xref: /linux/kernel/rcu/tree.c (revision c48a7c44a1d02516309015b6134c9bb982e17008)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68 
69 #include "tree.h"
70 #include "rcu.h"
71 
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76 
77 /* Data structures. */
78 
79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 	.gpwrap = true,
81 #ifdef CONFIG_RCU_NOCB_CPU
82 	.cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 	.level = { &rcu_state.node[0] },
87 	.gp_state = RCU_GP_IDLE,
88 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 
117 /*
118  * The rcu_scheduler_active variable is initialized to the value
119  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121  * RCU can assume that there is but one task, allowing RCU to (for example)
122  * optimize synchronize_rcu() to a simple barrier().  When this variable
123  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124  * to detect real grace periods.  This variable is also used to suppress
125  * boot-time false positives from lockdep-RCU error checking.  Finally, it
126  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127  * is fully initialized, including all of its kthreads having been spawned.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 			      unsigned long gps, unsigned long flags);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155 static bool rcu_init_invoked(void);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 
159 /*
160  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161  * real-time priority(enabling/disabling) is controlled by
162  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163  */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166 
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168 
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175 
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181 
182 /*
183  * This rcu parameter is runtime-read-only. It reflects
184  * a minimum allowed number of objects which can be cached
185  * per-CPU. Object size is equal to one page. This value
186  * can be changed at boot time.
187  */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190 
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201 
202 /* Retrieve RCU kthreads priority for rcutorture */
203 int rcu_get_gp_kthreads_prio(void)
204 {
205 	return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208 
209 /*
210  * Number of grace periods between delays, normalized by the duration of
211  * the delay.  The longer the delay, the more the grace periods between
212  * each delay.  The reason for this normalization is that it means that,
213  * for non-zero delays, the overall slowdown of grace periods is constant
214  * regardless of the duration of the delay.  This arrangement balances
215  * the need for long delays to increase some race probabilities with the
216  * need for fast grace periods to increase other race probabilities.
217  */
218 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
219 
220 /*
221  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
222  * permit this function to be invoked without holding the root rcu_node
223  * structure's ->lock, but of course results can be subject to change.
224  */
225 static int rcu_gp_in_progress(void)
226 {
227 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228 }
229 
230 /*
231  * Return the number of callbacks queued on the specified CPU.
232  * Handles both the nocbs and normal cases.
233  */
234 static long rcu_get_n_cbs_cpu(int cpu)
235 {
236 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237 
238 	if (rcu_segcblist_is_enabled(&rdp->cblist))
239 		return rcu_segcblist_n_cbs(&rdp->cblist);
240 	return 0;
241 }
242 
243 void rcu_softirq_qs(void)
244 {
245 	rcu_qs();
246 	rcu_preempt_deferred_qs(current);
247 	rcu_tasks_qs(current, false);
248 }
249 
250 /*
251  * Reset the current CPU's ->dynticks counter to indicate that the
252  * newly onlined CPU is no longer in an extended quiescent state.
253  * This will either leave the counter unchanged, or increment it
254  * to the next non-quiescent value.
255  *
256  * The non-atomic test/increment sequence works because the upper bits
257  * of the ->dynticks counter are manipulated only by the corresponding CPU,
258  * or when the corresponding CPU is offline.
259  */
260 static void rcu_dynticks_eqs_online(void)
261 {
262 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 		return;
264 	ct_state_inc(RCU_DYNTICKS_IDX);
265 }
266 
267 /*
268  * Snapshot the ->dynticks counter with full ordering so as to allow
269  * stable comparison of this counter with past and future snapshots.
270  */
271 static int rcu_dynticks_snap(int cpu)
272 {
273 	smp_mb();  // Fundamental RCU ordering guarantee.
274 	return ct_dynticks_cpu_acquire(cpu);
275 }
276 
277 /*
278  * Return true if the snapshot returned from rcu_dynticks_snap()
279  * indicates that RCU is in an extended quiescent state.
280  */
281 static bool rcu_dynticks_in_eqs(int snap)
282 {
283 	return !(snap & RCU_DYNTICKS_IDX);
284 }
285 
286 /*
287  * Return true if the CPU corresponding to the specified rcu_data
288  * structure has spent some time in an extended quiescent state since
289  * rcu_dynticks_snap() returned the specified snapshot.
290  */
291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292 {
293 	return snap != rcu_dynticks_snap(rdp->cpu);
294 }
295 
296 /*
297  * Return true if the referenced integer is zero while the specified
298  * CPU remains within a single extended quiescent state.
299  */
300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301 {
302 	int snap;
303 
304 	// If not quiescent, force back to earlier extended quiescent state.
305 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 	smp_rmb(); // Order ->dynticks and *vp reads.
307 	if (READ_ONCE(*vp))
308 		return false;  // Non-zero, so report failure;
309 	smp_rmb(); // Order *vp read and ->dynticks re-read.
310 
311 	// If still in the same extended quiescent state, we are good!
312 	return snap == ct_dynticks_cpu(cpu);
313 }
314 
315 /*
316  * Let the RCU core know that this CPU has gone through the scheduler,
317  * which is a quiescent state.  This is called when the need for a
318  * quiescent state is urgent, so we burn an atomic operation and full
319  * memory barriers to let the RCU core know about it, regardless of what
320  * this CPU might (or might not) do in the near future.
321  *
322  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323  *
324  * The caller must have disabled interrupts and must not be idle.
325  */
326 notrace void rcu_momentary_dyntick_idle(void)
327 {
328 	int seq;
329 
330 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332 	/* It is illegal to call this from idle state. */
333 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 	rcu_preempt_deferred_qs(current);
335 }
336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337 
338 /**
339  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340  *
341  * If the current CPU is idle and running at a first-level (not nested)
342  * interrupt, or directly, from idle, return true.
343  *
344  * The caller must have at least disabled IRQs.
345  */
346 static int rcu_is_cpu_rrupt_from_idle(void)
347 {
348 	long nesting;
349 
350 	/*
351 	 * Usually called from the tick; but also used from smp_function_call()
352 	 * for expedited grace periods. This latter can result in running from
353 	 * the idle task, instead of an actual IPI.
354 	 */
355 	lockdep_assert_irqs_disabled();
356 
357 	/* Check for counter underflows */
358 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 			 "RCU dynticks_nesting counter underflow!");
360 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
362 
363 	/* Are we at first interrupt nesting level? */
364 	nesting = ct_dynticks_nmi_nesting();
365 	if (nesting > 1)
366 		return false;
367 
368 	/*
369 	 * If we're not in an interrupt, we must be in the idle task!
370 	 */
371 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
372 
373 	/* Does CPU appear to be idle from an RCU standpoint? */
374 	return ct_dynticks_nesting() == 0;
375 }
376 
377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 				// Maximum callbacks per rcu_do_batch ...
379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380 static long blimit = DEFAULT_RCU_BLIMIT;
381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382 static long qhimark = DEFAULT_RCU_QHIMARK;
383 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
384 static long qlowmark = DEFAULT_RCU_QLOMARK;
385 #define DEFAULT_RCU_QOVLD_MULT 2
386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
389 
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 module_param(qovld, long, 0444);
394 
395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
397 static bool rcu_kick_kthreads;
398 static int rcu_divisor = 7;
399 module_param(rcu_divisor, int, 0644);
400 
401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403 module_param(rcu_resched_ns, long, 0644);
404 
405 /*
406  * How long the grace period must be before we start recruiting
407  * quiescent-state help from rcu_note_context_switch().
408  */
409 static ulong jiffies_till_sched_qs = ULONG_MAX;
410 module_param(jiffies_till_sched_qs, ulong, 0444);
411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413 
414 /*
415  * Make sure that we give the grace-period kthread time to detect any
416  * idle CPUs before taking active measures to force quiescent states.
417  * However, don't go below 100 milliseconds, adjusted upwards for really
418  * large systems.
419  */
420 static void adjust_jiffies_till_sched_qs(void)
421 {
422 	unsigned long j;
423 
424 	/* If jiffies_till_sched_qs was specified, respect the request. */
425 	if (jiffies_till_sched_qs != ULONG_MAX) {
426 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 		return;
428 	}
429 	/* Otherwise, set to third fqs scan, but bound below on large system. */
430 	j = READ_ONCE(jiffies_till_first_fqs) +
431 		      2 * READ_ONCE(jiffies_till_next_fqs);
432 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 	WRITE_ONCE(jiffies_to_sched_qs, j);
436 }
437 
438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439 {
440 	ulong j;
441 	int ret = kstrtoul(val, 0, &j);
442 
443 	if (!ret) {
444 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 		adjust_jiffies_till_sched_qs();
446 	}
447 	return ret;
448 }
449 
450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451 {
452 	ulong j;
453 	int ret = kstrtoul(val, 0, &j);
454 
455 	if (!ret) {
456 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 		adjust_jiffies_till_sched_qs();
458 	}
459 	return ret;
460 }
461 
462 static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 	.set = param_set_first_fqs_jiffies,
464 	.get = param_get_ulong,
465 };
466 
467 static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 	.set = param_set_next_fqs_jiffies,
469 	.get = param_get_ulong,
470 };
471 
472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474 module_param(rcu_kick_kthreads, bool, 0644);
475 
476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477 static int rcu_pending(int user);
478 
479 /*
480  * Return the number of RCU GPs completed thus far for debug & stats.
481  */
482 unsigned long rcu_get_gp_seq(void)
483 {
484 	return READ_ONCE(rcu_state.gp_seq);
485 }
486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487 
488 /*
489  * Return the number of RCU expedited batches completed thus far for
490  * debug & stats.  Odd numbers mean that a batch is in progress, even
491  * numbers mean idle.  The value returned will thus be roughly double
492  * the cumulative batches since boot.
493  */
494 unsigned long rcu_exp_batches_completed(void)
495 {
496 	return rcu_state.expedited_sequence;
497 }
498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499 
500 /*
501  * Return the root node of the rcu_state structure.
502  */
503 static struct rcu_node *rcu_get_root(void)
504 {
505 	return &rcu_state.node[0];
506 }
507 
508 /*
509  * Send along grace-period-related data for rcutorture diagnostics.
510  */
511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 			    unsigned long *gp_seq)
513 {
514 	switch (test_type) {
515 	case RCU_FLAVOR:
516 		*flags = READ_ONCE(rcu_state.gp_flags);
517 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518 		break;
519 	default:
520 		break;
521 	}
522 }
523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524 
525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526 /*
527  * An empty function that will trigger a reschedule on
528  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529  */
530 static void late_wakeup_func(struct irq_work *work)
531 {
532 }
533 
534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 	IRQ_WORK_INIT(late_wakeup_func);
536 
537 /*
538  * If either:
539  *
540  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542  *
543  * In these cases the late RCU wake ups aren't supported in the resched loops and our
544  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545  * get re-enabled again.
546  */
547 noinstr void rcu_irq_work_resched(void)
548 {
549 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550 
551 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 		return;
553 
554 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 		return;
556 
557 	instrumentation_begin();
558 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 	}
561 	instrumentation_end();
562 }
563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564 
565 #ifdef CONFIG_PROVE_RCU
566 /**
567  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568  */
569 void rcu_irq_exit_check_preempt(void)
570 {
571 	lockdep_assert_irqs_disabled();
572 
573 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 			 "RCU dynticks_nesting counter underflow/zero!");
575 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 			 DYNTICK_IRQ_NONIDLE,
577 			 "Bad RCU  dynticks_nmi_nesting counter\n");
578 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 			 "RCU in extended quiescent state!");
580 }
581 #endif /* #ifdef CONFIG_PROVE_RCU */
582 
583 #ifdef CONFIG_NO_HZ_FULL
584 /**
585  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586  *
587  * The scheduler tick is not normally enabled when CPUs enter the kernel
588  * from nohz_full userspace execution.  After all, nohz_full userspace
589  * execution is an RCU quiescent state and the time executing in the kernel
590  * is quite short.  Except of course when it isn't.  And it is not hard to
591  * cause a large system to spend tens of seconds or even minutes looping
592  * in the kernel, which can cause a number of problems, include RCU CPU
593  * stall warnings.
594  *
595  * Therefore, if a nohz_full CPU fails to report a quiescent state
596  * in a timely manner, the RCU grace-period kthread sets that CPU's
597  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598  * exception will invoke this function, which will turn on the scheduler
599  * tick, which will enable RCU to detect that CPU's quiescent states,
600  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601  * The tick will be disabled once a quiescent state is reported for
602  * this CPU.
603  *
604  * Of course, in carefully tuned systems, there might never be an
605  * interrupt or exception.  In that case, the RCU grace-period kthread
606  * will eventually cause one to happen.  However, in less carefully
607  * controlled environments, this function allows RCU to get what it
608  * needs without creating otherwise useless interruptions.
609  */
610 void __rcu_irq_enter_check_tick(void)
611 {
612 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613 
614 	// If we're here from NMI there's nothing to do.
615 	if (in_nmi())
616 		return;
617 
618 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620 
621 	if (!tick_nohz_full_cpu(rdp->cpu) ||
622 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
623 	    READ_ONCE(rdp->rcu_forced_tick)) {
624 		// RCU doesn't need nohz_full help from this CPU, or it is
625 		// already getting that help.
626 		return;
627 	}
628 
629 	// We get here only when not in an extended quiescent state and
630 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
631 	// already watching and (2) The fact that we are in an interrupt
632 	// handler and that the rcu_node lock is an irq-disabled lock
633 	// prevents self-deadlock.  So we can safely recheck under the lock.
634 	// Note that the nohz_full state currently cannot change.
635 	raw_spin_lock_rcu_node(rdp->mynode);
636 	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 		// A nohz_full CPU is in the kernel and RCU needs a
638 		// quiescent state.  Turn on the tick!
639 		WRITE_ONCE(rdp->rcu_forced_tick, true);
640 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 	}
642 	raw_spin_unlock_rcu_node(rdp->mynode);
643 }
644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645 #endif /* CONFIG_NO_HZ_FULL */
646 
647 /*
648  * Check to see if any future non-offloaded RCU-related work will need
649  * to be done by the current CPU, even if none need be done immediately,
650  * returning 1 if so.  This function is part of the RCU implementation;
651  * it is -not- an exported member of the RCU API.  This is used by
652  * the idle-entry code to figure out whether it is safe to disable the
653  * scheduler-clock interrupt.
654  *
655  * Just check whether or not this CPU has non-offloaded RCU callbacks
656  * queued.
657  */
658 int rcu_needs_cpu(void)
659 {
660 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662 }
663 
664 /*
665  * If any sort of urgency was applied to the current CPU (for example,
666  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667  * to get to a quiescent state, disable it.
668  */
669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670 {
671 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676 		WRITE_ONCE(rdp->rcu_forced_tick, false);
677 	}
678 }
679 
680 /**
681  * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682  *
683  * Return @true if RCU is watching the running CPU and @false otherwise.
684  * An @true return means that this CPU can safely enter RCU read-side
685  * critical sections.
686  *
687  * Although calls to rcu_is_watching() from most parts of the kernel
688  * will return @true, there are important exceptions.  For example, if the
689  * current CPU is deep within its idle loop, in kernel entry/exit code,
690  * or offline, rcu_is_watching() will return @false.
691  *
692  * Make notrace because it can be called by the internal functions of
693  * ftrace, and making this notrace removes unnecessary recursion calls.
694  */
695 notrace bool rcu_is_watching(void)
696 {
697 	bool ret;
698 
699 	preempt_disable_notrace();
700 	ret = !rcu_dynticks_curr_cpu_in_eqs();
701 	preempt_enable_notrace();
702 	return ret;
703 }
704 EXPORT_SYMBOL_GPL(rcu_is_watching);
705 
706 /*
707  * If a holdout task is actually running, request an urgent quiescent
708  * state from its CPU.  This is unsynchronized, so migrations can cause
709  * the request to go to the wrong CPU.  Which is OK, all that will happen
710  * is that the CPU's next context switch will be a bit slower and next
711  * time around this task will generate another request.
712  */
713 void rcu_request_urgent_qs_task(struct task_struct *t)
714 {
715 	int cpu;
716 
717 	barrier();
718 	cpu = task_cpu(t);
719 	if (!task_curr(t))
720 		return; /* This task is not running on that CPU. */
721 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722 }
723 
724 /*
725  * When trying to report a quiescent state on behalf of some other CPU,
726  * it is our responsibility to check for and handle potential overflow
727  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728  * After all, the CPU might be in deep idle state, and thus executing no
729  * code whatsoever.
730  */
731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732 {
733 	raw_lockdep_assert_held_rcu_node(rnp);
734 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 			 rnp->gp_seq))
736 		WRITE_ONCE(rdp->gpwrap, true);
737 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739 }
740 
741 /*
742  * Snapshot the specified CPU's dynticks counter so that we can later
743  * credit them with an implicit quiescent state.  Return 1 if this CPU
744  * is in dynticks idle mode, which is an extended quiescent state.
745  */
746 static int dyntick_save_progress_counter(struct rcu_data *rdp)
747 {
748 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751 		rcu_gpnum_ovf(rdp->mynode, rdp);
752 		return 1;
753 	}
754 	return 0;
755 }
756 
757 /*
758  * Returns positive if the specified CPU has passed through a quiescent state
759  * by virtue of being in or having passed through an dynticks idle state since
760  * the last call to dyntick_save_progress_counter() for this same CPU, or by
761  * virtue of having been offline.
762  *
763  * Returns negative if the specified CPU needs a force resched.
764  *
765  * Returns zero otherwise.
766  */
767 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
768 {
769 	unsigned long jtsq;
770 	int ret = 0;
771 	struct rcu_node *rnp = rdp->mynode;
772 
773 	/*
774 	 * If the CPU passed through or entered a dynticks idle phase with
775 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
776 	 * already acknowledged the request to pass through a quiescent
777 	 * state.  Either way, that CPU cannot possibly be in an RCU
778 	 * read-side critical section that started before the beginning
779 	 * of the current RCU grace period.
780 	 */
781 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
782 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
783 		rcu_gpnum_ovf(rnp, rdp);
784 		return 1;
785 	}
786 
787 	/*
788 	 * Complain if a CPU that is considered to be offline from RCU's
789 	 * perspective has not yet reported a quiescent state.  After all,
790 	 * the offline CPU should have reported a quiescent state during
791 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
792 	 * if it ran concurrently with either the CPU going offline or the
793 	 * last task on a leaf rcu_node structure exiting its RCU read-side
794 	 * critical section while all CPUs corresponding to that structure
795 	 * are offline.  This added warning detects bugs in any of these
796 	 * code paths.
797 	 *
798 	 * The rcu_node structure's ->lock is held here, which excludes
799 	 * the relevant portions the CPU-hotplug code, the grace-period
800 	 * initialization code, and the rcu_read_unlock() code paths.
801 	 *
802 	 * For more detail, please refer to the "Hotplug CPU" section
803 	 * of RCU's Requirements documentation.
804 	 */
805 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
806 		struct rcu_node *rnp1;
807 
808 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
809 			__func__, rnp->grplo, rnp->grphi, rnp->level,
810 			(long)rnp->gp_seq, (long)rnp->completedqs);
811 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
812 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
813 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
814 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
815 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
816 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
817 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
818 		return 1; /* Break things loose after complaining. */
819 	}
820 
821 	/*
822 	 * A CPU running for an extended time within the kernel can
823 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
824 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
825 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
826 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
827 	 * variable are safe because the assignments are repeated if this
828 	 * CPU failed to pass through a quiescent state.  This code
829 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
830 	 * is set way high.
