xref: /linux/kernel/rcu/tree.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
61 #include <linux/mm.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
64 
65 #include "tree.h"
66 #include "rcu.h"
67 
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72 
73 /* Data structures. */
74 
75 /*
76  * Steal a bit from the bottom of ->dynticks for idle entry/exit
77  * control.  Initially this is for TLB flushing.
78  */
79 #define RCU_DYNTICK_CTRL_MASK 0x1
80 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
81 
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 	.dynticks_nesting = 1,
84 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 static struct rcu_state rcu_state = {
88 	.level = { &rcu_state.node[0] },
89 	.gp_state = RCU_GP_IDLE,
90 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 	.name = RCU_NAME,
93 	.abbr = RCU_ABBR,
94 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98 
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = true;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 
155 /* rcuc/rcub kthread realtime priority */
156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
157 module_param(kthread_prio, int, 0444);
158 
159 /* Delay in jiffies for grace-period initialization delays, debug only. */
160 
161 static int gp_preinit_delay;
162 module_param(gp_preinit_delay, int, 0444);
163 static int gp_init_delay;
164 module_param(gp_init_delay, int, 0444);
165 static int gp_cleanup_delay;
166 module_param(gp_cleanup_delay, int, 0444);
167 
168 // Add delay to rcu_read_unlock() for strict grace periods.
169 static int rcu_unlock_delay;
170 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
171 module_param(rcu_unlock_delay, int, 0444);
172 #endif
173 
174 /*
175  * This rcu parameter is runtime-read-only. It reflects
176  * a minimum allowed number of objects which can be cached
177  * per-CPU. Object size is equal to one page. This value
178  * can be changed at boot time.
179  */
180 static int rcu_min_cached_objs = 5;
181 module_param(rcu_min_cached_objs, int, 0444);
182 
183 /* Retrieve RCU kthreads priority for rcutorture */
184 int rcu_get_gp_kthreads_prio(void)
185 {
186 	return kthread_prio;
187 }
188 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
189 
190 /*
191  * Number of grace periods between delays, normalized by the duration of
192  * the delay.  The longer the delay, the more the grace periods between
193  * each delay.  The reason for this normalization is that it means that,
194  * for non-zero delays, the overall slowdown of grace periods is constant
195  * regardless of the duration of the delay.  This arrangement balances
196  * the need for long delays to increase some race probabilities with the
197  * need for fast grace periods to increase other race probabilities.
198  */
199 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
200 
201 /*
202  * Compute the mask of online CPUs for the specified rcu_node structure.
203  * This will not be stable unless the rcu_node structure's ->lock is
204  * held, but the bit corresponding to the current CPU will be stable
205  * in most contexts.
206  */
207 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
208 {
209 	return READ_ONCE(rnp->qsmaskinitnext);
210 }
211 
212 /*
213  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
214  * permit this function to be invoked without holding the root rcu_node
215  * structure's ->lock, but of course results can be subject to change.
216  */
217 static int rcu_gp_in_progress(void)
218 {
219 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
220 }
221 
222 /*
223  * Return the number of callbacks queued on the specified CPU.
224  * Handles both the nocbs and normal cases.
225  */
226 static long rcu_get_n_cbs_cpu(int cpu)
227 {
228 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
229 
230 	if (rcu_segcblist_is_enabled(&rdp->cblist))
231 		return rcu_segcblist_n_cbs(&rdp->cblist);
232 	return 0;
233 }
234 
235 void rcu_softirq_qs(void)
236 {
237 	rcu_qs();
238 	rcu_preempt_deferred_qs(current);
239 }
240 
241 /*
242  * Record entry into an extended quiescent state.  This is only to be
243  * called when not already in an extended quiescent state, that is,
244  * RCU is watching prior to the call to this function and is no longer
245  * watching upon return.
246  */
247 static noinstr void rcu_dynticks_eqs_enter(void)
248 {
249 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
250 	int seq;
251 
252 	/*
253 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
254 	 * critical sections, and we also must force ordering with the
255 	 * next idle sojourn.
256 	 */
257 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
258 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
259 	// RCU is no longer watching.  Better be in extended quiescent state!
260 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
261 		     (seq & RCU_DYNTICK_CTRL_CTR));
262 	/* Better not have special action (TLB flush) pending! */
263 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 		     (seq & RCU_DYNTICK_CTRL_MASK));
265 }
266 
267 /*
268  * Record exit from an extended quiescent state.  This is only to be
269  * called from an extended quiescent state, that is, RCU is not watching
270  * prior to the call to this function and is watching upon return.
271  */
272 static noinstr void rcu_dynticks_eqs_exit(void)
273 {
274 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
275 	int seq;
276 
277 	/*
278 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
279 	 * and we also must force ordering with the next RCU read-side
280 	 * critical section.
281 	 */
282 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
283 	// RCU is now watching.  Better not be in an extended quiescent state!
284 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
285 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
286 		     !(seq & RCU_DYNTICK_CTRL_CTR));
287 	if (seq & RCU_DYNTICK_CTRL_MASK) {
288 		arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
289 		smp_mb__after_atomic(); /* _exit after clearing mask. */
290 	}
291 }
292 
293 /*
294  * Reset the current CPU's ->dynticks counter to indicate that the
295  * newly onlined CPU is no longer in an extended quiescent state.
296  * This will either leave the counter unchanged, or increment it
297  * to the next non-quiescent value.
298  *
299  * The non-atomic test/increment sequence works because the upper bits
300  * of the ->dynticks counter are manipulated only by the corresponding CPU,
301  * or when the corresponding CPU is offline.
302  */
303 static void rcu_dynticks_eqs_online(void)
304 {
305 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
306 
307 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
308 		return;
309 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
310 }
311 
312 /*
313  * Is the current CPU in an extended quiescent state?
314  *
315  * No ordering, as we are sampling CPU-local information.
316  */
317 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
318 {
319 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
320 
321 	return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
322 }
323 
324 /*
325  * Snapshot the ->dynticks counter with full ordering so as to allow
326  * stable comparison of this counter with past and future snapshots.
327  */
328 static int rcu_dynticks_snap(struct rcu_data *rdp)
329 {
330 	int snap = atomic_add_return(0, &rdp->dynticks);
331 
332 	return snap & ~RCU_DYNTICK_CTRL_MASK;
333 }
334 
335 /*
336  * Return true if the snapshot returned from rcu_dynticks_snap()
337  * indicates that RCU is in an extended quiescent state.
338  */
339 static bool rcu_dynticks_in_eqs(int snap)
340 {
341 	return !(snap & RCU_DYNTICK_CTRL_CTR);
342 }
343 
344 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
345 bool rcu_is_idle_cpu(int cpu)
346 {
347 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
348 
349 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
350 }
351 
352 /*
353  * Return true if the CPU corresponding to the specified rcu_data
354  * structure has spent some time in an extended quiescent state since
355  * rcu_dynticks_snap() returned the specified snapshot.
356  */
357 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
358 {
359 	return snap != rcu_dynticks_snap(rdp);
360 }
361 
362 /*
363  * Return true if the referenced integer is zero while the specified
364  * CPU remains within a single extended quiescent state.
365  */
366 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
367 {
368 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
369 	int snap;
370 
371 	// If not quiescent, force back to earlier extended quiescent state.
372 	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
373 					       RCU_DYNTICK_CTRL_CTR);
374 
375 	smp_rmb(); // Order ->dynticks and *vp reads.
376 	if (READ_ONCE(*vp))
377 		return false;  // Non-zero, so report failure;
378 	smp_rmb(); // Order *vp read and ->dynticks re-read.
379 
380 	// If still in the same extended quiescent state, we are good!
381 	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
382 }
383 
384 /*
385  * Set the special (bottom) bit of the specified CPU so that it
386  * will take special action (such as flushing its TLB) on the
387  * next exit from an extended quiescent state.  Returns true if
388  * the bit was successfully set, or false if the CPU was not in
389  * an extended quiescent state.
390  */
391 bool rcu_eqs_special_set(int cpu)
392 {
393 	int old;
394 	int new;
395 	int new_old;
396 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
397 
398 	new_old = atomic_read(&rdp->dynticks);
399 	do {
400 		old = new_old;
401 		if (old & RCU_DYNTICK_CTRL_CTR)
402 			return false;
403 		new = old | RCU_DYNTICK_CTRL_MASK;
404 		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
405 	} while (new_old != old);
406 	return true;
407 }
408 
409 /*
410  * Let the RCU core know that this CPU has gone through the scheduler,
411  * which is a quiescent state.  This is called when the need for a
412  * quiescent state is urgent, so we burn an atomic operation and full
413  * memory barriers to let the RCU core know about it, regardless of what
414  * this CPU might (or might not) do in the near future.
415  *
416  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
417  *
418  * The caller must have disabled interrupts and must not be idle.
419  */
420 notrace void rcu_momentary_dyntick_idle(void)
421 {
422 	int special;
423 
424 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
425 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
426 				    &this_cpu_ptr(&rcu_data)->dynticks);
427 	/* It is illegal to call this from idle state. */
428 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
429 	rcu_preempt_deferred_qs(current);
430 }
431 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
432 
433 /**
434  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
435  *
436  * If the current CPU is idle and running at a first-level (not nested)
437  * interrupt, or directly, from idle, return true.
438  *
439  * The caller must have at least disabled IRQs.
440  */
441 static int rcu_is_cpu_rrupt_from_idle(void)
442 {
443 	long nesting;
444 
445 	/*
446 	 * Usually called from the tick; but also used from smp_function_call()
447 	 * for expedited grace periods. This latter can result in running from
448 	 * the idle task, instead of an actual IPI.
449 	 */
450 	lockdep_assert_irqs_disabled();
451 
452 	/* Check for counter underflows */
453 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
454 			 "RCU dynticks_nesting counter underflow!");
455 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
456 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
457 
458 	/* Are we at first interrupt nesting level? */
459 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
460 	if (nesting > 1)
461 		return false;
462 
463 	/*
464 	 * If we're not in an interrupt, we must be in the idle task!
465 	 */
466 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
467 
468 	/* Does CPU appear to be idle from an RCU standpoint? */
469 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
470 }
471 
472 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
473 				// Maximum callbacks per rcu_do_batch ...
474 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
475 static long blimit = DEFAULT_RCU_BLIMIT;
476 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
477 static long qhimark = DEFAULT_RCU_QHIMARK;
478 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
479 static long qlowmark = DEFAULT_RCU_QLOMARK;
480 #define DEFAULT_RCU_QOVLD_MULT 2
481 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
482 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
483 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
484 
485 module_param(blimit, long, 0444);
486 module_param(qhimark, long, 0444);
487 module_param(qlowmark, long, 0444);
488 module_param(qovld, long, 0444);
489 
490 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
491 static ulong jiffies_till_next_fqs = ULONG_MAX;
492 static bool rcu_kick_kthreads;
493 static int rcu_divisor = 7;
494 module_param(rcu_divisor, int, 0644);
495 
496 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
497 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
498 module_param(rcu_resched_ns, long, 0644);
499 
500 /*
501  * How long the grace period must be before we start recruiting
502  * quiescent-state help from rcu_note_context_switch().
503  */
504 static ulong jiffies_till_sched_qs = ULONG_MAX;
505 module_param(jiffies_till_sched_qs, ulong, 0444);
506 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
507 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
508 
509 /*
510  * Make sure that we give the grace-period kthread time to detect any
511  * idle CPUs before taking active measures to force quiescent states.
512  * However, don't go below 100 milliseconds, adjusted upwards for really
513  * large systems.
