLD)
1546 		return true;
1547 
1548 	// Someone like call_rcu() requested a force-quiescent-state scan.
1549 	*gfp = READ_ONCE(rcu_state.gp_flags);
1550 	if (*gfp & RCU_GP_FLAG_FQS)
1551 		return true;
1552 
1553 	// The current grace period has completed.
1554 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1555 		return true;
1556 
1557 	return false;
1558 }
1559 
1560 /*
1561  * Do one round of quiescent-state forcing.
1562  */
1563 static void rcu_gp_fqs(bool first_time)
1564 {
1565 	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1566 	struct rcu_node *rnp = rcu_get_root();
1567 
1568 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1569 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1570 
1571 	WARN_ON_ONCE(nr_fqs > 3);
1572 	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1573 	if (nr_fqs) {
1574 		if (nr_fqs == 1) {
1575 			WRITE_ONCE(rcu_state.jiffies_stall,
1576 				   jiffies + rcu_jiffies_till_stall_check());
1577 		}
1578 		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1579 	}
1580 
1581 	if (first_time) {
1582 		/* Collect dyntick-idle snapshots. */
1583 		force_qs_rnp(dyntick_save_progress_counter);
1584 	} else {
1585 		/* Handle dyntick-idle and offline CPUs. */
1586 		force_qs_rnp(rcu_implicit_dynticks_qs);
1587 	}
1588 	/* Clear flag to prevent immediate re-entry. */
1589 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1590 		raw_spin_lock_irq_rcu_node(rnp);
1591 		WRITE_ONCE(rcu_state.gp_flags,
1592 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1593 		raw_spin_unlock_irq_rcu_node(rnp);
1594 	}
1595 }
1596 
1597 /*
1598  * Loop doing repeated quiescent-state forcing until the grace period ends.
1599  */
1600 static noinline_for_stack void rcu_gp_fqs_loop(void)
1601 {
1602 	bool first_gp_fqs = true;
1603 	int gf = 0;
1604 	unsigned long j;
1605 	int ret;
1606 	struct rcu_node *rnp = rcu_get_root();
1607 
1608 	j = READ_ONCE(jiffies_till_first_fqs);
1609 	if (rcu_state.cbovld)
1610 		gf = RCU_GP_FLAG_OVLD;
1611 	ret = 0;
1612 	for (;;) {
1613 		if (rcu_state.cbovld) {
1614 			j = (j + 2) / 3;
1615 			if (j <= 0)
1616 				j = 1;
1617 		}
1618 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1619 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1620 			/*
1621 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1622 			 * update; required for stall checks.
1623 			 */
1624 			smp_wmb();
1625 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1626 				   jiffies + (j ? 3 * j : 2));
1627 		}
1628 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1629 				       TPS("fqswait"));
1630 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1631 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1632 				 rcu_gp_fqs_check_wake(&gf), j);
1633 		rcu_gp_torture_wait();
1634 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1635 		/* Locking provides needed memory barriers. */
1636 		/*
1637 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1638 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1639 		 * is required only for single-node rcu_node trees because readers blocking
1640 		 * the current grace period are queued only on leaf rcu_node structures.
1641 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1642 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1643 		 * the corresponding leaf nodes have passed through their quiescent state.
1644 		 */
1645 		if (!READ_ONCE(rnp->qsmask) &&
1646 		    !rcu_preempt_blocked_readers_cgp(rnp))
1647 			break;
1648 		/* If time for quiescent-state forcing, do it. */
1649 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1650 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1651 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1652 					       TPS("fqsstart"));
1653 			rcu_gp_fqs(first_gp_fqs);
1654 			gf = 0;
1655 			if (first_gp_fqs) {
1656 				first_gp_fqs = false;
1657 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1658 			}
1659 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1660 					       TPS("fqsend"));
1661 			cond_resched_tasks_rcu_qs();
1662 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1663 			ret = 0; /* Force full wait till next FQS. */
1664 			j = READ_ONCE(jiffies_till_next_fqs);
1665 		} else {
1666 			/* Deal with stray signal. */
1667 			cond_resched_tasks_rcu_qs();
1668 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1669 			WARN_ON(signal_pending(current));
1670 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1671 					       TPS("fqswaitsig"));
1672 			ret = 1; /* Keep old FQS timing. */
1673 			j = jiffies;
1674 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1675 				j = 1;
1676 			else
1677 				j = rcu_state.jiffies_force_qs - j;
1678 			gf = 0;
1679 		}
1680 	}
1681 }
1682 
1683 /*
1684  * Clean up after the old grace period.
1685  */
1686 static noinline void rcu_gp_cleanup(void)
1687 {
1688 	int cpu;
1689 	bool needgp = false;
1690 	unsigned long gp_duration;
1691 	unsigned long new_gp_seq;
1692 	bool offloaded;
1693 	struct rcu_data *rdp;
1694 	struct rcu_node *rnp = rcu_get_root();
1695 	struct swait_queue_head *sq;
1696 
1697 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1698 	raw_spin_lock_irq_rcu_node(rnp);
1699 	rcu_state.gp_end = jiffies;
1700 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1701 	if (gp_duration > rcu_state.gp_max)
1702 		rcu_state.gp_max = gp_duration;
1703 
1704 	/*
1705 	 * We know the grace period is complete, but to everyone else
1706 	 * it appears to still be ongoing.  But it is also the case
1707 	 * that to everyone else it looks like there is nothing that
1708 	 * they can do to advance the grace period.  It is therefore
1709 	 * safe for us to drop the lock in order to mark the grace
1710 	 * period as completed in all of the rcu_node structures.
1711 	 */
1712 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1713 	raw_spin_unlock_irq_rcu_node(rnp);
1714 
1715 	/*
1716 	 * Propagate new ->gp_seq value to rcu_node structures so that
1717 	 * other CPUs don't have to wait until the start of the next grace
1718 	 * period to process their callbacks.  This also avoids some nasty
1719 	 * RCU grace-period initialization races by forcing the end of
1720 	 * the current grace period to be completely recorded in all of
1721 	 * the rcu_node structures before the beginning of the next grace
1722 	 * period is recorded in any of the rcu_node structures.
1723 	 */
1724 	new_gp_seq = rcu_state.gp_seq;
1725 	rcu_seq_end(&new_gp_seq);
1726 	rcu_for_each_node_breadth_first(rnp) {
1727 		raw_spin_lock_irq_rcu_node(rnp);
1728 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1729 			dump_blkd_tasks(rnp, 10);
1730 		WARN_ON_ONCE(rnp->qsmask);
1731 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1732 		if (!rnp->parent)
1733 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1734 		rdp = this_cpu_ptr(&rcu_data);
1735 		if (rnp == rdp->mynode)
1736 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1737 		/* smp_mb() provided by prior unlock-lock pair. */
1738 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1739 		// Reset overload indication for CPUs no longer overloaded
1740 		if (rcu_is_leaf_node(rnp))
1741 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1742 				rdp = per_cpu_ptr(&rcu_data, cpu);
1743 				check_cb_ovld_locked(rdp, rnp);
1744 			}
1745 		sq = rcu_nocb_gp_get(rnp);
1746 		raw_spin_unlock_irq_rcu_node(rnp);
1747 		rcu_nocb_gp_cleanup(sq);
1748 		cond_resched_tasks_rcu_qs();
1749 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1750 		rcu_gp_slow(gp_cleanup_delay);
1751 	}
1752 	rnp = rcu_get_root();
1753 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1754 
1755 	/* Declare grace period done, trace first to use old GP number. */
1756 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1757 	rcu_seq_end(&rcu_state.gp_seq);
1758 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1759 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1760 	/* Check for GP requests since above loop. */
1761 	rdp = this_cpu_ptr(&rcu_data);
1762 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1763 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1764 				  TPS("CleanupMore"));
1765 		needgp = true;
1766 	}
1767 	/* Advance CBs to reduce false positives below. */
1768 	offloaded = rcu_rdp_is_offloaded(rdp);
1769 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1770 
1771 		// We get here if a grace period was needed (“needgp”)
1772 		// and the above call to rcu_accelerate_cbs() did not set
1773 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1774 		// the need for another grace period).  The purpose
1775 		// of the “offloaded” check is to avoid invoking
1776 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1777 		// hold the ->nocb_lock needed to safely access an offloaded
1778 		// ->cblist.  We do not want to acquire that lock because
1779 		// it can be heavily contended during callback floods.
1780 
1781 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1782 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1783 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1784 	} else {
1785 
1786 		// We get here either if there is no need for an
1787 		// additional grace period or if rcu_accelerate_cbs() has
1788 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1789 		// So all we need to do is to clear all of the other
1790 		// ->gp_flags bits.
1791 
1792 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1793 	}
1794 	raw_spin_unlock_irq_rcu_node(rnp);
1795 
1796 	// If strict, make all CPUs aware of the end of the old grace period.
1797 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1798 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1799 }
1800 
1801 /*
1802  * Body of kthread that handles grace periods.
1803  */
1804 static int __noreturn rcu_gp_kthread(void *unused)
1805 {
1806 	rcu_bind_gp_kthread();
1807 	for (;;) {
1808 
1809 		/* Handle grace-period start. */
1810 		for (;;) {
1811 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1812 					       TPS("reqwait"));
1813 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1814 			swait_event_idle_exclusive(rcu_state.gp_wq,
1815 					 READ_ONCE(rcu_state.gp_flags) &
1816 					 RCU_GP_FLAG_INIT);
1817 			rcu_gp_torture_wait();
1818 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1819 			/* Locking provides needed memory barrier. */
1820 			if (rcu_gp_init())
1821 				break;
1822 			cond_resched_tasks_rcu_qs();
1823 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1824 			WARN_ON(signal_pending(current));
1825 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1826 					       TPS("reqwaitsig"));
1827 		}
1828 
1829 		/* Handle quiescent-state forcing. */
1830 		rcu_gp_fqs_loop();
1831 
1832 		/* Handle grace-period end. */
1833 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1834 		rcu_gp_cleanup();
1835 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1836 	}
1837 }
1838 
1839 /*
1840  * Report a full set of quiescent states to the rcu_state data structure.
1841  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1842  * another grace period is required.  Whether we wake the grace-period
1843  * kthread or it awakens itself for the next round of quiescent-state
1844  * forcing, that kthread will clean up after the just-completed grace
1845  * period.  Note that the caller must hold rnp->lock, which is released
1846  * before return.
1847  */
1848 static void rcu_report_qs_rsp(unsigned long flags)
1849 	__releases(rcu_get_root()->lock)
1850 {
1851 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1852 	WARN_ON_ONCE(!rcu_gp_in_progress());
1853 	WRITE_ONCE(rcu_state.gp_flags,
1854 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1855 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1856 	rcu_gp_kthread_wake();
1857 }
1858 
1859 /*
1860  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1861  * Allows quiescent states for a group of CPUs to be reported at one go
1862  * to the specified rcu_node structure, though all the CPUs in the group
1863  * must be represented by the same rcu_node structure (which need not be a
1864  * leaf rcu_node structure, though it often will be).  The gps parameter
1865  * is the grace-period snapshot, which means that the quiescent states
1866  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1867  * must be held upon entry, and it is released before return.
1868  *
1869  * As a special case, if mask is zero, the bit-already-cleared check is
1870  * disabled.  This allows propagating quiescent state due to resumed tasks
1871  * during grace-period initialization.
1872  */
1873 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1874 			      unsigned long gps, unsigned long flags)
1875 	__releases(rnp->lock)
1876 {
1877 	unsigned long oldmask = 0;
1878 	struct rcu_node *rnp_c;
1879 
1880 	raw_lockdep_assert_held_rcu_node(rnp);
1881 
1882 	/* Walk up the rcu_node hierarchy. */
1883 	for (;;) {
1884 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1885 
1886 			/*
1887 			 * Our bit has already been cleared, or the
1888 			 * relevant grace period is already over, so done.
1889 			 */
1890 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1891 			return;
1892 		}
1893 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1894 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1895 			     rcu_preempt_blocked_readers_cgp(rnp));
1896 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1897 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1898 						 mask, rnp->qsmask, rnp->level,
1899 						 rnp->grplo, rnp->grphi,
1900 						 !!rnp->gp_tasks);
1901 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1902 
1903 			/* Other bits still set at this level, so done. */
1904 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1905 			return;
1906 		}
1907 		rnp->completedqs = rnp->gp_seq;
1908 		mask = rnp->grpmask;
1909 		if (rnp->parent == NULL) {
1910 
1911 			/* No more levels.  Exit loop holding root lock. */
1912 
1913 			break;
1914 		}
1915 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916 		rnp_c = rnp;
1917 		rnp = rnp->parent;
1918 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1919 		oldmask = READ_ONCE(rnp_c->qsmask);
1920 	}
1921 
1922 	/*
1923 	 * Get here if we are the last CPU to pass through a quiescent
1924 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1925 	 * to clean up and start the next grace period if one is needed.
1926 	 */
1927 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1928 }
1929 
1930 /*
1931  * Record a quiescent state for all tasks that were previously queued
1932  * on the specified rcu_node structure and that were blocking the current
1933  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1934  * irqs disabled, and this lock is released upon return, but irqs remain
1935  * disabled.
1936  */
1937 static void __maybe_unused
1938 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1939 	__releases(rnp->lock)
1940 {
1941 	unsigned long gps;
1942 	unsigned long mask;
1943 	struct rcu_node *rnp_p;
1944 
1945 	raw_lockdep_assert_held_rcu_node(rnp);
1946 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1947 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1948 	    rnp->qsmask != 0) {
1949 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1950 		return;  /* Still need more quiescent states! */
1951 	}
1952 
1953 	rnp->completedqs = rnp->gp_seq;
1954 	rnp_p = rnp->parent;
1955 	if (rnp_p == NULL) {
1956 		/*
1957 		 * Only one rcu_node structure in the tree, so don't
1958 		 * try to report up to its nonexistent parent!
1959 		 */
1960 		rcu_report_qs_rsp(flags);
1961 		return;
1962 	}
1963 
1964 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1965 	gps = rnp->gp_seq;
1966 	mask = rnp->grpmask;
1967 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1968 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1969 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1970 }
1971 
1972 /*
1973  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1974  * structure.  This must be called from the specified CPU.
1975  */
1976 static void
1977 rcu_report_qs_rdp(struct rcu_data *rdp)
1978 {
1979 	unsigned long flags;
1980 	unsigned long mask;
1981 	bool needacc = false;
1982 	struct rcu_node *rnp;
1983 
1984 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
1985 	rnp = rdp->mynode;
1986 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1987 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1988 	    rdp->gpwrap) {
1989 
1990 		/*
1991 		 * The grace period in which this quiescent state was
1992 		 * recorded has ended, so don't report it upwards.