831 	 */
832 	jtsq = READ_ONCE(jiffies_to_sched_qs);
833 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
834 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
835 	     time_after(jiffies, rcu_state.jiffies_resched) ||
836 	     rcu_state.cbovld)) {
837 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
838 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
839 		smp_store_release(&rdp->rcu_urgent_qs, true);
840 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
841 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
842 	}
843 
844 	/*
845 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
846 	 * The above code handles this, but only for straight cond_resched().
847 	 * And some in-kernel loops check need_resched() before calling
848 	 * cond_resched(), which defeats the above code for CPUs that are
849 	 * running in-kernel with scheduling-clock interrupts disabled.
850 	 * So hit them over the head with the resched_cpu() hammer!
851 	 */
852 	if (tick_nohz_full_cpu(rdp->cpu) &&
853 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
854 	     rcu_state.cbovld)) {
855 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
856 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
857 		ret = -1;
858 	}
859 
860 	/*
861 	 * If more than halfway to RCU CPU stall-warning time, invoke
862 	 * resched_cpu() more frequently to try to loosen things up a bit.
863 	 * Also check to see if the CPU is getting hammered with interrupts,
864 	 * but only once per grace period, just to keep the IPIs down to
865 	 * a dull roar.
866 	 */
867 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
868 		if (time_after(jiffies,
869 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
870 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
871 			ret = -1;
872 		}
873 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
874 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
875 		    (rnp->ffmask & rdp->grpmask)) {
876 			rdp->rcu_iw_pending = true;
877 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
878 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
879 		}
880 
881 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
882 			int cpu = rdp->cpu;
883 			struct rcu_snap_record *rsrp;
884 			struct kernel_cpustat *kcsp;
885 
886 			kcsp = &kcpustat_cpu(cpu);
887 
888 			rsrp = &rdp->snap_record;
889 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
890 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
891 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
892 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
893 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
894 			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
895 			rsrp->jiffies = jiffies;
896 			rsrp->gp_seq = rdp->gp_seq;
897 		}
898 	}
899 
900 	return ret;
901 }
902 
903 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
904 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
905 			      unsigned long gp_seq_req, const char *s)
906 {
907 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
908 				      gp_seq_req, rnp->level,
909 				      rnp->grplo, rnp->grphi, s);
910 }
911 
912 /*
913  * rcu_start_this_gp - Request the start of a particular grace period
914  * @rnp_start: The leaf node of the CPU from which to start.
915  * @rdp: The rcu_data corresponding to the CPU from which to start.
916  * @gp_seq_req: The gp_seq of the grace period to start.
917  *
918  * Start the specified grace period, as needed to handle newly arrived
919  * callbacks.  The required future grace periods are recorded in each
920  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
921  * is reason to awaken the grace-period kthread.
922  *
923  * The caller must hold the specified rcu_node structure's ->lock, which
924  * is why the caller is responsible for waking the grace-period kthread.
925  *
926  * Returns true if the GP thread needs to be awakened else false.
927  */
928 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
929 			      unsigned long gp_seq_req)
930 {
931 	bool ret = false;
932 	struct rcu_node *rnp;
933 
934 	/*
935 	 * Use funnel locking to either acquire the root rcu_node
936 	 * structure's lock or bail out if the need for this grace period
937 	 * has already been recorded -- or if that grace period has in
938 	 * fact already started.  If there is already a grace period in
939 	 * progress in a non-leaf node, no recording is needed because the
940 	 * end of the grace period will scan the leaf rcu_node structures.
941 	 * Note that rnp_start->lock must not be released.
942 	 */
943 	raw_lockdep_assert_held_rcu_node(rnp_start);
944 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
945 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
946 		if (rnp != rnp_start)
947 			raw_spin_lock_rcu_node(rnp);
948 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
949 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
950 		    (rnp != rnp_start &&
951 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
952 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
953 					  TPS("Prestarted"));
954 			goto unlock_out;
955 		}
956 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
957 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
958 			/*
959 			 * We just marked the leaf or internal node, and a
960 			 * grace period is in progress, which means that
961 			 * rcu_gp_cleanup() will see the marking.  Bail to
962 			 * reduce contention.
963 			 */
964 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
965 					  TPS("Startedleaf"));
966 			goto unlock_out;
967 		}
968 		if (rnp != rnp_start && rnp->parent != NULL)
969 			raw_spin_unlock_rcu_node(rnp);
970 		if (!rnp->parent)
971 			break;  /* At root, and perhaps also leaf. */
972 	}
973 
974 	/* If GP already in progress, just leave, otherwise start one. */
975 	if (rcu_gp_in_progress()) {
976 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
977 		goto unlock_out;
978 	}
979 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
980 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
981 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
982 	if (!READ_ONCE(rcu_state.gp_kthread)) {
983 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
984 		goto unlock_out;
985 	}
986 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
987 	ret = true;  /* Caller must wake GP kthread. */
988 unlock_out:
989 	/* Push furthest requested GP to leaf node and rcu_data structure. */
990 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
991 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
992 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
993 	}
994 	if (rnp != rnp_start)
995 		raw_spin_unlock_rcu_node(rnp);
996 	return ret;
997 }
998 
999 /*
1000  * Clean up any old requests for the just-ended grace period.  Also return
1001  * whether any additional grace periods have been requested.
1002  */
1003 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1004 {
1005 	bool needmore;
1006 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1007 
1008 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009 	if (!needmore)
1010 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1011 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1012 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1013 	return needmore;
1014 }
1015 
1016 /*
1017  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1018  * interrupt or softirq handler, in which case we just might immediately
1019  * sleep upon return, resulting in a grace-period hang), and don't bother
1020  * awakening when there is nothing for the grace-period kthread to do
1021  * (as in several CPUs raced to awaken, we lost), and finally don't try
1022  * to awaken a kthread that has not yet been created.  If all those checks
1023  * are passed, track some debug information and awaken.
1024  *
1025  * So why do the self-wakeup when in an interrupt or softirq handler
1026  * in the grace-period kthread's context?  Because the kthread might have
1027  * been interrupted just as it was going to sleep, and just after the final
1028  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1029  * is required, and is therefore supplied.
1030  */
1031 static void rcu_gp_kthread_wake(void)
1032 {
1033 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1034 
1035 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1036 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1037 		return;
1038 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1039 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1040 	swake_up_one(&rcu_state.gp_wq);
1041 }
1042 
1043 /*
1044  * If there is room, assign a ->gp_seq number to any callbacks on this
1045  * CPU that have not already been assigned.  Also accelerate any callbacks
1046  * that were previously assigned a ->gp_seq number that has since proven
1047  * to be too conservative, which can happen if callbacks get assigned a
1048  * ->gp_seq number while RCU is idle, but with reference to a non-root
1049  * rcu_node structure.  This function is idempotent, so it does not hurt
1050  * to call it repeatedly.  Returns an flag saying that we should awaken
1051  * the RCU grace-period kthread.
1052  *
1053  * The caller must hold rnp->lock with interrupts disabled.
1054  */
1055 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1056 {
1057 	unsigned long gp_seq_req;
1058 	bool ret = false;
1059 
1060 	rcu_lockdep_assert_cblist_protected(rdp);
1061 	raw_lockdep_assert_held_rcu_node(rnp);
1062 
1063 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1064 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1065 		return false;
1066 
1067 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1068 
1069 	/*
1070 	 * Callbacks are often registered with incomplete grace-period
1071 	 * information.  Something about the fact that getting exact
1072 	 * information requires acquiring a global lock...  RCU therefore
1073 	 * makes a conservative estimate of the grace period number at which
1074 	 * a given callback will become ready to invoke.	The following
1075 	 * code checks this estimate and improves it when possible, thus
1076 	 * accelerating callback invocation to an earlier grace-period
1077 	 * number.
1078 	 */
1079 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1080 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1081 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1082 
1083 	/* Trace depending on how much we were able to accelerate. */
1084 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1085 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1086 	else
1087 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1088 
1089 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1090 
1091 	return ret;
1092 }
1093 
1094 /*
1095  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1096  * rcu_node structure's ->lock be held.  It consults the cached value
1097  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1098  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1099  * while holding the leaf rcu_node structure's ->lock.
1100  */
1101 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1102 					struct rcu_data *rdp)
1103 {
1104 	unsigned long c;
1105 	bool needwake;
1106 
1107 	rcu_lockdep_assert_cblist_protected(rdp);
1108 	c = rcu_seq_snap(&rcu_state.gp_seq);
1109 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1110 		/* Old request still live, so mark recent callbacks. */
1111 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1112 		return;
1113 	}
1114 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1115 	needwake = rcu_accelerate_cbs(rnp, rdp);
1116 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1117 	if (needwake)
1118 		rcu_gp_kthread_wake();
1119 }
1120 
1121 /*
1122  * Move any callbacks whose grace period has completed to the
1123  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1124  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1125  * sublist.  This function is idempotent, so it does not hurt to
1126  * invoke it repeatedly.  As long as it is not invoked -too- often...
1127  * Returns true if the RCU grace-period kthread needs to be awakened.
1128  *
1129  * The caller must hold rnp->lock with interrupts disabled.
1130  */
1131 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1132 {
1133 	rcu_lockdep_assert_cblist_protected(rdp);
1134 	raw_lockdep_assert_held_rcu_node(rnp);
1135 
1136 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1137 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1138 		return false;
1139 
1140 	/*
1141 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1142 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1143 	 */
1144 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1145 
1146 	/* Classify any remaining callbacks. */
1147 	return rcu_accelerate_cbs(rnp, rdp);
1148 }
1149 
1150 /*
1151  * Move and classify callbacks, but only if doing so won't require
1152  * that the RCU grace-period kthread be awakened.
1153  */
1154 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1155 						  struct rcu_data *rdp)
1156 {
1157 	rcu_lockdep_assert_cblist_protected(rdp);
1158 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1159 		return;
1160 	// The grace period cannot end while we hold the rcu_node lock.
1161 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1162 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1163 	raw_spin_unlock_rcu_node(rnp);
1164 }
1165 
1166 /*
1167  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1168  * quiescent state.  This is intended to be invoked when the CPU notices
1169  * a new grace period.
1170  */
1171 static void rcu_strict_gp_check_qs(void)
1172 {
1173 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1174 		rcu_read_lock();
1175 		rcu_read_unlock();
1176 	}
1177 }
1178 
1179 /*
1180  * Update CPU-local rcu_data state to record the beginnings and ends of
1181  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1182  * structure corresponding to the current CPU, and must have irqs disabled.
1183  * Returns true if the grace-period kthread needs to be awakened.
1184  */
1185 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1186 {
1187 	bool ret = false;
1188 	bool need_qs;
1189 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1190 
1191 	raw_lockdep_assert_held_rcu_node(rnp);
1192 
1193 	if (rdp->gp_seq == rnp->gp_seq)
1194 		return false; /* Nothing to do. */
1195 
1196 	/* Handle the ends of any preceding grace periods first. */
1197 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1198 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1199 		if (!offloaded)
1200 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1201 		rdp->core_needs_qs = false;
1202 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1203 	} else {
1204 		if (!offloaded)
1205 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1206 		if (rdp->core_needs_qs)
1207 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1208 	}
1209 
1210 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1211 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1212 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1213 		/*
1214 		 * If the current grace period is waiting for this CPU,
1215 		 * set up to detect a quiescent state, otherwise don't
1216 		 * go looking for one.
1217 		 */
1218 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1219 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1220 		rdp->cpu_no_qs.b.norm = need_qs;
1221 		rdp->core_needs_qs = need_qs;
1222 		zero_cpu_stall_ticks(rdp);
1223 	}
1224 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1225 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1226 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1227 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1228 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1229 	WRITE_ONCE(rdp->gpwrap, false);
1230 	rcu_gpnum_ovf(rnp, rdp);
1231 	return ret;
1232 }
1233 
1234 static void note_gp_changes(struct rcu_data *rdp)
1235 {
1236 	unsigned long flags;
1237 	bool needwake;
1238 	struct rcu_node *rnp;
1239 
1240 	local_irq_save(flags);
1241 	rnp = rdp->mynode;
1242 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1243 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1244 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1245 		local_irq_restore(flags);
1246 		return;
1247 	}
1248 	needwake = __note_gp_changes(rnp, rdp);
1249 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1250 	rcu_strict_gp_check_qs();
1251 	if (needwake)
1252 		rcu_gp_kthread_wake();
1253 }
1254 
1255 static atomic_t *rcu_gp_slow_suppress;
1256 
1257 /* Register a counter to suppress debugging grace-period delays. */
1258 void rcu_gp_slow_register(atomic_t *rgssp)
1259 {
1260 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1261 
1262 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1263 }
1264 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1265 
1266 /* Unregister a counter, with NULL for not caring which. */
1267 void rcu_gp_slow_unregister(atomic_t *rgssp)
1268 {
1269 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1270 
1271 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1272 }
1273 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1274 
1275 static bool rcu_gp_slow_is_suppressed(void)
1276 {
1277 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1278 
1279 	return rgssp && atomic_read(rgssp);
1280 }
1281 
1282 static void rcu_gp_slow(int delay)
1283 {
1284 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1285 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1286 		schedule_timeout_idle(delay);
1287 }
1288 
1289 static unsigned long sleep_duration;
1290 
1291 /* Allow rcutorture to stall the grace-period kthread. */
1292 void rcu_gp_set_torture_wait(int duration)
1293 {
1294 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1295 		WRITE_ONCE(sleep_duration, duration);
1296 }
1297 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1298 
1299 /* Actually implement the aforementioned wait. */
1300 static void rcu_gp_torture_wait(void)
1301 {
1302 	unsigned long duration;
1303 
1304 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1305 		return;
1306 	duration = xchg(&sleep_duration, 0UL);
1307 	if (duration > 0) {
1308 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1309 		schedule_timeout_idle(duration);
1310 		pr_alert("%s: Wait complete\n", __func__);
1311 	}
1312 }
1313 
1314 /*
1315  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1316  * processing.
1317  */
1318 static void rcu_strict_gp_boundary(void *unused)
1319 {
1320 	invoke_rcu_core();
1321 }
1322 
1323 // Make the polled API aware of the beginning of a grace period.
1324 static void rcu_poll_gp_seq_start(unsigned long *snap)
1325 {
1326 	struct rcu_node *rnp = rcu_get_root();
1327 
1328 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1329 		raw_lockdep_assert_held_rcu_node(rnp);
1330 
1331 	// If RCU was idle, note beginning of GP.
1332 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1333 		rcu_seq_start(&rcu_state.gp_seq_polled);
1334 
1335 	// Either way, record current state.
1336 	*snap = rcu_state.gp_seq_polled;
1337 }
1338 
1339 // Make the polled API aware of the end of a grace period.
1340 static void rcu_poll_gp_seq_end(unsigned long *snap)
1341 {
1342 	struct rcu_node *rnp = rcu_get_root();
1343 
1344 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1345 		raw_lockdep_assert_held_rcu_node(rnp);
1346 
1347 	// If the previously noted GP is still in effect, record the
1348 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1349 	// problems.
1350 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1351 		rcu_seq_end(&rcu_state.gp_seq_polled);
1352 		rcu_state.gp_seq_polled_snap = 0;
1353 		rcu_state.gp_seq_polled_exp_snap = 0;
1354 	} else {
1355 		*snap = 0;
1356 	}
1357 }
1358 
1359 // Make the polled API aware of the beginning of a grace period, but
1360 // where caller does not hold the root rcu_node structure's lock.
1361 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1362 {
1363 	unsigned long flags;
1364 	struct rcu_node *rnp = rcu_get_root();
1365 
1366 	if (rcu_init_invoked()) {
1367 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1368 			lockdep_assert_irqs_enabled();
1369 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1370 	}
1371 	rcu_poll_gp_seq_start(snap);
1372 	if (rcu_init_invoked())
1373 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1374 }
1375 
1376 // Make the polled API aware of the end of a grace period, but where
1377 // caller does not hold the root rcu_node structure's lock.
1378 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1379 {
1380 	unsigned long flags;
1381 	struct rcu_node *rnp = rcu_get_root();
1382 
1383 	if (rcu_init_invoked()) {
1384 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1385 			lockdep_assert_irqs_enabled();
1386 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1387 	}
1388 	rcu_poll_gp_seq_end(snap);
1389 	if (rcu_init_invoked())
1390 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1391 }
1392 
1393 /*
1394  * Initialize a new grace period.  Return false if no grace period required.
1395  */
1396 static noinline_for_stack bool rcu_gp_init(void)
1397 {
1398 	unsigned long flags;
1399 	unsigned long oldmask;
1400 	unsigned long mask;
1401 	struct rcu_data *rdp;
1402 	struct rcu_node *rnp = rcu_get_root();
1403 
1404 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1405 	raw_spin_lock_irq_rcu_node(rnp);
1406 	if (!READ_ONCE(rcu_state.gp_flags)) {
1407 		/* Spurious wakeup, tell caller to go back to sleep.  */
1408 		raw_spin_unlock_irq_rcu_node(rnp);
1409 		return false;
1410 	}
1411 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1412 
1413 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1414 		/*
1415 		 * Grace period already in progress, don't start another.
1416 		 * Not supposed to be able to happen.
1417 		 */
1418 		raw_spin_unlock_irq_rcu_node(rnp);
1419 		return false;
1420 	}
1421 
1422 	/* Advance to a new grace period and initialize state. */
1423 	record_gp_stall_check_time();
1424 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1425 	rcu_seq_start(&rcu_state.gp_seq);
1426 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1427 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1428 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1429 	raw_spin_unlock_irq_rcu_node(rnp);
1430 
1431 	/*
1432 	 * Apply per-leaf buffered online and offline operations to
1433 	 * the rcu_node tree. Note that this new grace period need not
1434 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1435 	 * offlining path, when combined with checks in this function,
1436 	 * will handle CPUs that are currently going offline or that will
1437 	 * go offline later.  Please also refer to "Hotplug CPU" section
1438 	 * of RCU's Requirements documentation.
1439 	 */
1440 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1441 	/* Exclude CPU hotplug operations. */
1442 	rcu_for_each_leaf_node(rnp) {
1443 		local_irq_save(flags);
1444 		arch_spin_lock(&rcu_state.ofl_lock);
1445 		raw_spin_lock_rcu_node(rnp);
1446 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1447 		    !rnp->wait_blkd_tasks) {
1448 			/* Nothing to do on this leaf rcu_node structure. */
1449 			raw_spin_unlock_rcu_node(rnp);
1450 			arch_spin_unlock(&rcu_state.ofl_lock);
1451 			local_irq_restore(flags);
1452 			continue;
1453 		}
1454 
1455 		/* Record old state, apply changes to ->qsmaskinit field. */
1456 		oldmask = rnp->qsmaskinit;
1457 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1458 
1459 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1460 		if (!oldmask != !rnp->qsmaskinit) {
1461 			if (!oldmask) { /* First online CPU for rcu_node. */
1462 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1463 					rcu_init_new_rnp(rnp);
1464 			} else if (rcu_preempt_has_tasks(rnp)) {
1465 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1466 			} else { /* Last offline CPU and can propagate. */
1467 				rcu_cleanup_dead_rnp(rnp);
1468 			}
1469 		}
1470 
1471 		/*
1472 		 * If all waited-on tasks from prior grace period are
1473 		 * done, and if all this rcu_node structure's CPUs are
1474 		 * still offline, propagate up the rcu_node tree and
1475 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1476 		 * rcu_node structure's CPUs has since come back online,
1477 		 * simply clear ->wait_blkd_tasks.