514  */
515 static void adjust_jiffies_till_sched_qs(void)
516 {
517 	unsigned long j;
518 
519 	/* If jiffies_till_sched_qs was specified, respect the request. */
520 	if (jiffies_till_sched_qs != ULONG_MAX) {
521 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
522 		return;
523 	}
524 	/* Otherwise, set to third fqs scan, but bound below on large system. */
525 	j = READ_ONCE(jiffies_till_first_fqs) +
526 		      2 * READ_ONCE(jiffies_till_next_fqs);
527 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
528 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
529 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
530 	WRITE_ONCE(jiffies_to_sched_qs, j);
531 }
532 
533 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
534 {
535 	ulong j;
536 	int ret = kstrtoul(val, 0, &j);
537 
538 	if (!ret) {
539 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
540 		adjust_jiffies_till_sched_qs();
541 	}
542 	return ret;
543 }
544 
545 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
546 {
547 	ulong j;
548 	int ret = kstrtoul(val, 0, &j);
549 
550 	if (!ret) {
551 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
552 		adjust_jiffies_till_sched_qs();
553 	}
554 	return ret;
555 }
556 
557 static const struct kernel_param_ops first_fqs_jiffies_ops = {
558 	.set = param_set_first_fqs_jiffies,
559 	.get = param_get_ulong,
560 };
561 
562 static const struct kernel_param_ops next_fqs_jiffies_ops = {
563 	.set = param_set_next_fqs_jiffies,
564 	.get = param_get_ulong,
565 };
566 
567 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
568 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
569 module_param(rcu_kick_kthreads, bool, 0644);
570 
571 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
572 static int rcu_pending(int user);
573 
574 /*
575  * Return the number of RCU GPs completed thus far for debug & stats.
576  */
577 unsigned long rcu_get_gp_seq(void)
578 {
579 	return READ_ONCE(rcu_state.gp_seq);
580 }
581 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
582 
583 /*
584  * Return the number of RCU expedited batches completed thus far for
585  * debug & stats.  Odd numbers mean that a batch is in progress, even
586  * numbers mean idle.  The value returned will thus be roughly double
587  * the cumulative batches since boot.
588  */
589 unsigned long rcu_exp_batches_completed(void)
590 {
591 	return rcu_state.expedited_sequence;
592 }
593 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
594 
595 /*
596  * Return the root node of the rcu_state structure.
597  */
598 static struct rcu_node *rcu_get_root(void)
599 {
600 	return &rcu_state.node[0];
601 }
602 
603 /*
604  * Send along grace-period-related data for rcutorture diagnostics.
605  */
606 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
607 			    unsigned long *gp_seq)
608 {
609 	switch (test_type) {
610 	case RCU_FLAVOR:
611 		*flags = READ_ONCE(rcu_state.gp_flags);
612 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
613 		break;
614 	default:
615 		break;
616 	}
617 }
618 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
619 
620 /*
621  * Enter an RCU extended quiescent state, which can be either the
622  * idle loop or adaptive-tickless usermode execution.
623  *
624  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
625  * the possibility of usermode upcalls having messed up our count
626  * of interrupt nesting level during the prior busy period.
627  */
628 static noinstr void rcu_eqs_enter(bool user)
629 {
630 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
631 
632 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
633 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
634 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
635 		     rdp->dynticks_nesting == 0);
636 	if (rdp->dynticks_nesting != 1) {
637 		// RCU will still be watching, so just do accounting and leave.
638 		rdp->dynticks_nesting--;
639 		return;
640 	}
641 
642 	lockdep_assert_irqs_disabled();
643 	instrumentation_begin();
644 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
645 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
646 	rdp = this_cpu_ptr(&rcu_data);
647 	do_nocb_deferred_wakeup(rdp);
648 	rcu_prepare_for_idle();
649 	rcu_preempt_deferred_qs(current);
650 
651 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
652 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
653 
654 	instrumentation_end();
655 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
656 	// RCU is watching here ...
657 	rcu_dynticks_eqs_enter();
658 	// ... but is no longer watching here.
659 	rcu_dynticks_task_enter();
660 }
661 
662 /**
663  * rcu_idle_enter - inform RCU that current CPU is entering idle
664  *
665  * Enter idle mode, in other words, -leave- the mode in which RCU
666  * read-side critical sections can occur.  (Though RCU read-side
667  * critical sections can occur in irq handlers in idle, a possibility
668  * handled by irq_enter() and irq_exit().)
669  *
670  * If you add or remove a call to rcu_idle_enter(), be sure to test with
671  * CONFIG_RCU_EQS_DEBUG=y.
672  */
673 void rcu_idle_enter(void)
674 {
675 	lockdep_assert_irqs_disabled();
676 	rcu_eqs_enter(false);
677 }
678 EXPORT_SYMBOL_GPL(rcu_idle_enter);
679 
680 #ifdef CONFIG_NO_HZ_FULL
681 /**
682  * rcu_user_enter - inform RCU that we are resuming userspace.
683  *
684  * Enter RCU idle mode right before resuming userspace.  No use of RCU
685  * is permitted between this call and rcu_user_exit(). This way the
686  * CPU doesn't need to maintain the tick for RCU maintenance purposes
687  * when the CPU runs in userspace.
688  *
689  * If you add or remove a call to rcu_user_enter(), be sure to test with
690  * CONFIG_RCU_EQS_DEBUG=y.
691  */
692 noinstr void rcu_user_enter(void)
693 {
694 	lockdep_assert_irqs_disabled();
695 	rcu_eqs_enter(true);
696 }
697 #endif /* CONFIG_NO_HZ_FULL */
698 
699 /**
700  * rcu_nmi_exit - inform RCU of exit from NMI context
701  *
702  * If we are returning from the outermost NMI handler that interrupted an
703  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
704  * to let the RCU grace-period handling know that the CPU is back to
705  * being RCU-idle.
706  *
707  * If you add or remove a call to rcu_nmi_exit(), be sure to test
708  * with CONFIG_RCU_EQS_DEBUG=y.
709  */
710 noinstr void rcu_nmi_exit(void)
711 {
712 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
713 
714 	instrumentation_begin();
715 	/*
716 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
717 	 * (We are exiting an NMI handler, so RCU better be paying attention
718 	 * to us!)
719 	 */
720 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
721 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
722 
723 	/*
724 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
725 	 * leave it in non-RCU-idle state.
726 	 */
727 	if (rdp->dynticks_nmi_nesting != 1) {
728 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
729 				  atomic_read(&rdp->dynticks));
730 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
731 			   rdp->dynticks_nmi_nesting - 2);
732 		instrumentation_end();
733 		return;
734 	}
735 
736 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
737 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
738 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
739 
740 	if (!in_nmi())
741 		rcu_prepare_for_idle();
742 
743 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
744 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
745 	instrumentation_end();
746 
747 	// RCU is watching here ...
748 	rcu_dynticks_eqs_enter();
749 	// ... but is no longer watching here.
750 
751 	if (!in_nmi())
752 		rcu_dynticks_task_enter();
753 }
754 
755 /**
756  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
757  *
758  * Exit from an interrupt handler, which might possibly result in entering
759  * idle mode, in other words, leaving the mode in which read-side critical
760  * sections can occur.  The caller must have disabled interrupts.
761  *
762  * This code assumes that the idle loop never does anything that might
763  * result in unbalanced calls to irq_enter() and irq_exit().  If your
764  * architecture's idle loop violates this assumption, RCU will give you what
765  * you deserve, good and hard.  But very infrequently and irreproducibly.
766  *
767  * Use things like work queues to work around this limitation.
768  *
769  * You have been warned.
770  *
771  * If you add or remove a call to rcu_irq_exit(), be sure to test with
772  * CONFIG_RCU_EQS_DEBUG=y.
773  */
774 void noinstr rcu_irq_exit(void)
775 {
776 	lockdep_assert_irqs_disabled();
777 	rcu_nmi_exit();
778 }
779 
780 /**
781  * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
782  *			  towards in kernel preemption
783  *
784  * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
785  * from RCU point of view. Invoked from return from interrupt before kernel
786  * preemption.
787  */
788 void rcu_irq_exit_preempt(void)
789 {
790 	lockdep_assert_irqs_disabled();
791 	rcu_nmi_exit();
792 
793 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
794 			 "RCU dynticks_nesting counter underflow/zero!");
795 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
796 			 DYNTICK_IRQ_NONIDLE,
797 			 "Bad RCU  dynticks_nmi_nesting counter\n");
798 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
799 			 "RCU in extended quiescent state!");
800 }
801 
802 #ifdef CONFIG_PROVE_RCU
803 /**
804  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
805  */
806 void rcu_irq_exit_check_preempt(void)
807 {
808 	lockdep_assert_irqs_disabled();
809 
810 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
811 			 "RCU dynticks_nesting counter underflow/zero!");
812 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
813 			 DYNTICK_IRQ_NONIDLE,
814 			 "Bad RCU  dynticks_nmi_nesting counter\n");
815 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
816 			 "RCU in extended quiescent state!");
817 }
818 #endif /* #ifdef CONFIG_PROVE_RCU */
819 
820 /*
821  * Wrapper for rcu_irq_exit() where interrupts are enabled.
822  *
823  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
824  * with CONFIG_RCU_EQS_DEBUG=y.
825  */
826 void rcu_irq_exit_irqson(void)
827 {
828 	unsigned long flags;
829 
830 	local_irq_save(flags);
831 	rcu_irq_exit();
832 	local_irq_restore(flags);
833 }
834 
835 /*
836  * Exit an RCU extended quiescent state, which can be either the
837  * idle loop or adaptive-tickless usermode execution.
838  *
839  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
840  * allow for the possibility of usermode upcalls messing up our count of
841  * interrupt nesting level during the busy period that is just now starting.
842  */
843 static void noinstr rcu_eqs_exit(bool user)
844 {
845 	struct rcu_data *rdp;
846 	long oldval;
847 
848 	lockdep_assert_irqs_disabled();
849 	rdp = this_cpu_ptr(&rcu_data);
850 	oldval = rdp->dynticks_nesting;
851 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
852 	if (oldval) {
853 		// RCU was already watching, so just do accounting and leave.
854 		rdp->dynticks_nesting++;
855 		return;
856 	}
857 	rcu_dynticks_task_exit();
858 	// RCU is not watching here ...
859 	rcu_dynticks_eqs_exit();
860 	// ... but is watching here.
861 	instrumentation_begin();
862 
863 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
864 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
865 
866 	rcu_cleanup_after_idle();
867 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
868 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
869 	WRITE_ONCE(rdp->dynticks_nesting, 1);
870 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
871 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
872 	instrumentation_end();
873 }
874 
875 /**
876  * rcu_idle_exit - inform RCU that current CPU is leaving idle
877  *
878  * Exit idle mode, in other words, -enter- the mode in which RCU
879  * read-side critical sections can occur.
880  *
881  * If you add or remove a call to rcu_idle_exit(), be sure to test with
882  * CONFIG_RCU_EQS_DEBUG=y.
883  */
884 void rcu_idle_exit(void)
885 {
886 	unsigned long flags;
887 
888 	local_irq_save(flags);
889 	rcu_eqs_exit(false);
890 	local_irq_restore(flags);
891 }
892 EXPORT_SYMBOL_GPL(rcu_idle_exit);
893 
894 #ifdef CONFIG_NO_HZ_FULL
895 /**
896  * rcu_user_exit - inform RCU that we are exiting userspace.
897  *
898  * Exit RCU idle mode while entering the kernel because it can
899  * run a RCU read side critical section anytime.
900  *
901  * If you add or remove a call to rcu_user_exit(), be sure to test with
902  * CONFIG_RCU_EQS_DEBUG=y.
903  */
904 void noinstr rcu_user_exit(void)
905 {
906 	rcu_eqs_exit(1);
907 }
908 
909 /**
910  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
911  *
912  * The scheduler tick is not normally enabled when CPUs enter the kernel
913  * from nohz_full userspace execution.  After all, nohz_full userspace
914  * execution is an RCU quiescent state and the time executing in the kernel
915  * is quite short.  Except of course when it isn't.  And it is not hard to
916  * cause a large system to spend tens of seconds or even minutes looping
917  * in the kernel, which can cause a number of problems, include RCU CPU
918  * stall warnings.