1993 		 * We will instead need a new quiescent state that lies
1994 		 * within the current grace period.
1995 		 */
1996 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1997 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1998 		return;
1999 	}
2000 	mask = rdp->grpmask;
2001 	rdp->core_needs_qs = false;
2002 	if ((rnp->qsmask & mask) == 0) {
2003 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2004 	} else {
2005 		/*
2006 		 * This GP can't end until cpu checks in, so all of our
2007 		 * callbacks can be processed during the next GP.
2008 		 *
2009 		 * NOCB kthreads have their own way to deal with that...
2010 		 */
2011 		if (!rcu_rdp_is_offloaded(rdp)) {
2012 			/*
2013 			 * The current GP has not yet ended, so it
2014 			 * should not be possible for rcu_accelerate_cbs()
2015 			 * to return true.  So complain, but don't awaken.
2016 			 */
2017 			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2018 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2019 			/*
2020 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2021 			 * if in the middle of a (de-)offloading process.
2022 			 */
2023 			needacc = true;
2024 		}
2025 
2026 		rcu_disable_urgency_upon_qs(rdp);
2027 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2028 		/* ^^^ Released rnp->lock */
2029 
2030 		if (needacc) {
2031 			rcu_nocb_lock_irqsave(rdp, flags);
2032 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2033 			rcu_nocb_unlock_irqrestore(rdp, flags);
2034 		}
2035 	}
2036 }
2037 
2038 /*
2039  * Check to see if there is a new grace period of which this CPU
2040  * is not yet aware, and if so, set up local rcu_data state for it.
2041  * Otherwise, see if this CPU has just passed through its first
2042  * quiescent state for this grace period, and record that fact if so.
2043  */
2044 static void
2045 rcu_check_quiescent_state(struct rcu_data *rdp)
2046 {
2047 	/* Check for grace-period ends and beginnings. */
2048 	note_gp_changes(rdp);
2049 
2050 	/*
2051 	 * Does this CPU still need to do its part for current grace period?
2052 	 * If no, return and let the other CPUs do their part as well.
2053 	 */
2054 	if (!rdp->core_needs_qs)
2055 		return;
2056 
2057 	/*
2058 	 * Was there a quiescent state since the beginning of the grace
2059 	 * period? If no, then exit and wait for the next call.
2060 	 */
2061 	if (rdp->cpu_no_qs.b.norm)
2062 		return;
2063 
2064 	/*
2065 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2066 	 * judge of that).
2067 	 */
2068 	rcu_report_qs_rdp(rdp);
2069 }
2070 
2071 /* Return true if callback-invocation time limit exceeded. */
2072 static bool rcu_do_batch_check_time(long count, long tlimit,
2073 				    bool jlimit_check, unsigned long jlimit)
2074 {
2075 	// Invoke local_clock() only once per 32 consecutive callbacks.
2076 	return unlikely(tlimit) &&
2077 	       (!likely(count & 31) ||
2078 		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2079 		 jlimit_check && time_after(jiffies, jlimit))) &&
2080 	       local_clock() >= tlimit;
2081 }
2082 
2083 /*
2084  * Invoke any RCU callbacks that have made it to the end of their grace
2085  * period.  Throttle as specified by rdp->blimit.
2086  */
2087 static void rcu_do_batch(struct rcu_data *rdp)
2088 {
2089 	long bl;
2090 	long count = 0;
2091 	int div;
2092 	bool __maybe_unused empty;
2093 	unsigned long flags;
2094 	unsigned long jlimit;
2095 	bool jlimit_check = false;
2096 	long pending;
2097 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2098 	struct rcu_head *rhp;
2099 	long tlimit = 0;
2100 
2101 	/* If no callbacks are ready, just return. */
2102 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2103 		trace_rcu_batch_start(rcu_state.name,
2104 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2105 		trace_rcu_batch_end(rcu_state.name, 0,
2106 				    !rcu_segcblist_empty(&rdp->cblist),
2107 				    need_resched(), is_idle_task(current),
2108 				    rcu_is_callbacks_kthread(rdp));
2109 		return;
2110 	}
2111 
2112 	/*
2113 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2114 	 * races with call_rcu() from interrupt handlers.  Leave the
2115 	 * callback counts, as rcu_barrier() needs to be conservative.
2116 	 */
2117 	rcu_nocb_lock_irqsave(rdp, flags);
2118 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2119 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2120 	div = READ_ONCE(rcu_divisor);
2121 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2122 	bl = max(rdp->blimit, pending >> div);
2123 	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2124 	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2125 		const long npj = NSEC_PER_SEC / HZ;
2126 		long rrn = READ_ONCE(rcu_resched_ns);
2127 
2128 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2129 		tlimit = local_clock() + rrn;
2130 		jlimit = jiffies + (rrn + npj + 1) / npj;
2131 		jlimit_check = true;
2132 	}
2133 	trace_rcu_batch_start(rcu_state.name,
2134 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2135 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2136 	if (rcu_rdp_is_offloaded(rdp))
2137 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2138 
2139 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2140 	rcu_nocb_unlock_irqrestore(rdp, flags);
2141 
2142 	/* Invoke callbacks. */
2143 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2144 	rhp = rcu_cblist_dequeue(&rcl);
2145 
2146 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2147 		rcu_callback_t f;
2148 
2149 		count++;
2150 		debug_rcu_head_unqueue(rhp);
2151 
2152 		rcu_lock_acquire(&rcu_callback_map);
2153 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2154 
2155 		f = rhp->func;
2156 		debug_rcu_head_callback(rhp);
2157 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2158 		f(rhp);
2159 
2160 		rcu_lock_release(&rcu_callback_map);
2161 
2162 		/*
2163 		 * Stop only if limit reached and CPU has something to do.
2164 		 */
2165 		if (in_serving_softirq()) {
2166 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2167 				break;
2168 			/*
2169 			 * Make sure we don't spend too much time here and deprive other
2170 			 * softirq vectors of CPU cycles.
2171 			 */
2172 			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2173 				break;
2174 		} else {
2175 			// In rcuc/rcuoc context, so no worries about
2176 			// depriving other softirq vectors of CPU cycles.
2177 			local_bh_enable();
2178 			lockdep_assert_irqs_enabled();
2179 			cond_resched_tasks_rcu_qs();
2180 			lockdep_assert_irqs_enabled();
2181 			local_bh_disable();
2182 			// But rcuc kthreads can delay quiescent-state
2183 			// reporting, so check time limits for them.
2184 			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2185 			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2186 				rdp->rcu_cpu_has_work = 1;
2187 				break;
2188 			}
2189 		}
2190 	}
2191 
2192 	rcu_nocb_lock_irqsave(rdp, flags);
2193 	rdp->n_cbs_invoked += count;
2194 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2195 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2196 
2197 	/* Update counts and requeue any remaining callbacks. */
2198 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2199 	rcu_segcblist_add_len(&rdp->cblist, -count);
2200 
2201 	/* Reinstate batch limit if we have worked down the excess. */
2202 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2203 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2204 		rdp->blimit = blimit;
2205 
2206 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2207 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2208 		rdp->qlen_last_fqs_check = 0;
2209 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2210 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2211 		rdp->qlen_last_fqs_check = count;
2212 
2213 	/*
2214 	 * The following usually indicates a double call_rcu().  To track
2215 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2216 	 */
2217 	empty = rcu_segcblist_empty(&rdp->cblist);
2218 	WARN_ON_ONCE(count == 0 && !empty);
2219 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2220 		     count != 0 && empty);
2221 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2222 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2223 
2224 	rcu_nocb_unlock_irqrestore(rdp, flags);
2225 
2226 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2227 }
2228 
2229 /*
2230  * This function is invoked from each scheduling-clock interrupt,
2231  * and checks to see if this CPU is in a non-context-switch quiescent
2232  * state, for example, user mode or idle loop.  It also schedules RCU
2233  * core processing.  If the current grace period has gone on too long,
2234  * it will ask the scheduler to manufacture a context switch for the sole
2235  * purpose of providing the needed quiescent state.
2236  */
2237 void rcu_sched_clock_irq(int user)
2238 {
2239 	unsigned long j;
2240 
2241 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2242 		j = jiffies;
2243 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2244 		__this_cpu_write(rcu_data.last_sched_clock, j);
2245 	}
2246 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2247 	lockdep_assert_irqs_disabled();
2248 	raw_cpu_inc(rcu_data.ticks_this_gp);
2249 	/* The load-acquire pairs with the store-release setting to true. */
2250 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2251 		/* Idle and userspace execution already are quiescent states. */
2252 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2253 			set_tsk_need_resched(current);
2254 			set_preempt_need_resched();
2255 		}
2256 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2257 	}
2258 	rcu_flavor_sched_clock_irq(user);
2259 	if (rcu_pending(user))
2260 		invoke_rcu_core();
2261 	if (user || rcu_is_cpu_rrupt_from_idle())
2262 		rcu_note_voluntary_context_switch(current);
2263 	lockdep_assert_irqs_disabled();
2264 
2265 	trace_rcu_utilization(TPS("End scheduler-tick"));
2266 }
2267 
2268 /*
2269  * Scan the leaf rcu_node structures.  For each structure on which all
2270  * CPUs have reported a quiescent state and on which there are tasks
2271  * blocking the current grace period, initiate RCU priority boosting.
2272  * Otherwise, invoke the specified function to check dyntick state for
2273  * each CPU that has not yet reported a quiescent state.
2274  */
2275 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2276 {
2277 	int cpu;
2278 	unsigned long flags;
2279 	struct rcu_node *rnp;
2280 
2281 	rcu_state.cbovld = rcu_state.cbovldnext;
2282 	rcu_state.cbovldnext = false;
2283 	rcu_for_each_leaf_node(rnp) {
2284 		unsigned long mask = 0;
2285 		unsigned long rsmask = 0;
2286 
2287 		cond_resched_tasks_rcu_qs();
2288 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2289 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2290 		if (rnp->qsmask == 0) {
2291 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2292 				/*
2293 				 * No point in scanning bits because they
2294 				 * are all zero.  But we might need to
2295 				 * priority-boost blocked readers.
2296 				 */
2297 				rcu_initiate_boost(rnp, flags);
2298 				/* rcu_initiate_boost() releases rnp->lock */
2299 				continue;
2300 			}
2301 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2302 			continue;
2303 		}
2304 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2305 			struct rcu_data *rdp;
2306 			int ret;
2307 
2308 			rdp = per_cpu_ptr(&rcu_data, cpu);
2309 			ret = f(rdp);
2310 			if (ret > 0) {
2311 				mask |= rdp->grpmask;
2312 				rcu_disable_urgency_upon_qs(rdp);
2313 			}
2314 			if (ret < 0)
2315 				rsmask |= rdp->grpmask;
2316 		}
2317 		if (mask != 0) {
2318 			/* Idle/offline CPUs, report (releases rnp->lock). */
2319 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2320 		} else {
2321 			/* Nothing to do here, so just drop the lock. */
2322 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2323 		}
2324 
2325 		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2326 			resched_cpu(cpu);
2327 	}
2328 }
2329 
2330 /*
2331  * Force quiescent states on reluctant CPUs, and also detect which
2332  * CPUs are in dyntick-idle mode.
2333  */
2334 void rcu_force_quiescent_state(void)
2335 {
2336 	unsigned long flags;
2337 	bool ret;
2338 	struct rcu_node *rnp;
2339 	struct rcu_node *rnp_old = NULL;
2340 
2341 	if (!rcu_gp_in_progress())
2342 		return;
2343 	/* Funnel through hierarchy to reduce memory contention. */
2344 	rnp = raw_cpu_read(rcu_data.mynode);
2345 	for (; rnp != NULL; rnp = rnp->parent) {
2346 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2347 		       !raw_spin_trylock(&rnp->fqslock);
2348 		if (rnp_old != NULL)
2349 			raw_spin_unlock(&rnp_old->fqslock);
2350 		if (ret)
2351 			return;
2352 		rnp_old = rnp;
2353 	}
2354 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2355 
2356 	/* Reached the root of the rcu_node tree, acquire lock. */
2357 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2358 	raw_spin_unlock(&rnp_old->fqslock);
2359 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2360 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2361 		return;  /* Someone beat us to it. */
2362 	}
2363 	WRITE_ONCE(rcu_state.gp_flags,
2364 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2365 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2366 	rcu_gp_kthread_wake();
2367 }
2368 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2369 
2370 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2371 // grace periods.
2372 static void strict_work_handler(struct work_struct *work)
2373 {
2374 	rcu_read_lock();
2375 	rcu_read_unlock();
2376 }
2377 
2378 /* Perform RCU core processing work for the current CPU.  */
2379 static __latent_entropy void rcu_core(void)
2380 {
2381 	unsigned long flags;
2382 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2383 	struct rcu_node *rnp = rdp->mynode;
2384 	/*
2385 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2386 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2387 	 * on this CPU and the below condition must be considered volatile.
2388 	 * However if we race with:
2389 	 *
2390 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2391 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2392 	 *                 call rcu_nocb_lock() if that happens.
2393 	 *
2394 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2395 	 *                 processing. This is fine because the early stage
2396 	 *                 of deoffloading invokes rcu_core() after setting
2397 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2398 	 *                 what could have been dismissed without the need to wait
2399 	 *                 for the next rcu_pending() check in the next jiffy.
2400 	 */
2401 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2402 
2403 	if (cpu_is_offline(smp_processor_id()))
2404 		return;
2405 	trace_rcu_utilization(TPS("Start RCU core"));
2406 	WARN_ON_ONCE(!rdp->beenonline);
2407 
2408 	/* Report any deferred quiescent states if preemption enabled. */
2409 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2410 		rcu_preempt_deferred_qs(current);
2411 	} else if (rcu_preempt_need_deferred_qs(current)) {
2412 		set_tsk_need_resched(current);
2413 		set_preempt_need_resched();
2414 	}
2415 
2416 	/* Update RCU state based on any recent quiescent states. */
2417 	rcu_check_quiescent_state(rdp);
2418 
2419 	/* No grace period and unregistered callbacks? */
2420 	if (!rcu_gp_in_progress() &&
2421 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2422 		rcu_nocb_lock_irqsave(rdp, flags);
2423 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2424 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2425 		rcu_nocb_unlock_irqrestore(rdp, flags);
2426 	}
2427 
2428 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2429 
2430 	/* If there are callbacks ready, invoke them. */
2431 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2432 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2433 		rcu_do_batch(rdp);
2434 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2435 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2436 			invoke_rcu_core();
2437 	}
2438 
2439 	/* Do any needed deferred wakeups of rcuo kthreads. */
2440 	do_nocb_deferred_wakeup(rdp);
2441 	trace_rcu_utilization(TPS("End RCU core"));
2442 
2443 	// If strict GPs, schedule an RCU reader in a clean environment.