1478 		 */
1479 		if (rnp->wait_blkd_tasks &&
1480 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1481 			rnp->wait_blkd_tasks = false;
1482 			if (!rnp->qsmaskinit)
1483 				rcu_cleanup_dead_rnp(rnp);
1484 		}
1485 
1486 		raw_spin_unlock_rcu_node(rnp);
1487 		arch_spin_unlock(&rcu_state.ofl_lock);
1488 		local_irq_restore(flags);
1489 	}
1490 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1491 
1492 	/*
1493 	 * Set the quiescent-state-needed bits in all the rcu_node
1494 	 * structures for all currently online CPUs in breadth-first
1495 	 * order, starting from the root rcu_node structure, relying on the
1496 	 * layout of the tree within the rcu_state.node[] array.  Note that
1497 	 * other CPUs will access only the leaves of the hierarchy, thus
1498 	 * seeing that no grace period is in progress, at least until the
1499 	 * corresponding leaf node has been initialized.
1500 	 *
1501 	 * The grace period cannot complete until the initialization
1502 	 * process finishes, because this kthread handles both.
1503 	 */
1504 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1505 	rcu_for_each_node_breadth_first(rnp) {
1506 		rcu_gp_slow(gp_init_delay);
1507 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1508 		rdp = this_cpu_ptr(&rcu_data);
1509 		rcu_preempt_check_blocked_tasks(rnp);
1510 		rnp->qsmask = rnp->qsmaskinit;
1511 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1512 		if (rnp == rdp->mynode)
1513 			(void)__note_gp_changes(rnp, rdp);
1514 		rcu_preempt_boost_start_gp(rnp);
1515 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1516 					    rnp->level, rnp->grplo,
1517 					    rnp->grphi, rnp->qsmask);
1518 		/* Quiescent states for tasks on any now-offline CPUs. */
1519 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1520 		rnp->rcu_gp_init_mask = mask;
1521 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1522 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1523 		else
1524 			raw_spin_unlock_irq_rcu_node(rnp);
1525 		cond_resched_tasks_rcu_qs();
1526 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1527 	}
1528 
1529 	// If strict, make all CPUs aware of new grace period.
1530 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1531 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1532 
1533 	return true;
1534 }
1535 
1536 /*
1537  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1538  * time.
1539  */
1540 static bool rcu_gp_fqs_check_wake(int *gfp)
1541 {
1542 	struct rcu_node *rnp = rcu_get_root();
1543 
1544 	// If under overload conditions, force an immediate FQS scan.
1545 	if (*gfp & RCU_GP_FLAG_OVLD)
1546 		return true;
1547 
1548 	// Someone like call_rcu() requested a force-quiescent-state scan.
1549 	*gfp = READ_ONCE(rcu_state.gp_flags);
1550 	if (*gfp & RCU_GP_FLAG_FQS)
1551 		return true;
1552 
1553 	// The current grace period has completed.
1554 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1555 		return true;
1556 
1557 	return false;
1558 }
1559 
1560 /*
1561  * Do one round of quiescent-state forcing.
1562  */
1563 static void rcu_gp_fqs(bool first_time)
1564 {
1565 	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1566 	struct rcu_node *rnp = rcu_get_root();
1567 
1568 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1569 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1570 
1571 	WARN_ON_ONCE(nr_fqs > 3);
1572 	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1573 	if (nr_fqs) {
1574 		if (nr_fqs == 1) {
1575 			WRITE_ONCE(rcu_state.jiffies_stall,
1576 				   jiffies + rcu_jiffies_till_stall_check());
1577 		}
1578 		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1579 	}
1580 
1581 	if (first_time) {
1582 		/* Collect dyntick-idle snapshots. */
1583 		force_qs_rnp(dyntick_save_progress_counter);
1584 	} else {
1585 		/* Handle dyntick-idle and offline CPUs. */
1586 		force_qs_rnp(rcu_implicit_dynticks_qs);
1587 	}
1588 	/* Clear flag to prevent immediate re-entry. */
1589 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1590 		raw_spin_lock_irq_rcu_node(rnp);
1591 		WRITE_ONCE(rcu_state.gp_flags,
1592 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1593 		raw_spin_unlock_irq_rcu_node(rnp);
1594 	}
1595 }
1596 
1597 /*
1598  * Loop doing repeated quiescent-state forcing until the grace period ends.
1599  */
1600 static noinline_for_stack void rcu_gp_fqs_loop(void)
1601 {
1602 	bool first_gp_fqs = true;
1603 	int gf = 0;
1604 	unsigned long j;
1605 	int ret;
1606 	struct rcu_node *rnp = rcu_get_root();
1607 
1608 	j = READ_ONCE(jiffies_till_first_fqs);
1609 	if (rcu_state.cbovld)
1610 		gf = RCU_GP_FLAG_OVLD;
1611 	ret = 0;
1612 	for (;;) {
1613 		if (rcu_state.cbovld) {
1614 			j = (j + 2) / 3;
1615 			if (j <= 0)
1616 				j = 1;
1617 		}
1618 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1619 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1620 			/*
1621 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1622 			 * update; required for stall checks.
1623 			 */
1624 			smp_wmb();
1625 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1626 				   jiffies + (j ? 3 * j : 2));
1627 		}
1628 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1629 				       TPS("fqswait"));
1630 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1631 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1632 				 rcu_gp_fqs_check_wake(&gf), j);
1633 		rcu_gp_torture_wait();
1634 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1635 		/* Locking provides needed memory barriers. */
1636 		/*
1637 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1638 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1639 		 * is required only for single-node rcu_node trees because readers blocking
1640 		 * the current grace period are queued only on leaf rcu_node structures.
1641 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1642 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1643 		 * the corresponding leaf nodes have passed through their quiescent state.
1644 		 */
1645 		if (!READ_ONCE(rnp->qsmask) &&
1646 		    !rcu_preempt_blocked_readers_cgp(rnp))
1647 			break;
1648 		/* If time for quiescent-state forcing, do it. */
1649 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1650 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1651 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1652 					       TPS("fqsstart"));
1653 			rcu_gp_fqs(first_gp_fqs);
1654 			gf = 0;
1655 			if (first_gp_fqs) {
1656 				first_gp_fqs = false;
1657 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1658 			}
1659 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1660 					       TPS("fqsend"));
1661 			cond_resched_tasks_rcu_qs();
1662 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1663 			ret = 0; /* Force full wait till next FQS. */
1664 			j = READ_ONCE(jiffies_till_next_fqs);
1665 		} else {
1666 			/* Deal with stray signal. */
1667 			cond_resched_tasks_rcu_qs();
1668 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1669 			WARN_ON(signal_pending(current));
1670 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1671 					       TPS("fqswaitsig"));
1672 			ret = 1; /* Keep old FQS timing. */
1673 			j = jiffies;
1674 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1675 				j = 1;
1676 			else
1677 				j = rcu_state.jiffies_force_qs - j;
1678 			gf = 0;
1679 		}
1680 	}
1681 }
1682 
1683 /*
1684  * Clean up after the old grace period.
1685  */
1686 static noinline void rcu_gp_cleanup(void)
1687 {
1688 	int cpu;
1689 	bool needgp = false;
1690 	unsigned long gp_duration;
1691 	unsigned long new_gp_seq;
1692 	bool offloaded;
1693 	struct rcu_data *rdp;
1694 	struct rcu_node *rnp = rcu_get_root();
1695 	struct swait_queue_head *sq;
1696 
1697 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1698 	raw_spin_lock_irq_rcu_node(rnp);
1699 	rcu_state.gp_end = jiffies;
1700 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1701 	if (gp_duration > rcu_state.gp_max)
1702 		rcu_state.gp_max = gp_duration;
1703 
1704 	/*
1705 	 * We know the grace period is complete, but to everyone else
1706 	 * it appears to still be ongoing.  But it is also the case
1707 	 * that to everyone else it looks like there is nothing that
1708 	 * they can do to advance the grace period.  It is therefore
1709 	 * safe for us to drop the lock in order to mark the grace
1710 	 * period as completed in all of the rcu_node structures.
1711 	 */
1712 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1713 	raw_spin_unlock_irq_rcu_node(rnp);
1714 
1715 	/*
1716 	 * Propagate new ->gp_seq value to rcu_node structures so that
1717 	 * other CPUs don't have to wait until the start of the next grace
1718 	 * period to process their callbacks.  This also avoids some nasty
1719 	 * RCU grace-period initialization races by forcing the end of
1720 	 * the current grace period to be completely recorded in all of
1721 	 * the rcu_node structures before the beginning of the next grace
1722 	 * period is recorded in any of the rcu_node structures.
1723 	 */
1724 	new_gp_seq = rcu_state.gp_seq;
1725 	rcu_seq_end(&new_gp_seq);
1726 	rcu_for_each_node_breadth_first(rnp) {
1727 		raw_spin_lock_irq_rcu_node(rnp);
1728 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1729 			dump_blkd_tasks(rnp, 10);
1730 		WARN_ON_ONCE(rnp->qsmask);
1731 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1732 		if (!rnp->parent)
1733 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1734 		rdp = this_cpu_ptr(&rcu_data);
1735 		if (rnp == rdp->mynode)
1736 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1737 		/* smp_mb() provided by prior unlock-lock pair. */
1738 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1739 		// Reset overload indication for CPUs no longer overloaded
1740 		if (rcu_is_leaf_node(rnp))
1741 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1742 				rdp = per_cpu_ptr(&rcu_data, cpu);
1743 				check_cb_ovld_locked(rdp, rnp);
1744 			}
1745 		sq = rcu_nocb_gp_get(rnp);
1746 		raw_spin_unlock_irq_rcu_node(rnp);
1747 		rcu_nocb_gp_cleanup(sq);
1748 		cond_resched_tasks_rcu_qs();
1749 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1750 		rcu_gp_slow(gp_cleanup_delay);
1751 	}
1752 	rnp = rcu_get_root();
1753 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1754 
1755 	/* Declare grace period done, trace first to use old GP number. */
1756 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1757 	rcu_seq_end(&rcu_state.gp_seq);
1758 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1759 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1760 	/* Check for GP requests since above loop. */
1761 	rdp = this_cpu_ptr(&rcu_data);
1762 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1763 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1764 				  TPS("CleanupMore"));
1765 		needgp = true;
1766 	}
1767 	/* Advance CBs to reduce false positives below. */
1768 	offloaded = rcu_rdp_is_offloaded(rdp);
1769 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1770 
1771 		// We get here if a grace period was needed (“needgp”)
1772 		// and the above call to rcu_accelerate_cbs() did not set
1773 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1774 		// the need for another grace period).  The purpose
1775 		// of the “offloaded” check is to avoid invoking
1776 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1777 		// hold the ->nocb_lock needed to safely access an offloaded
1778 		// ->cblist.  We do not want to acquire that lock because
1779 		// it can be heavily contended during callback floods.
1780 
1781 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1782 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1783 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1784 	} else {
1785 
1786 		// We get here either if there is no need for an
1787 		// additional grace period or if rcu_accelerate_cbs() has
1788 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1789 		// So all we need to do is to clear all of the other
1790 		// ->gp_flags bits.
1791 
1792 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1793 	}
1794 	raw_spin_unlock_irq_rcu_node(rnp);
1795 
1796 	// If strict, make all CPUs aware of the end of the old grace period.
1797 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1798 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1799 }
1800 
1801 /*
1802  * Body of kthread that handles grace periods.
1803  */
1804 static int __noreturn rcu_gp_kthread(void *unused)
1805 {
1806 	rcu_bind_gp_kthread();
1807 	for (;;) {
1808 
1809 		/* Handle grace-period start. */
1810 		for (;;) {
1811 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1812 					       TPS("reqwait"));
1813 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1814 			swait_event_idle_exclusive(rcu_state.gp_wq,
1815 					 READ_ONCE(rcu_state.gp_flags) &
1816 					 RCU_GP_FLAG_INIT);
1817 			rcu_gp_torture_wait();
1818 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1819 			/* Locking provides needed memory barrier. */
1820 			if (rcu_gp_init())
1821 				break;
1822 			cond_resched_tasks_rcu_qs();
1823 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1824 			WARN_ON(signal_pending(current));
1825 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1826 					       TPS("reqwaitsig"));
1827 		}
1828 
1829 		/* Handle quiescent-state forcing. */
1830 		rcu_gp_fqs_loop();
1831 
1832 		/* Handle grace-period end. */
1833 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1834 		rcu_gp_cleanup();
1835 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1836 	}
1837 }
1838 
1839 /*
1840  * Report a full set of quiescent states to the rcu_state data structure.
1841  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1842  * another grace period is required.  Whether we wake the grace-period
1843  * kthread or it awakens itself for the next round of quiescent-state
1844  * forcing, that kthread will clean up after the just-completed grace
1845  * period.  Note that the caller must hold rnp->lock, which is released
1846  * before return.
1847  */
1848 static void rcu_report_qs_rsp(unsigned long flags)
1849 	__releases(rcu_get_root()->lock)
1850 {
1851 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1852 	WARN_ON_ONCE(!rcu_gp_in_progress());
1853 	WRITE_ONCE(rcu_state.gp_flags,
1854 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1855 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1856 	rcu_gp_kthread_wake();
1857 }
1858 
1859 /*
1860  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1861  * Allows quiescent states for a group of CPUs to be reported at one go
1862  * to the specified rcu_node structure, though all the CPUs in the group
1863  * must be represented by the same rcu_node structure (which need not be a
1864  * leaf rcu_node structure, though it often will be).  The gps parameter
1865  * is the grace-period snapshot, which means that the quiescent states
1866  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1867  * must be held upon entry, and it is released before return.
1868  *
1869  * As a special case, if mask is zero, the bit-already-cleared check is
1870  * disabled.  This allows propagating quiescent state due to resumed tasks
1871  * during grace-period initialization.
1872  */
1873 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1874 			      unsigned long gps, unsigned long flags)
1875 	__releases(rnp->lock)
1876 {
1877 	unsigned long oldmask = 0;
1878 	struct rcu_node *rnp_c;
1879 
1880 	raw_lockdep_assert_held_rcu_node(rnp);
1881 
1882 	/* Walk up the rcu_node hierarchy. */
1883 	for (;;) {
1884 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1885 
1886 			/*
1887 			 * Our bit has already been cleared, or the
1888 			 * relevant grace period is already over, so done.
1889 			 */
1890 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1891 			return;
1892 		}
1893 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1894 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1895 			     rcu_preempt_blocked_readers_cgp(rnp));
1896 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1897 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1898 						 mask, rnp->qsmask, rnp->level,
1899 						 rnp->grplo, rnp->grphi,
1900 						 !!rnp->gp_tasks);
1901 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1902 
1903 			/* Other bits still set at this level, so done. */
1904 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1905 			return;
1906 		}
1907 		rnp->completedqs = rnp->gp_seq;
1908 		mask = rnp->grpmask;
1909 		if (rnp->parent == NULL) {
1910 
1911 			/* No more levels.  Exit loop holding root lock. */
1912 
1913 			break;
1914 		}
1915 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916 		rnp_c = rnp;
1917 		rnp = rnp->parent;
1918 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1919 		oldmask = READ_ONCE(rnp_c->qsmask);
1920 	}
1921 
1922 	/*
1923 	 * Get here if we are the last CPU to pass through a quiescent
1924 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1925 	 * to clean up and start the next grace period if one is needed.
1926 	 */
1927 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1928 }
1929 
1930 /*
1931  * Record a quiescent state for all tasks that were previously queued
1932  * on the specified rcu_node structure and that were blocking the current
1933  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1934  * irqs disabled, and this lock is released upon return, but irqs remain
1935  * disabled.
1936  */
1937 static void __maybe_unused
1938 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1939 	__releases(rnp->lock)
1940 {
1941 	unsigned long gps;
1942 	unsigned long mask;
1943 	struct rcu_node *rnp_p;
1944 
1945 	raw_lockdep_assert_held_rcu_node(rnp);
1946 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1947 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1948 	    rnp->qsmask != 0) {
1949 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1950 		return;  /* Still need more quiescent states! */
1951 	}
1952 
1953 	rnp->completedqs = rnp->gp_seq;
1954 	rnp_p = rnp->parent;
1955 	if (rnp_p == NULL) {
1956 		/*
1957 		 * Only one rcu_node structure in the tree, so don't
1958 		 * try to report up to its nonexistent parent!
1959 		 */
1960 		rcu_report_qs_rsp(flags);
1961 		return;
1962 	}
1963 
1964 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1965 	gps = rnp->gp_seq;
1966 	mask = rnp->grpmask;
1967 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1968 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1969 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1970 }
1971 
1972 /*
1973  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1974  * structure.  This must be called from the specified CPU.
1975  */
1976 static void
1977 rcu_report_qs_rdp(struct rcu_data *rdp)
1978 {
1979 	unsigned long flags;
1980 	unsigned long mask;
1981 	bool needacc = false;
1982 	struct rcu_node *rnp;
1983 
1984 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
1985 	rnp = rdp->mynode;
1986 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1987 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1988 	    rdp->gpwrap) {
1989 
1990 		/*
1991 		 * The grace period in which this quiescent state was
1992 		 * recorded has ended, so don't report it upwards.
1993 		 * We will instead need a new quiescent state that lies
1994 		 * within the current grace period.
1995 		 */
1996 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1997 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1998 		return;
1999 	}
2000 	mask = rdp->grpmask;
2001 	rdp->core_needs_qs = false;
2002 	if ((rnp->qsmask & mask) == 0) {
2003 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2004 	} else {
2005 		/*
2006 		 * This GP can't end until cpu checks in, so all of our
2007 		 * callbacks can be processed during the next GP.
2008 		 *
2009 		 * NOCB kthreads have their own way to deal with that...
2010 		 */
2011 		if (!rcu_rdp_is_offloaded(rdp)) {
2012 			/*
2013 			 * The current GP has not yet ended, so it
2014 			 * should not be possible for rcu_accelerate_cbs()
2015 			 * to return true.  So complain, but don't awaken.
2016 			 */
2017 			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2018 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2019 			/*
2020 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2021 			 * if in the middle of a (de-)offloading process.
2022 			 */
2023 			needacc = true;
2024 		}
2025 
2026 		rcu_disable_urgency_upon_qs(rdp);
2027 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2028 		/* ^^^ Released rnp->lock */
2029 
2030 		if (needacc) {
2031 			rcu_nocb_lock_irqsave(rdp, flags);
2032 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2033 			rcu_nocb_unlock_irqrestore(rdp, flags);
2034 		}
2035 	}
2036 }
2037 
2038 /*
2039  * Check to see if there is a new grace period of which this CPU
2040  * is not yet aware, and if so, set up local rcu_data state for it.
2041  * Otherwise, see if this CPU has just passed through its first
2042  * quiescent state for this grace period, and record that fact if so.
2043  */
2044 static void
2045 rcu_check_quiescent_state(struct rcu_data *rdp)
2046 {
2047 	/* Check for grace-period ends and beginnings. */
2048 	note_gp_changes(rdp);
2049 
2050 	/*
2051 	 * Does this CPU still need to do its part for current grace period?
2052 	 * If no, return and let the other CPUs do their part as well.
2053 	 */
2054 	if (!rdp->core_needs_qs)
2055 		return;
2056 
2057 	/*
2058 	 * Was there a quiescent state since the beginning of the grace
2059 	 * period? If no, then exit and wait for the next call.
2060 	 */
2061 	if (rdp->cpu_no_qs.b.norm)
2062 		return;
2063 
2064 	/*
2065 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2066 	 * judge of that).
2067 	 */
2068 	rcu_report_qs_rdp(rdp);
2069 }
2070 
2071 /* Return true if callback-invocation time limit exceeded. */
2072 static bool rcu_do_batch_check_time(long count, long tlimit,
2073 				    bool jlimit_check, unsigned long jlimit)
2074 {
2075 	// Invoke local_clock() only once per 32 consecutive callbacks.