919  *
920  * Therefore, if a nohz_full CPU fails to report a quiescent state
921  * in a timely manner, the RCU grace-period kthread sets that CPU's
922  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
923  * exception will invoke this function, which will turn on the scheduler
924  * tick, which will enable RCU to detect that CPU's quiescent states,
925  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
926  * The tick will be disabled once a quiescent state is reported for
927  * this CPU.
928  *
929  * Of course, in carefully tuned systems, there might never be an
930  * interrupt or exception.  In that case, the RCU grace-period kthread
931  * will eventually cause one to happen.  However, in less carefully
932  * controlled environments, this function allows RCU to get what it
933  * needs without creating otherwise useless interruptions.
934  */
935 void __rcu_irq_enter_check_tick(void)
936 {
937 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
938 
939 	// If we're here from NMI there's nothing to do.
940 	if (in_nmi())
941 		return;
942 
943 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
944 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
945 
946 	if (!tick_nohz_full_cpu(rdp->cpu) ||
947 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
948 	    READ_ONCE(rdp->rcu_forced_tick)) {
949 		// RCU doesn't need nohz_full help from this CPU, or it is
950 		// already getting that help.
951 		return;
952 	}
953 
954 	// We get here only when not in an extended quiescent state and
955 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
956 	// already watching and (2) The fact that we are in an interrupt
957 	// handler and that the rcu_node lock is an irq-disabled lock
958 	// prevents self-deadlock.  So we can safely recheck under the lock.
959 	// Note that the nohz_full state currently cannot change.
960 	raw_spin_lock_rcu_node(rdp->mynode);
961 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
962 		// A nohz_full CPU is in the kernel and RCU needs a
963 		// quiescent state.  Turn on the tick!
964 		WRITE_ONCE(rdp->rcu_forced_tick, true);
965 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
966 	}
967 	raw_spin_unlock_rcu_node(rdp->mynode);
968 }
969 #endif /* CONFIG_NO_HZ_FULL */
970 
971 /**
972  * rcu_nmi_enter - inform RCU of entry to NMI context
973  *
974  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
975  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
976  * that the CPU is active.  This implementation permits nested NMIs, as
977  * long as the nesting level does not overflow an int.  (You will probably
978  * run out of stack space first.)
979  *
980  * If you add or remove a call to rcu_nmi_enter(), be sure to test
981  * with CONFIG_RCU_EQS_DEBUG=y.
982  */
983 noinstr void rcu_nmi_enter(void)
984 {
985 	long incby = 2;
986 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
987 
988 	/* Complain about underflow. */
989 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
990 
991 	/*
992 	 * If idle from RCU viewpoint, atomically increment ->dynticks
993 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
994 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
995 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
996 	 * to be in the outermost NMI handler that interrupted an RCU-idle
997 	 * period (observation due to Andy Lutomirski).
998 	 */
999 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1000 
1001 		if (!in_nmi())
1002 			rcu_dynticks_task_exit();
1003 
1004 		// RCU is not watching here ...
1005 		rcu_dynticks_eqs_exit();
1006 		// ... but is watching here.
1007 
1008 		if (!in_nmi()) {
1009 			instrumentation_begin();
1010 			rcu_cleanup_after_idle();
1011 			instrumentation_end();
1012 		}
1013 
1014 		instrumentation_begin();
1015 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1016 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1017 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1018 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1019 
1020 		incby = 1;
1021 	} else if (!in_nmi()) {
1022 		instrumentation_begin();
1023 		rcu_irq_enter_check_tick();
1024 		instrumentation_end();
1025 	} else  {
1026 		instrumentation_begin();
1027 	}
1028 
1029 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1030 			  rdp->dynticks_nmi_nesting,
1031 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1032 	instrumentation_end();
1033 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1034 		   rdp->dynticks_nmi_nesting + incby);
1035 	barrier();
1036 }
1037 
1038 /**
1039  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1040  *
1041  * Enter an interrupt handler, which might possibly result in exiting
1042  * idle mode, in other words, entering the mode in which read-side critical
1043  * sections can occur.  The caller must have disabled interrupts.
1044  *
1045  * Note that the Linux kernel is fully capable of entering an interrupt
1046  * handler that it never exits, for example when doing upcalls to user mode!
1047  * This code assumes that the idle loop never does upcalls to user mode.
1048  * If your architecture's idle loop does do upcalls to user mode (or does
1049  * anything else that results in unbalanced calls to the irq_enter() and
1050  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1051  * But very infrequently and irreproducibly.
1052  *
1053  * Use things like work queues to work around this limitation.
1054  *
1055  * You have been warned.
1056  *
1057  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1058  * CONFIG_RCU_EQS_DEBUG=y.
1059  */
1060 noinstr void rcu_irq_enter(void)
1061 {
1062 	lockdep_assert_irqs_disabled();
1063 	rcu_nmi_enter();
1064 }
1065 
1066 /*
1067  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1068  *
1069  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1070  * with CONFIG_RCU_EQS_DEBUG=y.
1071  */
1072 void rcu_irq_enter_irqson(void)
1073 {
1074 	unsigned long flags;
1075 
1076 	local_irq_save(flags);
1077 	rcu_irq_enter();
1078 	local_irq_restore(flags);
1079 }
1080 
1081 /*
1082  * If any sort of urgency was applied to the current CPU (for example,
1083  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1084  * to get to a quiescent state, disable it.
1085  */
1086 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1087 {
1088 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1089 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1090 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1091 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1092 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1093 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1094 	}
1095 }
1096 
1097 /**
1098  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1099  *
1100  * Return true if RCU is watching the running CPU, which means that this
1101  * CPU can safely enter RCU read-side critical sections.  In other words,
1102  * if the current CPU is not in its idle loop or is in an interrupt or
1103  * NMI handler, return true.
1104  *
1105  * Make notrace because it can be called by the internal functions of
1106  * ftrace, and making this notrace removes unnecessary recursion calls.
1107  */
1108 notrace bool rcu_is_watching(void)
1109 {
1110 	bool ret;
1111 
1112 	preempt_disable_notrace();
1113 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1114 	preempt_enable_notrace();
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL_GPL(rcu_is_watching);
1118 
1119 /*
1120  * If a holdout task is actually running, request an urgent quiescent
1121  * state from its CPU.  This is unsynchronized, so migrations can cause
1122  * the request to go to the wrong CPU.  Which is OK, all that will happen
1123  * is that the CPU's next context switch will be a bit slower and next
1124  * time around this task will generate another request.
1125  */
1126 void rcu_request_urgent_qs_task(struct task_struct *t)
1127 {
1128 	int cpu;
1129 
1130 	barrier();
1131 	cpu = task_cpu(t);
1132 	if (!task_curr(t))
1133 		return; /* This task is not running on that CPU. */
1134 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1135 }
1136 
1137 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1138 
1139 /*
1140  * Is the current CPU online as far as RCU is concerned?
1141  *
1142  * Disable preemption to avoid false positives that could otherwise
1143  * happen due to the current CPU number being sampled, this task being
1144  * preempted, its old CPU being taken offline, resuming on some other CPU,
1145  * then determining that its old CPU is now offline.
1146  *
1147  * Disable checking if in an NMI handler because we cannot safely
1148  * report errors from NMI handlers anyway.  In addition, it is OK to use
1149  * RCU on an offline processor during initial boot, hence the check for
1150  * rcu_scheduler_fully_active.
1151  */
1152 bool rcu_lockdep_current_cpu_online(void)
1153 {
1154 	struct rcu_data *rdp;
1155 	struct rcu_node *rnp;
1156 	bool ret = false;
1157 
1158 	if (in_nmi() || !rcu_scheduler_fully_active)
1159 		return true;
1160 	preempt_disable_notrace();
1161 	rdp = this_cpu_ptr(&rcu_data);
1162 	rnp = rdp->mynode;
1163 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1164 		ret = true;
1165 	preempt_enable_notrace();
1166 	return ret;
1167 }
1168 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1169 
1170 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1171 
1172 /*
1173  * We are reporting a quiescent state on behalf of some other CPU, so
1174  * it is our responsibility to check for and handle potential overflow
1175  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1176  * After all, the CPU might be in deep idle state, and thus executing no
1177  * code whatsoever.
1178  */
1179 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1180 {
1181 	raw_lockdep_assert_held_rcu_node(rnp);
1182 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1183 			 rnp->gp_seq))
1184 		WRITE_ONCE(rdp->gpwrap, true);
1185 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1186 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1187 }
1188 
1189 /*
1190  * Snapshot the specified CPU's dynticks counter so that we can later
1191  * credit them with an implicit quiescent state.  Return 1 if this CPU
1192  * is in dynticks idle mode, which is an extended quiescent state.
1193  */
1194 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1195 {
1196 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1197 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1198 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1199 		rcu_gpnum_ovf(rdp->mynode, rdp);
1200 		return 1;
1201 	}
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Return true if the specified CPU has passed through a quiescent
1207  * state by virtue of being in or having passed through an dynticks
1208  * idle state since the last call to dyntick_save_progress_counter()
1209  * for this same CPU, or by virtue of having been offline.
1210  */
1211 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1212 {
1213 	unsigned long jtsq;
1214 	bool *rnhqp;
1215 	bool *ruqp;
1216 	struct rcu_node *rnp = rdp->mynode;
1217 
1218 	/*
1219 	 * If the CPU passed through or entered a dynticks idle phase with
1220 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1221 	 * already acknowledged the request to pass through a quiescent
1222 	 * state.  Either way, that CPU cannot possibly be in an RCU
1223 	 * read-side critical section that started before the beginning
1224 	 * of the current RCU grace period.
1225 	 */
1226 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1227 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1228 		rcu_gpnum_ovf(rnp, rdp);
1229 		return 1;
1230 	}
1231 
1232 	/*
1233 	 * Complain if a CPU that is considered to be offline from RCU's
1234 	 * perspective has not yet reported a quiescent state.  After all,
1235 	 * the offline CPU should have reported a quiescent state during
1236 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1237 	 * if it ran concurrently with either the CPU going offline or the
1238 	 * last task on a leaf rcu_node structure exiting its RCU read-side
1239 	 * critical section while all CPUs corresponding to that structure
1240 	 * are offline.  This added warning detects bugs in any of these
1241 	 * code paths.
1242 	 *
1243 	 * The rcu_node structure's ->lock is held here, which excludes
1244 	 * the relevant portions the CPU-hotplug code, the grace-period
1245 	 * initialization code, and the rcu_read_unlock() code paths.
1246 	 *
1247 	 * For more detail, please refer to the "Hotplug CPU" section
1248 	 * of RCU's Requirements documentation.
1249 	 */
1250 	if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1251 		bool onl;
1252 		struct rcu_node *rnp1;
1253 
1254 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1255 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1256 			(long)rnp->gp_seq, (long)rnp->completedqs);
1257 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1258 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1259 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1260 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1261 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1262 			__func__, rdp->cpu, ".o"[onl],
1263 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1264 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1265 		return 1; /* Break things loose after complaining. */
1266 	}
1267 
1268 	/*
1269 	 * A CPU running for an extended time within the kernel can
1270 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1271 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1272 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1273 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1274 	 * variable are safe because the assignments are repeated if this
1275 	 * CPU failed to pass through a quiescent state.  This code
1276 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1277 	 * is set way high.
1278 	 */
1279 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1280 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1281 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1282 	if (!READ_ONCE(*rnhqp) &&
1283 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1284 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1285 	     rcu_state.cbovld)) {
1286 		WRITE_ONCE(*rnhqp, true);
1287 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1288 		smp_store_release(ruqp, true);
1289 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1290 		WRITE_ONCE(*ruqp, true);
1291 	}
1292 
1293 	/*
1294 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1295 	 * The above code handles this, but only for straight cond_resched().