2444 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2445 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2446 }
2447 
2448 static void rcu_core_si(struct softirq_action *h)
2449 {
2450 	rcu_core();
2451 }
2452 
2453 static void rcu_wake_cond(struct task_struct *t, int status)
2454 {
2455 	/*
2456 	 * If the thread is yielding, only wake it when this
2457 	 * is invoked from idle
2458 	 */
2459 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2460 		wake_up_process(t);
2461 }
2462 
2463 static void invoke_rcu_core_kthread(void)
2464 {
2465 	struct task_struct *t;
2466 	unsigned long flags;
2467 
2468 	local_irq_save(flags);
2469 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2470 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2471 	if (t != NULL && t != current)
2472 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2473 	local_irq_restore(flags);
2474 }
2475 
2476 /*
2477  * Wake up this CPU's rcuc kthread to do RCU core processing.
2478  */
2479 static void invoke_rcu_core(void)
2480 {
2481 	if (!cpu_online(smp_processor_id()))
2482 		return;
2483 	if (use_softirq)
2484 		raise_softirq(RCU_SOFTIRQ);
2485 	else
2486 		invoke_rcu_core_kthread();
2487 }
2488 
2489 static void rcu_cpu_kthread_park(unsigned int cpu)
2490 {
2491 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2492 }
2493 
2494 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2495 {
2496 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2497 }
2498 
2499 /*
2500  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2501  * the RCU softirq used in configurations of RCU that do not support RCU
2502  * priority boosting.
2503  */
2504 static void rcu_cpu_kthread(unsigned int cpu)
2505 {
2506 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2507 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2508 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2509 	int spincnt;
2510 
2511 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2512 	for (spincnt = 0; spincnt < 10; spincnt++) {
2513 		WRITE_ONCE(*j, jiffies);
2514 		local_bh_disable();
2515 		*statusp = RCU_KTHREAD_RUNNING;
2516 		local_irq_disable();
2517 		work = *workp;
2518 		WRITE_ONCE(*workp, 0);
2519 		local_irq_enable();
2520 		if (work)
2521 			rcu_core();
2522 		local_bh_enable();
2523 		if (!READ_ONCE(*workp)) {
2524 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2525 			*statusp = RCU_KTHREAD_WAITING;
2526 			return;
2527 		}
2528 	}
2529 	*statusp = RCU_KTHREAD_YIELDING;
2530 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2531 	schedule_timeout_idle(2);
2532 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2533 	*statusp = RCU_KTHREAD_WAITING;
2534 	WRITE_ONCE(*j, jiffies);
2535 }
2536 
2537 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2538 	.store			= &rcu_data.rcu_cpu_kthread_task,
2539 	.thread_should_run	= rcu_cpu_kthread_should_run,
2540 	.thread_fn		= rcu_cpu_kthread,
2541 	.thread_comm		= "rcuc/%u",
2542 	.setup			= rcu_cpu_kthread_setup,
2543 	.park			= rcu_cpu_kthread_park,
2544 };
2545 
2546 /*
2547  * Spawn per-CPU RCU core processing kthreads.
2548  */
2549 static int __init rcu_spawn_core_kthreads(void)
2550 {
2551 	int cpu;
2552 
2553 	for_each_possible_cpu(cpu)
2554 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2555 	if (use_softirq)
2556 		return 0;
2557 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2558 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2559 	return 0;
2560 }
2561 
2562 /*
2563  * Handle any core-RCU processing required by a call_rcu() invocation.
2564  */
2565 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2566 			    unsigned long flags)
2567 {
2568 	/*
2569 	 * If called from an extended quiescent state, invoke the RCU
2570 	 * core in order to force a re-evaluation of RCU's idleness.
2571 	 */
2572 	if (!rcu_is_watching())
2573 		invoke_rcu_core();
2574 
2575 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2576 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2577 		return;
2578 
2579 	/*
2580 	 * Force the grace period if too many callbacks or too long waiting.
2581 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2582 	 * if some other CPU has recently done so.  Also, don't bother
2583 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2584 	 * is the only one waiting for a grace period to complete.
2585 	 */
2586 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2587 		     rdp->qlen_last_fqs_check + qhimark)) {
2588 
2589 		/* Are we ignoring a completed grace period? */
2590 		note_gp_changes(rdp);
2591 
2592 		/* Start a new grace period if one not already started. */
2593 		if (!rcu_gp_in_progress()) {
2594 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2595 		} else {
2596 			/* Give the grace period a kick. */
2597 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2598 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2599 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2600 				rcu_force_quiescent_state();
2601 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2602 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2603 		}
2604 	}
2605 }
2606 
2607 /*
2608  * RCU callback function to leak a callback.
2609  */
2610 static void rcu_leak_callback(struct rcu_head *rhp)
2611 {
2612 }
2613 
2614 /*
2615  * Check and if necessary update the leaf rcu_node structure's
2616  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2617  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2618  * structure's ->lock.
2619  */
2620 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2621 {
2622 	raw_lockdep_assert_held_rcu_node(rnp);
2623 	if (qovld_calc <= 0)
2624 		return; // Early boot and wildcard value set.
2625 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2626 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2627 	else
2628 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2629 }
2630 
2631 /*
2632  * Check and if necessary update the leaf rcu_node structure's
2633  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2634  * number of queued RCU callbacks.  No locks need be held, but the
2635  * caller must have disabled interrupts.
2636  *
2637  * Note that this function ignores the possibility that there are a lot
2638  * of callbacks all of which have already seen the end of their respective
2639  * grace periods.  This omission is due to the need for no-CBs CPUs to
2640  * be holding ->nocb_lock to do this check, which is too heavy for a
2641  * common-case operation.
2642  */
2643 static void check_cb_ovld(struct rcu_data *rdp)
2644 {
2645 	struct rcu_node *const rnp = rdp->mynode;
2646 
2647 	if (qovld_calc <= 0 ||
2648 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2649 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2650 		return; // Early boot wildcard value or already set correctly.
2651 	raw_spin_lock_rcu_node(rnp);
2652 	check_cb_ovld_locked(rdp, rnp);
2653 	raw_spin_unlock_rcu_node(rnp);
2654 }
2655 
2656 static void
2657 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2658 {
2659 	static atomic_t doublefrees;
2660 	unsigned long flags;
2661 	bool lazy;
2662 	struct rcu_data *rdp;
2663 	bool was_alldone;
2664 
2665 	/* Misaligned rcu_head! */
2666 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2667 
2668 	if (debug_rcu_head_queue(head)) {
2669 		/*
2670 		 * Probable double call_rcu(), so leak the callback.
2671 		 * Use rcu:rcu_callback trace event to find the previous
2672 		 * time callback was passed to call_rcu().
2673 		 */
2674 		if (atomic_inc_return(&doublefrees) < 4) {
2675 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2676 			mem_dump_obj(head);
2677 		}
2678 		WRITE_ONCE(head->func, rcu_leak_callback);
2679 		return;
2680 	}
2681 	head->func = func;
2682 	head->next = NULL;
2683 	kasan_record_aux_stack_noalloc(head);
2684 	local_irq_save(flags);
2685 	rdp = this_cpu_ptr(&rcu_data);
2686 	lazy = lazy_in && !rcu_async_should_hurry();
2687 
2688 	/* Add the callback to our list. */
2689 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2690 		// This can trigger due to call_rcu() from offline CPU:
2691 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2692 		WARN_ON_ONCE(!rcu_is_watching());
2693 		// Very early boot, before rcu_init().  Initialize if needed
2694 		// and then drop through to queue the callback.
2695 		if (rcu_segcblist_empty(&rdp->cblist))
2696 			rcu_segcblist_init(&rdp->cblist);
2697 	}
2698 
2699 	check_cb_ovld(rdp);
2700 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2701 		return; // Enqueued onto ->nocb_bypass, so just leave.
2702 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2703 	rcu_segcblist_enqueue(&rdp->cblist, head);
2704 	if (__is_kvfree_rcu_offset((unsigned long)func))
2705 		trace_rcu_kvfree_callback(rcu_state.name, head,
2706 					 (unsigned long)func,
2707 					 rcu_segcblist_n_cbs(&rdp->cblist));
2708 	else
2709 		trace_rcu_callback(rcu_state.name, head,
2710 				   rcu_segcblist_n_cbs(&rdp->cblist));
2711 
2712 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2713 
2714 	/* Go handle any RCU core processing required. */
2715 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2716 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2717 	} else {
2718 		__call_rcu_core(rdp, head, flags);
2719 		local_irq_restore(flags);
2720 	}
2721 }
2722 
2723 #ifdef CONFIG_RCU_LAZY
2724 /**
2725  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2726  * flush all lazy callbacks (including the new one) to the main ->cblist while
2727  * doing so.
2728  *
2729  * @head: structure to be used for queueing the RCU updates.
2730  * @func: actual callback function to be invoked after the grace period
2731  *
2732  * The callback function will be invoked some time after a full grace
2733  * period elapses, in other words after all pre-existing RCU read-side
2734  * critical sections have completed.
2735  *
2736  * Use this API instead of call_rcu() if you don't want the callback to be
2737  * invoked after very long periods of time, which can happen on systems without
2738  * memory pressure and on systems which are lightly loaded or mostly idle.
2739  * This function will cause callbacks to be invoked sooner than later at the
2740  * expense of extra power. Other than that, this function is identical to, and
2741  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2742  * ordering and other functionality.
2743  */
2744 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2745 {
2746 	__call_rcu_common(head, func, false);
2747 }
2748 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2749 #endif
2750 
2751 /**
2752  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2753  * By default the callbacks are 'lazy' and are kept hidden from the main
2754  * ->cblist to prevent starting of grace periods too soon.
2755  * If you desire grace periods to start very soon, use call_rcu_hurry().
2756  *
2757  * @head: structure to be used for queueing the RCU updates.
2758  * @func: actual callback function to be invoked after the grace period
2759  *
2760  * The callback function will be invoked some time after a full grace
2761  * period elapses, in other words after all pre-existing RCU read-side
2762  * critical sections have completed.  However, the callback function
2763  * might well execute concurrently with RCU read-side critical sections
2764  * that started after call_rcu() was invoked.
2765  *
2766  * RCU read-side critical sections are delimited by rcu_read_lock()
2767  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2768  * v5.0 and later, regions of code across which interrupts, preemption,
2769  * or softirqs have been disabled also serve as RCU read-side critical
2770  * sections.  This includes hardware interrupt handlers, softirq handlers,
2771  * and NMI handlers.
2772  *
2773  * Note that all CPUs must agree that the grace period extended beyond
2774  * all pre-existing RCU read-side critical section.  On systems with more
2775  * than one CPU, this means that when "func()" is invoked, each CPU is
2776  * guaranteed to have executed a full memory barrier since the end of its
2777  * last RCU read-side critical section whose beginning preceded the call
2778  * to call_rcu().  It also means that each CPU executing an RCU read-side
2779  * critical section that continues beyond the start of "func()" must have
2780  * executed a memory barrier after the call_rcu() but before the beginning
2781  * of that RCU read-side critical section.  Note that these guarantees
2782  * include CPUs that are offline, idle, or executing in user mode, as
2783  * well as CPUs that are executing in the kernel.
2784  *
2785  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2786  * resulting RCU callback function "func()", then both CPU A and CPU B are
2787  * guaranteed to execute a full memory barrier during the time interval
2788  * between the call to call_rcu() and the invocation of "func()" -- even
2789  * if CPU A and CPU B are the same CPU (but again only if the system has
2790  * more than one CPU).
2791  *
2792  * Implementation of these memory-ordering guarantees is described here:
2793  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2794  */
2795 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2796 {
2797 	__call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2798 }
2799 EXPORT_SYMBOL_GPL(call_rcu);
2800 
2801 /* Maximum number of jiffies to wait before draining a batch. */
2802 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2803 #define KFREE_N_BATCHES 2
2804 #define FREE_N_CHANNELS 2
2805 
2806 /**
2807  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2808  * @list: List node. All blocks are linked between each other
2809  * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2810  * @nr_records: Number of active pointers in the array
2811  * @records: Array of the kvfree_rcu() pointers
2812  */
2813 struct kvfree_rcu_bulk_data {
2814 	struct list_head list;
2815 	struct rcu_gp_oldstate gp_snap;
2816 	unsigned long nr_records;
2817 	void *records[];
2818 };
2819 
2820 /*
2821  * This macro defines how many entries the "records" array
2822  * will contain. It is based on the fact that the size of
2823  * kvfree_rcu_bulk_data structure becomes exactly one page.
2824  */
2825 #define KVFREE_BULK_MAX_ENTR \
2826 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2827 
2828 /**
2829  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2830  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2831  * @head_free: List of kfree_rcu() objects waiting for a grace period
2832  * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2833  * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2834  * @krcp: Pointer to @kfree_rcu_cpu structure
2835  */
2836 
2837 struct kfree_rcu_cpu_work {
2838 	struct rcu_work rcu_work;
2839 	struct rcu_head *head_free;
2840 	struct rcu_gp_oldstate head_free_gp_snap;
2841 	struct list_head bulk_head_free[FREE_N_CHANNELS];
2842 	struct kfree_rcu_cpu *krcp;
2843 };
2844 
2845 /**
2846  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2847  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2848  * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2849  * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2850  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2851  * @lock: Synchronize access to this structure
2852  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2853  * @initialized: The @rcu_work fields have been initialized
2854  * @head_count: Number of objects in rcu_head singular list
2855  * @bulk_count: Number of objects in bulk-list
2856  * @bkvcache:
2857  *	A simple cache list that contains objects for reuse purpose.
2858  *	In order to save some per-cpu space the list is singular.
2859  *	Even though it is lockless an access has to be protected by the
2860  *	per-cpu lock.
2861  * @page_cache_work: A work to refill the cache when it is empty
2862  * @backoff_page_cache_fill: Delay cache refills
2863  * @work_in_progress: Indicates that page_cache_work is running
2864  * @hrtimer: A hrtimer for scheduling a page_cache_work
2865  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2866  *
2867  * This is a per-CPU structure.  The reason that it is not included in
2868  * the rcu_data structure is to permit this code to be extracted from
2869  * the RCU files.  Such extraction could allow further optimization of
2870  * the interactions with the slab allocators.