2076 	return unlikely(tlimit) &&
2077 	       (!likely(count & 31) ||
2078 		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2079 		 jlimit_check && time_after(jiffies, jlimit))) &&
2080 	       local_clock() >= tlimit;
2081 }
2082 
2083 /*
2084  * Invoke any RCU callbacks that have made it to the end of their grace
2085  * period.  Throttle as specified by rdp->blimit.
2086  */
2087 static void rcu_do_batch(struct rcu_data *rdp)
2088 {
2089 	long bl;
2090 	long count = 0;
2091 	int div;
2092 	bool __maybe_unused empty;
2093 	unsigned long flags;
2094 	unsigned long jlimit;
2095 	bool jlimit_check = false;
2096 	long pending;
2097 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2098 	struct rcu_head *rhp;
2099 	long tlimit = 0;
2100 
2101 	/* If no callbacks are ready, just return. */
2102 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2103 		trace_rcu_batch_start(rcu_state.name,
2104 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2105 		trace_rcu_batch_end(rcu_state.name, 0,
2106 				    !rcu_segcblist_empty(&rdp->cblist),
2107 				    need_resched(), is_idle_task(current),
2108 				    rcu_is_callbacks_kthread(rdp));
2109 		return;
2110 	}
2111 
2112 	/*
2113 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2114 	 * races with call_rcu() from interrupt handlers.  Leave the
2115 	 * callback counts, as rcu_barrier() needs to be conservative.
2116 	 */
2117 	rcu_nocb_lock_irqsave(rdp, flags);
2118 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2119 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2120 	div = READ_ONCE(rcu_divisor);
2121 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2122 	bl = max(rdp->blimit, pending >> div);
2123 	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2124 	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2125 		const long npj = NSEC_PER_SEC / HZ;
2126 		long rrn = READ_ONCE(rcu_resched_ns);
2127 
2128 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2129 		tlimit = local_clock() + rrn;
2130 		jlimit = jiffies + (rrn + npj + 1) / npj;
2131 		jlimit_check = true;
2132 	}
2133 	trace_rcu_batch_start(rcu_state.name,
2134 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2135 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2136 	if (rcu_rdp_is_offloaded(rdp))
2137 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2138 
2139 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2140 	rcu_nocb_unlock_irqrestore(rdp, flags);
2141 
2142 	/* Invoke callbacks. */
2143 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2144 	rhp = rcu_cblist_dequeue(&rcl);
2145 
2146 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2147 		rcu_callback_t f;
2148 
2149 		count++;
2150 		debug_rcu_head_unqueue(rhp);
2151 
2152 		rcu_lock_acquire(&rcu_callback_map);
2153 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2154 
2155 		f = rhp->func;
2156 		debug_rcu_head_callback(rhp);
2157 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2158 		f(rhp);
2159 
2160 		rcu_lock_release(&rcu_callback_map);
2161 
2162 		/*
2163 		 * Stop only if limit reached and CPU has something to do.
2164 		 */
2165 		if (in_serving_softirq()) {
2166 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2167 				break;
2168 			/*
2169 			 * Make sure we don't spend too much time here and deprive other
2170 			 * softirq vectors of CPU cycles.
2171 			 */
2172 			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2173 				break;
2174 		} else {
2175 			// In rcuc/rcuoc context, so no worries about
2176 			// depriving other softirq vectors of CPU cycles.
2177 			local_bh_enable();
2178 			lockdep_assert_irqs_enabled();
2179 			cond_resched_tasks_rcu_qs();
2180 			lockdep_assert_irqs_enabled();
2181 			local_bh_disable();
2182 			// But rcuc kthreads can delay quiescent-state
2183 			// reporting, so check time limits for them.
2184 			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2185 			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2186 				rdp->rcu_cpu_has_work = 1;
2187 				break;
2188 			}
2189 		}
2190 	}
2191 
2192 	rcu_nocb_lock_irqsave(rdp, flags);
2193 	rdp->n_cbs_invoked += count;
2194 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2195 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2196 
2197 	/* Update counts and requeue any remaining callbacks. */
2198 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2199 	rcu_segcblist_add_len(&rdp->cblist, -count);
2200 
2201 	/* Reinstate batch limit if we have worked down the excess. */
2202 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2203 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2204 		rdp->blimit = blimit;
2205 
2206 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2207 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2208 		rdp->qlen_last_fqs_check = 0;
2209 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2210 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2211 		rdp->qlen_last_fqs_check = count;
2212 
2213 	/*
2214 	 * The following usually indicates a double call_rcu().  To track
2215 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2216 	 */
2217 	empty = rcu_segcblist_empty(&rdp->cblist);
2218 	WARN_ON_ONCE(count == 0 && !empty);
2219 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2220 		     count != 0 && empty);
2221 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2222 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2223 
2224 	rcu_nocb_unlock_irqrestore(rdp, flags);
2225 
2226 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2227 }
2228 
2229 /*
2230  * This function is invoked from each scheduling-clock interrupt,
2231  * and checks to see if this CPU is in a non-context-switch quiescent
2232  * state, for example, user mode or idle loop.  It also schedules RCU
2233  * core processing.  If the current grace period has gone on too long,
2234  * it will ask the scheduler to manufacture a context switch for the sole
2235  * purpose of providing the needed quiescent state.
2236  */
2237 void rcu_sched_clock_irq(int user)
2238 {
2239 	unsigned long j;
2240 
2241 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2242 		j = jiffies;
2243 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2244 		__this_cpu_write(rcu_data.last_sched_clock, j);
2245 	}
2246 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2247 	lockdep_assert_irqs_disabled();
2248 	raw_cpu_inc(rcu_data.ticks_this_gp);
2249 	/* The load-acquire pairs with the store-release setting to true. */
2250 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2251 		/* Idle and userspace execution already are quiescent states. */
2252 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2253 			set_tsk_need_resched(current);
2254 			set_preempt_need_resched();
2255 		}
2256 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2257 	}
2258 	rcu_flavor_sched_clock_irq(user);
2259 	if (rcu_pending(user))
2260 		invoke_rcu_core();
2261 	if (user || rcu_is_cpu_rrupt_from_idle())
2262 		rcu_note_voluntary_context_switch(current);
2263 	lockdep_assert_irqs_disabled();
2264 
2265 	trace_rcu_utilization(TPS("End scheduler-tick"));
2266 }
2267 
2268 /*
2269  * Scan the leaf rcu_node structures.  For each structure on which all
2270  * CPUs have reported a quiescent state and on which there are tasks
2271  * blocking the current grace period, initiate RCU priority boosting.
2272  * Otherwise, invoke the specified function to check dyntick state for
2273  * each CPU that has not yet reported a quiescent state.
2274  */
2275 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2276 {
2277 	int cpu;
2278 	unsigned long flags;
2279 	struct rcu_node *rnp;
2280 
2281 	rcu_state.cbovld = rcu_state.cbovldnext;
2282 	rcu_state.cbovldnext = false;
2283 	rcu_for_each_leaf_node(rnp) {
2284 		unsigned long mask = 0;
2285 		unsigned long rsmask = 0;
2286 
2287 		cond_resched_tasks_rcu_qs();
2288 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2289 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2290 		if (rnp->qsmask == 0) {
2291 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2292 				/*
2293 				 * No point in scanning bits because they
2294 				 * are all zero.  But we might need to
2295 				 * priority-boost blocked readers.
2296 				 */
2297 				rcu_initiate_boost(rnp, flags);
2298 				/* rcu_initiate_boost() releases rnp->lock */
2299 				continue;
2300 			}
2301 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2302 			continue;
2303 		}
2304 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2305 			struct rcu_data *rdp;
2306 			int ret;
2307 
2308 			rdp = per_cpu_ptr(&rcu_data, cpu);
2309 			ret = f(rdp);
2310 			if (ret > 0) {
2311 				mask |= rdp->grpmask;
2312 				rcu_disable_urgency_upon_qs(rdp);
2313 			}
2314 			if (ret < 0)
2315 				rsmask |= rdp->grpmask;
2316 		}
2317 		if (mask != 0) {
2318 			/* Idle/offline CPUs, report (releases rnp->lock). */
2319 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2320 		} else {
2321 			/* Nothing to do here, so just drop the lock. */
2322 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2323 		}
2324 
2325 		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2326 			resched_cpu(cpu);
2327 	}
2328 }
2329 
2330 /*
2331  * Force quiescent states on reluctant CPUs, and also detect which
2332  * CPUs are in dyntick-idle mode.
2333  */
2334 void rcu_force_quiescent_state(void)
2335 {
2336 	unsigned long flags;
2337 	bool ret;
2338 	struct rcu_node *rnp;
2339 	struct rcu_node *rnp_old = NULL;
2340 
2341 	/* Funnel through hierarchy to reduce memory contention. */
2342 	rnp = raw_cpu_read(rcu_data.mynode);
2343 	for (; rnp != NULL; rnp = rnp->parent) {
2344 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2345 		       !raw_spin_trylock(&rnp->fqslock);
2346 		if (rnp_old != NULL)
2347 			raw_spin_unlock(&rnp_old->fqslock);
2348 		if (ret)
2349 			return;
2350 		rnp_old = rnp;
2351 	}
2352 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2353 
2354 	/* Reached the root of the rcu_node tree, acquire lock. */
2355 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2356 	raw_spin_unlock(&rnp_old->fqslock);
2357 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2358 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2359 		return;  /* Someone beat us to it. */
2360 	}
2361 	WRITE_ONCE(rcu_state.gp_flags,
2362 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2363 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2364 	rcu_gp_kthread_wake();
2365 }
2366 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2367 
2368 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2369 // grace periods.
2370 static void strict_work_handler(struct work_struct *work)
2371 {
2372 	rcu_read_lock();
2373 	rcu_read_unlock();
2374 }
2375 
2376 /* Perform RCU core processing work for the current CPU.  */
2377 static __latent_entropy void rcu_core(void)
2378 {
2379 	unsigned long flags;
2380 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2381 	struct rcu_node *rnp = rdp->mynode;
2382 	/*
2383 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2384 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2385 	 * on this CPU and the below condition must be considered volatile.
2386 	 * However if we race with:
2387 	 *
2388 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2389 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2390 	 *                 call rcu_nocb_lock() if that happens.
2391 	 *
2392 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2393 	 *                 processing. This is fine because the early stage
2394 	 *                 of deoffloading invokes rcu_core() after setting
2395 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2396 	 *                 what could have been dismissed without the need to wait
2397 	 *                 for the next rcu_pending() check in the next jiffy.
2398 	 */
2399 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2400 
2401 	if (cpu_is_offline(smp_processor_id()))
2402 		return;
2403 	trace_rcu_utilization(TPS("Start RCU core"));
2404 	WARN_ON_ONCE(!rdp->beenonline);
2405 
2406 	/* Report any deferred quiescent states if preemption enabled. */
2407 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2408 		rcu_preempt_deferred_qs(current);
2409 	} else if (rcu_preempt_need_deferred_qs(current)) {
2410 		set_tsk_need_resched(current);
2411 		set_preempt_need_resched();
2412 	}
2413 
2414 	/* Update RCU state based on any recent quiescent states. */
2415 	rcu_check_quiescent_state(rdp);
2416 
2417 	/* No grace period and unregistered callbacks? */
2418 	if (!rcu_gp_in_progress() &&
2419 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2420 		rcu_nocb_lock_irqsave(rdp, flags);
2421 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2422 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2423 		rcu_nocb_unlock_irqrestore(rdp, flags);
2424 	}
2425 
2426 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2427 
2428 	/* If there are callbacks ready, invoke them. */
2429 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2430 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2431 		rcu_do_batch(rdp);
2432 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2433 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2434 			invoke_rcu_core();
2435 	}
2436 
2437 	/* Do any needed deferred wakeups of rcuo kthreads. */
2438 	do_nocb_deferred_wakeup(rdp);
2439 	trace_rcu_utilization(TPS("End RCU core"));
2440 
2441 	// If strict GPs, schedule an RCU reader in a clean environment.
2442 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2443 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2444 }
2445 
2446 static void rcu_core_si(struct softirq_action *h)
2447 {
2448 	rcu_core();
2449 }
2450 
2451 static void rcu_wake_cond(struct task_struct *t, int status)
2452 {
2453 	/*
2454 	 * If the thread is yielding, only wake it when this
2455 	 * is invoked from idle
2456 	 */
2457 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2458 		wake_up_process(t);
2459 }
2460 
2461 static void invoke_rcu_core_kthread(void)
2462 {
2463 	struct task_struct *t;
2464 	unsigned long flags;
2465 
2466 	local_irq_save(flags);
2467 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2468 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2469 	if (t != NULL && t != current)
2470 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2471 	local_irq_restore(flags);
2472 }
2473 
2474 /*
2475  * Wake up this CPU's rcuc kthread to do RCU core processing.
2476  */
2477 static void invoke_rcu_core(void)
2478 {
2479 	if (!cpu_online(smp_processor_id()))
2480 		return;
2481 	if (use_softirq)
2482 		raise_softirq(RCU_SOFTIRQ);
2483 	else
2484 		invoke_rcu_core_kthread();
2485 }
2486 
2487 static void rcu_cpu_kthread_park(unsigned int cpu)
2488 {
2489 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2490 }
2491 
2492 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2493 {
2494 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2495 }
2496 
2497 /*
2498  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2499  * the RCU softirq used in configurations of RCU that do not support RCU
2500  * priority boosting.
2501  */
2502 static void rcu_cpu_kthread(unsigned int cpu)
2503 {
2504 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2505 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2506 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2507 	int spincnt;
2508 
2509 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2510 	for (spincnt = 0; spincnt < 10; spincnt++) {
2511 		WRITE_ONCE(*j, jiffies);
2512 		local_bh_disable();
2513 		*statusp = RCU_KTHREAD_RUNNING;
2514 		local_irq_disable();
2515 		work = *workp;
2516 		WRITE_ONCE(*workp, 0);
2517 		local_irq_enable();
2518 		if (work)
2519 			rcu_core();
2520 		local_bh_enable();
2521 		if (!READ_ONCE(*workp)) {
2522 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2523 			*statusp = RCU_KTHREAD_WAITING;
2524 			return;
2525 		}
2526 	}
2527 	*statusp = RCU_KTHREAD_YIELDING;
2528 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2529 	schedule_timeout_idle(2);
2530 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2531 	*statusp = RCU_KTHREAD_WAITING;
2532 	WRITE_ONCE(*j, jiffies);
2533 }
2534 
2535 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2536 	.store			= &rcu_data.rcu_cpu_kthread_task,
2537 	.thread_should_run	= rcu_cpu_kthread_should_run,
2538 	.thread_fn		= rcu_cpu_kthread,
2539 	.thread_comm		= "rcuc/%u",
2540 	.setup			= rcu_cpu_kthread_setup,
2541 	.park			= rcu_cpu_kthread_park,
2542 };
2543 
2544 /*
2545  * Spawn per-CPU RCU core processing kthreads.
2546  */
2547 static int __init rcu_spawn_core_kthreads(void)
2548 {
2549 	int cpu;
2550 
2551 	for_each_possible_cpu(cpu)
2552 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2553 	if (use_softirq)
2554 		return 0;
2555 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2556 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2557 	return 0;
2558 }
2559 
2560 /*
2561  * Handle any core-RCU processing required by a call_rcu() invocation.
2562  */
2563 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2564 			    unsigned long flags)
2565 {
2566 	/*
2567 	 * If called from an extended quiescent state, invoke the RCU
2568 	 * core in order to force a re-evaluation of RCU's idleness.
2569 	 */
2570 	if (!rcu_is_watching())
2571 		invoke_rcu_core();
2572 
2573 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2574 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2575 		return;
2576 
2577 	/*
2578 	 * Force the grace period if too many callbacks or too long waiting.
2579 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2580 	 * if some other CPU has recently done so.  Also, don't bother
2581 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2582 	 * is the only one waiting for a grace period to complete.
2583 	 */
2584 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2585 		     rdp->qlen_last_fqs_check + qhimark)) {
2586 
2587 		/* Are we ignoring a completed grace period? */
2588 		note_gp_changes(rdp);
2589 
2590 		/* Start a new grace period if one not already started. */
2591 		if (!rcu_gp_in_progress()) {
2592 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2593 		} else {
2594 			/* Give the grace period a kick. */
2595 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2596 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2597 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2598 				rcu_force_quiescent_state();
2599 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2600 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2601 		}
2602 	}
2603 }
2604 
2605 /*
2606  * RCU callback function to leak a callback.
2607  */
2608 static void rcu_leak_callback(struct rcu_head *rhp)
2609 {
2610 }
2611 
2612 /*
2613  * Check and if necessary update the leaf rcu_node structure's
2614  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2615  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2616  * structure's ->lock.
2617  */
2618 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2619 {
2620 	raw_lockdep_assert_held_rcu_node(rnp);
2621 	if (qovld_calc <= 0)
2622 		return; // Early boot and wildcard value set.
2623 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2624 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2625 	else
2626 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2627 }
2628 
2629 /*
2630  * Check and if necessary update the leaf rcu_node structure's
2631  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2632  * number of queued RCU callbacks.  No locks need be held, but the
2633  * caller must have disabled interrupts.
2634  *
2635  * Note that this function ignores the possibility that there are a lot
2636  * of callbacks all of which have already seen the end of their respective
2637  * grace periods.  This omission is due to the need for no-CBs CPUs to
2638  * be holding ->nocb_lock to do this check, which is too heavy for a
2639  * common-case operation.
2640  */
2641 static void check_cb_ovld(struct rcu_data *rdp)
2642 {
2643 	struct rcu_node *const rnp = rdp->mynode;
2644 
2645 	if (qovld_calc <= 0 ||
2646 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2647 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2648 		return; // Early boot wildcard value or already set correctly.
2649 	raw_spin_lock_rcu_node(rnp);
2650 	check_cb_ovld_locked(rdp, rnp);
2651 	raw_spin_unlock_rcu_node(rnp);
2652 }
2653 
2654 static void
2655 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2656 {
2657 	static atomic_t doublefrees;
2658 	unsigned long flags;
2659 	bool lazy;
2660 	struct rcu_data *rdp;
2661 	bool was_alldone;
2662 
2663 	/* Misaligned rcu_head! */
2664 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2665 
2666 	if (debug_rcu_head_queue(head)) {
2667 		/*
2668 		 * Probable double call_rcu(), so leak the callback.
2669 		 * Use rcu:rcu_callback trace event to find the previous
2670 		 * time callback was passed to call_rcu().
2671 		 */
2672 		if (atomic_inc_return(&doublefrees) < 4) {
2673 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2674 			mem_dump_obj(head);
2675 		}
2676 		WRITE_ONCE(head->func, rcu_leak_callback);
2677 		return;
2678 	}
2679 	head->func = func;
2680 	head->next = NULL;
2681 	kasan_record_aux_stack_noalloc(head);
2682 	local_irq_save(flags);
2683 	rdp = this_cpu_ptr(&rcu_data);
2684 	lazy = lazy_in && !rcu_async_should_hurry();
2685 
2686 	/* Add the callback to our list. */
2687 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2688 		// This can trigger due to call_rcu() from offline CPU:
2689 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2690 		WARN_ON_ONCE(!rcu_is_watching());
2691 		// Very early boot, before rcu_init().  Initialize if needed
2692 		// and then drop through to queue the callback.
2693 		if (rcu_segcblist_empty(&rdp->cblist))
2694 			rcu_segcblist_init(&rdp->cblist);
2695 	}
2696 
2697 	check_cb_ovld(rdp);
2698 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2699 		return; // Enqueued onto ->nocb_bypass, so just leave.