1296 	 * And some in-kernel loops check need_resched() before calling
1297 	 * cond_resched(), which defeats the above code for CPUs that are
1298 	 * running in-kernel with scheduling-clock interrupts disabled.
1299 	 * So hit them over the head with the resched_cpu() hammer!
1300 	 */
1301 	if (tick_nohz_full_cpu(rdp->cpu) &&
1302 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1303 	     rcu_state.cbovld)) {
1304 		WRITE_ONCE(*ruqp, true);
1305 		resched_cpu(rdp->cpu);
1306 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1307 	}
1308 
1309 	/*
1310 	 * If more than halfway to RCU CPU stall-warning time, invoke
1311 	 * resched_cpu() more frequently to try to loosen things up a bit.
1312 	 * Also check to see if the CPU is getting hammered with interrupts,
1313 	 * but only once per grace period, just to keep the IPIs down to
1314 	 * a dull roar.
1315 	 */
1316 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1317 		if (time_after(jiffies,
1318 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1319 			resched_cpu(rdp->cpu);
1320 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1321 		}
1322 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1323 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1324 		    (rnp->ffmask & rdp->grpmask)) {
1325 			rdp->rcu_iw_pending = true;
1326 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1327 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1328 		}
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1335 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1336 			      unsigned long gp_seq_req, const char *s)
1337 {
1338 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1339 				      gp_seq_req, rnp->level,
1340 				      rnp->grplo, rnp->grphi, s);
1341 }
1342 
1343 /*
1344  * rcu_start_this_gp - Request the start of a particular grace period
1345  * @rnp_start: The leaf node of the CPU from which to start.
1346  * @rdp: The rcu_data corresponding to the CPU from which to start.
1347  * @gp_seq_req: The gp_seq of the grace period to start.
1348  *
1349  * Start the specified grace period, as needed to handle newly arrived
1350  * callbacks.  The required future grace periods are recorded in each
1351  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1352  * is reason to awaken the grace-period kthread.
1353  *
1354  * The caller must hold the specified rcu_node structure's ->lock, which
1355  * is why the caller is responsible for waking the grace-period kthread.
1356  *
1357  * Returns true if the GP thread needs to be awakened else false.
1358  */
1359 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1360 			      unsigned long gp_seq_req)
1361 {
1362 	bool ret = false;
1363 	struct rcu_node *rnp;
1364 
1365 	/*
1366 	 * Use funnel locking to either acquire the root rcu_node
1367 	 * structure's lock or bail out if the need for this grace period
1368 	 * has already been recorded -- or if that grace period has in
1369 	 * fact already started.  If there is already a grace period in
1370 	 * progress in a non-leaf node, no recording is needed because the
1371 	 * end of the grace period will scan the leaf rcu_node structures.
1372 	 * Note that rnp_start->lock must not be released.
1373 	 */
1374 	raw_lockdep_assert_held_rcu_node(rnp_start);
1375 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1376 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1377 		if (rnp != rnp_start)
1378 			raw_spin_lock_rcu_node(rnp);
1379 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1380 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1381 		    (rnp != rnp_start &&
1382 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1383 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1384 					  TPS("Prestarted"));
1385 			goto unlock_out;
1386 		}
1387 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1388 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1389 			/*
1390 			 * We just marked the leaf or internal node, and a
1391 			 * grace period is in progress, which means that
1392 			 * rcu_gp_cleanup() will see the marking.  Bail to
1393 			 * reduce contention.
1394 			 */
1395 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1396 					  TPS("Startedleaf"));
1397 			goto unlock_out;
1398 		}
1399 		if (rnp != rnp_start && rnp->parent != NULL)
1400 			raw_spin_unlock_rcu_node(rnp);
1401 		if (!rnp->parent)
1402 			break;  /* At root, and perhaps also leaf. */
1403 	}
1404 
1405 	/* If GP already in progress, just leave, otherwise start one. */
1406 	if (rcu_gp_in_progress()) {
1407 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1408 		goto unlock_out;
1409 	}
1410 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1411 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1412 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1413 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1414 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1415 		goto unlock_out;
1416 	}
1417 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1418 	ret = true;  /* Caller must wake GP kthread. */
1419 unlock_out:
1420 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1421 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1422 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1423 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1424 	}
1425 	if (rnp != rnp_start)
1426 		raw_spin_unlock_rcu_node(rnp);
1427 	return ret;
1428 }
1429 
1430 /*
1431  * Clean up any old requests for the just-ended grace period.  Also return
1432  * whether any additional grace periods have been requested.
1433  */
1434 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1435 {
1436 	bool needmore;
1437 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1438 
1439 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1440 	if (!needmore)
1441 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1442 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1443 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1444 	return needmore;
1445 }
1446 
1447 /*
1448  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1449  * interrupt or softirq handler, in which case we just might immediately
1450  * sleep upon return, resulting in a grace-period hang), and don't bother
1451  * awakening when there is nothing for the grace-period kthread to do
1452  * (as in several CPUs raced to awaken, we lost), and finally don't try
1453  * to awaken a kthread that has not yet been created.  If all those checks
1454  * are passed, track some debug information and awaken.
1455  *
1456  * So why do the self-wakeup when in an interrupt or softirq handler
1457  * in the grace-period kthread's context?  Because the kthread might have
1458  * been interrupted just as it was going to sleep, and just after the final
1459  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1460  * is required, and is therefore supplied.
1461  */
1462 static void rcu_gp_kthread_wake(void)
1463 {
1464 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1465 
1466 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1467 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1468 		return;
1469 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1470 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1471 	swake_up_one(&rcu_state.gp_wq);
1472 }
1473 
1474 /*
1475  * If there is room, assign a ->gp_seq number to any callbacks on this
1476  * CPU that have not already been assigned.  Also accelerate any callbacks
1477  * that were previously assigned a ->gp_seq number that has since proven
1478  * to be too conservative, which can happen if callbacks get assigned a
1479  * ->gp_seq number while RCU is idle, but with reference to a non-root
1480  * rcu_node structure.  This function is idempotent, so it does not hurt
1481  * to call it repeatedly.  Returns an flag saying that we should awaken
1482  * the RCU grace-period kthread.
1483  *
1484  * The caller must hold rnp->lock with interrupts disabled.
1485  */
1486 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1487 {
1488 	unsigned long gp_seq_req;
1489 	bool ret = false;
1490 
1491 	rcu_lockdep_assert_cblist_protected(rdp);
1492 	raw_lockdep_assert_held_rcu_node(rnp);
1493 
1494 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1495 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1496 		return false;
1497 
1498 	/*
1499 	 * Callbacks are often registered with incomplete grace-period
1500 	 * information.  Something about the fact that getting exact
1501 	 * information requires acquiring a global lock...  RCU therefore
1502 	 * makes a conservative estimate of the grace period number at which
1503 	 * a given callback will become ready to invoke.	The following
1504 	 * code checks this estimate and improves it when possible, thus
1505 	 * accelerating callback invocation to an earlier grace-period
1506 	 * number.
1507 	 */
1508 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1509 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1510 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1511 
1512 	/* Trace depending on how much we were able to accelerate. */
1513 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1514 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1515 	else
1516 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1517 
1518 	return ret;
1519 }
1520 
1521 /*
1522  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1523  * rcu_node structure's ->lock be held.  It consults the cached value
1524  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1525  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1526  * while holding the leaf rcu_node structure's ->lock.
1527  */
1528 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1529 					struct rcu_data *rdp)
1530 {
1531 	unsigned long c;
1532 	bool needwake;
1533 
1534 	rcu_lockdep_assert_cblist_protected(rdp);
1535 	c = rcu_seq_snap(&rcu_state.gp_seq);
1536 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1537 		/* Old request still live, so mark recent callbacks. */
1538 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1539 		return;
1540 	}
1541 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1542 	needwake = rcu_accelerate_cbs(rnp, rdp);
1543 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1544 	if (needwake)
1545 		rcu_gp_kthread_wake();
1546 }
1547 
1548 /*
1549  * Move any callbacks whose grace period has completed to the
1550  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1551  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1552  * sublist.  This function is idempotent, so it does not hurt to
1553  * invoke it repeatedly.  As long as it is not invoked -too- often...
1554  * Returns true if the RCU grace-period kthread needs to be awakened.
1555  *
1556  * The caller must hold rnp->lock with interrupts disabled.
1557  */
1558 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1559 {
1560 	rcu_lockdep_assert_cblist_protected(rdp);
1561 	raw_lockdep_assert_held_rcu_node(rnp);
1562 
1563 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1564 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1565 		return false;
1566 
1567 	/*
1568 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1569 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1570 	 */
1571 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1572 
1573 	/* Classify any remaining callbacks. */
1574 	return rcu_accelerate_cbs(rnp, rdp);
1575 }
1576 
1577 /*
1578  * Move and classify callbacks, but only if doing so won't require
1579  * that the RCU grace-period kthread be awakened.
1580  */
1581 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1582 						  struct rcu_data *rdp)
1583 {
1584 	rcu_lockdep_assert_cblist_protected(rdp);
1585 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1586 	    !raw_spin_trylock_rcu_node(rnp))
1587 		return;
1588 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1589 	raw_spin_unlock_rcu_node(rnp);
1590 }
1591 
1592 /*
1593  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1594  * quiescent state.  This is intended to be invoked when the CPU notices
1595  * a new grace period.
1596  */
1597 static void rcu_strict_gp_check_qs(void)
1598 {
1599 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1600 		rcu_read_lock();
1601 		rcu_read_unlock();
1602 	}
1603 }
1604 
1605 /*
1606  * Update CPU-local rcu_data state to record the beginnings and ends of
1607  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1608  * structure corresponding to the current CPU, and must have irqs disabled.
1609  * Returns true if the grace-period kthread needs to be awakened.
1610  */
1611 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1612 {
1613 	bool ret = false;
1614 	bool need_qs;
1615 	const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
1616 
1617 	raw_lockdep_assert_held_rcu_node(rnp);
1618 
1619 	if (rdp->gp_seq == rnp->gp_seq)
1620 		return false; /* Nothing to do. */
1621 
1622 	/* Handle the ends of any preceding grace periods first. */
1623 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1624 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1625 		if (!offloaded)
1626 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1627 		rdp->core_needs_qs = false;
1628 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1629 	} else {
1630 		if (!offloaded)
1631 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1632 		if (rdp->core_needs_qs)
1633 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1634 	}
1635 
1636 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1637 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1638 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1639 		/*
1640 		 * If the current grace period is waiting for this CPU,
1641 		 * set up to detect a quiescent state, otherwise don't
1642 		 * go looking for one.
1643 		 */
1644 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1645 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1646 		rdp->cpu_no_qs.b.norm = need_qs;
1647 		rdp->core_needs_qs = need_qs;
1648 		zero_cpu_stall_ticks(rdp);
1649 	}
1650 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1651 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1652 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1653 	WRITE_ONCE(rdp->gpwrap, false);
1654 	rcu_gpnum_ovf(rnp, rdp);
1655 	return ret;
1656 }
1657 
1658 static void note_gp_changes(struct rcu_data *rdp)
1659 {
1660 	unsigned long flags;
1661 	bool needwake;
1662 	struct rcu_node *rnp;
1663 
1664 	local_irq_save(flags);
1665 	rnp = rdp->mynode;
1666 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1667 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1668 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1669 		local_irq_restore(flags);
1670 		return;
1671 	}
1672 	needwake = __note_gp_changes(rnp, rdp);
1673 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1674 	rcu_strict_gp_check_qs();
1675 	if (needwake)
1676 		rcu_gp_kthread_wake();
1677 }
1678 
1679 static void rcu_gp_slow(int delay)
1680 {
1681 	if (delay > 0 &&
1682 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1683 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1684 		schedule_timeout_idle(delay);
1685 }
1686 
1687 static unsigned long sleep_duration;
1688 
1689 /* Allow rcutorture to stall the grace-period kthread. */
1690 void rcu_gp_set_torture_wait(int duration)
1691 {
1692 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1693 		WRITE_ONCE(sleep_duration, duration);
1694 }
1695 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1696 
1697 /* Actually implement the aforementioned wait. */
1698 static void rcu_gp_torture_wait(void)
1699 {
1700 	unsigned long duration;
1701 
1702 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1703 		return;
1704 	duration = xchg(&sleep_duration, 0UL);
1705 	if (duration > 0) {
1706 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1707 		schedule_timeout_idle(duration);
1708 		pr_alert("%s: Wait complete\n", __func__);
1709 	}
1710 }
1711 
1712 /*
1713  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1714  * processing.