2871  */
2872 struct kfree_rcu_cpu {
2873 	// Objects queued on a linked list
2874 	// through their rcu_head structures.
2875 	struct rcu_head *head;
2876 	unsigned long head_gp_snap;
2877 	atomic_t head_count;
2878 
2879 	// Objects queued on a bulk-list.
2880 	struct list_head bulk_head[FREE_N_CHANNELS];
2881 	atomic_t bulk_count[FREE_N_CHANNELS];
2882 
2883 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2884 	raw_spinlock_t lock;
2885 	struct delayed_work monitor_work;
2886 	bool initialized;
2887 
2888 	struct delayed_work page_cache_work;
2889 	atomic_t backoff_page_cache_fill;
2890 	atomic_t work_in_progress;
2891 	struct hrtimer hrtimer;
2892 
2893 	struct llist_head bkvcache;
2894 	int nr_bkv_objs;
2895 };
2896 
2897 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2898 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2899 };
2900 
2901 static __always_inline void
2902 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2903 {
2904 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2905 	int i;
2906 
2907 	for (i = 0; i < bhead->nr_records; i++)
2908 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2909 #endif
2910 }
2911 
2912 static inline struct kfree_rcu_cpu *
2913 krc_this_cpu_lock(unsigned long *flags)
2914 {
2915 	struct kfree_rcu_cpu *krcp;
2916 
2917 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2918 	krcp = this_cpu_ptr(&krc);
2919 	raw_spin_lock(&krcp->lock);
2920 
2921 	return krcp;
2922 }
2923 
2924 static inline void
2925 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2926 {
2927 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2928 }
2929 
2930 static inline struct kvfree_rcu_bulk_data *
2931 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2932 {
2933 	if (!krcp->nr_bkv_objs)
2934 		return NULL;
2935 
2936 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2937 	return (struct kvfree_rcu_bulk_data *)
2938 		llist_del_first(&krcp->bkvcache);
2939 }
2940 
2941 static inline bool
2942 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2943 	struct kvfree_rcu_bulk_data *bnode)
2944 {
2945 	// Check the limit.
2946 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2947 		return false;
2948 
2949 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2950 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2951 	return true;
2952 }
2953 
2954 static int
2955 drain_page_cache(struct kfree_rcu_cpu *krcp)
2956 {
2957 	unsigned long flags;
2958 	struct llist_node *page_list, *pos, *n;
2959 	int freed = 0;
2960 
2961 	if (!rcu_min_cached_objs)
2962 		return 0;
2963 
2964 	raw_spin_lock_irqsave(&krcp->lock, flags);
2965 	page_list = llist_del_all(&krcp->bkvcache);
2966 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
2967 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2968 
2969 	llist_for_each_safe(pos, n, page_list) {
2970 		free_page((unsigned long)pos);
2971 		freed++;
2972 	}
2973 
2974 	return freed;
2975 }
2976 
2977 static void
2978 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
2979 	struct kvfree_rcu_bulk_data *bnode, int idx)
2980 {
2981 	unsigned long flags;
2982 	int i;
2983 
2984 	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
2985 		debug_rcu_bhead_unqueue(bnode);
2986 		rcu_lock_acquire(&rcu_callback_map);
2987 		if (idx == 0) { // kmalloc() / kfree().
2988 			trace_rcu_invoke_kfree_bulk_callback(
2989 				rcu_state.name, bnode->nr_records,
2990 				bnode->records);
2991 
2992 			kfree_bulk(bnode->nr_records, bnode->records);
2993 		} else { // vmalloc() / vfree().
2994 			for (i = 0; i < bnode->nr_records; i++) {
2995 				trace_rcu_invoke_kvfree_callback(
2996 					rcu_state.name, bnode->records[i], 0);
2997 
2998 				vfree(bnode->records[i]);
2999 			}
3000 		}
3001 		rcu_lock_release(&rcu_callback_map);
3002 	}
3003 
3004 	raw_spin_lock_irqsave(&krcp->lock, flags);
3005 	if (put_cached_bnode(krcp, bnode))
3006 		bnode = NULL;
3007 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3008 
3009 	if (bnode)
3010 		free_page((unsigned long) bnode);
3011 
3012 	cond_resched_tasks_rcu_qs();
3013 }
3014 
3015 static void
3016 kvfree_rcu_list(struct rcu_head *head)
3017 {
3018 	struct rcu_head *next;
3019 
3020 	for (; head; head = next) {
3021 		void *ptr = (void *) head->func;
3022 		unsigned long offset = (void *) head - ptr;
3023 
3024 		next = head->next;
3025 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3026 		rcu_lock_acquire(&rcu_callback_map);
3027 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3028 
3029 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3030 			kvfree(ptr);
3031 
3032 		rcu_lock_release(&rcu_callback_map);
3033 		cond_resched_tasks_rcu_qs();
3034 	}
3035 }
3036 
3037 /*
3038  * This function is invoked in workqueue context after a grace period.
3039  * It frees all the objects queued on ->bulk_head_free or ->head_free.
3040  */
3041 static void kfree_rcu_work(struct work_struct *work)
3042 {
3043 	unsigned long flags;
3044 	struct kvfree_rcu_bulk_data *bnode, *n;
3045 	struct list_head bulk_head[FREE_N_CHANNELS];
3046 	struct rcu_head *head;
3047 	struct kfree_rcu_cpu *krcp;
3048 	struct kfree_rcu_cpu_work *krwp;
3049 	struct rcu_gp_oldstate head_gp_snap;
3050 	int i;
3051 
3052 	krwp = container_of(to_rcu_work(work),
3053 		struct kfree_rcu_cpu_work, rcu_work);
3054 	krcp = krwp->krcp;
3055 
3056 	raw_spin_lock_irqsave(&krcp->lock, flags);
3057 	// Channels 1 and 2.
3058 	for (i = 0; i < FREE_N_CHANNELS; i++)
3059 		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3060 
3061 	// Channel 3.
3062 	head = krwp->head_free;
3063 	krwp->head_free = NULL;
3064 	head_gp_snap = krwp->head_free_gp_snap;
3065 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3066 
3067 	// Handle the first two channels.
3068 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3069 		// Start from the tail page, so a GP is likely passed for it.
3070 		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3071 			kvfree_rcu_bulk(krcp, bnode, i);
3072 	}
3073 
3074 	/*
3075 	 * This is used when the "bulk" path can not be used for the
3076 	 * double-argument of kvfree_rcu().  This happens when the
3077 	 * page-cache is empty, which means that objects are instead
3078 	 * queued on a linked list through their rcu_head structures.
3079 	 * This list is named "Channel 3".
3080 	 */
3081 	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3082 		kvfree_rcu_list(head);
3083 }
3084 
3085 static bool
3086 need_offload_krc(struct kfree_rcu_cpu *krcp)
3087 {
3088 	int i;
3089 
3090 	for (i = 0; i < FREE_N_CHANNELS; i++)
3091 		if (!list_empty(&krcp->bulk_head[i]))
3092 			return true;
3093 
3094 	return !!READ_ONCE(krcp->head);
3095 }
3096 
3097 static bool
3098 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3099 {
3100 	int i;
3101 
3102 	for (i = 0; i < FREE_N_CHANNELS; i++)
3103 		if (!list_empty(&krwp->bulk_head_free[i]))
3104 			return true;
3105 
3106 	return !!krwp->head_free;
3107 }
3108 
3109 static int krc_count(struct kfree_rcu_cpu *krcp)
3110 {
3111 	int sum = atomic_read(&krcp->head_count);
3112 	int i;
3113 
3114 	for (i = 0; i < FREE_N_CHANNELS; i++)
3115 		sum += atomic_read(&krcp->bulk_count[i]);
3116 
3117 	return sum;
3118 }
3119 
3120 static void
3121 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3122 {
3123 	long delay, delay_left;
3124 
3125 	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3126 	if (delayed_work_pending(&krcp->monitor_work)) {
3127 		delay_left = krcp->monitor_work.timer.expires - jiffies;
3128 		if (delay < delay_left)
3129 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3130 		return;
3131 	}
3132 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3133 }
3134 
3135 static void
3136 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3137 {
3138 	struct list_head bulk_ready[FREE_N_CHANNELS];
3139 	struct kvfree_rcu_bulk_data *bnode, *n;
3140 	struct rcu_head *head_ready = NULL;
3141 	unsigned long flags;
3142 	int i;
3143 
3144 	raw_spin_lock_irqsave(&krcp->lock, flags);
3145 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3146 		INIT_LIST_HEAD(&bulk_ready[i]);
3147 
3148 		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3149 			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3150 				break;
3151 
3152 			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3153 			list_move(&bnode->list, &bulk_ready[i]);
3154 		}
3155 	}
3156 
3157 	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3158 		head_ready = krcp->head;
3159 		atomic_set(&krcp->head_count, 0);
3160 		WRITE_ONCE(krcp->head, NULL);
3161 	}
3162 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3163 
3164 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3165 		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3166 			kvfree_rcu_bulk(krcp, bnode, i);
3167 	}
3168 
3169 	if (head_ready)
3170 		kvfree_rcu_list(head_ready);
3171 }
3172 
3173 /*
3174  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3175  */
3176 static void kfree_rcu_monitor(struct work_struct *work)
3177 {
3178 	struct kfree_rcu_cpu *krcp = container_of(work,
3179 		struct kfree_rcu_cpu, monitor_work.work);
3180 	unsigned long flags;
3181 	int i, j;
3182 
3183 	// Drain ready for reclaim.
3184 	kvfree_rcu_drain_ready(krcp);
3185 
3186 	raw_spin_lock_irqsave(&krcp->lock, flags);
3187 
3188 	// Attempt to start a new batch.
3189 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3190 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3191 
3192 		// Try to detach bulk_head or head and attach it, only when
3193 		// all channels are free.  Any channel is not free means at krwp
3194 		// there is on-going rcu work to handle krwp's free business.
3195 		if (need_wait_for_krwp_work(krwp))
3196 			continue;
3197 
3198 		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3199 		if (need_offload_krc(krcp)) {
3200 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3201 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3202 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3203 				if (list_empty(&krwp->bulk_head_free[j])) {
3204 					atomic_set(&krcp->bulk_count[j], 0);
3205 					list_replace_init(&krcp->bulk_head[j],
3206 						&krwp->bulk_head_free[j]);
3207 				}
3208 			}
3209 
3210 			// Channel 3 corresponds to both SLAB and vmalloc
3211 			// objects queued on the linked list.
3212 			if (!krwp->head_free) {
3213 				krwp->head_free = krcp->head;
3214 				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3215 				atomic_set(&krcp->head_count, 0);
3216 				WRITE_ONCE(krcp->head, NULL);
3217 			}
3218 
3219 			// One work is per one batch, so there are three
3220 			// "free channels", the batch can handle. It can
3221 			// be that the work is in the pending state when
3222 			// channels have been detached following by each
3223 			// other.
3224 			queue_rcu_work(system_wq, &krwp->rcu_work);
3225 		}
3226 	}
3227 
3228 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3229 
3230 	// If there is nothing to detach, it means that our job is
3231 	// successfully done here. In case of having at least one
3232 	// of the channels that is still busy we should rearm the
3233 	// work to repeat an attempt. Because previous batches are
3234 	// still in progress.
3235 	if (need_offload_krc(krcp))
3236 		schedule_delayed_monitor_work(krcp);
3237 }
3238 
3239 static enum hrtimer_restart
3240 schedule_page_work_fn(struct hrtimer *t)
3241 {
3242 	struct kfree_rcu_cpu *krcp =
3243 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3244 
3245 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3246 	return HRTIMER_NORESTART;
3247 }
3248 
3249 static void fill_page_cache_func(struct work_struct *work)
3250 {
3251 	struct kvfree_rcu_bulk_data *bnode;
3252 	struct kfree_rcu_cpu *krcp =
3253 		container_of(work, struct kfree_rcu_cpu,
3254 			page_cache_work.work);
3255 	unsigned long flags;
3256 	int nr_pages;
3257 	bool pushed;
3258 	int i;
3259 
3260 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3261 		1 : rcu_min_cached_objs;
3262 
3263 	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3264 		bnode = (struct kvfree_rcu_bulk_data *)
3265 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3266 
3267 		if (!bnode)
3268 			break;
3269 
3270 		raw_spin_lock_irqsave(&krcp->lock, flags);
3271 		pushed = put_cached_bnode(krcp, bnode);
3272 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3273 
3274 		if (!pushed) {
3275 			free_page((unsigned long) bnode);
3276 			break;
3277 		}
3278 	}
3279 
3280 	atomic_set(&krcp->work_in_progress, 0);
3281 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3282 }
3283 
3284 static void
3285 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3286 {
3287 	// If cache disabled, bail out.
3288 	if (!rcu_min_cached_objs)
3289 		return;
3290 
3291 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3292 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3293 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3294 			queue_delayed_work(system_wq,
3295 				&krcp->page_cache_work,
3296 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3297 		} else {
3298 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3299 			krcp->hrtimer.function = schedule_page_work_fn;
3300 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3301 		}
3302 	}
3303 }
3304 
3305 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3306 // state specified by flags.  If can_alloc is true, the caller must
3307 // be schedulable and not be holding any locks or mutexes that might be
3308 // acquired by the memory allocator or anything that it might invoke.
3309 // Returns true if ptr was successfully recorded, else the caller must
3310 // use a fallback.
3311 static inline bool
3312 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3313 	unsigned long *flags, void *ptr, bool can_alloc)
3314 {
3315 	struct kvfree_rcu_bulk_data *bnode;
3316 	int idx;
3317 
3318 	*krcp = krc_this_cpu_lock(flags);
3319 	if (unlikely(!(*krcp)->initialized))
3320 		return false;
3321 
3322 	idx = !!is_vmalloc_addr(ptr);
3323 	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3324 		struct kvfree_rcu_bulk_data, list);
3325 
3326 	/* Check if a new block is required. */
3327 	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3328 		bnode = get_cached_bnode(*krcp);
3329 		if (!bnode && can_alloc) {
3330 			krc_this_cpu_unlock(*krcp, *flags);
3331 
3332 			// __GFP_NORETRY - allows a light-weight direct reclaim
3333 			// what is OK from minimizing of fallback hitting point of
3334 			// view. Apart of that it forbids any OOM invoking what is
3335 			// also beneficial since we are about to release memory soon.