2700 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2701 	rcu_segcblist_enqueue(&rdp->cblist, head);
2702 	if (__is_kvfree_rcu_offset((unsigned long)func))
2703 		trace_rcu_kvfree_callback(rcu_state.name, head,
2704 					 (unsigned long)func,
2705 					 rcu_segcblist_n_cbs(&rdp->cblist));
2706 	else
2707 		trace_rcu_callback(rcu_state.name, head,
2708 				   rcu_segcblist_n_cbs(&rdp->cblist));
2709 
2710 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2711 
2712 	/* Go handle any RCU core processing required. */
2713 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2714 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2715 	} else {
2716 		__call_rcu_core(rdp, head, flags);
2717 		local_irq_restore(flags);
2718 	}
2719 }
2720 
2721 #ifdef CONFIG_RCU_LAZY
2722 /**
2723  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2724  * flush all lazy callbacks (including the new one) to the main ->cblist while
2725  * doing so.
2726  *
2727  * @head: structure to be used for queueing the RCU updates.
2728  * @func: actual callback function to be invoked after the grace period
2729  *
2730  * The callback function will be invoked some time after a full grace
2731  * period elapses, in other words after all pre-existing RCU read-side
2732  * critical sections have completed.
2733  *
2734  * Use this API instead of call_rcu() if you don't want the callback to be
2735  * invoked after very long periods of time, which can happen on systems without
2736  * memory pressure and on systems which are lightly loaded or mostly idle.
2737  * This function will cause callbacks to be invoked sooner than later at the
2738  * expense of extra power. Other than that, this function is identical to, and
2739  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2740  * ordering and other functionality.
2741  */
2742 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2743 {
2744 	__call_rcu_common(head, func, false);
2745 }
2746 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2747 #endif
2748 
2749 /**
2750  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2751  * By default the callbacks are 'lazy' and are kept hidden from the main
2752  * ->cblist to prevent starting of grace periods too soon.
2753  * If you desire grace periods to start very soon, use call_rcu_hurry().
2754  *
2755  * @head: structure to be used for queueing the RCU updates.
2756  * @func: actual callback function to be invoked after the grace period
2757  *
2758  * The callback function will be invoked some time after a full grace
2759  * period elapses, in other words after all pre-existing RCU read-side
2760  * critical sections have completed.  However, the callback function
2761  * might well execute concurrently with RCU read-side critical sections
2762  * that started after call_rcu() was invoked.
2763  *
2764  * RCU read-side critical sections are delimited by rcu_read_lock()
2765  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2766  * v5.0 and later, regions of code across which interrupts, preemption,
2767  * or softirqs have been disabled also serve as RCU read-side critical
2768  * sections.  This includes hardware interrupt handlers, softirq handlers,
2769  * and NMI handlers.
2770  *
2771  * Note that all CPUs must agree that the grace period extended beyond
2772  * all pre-existing RCU read-side critical section.  On systems with more
2773  * than one CPU, this means that when "func()" is invoked, each CPU is
2774  * guaranteed to have executed a full memory barrier since the end of its
2775  * last RCU read-side critical section whose beginning preceded the call
2776  * to call_rcu().  It also means that each CPU executing an RCU read-side
2777  * critical section that continues beyond the start of "func()" must have
2778  * executed a memory barrier after the call_rcu() but before the beginning
2779  * of that RCU read-side critical section.  Note that these guarantees
2780  * include CPUs that are offline, idle, or executing in user mode, as
2781  * well as CPUs that are executing in the kernel.
2782  *
2783  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2784  * resulting RCU callback function "func()", then both CPU A and CPU B are
2785  * guaranteed to execute a full memory barrier during the time interval
2786  * between the call to call_rcu() and the invocation of "func()" -- even
2787  * if CPU A and CPU B are the same CPU (but again only if the system has
2788  * more than one CPU).
2789  *
2790  * Implementation of these memory-ordering guarantees is described here:
2791  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2792  */
2793 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2794 {
2795 	__call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2796 }
2797 EXPORT_SYMBOL_GPL(call_rcu);
2798 
2799 /* Maximum number of jiffies to wait before draining a batch. */
2800 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2801 #define KFREE_N_BATCHES 2
2802 #define FREE_N_CHANNELS 2
2803 
2804 /**
2805  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2806  * @list: List node. All blocks are linked between each other
2807  * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2808  * @nr_records: Number of active pointers in the array
2809  * @records: Array of the kvfree_rcu() pointers
2810  */
2811 struct kvfree_rcu_bulk_data {
2812 	struct list_head list;
2813 	struct rcu_gp_oldstate gp_snap;
2814 	unsigned long nr_records;
2815 	void *records[];
2816 };
2817 
2818 /*
2819  * This macro defines how many entries the "records" array
2820  * will contain. It is based on the fact that the size of
2821  * kvfree_rcu_bulk_data structure becomes exactly one page.
2822  */
2823 #define KVFREE_BULK_MAX_ENTR \
2824 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2825 
2826 /**
2827  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2828  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2829  * @head_free: List of kfree_rcu() objects waiting for a grace period
2830  * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2831  * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2832  * @krcp: Pointer to @kfree_rcu_cpu structure
2833  */
2834 
2835 struct kfree_rcu_cpu_work {
2836 	struct rcu_work rcu_work;
2837 	struct rcu_head *head_free;
2838 	struct rcu_gp_oldstate head_free_gp_snap;
2839 	struct list_head bulk_head_free[FREE_N_CHANNELS];
2840 	struct kfree_rcu_cpu *krcp;
2841 };
2842 
2843 /**
2844  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2845  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2846  * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2847  * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2848  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2849  * @lock: Synchronize access to this structure
2850  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2851  * @initialized: The @rcu_work fields have been initialized
2852  * @head_count: Number of objects in rcu_head singular list
2853  * @bulk_count: Number of objects in bulk-list
2854  * @bkvcache:
2855  *	A simple cache list that contains objects for reuse purpose.
2856  *	In order to save some per-cpu space the list is singular.
2857  *	Even though it is lockless an access has to be protected by the
2858  *	per-cpu lock.
2859  * @page_cache_work: A work to refill the cache when it is empty
2860  * @backoff_page_cache_fill: Delay cache refills
2861  * @work_in_progress: Indicates that page_cache_work is running
2862  * @hrtimer: A hrtimer for scheduling a page_cache_work
2863  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2864  *
2865  * This is a per-CPU structure.  The reason that it is not included in
2866  * the rcu_data structure is to permit this code to be extracted from
2867  * the RCU files.  Such extraction could allow further optimization of
2868  * the interactions with the slab allocators.
2869  */
2870 struct kfree_rcu_cpu {
2871 	// Objects queued on a linked list
2872 	// through their rcu_head structures.
2873 	struct rcu_head *head;
2874 	unsigned long head_gp_snap;
2875 	atomic_t head_count;
2876 
2877 	// Objects queued on a bulk-list.
2878 	struct list_head bulk_head[FREE_N_CHANNELS];
2879 	atomic_t bulk_count[FREE_N_CHANNELS];
2880 
2881 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2882 	raw_spinlock_t lock;
2883 	struct delayed_work monitor_work;
2884 	bool initialized;
2885 
2886 	struct delayed_work page_cache_work;
2887 	atomic_t backoff_page_cache_fill;
2888 	atomic_t work_in_progress;
2889 	struct hrtimer hrtimer;
2890 
2891 	struct llist_head bkvcache;
2892 	int nr_bkv_objs;
2893 };
2894 
2895 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2896 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2897 };
2898 
2899 static __always_inline void
2900 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2901 {
2902 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2903 	int i;
2904 
2905 	for (i = 0; i < bhead->nr_records; i++)
2906 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2907 #endif
2908 }
2909 
2910 static inline struct kfree_rcu_cpu *
2911 krc_this_cpu_lock(unsigned long *flags)
2912 {
2913 	struct kfree_rcu_cpu *krcp;
2914 
2915 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2916 	krcp = this_cpu_ptr(&krc);
2917 	raw_spin_lock(&krcp->lock);
2918 
2919 	return krcp;
2920 }
2921 
2922 static inline void
2923 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2924 {
2925 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2926 }
2927 
2928 static inline struct kvfree_rcu_bulk_data *
2929 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2930 {
2931 	if (!krcp->nr_bkv_objs)
2932 		return NULL;
2933 
2934 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2935 	return (struct kvfree_rcu_bulk_data *)
2936 		llist_del_first(&krcp->bkvcache);
2937 }
2938 
2939 static inline bool
2940 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2941 	struct kvfree_rcu_bulk_data *bnode)
2942 {
2943 	// Check the limit.
2944 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2945 		return false;
2946 
2947 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2948 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2949 	return true;
2950 }
2951 
2952 static int
2953 drain_page_cache(struct kfree_rcu_cpu *krcp)
2954 {
2955 	unsigned long flags;
2956 	struct llist_node *page_list, *pos, *n;
2957 	int freed = 0;
2958 
2959 	if (!rcu_min_cached_objs)
2960 		return 0;
2961 
2962 	raw_spin_lock_irqsave(&krcp->lock, flags);
2963 	page_list = llist_del_all(&krcp->bkvcache);
2964 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
2965 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2966 
2967 	llist_for_each_safe(pos, n, page_list) {
2968 		free_page((unsigned long)pos);
2969 		freed++;
2970 	}
2971 
2972 	return freed;
2973 }
2974 
2975 static void
2976 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
2977 	struct kvfree_rcu_bulk_data *bnode, int idx)
2978 {
2979 	unsigned long flags;
2980 	int i;
2981 
2982 	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
2983 		debug_rcu_bhead_unqueue(bnode);
2984 		rcu_lock_acquire(&rcu_callback_map);
2985 		if (idx == 0) { // kmalloc() / kfree().
2986 			trace_rcu_invoke_kfree_bulk_callback(
2987 				rcu_state.name, bnode->nr_records,
2988 				bnode->records);
2989 
2990 			kfree_bulk(bnode->nr_records, bnode->records);
2991 		} else { // vmalloc() / vfree().
2992 			for (i = 0; i < bnode->nr_records; i++) {
2993 				trace_rcu_invoke_kvfree_callback(
2994 					rcu_state.name, bnode->records[i], 0);
2995 
2996 				vfree(bnode->records[i]);
2997 			}
2998 		}
2999 		rcu_lock_release(&rcu_callback_map);
3000 	}
3001 
3002 	raw_spin_lock_irqsave(&krcp->lock, flags);
3003 	if (put_cached_bnode(krcp, bnode))
3004 		bnode = NULL;
3005 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3006 
3007 	if (bnode)
3008 		free_page((unsigned long) bnode);
3009 
3010 	cond_resched_tasks_rcu_qs();
3011 }
3012 
3013 static void
3014 kvfree_rcu_list(struct rcu_head *head)
3015 {
3016 	struct rcu_head *next;
3017 
3018 	for (; head; head = next) {
3019 		void *ptr = (void *) head->func;
3020 		unsigned long offset = (void *) head - ptr;
3021 
3022 		next = head->next;
3023 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3024 		rcu_lock_acquire(&rcu_callback_map);
3025 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3026 
3027 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3028 			kvfree(ptr);
3029 
3030 		rcu_lock_release(&rcu_callback_map);
3031 		cond_resched_tasks_rcu_qs();
3032 	}
3033 }
3034 
3035 /*
3036  * This function is invoked in workqueue context after a grace period.
3037  * It frees all the objects queued on ->bulk_head_free or ->head_free.
3038  */
3039 static void kfree_rcu_work(struct work_struct *work)
3040 {
3041 	unsigned long flags;
3042 	struct kvfree_rcu_bulk_data *bnode, *n;
3043 	struct list_head bulk_head[FREE_N_CHANNELS];
3044 	struct rcu_head *head;
3045 	struct kfree_rcu_cpu *krcp;
3046 	struct kfree_rcu_cpu_work *krwp;
3047 	struct rcu_gp_oldstate head_gp_snap;
3048 	int i;
3049 
3050 	krwp = container_of(to_rcu_work(work),
3051 		struct kfree_rcu_cpu_work, rcu_work);
3052 	krcp = krwp->krcp;
3053 
3054 	raw_spin_lock_irqsave(&krcp->lock, flags);
3055 	// Channels 1 and 2.
3056 	for (i = 0; i < FREE_N_CHANNELS; i++)
3057 		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3058 
3059 	// Channel 3.
3060 	head = krwp->head_free;
3061 	krwp->head_free = NULL;
3062 	head_gp_snap = krwp->head_free_gp_snap;
3063 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3064 
3065 	// Handle the first two channels.
3066 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3067 		// Start from the tail page, so a GP is likely passed for it.
3068 		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3069 			kvfree_rcu_bulk(krcp, bnode, i);
3070 	}
3071 
3072 	/*
3073 	 * This is used when the "bulk" path can not be used for the
3074 	 * double-argument of kvfree_rcu().  This happens when the
3075 	 * page-cache is empty, which means that objects are instead
3076 	 * queued on a linked list through their rcu_head structures.
3077 	 * This list is named "Channel 3".
3078 	 */
3079 	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3080 		kvfree_rcu_list(head);
3081 }
3082 
3083 static bool
3084 need_offload_krc(struct kfree_rcu_cpu *krcp)
3085 {
3086 	int i;
3087 
3088 	for (i = 0; i < FREE_N_CHANNELS; i++)
3089 		if (!list_empty(&krcp->bulk_head[i]))
3090 			return true;
3091 
3092 	return !!READ_ONCE(krcp->head);
3093 }
3094 
3095 static bool
3096 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3097 {
3098 	int i;
3099 
3100 	for (i = 0; i < FREE_N_CHANNELS; i++)
3101 		if (!list_empty(&krwp->bulk_head_free[i]))
3102 			return true;
3103 
3104 	return !!krwp->head_free;
3105 }
3106 
3107 static int krc_count(struct kfree_rcu_cpu *krcp)
3108 {
3109 	int sum = atomic_read(&krcp->head_count);
3110 	int i;
3111 
3112 	for (i = 0; i < FREE_N_CHANNELS; i++)
3113 		sum += atomic_read(&krcp->bulk_count[i]);
3114 
3115 	return sum;
3116 }
3117 
3118 static void
3119 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3120 {
3121 	long delay, delay_left;
3122 
3123 	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3124 	if (delayed_work_pending(&krcp->monitor_work)) {
3125 		delay_left = krcp->monitor_work.timer.expires - jiffies;
3126 		if (delay < delay_left)
3127 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3128 		return;
3129 	}
3130 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3131 }
3132 
3133 static void
3134 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3135 {
3136 	struct list_head bulk_ready[FREE_N_CHANNELS];
3137 	struct kvfree_rcu_bulk_data *bnode, *n;
3138 	struct rcu_head *head_ready = NULL;
3139 	unsigned long flags;
3140 	int i;
3141 
3142 	raw_spin_lock_irqsave(&krcp->lock, flags);
3143 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3144 		INIT_LIST_HEAD(&bulk_ready[i]);
3145 
3146 		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3147 			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3148 				break;
3149 
3150 			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3151 			list_move(&bnode->list, &bulk_ready[i]);
3152 		}
3153 	}
3154 
3155 	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3156 		head_ready = krcp->head;
3157 		atomic_set(&krcp->head_count, 0);
3158 		WRITE_ONCE(krcp->head, NULL);
3159 	}
3160 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3161 
3162 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3163 		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3164 			kvfree_rcu_bulk(krcp, bnode, i);
3165 	}
3166 
3167 	if (head_ready)
3168 		kvfree_rcu_list(head_ready);
3169 }
3170 
3171 /*
3172  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3173  */
3174 static void kfree_rcu_monitor(struct work_struct *work)
3175 {
3176 	struct kfree_rcu_cpu *krcp = container_of(work,
3177 		struct kfree_rcu_cpu, monitor_work.work);
3178 	unsigned long flags;
3179 	int i, j;
3180 
3181 	// Drain ready for reclaim.
3182 	kvfree_rcu_drain_ready(krcp);
3183 
3184 	raw_spin_lock_irqsave(&krcp->lock, flags);
3185 
3186 	// Attempt to start a new batch.
3187 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3188 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3189 
3190 		// Try to detach bulk_head or head and attach it, only when
3191 		// all channels are free.  Any channel is not free means at krwp
3192 		// there is on-going rcu work to handle krwp's free business.
3193 		if (need_wait_for_krwp_work(krwp))
3194 			continue;
3195 
3196 		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3197 		if (need_offload_krc(krcp)) {
3198 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3199 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3200 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3201 				if (list_empty(&krwp->bulk_head_free[j])) {
3202 					atomic_set(&krcp->bulk_count[j], 0);
3203 					list_replace_init(&krcp->bulk_head[j],
3204 						&krwp->bulk_head_free[j]);
3205 				}
3206 			}
3207 
3208 			// Channel 3 corresponds to both SLAB and vmalloc
3209 			// objects queued on the linked list.
3210 			if (!krwp->head_free) {
3211 				krwp->head_free = krcp->head;
3212 				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3213 				atomic_set(&krcp->head_count, 0);
3214 				WRITE_ONCE(krcp->head, NULL);
3215 			}
3216 
3217 			// One work is per one batch, so there are three
3218 			// "free channels", the batch can handle. It can
3219 			// be that the work is in the pending state when
3220 			// channels have been detached following by each
3221 			// other.
3222 			queue_rcu_work(system_wq, &krwp->rcu_work);
3223 		}
3224 	}
3225 
3226 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3227 
3228 	// If there is nothing to detach, it means that our job is
3229 	// successfully done here. In case of having at least one
3230 	// of the channels that is still busy we should rearm the
3231 	// work to repeat an attempt. Because previous batches are
3232 	// still in progress.
3233 	if (need_offload_krc(krcp))
3234 		schedule_delayed_monitor_work(krcp);
3235 }
3236 
3237 static enum hrtimer_restart
3238 schedule_page_work_fn(struct hrtimer *t)
3239 {
3240 	struct kfree_rcu_cpu *krcp =
3241 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3242 
3243 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3244 	return HRTIMER_NORESTART;
3245 }
3246 
3247 static void fill_page_cache_func(struct work_struct *work)
3248 {
3249 	struct kvfree_rcu_bulk_data *bnode;
3250 	struct kfree_rcu_cpu *krcp =
3251 		container_of(work, struct kfree_rcu_cpu,
3252 			page_cache_work.work);
3253 	unsigned long flags;
3254 	int nr_pages;
3255 	bool pushed;
3256 	int i;
3257 
3258 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3259 		1 : rcu_min_cached_objs;
3260 
3261 	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3262 		bnode = (struct kvfree_rcu_bulk_data *)
3263 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3264 
3265 		if (!bnode)
3266 			break;
3267 
3268 		raw_spin_lock_irqsave(&krcp->lock, flags);
3269 		pushed = put_cached_bnode(krcp, bnode);
3270 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3271 
3272 		if (!pushed) {
3273 			free_page((unsigned long) bnode);
3274 			break;
3275 		}
3276 	}
3277 
3278 	atomic_set(&krcp->work_in_progress, 0);
3279 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3280 }
3281 
3282 static void
3283 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3284 {
3285 	// If cache disabled, bail out.
3286 	if (!rcu_min_cached_objs)
3287 		return;
3288 
3289 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3290 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3291 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3292 			queue_delayed_work(system_wq,
3293 				&krcp->page_cache_work,
3294 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3295 		} else {
3296 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3297 			krcp->hrtimer.function = schedule_page_work_fn;
3298 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3299 		}
3300 	}
3301 }
3302 
3303 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3304 // state specified by flags.  If can_alloc is true, the caller must
3305 // be schedulable and not be holding any locks or mutexes that might be
3306 // acquired by the memory allocator or anything that it might invoke.