1715  */
1716 static void rcu_strict_gp_boundary(void *unused)
1717 {
1718 	invoke_rcu_core();
1719 }
1720 
1721 /*
1722  * Initialize a new grace period.  Return false if no grace period required.
1723  */
1724 static bool rcu_gp_init(void)
1725 {
1726 	unsigned long firstseq;
1727 	unsigned long flags;
1728 	unsigned long oldmask;
1729 	unsigned long mask;
1730 	struct rcu_data *rdp;
1731 	struct rcu_node *rnp = rcu_get_root();
1732 
1733 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1734 	raw_spin_lock_irq_rcu_node(rnp);
1735 	if (!READ_ONCE(rcu_state.gp_flags)) {
1736 		/* Spurious wakeup, tell caller to go back to sleep.  */
1737 		raw_spin_unlock_irq_rcu_node(rnp);
1738 		return false;
1739 	}
1740 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1741 
1742 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1743 		/*
1744 		 * Grace period already in progress, don't start another.
1745 		 * Not supposed to be able to happen.
1746 		 */
1747 		raw_spin_unlock_irq_rcu_node(rnp);
1748 		return false;
1749 	}
1750 
1751 	/* Advance to a new grace period and initialize state. */
1752 	record_gp_stall_check_time();
1753 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1754 	rcu_seq_start(&rcu_state.gp_seq);
1755 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1756 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1757 	raw_spin_unlock_irq_rcu_node(rnp);
1758 
1759 	/*
1760 	 * Apply per-leaf buffered online and offline operations to
1761 	 * the rcu_node tree. Note that this new grace period need not
1762 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1763 	 * offlining path, when combined with checks in this function,
1764 	 * will handle CPUs that are currently going offline or that will
1765 	 * go offline later.  Please also refer to "Hotplug CPU" section
1766 	 * of RCU's Requirements documentation.
1767 	 */
1768 	rcu_state.gp_state = RCU_GP_ONOFF;
1769 	rcu_for_each_leaf_node(rnp) {
1770 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1771 		firstseq = READ_ONCE(rnp->ofl_seq);
1772 		if (firstseq & 0x1)
1773 			while (firstseq == READ_ONCE(rnp->ofl_seq))
1774 				schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1775 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1776 		raw_spin_lock(&rcu_state.ofl_lock);
1777 		raw_spin_lock_irq_rcu_node(rnp);
1778 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1779 		    !rnp->wait_blkd_tasks) {
1780 			/* Nothing to do on this leaf rcu_node structure. */
1781 			raw_spin_unlock_irq_rcu_node(rnp);
1782 			raw_spin_unlock(&rcu_state.ofl_lock);
1783 			continue;
1784 		}
1785 
1786 		/* Record old state, apply changes to ->qsmaskinit field. */
1787 		oldmask = rnp->qsmaskinit;
1788 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1789 
1790 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1791 		if (!oldmask != !rnp->qsmaskinit) {
1792 			if (!oldmask) { /* First online CPU for rcu_node. */
1793 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1794 					rcu_init_new_rnp(rnp);
1795 			} else if (rcu_preempt_has_tasks(rnp)) {
1796 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1797 			} else { /* Last offline CPU and can propagate. */
1798 				rcu_cleanup_dead_rnp(rnp);
1799 			}
1800 		}
1801 
1802 		/*
1803 		 * If all waited-on tasks from prior grace period are
1804 		 * done, and if all this rcu_node structure's CPUs are
1805 		 * still offline, propagate up the rcu_node tree and
1806 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1807 		 * rcu_node structure's CPUs has since come back online,
1808 		 * simply clear ->wait_blkd_tasks.
1809 		 */
1810 		if (rnp->wait_blkd_tasks &&
1811 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1812 			rnp->wait_blkd_tasks = false;
1813 			if (!rnp->qsmaskinit)
1814 				rcu_cleanup_dead_rnp(rnp);
1815 		}
1816 
1817 		raw_spin_unlock_irq_rcu_node(rnp);
1818 		raw_spin_unlock(&rcu_state.ofl_lock);
1819 	}
1820 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1821 
1822 	/*
1823 	 * Set the quiescent-state-needed bits in all the rcu_node
1824 	 * structures for all currently online CPUs in breadth-first
1825 	 * order, starting from the root rcu_node structure, relying on the
1826 	 * layout of the tree within the rcu_state.node[] array.  Note that
1827 	 * other CPUs will access only the leaves of the hierarchy, thus
1828 	 * seeing that no grace period is in progress, at least until the
1829 	 * corresponding leaf node has been initialized.
1830 	 *
1831 	 * The grace period cannot complete until the initialization
1832 	 * process finishes, because this kthread handles both.
1833 	 */
1834 	rcu_state.gp_state = RCU_GP_INIT;
1835 	rcu_for_each_node_breadth_first(rnp) {
1836 		rcu_gp_slow(gp_init_delay);
1837 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1838 		rdp = this_cpu_ptr(&rcu_data);
1839 		rcu_preempt_check_blocked_tasks(rnp);
1840 		rnp->qsmask = rnp->qsmaskinit;
1841 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1842 		if (rnp == rdp->mynode)
1843 			(void)__note_gp_changes(rnp, rdp);
1844 		rcu_preempt_boost_start_gp(rnp);
1845 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1846 					    rnp->level, rnp->grplo,
1847 					    rnp->grphi, rnp->qsmask);
1848 		/* Quiescent states for tasks on any now-offline CPUs. */
1849 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1850 		rnp->rcu_gp_init_mask = mask;
1851 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1852 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1853 		else
1854 			raw_spin_unlock_irq_rcu_node(rnp);
1855 		cond_resched_tasks_rcu_qs();
1856 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1857 	}
1858 
1859 	// If strict, make all CPUs aware of new grace period.
1860 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1861 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1862 
1863 	return true;
1864 }
1865 
1866 /*
1867  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1868  * time.
1869  */
1870 static bool rcu_gp_fqs_check_wake(int *gfp)
1871 {
1872 	struct rcu_node *rnp = rcu_get_root();
1873 
1874 	// If under overload conditions, force an immediate FQS scan.
1875 	if (*gfp & RCU_GP_FLAG_OVLD)
1876 		return true;
1877 
1878 	// Someone like call_rcu() requested a force-quiescent-state scan.
1879 	*gfp = READ_ONCE(rcu_state.gp_flags);
1880 	if (*gfp & RCU_GP_FLAG_FQS)
1881 		return true;
1882 
1883 	// The current grace period has completed.
1884 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1885 		return true;
1886 
1887 	return false;
1888 }
1889 
1890 /*
1891  * Do one round of quiescent-state forcing.
1892  */
1893 static void rcu_gp_fqs(bool first_time)
1894 {
1895 	struct rcu_node *rnp = rcu_get_root();
1896 
1897 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1898 	rcu_state.n_force_qs++;
1899 	if (first_time) {
1900 		/* Collect dyntick-idle snapshots. */
1901 		force_qs_rnp(dyntick_save_progress_counter);
1902 	} else {
1903 		/* Handle dyntick-idle and offline CPUs. */
1904 		force_qs_rnp(rcu_implicit_dynticks_qs);
1905 	}
1906 	/* Clear flag to prevent immediate re-entry. */
1907 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1908 		raw_spin_lock_irq_rcu_node(rnp);
1909 		WRITE_ONCE(rcu_state.gp_flags,
1910 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1911 		raw_spin_unlock_irq_rcu_node(rnp);
1912 	}
1913 }
1914 
1915 /*
1916  * Loop doing repeated quiescent-state forcing until the grace period ends.
1917  */
1918 static void rcu_gp_fqs_loop(void)
1919 {
1920 	bool first_gp_fqs;
1921 	int gf = 0;
1922 	unsigned long j;
1923 	int ret;
1924 	struct rcu_node *rnp = rcu_get_root();
1925 
1926 	first_gp_fqs = true;
1927 	j = READ_ONCE(jiffies_till_first_fqs);
1928 	if (rcu_state.cbovld)
1929 		gf = RCU_GP_FLAG_OVLD;
1930 	ret = 0;
1931 	for (;;) {
1932 		if (!ret) {
1933 			rcu_state.jiffies_force_qs = jiffies + j;
1934 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1935 				   jiffies + (j ? 3 * j : 2));
1936 		}
1937 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1938 				       TPS("fqswait"));
1939 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1940 		ret = swait_event_idle_timeout_exclusive(
1941 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1942 		rcu_gp_torture_wait();
1943 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1944 		/* Locking provides needed memory barriers. */
1945 		/* If grace period done, leave loop. */
1946 		if (!READ_ONCE(rnp->qsmask) &&
1947 		    !rcu_preempt_blocked_readers_cgp(rnp))
1948 			break;
1949 		/* If time for quiescent-state forcing, do it. */
1950 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1951 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1952 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1953 					       TPS("fqsstart"));
1954 			rcu_gp_fqs(first_gp_fqs);
1955 			gf = 0;
1956 			if (first_gp_fqs) {
1957 				first_gp_fqs = false;
1958 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1959 			}
1960 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1961 					       TPS("fqsend"));
1962 			cond_resched_tasks_rcu_qs();
1963 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1964 			ret = 0; /* Force full wait till next FQS. */
1965 			j = READ_ONCE(jiffies_till_next_fqs);
1966 		} else {
1967 			/* Deal with stray signal. */
1968 			cond_resched_tasks_rcu_qs();
1969 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1970 			WARN_ON(signal_pending(current));
1971 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1972 					       TPS("fqswaitsig"));
1973 			ret = 1; /* Keep old FQS timing. */
1974 			j = jiffies;
1975 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1976 				j = 1;
1977 			else
1978 				j = rcu_state.jiffies_force_qs - j;
1979 			gf = 0;
1980 		}
1981 	}
1982 }
1983 
1984 /*
1985  * Clean up after the old grace period.
1986  */
1987 static void rcu_gp_cleanup(void)
1988 {
1989 	int cpu;
1990 	bool needgp = false;
1991 	unsigned long gp_duration;
1992 	unsigned long new_gp_seq;
1993 	bool offloaded;
1994 	struct rcu_data *rdp;
1995 	struct rcu_node *rnp = rcu_get_root();
1996 	struct swait_queue_head *sq;
1997 
1998 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1999 	raw_spin_lock_irq_rcu_node(rnp);
2000 	rcu_state.gp_end = jiffies;
2001 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2002 	if (gp_duration > rcu_state.gp_max)
2003 		rcu_state.gp_max = gp_duration;
2004 
2005 	/*
2006 	 * We know the grace period is complete, but to everyone else
2007 	 * it appears to still be ongoing.  But it is also the case
2008 	 * that to everyone else it looks like there is nothing that
2009 	 * they can do to advance the grace period.  It is therefore
2010 	 * safe for us to drop the lock in order to mark the grace
2011 	 * period as completed in all of the rcu_node structures.