3336 			//
3337 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3338 			// memory reserves. Please note we have a fallback path.
3339 			//
3340 			// __GFP_NOWARN - it is supposed that an allocation can
3341 			// be failed under low memory or high memory pressure
3342 			// scenarios.
3343 			bnode = (struct kvfree_rcu_bulk_data *)
3344 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3345 			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3346 		}
3347 
3348 		if (!bnode)
3349 			return false;
3350 
3351 		// Initialize the new block and attach it.
3352 		bnode->nr_records = 0;
3353 		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3354 	}
3355 
3356 	// Finally insert and update the GP for this page.
3357 	bnode->records[bnode->nr_records++] = ptr;
3358 	get_state_synchronize_rcu_full(&bnode->gp_snap);
3359 	atomic_inc(&(*krcp)->bulk_count[idx]);
3360 
3361 	return true;
3362 }
3363 
3364 /*
3365  * Queue a request for lazy invocation of the appropriate free routine
3366  * after a grace period.  Please note that three paths are maintained,
3367  * two for the common case using arrays of pointers and a third one that
3368  * is used only when the main paths cannot be used, for example, due to
3369  * memory pressure.
3370  *
3371  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3372  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3373  * be free'd in workqueue context. This allows us to: batch requests together to
3374  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3375  */
3376 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3377 {
3378 	unsigned long flags;
3379 	struct kfree_rcu_cpu *krcp;
3380 	bool success;
3381 
3382 	/*
3383 	 * Please note there is a limitation for the head-less
3384 	 * variant, that is why there is a clear rule for such
3385 	 * objects: it can be used from might_sleep() context
3386 	 * only. For other places please embed an rcu_head to
3387 	 * your data.
3388 	 */
3389 	if (!head)
3390 		might_sleep();
3391 
3392 	// Queue the object but don't yet schedule the batch.
3393 	if (debug_rcu_head_queue(ptr)) {
3394 		// Probable double kfree_rcu(), just leak.
3395 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3396 			  __func__, head);
3397 
3398 		// Mark as success and leave.
3399 		return;
3400 	}
3401 
3402 	kasan_record_aux_stack_noalloc(ptr);
3403 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3404 	if (!success) {
3405 		run_page_cache_worker(krcp);
3406 
3407 		if (head == NULL)
3408 			// Inline if kvfree_rcu(one_arg) call.
3409 			goto unlock_return;
3410 
3411 		head->func = ptr;
3412 		head->next = krcp->head;
3413 		WRITE_ONCE(krcp->head, head);
3414 		atomic_inc(&krcp->head_count);
3415 
3416 		// Take a snapshot for this krcp.
3417 		krcp->head_gp_snap = get_state_synchronize_rcu();
3418 		success = true;
3419 	}
3420 
3421 	/*
3422 	 * The kvfree_rcu() caller considers the pointer freed at this point
3423 	 * and likely removes any references to it. Since the actual slab
3424 	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3425 	 * this object (no scanning or false positives reporting).
3426 	 */
3427 	kmemleak_ignore(ptr);
3428 
3429 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3430 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3431 		schedule_delayed_monitor_work(krcp);
3432 
3433 unlock_return:
3434 	krc_this_cpu_unlock(krcp, flags);
3435 
3436 	/*
3437 	 * Inline kvfree() after synchronize_rcu(). We can do
3438 	 * it from might_sleep() context only, so the current
3439 	 * CPU can pass the QS state.
3440 	 */
3441 	if (!success) {
3442 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3443 		synchronize_rcu();
3444 		kvfree(ptr);
3445 	}
3446 }
3447 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3448 
3449 static unsigned long
3450 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3451 {
3452 	int cpu;
3453 	unsigned long count = 0;
3454 
3455 	/* Snapshot count of all CPUs */
3456 	for_each_possible_cpu(cpu) {
3457 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3458 
3459 		count += krc_count(krcp);
3460 		count += READ_ONCE(krcp->nr_bkv_objs);
3461 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3462 	}
3463 
3464 	return count == 0 ? SHRINK_EMPTY : count;
3465 }
3466 
3467 static unsigned long
3468 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3469 {
3470 	int cpu, freed = 0;
3471 
3472 	for_each_possible_cpu(cpu) {
3473 		int count;
3474 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3475 
3476 		count = krc_count(krcp);
3477 		count += drain_page_cache(krcp);
3478 		kfree_rcu_monitor(&krcp->monitor_work.work);
3479 
3480 		sc->nr_to_scan -= count;
3481 		freed += count;
3482 
3483 		if (sc->nr_to_scan <= 0)
3484 			break;
3485 	}
3486 
3487 	return freed == 0 ? SHRINK_STOP : freed;
3488 }
3489 
3490 void __init kfree_rcu_scheduler_running(void)
3491 {
3492 	int cpu;
3493 
3494 	for_each_possible_cpu(cpu) {
3495 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3496 
3497 		if (need_offload_krc(krcp))
3498 			schedule_delayed_monitor_work(krcp);
3499 	}
3500 }
3501 
3502 /*
3503  * During early boot, any blocking grace-period wait automatically
3504  * implies a grace period.
3505  *
3506  * Later on, this could in theory be the case for kernels built with
3507  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3508  * is not a common case.  Furthermore, this optimization would cause
3509  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3510  * grace-period optimization is ignored once the scheduler is running.
3511  */
3512 static int rcu_blocking_is_gp(void)
3513 {
3514 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3515 		might_sleep();
3516 		return false;
3517 	}
3518 	return true;
3519 }
3520 
3521 /**
3522  * synchronize_rcu - wait until a grace period has elapsed.
3523  *
3524  * Control will return to the caller some time after a full grace
3525  * period has elapsed, in other words after all currently executing RCU
3526  * read-side critical sections have completed.  Note, however, that
3527  * upon return from synchronize_rcu(), the caller might well be executing
3528  * concurrently with new RCU read-side critical sections that began while
3529  * synchronize_rcu() was waiting.
3530  *
3531  * RCU read-side critical sections are delimited by rcu_read_lock()
3532  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3533  * v5.0 and later, regions of code across which interrupts, preemption,
3534  * or softirqs have been disabled also serve as RCU read-side critical
3535  * sections.  This includes hardware interrupt handlers, softirq handlers,
3536  * and NMI handlers.
3537  *
3538  * Note that this guarantee implies further memory-ordering guarantees.
3539  * On systems with more than one CPU, when synchronize_rcu() returns,
3540  * each CPU is guaranteed to have executed a full memory barrier since
3541  * the end of its last RCU read-side critical section whose beginning
3542  * preceded the call to synchronize_rcu().  In addition, each CPU having
3543  * an RCU read-side critical section that extends beyond the return from
3544  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3545  * after the beginning of synchronize_rcu() and before the beginning of
3546  * that RCU read-side critical section.  Note that these guarantees include
3547  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3548  * that are executing in the kernel.
3549  *
3550  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3551  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3552  * to have executed a full memory barrier during the execution of
3553  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3554  * again only if the system has more than one CPU).
3555  *
3556  * Implementation of these memory-ordering guarantees is described here:
3557  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3558  */
3559 void synchronize_rcu(void)
3560 {
3561 	unsigned long flags;
3562 	struct rcu_node *rnp;
3563 
3564 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3565 			 lock_is_held(&rcu_lock_map) ||
3566 			 lock_is_held(&rcu_sched_lock_map),
3567 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3568 	if (!rcu_blocking_is_gp()) {
3569 		if (rcu_gp_is_expedited())
3570 			synchronize_rcu_expedited();
3571 		else
3572 			wait_rcu_gp(call_rcu_hurry);
3573 		return;
3574 	}
3575 
3576 	// Context allows vacuous grace periods.
3577 	// Note well that this code runs with !PREEMPT && !SMP.
3578 	// In addition, all code that advances grace periods runs at
3579 	// process level.  Therefore, this normal GP overlaps with other
3580 	// normal GPs only by being fully nested within them, which allows
3581 	// reuse of ->gp_seq_polled_snap.
3582 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3583 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3584 
3585 	// Update the normal grace-period counters to record
3586 	// this grace period, but only those used by the boot CPU.
3587 	// The rcu_scheduler_starting() will take care of the rest of
3588 	// these counters.
3589 	local_irq_save(flags);
3590 	WARN_ON_ONCE(num_online_cpus() > 1);
3591 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3592 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3593 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3594 	local_irq_restore(flags);
3595 }
3596 EXPORT_SYMBOL_GPL(synchronize_rcu);
3597 
3598 /**
3599  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3600  * @rgosp: Place to put state cookie
3601  *
3602  * Stores into @rgosp a value that will always be treated by functions
3603  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3604  * has already completed.
3605  */
3606 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3607 {
3608 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3609 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3610 }
3611 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3612 
3613 /**
3614  * get_state_synchronize_rcu - Snapshot current RCU state
3615  *
3616  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3617  * or poll_state_synchronize_rcu() to determine whether or not a full
3618  * grace period has elapsed in the meantime.
3619  */
3620 unsigned long get_state_synchronize_rcu(void)
3621 {
3622 	/*
3623 	 * Any prior manipulation of RCU-protected data must happen
3624 	 * before the load from ->gp_seq.
3625 	 */
3626 	smp_mb();  /* ^^^ */
3627 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3628 }
3629 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3630 
3631 /**
3632  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3633  * @rgosp: location to place combined normal/expedited grace-period state
3634  *
3635  * Places the normal and expedited grace-period states in @rgosp.  This
3636  * state value can be passed to a later call to cond_synchronize_rcu_full()
3637  * or poll_state_synchronize_rcu_full() to determine whether or not a
3638  * grace period (whether normal or expedited) has elapsed in the meantime.
3639  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3640  * long, but is guaranteed to see all grace periods.  In contrast, the
3641  * combined state occupies less memory, but can sometimes fail to take
3642  * grace periods into account.
3643  *
3644  * This does not guarantee that the needed grace period will actually
3645  * start.
3646  */
3647 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3648 {
3649 	struct rcu_node *rnp = rcu_get_root();
3650 
3651 	/*
3652 	 * Any prior manipulation of RCU-protected data must happen
3653 	 * before the loads from ->gp_seq and ->expedited_sequence.
3654 	 */
3655 	smp_mb();  /* ^^^ */
3656 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3657 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3658 }
3659 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3660 
3661 /*
3662  * Helper function for start_poll_synchronize_rcu() and
3663  * start_poll_synchronize_rcu_full().
3664  */
3665 static void start_poll_synchronize_rcu_common(void)
3666 {
3667 	unsigned long flags;
3668 	bool needwake;
3669 	struct rcu_data *rdp;
3670 	struct rcu_node *rnp;
3671 
3672 	lockdep_assert_irqs_enabled();
3673 	local_irq_save(flags);
3674 	rdp = this_cpu_ptr(&rcu_data);
3675 	rnp = rdp->mynode;
3676 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3677 	// Note it is possible for a grace period to have elapsed between
3678 	// the above call to get_state_synchronize_rcu() and the below call
3679 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3680 	// get a grace period that no one needed.  These accesses are ordered
3681 	// by smp_mb(), and we are accessing them in the opposite order
3682 	// from which they are updated at grace-period start, as required.
3683 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3684 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3685 	if (needwake)
3686 		rcu_gp_kthread_wake();
3687 }
3688 
3689 /**
3690  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3691  *
3692  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3693  * or poll_state_synchronize_rcu() to determine whether or not a full
3694  * grace period has elapsed in the meantime.  If the needed grace period
3695  * is not already slated to start, notifies RCU core of the need for that
3696  * grace period.
3697  *
3698  * Interrupts must be enabled for the case where it is necessary to awaken
3699  * the grace-period kthread.
3700  */
3701 unsigned long start_poll_synchronize_rcu(void)
3702 {
3703 	unsigned long gp_seq = get_state_synchronize_rcu();
3704 
3705 	start_poll_synchronize_rcu_common();
3706 	return gp_seq;
3707 }
3708 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3709 
3710 /**
3711  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3712  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3713  *
3714  * Places the normal and expedited grace-period states in *@rgos.  This
3715  * state value can be passed to a later call to cond_synchronize_rcu_full()
3716  * or poll_state_synchronize_rcu_full() to determine whether or not a
3717  * grace period (whether normal or expedited) has elapsed in the meantime.
3718  * If the needed grace period is not already slated to start, notifies
3719  * RCU core of the need for that grace period.
3720  *
3721  * Interrupts must be enabled for the case where it is necessary to awaken
3722  * the grace-period kthread.
3723  */
3724 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3725 {
3726 	get_state_synchronize_rcu_full(rgosp);
3727 
3728 	start_poll_synchronize_rcu_common();
3729 }
3730 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3731 
3732 /**
3733  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3734  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3735  *
3736  * If a full RCU grace period has elapsed since the earlier call from
3737  * which @oldstate was obtained, return @true, otherwise return @false.
3738  * If @false is returned, it is the caller's responsibility to invoke this
3739  * function later on until it does return @true.  Alternatively, the caller
3740  * can explicitly wait for a grace period, for example, by passing @oldstate
3741  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3742  * on the one hand or by directly invoking either synchronize_rcu() or
3743  * synchronize_rcu_expedited() on the other.
3744  *
3745  * Yes, this function does not take counter wrap into account.
3746  * But counter wrap is harmless.  If the counter wraps, we have waited for
3747  * more than a billion grace periods (and way more on a 64-bit system!).
3748  * Those needing to keep old state values for very long time periods
3749  * (many hours even on 32-bit systems) should check them occasionally and
3750  * either refresh them or set a flag indicating that the grace period has
3751  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3752  * to get a guaranteed-completed grace-period state.
3753  *
3754  * In addition, because oldstate compresses the grace-period state for
3755  * both normal and expedited grace periods into a single unsigned long,
3756  * it can miss a grace period when synchronize_rcu() runs concurrently
3757  * with synchronize_rcu_expedited().  If this is unacceptable, please
3758  * instead use the _full() variant of these polling APIs.
3759  *
3760  * This function provides the same memory-ordering guarantees that
3761  * would be provided by a synchronize_rcu() that was invoked at the call
3762  * to the function that provided @oldstate, and that returned at the end
3763  * of this function.
3764  */
3765 bool poll_state_synchronize_rcu(unsigned long oldstate)
3766 {
3767 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3768 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3769 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3770 		return true;
3771 	}
3772 	return false;
3773 }
3774 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3775 
3776 /**
3777  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3778  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3779  *
3780  * If a full RCU grace period has elapsed since the earlier call from
3781  * which *rgosp was obtained, return @true, otherwise return @false.