3307 // Returns true if ptr was successfully recorded, else the caller must
3308 // use a fallback.
3309 static inline bool
3310 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3311 	unsigned long *flags, void *ptr, bool can_alloc)
3312 {
3313 	struct kvfree_rcu_bulk_data *bnode;
3314 	int idx;
3315 
3316 	*krcp = krc_this_cpu_lock(flags);
3317 	if (unlikely(!(*krcp)->initialized))
3318 		return false;
3319 
3320 	idx = !!is_vmalloc_addr(ptr);
3321 	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3322 		struct kvfree_rcu_bulk_data, list);
3323 
3324 	/* Check if a new block is required. */
3325 	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3326 		bnode = get_cached_bnode(*krcp);
3327 		if (!bnode && can_alloc) {
3328 			krc_this_cpu_unlock(*krcp, *flags);
3329 
3330 			// __GFP_NORETRY - allows a light-weight direct reclaim
3331 			// what is OK from minimizing of fallback hitting point of
3332 			// view. Apart of that it forbids any OOM invoking what is
3333 			// also beneficial since we are about to release memory soon.
3334 			//
3335 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3336 			// memory reserves. Please note we have a fallback path.
3337 			//
3338 			// __GFP_NOWARN - it is supposed that an allocation can
3339 			// be failed under low memory or high memory pressure
3340 			// scenarios.
3341 			bnode = (struct kvfree_rcu_bulk_data *)
3342 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3343 			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3344 		}
3345 
3346 		if (!bnode)
3347 			return false;
3348 
3349 		// Initialize the new block and attach it.
3350 		bnode->nr_records = 0;
3351 		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3352 	}
3353 
3354 	// Finally insert and update the GP for this page.
3355 	bnode->records[bnode->nr_records++] = ptr;
3356 	get_state_synchronize_rcu_full(&bnode->gp_snap);
3357 	atomic_inc(&(*krcp)->bulk_count[idx]);
3358 
3359 	return true;
3360 }
3361 
3362 /*
3363  * Queue a request for lazy invocation of the appropriate free routine
3364  * after a grace period.  Please note that three paths are maintained,
3365  * two for the common case using arrays of pointers and a third one that
3366  * is used only when the main paths cannot be used, for example, due to
3367  * memory pressure.
3368  *
3369  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3370  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3371  * be free'd in workqueue context. This allows us to: batch requests together to
3372  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3373  */
3374 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3375 {
3376 	unsigned long flags;
3377 	struct kfree_rcu_cpu *krcp;
3378 	bool success;
3379 
3380 	/*
3381 	 * Please note there is a limitation for the head-less
3382 	 * variant, that is why there is a clear rule for such
3383 	 * objects: it can be used from might_sleep() context
3384 	 * only. For other places please embed an rcu_head to
3385 	 * your data.
3386 	 */
3387 	if (!head)
3388 		might_sleep();
3389 
3390 	// Queue the object but don't yet schedule the batch.
3391 	if (debug_rcu_head_queue(ptr)) {
3392 		// Probable double kfree_rcu(), just leak.
3393 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3394 			  __func__, head);
3395 
3396 		// Mark as success and leave.
3397 		return;
3398 	}
3399 
3400 	kasan_record_aux_stack_noalloc(ptr);
3401 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3402 	if (!success) {
3403 		run_page_cache_worker(krcp);
3404 
3405 		if (head == NULL)
3406 			// Inline if kvfree_rcu(one_arg) call.
3407 			goto unlock_return;
3408 
3409 		head->func = ptr;
3410 		head->next = krcp->head;
3411 		WRITE_ONCE(krcp->head, head);
3412 		atomic_inc(&krcp->head_count);
3413 
3414 		// Take a snapshot for this krcp.
3415 		krcp->head_gp_snap = get_state_synchronize_rcu();
3416 		success = true;
3417 	}
3418 
3419 	/*
3420 	 * The kvfree_rcu() caller considers the pointer freed at this point
3421 	 * and likely removes any references to it. Since the actual slab
3422 	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3423 	 * this object (no scanning or false positives reporting).
3424 	 */
3425 	kmemleak_ignore(ptr);
3426 
3427 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3428 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3429 		schedule_delayed_monitor_work(krcp);
3430 
3431 unlock_return:
3432 	krc_this_cpu_unlock(krcp, flags);
3433 
3434 	/*
3435 	 * Inline kvfree() after synchronize_rcu(). We can do
3436 	 * it from might_sleep() context only, so the current
3437 	 * CPU can pass the QS state.
3438 	 */
3439 	if (!success) {
3440 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3441 		synchronize_rcu();
3442 		kvfree(ptr);
3443 	}
3444 }
3445 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3446 
3447 static unsigned long
3448 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3449 {
3450 	int cpu;
3451 	unsigned long count = 0;
3452 
3453 	/* Snapshot count of all CPUs */
3454 	for_each_possible_cpu(cpu) {
3455 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3456 
3457 		count += krc_count(krcp);
3458 		count += READ_ONCE(krcp->nr_bkv_objs);
3459 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3460 	}
3461 
3462 	return count == 0 ? SHRINK_EMPTY : count;
3463 }
3464 
3465 static unsigned long
3466 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3467 {
3468 	int cpu, freed = 0;
3469 
3470 	for_each_possible_cpu(cpu) {
3471 		int count;
3472 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3473 
3474 		count = krc_count(krcp);
3475 		count += drain_page_cache(krcp);
3476 		kfree_rcu_monitor(&krcp->monitor_work.work);
3477 
3478 		sc->nr_to_scan -= count;
3479 		freed += count;
3480 
3481 		if (sc->nr_to_scan <= 0)
3482 			break;
3483 	}
3484 
3485 	return freed == 0 ? SHRINK_STOP : freed;
3486 }
3487 
3488 void __init kfree_rcu_scheduler_running(void)
3489 {
3490 	int cpu;
3491 
3492 	for_each_possible_cpu(cpu) {
3493 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3494 
3495 		if (need_offload_krc(krcp))
3496 			schedule_delayed_monitor_work(krcp);
3497 	}
3498 }
3499 
3500 /*
3501  * During early boot, any blocking grace-period wait automatically
3502  * implies a grace period.
3503  *
3504  * Later on, this could in theory be the case for kernels built with
3505  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3506  * is not a common case.  Furthermore, this optimization would cause
3507  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3508  * grace-period optimization is ignored once the scheduler is running.
3509  */
3510 static int rcu_blocking_is_gp(void)
3511 {
3512 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3513 		might_sleep();
3514 		return false;
3515 	}
3516 	return true;
3517 }
3518 
3519 /**
3520  * synchronize_rcu - wait until a grace period has elapsed.
3521  *
3522  * Control will return to the caller some time after a full grace
3523  * period has elapsed, in other words after all currently executing RCU
3524  * read-side critical sections have completed.  Note, however, that
3525  * upon return from synchronize_rcu(), the caller might well be executing
3526  * concurrently with new RCU read-side critical sections that began while
3527  * synchronize_rcu() was waiting.
3528  *
3529  * RCU read-side critical sections are delimited by rcu_read_lock()
3530  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3531  * v5.0 and later, regions of code across which interrupts, preemption,
3532  * or softirqs have been disabled also serve as RCU read-side critical
3533  * sections.  This includes hardware interrupt handlers, softirq handlers,
3534  * and NMI handlers.
3535  *
3536  * Note that this guarantee implies further memory-ordering guarantees.
3537  * On systems with more than one CPU, when synchronize_rcu() returns,
3538  * each CPU is guaranteed to have executed a full memory barrier since
3539  * the end of its last RCU read-side critical section whose beginning
3540  * preceded the call to synchronize_rcu().  In addition, each CPU having
3541  * an RCU read-side critical section that extends beyond the return from
3542  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3543  * after the beginning of synchronize_rcu() and before the beginning of
3544  * that RCU read-side critical section.  Note that these guarantees include
3545  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3546  * that are executing in the kernel.
3547  *
3548  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3549  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3550  * to have executed a full memory barrier during the execution of
3551  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3552  * again only if the system has more than one CPU).
3553  *
3554  * Implementation of these memory-ordering guarantees is described here:
3555  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3556  */
3557 void synchronize_rcu(void)
3558 {
3559 	unsigned long flags;
3560 	struct rcu_node *rnp;
3561 
3562 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3563 			 lock_is_held(&rcu_lock_map) ||
3564 			 lock_is_held(&rcu_sched_lock_map),
3565 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3566 	if (!rcu_blocking_is_gp()) {
3567 		if (rcu_gp_is_expedited())
3568 			synchronize_rcu_expedited();
3569 		else
3570 			wait_rcu_gp(call_rcu_hurry);
3571 		return;
3572 	}
3573 
3574 	// Context allows vacuous grace periods.
3575 	// Note well that this code runs with !PREEMPT && !SMP.
3576 	// In addition, all code that advances grace periods runs at
3577 	// process level.  Therefore, this normal GP overlaps with other
3578 	// normal GPs only by being fully nested within them, which allows
3579 	// reuse of ->gp_seq_polled_snap.
3580 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3581 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3582 
3583 	// Update the normal grace-period counters to record
3584 	// this grace period, but only those used by the boot CPU.
3585 	// The rcu_scheduler_starting() will take care of the rest of
3586 	// these counters.
3587 	local_irq_save(flags);
3588 	WARN_ON_ONCE(num_online_cpus() > 1);
3589 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3590 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3591 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3592 	local_irq_restore(flags);
3593 }
3594 EXPORT_SYMBOL_GPL(synchronize_rcu);
3595 
3596 /**
3597  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3598  * @rgosp: Place to put state cookie
3599  *
3600  * Stores into @rgosp a value that will always be treated by functions
3601  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3602  * has already completed.
3603  */
3604 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3605 {
3606 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3607 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3608 }
3609 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3610 
3611 /**
3612  * get_state_synchronize_rcu - Snapshot current RCU state
3613  *
3614  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3615  * or poll_state_synchronize_rcu() to determine whether or not a full
3616  * grace period has elapsed in the meantime.
3617  */
3618 unsigned long get_state_synchronize_rcu(void)
3619 {
3620 	/*
3621 	 * Any prior manipulation of RCU-protected data must happen
3622 	 * before the load from ->gp_seq.
3623 	 */
3624 	smp_mb();  /* ^^^ */
3625 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3626 }
3627 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3628 
3629 /**
3630  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3631  * @rgosp: location to place combined normal/expedited grace-period state
3632  *
3633  * Places the normal and expedited grace-period states in @rgosp.  This
3634  * state value can be passed to a later call to cond_synchronize_rcu_full()
3635  * or poll_state_synchronize_rcu_full() to determine whether or not a
3636  * grace period (whether normal or expedited) has elapsed in the meantime.
3637  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3638  * long, but is guaranteed to see all grace periods.  In contrast, the
3639  * combined state occupies less memory, but can sometimes fail to take
3640  * grace periods into account.
3641  *
3642  * This does not guarantee that the needed grace period will actually
3643  * start.
3644  */
3645 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3646 {
3647 	struct rcu_node *rnp = rcu_get_root();
3648 
3649 	/*
3650 	 * Any prior manipulation of RCU-protected data must happen
3651 	 * before the loads from ->gp_seq and ->expedited_sequence.
3652 	 */
3653 	smp_mb();  /* ^^^ */
3654 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3655 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3656 }
3657 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3658 
3659 /*
3660  * Helper function for start_poll_synchronize_rcu() and
3661  * start_poll_synchronize_rcu_full().
3662  */
3663 static void start_poll_synchronize_rcu_common(void)
3664 {
3665 	unsigned long flags;
3666 	bool needwake;
3667 	struct rcu_data *rdp;
3668 	struct rcu_node *rnp;
3669 
3670 	lockdep_assert_irqs_enabled();
3671 	local_irq_save(flags);
3672 	rdp = this_cpu_ptr(&rcu_data);
3673 	rnp = rdp->mynode;
3674 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3675 	// Note it is possible for a grace period to have elapsed between
3676 	// the above call to get_state_synchronize_rcu() and the below call
3677 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3678 	// get a grace period that no one needed.  These accesses are ordered
3679 	// by smp_mb(), and we are accessing them in the opposite order
3680 	// from which they are updated at grace-period start, as required.
3681 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3682 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3683 	if (needwake)
3684 		rcu_gp_kthread_wake();
3685 }
3686 
3687 /**
3688  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3689  *
3690  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3691  * or poll_state_synchronize_rcu() to determine whether or not a full
3692  * grace period has elapsed in the meantime.  If the needed grace period
3693  * is not already slated to start, notifies RCU core of the need for that
3694  * grace period.
3695  *
3696  * Interrupts must be enabled for the case where it is necessary to awaken
3697  * the grace-period kthread.
3698  */
3699 unsigned long start_poll_synchronize_rcu(void)
3700 {
3701 	unsigned long gp_seq = get_state_synchronize_rcu();
3702 
3703 	start_poll_synchronize_rcu_common();
3704 	return gp_seq;
3705 }
3706 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3707 
3708 /**
3709  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3710  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3711  *
3712  * Places the normal and expedited grace-period states in *@rgos.  This
3713  * state value can be passed to a later call to cond_synchronize_rcu_full()
3714  * or poll_state_synchronize_rcu_full() to determine whether or not a
3715  * grace period (whether normal or expedited) has elapsed in the meantime.
3716  * If the needed grace period is not already slated to start, notifies
3717  * RCU core of the need for that grace period.
3718  *
3719  * Interrupts must be enabled for the case where it is necessary to awaken
3720  * the grace-period kthread.
3721  */
3722 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3723 {
3724 	get_state_synchronize_rcu_full(rgosp);
3725 
3726 	start_poll_synchronize_rcu_common();
3727 }
3728 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3729 
3730 /**
3731  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3732  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3733  *
3734  * If a full RCU grace period has elapsed since the earlier call from
3735  * which @oldstate was obtained, return @true, otherwise return @false.
3736  * If @false is returned, it is the caller's responsibility to invoke this
3737  * function later on until it does return @true.  Alternatively, the caller
3738  * can explicitly wait for a grace period, for example, by passing @oldstate
3739  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3740  * on the one hand or by directly invoking either synchronize_rcu() or
3741  * synchronize_rcu_expedited() on the other.
3742  *
3743  * Yes, this function does not take counter wrap into account.
3744  * But counter wrap is harmless.  If the counter wraps, we have waited for
3745  * more than a billion grace periods (and way more on a 64-bit system!).
3746  * Those needing to keep old state values for very long time periods
3747  * (many hours even on 32-bit systems) should check them occasionally and
3748  * either refresh them or set a flag indicating that the grace period has
3749  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3750  * to get a guaranteed-completed grace-period state.
3751  *
3752  * In addition, because oldstate compresses the grace-period state for
3753  * both normal and expedited grace periods into a single unsigned long,
3754  * it can miss a grace period when synchronize_rcu() runs concurrently
3755  * with synchronize_rcu_expedited().  If this is unacceptable, please
3756  * instead use the _full() variant of these polling APIs.
3757  *
3758  * This function provides the same memory-ordering guarantees that
3759  * would be provided by a synchronize_rcu() that was invoked at the call
3760  * to the function that provided @oldstate, and that returned at the end
3761  * of this function.
3762  */
3763 bool poll_state_synchronize_rcu(unsigned long oldstate)
3764 {
3765 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3766 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3767 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3768 		return true;
3769 	}
3770 	return false;
3771 }
3772 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3773 
3774 /**
3775  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3776  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3777  *
3778  * If a full RCU grace period has elapsed since the earlier call from
3779  * which *rgosp was obtained, return @true, otherwise return @false.
3780  * If @false is returned, it is the caller's responsibility to invoke this
3781  * function later on until it does return @true.  Alternatively, the caller
3782  * can explicitly wait for a grace period, for example, by passing @rgosp
3783  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3784  *
3785  * Yes, this function does not take counter wrap into account.
3786  * But counter wrap is harmless.  If the counter wraps, we have waited
3787  * for more than a billion grace periods (and way more on a 64-bit
3788  * system!).  Those needing to keep rcu_gp_oldstate values for very
3789  * long time periods (many hours even on 32-bit systems) should check
3790  * them occasionally and either refresh them or set a flag indicating
3791  * that the grace period has completed.  Alternatively, they can use
3792  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3793  * grace-period state.
3794  *
3795  * This function provides the same memory-ordering guarantees that would
3796  * be provided by a synchronize_rcu() that was invoked at the call to
3797  * the function that provided @rgosp, and that returned at the end of this
3798  * function.  And this guarantee requires that the root rcu_node structure's
3799  * ->gp_seq field be checked instead of that of the rcu_state structure.
3800  * The problem is that the just-ending grace-period's callbacks can be
3801  * invoked between the time that the root rcu_node structure's ->gp_seq
3802  * field is updated and the time that the rcu_state structure's ->gp_seq
3803  * field is updated.  Therefore, if a single synchronize_rcu() is to
3804  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3805  * then the root rcu_node structure is the one that needs to be polled.
3806  */
3807 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3808 {
3809 	struct rcu_node *rnp = rcu_get_root();
3810 
3811 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3812 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3813 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3814 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3815 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3816 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3817 		return true;
3818 	}
3819 	return false;
3820 }
3821 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3822 
3823 /**
3824  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3825  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3826  *
3827  * If a full RCU grace period has elapsed since the earlier call to
3828  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3829  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3830  *
3831  * Yes, this function does not take counter wrap into account.
3832  * But counter wrap is harmless.  If the counter wraps, we have waited for
3833  * more than 2 billion grace periods (and way more on a 64-bit system!),
3834  * so waiting for a couple of additional grace periods should be just fine.
3835  *
3836  * This function provides the same memory-ordering guarantees that
3837  * would be provided by a synchronize_rcu() that was invoked at the call
3838  * to the function that provided @oldstate and that returned at the end
3839  * of this function.
3840  */
3841 void cond_synchronize_rcu(unsigned long oldstate)
3842 {
3843 	if (!poll_state_synchronize_rcu(oldstate))
3844 		synchronize_rcu();
3845 }
3846 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3847 
3848 /**
3849  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3850  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3851  *
3852  * If a full RCU grace period has elapsed since the call to
3853  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3854  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3855  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3856  * for a full grace period.
3857  *
3858  * Yes, this function does not take counter wrap into account.
3859  * But counter wrap is harmless.  If the counter wraps, we have waited for
3860  * more than 2 billion grace periods (and way more on a 64-bit system!),
3861  * so waiting for a couple of additional grace periods should be just fine.
3862  *
3863  * This function provides the same memory-ordering guarantees that
3864  * would be provided by a synchronize_rcu() that was invoked at the call
3865  * to the function that provided @rgosp and that returned at the end of
3866  * this function.
3867  */
3868 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3869 {
3870 	if (!poll_state_synchronize_rcu_full(rgosp))
3871 		synchronize_rcu();
3872 }
3873 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3874 
3875 /*
3876  * Check to see if there is any immediate RCU-related work to be done by
3877  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3878  * in order of increasing expense: checks that can be carried out against
3879  * CPU-local state are performed first.  However, we must check for CPU
3880  * stalls first, else we might not get a chance.