2012 	 */
2013 	raw_spin_unlock_irq_rcu_node(rnp);
2014 
2015 	/*
2016 	 * Propagate new ->gp_seq value to rcu_node structures so that
2017 	 * other CPUs don't have to wait until the start of the next grace
2018 	 * period to process their callbacks.  This also avoids some nasty
2019 	 * RCU grace-period initialization races by forcing the end of
2020 	 * the current grace period to be completely recorded in all of
2021 	 * the rcu_node structures before the beginning of the next grace
2022 	 * period is recorded in any of the rcu_node structures.
2023 	 */
2024 	new_gp_seq = rcu_state.gp_seq;
2025 	rcu_seq_end(&new_gp_seq);
2026 	rcu_for_each_node_breadth_first(rnp) {
2027 		raw_spin_lock_irq_rcu_node(rnp);
2028 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2029 			dump_blkd_tasks(rnp, 10);
2030 		WARN_ON_ONCE(rnp->qsmask);
2031 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2032 		rdp = this_cpu_ptr(&rcu_data);
2033 		if (rnp == rdp->mynode)
2034 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2035 		/* smp_mb() provided by prior unlock-lock pair. */
2036 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2037 		// Reset overload indication for CPUs no longer overloaded
2038 		if (rcu_is_leaf_node(rnp))
2039 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2040 				rdp = per_cpu_ptr(&rcu_data, cpu);
2041 				check_cb_ovld_locked(rdp, rnp);
2042 			}
2043 		sq = rcu_nocb_gp_get(rnp);
2044 		raw_spin_unlock_irq_rcu_node(rnp);
2045 		rcu_nocb_gp_cleanup(sq);
2046 		cond_resched_tasks_rcu_qs();
2047 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2048 		rcu_gp_slow(gp_cleanup_delay);
2049 	}
2050 	rnp = rcu_get_root();
2051 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2052 
2053 	/* Declare grace period done, trace first to use old GP number. */
2054 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2055 	rcu_seq_end(&rcu_state.gp_seq);
2056 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2057 	rcu_state.gp_state = RCU_GP_IDLE;
2058 	/* Check for GP requests since above loop. */
2059 	rdp = this_cpu_ptr(&rcu_data);
2060 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2061 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2062 				  TPS("CleanupMore"));
2063 		needgp = true;
2064 	}
2065 	/* Advance CBs to reduce false positives below. */
2066 	offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
2067 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2068 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2069 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2070 		trace_rcu_grace_period(rcu_state.name,
2071 				       rcu_state.gp_seq,
2072 				       TPS("newreq"));
2073 	} else {
2074 		WRITE_ONCE(rcu_state.gp_flags,
2075 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2076 	}
2077 	raw_spin_unlock_irq_rcu_node(rnp);
2078 
2079 	// If strict, make all CPUs aware of the end of the old grace period.
2080 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2081 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2082 }
2083 
2084 /*
2085  * Body of kthread that handles grace periods.
2086  */
2087 static int __noreturn rcu_gp_kthread(void *unused)
2088 {
2089 	rcu_bind_gp_kthread();
2090 	for (;;) {
2091 
2092 		/* Handle grace-period start. */
2093 		for (;;) {
2094 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2095 					       TPS("reqwait"));
2096 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
2097 			swait_event_idle_exclusive(rcu_state.gp_wq,
2098 					 READ_ONCE(rcu_state.gp_flags) &
2099 					 RCU_GP_FLAG_INIT);
2100 			rcu_gp_torture_wait();
2101 			rcu_state.gp_state = RCU_GP_DONE_GPS;
2102 			/* Locking provides needed memory barrier. */
2103 			if (rcu_gp_init())
2104 				break;
2105 			cond_resched_tasks_rcu_qs();
2106 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2107 			WARN_ON(signal_pending(current));
2108 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2109 					       TPS("reqwaitsig"));
2110 		}
2111 
2112 		/* Handle quiescent-state forcing. */
2113 		rcu_gp_fqs_loop();
2114 
2115 		/* Handle grace-period end. */
2116 		rcu_state.gp_state = RCU_GP_CLEANUP;
2117 		rcu_gp_cleanup();
2118 		rcu_state.gp_state = RCU_GP_CLEANED;
2119 	}
2120 }
2121 
2122 /*
2123  * Report a full set of quiescent states to the rcu_state data structure.
2124  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2125  * another grace period is required.  Whether we wake the grace-period
2126  * kthread or it awakens itself for the next round of quiescent-state
2127  * forcing, that kthread will clean up after the just-completed grace
2128  * period.  Note that the caller must hold rnp->lock, which is released
2129  * before return.
2130  */
2131 static void rcu_report_qs_rsp(unsigned long flags)
2132 	__releases(rcu_get_root()->lock)
2133 {
2134 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2135 	WARN_ON_ONCE(!rcu_gp_in_progress());
2136 	WRITE_ONCE(rcu_state.gp_flags,
2137 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2138 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2139 	rcu_gp_kthread_wake();
2140 }
2141 
2142 /*
2143  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2144  * Allows quiescent states for a group of CPUs to be reported at one go
2145  * to the specified rcu_node structure, though all the CPUs in the group
2146  * must be represented by the same rcu_node structure (which need not be a
2147  * leaf rcu_node structure, though it often will be).  The gps parameter
2148  * is the grace-period snapshot, which means that the quiescent states
2149  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2150  * must be held upon entry, and it is released before return.
2151  *
2152  * As a special case, if mask is zero, the bit-already-cleared check is
2153  * disabled.  This allows propagating quiescent state due to resumed tasks
2154  * during grace-period initialization.
2155  */
2156 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2157 			      unsigned long gps, unsigned long flags)
2158 	__releases(rnp->lock)
2159 {
2160 	unsigned long oldmask = 0;
2161 	struct rcu_node *rnp_c;
2162 
2163 	raw_lockdep_assert_held_rcu_node(rnp);
2164 
2165 	/* Walk up the rcu_node hierarchy. */
2166 	for (;;) {
2167 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2168 
2169 			/*
2170 			 * Our bit has already been cleared, or the
2171 			 * relevant grace period is already over, so done.
2172 			 */
2173 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2174 			return;
2175 		}
2176 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2177 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2178 			     rcu_preempt_blocked_readers_cgp(rnp));
2179 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2180 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2181 						 mask, rnp->qsmask, rnp->level,
2182 						 rnp->grplo, rnp->grphi,
2183 						 !!rnp->gp_tasks);
2184 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2185 
2186 			/* Other bits still set at this level, so done. */
2187 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2188 			return;
2189 		}
2190 		rnp->completedqs = rnp->gp_seq;
2191 		mask = rnp->grpmask;
2192 		if (rnp->parent == NULL) {
2193 
2194 			/* No more levels.  Exit loop holding root lock. */
2195 
2196 			break;
2197 		}
2198 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2199 		rnp_c = rnp;
2200 		rnp = rnp->parent;
2201 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2202 		oldmask = READ_ONCE(rnp_c->qsmask);
2203 	}
2204 
2205 	/*
2206 	 * Get here if we are the last CPU to pass through a quiescent
2207 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2208 	 * to clean up and start the next grace period if one is needed.
2209 	 */
2210 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2211 }
2212 
2213 /*
2214  * Record a quiescent state for all tasks that were previously queued
2215  * on the specified rcu_node structure and that were blocking the current
2216  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2217  * irqs disabled, and this lock is released upon return, but irqs remain
2218  * disabled.
2219  */
2220 static void __maybe_unused
2221 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2222 	__releases(rnp->lock)
2223 {
2224 	unsigned long gps;
2225 	unsigned long mask;
2226 	struct rcu_node *rnp_p;
2227 
2228 	raw_lockdep_assert_held_rcu_node(rnp);
2229 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2230 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2231 	    rnp->qsmask != 0) {
2232 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2233 		return;  /* Still need more quiescent states! */
2234 	}
2235 
2236 	rnp->completedqs = rnp->gp_seq;
2237 	rnp_p = rnp->parent;
2238 	if (rnp_p == NULL) {
2239 		/*
2240 		 * Only one rcu_node structure in the tree, so don't
2241 		 * try to report up to its nonexistent parent!
2242 		 */
2243 		rcu_report_qs_rsp(flags);
2244 		return;
2245 	}
2246 
2247 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2248 	gps = rnp->gp_seq;
2249 	mask = rnp->grpmask;
2250 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2251 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2252 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2253 }
2254 
2255 /*
2256  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2257  * structure.  This must be called from the specified CPU.
2258  */
2259 static void
2260 rcu_report_qs_rdp(struct rcu_data *rdp)
2261 {
2262 	unsigned long flags;
2263 	unsigned long mask;
2264 	bool needwake = false;
2265 	const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
2266 	struct rcu_node *rnp;
2267 
2268 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2269 	rnp = rdp->mynode;
2270 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2271 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2272 	    rdp->gpwrap) {
2273 
2274 		/*
2275 		 * The grace period in which this quiescent state was
2276 		 * recorded has ended, so don't report it upwards.
2277 		 * We will instead need a new quiescent state that lies
2278 		 * within the current grace period.
2279 		 */
2280 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2281 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2282 		return;
2283 	}
2284 	mask = rdp->grpmask;
2285 	rdp->core_needs_qs = false;
2286 	if ((rnp->qsmask & mask) == 0) {
2287 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2288 	} else {
2289 		/*
2290 		 * This GP can't end until cpu checks in, so all of our
2291 		 * callbacks can be processed during the next GP.
2292 		 */
2293 		if (!offloaded)
2294 			needwake = rcu_accelerate_cbs(rnp, rdp);
2295 
2296 		rcu_disable_urgency_upon_qs(rdp);
2297 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2298 		/* ^^^ Released rnp->lock */
2299 		if (needwake)
2300 			rcu_gp_kthread_wake();
2301 	}
2302 }
2303 
2304 /*
2305  * Check to see if there is a new grace period of which this CPU
2306  * is not yet aware, and if so, set up local rcu_data state for it.
2307  * Otherwise, see if this CPU has just passed through its first
2308  * quiescent state for this grace period, and record that fact if so.
2309  */
2310 static void
2311 rcu_check_quiescent_state(struct rcu_data *rdp)
2312 {
2313 	/* Check for grace-period ends and beginnings. */
2314 	note_gp_changes(rdp);
2315 
2316 	/*
2317 	 * Does this CPU still need to do its part for current grace period?
2318 	 * If no, return and let the other CPUs do their part as well.
2319 	 */
2320 	if (!rdp->core_needs_qs)
2321 		return;
2322 
2323 	/*
2324 	 * Was there a quiescent state since the beginning of the grace
2325 	 * period? If no, then exit and wait for the next call.
2326 	 */
2327 	if (rdp->cpu_no_qs.b.norm)
2328 		return;
2329 
2330 	/*
2331 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2332 	 * judge of that).
2333 	 */
2334 	rcu_report_qs_rdp(rdp);
2335 }
2336 
2337 /*
2338  * Near the end of the offline process.  Trace the fact that this CPU
2339  * is going offline.
2340  */
2341 int rcutree_dying_cpu(unsigned int cpu)
2342 {
2343 	bool blkd;
2344 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2345 	struct rcu_node *rnp = rdp->mynode;
2346 
2347 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2348 		return 0;
2349 
2350 	blkd = !!(rnp->qsmask & rdp->grpmask);
2351 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2352 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2353 	return 0;
2354 }
2355 
2356 /*
2357  * All CPUs for the specified rcu_node structure have gone offline,
2358  * and all tasks that were preempted within an RCU read-side critical
2359  * section while running on one of those CPUs have since exited their RCU
2360  * read-side critical section.  Some other CPU is reporting this fact with
2361  * the specified rcu_node structure's ->lock held and interrupts disabled.
2362  * This function therefore goes up the tree of rcu_node structures,
2363  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2364  * the leaf rcu_node structure's ->qsmaskinit field has already been
2365  * updated.