3782  * If @false is returned, it is the caller's responsibility to invoke this
3783  * function later on until it does return @true.  Alternatively, the caller
3784  * can explicitly wait for a grace period, for example, by passing @rgosp
3785  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3786  *
3787  * Yes, this function does not take counter wrap into account.
3788  * But counter wrap is harmless.  If the counter wraps, we have waited
3789  * for more than a billion grace periods (and way more on a 64-bit
3790  * system!).  Those needing to keep rcu_gp_oldstate values for very
3791  * long time periods (many hours even on 32-bit systems) should check
3792  * them occasionally and either refresh them or set a flag indicating
3793  * that the grace period has completed.  Alternatively, they can use
3794  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3795  * grace-period state.
3796  *
3797  * This function provides the same memory-ordering guarantees that would
3798  * be provided by a synchronize_rcu() that was invoked at the call to
3799  * the function that provided @rgosp, and that returned at the end of this
3800  * function.  And this guarantee requires that the root rcu_node structure's
3801  * ->gp_seq field be checked instead of that of the rcu_state structure.
3802  * The problem is that the just-ending grace-period's callbacks can be
3803  * invoked between the time that the root rcu_node structure's ->gp_seq
3804  * field is updated and the time that the rcu_state structure's ->gp_seq
3805  * field is updated.  Therefore, if a single synchronize_rcu() is to
3806  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3807  * then the root rcu_node structure is the one that needs to be polled.
3808  */
3809 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3810 {
3811 	struct rcu_node *rnp = rcu_get_root();
3812 
3813 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3814 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3815 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3816 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3817 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3818 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3819 		return true;
3820 	}
3821 	return false;
3822 }
3823 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3824 
3825 /**
3826  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3827  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3828  *
3829  * If a full RCU grace period has elapsed since the earlier call to
3830  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3831  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3832  *
3833  * Yes, this function does not take counter wrap into account.
3834  * But counter wrap is harmless.  If the counter wraps, we have waited for
3835  * more than 2 billion grace periods (and way more on a 64-bit system!),
3836  * so waiting for a couple of additional grace periods should be just fine.
3837  *
3838  * This function provides the same memory-ordering guarantees that
3839  * would be provided by a synchronize_rcu() that was invoked at the call
3840  * to the function that provided @oldstate and that returned at the end
3841  * of this function.
3842  */
3843 void cond_synchronize_rcu(unsigned long oldstate)
3844 {
3845 	if (!poll_state_synchronize_rcu(oldstate))
3846 		synchronize_rcu();
3847 }
3848 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3849 
3850 /**
3851  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3852  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3853  *
3854  * If a full RCU grace period has elapsed since the call to
3855  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3856  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3857  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3858  * for a full grace period.
3859  *
3860  * Yes, this function does not take counter wrap into account.
3861  * But counter wrap is harmless.  If the counter wraps, we have waited for
3862  * more than 2 billion grace periods (and way more on a 64-bit system!),
3863  * so waiting for a couple of additional grace periods should be just fine.
3864  *
3865  * This function provides the same memory-ordering guarantees that
3866  * would be provided by a synchronize_rcu() that was invoked at the call
3867  * to the function that provided @rgosp and that returned at the end of
3868  * this function.
3869  */
3870 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3871 {
3872 	if (!poll_state_synchronize_rcu_full(rgosp))
3873 		synchronize_rcu();
3874 }
3875 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3876 
3877 /*
3878  * Check to see if there is any immediate RCU-related work to be done by
3879  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3880  * in order of increasing expense: checks that can be carried out against
3881  * CPU-local state are performed first.  However, we must check for CPU
3882  * stalls first, else we might not get a chance.
3883  */
3884 static int rcu_pending(int user)
3885 {
3886 	bool gp_in_progress;
3887 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3888 	struct rcu_node *rnp = rdp->mynode;
3889 
3890 	lockdep_assert_irqs_disabled();
3891 
3892 	/* Check for CPU stalls, if enabled. */
3893 	check_cpu_stall(rdp);
3894 
3895 	/* Does this CPU need a deferred NOCB wakeup? */
3896 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3897 		return 1;
3898 
3899 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3900 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3901 		return 0;
3902 
3903 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3904 	gp_in_progress = rcu_gp_in_progress();
3905 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3906 		return 1;
3907 
3908 	/* Does this CPU have callbacks ready to invoke? */
3909 	if (!rcu_rdp_is_offloaded(rdp) &&
3910 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3911 		return 1;
3912 
3913 	/* Has RCU gone idle with this CPU needing another grace period? */
3914 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3915 	    !rcu_rdp_is_offloaded(rdp) &&
3916 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3917 		return 1;
3918 
3919 	/* Have RCU grace period completed or started?  */
3920 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3921 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3922 		return 1;
3923 
3924 	/* nothing to do */
3925 	return 0;
3926 }
3927 
3928 /*
3929  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3930  * the compiler is expected to optimize this away.
3931  */
3932 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3933 {
3934 	trace_rcu_barrier(rcu_state.name, s, cpu,
3935 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3936 }
3937 
3938 /*
3939  * RCU callback function for rcu_barrier().  If we are last, wake
3940  * up the task executing rcu_barrier().
3941  *
3942  * Note that the value of rcu_state.barrier_sequence must be captured
3943  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3944  * other CPUs might count the value down to zero before this CPU gets
3945  * around to invoking rcu_barrier_trace(), which might result in bogus
3946  * data from the next instance of rcu_barrier().
3947  */
3948 static void rcu_barrier_callback(struct rcu_head *rhp)
3949 {
3950 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3951 
3952 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3953 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3954 		complete(&rcu_state.barrier_completion);
3955 	} else {
3956 		rcu_barrier_trace(TPS("CB"), -1, s);
3957 	}
3958 }
3959 
3960 /*
3961  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3962  */
3963 static void rcu_barrier_entrain(struct rcu_data *rdp)
3964 {
3965 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3966 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3967 	bool wake_nocb = false;
3968 	bool was_alldone = false;
3969 
3970 	lockdep_assert_held(&rcu_state.barrier_lock);
3971 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3972 		return;
3973 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3974 	rdp->barrier_head.func = rcu_barrier_callback;
3975 	debug_rcu_head_queue(&rdp->barrier_head);
3976 	rcu_nocb_lock(rdp);
3977 	/*
3978 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3979 	 * queue. This way we don't wait for bypass timer that can reach seconds
3980 	 * if it's fully lazy.
3981 	 */
3982 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3983 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3984 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3985 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3986 		atomic_inc(&rcu_state.barrier_cpu_count);
3987 	} else {
3988 		debug_rcu_head_unqueue(&rdp->barrier_head);
3989 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3990 	}
3991 	rcu_nocb_unlock(rdp);
3992 	if (wake_nocb)
3993 		wake_nocb_gp(rdp, false);
3994 	smp_store_release(&rdp->barrier_seq_snap, gseq);
3995 }
3996 
3997 /*
3998  * Called with preemption disabled, and from cross-cpu IRQ context.
3999  */
4000 static void rcu_barrier_handler(void *cpu_in)
4001 {
4002 	uintptr_t cpu = (uintptr_t)cpu_in;
4003 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4004 
4005 	lockdep_assert_irqs_disabled();
4006 	WARN_ON_ONCE(cpu != rdp->cpu);
4007 	WARN_ON_ONCE(cpu != smp_processor_id());
4008 	raw_spin_lock(&rcu_state.barrier_lock);
4009 	rcu_barrier_entrain(rdp);
4010 	raw_spin_unlock(&rcu_state.barrier_lock);
4011 }
4012 
4013 /**
4014  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4015  *
4016  * Note that this primitive does not necessarily wait for an RCU grace period
4017  * to complete.  For example, if there are no RCU callbacks queued anywhere
4018  * in the system, then rcu_barrier() is within its rights to return
4019  * immediately, without waiting for anything, much less an RCU grace period.
4020  */
4021 void rcu_barrier(void)
4022 {
4023 	uintptr_t cpu;
4024 	unsigned long flags;
4025 	unsigned long gseq;
4026 	struct rcu_data *rdp;
4027 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4028 
4029 	rcu_barrier_trace(TPS("Begin"), -1, s);
4030 
4031 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4032 	mutex_lock(&rcu_state.barrier_mutex);
4033 
4034 	/* Did someone else do our work for us? */
4035 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4036 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4037 		smp_mb(); /* caller's subsequent code after above check. */
4038 		mutex_unlock(&rcu_state.barrier_mutex);
4039 		return;
4040 	}
4041 
4042 	/* Mark the start of the barrier operation. */
4043 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4044 	rcu_seq_start(&rcu_state.barrier_sequence);
4045 	gseq = rcu_state.barrier_sequence;
4046 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4047 
4048 	/*
4049 	 * Initialize the count to two rather than to zero in order
4050 	 * to avoid a too-soon return to zero in case of an immediate
4051 	 * invocation of the just-enqueued callback (or preemption of
4052 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4053 	 * offline non-offloaded CPU has callbacks queued.
4054 	 */
4055 	init_completion(&rcu_state.barrier_completion);
4056 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4057 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4058 
4059 	/*
4060 	 * Force each CPU with callbacks to register a new callback.
4061 	 * When that callback is invoked, we will know that all of the
4062 	 * corresponding CPU's preceding callbacks have been invoked.
4063 	 */
4064 	for_each_possible_cpu(cpu) {
4065 		rdp = per_cpu_ptr(&rcu_data, cpu);
4066 retry:
4067 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4068 			continue;
4069 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4070 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4071 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4072 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4073 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4074 			continue;
4075 		}
4076 		if (!rcu_rdp_cpu_online(rdp)) {
4077 			rcu_barrier_entrain(rdp);
4078 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4079 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4080 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4081 			continue;
4082 		}
4083 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4084 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4085 			schedule_timeout_uninterruptible(1);
4086 			goto retry;
4087 		}
4088 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4089 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4090 	}
4091 
4092 	/*
4093 	 * Now that we have an rcu_barrier_callback() callback on each
4094 	 * CPU, and thus each counted, remove the initial count.
4095 	 */
4096 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4097 		complete(&rcu_state.barrier_completion);
4098 
4099 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4100 	wait_for_completion(&rcu_state.barrier_completion);
4101 
4102 	/* Mark the end of the barrier operation. */
4103 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4104 	rcu_seq_end(&rcu_state.barrier_sequence);
4105 	gseq = rcu_state.barrier_sequence;
4106 	for_each_possible_cpu(cpu) {
4107 		rdp = per_cpu_ptr(&rcu_data, cpu);
4108 
4109 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4110 	}
4111 
4112 	/* Other rcu_barrier() invocations can now safely proceed. */
4113 	mutex_unlock(&rcu_state.barrier_mutex);
4114 }
4115 EXPORT_SYMBOL_GPL(rcu_barrier);
4116 
4117 static unsigned long rcu_barrier_last_throttle;
4118 
4119 /**
4120  * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4121  *
4122  * This can be thought of as guard rails around rcu_barrier() that
4123  * permits unrestricted userspace use, at least assuming the hardware's
4124  * try_cmpxchg() is robust.  There will be at most one call per second to
4125  * rcu_barrier() system-wide from use of this function, which means that
4126  * callers might needlessly wait a second or three.
4127  *
4128  * This is intended for use by test suites to avoid OOM by flushing RCU
4129  * callbacks from the previous test before starting the next.  See the
4130  * rcutree.do_rcu_barrier module parameter for more information.
4131  *
4132  * Why not simply make rcu_barrier() more scalable?  That might be
4133  * the eventual endpoint, but let's keep it simple for the time being.
4134  * Note that the module parameter infrastructure serializes calls to a
4135  * given .set() function, but should concurrent .set() invocation ever be
4136  * possible, we are ready!
4137  */
4138 static void rcu_barrier_throttled(void)
4139 {
4140 	unsigned long j = jiffies;
4141 	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4142 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4143 
4144 	while (time_in_range(j, old, old + HZ / 16) ||
4145 	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4146 		schedule_timeout_idle(HZ / 16);
4147 		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4148 			smp_mb(); /* caller's subsequent code after above check. */
4149 			return;
4150 		}
4151 		j = jiffies;
4152 		old = READ_ONCE(rcu_barrier_last_throttle);
4153 	}
4154 	rcu_barrier();
4155 }
4156 
4157 /*
4158  * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4159  * request arrives.  We insist on a true value to allow for possible
4160  * future expansion.
4161  */
4162 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4163 {
4164 	bool b;
4165 	int ret;
4166 
4167 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4168 		return -EAGAIN;
4169 	ret = kstrtobool(val, &b);
4170 	if (!ret && b) {
4171 		atomic_inc((atomic_t *)kp->arg);
4172 		rcu_barrier_throttled();
4173 		atomic_dec((atomic_t *)kp->arg);
4174 	}
4175 	return ret;
4176 }
4177 
4178 /*
4179  * Output the number of outstanding rcutree.do_rcu_barrier requests.
4180  */
4181 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4182 {
4183 	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4184 }
4185 
4186 static const struct kernel_param_ops do_rcu_barrier_ops = {
4187 	.set = param_set_do_rcu_barrier,
4188 	.get = param_get_do_rcu_barrier,
4189 };
4190 static atomic_t do_rcu_barrier;
4191 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4192 
4193 /*
4194  * Compute the mask of online CPUs for the specified rcu_node structure.
4195  * This will not be stable unless the rcu_node structure's ->lock is
4196  * held, but the bit corresponding to the current CPU will be stable
4197  * in most contexts.
4198  */
4199 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4200 {
4201 	return READ_ONCE(rnp->qsmaskinitnext);
4202 }
4203 
4204 /*
4205  * Is the CPU corresponding to the specified rcu_data structure online
4206  * from RCU's perspective?  This perspective is given by that structure's
4207  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4208  */
4209 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4210 {
4211 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4212 }
4213 
4214 bool rcu_cpu_online(int cpu)
4215 {
4216 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4217 
4218 	return rcu_rdp_cpu_online(rdp);
4219 }
4220 
4221 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4222 
4223 /*
4224  * Is the current CPU online as far as RCU is concerned?
4225  *
4226  * Disable preemption to avoid false positives that could otherwise
4227  * happen due to the current CPU number being sampled, this task being
4228  * preempted, its old CPU being taken offline, resuming on some other CPU,
4229  * then determining that its old CPU is now offline.
4230  *
4231  * Disable checking if in an NMI handler because we cannot safely
4232  * report errors from NMI handlers anyway.  In addition, it is OK to use
4233  * RCU on an offline processor during initial boot, hence the check for
4234  * rcu_scheduler_fully_active.