3881  */
3882 static int rcu_pending(int user)
3883 {
3884 	bool gp_in_progress;
3885 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3886 	struct rcu_node *rnp = rdp->mynode;
3887 
3888 	lockdep_assert_irqs_disabled();
3889 
3890 	/* Check for CPU stalls, if enabled. */
3891 	check_cpu_stall(rdp);
3892 
3893 	/* Does this CPU need a deferred NOCB wakeup? */
3894 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3895 		return 1;
3896 
3897 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3898 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3899 		return 0;
3900 
3901 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3902 	gp_in_progress = rcu_gp_in_progress();
3903 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3904 		return 1;
3905 
3906 	/* Does this CPU have callbacks ready to invoke? */
3907 	if (!rcu_rdp_is_offloaded(rdp) &&
3908 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3909 		return 1;
3910 
3911 	/* Has RCU gone idle with this CPU needing another grace period? */
3912 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3913 	    !rcu_rdp_is_offloaded(rdp) &&
3914 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3915 		return 1;
3916 
3917 	/* Have RCU grace period completed or started?  */
3918 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3919 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3920 		return 1;
3921 
3922 	/* nothing to do */
3923 	return 0;
3924 }
3925 
3926 /*
3927  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3928  * the compiler is expected to optimize this away.
3929  */
3930 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3931 {
3932 	trace_rcu_barrier(rcu_state.name, s, cpu,
3933 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3934 }
3935 
3936 /*
3937  * RCU callback function for rcu_barrier().  If we are last, wake
3938  * up the task executing rcu_barrier().
3939  *
3940  * Note that the value of rcu_state.barrier_sequence must be captured
3941  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3942  * other CPUs might count the value down to zero before this CPU gets
3943  * around to invoking rcu_barrier_trace(), which might result in bogus
3944  * data from the next instance of rcu_barrier().
3945  */
3946 static void rcu_barrier_callback(struct rcu_head *rhp)
3947 {
3948 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3949 
3950 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3951 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3952 		complete(&rcu_state.barrier_completion);
3953 	} else {
3954 		rcu_barrier_trace(TPS("CB"), -1, s);
3955 	}
3956 }
3957 
3958 /*
3959  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3960  */
3961 static void rcu_barrier_entrain(struct rcu_data *rdp)
3962 {
3963 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3964 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3965 	bool wake_nocb = false;
3966 	bool was_alldone = false;
3967 
3968 	lockdep_assert_held(&rcu_state.barrier_lock);
3969 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3970 		return;
3971 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3972 	rdp->barrier_head.func = rcu_barrier_callback;
3973 	debug_rcu_head_queue(&rdp->barrier_head);
3974 	rcu_nocb_lock(rdp);
3975 	/*
3976 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3977 	 * queue. This way we don't wait for bypass timer that can reach seconds
3978 	 * if it's fully lazy.
3979 	 */
3980 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3981 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3982 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3983 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3984 		atomic_inc(&rcu_state.barrier_cpu_count);
3985 	} else {
3986 		debug_rcu_head_unqueue(&rdp->barrier_head);
3987 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3988 	}
3989 	rcu_nocb_unlock(rdp);
3990 	if (wake_nocb)
3991 		wake_nocb_gp(rdp, false);
3992 	smp_store_release(&rdp->barrier_seq_snap, gseq);
3993 }
3994 
3995 /*
3996  * Called with preemption disabled, and from cross-cpu IRQ context.
3997  */
3998 static void rcu_barrier_handler(void *cpu_in)
3999 {
4000 	uintptr_t cpu = (uintptr_t)cpu_in;
4001 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4002 
4003 	lockdep_assert_irqs_disabled();
4004 	WARN_ON_ONCE(cpu != rdp->cpu);
4005 	WARN_ON_ONCE(cpu != smp_processor_id());
4006 	raw_spin_lock(&rcu_state.barrier_lock);
4007 	rcu_barrier_entrain(rdp);
4008 	raw_spin_unlock(&rcu_state.barrier_lock);
4009 }
4010 
4011 /**
4012  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4013  *
4014  * Note that this primitive does not necessarily wait for an RCU grace period
4015  * to complete.  For example, if there are no RCU callbacks queued anywhere
4016  * in the system, then rcu_barrier() is within its rights to return
4017  * immediately, without waiting for anything, much less an RCU grace period.
4018  */
4019 void rcu_barrier(void)
4020 {
4021 	uintptr_t cpu;
4022 	unsigned long flags;
4023 	unsigned long gseq;
4024 	struct rcu_data *rdp;
4025 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4026 
4027 	rcu_barrier_trace(TPS("Begin"), -1, s);
4028 
4029 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4030 	mutex_lock(&rcu_state.barrier_mutex);
4031 
4032 	/* Did someone else do our work for us? */
4033 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4034 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4035 		smp_mb(); /* caller's subsequent code after above check. */
4036 		mutex_unlock(&rcu_state.barrier_mutex);
4037 		return;
4038 	}
4039 
4040 	/* Mark the start of the barrier operation. */
4041 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4042 	rcu_seq_start(&rcu_state.barrier_sequence);
4043 	gseq = rcu_state.barrier_sequence;
4044 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4045 
4046 	/*
4047 	 * Initialize the count to two rather than to zero in order
4048 	 * to avoid a too-soon return to zero in case of an immediate
4049 	 * invocation of the just-enqueued callback (or preemption of
4050 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4051 	 * offline non-offloaded CPU has callbacks queued.
4052 	 */
4053 	init_completion(&rcu_state.barrier_completion);
4054 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4055 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4056 
4057 	/*
4058 	 * Force each CPU with callbacks to register a new callback.
4059 	 * When that callback is invoked, we will know that all of the
4060 	 * corresponding CPU's preceding callbacks have been invoked.
4061 	 */
4062 	for_each_possible_cpu(cpu) {
4063 		rdp = per_cpu_ptr(&rcu_data, cpu);
4064 retry:
4065 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4066 			continue;
4067 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4068 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4069 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4070 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4071 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4072 			continue;
4073 		}
4074 		if (!rcu_rdp_cpu_online(rdp)) {
4075 			rcu_barrier_entrain(rdp);
4076 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4077 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4078 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4079 			continue;
4080 		}
4081 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4082 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4083 			schedule_timeout_uninterruptible(1);
4084 			goto retry;
4085 		}
4086 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4087 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4088 	}
4089 
4090 	/*
4091 	 * Now that we have an rcu_barrier_callback() callback on each
4092 	 * CPU, and thus each counted, remove the initial count.
4093 	 */
4094 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4095 		complete(&rcu_state.barrier_completion);
4096 
4097 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4098 	wait_for_completion(&rcu_state.barrier_completion);
4099 
4100 	/* Mark the end of the barrier operation. */
4101 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4102 	rcu_seq_end(&rcu_state.barrier_sequence);
4103 	gseq = rcu_state.barrier_sequence;
4104 	for_each_possible_cpu(cpu) {
4105 		rdp = per_cpu_ptr(&rcu_data, cpu);
4106 
4107 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4108 	}
4109 
4110 	/* Other rcu_barrier() invocations can now safely proceed. */
4111 	mutex_unlock(&rcu_state.barrier_mutex);
4112 }
4113 EXPORT_SYMBOL_GPL(rcu_barrier);
4114 
4115 static unsigned long rcu_barrier_last_throttle;
4116 
4117 /**
4118  * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4119  *
4120  * This can be thought of as guard rails around rcu_barrier() that
4121  * permits unrestricted userspace use, at least assuming the hardware's
4122  * try_cmpxchg() is robust.  There will be at most one call per second to
4123  * rcu_barrier() system-wide from use of this function, which means that
4124  * callers might needlessly wait a second or three.
4125  *
4126  * This is intended for use by test suites to avoid OOM by flushing RCU
4127  * callbacks from the previous test before starting the next.  See the
4128  * rcutree.do_rcu_barrier module parameter for more information.
4129  *
4130  * Why not simply make rcu_barrier() more scalable?  That might be
4131  * the eventual endpoint, but let's keep it simple for the time being.
4132  * Note that the module parameter infrastructure serializes calls to a
4133  * given .set() function, but should concurrent .set() invocation ever be
4134  * possible, we are ready!
4135  */
4136 static void rcu_barrier_throttled(void)
4137 {
4138 	unsigned long j = jiffies;
4139 	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4140 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4141 
4142 	while (time_in_range(j, old, old + HZ / 16) ||
4143 	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4144 		schedule_timeout_idle(HZ / 16);
4145 		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4146 			smp_mb(); /* caller's subsequent code after above check. */
4147 			return;
4148 		}
4149 		j = jiffies;
4150 		old = READ_ONCE(rcu_barrier_last_throttle);
4151 	}
4152 	rcu_barrier();
4153 }
4154 
4155 /*
4156  * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4157  * request arrives.  We insist on a true value to allow for possible
4158  * future expansion.
4159  */
4160 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4161 {
4162 	bool b;
4163 	int ret;
4164 
4165 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4166 		return -EAGAIN;
4167 	ret = kstrtobool(val, &b);
4168 	if (!ret && b) {
4169 		atomic_inc((atomic_t *)kp->arg);
4170 		rcu_barrier_throttled();
4171 		atomic_dec((atomic_t *)kp->arg);
4172 	}
4173 	return ret;
4174 }
4175 
4176 /*
4177  * Output the number of outstanding rcutree.do_rcu_barrier requests.
4178  */
4179 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4180 {
4181 	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4182 }
4183 
4184 static const struct kernel_param_ops do_rcu_barrier_ops = {
4185 	.set = param_set_do_rcu_barrier,
4186 	.get = param_get_do_rcu_barrier,
4187 };
4188 static atomic_t do_rcu_barrier;
4189 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4190 
4191 /*
4192  * Compute the mask of online CPUs for the specified rcu_node structure.
4193  * This will not be stable unless the rcu_node structure's ->lock is
4194  * held, but the bit corresponding to the current CPU will be stable
4195  * in most contexts.
4196  */
4197 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4198 {
4199 	return READ_ONCE(rnp->qsmaskinitnext);
4200 }
4201 
4202 /*
4203  * Is the CPU corresponding to the specified rcu_data structure online
4204  * from RCU's perspective?  This perspective is given by that structure's
4205  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4206  */
4207 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4208 {
4209 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4210 }
4211 
4212 bool rcu_cpu_online(int cpu)
4213 {
4214 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4215 
4216 	return rcu_rdp_cpu_online(rdp);
4217 }
4218 
4219 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4220 
4221 /*
4222  * Is the current CPU online as far as RCU is concerned?
4223  *
4224  * Disable preemption to avoid false positives that could otherwise
4225  * happen due to the current CPU number being sampled, this task being
4226  * preempted, its old CPU being taken offline, resuming on some other CPU,
4227  * then determining that its old CPU is now offline.
4228  *
4229  * Disable checking if in an NMI handler because we cannot safely
4230  * report errors from NMI handlers anyway.  In addition, it is OK to use
4231  * RCU on an offline processor during initial boot, hence the check for
4232  * rcu_scheduler_fully_active.
4233  */
4234 bool rcu_lockdep_current_cpu_online(void)
4235 {
4236 	struct rcu_data *rdp;
4237 	bool ret = false;
4238 
4239 	if (in_nmi() || !rcu_scheduler_fully_active)
4240 		return true;
4241 	preempt_disable_notrace();
4242 	rdp = this_cpu_ptr(&rcu_data);
4243 	/*
4244 	 * Strictly, we care here about the case where the current CPU is
4245 	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4246 	 * not being up to date. So arch_spin_is_locked() might have a
4247 	 * false positive if it's held by some *other* CPU, but that's
4248 	 * OK because that just means a false *negative* on the warning.
4249 	 */
4250 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4251 		ret = true;
4252 	preempt_enable_notrace();
4253 	return ret;
4254 }
4255 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4256 
4257 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4258 
4259 // Has rcu_init() been invoked?  This is used (for example) to determine
4260 // whether spinlocks may be acquired safely.
4261 static bool rcu_init_invoked(void)
4262 {
4263 	return !!rcu_state.n_online_cpus;
4264 }
4265 
4266 /*
4267  * All CPUs for the specified rcu_node structure have gone offline,
4268  * and all tasks that were preempted within an RCU read-side critical
4269  * section while running on one of those CPUs have since exited their RCU
4270  * read-side critical section.  Some other CPU is reporting this fact with
4271  * the specified rcu_node structure's ->lock held and interrupts disabled.
4272  * This function therefore goes up the tree of rcu_node structures,
4273  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4274  * the leaf rcu_node structure's ->qsmaskinit field has already been
4275  * updated.
4276  *
4277  * This function does check that the specified rcu_node structure has
4278  * all CPUs offline and no blocked tasks, so it is OK to invoke it
4279  * prematurely.  That said, invoking it after the fact will cost you
4280  * a needless lock acquisition.  So once it has done its work, don't
4281  * invoke it again.
4282  */
4283 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4284 {
4285 	long mask;
4286 	struct rcu_node *rnp = rnp_leaf;
4287 
4288 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4289 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4290 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4291 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4292 		return;
4293 	for (;;) {
4294 		mask = rnp->grpmask;
4295 		rnp = rnp->parent;
4296 		if (!rnp)
4297 			break;
4298 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4299 		rnp->qsmaskinit &= ~mask;
4300 		/* Between grace periods, so better already be zero! */
4301 		WARN_ON_ONCE(rnp->qsmask);
4302 		if (rnp->qsmaskinit) {
4303 			raw_spin_unlock_rcu_node(rnp);
4304 			/* irqs remain disabled. */
4305 			return;
4306 		}
4307 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4308 	}
4309 }
4310 
4311 /*
4312  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4313  * first CPU in a given leaf rcu_node structure coming online.  The caller
4314  * must hold the corresponding leaf rcu_node ->lock with interrupts
4315  * disabled.
4316  */
4317 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4318 {
4319 	long mask;
4320 	long oldmask;
4321 	struct rcu_node *rnp = rnp_leaf;
4322 
4323 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4324 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4325 	for (;;) {
4326 		mask = rnp->grpmask;
4327 		rnp = rnp->parent;
4328 		if (rnp == NULL)
4329 			return;
4330 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4331 		oldmask = rnp->qsmaskinit;
4332 		rnp->qsmaskinit |= mask;
4333 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4334 		if (oldmask)
4335 			return;
4336 	}
4337 }
4338 
4339 /*
4340  * Do boot-time initialization of a CPU's per-CPU RCU data.
4341  */
4342 static void __init
4343 rcu_boot_init_percpu_data(int cpu)
4344 {
4345 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4346 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4347 
4348 	/* Set up local state, ensuring consistent view of global state. */
4349 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4350 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4351 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4352 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4353 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4354 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4355 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4356 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4357 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4358 	rdp->last_sched_clock = jiffies;
4359 	rdp->cpu = cpu;
4360 	rcu_boot_init_nocb_percpu_data(rdp);
4361 }
4362 
4363 /*
4364  * Invoked early in the CPU-online process, when pretty much all services
4365  * are available.  The incoming CPU is not present.
4366  *
4367  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4368  * offline event can be happening at a given time.  Note also that we can
4369  * accept some slop in the rsp->gp_seq access due to the fact that this
4370  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4371  * And any offloaded callbacks are being numbered elsewhere.
4372  */
4373 int rcutree_prepare_cpu(unsigned int cpu)
4374 {
4375 	unsigned long flags;
4376 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4377 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4378 	struct rcu_node *rnp = rcu_get_root();
4379 
4380 	/* Set up local state, ensuring consistent view of global state. */
4381 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4382 	rdp->qlen_last_fqs_check = 0;
4383 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4384 	rdp->blimit = blimit;
4385 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4386 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4387 
4388 	/*
4389 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4390 	 * (re-)initialized.
4391 	 */
4392 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4393 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4394 
4395 	/*
4396 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4397 	 * propagation up the rcu_node tree will happen at the beginning
4398 	 * of the next grace period.
4399 	 */
4400 	rnp = rdp->mynode;
4401 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4402 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4403 	rdp->gp_seq_needed = rdp->gp_seq;
4404 	rdp->cpu_no_qs.b.norm = true;
4405 	rdp->core_needs_qs = false;
4406 	rdp->rcu_iw_pending = false;
4407 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4408 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4409 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4410 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4411 	rcu_spawn_one_boost_kthread(rnp);
4412 	rcu_spawn_cpu_nocb_kthread(cpu);
4413 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4414 
4415 	return 0;
4416 }
4417 
4418 /*
4419  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4420  */
4421 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4422 {
4423 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4424 
4425 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4426 }
4427 
4428 /*
4429  * Has the specified (known valid) CPU ever been fully online?
4430  */
4431 bool rcu_cpu_beenfullyonline(int cpu)
4432 {
4433 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4434 
4435 	return smp_load_acquire(&rdp->beenonline);
4436 }
4437 
4438 /*
4439  * Near the end of the CPU-online process.  Pretty much all services
4440  * enabled, and the CPU is now very much alive.
4441  */
4442 int rcutree_online_cpu(unsigned int cpu)
4443 {
4444 	unsigned long flags;
4445 	struct rcu_data *rdp;
4446 	struct rcu_node *rnp;
4447 
4448 	rdp = per_cpu_ptr(&rcu_data, cpu);
4449 	rnp = rdp->mynode;
4450 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4451 	rnp->ffmask |= rdp->grpmask;
4452 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4453 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4454 		return 0; /* Too early in boot for scheduler work. */
4455 	sync_sched_exp_online_cleanup(cpu);
4456 	rcutree_affinity_setting(cpu, -1);
4457 
4458 	// Stop-machine done, so allow nohz_full to disable tick.
4459 	tick_dep_clear(TICK_DEP_BIT_RCU);
4460 	return 0;
4461 }
4462 
4463 /*
4464  * Mark the specified CPU as being online so that subsequent grace periods
4465  * (both expedited and normal) will wait on it.  Note that this means that
4466  * incoming CPUs are not allowed to use RCU read-side critical sections
4467  * until this function is called.  Failing to observe this restriction
4468  * will result in lockdep splats.
4469  *
4470  * Note that this function is special in that it is invoked directly
4471  * from the incoming CPU rather than from the cpuhp_step mechanism.
4472  * This is because this function must be invoked at a precise location.
4473  * This incoming CPU must not have enabled interrupts yet.
4474  *
4475  * This mirrors the effects of rcutree_report_cpu_dead().
4476  */
4477 void rcutree_report_cpu_starting(unsigned int cpu)
4478 {
4479 	unsigned long mask;
4480 	struct rcu_data *rdp;
4481 	struct rcu_node *rnp;
4482 	bool newcpu;
4483 
4484 	lockdep_assert_irqs_disabled();
4485 	rdp = per_cpu_ptr(&rcu_data, cpu);
4486 	if (rdp->cpu_started)
4487 		return;
4488 	rdp->cpu_started = true;
4489 
4490 	rnp = rdp->mynode;
4491 	mask = rdp->grpmask;
4492 	arch_spin_lock(&rcu_state.ofl_lock);
4493 	rcu_dynticks_eqs_online();
4494 	raw_spin_lock(&rcu_state.barrier_lock);
4495 	raw_spin_lock_rcu_node(rnp);
4496 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4497 	raw_spin_unlock(&rcu_state.barrier_lock);
4498 	newcpu = !(rnp->expmaskinitnext & mask);
4499 	rnp->expmaskinitnext |= mask;
4500 	/* Allow lockless access for expedited grace periods. */
4501 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4502 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4503 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4504 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4505 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4506 
4507 	/* An incoming CPU should never be blocking a grace period. */
4508 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4509 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4510 		unsigned long flags;
4511 
4512 		local_irq_save(flags);
4513 		rcu_disable_urgency_upon_qs(rdp);
4514 		/* Report QS -after- changing ->qsmaskinitnext! */
4515 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4516 	} else {
4517 		raw_spin_unlock_rcu_node(rnp);
4518 	}
4519 	arch_spin_unlock(&rcu_state.ofl_lock);
4520 	smp_store_release(&rdp->beenonline, true);
4521 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4522 }
4523 
4524 /*
4525  * The outgoing function has no further need of RCU, so remove it from
4526  * the rcu_node tree's ->qsmaskinitnext bit masks.