2366  *
2367  * This function does check that the specified rcu_node structure has
2368  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2369  * prematurely.  That said, invoking it after the fact will cost you
2370  * a needless lock acquisition.  So once it has done its work, don't
2371  * invoke it again.
2372  */
2373 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2374 {
2375 	long mask;
2376 	struct rcu_node *rnp = rnp_leaf;
2377 
2378 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2379 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2380 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2381 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2382 		return;
2383 	for (;;) {
2384 		mask = rnp->grpmask;
2385 		rnp = rnp->parent;
2386 		if (!rnp)
2387 			break;
2388 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2389 		rnp->qsmaskinit &= ~mask;
2390 		/* Between grace periods, so better already be zero! */
2391 		WARN_ON_ONCE(rnp->qsmask);
2392 		if (rnp->qsmaskinit) {
2393 			raw_spin_unlock_rcu_node(rnp);
2394 			/* irqs remain disabled. */
2395 			return;
2396 		}
2397 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2398 	}
2399 }
2400 
2401 /*
2402  * The CPU has been completely removed, and some other CPU is reporting
2403  * this fact from process context.  Do the remainder of the cleanup.
2404  * There can only be one CPU hotplug operation at a time, so no need for
2405  * explicit locking.
2406  */
2407 int rcutree_dead_cpu(unsigned int cpu)
2408 {
2409 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2410 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2411 
2412 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2413 		return 0;
2414 
2415 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2416 	/* Adjust any no-longer-needed kthreads. */
2417 	rcu_boost_kthread_setaffinity(rnp, -1);
2418 	/* Do any needed no-CB deferred wakeups from this CPU. */
2419 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2420 
2421 	// Stop-machine done, so allow nohz_full to disable tick.
2422 	tick_dep_clear(TICK_DEP_BIT_RCU);
2423 	return 0;
2424 }
2425 
2426 /*
2427  * Invoke any RCU callbacks that have made it to the end of their grace
2428  * period.  Thottle as specified by rdp->blimit.
2429  */
2430 static void rcu_do_batch(struct rcu_data *rdp)
2431 {
2432 	int div;
2433 	unsigned long flags;
2434 	const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
2435 	struct rcu_head *rhp;
2436 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2437 	long bl, count;
2438 	long pending, tlimit = 0;
2439 
2440 	/* If no callbacks are ready, just return. */
2441 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2442 		trace_rcu_batch_start(rcu_state.name,
2443 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2444 		trace_rcu_batch_end(rcu_state.name, 0,
2445 				    !rcu_segcblist_empty(&rdp->cblist),
2446 				    need_resched(), is_idle_task(current),
2447 				    rcu_is_callbacks_kthread());
2448 		return;
2449 	}
2450 
2451 	/*
2452 	 * Extract the list of ready callbacks, disabling to prevent
2453 	 * races with call_rcu() from interrupt handlers.  Leave the
2454 	 * callback counts, as rcu_barrier() needs to be conservative.
2455 	 */
2456 	local_irq_save(flags);
2457 	rcu_nocb_lock(rdp);
2458 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2459 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2460 	div = READ_ONCE(rcu_divisor);
2461 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2462 	bl = max(rdp->blimit, pending >> div);
2463 	if (unlikely(bl > 100)) {
2464 		long rrn = READ_ONCE(rcu_resched_ns);
2465 
2466 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2467 		tlimit = local_clock() + rrn;
2468 	}
2469 	trace_rcu_batch_start(rcu_state.name,
2470 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2471 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2472 	if (offloaded)
2473 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2474 	rcu_nocb_unlock_irqrestore(rdp, flags);
2475 
2476 	/* Invoke callbacks. */
2477 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2478 	rhp = rcu_cblist_dequeue(&rcl);
2479 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2480 		rcu_callback_t f;
2481 
2482 		debug_rcu_head_unqueue(rhp);
2483 
2484 		rcu_lock_acquire(&rcu_callback_map);
2485 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2486 
2487 		f = rhp->func;
2488 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2489 		f(rhp);
2490 
2491 		rcu_lock_release(&rcu_callback_map);
2492 
2493 		/*
2494 		 * Stop only if limit reached and CPU has something to do.
2495 		 * Note: The rcl structure counts down from zero.
2496 		 */
2497 		if (-rcl.len >= bl && !offloaded &&
2498 		    (need_resched() ||
2499 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2500 			break;
2501 		if (unlikely(tlimit)) {
2502 			/* only call local_clock() every 32 callbacks */
2503 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2504 				continue;
2505 			/* Exceeded the time limit, so leave. */
2506 			break;
2507 		}
2508 		if (offloaded) {
2509 			WARN_ON_ONCE(in_serving_softirq());
2510 			local_bh_enable();
2511 			lockdep_assert_irqs_enabled();
2512 			cond_resched_tasks_rcu_qs();
2513 			lockdep_assert_irqs_enabled();
2514 			local_bh_disable();
2515 		}
2516 	}
2517 
2518 	local_irq_save(flags);
2519 	rcu_nocb_lock(rdp);
2520 	count = -rcl.len;
2521 	rdp->n_cbs_invoked += count;
2522 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2523 			    is_idle_task(current), rcu_is_callbacks_kthread());
2524 
2525 	/* Update counts and requeue any remaining callbacks. */
2526 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2527 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2528 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2529 
2530 	/* Reinstate batch limit if we have worked down the excess. */
2531 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2532 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2533 		rdp->blimit = blimit;
2534 
2535 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2536 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2537 		rdp->qlen_last_fqs_check = 0;
2538 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2539 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2540 		rdp->qlen_last_fqs_check = count;
2541 
2542 	/*
2543 	 * The following usually indicates a double call_rcu().  To track
2544 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2545 	 */
2546 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2547 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2548 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2549 
2550 	rcu_nocb_unlock_irqrestore(rdp, flags);
2551 
2552 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2553 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2554 		invoke_rcu_core();
2555 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2556 }
2557 
2558 /*
2559  * This function is invoked from each scheduling-clock interrupt,
2560  * and checks to see if this CPU is in a non-context-switch quiescent
2561  * state, for example, user mode or idle loop.  It also schedules RCU
2562  * core processing.  If the current grace period has gone on too long,
2563  * it will ask the scheduler to manufacture a context switch for the sole
2564  * purpose of providing a providing the needed quiescent state.
2565  */
2566 void rcu_sched_clock_irq(int user)
2567 {
2568 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2569 	raw_cpu_inc(rcu_data.ticks_this_gp);
2570 	/* The load-acquire pairs with the store-release setting to true. */
2571 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2572 		/* Idle and userspace execution already are quiescent states. */
2573 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2574 			set_tsk_need_resched(current);
2575 			set_preempt_need_resched();
2576 		}
2577 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2578 	}
2579 	rcu_flavor_sched_clock_irq(user);
2580 	if (rcu_pending(user))
2581 		invoke_rcu_core();
2582 
2583 	trace_rcu_utilization(TPS("End scheduler-tick"));
2584 }
2585 
2586 /*
2587  * Scan the leaf rcu_node structures.  For each structure on which all
2588  * CPUs have reported a quiescent state and on which there are tasks
2589  * blocking the current grace period, initiate RCU priority boosting.
2590  * Otherwise, invoke the specified function to check dyntick state for
2591  * each CPU that has not yet reported a quiescent state.
2592  */
2593 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2594 {
2595 	int cpu;
2596 	unsigned long flags;
2597 	unsigned long mask;
2598 	struct rcu_data *rdp;
2599 	struct rcu_node *rnp;
2600 
2601 	rcu_state.cbovld = rcu_state.cbovldnext;
2602 	rcu_state.cbovldnext = false;
2603 	rcu_for_each_leaf_node(rnp) {
2604 		cond_resched_tasks_rcu_qs();
2605 		mask = 0;
2606 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2607 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2608 		if (rnp->qsmask == 0) {
2609 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2610 				/*
2611 				 * No point in scanning bits because they
2612 				 * are all zero.  But we might need to
2613 				 * priority-boost blocked readers.
2614 				 */
2615 				rcu_initiate_boost(rnp, flags);
2616 				/* rcu_initiate_boost() releases rnp->lock */
2617 				continue;
2618 			}
2619 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2620 			continue;
2621 		}
2622 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2623 			rdp = per_cpu_ptr(&rcu_data, cpu);
2624 			if (f(rdp)) {
2625 				mask |= rdp->grpmask;
2626 				rcu_disable_urgency_upon_qs(rdp);
2627 			}
2628 		}
2629 		if (mask != 0) {
2630 			/* Idle/offline CPUs, report (releases rnp->lock). */
2631 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2632 		} else {
2633 			/* Nothing to do here, so just drop the lock. */
2634 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2635 		}
2636 	}
2637 }
2638 
2639 /*
2640  * Force quiescent states on reluctant CPUs, and also detect which
2641  * CPUs are in dyntick-idle mode.
2642  */
2643 void rcu_force_quiescent_state(void)
2644 {
2645 	unsigned long flags;
2646 	bool ret;
2647 	struct rcu_node *rnp;
2648 	struct rcu_node *rnp_old = NULL;
2649 
2650 	/* Funnel through hierarchy to reduce memory contention. */
2651 	rnp = __this_cpu_read(rcu_data.mynode);
2652 	for (; rnp != NULL; rnp = rnp->parent) {
2653 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2654 		       !raw_spin_trylock(&rnp->fqslock);
2655 		if (rnp_old != NULL)
2656 			raw_spin_unlock(&rnp_old->fqslock);
2657 		if (ret)
2658 			return;
2659 		rnp_old = rnp;
2660 	}
2661 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2662 
2663 	/* Reached the root of the rcu_node tree, acquire lock. */
2664 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2665 	raw_spin_unlock(&rnp_old->fqslock);
2666 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2667 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2668 		return;  /* Someone beat us to it. */
2669 	}
2670 	WRITE_ONCE(rcu_state.gp_flags,
2671 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2672 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2673 	rcu_gp_kthread_wake();
2674 }
2675 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2676 
2677 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2678 // grace periods.
2679 static void strict_work_handler(struct work_struct *work)
2680 {
2681 	rcu_read_lock();
2682 	rcu_read_unlock();
2683 }
2684 
2685 /* Perform RCU core processing work for the current CPU.  */
2686 static __latent_entropy void rcu_core(void)
2687 {
2688 	unsigned long flags;
2689 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2690 	struct rcu_node *rnp = rdp->mynode;
2691 	const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist);
2692 
2693 	if (cpu_is_offline(smp_processor_id()))
2694 		return;
2695 	trace_rcu_utilization(TPS("Start RCU core"));
2696 	WARN_ON_ONCE(!rdp->beenonline);
2697 
2698 	/* Report any deferred quiescent states if preemption enabled. */
2699 	if (!(preempt_count() & PREEMPT_MASK)) {
2700 		rcu_preempt_deferred_qs(current);
2701 	} else if (rcu_preempt_need_deferred_qs(current)) {
2702 		set_tsk_need_resched(current);
2703 		set_preempt_need_resched();
2704 	}
2705 
2706 	/* Update RCU state based on any recent quiescent states. */
2707 	rcu_check_quiescent_state(rdp);
2708 
2709 	/* No grace period and unregistered callbacks? */
2710 	if (!rcu_gp_in_progress() &&
2711 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2712 		local_irq_save(flags);
2713 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2714 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2715 		local_irq_restore(flags);
2716 	}
2717 
2718 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2719 
2720 	/* If there are callbacks ready, invoke them. */
2721 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2722 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2723 		rcu_do_batch(rdp);
2724 
2725 	/* Do any needed deferred wakeups of rcuo kthreads. */
2726 	do_nocb_deferred_wakeup(rdp);
2727 	trace_rcu_utilization(TPS("End RCU core"));
2728 
2729 	// If strict GPs, schedule an RCU reader in a clean environment.