4235  */
4236 bool rcu_lockdep_current_cpu_online(void)
4237 {
4238 	struct rcu_data *rdp;
4239 	bool ret = false;
4240 
4241 	if (in_nmi() || !rcu_scheduler_fully_active)
4242 		return true;
4243 	preempt_disable_notrace();
4244 	rdp = this_cpu_ptr(&rcu_data);
4245 	/*
4246 	 * Strictly, we care here about the case where the current CPU is
4247 	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4248 	 * not being up to date. So arch_spin_is_locked() might have a
4249 	 * false positive if it's held by some *other* CPU, but that's
4250 	 * OK because that just means a false *negative* on the warning.
4251 	 */
4252 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4253 		ret = true;
4254 	preempt_enable_notrace();
4255 	return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4258 
4259 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4260 
4261 // Has rcu_init() been invoked?  This is used (for example) to determine
4262 // whether spinlocks may be acquired safely.
4263 static bool rcu_init_invoked(void)
4264 {
4265 	return !!rcu_state.n_online_cpus;
4266 }
4267 
4268 /*
4269  * All CPUs for the specified rcu_node structure have gone offline,
4270  * and all tasks that were preempted within an RCU read-side critical
4271  * section while running on one of those CPUs have since exited their RCU
4272  * read-side critical section.  Some other CPU is reporting this fact with
4273  * the specified rcu_node structure's ->lock held and interrupts disabled.
4274  * This function therefore goes up the tree of rcu_node structures,
4275  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4276  * the leaf rcu_node structure's ->qsmaskinit field has already been
4277  * updated.
4278  *
4279  * This function does check that the specified rcu_node structure has
4280  * all CPUs offline and no blocked tasks, so it is OK to invoke it
4281  * prematurely.  That said, invoking it after the fact will cost you
4282  * a needless lock acquisition.  So once it has done its work, don't
4283  * invoke it again.
4284  */
4285 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4286 {
4287 	long mask;
4288 	struct rcu_node *rnp = rnp_leaf;
4289 
4290 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4291 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4292 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4293 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4294 		return;
4295 	for (;;) {
4296 		mask = rnp->grpmask;
4297 		rnp = rnp->parent;
4298 		if (!rnp)
4299 			break;
4300 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4301 		rnp->qsmaskinit &= ~mask;
4302 		/* Between grace periods, so better already be zero! */
4303 		WARN_ON_ONCE(rnp->qsmask);
4304 		if (rnp->qsmaskinit) {
4305 			raw_spin_unlock_rcu_node(rnp);
4306 			/* irqs remain disabled. */
4307 			return;
4308 		}
4309 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4310 	}
4311 }
4312 
4313 /*
4314  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4315  * first CPU in a given leaf rcu_node structure coming online.  The caller
4316  * must hold the corresponding leaf rcu_node ->lock with interrupts
4317  * disabled.
4318  */
4319 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4320 {
4321 	long mask;
4322 	long oldmask;
4323 	struct rcu_node *rnp = rnp_leaf;
4324 
4325 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4326 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4327 	for (;;) {
4328 		mask = rnp->grpmask;
4329 		rnp = rnp->parent;
4330 		if (rnp == NULL)
4331 			return;
4332 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4333 		oldmask = rnp->qsmaskinit;
4334 		rnp->qsmaskinit |= mask;
4335 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4336 		if (oldmask)
4337 			return;
4338 	}
4339 }
4340 
4341 /*
4342  * Do boot-time initialization of a CPU's per-CPU RCU data.
4343  */
4344 static void __init
4345 rcu_boot_init_percpu_data(int cpu)
4346 {
4347 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4348 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4349 
4350 	/* Set up local state, ensuring consistent view of global state. */
4351 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4352 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4353 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4354 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4355 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4356 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4357 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4358 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4359 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4360 	rdp->last_sched_clock = jiffies;
4361 	rdp->cpu = cpu;
4362 	rcu_boot_init_nocb_percpu_data(rdp);
4363 }
4364 
4365 /*
4366  * Invoked early in the CPU-online process, when pretty much all services
4367  * are available.  The incoming CPU is not present.
4368  *
4369  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4370  * offline event can be happening at a given time.  Note also that we can
4371  * accept some slop in the rsp->gp_seq access due to the fact that this
4372  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4373  * And any offloaded callbacks are being numbered elsewhere.
4374  */
4375 int rcutree_prepare_cpu(unsigned int cpu)
4376 {
4377 	unsigned long flags;
4378 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4379 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4380 	struct rcu_node *rnp = rcu_get_root();
4381 
4382 	/* Set up local state, ensuring consistent view of global state. */
4383 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4384 	rdp->qlen_last_fqs_check = 0;
4385 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4386 	rdp->blimit = blimit;
4387 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4388 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4389 
4390 	/*
4391 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4392 	 * (re-)initialized.
4393 	 */
4394 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4395 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4396 
4397 	/*
4398 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4399 	 * propagation up the rcu_node tree will happen at the beginning
4400 	 * of the next grace period.
4401 	 */
4402 	rnp = rdp->mynode;
4403 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4404 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4405 	rdp->gp_seq_needed = rdp->gp_seq;
4406 	rdp->cpu_no_qs.b.norm = true;
4407 	rdp->core_needs_qs = false;
4408 	rdp->rcu_iw_pending = false;
4409 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4410 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4411 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4412 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4413 	rcu_spawn_one_boost_kthread(rnp);
4414 	rcu_spawn_cpu_nocb_kthread(cpu);
4415 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4416 
4417 	return 0;
4418 }
4419 
4420 /*
4421  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4422  */
4423 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4424 {
4425 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4426 
4427 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4428 }
4429 
4430 /*
4431  * Has the specified (known valid) CPU ever been fully online?
4432  */
4433 bool rcu_cpu_beenfullyonline(int cpu)
4434 {
4435 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4436 
4437 	return smp_load_acquire(&rdp->beenonline);
4438 }
4439 
4440 /*
4441  * Near the end of the CPU-online process.  Pretty much all services
4442  * enabled, and the CPU is now very much alive.
4443  */
4444 int rcutree_online_cpu(unsigned int cpu)
4445 {
4446 	unsigned long flags;
4447 	struct rcu_data *rdp;
4448 	struct rcu_node *rnp;
4449 
4450 	rdp = per_cpu_ptr(&rcu_data, cpu);
4451 	rnp = rdp->mynode;
4452 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4453 	rnp->ffmask |= rdp->grpmask;
4454 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4455 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4456 		return 0; /* Too early in boot for scheduler work. */
4457 	sync_sched_exp_online_cleanup(cpu);
4458 	rcutree_affinity_setting(cpu, -1);
4459 
4460 	// Stop-machine done, so allow nohz_full to disable tick.
4461 	tick_dep_clear(TICK_DEP_BIT_RCU);
4462 	return 0;
4463 }
4464 
4465 /*
4466  * Mark the specified CPU as being online so that subsequent grace periods
4467  * (both expedited and normal) will wait on it.  Note that this means that
4468  * incoming CPUs are not allowed to use RCU read-side critical sections
4469  * until this function is called.  Failing to observe this restriction
4470  * will result in lockdep splats.
4471  *
4472  * Note that this function is special in that it is invoked directly
4473  * from the incoming CPU rather than from the cpuhp_step mechanism.
4474  * This is because this function must be invoked at a precise location.
4475  * This incoming CPU must not have enabled interrupts yet.
4476  *
4477  * This mirrors the effects of rcutree_report_cpu_dead().
4478  */
4479 void rcutree_report_cpu_starting(unsigned int cpu)
4480 {
4481 	unsigned long mask;
4482 	struct rcu_data *rdp;
4483 	struct rcu_node *rnp;
4484 	bool newcpu;
4485 
4486 	lockdep_assert_irqs_disabled();
4487 	rdp = per_cpu_ptr(&rcu_data, cpu);
4488 	if (rdp->cpu_started)
4489 		return;
4490 	rdp->cpu_started = true;
4491 
4492 	rnp = rdp->mynode;
4493 	mask = rdp->grpmask;
4494 	arch_spin_lock(&rcu_state.ofl_lock);
4495 	rcu_dynticks_eqs_online();
4496 	raw_spin_lock(&rcu_state.barrier_lock);
4497 	raw_spin_lock_rcu_node(rnp);
4498 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4499 	raw_spin_unlock(&rcu_state.barrier_lock);
4500 	newcpu = !(rnp->expmaskinitnext & mask);
4501 	rnp->expmaskinitnext |= mask;
4502 	/* Allow lockless access for expedited grace periods. */
4503 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4504 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4505 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4506 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4507 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4508 
4509 	/* An incoming CPU should never be blocking a grace period. */
4510 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4511 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4512 		unsigned long flags;
4513 
4514 		local_irq_save(flags);
4515 		rcu_disable_urgency_upon_qs(rdp);
4516 		/* Report QS -after- changing ->qsmaskinitnext! */
4517 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4518 	} else {
4519 		raw_spin_unlock_rcu_node(rnp);
4520 	}
4521 	arch_spin_unlock(&rcu_state.ofl_lock);
4522 	smp_store_release(&rdp->beenonline, true);
4523 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4524 }
4525 
4526 /*
4527  * The outgoing function has no further need of RCU, so remove it from
4528  * the rcu_node tree's ->qsmaskinitnext bit masks.
4529  *
4530  * Note that this function is special in that it is invoked directly
4531  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4532  * This is because this function must be invoked at a precise location.
4533  *
4534  * This mirrors the effect of rcutree_report_cpu_starting().
4535  */
4536 void rcutree_report_cpu_dead(void)
4537 {
4538 	unsigned long flags;
4539 	unsigned long mask;
4540 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4541 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4542 
4543 	/*
4544 	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4545 	 * may introduce a new READ-side while it is actually off the QS masks.
4546 	 */
4547 	lockdep_assert_irqs_disabled();
4548 	// Do any dangling deferred wakeups.
4549 	do_nocb_deferred_wakeup(rdp);
4550 
4551 	rcu_preempt_deferred_qs(current);
4552 
4553 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4554 	mask = rdp->grpmask;
4555 	arch_spin_lock(&rcu_state.ofl_lock);
4556 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4557 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4558 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4559 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4560 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4561 		rcu_disable_urgency_upon_qs(rdp);
4562 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4563 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4564 	}
4565 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4566 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4567 	arch_spin_unlock(&rcu_state.ofl_lock);
4568 	rdp->cpu_started = false;
4569 }
4570 
4571 #ifdef CONFIG_HOTPLUG_CPU
4572 /*
4573  * The outgoing CPU has just passed through the dying-idle state, and we
4574  * are being invoked from the CPU that was IPIed to continue the offline
4575  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4576  */
4577 void rcutree_migrate_callbacks(int cpu)
4578 {
4579 	unsigned long flags;
4580 	struct rcu_data *my_rdp;
4581 	struct rcu_node *my_rnp;
4582 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4583 	bool needwake;
4584 
4585 	if (rcu_rdp_is_offloaded(rdp) ||
4586 	    rcu_segcblist_empty(&rdp->cblist))
4587 		return;  /* No callbacks to migrate. */
4588 
4589 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4590 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4591 	rcu_barrier_entrain(rdp);
4592 	my_rdp = this_cpu_ptr(&rcu_data);
4593 	my_rnp = my_rdp->mynode;
4594 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4595 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4596 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4597 	/* Leverage recent GPs and set GP for new callbacks. */
4598 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4599 		   rcu_advance_cbs(my_rnp, my_rdp);
4600 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4601 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4602 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4603 	rcu_segcblist_disable(&rdp->cblist);
4604 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4605 	check_cb_ovld_locked(my_rdp, my_rnp);
4606 	if (rcu_rdp_is_offloaded(my_rdp)) {
4607 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4608 		__call_rcu_nocb_wake(my_rdp, true, flags);
4609 	} else {
4610 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4611 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4612 	}
4613 	if (needwake)
4614 		rcu_gp_kthread_wake();
4615 	lockdep_assert_irqs_enabled();
4616 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4617 		  !rcu_segcblist_empty(&rdp->cblist),
4618 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4619 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4620 		  rcu_segcblist_first_cb(&rdp->cblist));
4621 }
4622 
4623 /*
4624  * The CPU has been completely removed, and some other CPU is reporting
4625  * this fact from process context.  Do the remainder of the cleanup.
4626  * There can only be one CPU hotplug operation at a time, so no need for
4627  * explicit locking.
4628  */
4629 int rcutree_dead_cpu(unsigned int cpu)
4630 {
4631 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4632 	// Stop-machine done, so allow nohz_full to disable tick.
4633 	tick_dep_clear(TICK_DEP_BIT_RCU);
4634 	return 0;
4635 }
4636 
4637 /*
4638  * Near the end of the offline process.  Trace the fact that this CPU
4639  * is going offline.
4640  */
4641 int rcutree_dying_cpu(unsigned int cpu)
4642 {
4643 	bool blkd;
4644 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4645 	struct rcu_node *rnp = rdp->mynode;
4646 
4647 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4648 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4649 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4650 	return 0;
4651 }
4652 
4653 /*
4654  * Near the beginning of the process.  The CPU is still very much alive
4655  * with pretty much all services enabled.
4656  */
4657 int rcutree_offline_cpu(unsigned int cpu)
4658 {
4659 	unsigned long flags;
4660 	struct rcu_data *rdp;
4661 	struct rcu_node *rnp;
4662 
4663 	rdp = per_cpu_ptr(&rcu_data, cpu);
4664 	rnp = rdp->mynode;
4665 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4666 	rnp->ffmask &= ~rdp->grpmask;
4667 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4668 
4669 	rcutree_affinity_setting(cpu, cpu);
4670 
4671 	// nohz_full CPUs need the tick for stop-machine to work quickly
4672 	tick_dep_set(TICK_DEP_BIT_RCU);
4673 	return 0;
4674 }
4675 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
4676 
4677 /*
4678  * On non-huge systems, use expedited RCU grace periods to make suspend
4679  * and hibernation run faster.