4527  *
4528  * Note that this function is special in that it is invoked directly
4529  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4530  * This is because this function must be invoked at a precise location.
4531  *
4532  * This mirrors the effect of rcutree_report_cpu_starting().
4533  */
4534 void rcutree_report_cpu_dead(void)
4535 {
4536 	unsigned long flags;
4537 	unsigned long mask;
4538 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4539 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4540 
4541 	/*
4542 	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4543 	 * may introduce a new READ-side while it is actually off the QS masks.
4544 	 */
4545 	lockdep_assert_irqs_disabled();
4546 	// Do any dangling deferred wakeups.
4547 	do_nocb_deferred_wakeup(rdp);
4548 
4549 	rcu_preempt_deferred_qs(current);
4550 
4551 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4552 	mask = rdp->grpmask;
4553 	arch_spin_lock(&rcu_state.ofl_lock);
4554 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4555 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4556 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4557 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4558 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4559 		rcu_disable_urgency_upon_qs(rdp);
4560 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4561 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4562 	}
4563 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4564 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4565 	arch_spin_unlock(&rcu_state.ofl_lock);
4566 	rdp->cpu_started = false;
4567 }
4568 
4569 #ifdef CONFIG_HOTPLUG_CPU
4570 /*
4571  * The outgoing CPU has just passed through the dying-idle state, and we
4572  * are being invoked from the CPU that was IPIed to continue the offline
4573  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4574  */
4575 void rcutree_migrate_callbacks(int cpu)
4576 {
4577 	unsigned long flags;
4578 	struct rcu_data *my_rdp;
4579 	struct rcu_node *my_rnp;
4580 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4581 	bool needwake;
4582 
4583 	if (rcu_rdp_is_offloaded(rdp) ||
4584 	    rcu_segcblist_empty(&rdp->cblist))
4585 		return;  /* No callbacks to migrate. */
4586 
4587 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4588 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4589 	rcu_barrier_entrain(rdp);
4590 	my_rdp = this_cpu_ptr(&rcu_data);
4591 	my_rnp = my_rdp->mynode;
4592 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4593 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4594 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4595 	/* Leverage recent GPs and set GP for new callbacks. */
4596 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4597 		   rcu_advance_cbs(my_rnp, my_rdp);
4598 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4599 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4600 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4601 	rcu_segcblist_disable(&rdp->cblist);
4602 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4603 	check_cb_ovld_locked(my_rdp, my_rnp);
4604 	if (rcu_rdp_is_offloaded(my_rdp)) {
4605 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4606 		__call_rcu_nocb_wake(my_rdp, true, flags);
4607 	} else {
4608 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4609 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4610 	}
4611 	if (needwake)
4612 		rcu_gp_kthread_wake();
4613 	lockdep_assert_irqs_enabled();
4614 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4615 		  !rcu_segcblist_empty(&rdp->cblist),
4616 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4617 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4618 		  rcu_segcblist_first_cb(&rdp->cblist));
4619 }
4620 
4621 /*
4622  * The CPU has been completely removed, and some other CPU is reporting
4623  * this fact from process context.  Do the remainder of the cleanup.
4624  * There can only be one CPU hotplug operation at a time, so no need for
4625  * explicit locking.
4626  */
4627 int rcutree_dead_cpu(unsigned int cpu)
4628 {
4629 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4630 	// Stop-machine done, so allow nohz_full to disable tick.
4631 	tick_dep_clear(TICK_DEP_BIT_RCU);
4632 	return 0;
4633 }
4634 
4635 /*
4636  * Near the end of the offline process.  Trace the fact that this CPU
4637  * is going offline.
4638  */
4639 int rcutree_dying_cpu(unsigned int cpu)
4640 {
4641 	bool blkd;
4642 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4643 	struct rcu_node *rnp = rdp->mynode;
4644 
4645 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4646 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4647 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4648 	return 0;
4649 }
4650 
4651 /*
4652  * Near the beginning of the process.  The CPU is still very much alive
4653  * with pretty much all services enabled.
4654  */
4655 int rcutree_offline_cpu(unsigned int cpu)
4656 {
4657 	unsigned long flags;
4658 	struct rcu_data *rdp;
4659 	struct rcu_node *rnp;
4660 
4661 	rdp = per_cpu_ptr(&rcu_data, cpu);
4662 	rnp = rdp->mynode;
4663 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4664 	rnp->ffmask &= ~rdp->grpmask;
4665 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4666 
4667 	rcutree_affinity_setting(cpu, cpu);
4668 
4669 	// nohz_full CPUs need the tick for stop-machine to work quickly
4670 	tick_dep_set(TICK_DEP_BIT_RCU);
4671 	return 0;
4672 }
4673 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
4674 
4675 /*
4676  * On non-huge systems, use expedited RCU grace periods to make suspend
4677  * and hibernation run faster.
4678  */
4679 static int rcu_pm_notify(struct notifier_block *self,
4680 			 unsigned long action, void *hcpu)
4681 {
4682 	switch (action) {
4683 	case PM_HIBERNATION_PREPARE:
4684 	case PM_SUSPEND_PREPARE:
4685 		rcu_async_hurry();
4686 		rcu_expedite_gp();
4687 		break;
4688 	case PM_POST_HIBERNATION:
4689 	case PM_POST_SUSPEND:
4690 		rcu_unexpedite_gp();
4691 		rcu_async_relax();
4692 		break;
4693 	default:
4694 		break;
4695 	}
4696 	return NOTIFY_OK;
4697 }
4698 
4699 #ifdef CONFIG_RCU_EXP_KTHREAD
4700 struct kthread_worker *rcu_exp_gp_kworker;
4701 struct kthread_worker *rcu_exp_par_gp_kworker;
4702 
4703 static void __init rcu_start_exp_gp_kworkers(void)
4704 {
4705 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4706 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4707 	struct sched_param param = { .sched_priority = kthread_prio };
4708 
4709 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4710 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4711 		pr_err("Failed to create %s!\n", gp_kworker_name);
4712 		return;
4713 	}
4714 
4715 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4716 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4717 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4718 		kthread_destroy_worker(rcu_exp_gp_kworker);
4719 		return;
4720 	}
4721 
4722 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4723 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4724 				   &param);
4725 }
4726 
4727 static inline void rcu_alloc_par_gp_wq(void)
4728 {
4729 }
4730 #else /* !CONFIG_RCU_EXP_KTHREAD */
4731 struct workqueue_struct *rcu_par_gp_wq;
4732 
4733 static void __init rcu_start_exp_gp_kworkers(void)
4734 {
4735 }
4736 
4737 static inline void rcu_alloc_par_gp_wq(void)
4738 {
4739 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4740 	WARN_ON(!rcu_par_gp_wq);
4741 }
4742 #endif /* CONFIG_RCU_EXP_KTHREAD */
4743 
4744 /*
4745  * Spawn the kthreads that handle RCU's grace periods.
4746  */
4747 static int __init rcu_spawn_gp_kthread(void)
4748 {
4749 	unsigned long flags;
4750 	struct rcu_node *rnp;
4751 	struct sched_param sp;
4752 	struct task_struct *t;
4753 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4754 
4755 	rcu_scheduler_fully_active = 1;
4756 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4757 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4758 		return 0;
4759 	if (kthread_prio) {
4760 		sp.sched_priority = kthread_prio;
4761 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4762 	}
4763 	rnp = rcu_get_root();
4764 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4765 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4766 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4767 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4768 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4769 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4770 	wake_up_process(t);
4771 	/* This is a pre-SMP initcall, we expect a single CPU */
4772 	WARN_ON(num_online_cpus() > 1);
4773 	/*
4774 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4775 	 * due to rcu_scheduler_fully_active.
4776 	 */
4777 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4778 	rcu_spawn_one_boost_kthread(rdp->mynode);
4779 	rcu_spawn_core_kthreads();
4780 	/* Create kthread worker for expedited GPs */
4781 	rcu_start_exp_gp_kworkers();
4782 	return 0;
4783 }
4784 early_initcall(rcu_spawn_gp_kthread);
4785 
4786 /*
4787  * This function is invoked towards the end of the scheduler's
4788  * initialization process.  Before this is called, the idle task might
4789  * contain synchronous grace-period primitives (during which time, this idle
4790  * task is booting the system, and such primitives are no-ops).  After this
4791  * function is called, any synchronous grace-period primitives are run as
4792  * expedited, with the requesting task driving the grace period forward.
4793  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4794  * runtime RCU functionality.
4795  */
4796 void rcu_scheduler_starting(void)
4797 {
4798 	unsigned long flags;
4799 	struct rcu_node *rnp;
4800 
4801 	WARN_ON(num_online_cpus() != 1);
4802 	WARN_ON(nr_context_switches() > 0);
4803 	rcu_test_sync_prims();
4804 
4805 	// Fix up the ->gp_seq counters.
4806 	local_irq_save(flags);
4807 	rcu_for_each_node_breadth_first(rnp)
4808 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4809 	local_irq_restore(flags);
4810 
4811 	// Switch out of early boot mode.
4812 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4813 	rcu_test_sync_prims();
4814 }
4815 
4816 /*
4817  * Helper function for rcu_init() that initializes the rcu_state structure.
4818  */
4819 static void __init rcu_init_one(void)
4820 {
4821 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4822 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4823 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4824 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4825 
4826 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4827 	int cpustride = 1;
4828 	int i;
4829 	int j;
4830 	struct rcu_node *rnp;
4831 
4832 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4833 
4834 	/* Silence gcc 4.8 false positive about array index out of range. */
4835 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4836 		panic("rcu_init_one: rcu_num_lvls out of range");
4837 
4838 	/* Initialize the level-tracking arrays. */
4839 
4840 	for (i = 1; i < rcu_num_lvls; i++)
4841 		rcu_state.level[i] =
4842 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4843 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4844 
4845 	/* Initialize the elements themselves, starting from the leaves. */
4846 
4847 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4848 		cpustride *= levelspread[i];
4849 		rnp = rcu_state.level[i];
4850 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4851 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4852 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4853 						   &rcu_node_class[i], buf[i]);
4854 			raw_spin_lock_init(&rnp->fqslock);
4855 			lockdep_set_class_and_name(&rnp->fqslock,
4856 						   &rcu_fqs_class[i], fqs[i]);
4857 			rnp->gp_seq = rcu_state.gp_seq;
4858 			rnp->gp_seq_needed = rcu_state.gp_seq;
4859 			rnp->completedqs = rcu_state.gp_seq;
4860 			rnp->qsmask = 0;
4861 			rnp->qsmaskinit = 0;
4862 			rnp->grplo = j * cpustride;
4863 			rnp->grphi = (j + 1) * cpustride - 1;
4864 			if (rnp->grphi >= nr_cpu_ids)
4865 				rnp->grphi = nr_cpu_ids - 1;
4866 			if (i == 0) {
4867 				rnp->grpnum = 0;
4868 				rnp->grpmask = 0;
4869 				rnp->parent = NULL;
4870 			} else {
4871 				rnp->grpnum = j % levelspread[i - 1];
4872 				rnp->grpmask = BIT(rnp->grpnum);
4873 				rnp->parent = rcu_state.level[i - 1] +
4874 					      j / levelspread[i - 1];
4875 			}
4876 			rnp->level = i;
4877 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4878 			rcu_init_one_nocb(rnp);
4879 			init_waitqueue_head(&rnp->exp_wq[0]);
4880 			init_waitqueue_head(&rnp->exp_wq[1]);
4881 			init_waitqueue_head(&rnp->exp_wq[2]);
4882 			init_waitqueue_head(&rnp->exp_wq[3]);
4883 			spin_lock_init(&rnp->exp_lock);
4884 			mutex_init(&rnp->boost_kthread_mutex);
4885 			raw_spin_lock_init(&rnp->exp_poll_lock);
4886 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4887 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4888 		}
4889 	}
4890 
4891 	init_swait_queue_head(&rcu_state.gp_wq);
4892 	init_swait_queue_head(&rcu_state.expedited_wq);
4893 	rnp = rcu_first_leaf_node();
4894 	for_each_possible_cpu(i) {
4895 		while (i > rnp->grphi)
4896 			rnp++;
4897 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4898 		rcu_boot_init_percpu_data(i);
4899 	}
4900 }
4901 
4902 /*
4903  * Force priority from the kernel command-line into range.
4904  */
4905 static void __init sanitize_kthread_prio(void)
4906 {
4907 	int kthread_prio_in = kthread_prio;
4908 
4909 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4910 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4911 		kthread_prio = 2;
4912 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4913 		kthread_prio = 1;
4914 	else if (kthread_prio < 0)
4915 		kthread_prio = 0;
4916 	else if (kthread_prio > 99)
4917 		kthread_prio = 99;
4918 
4919 	if (kthread_prio != kthread_prio_in)
4920 		pr_alert("%s: Limited prio to %d from %d\n",
4921 			 __func__, kthread_prio, kthread_prio_in);
4922 }
4923 
4924 /*
4925  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4926  * replace the definitions in tree.h because those are needed to size
4927  * the ->node array in the rcu_state structure.
4928  */
4929 void rcu_init_geometry(void)
4930 {
4931 	ulong d;
4932 	int i;
4933 	static unsigned long old_nr_cpu_ids;
4934 	int rcu_capacity[RCU_NUM_LVLS];
4935 	static bool initialized;
4936 
4937 	if (initialized) {
4938 		/*
4939 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4940 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4941 		 */
4942 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4943 		return;
4944 	}
4945 
4946 	old_nr_cpu_ids = nr_cpu_ids;
4947 	initialized = true;
4948 
4949 	/*
4950 	 * Initialize any unspecified boot parameters.
4951 	 * The default values of jiffies_till_first_fqs and
4952 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4953 	 * value, which is a function of HZ, then adding one for each
4954 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4955 	 */
4956 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4957 	if (jiffies_till_first_fqs == ULONG_MAX)
4958 		jiffies_till_first_fqs = d;
4959 	if (jiffies_till_next_fqs == ULONG_MAX)
4960 		jiffies_till_next_fqs = d;
4961 	adjust_jiffies_till_sched_qs();
4962 
4963 	/* If the compile-time values are accurate, just leave. */
4964 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4965 	    nr_cpu_ids == NR_CPUS)
4966 		return;
4967 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4968 		rcu_fanout_leaf, nr_cpu_ids);
4969 
4970 	/*
4971 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4972 	 * and cannot exceed the number of bits in the rcu_node masks.
4973 	 * Complain and fall back to the compile-time values if this
4974 	 * limit is exceeded.
4975 	 */
4976 	if (rcu_fanout_leaf < 2 ||
4977 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4978 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4979 		WARN_ON(1);
4980 		return;
4981 	}
4982 
4983 	/*
4984 	 * Compute number of nodes that can be handled an rcu_node tree
4985 	 * with the given number of levels.
4986 	 */
4987 	rcu_capacity[0] = rcu_fanout_leaf;
4988 	for (i = 1; i < RCU_NUM_LVLS; i++)
4989 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4990 
4991 	/*
4992 	 * The tree must be able to accommodate the configured number of CPUs.
4993 	 * If this limit is exceeded, fall back to the compile-time values.
4994 	 */
4995 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4996 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4997 		WARN_ON(1);
4998 		return;
4999 	}
5000 
5001 	/* Calculate the number of levels in the tree. */
5002 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5003 	}
5004 	rcu_num_lvls = i + 1;
5005 
5006 	/* Calculate the number of rcu_nodes at each level of the tree. */
5007 	for (i = 0; i < rcu_num_lvls; i++) {
5008 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5009 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5010 	}
5011 
5012 	/* Calculate the total number of rcu_node structures. */
5013 	rcu_num_nodes = 0;
5014 	for (i = 0; i < rcu_num_lvls; i++)
5015 		rcu_num_nodes += num_rcu_lvl[i];
5016 }
5017 
5018 /*
5019  * Dump out the structure of the rcu_node combining tree associated
5020  * with the rcu_state structure.
5021  */
5022 static void __init rcu_dump_rcu_node_tree(void)
5023 {
5024 	int level = 0;
5025 	struct rcu_node *rnp;
5026 
5027 	pr_info("rcu_node tree layout dump\n");
5028 	pr_info(" ");
5029 	rcu_for_each_node_breadth_first(rnp) {
5030 		if (rnp->level != level) {
5031 			pr_cont("\n");
5032 			pr_info(" ");
5033 			level = rnp->level;
5034 		}
5035 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5036 	}
5037 	pr_cont("\n");
5038 }
5039 
5040 struct workqueue_struct *rcu_gp_wq;
5041 
5042 static void __init kfree_rcu_batch_init(void)
5043 {
5044 	int cpu;
5045 	int i, j;
5046 	struct shrinker *kfree_rcu_shrinker;
5047 
5048 	/* Clamp it to [0:100] seconds interval. */
5049 	if (rcu_delay_page_cache_fill_msec < 0 ||
5050 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5051 
5052 		rcu_delay_page_cache_fill_msec =
5053 			clamp(rcu_delay_page_cache_fill_msec, 0,
5054 				(int) (100 * MSEC_PER_SEC));
5055 
5056 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5057 			rcu_delay_page_cache_fill_msec);
5058 	}
5059 
5060 	for_each_possible_cpu(cpu) {
5061 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5062 
5063 		for (i = 0; i < KFREE_N_BATCHES; i++) {
5064 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5065 			krcp->krw_arr[i].krcp = krcp;
5066 
5067 			for (j = 0; j < FREE_N_CHANNELS; j++)
5068 				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5069 		}
5070 
5071 		for (i = 0; i < FREE_N_CHANNELS; i++)
5072 			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5073 
5074 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5075 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5076 		krcp->initialized = true;
5077 	}
5078 
5079 	kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5080 	if (!kfree_rcu_shrinker) {
5081 		pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5082 		return;
5083 	}
5084 
5085 	kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5086 	kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5087 
5088 	shrinker_register(kfree_rcu_shrinker);
5089 }
5090 
5091 void __init rcu_init(void)
5092 {
5093 	int cpu = smp_processor_id();
5094 
5095 	rcu_early_boot_tests();
5096 
5097 	kfree_rcu_batch_init();
5098 	rcu_bootup_announce();
5099 	sanitize_kthread_prio();
5100 	rcu_init_geometry();
5101 	rcu_init_one();
5102 	if (dump_tree)
5103 		rcu_dump_rcu_node_tree();
5104 	if (use_softirq)
5105 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5106 
5107 	/*
5108 	 * We don't need protection against CPU-hotplug here because
5109 	 * this is called early in boot, before either interrupts
5110 	 * or the scheduler are operational.
5111 	 */
5112 	pm_notifier(rcu_pm_notify, 0);
5113 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5114 	rcutree_prepare_cpu(cpu);
5115 	rcutree_report_cpu_starting(cpu);
5116 	rcutree_online_cpu(cpu);
5117 
5118 	/* Create workqueue for Tree SRCU and for expedited GPs. */
5119 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5120 	WARN_ON(!rcu_gp_wq);
5121 	rcu_alloc_par_gp_wq();
5122 
5123 	/* Fill in default value for rcutree.qovld boot parameter. */
5124 	/* -After- the rcu_node ->lock fields are initialized! */
5125 	if (qovld < 0)
5126 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5127 	else
5128 		qovld_calc = qovld;
5129 
5130 	// Kick-start in case any polled grace periods started early.
5131 	(void)start_poll_synchronize_rcu_expedited();
5132 
5133 	rcu_test_sync_prims();
5134 }
5135 
5136 #include "tree_stall.h"
5137 #include "tree_exp.h"
5138 #include "tree_nocb.h"
5139 #include "tree_plugin.h"
5140