4680  */
4681 static int rcu_pm_notify(struct notifier_block *self,
4682 			 unsigned long action, void *hcpu)
4683 {
4684 	switch (action) {
4685 	case PM_HIBERNATION_PREPARE:
4686 	case PM_SUSPEND_PREPARE:
4687 		rcu_async_hurry();
4688 		rcu_expedite_gp();
4689 		break;
4690 	case PM_POST_HIBERNATION:
4691 	case PM_POST_SUSPEND:
4692 		rcu_unexpedite_gp();
4693 		rcu_async_relax();
4694 		break;
4695 	default:
4696 		break;
4697 	}
4698 	return NOTIFY_OK;
4699 }
4700 
4701 #ifdef CONFIG_RCU_EXP_KTHREAD
4702 struct kthread_worker *rcu_exp_gp_kworker;
4703 struct kthread_worker *rcu_exp_par_gp_kworker;
4704 
4705 static void __init rcu_start_exp_gp_kworkers(void)
4706 {
4707 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4708 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4709 	struct sched_param param = { .sched_priority = kthread_prio };
4710 
4711 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4712 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4713 		pr_err("Failed to create %s!\n", gp_kworker_name);
4714 		return;
4715 	}
4716 
4717 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4718 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4719 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4720 		kthread_destroy_worker(rcu_exp_gp_kworker);
4721 		return;
4722 	}
4723 
4724 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4725 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4726 				   &param);
4727 }
4728 
4729 static inline void rcu_alloc_par_gp_wq(void)
4730 {
4731 }
4732 #else /* !CONFIG_RCU_EXP_KTHREAD */
4733 struct workqueue_struct *rcu_par_gp_wq;
4734 
4735 static void __init rcu_start_exp_gp_kworkers(void)
4736 {
4737 }
4738 
4739 static inline void rcu_alloc_par_gp_wq(void)
4740 {
4741 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4742 	WARN_ON(!rcu_par_gp_wq);
4743 }
4744 #endif /* CONFIG_RCU_EXP_KTHREAD */
4745 
4746 /*
4747  * Spawn the kthreads that handle RCU's grace periods.
4748  */
4749 static int __init rcu_spawn_gp_kthread(void)
4750 {
4751 	unsigned long flags;
4752 	struct rcu_node *rnp;
4753 	struct sched_param sp;
4754 	struct task_struct *t;
4755 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4756 
4757 	rcu_scheduler_fully_active = 1;
4758 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4759 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4760 		return 0;
4761 	if (kthread_prio) {
4762 		sp.sched_priority = kthread_prio;
4763 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4764 	}
4765 	rnp = rcu_get_root();
4766 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4767 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4768 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4769 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4770 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4771 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4772 	wake_up_process(t);
4773 	/* This is a pre-SMP initcall, we expect a single CPU */
4774 	WARN_ON(num_online_cpus() > 1);
4775 	/*
4776 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4777 	 * due to rcu_scheduler_fully_active.
4778 	 */
4779 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4780 	rcu_spawn_one_boost_kthread(rdp->mynode);
4781 	rcu_spawn_core_kthreads();
4782 	/* Create kthread worker for expedited GPs */
4783 	rcu_start_exp_gp_kworkers();
4784 	return 0;
4785 }
4786 early_initcall(rcu_spawn_gp_kthread);
4787 
4788 /*
4789  * This function is invoked towards the end of the scheduler's
4790  * initialization process.  Before this is called, the idle task might
4791  * contain synchronous grace-period primitives (during which time, this idle
4792  * task is booting the system, and such primitives are no-ops).  After this
4793  * function is called, any synchronous grace-period primitives are run as
4794  * expedited, with the requesting task driving the grace period forward.
4795  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4796  * runtime RCU functionality.
4797  */
4798 void rcu_scheduler_starting(void)
4799 {
4800 	unsigned long flags;
4801 	struct rcu_node *rnp;
4802 
4803 	WARN_ON(num_online_cpus() != 1);
4804 	WARN_ON(nr_context_switches() > 0);
4805 	rcu_test_sync_prims();
4806 
4807 	// Fix up the ->gp_seq counters.
4808 	local_irq_save(flags);
4809 	rcu_for_each_node_breadth_first(rnp)
4810 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4811 	local_irq_restore(flags);
4812 
4813 	// Switch out of early boot mode.
4814 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4815 	rcu_test_sync_prims();
4816 }
4817 
4818 /*
4819  * Helper function for rcu_init() that initializes the rcu_state structure.
4820  */
4821 static void __init rcu_init_one(void)
4822 {
4823 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4824 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4825 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4826 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4827 
4828 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4829 	int cpustride = 1;
4830 	int i;
4831 	int j;
4832 	struct rcu_node *rnp;
4833 
4834 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4835 
4836 	/* Silence gcc 4.8 false positive about array index out of range. */
4837 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4838 		panic("rcu_init_one: rcu_num_lvls out of range");
4839 
4840 	/* Initialize the level-tracking arrays. */
4841 
4842 	for (i = 1; i < rcu_num_lvls; i++)
4843 		rcu_state.level[i] =
4844 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4845 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4846 
4847 	/* Initialize the elements themselves, starting from the leaves. */
4848 
4849 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4850 		cpustride *= levelspread[i];
4851 		rnp = rcu_state.level[i];
4852 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4853 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4854 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4855 						   &rcu_node_class[i], buf[i]);
4856 			raw_spin_lock_init(&rnp->fqslock);
4857 			lockdep_set_class_and_name(&rnp->fqslock,
4858 						   &rcu_fqs_class[i], fqs[i]);
4859 			rnp->gp_seq = rcu_state.gp_seq;
4860 			rnp->gp_seq_needed = rcu_state.gp_seq;
4861 			rnp->completedqs = rcu_state.gp_seq;
4862 			rnp->qsmask = 0;
4863 			rnp->qsmaskinit = 0;
4864 			rnp->grplo = j * cpustride;
4865 			rnp->grphi = (j + 1) * cpustride - 1;
4866 			if (rnp->grphi >= nr_cpu_ids)
4867 				rnp->grphi = nr_cpu_ids - 1;
4868 			if (i == 0) {
4869 				rnp->grpnum = 0;
4870 				rnp->grpmask = 0;
4871 				rnp->parent = NULL;
4872 			} else {
4873 				rnp->grpnum = j % levelspread[i - 1];
4874 				rnp->grpmask = BIT(rnp->grpnum);
4875 				rnp->parent = rcu_state.level[i - 1] +
4876 					      j / levelspread[i - 1];
4877 			}
4878 			rnp->level = i;
4879 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4880 			rcu_init_one_nocb(rnp);
4881 			init_waitqueue_head(&rnp->exp_wq[0]);
4882 			init_waitqueue_head(&rnp->exp_wq[1]);
4883 			init_waitqueue_head(&rnp->exp_wq[2]);
4884 			init_waitqueue_head(&rnp->exp_wq[3]);
4885 			spin_lock_init(&rnp->exp_lock);
4886 			mutex_init(&rnp->boost_kthread_mutex);
4887 			raw_spin_lock_init(&rnp->exp_poll_lock);
4888 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4889 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4890 		}
4891 	}
4892 
4893 	init_swait_queue_head(&rcu_state.gp_wq);
4894 	init_swait_queue_head(&rcu_state.expedited_wq);
4895 	rnp = rcu_first_leaf_node();
4896 	for_each_possible_cpu(i) {
4897 		while (i > rnp->grphi)
4898 			rnp++;
4899 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4900 		rcu_boot_init_percpu_data(i);
4901 	}
4902 }
4903 
4904 /*
4905  * Force priority from the kernel command-line into range.
4906  */
4907 static void __init sanitize_kthread_prio(void)
4908 {
4909 	int kthread_prio_in = kthread_prio;
4910 
4911 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4912 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4913 		kthread_prio = 2;
4914 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4915 		kthread_prio = 1;
4916 	else if (kthread_prio < 0)
4917 		kthread_prio = 0;
4918 	else if (kthread_prio > 99)
4919 		kthread_prio = 99;
4920 
4921 	if (kthread_prio != kthread_prio_in)
4922 		pr_alert("%s: Limited prio to %d from %d\n",
4923 			 __func__, kthread_prio, kthread_prio_in);
4924 }
4925 
4926 /*
4927  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4928  * replace the definitions in tree.h because those are needed to size
4929  * the ->node array in the rcu_state structure.
4930  */
4931 void rcu_init_geometry(void)
4932 {
4933 	ulong d;
4934 	int i;
4935 	static unsigned long old_nr_cpu_ids;
4936 	int rcu_capacity[RCU_NUM_LVLS];
4937 	static bool initialized;
4938 
4939 	if (initialized) {
4940 		/*
4941 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4942 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4943 		 */
4944 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4945 		return;
4946 	}
4947 
4948 	old_nr_cpu_ids = nr_cpu_ids;
4949 	initialized = true;
4950 
4951 	/*
4952 	 * Initialize any unspecified boot parameters.
4953 	 * The default values of jiffies_till_first_fqs and
4954 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4955 	 * value, which is a function of HZ, then adding one for each
4956 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4957 	 */
4958 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4959 	if (jiffies_till_first_fqs == ULONG_MAX)
4960 		jiffies_till_first_fqs = d;
4961 	if (jiffies_till_next_fqs == ULONG_MAX)
4962 		jiffies_till_next_fqs = d;
4963 	adjust_jiffies_till_sched_qs();
4964 
4965 	/* If the compile-time values are accurate, just leave. */
4966 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4967 	    nr_cpu_ids == NR_CPUS)
4968 		return;
4969 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4970 		rcu_fanout_leaf, nr_cpu_ids);
4971 
4972 	/*
4973 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4974 	 * and cannot exceed the number of bits in the rcu_node masks.
4975 	 * Complain and fall back to the compile-time values if this
4976 	 * limit is exceeded.
4977 	 */
4978 	if (rcu_fanout_leaf < 2 ||
4979 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4980 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4981 		WARN_ON(1);
4982 		return;
4983 	}
4984 
4985 	/*
4986 	 * Compute number of nodes that can be handled an rcu_node tree
4987 	 * with the given number of levels.
4988 	 */
4989 	rcu_capacity[0] = rcu_fanout_leaf;
4990 	for (i = 1; i < RCU_NUM_LVLS; i++)
4991 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4992 
4993 	/*
4994 	 * The tree must be able to accommodate the configured number of CPUs.
4995 	 * If this limit is exceeded, fall back to the compile-time values.
4996 	 */
4997 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4998 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4999 		WARN_ON(1);
5000 		return;
5001 	}
5002 
5003 	/* Calculate the number of levels in the tree. */
5004 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5005 	}
5006 	rcu_num_lvls = i + 1;
5007 
5008 	/* Calculate the number of rcu_nodes at each level of the tree. */
5009 	for (i = 0; i < rcu_num_lvls; i++) {
5010 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5011 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5012 	}
5013 
5014 	/* Calculate the total number of rcu_node structures. */
5015 	rcu_num_nodes = 0;
5016 	for (i = 0; i < rcu_num_lvls; i++)
5017 		rcu_num_nodes += num_rcu_lvl[i];
5018 }
5019 
5020 /*
5021  * Dump out the structure of the rcu_node combining tree associated
5022  * with the rcu_state structure.
5023  */
5024 static void __init rcu_dump_rcu_node_tree(void)
5025 {
5026 	int level = 0;
5027 	struct rcu_node *rnp;
5028 
5029 	pr_info("rcu_node tree layout dump\n");
5030 	pr_info(" ");
5031 	rcu_for_each_node_breadth_first(rnp) {
5032 		if (rnp->level != level) {
5033 			pr_cont("\n");
5034 			pr_info(" ");
5035 			level = rnp->level;
5036 		}
5037 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5038 	}
5039 	pr_cont("\n");
5040 }
5041 
5042 struct workqueue_struct *rcu_gp_wq;
5043 
5044 static void __init kfree_rcu_batch_init(void)
5045 {
5046 	int cpu;
5047 	int i, j;
5048 	struct shrinker *kfree_rcu_shrinker;
5049 
5050 	/* Clamp it to [0:100] seconds interval. */
5051 	if (rcu_delay_page_cache_fill_msec < 0 ||
5052 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5053 
5054 		rcu_delay_page_cache_fill_msec =
5055 			clamp(rcu_delay_page_cache_fill_msec, 0,
5056 				(int) (100 * MSEC_PER_SEC));
5057 
5058 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5059 			rcu_delay_page_cache_fill_msec);
5060 	}
5061 
5062 	for_each_possible_cpu(cpu) {
5063 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5064 
5065 		for (i = 0; i < KFREE_N_BATCHES; i++) {
5066 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5067 			krcp->krw_arr[i].krcp = krcp;
5068 
5069 			for (j = 0; j < FREE_N_CHANNELS; j++)
5070 				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5071 		}
5072 
5073 		for (i = 0; i < FREE_N_CHANNELS; i++)
5074 			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5075 
5076 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5077 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5078 		krcp->initialized = true;
5079 	}
5080 
5081 	kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5082 	if (!kfree_rcu_shrinker) {
5083 		pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5084 		return;
5085 	}
5086 
5087 	kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5088 	kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5089 
5090 	shrinker_register(kfree_rcu_shrinker);
5091 }
5092 
5093 void __init rcu_init(void)
5094 {
5095 	int cpu = smp_processor_id();
5096 
5097 	rcu_early_boot_tests();
5098 
5099 	kfree_rcu_batch_init();
5100 	rcu_bootup_announce();
5101 	sanitize_kthread_prio();
5102 	rcu_init_geometry();
5103 	rcu_init_one();
5104 	if (dump_tree)
5105 		rcu_dump_rcu_node_tree();
5106 	if (use_softirq)
5107 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5108 
5109 	/*
5110 	 * We don't need protection against CPU-hotplug here because
5111 	 * this is called early in boot, before either interrupts
5112 	 * or the scheduler are operational.
5113 	 */
5114 	pm_notifier(rcu_pm_notify, 0);
5115 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5116 	rcutree_prepare_cpu(cpu);
5117 	rcutree_report_cpu_starting(cpu);
5118 	rcutree_online_cpu(cpu);
5119 
5120 	/* Create workqueue for Tree SRCU and for expedited GPs. */
5121 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5122 	WARN_ON(!rcu_gp_wq);
5123 	rcu_alloc_par_gp_wq();
5124 
5125 	/* Fill in default value for rcutree.qovld boot parameter. */
5126 	/* -After- the rcu_node ->lock fields are initialized! */
5127 	if (qovld < 0)
5128 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5129 	else
5130 		qovld_calc = qovld;
5131 
5132 	// Kick-start in case any polled grace periods started early.
5133 	(void)start_poll_synchronize_rcu_expedited();
5134 
5135 	rcu_test_sync_prims();
5136 }
5137 
5138 #include "tree_stall.h"
5139 #include "tree_exp.h"
5140 #include "tree_nocb.h"
5141 #include "tree_plugin.h"
5142