2730 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2731 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2732 }
2733 
2734 static void rcu_core_si(struct softirq_action *h)
2735 {
2736 	rcu_core();
2737 }
2738 
2739 static void rcu_wake_cond(struct task_struct *t, int status)
2740 {
2741 	/*
2742 	 * If the thread is yielding, only wake it when this
2743 	 * is invoked from idle
2744 	 */
2745 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2746 		wake_up_process(t);
2747 }
2748 
2749 static void invoke_rcu_core_kthread(void)
2750 {
2751 	struct task_struct *t;
2752 	unsigned long flags;
2753 
2754 	local_irq_save(flags);
2755 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2756 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2757 	if (t != NULL && t != current)
2758 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2759 	local_irq_restore(flags);
2760 }
2761 
2762 /*
2763  * Wake up this CPU's rcuc kthread to do RCU core processing.
2764  */
2765 static void invoke_rcu_core(void)
2766 {
2767 	if (!cpu_online(smp_processor_id()))
2768 		return;
2769 	if (use_softirq)
2770 		raise_softirq(RCU_SOFTIRQ);
2771 	else
2772 		invoke_rcu_core_kthread();
2773 }
2774 
2775 static void rcu_cpu_kthread_park(unsigned int cpu)
2776 {
2777 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2778 }
2779 
2780 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2781 {
2782 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2783 }
2784 
2785 /*
2786  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2787  * the RCU softirq used in configurations of RCU that do not support RCU
2788  * priority boosting.
2789  */
2790 static void rcu_cpu_kthread(unsigned int cpu)
2791 {
2792 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2793 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2794 	int spincnt;
2795 
2796 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2797 	for (spincnt = 0; spincnt < 10; spincnt++) {
2798 		local_bh_disable();
2799 		*statusp = RCU_KTHREAD_RUNNING;
2800 		local_irq_disable();
2801 		work = *workp;
2802 		*workp = 0;
2803 		local_irq_enable();
2804 		if (work)
2805 			rcu_core();
2806 		local_bh_enable();
2807 		if (*workp == 0) {
2808 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2809 			*statusp = RCU_KTHREAD_WAITING;
2810 			return;
2811 		}
2812 	}
2813 	*statusp = RCU_KTHREAD_YIELDING;
2814 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2815 	schedule_timeout_idle(2);
2816 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2817 	*statusp = RCU_KTHREAD_WAITING;
2818 }
2819 
2820 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2821 	.store			= &rcu_data.rcu_cpu_kthread_task,
2822 	.thread_should_run	= rcu_cpu_kthread_should_run,
2823 	.thread_fn		= rcu_cpu_kthread,
2824 	.thread_comm		= "rcuc/%u",
2825 	.setup			= rcu_cpu_kthread_setup,
2826 	.park			= rcu_cpu_kthread_park,
2827 };
2828 
2829 /*
2830  * Spawn per-CPU RCU core processing kthreads.
2831  */
2832 static int __init rcu_spawn_core_kthreads(void)
2833 {
2834 	int cpu;
2835 
2836 	for_each_possible_cpu(cpu)
2837 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2838 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2839 		return 0;
2840 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2841 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2842 	return 0;
2843 }
2844 early_initcall(rcu_spawn_core_kthreads);
2845 
2846 /*
2847  * Handle any core-RCU processing required by a call_rcu() invocation.
2848  */
2849 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2850 			    unsigned long flags)
2851 {
2852 	/*
2853 	 * If called from an extended quiescent state, invoke the RCU
2854 	 * core in order to force a re-evaluation of RCU's idleness.
2855 	 */
2856 	if (!rcu_is_watching())
2857 		invoke_rcu_core();
2858 
2859 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2860 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2861 		return;
2862 
2863 	/*
2864 	 * Force the grace period if too many callbacks or too long waiting.
2865 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2866 	 * if some other CPU has recently done so.  Also, don't bother
2867 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2868 	 * is the only one waiting for a grace period to complete.
2869 	 */
2870 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2871 		     rdp->qlen_last_fqs_check + qhimark)) {
2872 
2873 		/* Are we ignoring a completed grace period? */
2874 		note_gp_changes(rdp);
2875 
2876 		/* Start a new grace period if one not already started. */
2877 		if (!rcu_gp_in_progress()) {
2878 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2879 		} else {
2880 			/* Give the grace period a kick. */
2881 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2882 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2883 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2884 				rcu_force_quiescent_state();
2885 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2886 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2887 		}
2888 	}
2889 }
2890 
2891 /*
2892  * RCU callback function to leak a callback.
2893  */
2894 static void rcu_leak_callback(struct rcu_head *rhp)
2895 {
2896 }
2897 
2898 /*
2899  * Check and if necessary update the leaf rcu_node structure's
2900  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2901  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2902  * structure's ->lock.
2903  */
2904 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2905 {
2906 	raw_lockdep_assert_held_rcu_node(rnp);
2907 	if (qovld_calc <= 0)
2908 		return; // Early boot and wildcard value set.
2909 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2910 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2911 	else
2912 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2913 }
2914 
2915 /*
2916  * Check and if necessary update the leaf rcu_node structure's
2917  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2918  * number of queued RCU callbacks.  No locks need be held, but the
2919  * caller must have disabled interrupts.
2920  *
2921  * Note that this function ignores the possibility that there are a lot
2922  * of callbacks all of which have already seen the end of their respective
2923  * grace periods.  This omission is due to the need for no-CBs CPUs to
2924  * be holding ->nocb_lock to do this check, which is too heavy for a
2925  * common-case operation.
2926  */
2927 static void check_cb_ovld(struct rcu_data *rdp)
2928 {
2929 	struct rcu_node *const rnp = rdp->mynode;
2930 
2931 	if (qovld_calc <= 0 ||
2932 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2933 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2934 		return; // Early boot wildcard value or already set correctly.
2935 	raw_spin_lock_rcu_node(rnp);
2936 	check_cb_ovld_locked(rdp, rnp);
2937 	raw_spin_unlock_rcu_node(rnp);
2938 }
2939 
2940 /* Helper function for call_rcu() and friends.  */
2941 static void
2942 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2943 {
2944 	unsigned long flags;
2945 	struct rcu_data *rdp;
2946 	bool was_alldone;
2947 
2948 	/* Misaligned rcu_head! */
2949 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2950 
2951 	if (debug_rcu_head_queue(head)) {
2952 		/*
2953 		 * Probable double call_rcu(), so leak the callback.
2954 		 * Use rcu:rcu_callback trace event to find the previous
2955 		 * time callback was passed to __call_rcu().
2956 		 */
2957 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2958 			  head, head->func);
2959 		WRITE_ONCE(head->func, rcu_leak_callback);
2960 		return;
2961 	}
2962 	head->func = func;
2963 	head->next = NULL;
2964 	local_irq_save(flags);
2965 	kasan_record_aux_stack(head);
2966 	rdp = this_cpu_ptr(&rcu_data);
2967 
2968 	/* Add the callback to our list. */
2969 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2970 		// This can trigger due to call_rcu() from offline CPU:
2971 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2972 		WARN_ON_ONCE(!rcu_is_watching());
2973 		// Very early boot, before rcu_init().  Initialize if needed
2974 		// and then drop through to queue the callback.
2975 		if (rcu_segcblist_empty(&rdp->cblist))
2976 			rcu_segcblist_init(&rdp->cblist);
2977 	}
2978 
2979 	check_cb_ovld(rdp);
2980 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2981 		return; // Enqueued onto ->nocb_bypass, so just leave.
2982 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2983 	rcu_segcblist_enqueue(&rdp->cblist, head);
2984 	if (__is_kvfree_rcu_offset((unsigned long)func))
2985 		trace_rcu_kvfree_callback(rcu_state.name, head,
2986 					 (unsigned long)func,
2987 					 rcu_segcblist_n_cbs(&rdp->cblist));
2988 	else
2989 		trace_rcu_callback(rcu_state.name, head,
2990 				   rcu_segcblist_n_cbs(&rdp->cblist));
2991 
2992 	/* Go handle any RCU core processing required. */
2993 	if (unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2994 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2995 	} else {
2996 		__call_rcu_core(rdp, head, flags);
2997 		local_irq_restore(flags);
2998 	}
2999 }
3000 
3001 /**
3002  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3003  * @head: structure to be used for queueing the RCU updates.
3004  * @func: actual callback function to be invoked after the grace period
3005  *
3006  * The callback function will be invoked some time after a full grace
3007  * period elapses, in other words after all pre-existing RCU read-side
3008  * critical sections have completed.  However, the callback function
3009  * might well execute concurrently with RCU read-side critical sections
3010  * that started after call_rcu() was invoked.  RCU read-side critical
3011  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
3012  * may be nested.  In addition, regions of code across which interrupts,
3013  * preemption, or softirqs have been disabled also serve as RCU read-side
3014  * critical sections.  This includes hardware interrupt handlers, softirq
3015  * handlers, and NMI handlers.
3016  *
3017  * Note that all CPUs must agree that the grace period extended beyond
3018  * all pre-existing RCU read-side critical section.  On systems with more
3019  * than one CPU, this means that when "func()" is invoked, each CPU is
3020  * guaranteed to have executed a full memory barrier since the end of its
3021  * last RCU read-side critical section whose beginning preceded the call
3022  * to call_rcu().  It also means that each CPU executing an RCU read-side
3023  * critical section that continues beyond the start of "func()" must have
3024  * executed a memory barrier after the call_rcu() but before the beginning
3025  * of that RCU read-side critical section.  Note that these guarantees
3026  * include CPUs that are offline, idle, or executing in user mode, as
3027  * well as CPUs that are executing in the kernel.
3028  *
3029  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3030  * resulting RCU callback function "func()", then both CPU A and CPU B are
3031  * guaranteed to execute a full memory barrier during the time interval
3032  * between the call to call_rcu() and the invocation of "func()" -- even
3033  * if CPU A and CPU B are the same CPU (but again only if the system has
3034  * more than one CPU).
3035  */
3036 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3037 {
3038 	__call_rcu(head, func);
3039 }
3040 EXPORT_SYMBOL_GPL(call_rcu);
3041 
3042 
3043 /* Maximum number of jiffies to wait before draining a batch. */
3044 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3045 #define KFREE_N_BATCHES 2
3046 #define FREE_N_CHANNELS 2
3047 
3048 /**
3049  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3050  * @nr_records: Number of active pointers in the array
3051  * @next: Next bulk object in the block chain
3052  * @records: Array of the kvfree_rcu() pointers
3053  */
3054 struct kvfree_rcu_bulk_data {
3055 	unsigned long nr_records;
3056 	struct kvfree_rcu_bulk_data *next;
3057 	void *records[];
3058 };
3059 
3060 /*
3061  * This macro defines how many entries the "records" array
3062  * will contain. It is based on the fact that the size of
3063  * kvfree_rcu_bulk_data structure becomes exactly one page.
3064  */
3065 #define KVFREE_BULK_MAX_ENTR \
3066 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3067 
3068 /**
3069  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3070  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3071  * @head_free: List of kfree_rcu() objects waiting for a grace period
3072  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3073  * @krcp: Pointer to @kfree_rcu_cpu structure
3074  */
3075 
3076 struct kfree_rcu_cpu_work {
3077 	struct rcu_work rcu_work;
3078 	struct rcu_head *head_free;
3079 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3080 	struct kfree_rcu_cpu *krcp;
3081 };
3082 
3083 /**
3084  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3085  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3086  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3087  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3088  * @lock: Synchronize access to this structure
3089  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3090  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3091  * @initialized: The @rcu_work fields have been initialized
3092  * @count: Number of objects for which GP not started
3093  * @bkvcache:
3094  *	A simple cache list that contains objects for reuse purpose.
3095  *	In order to save some per-cpu space the list is singular.
3096  *	Even though it is lockless an access has to be protected by the
3097  *	per-cpu lock.
3098  * @page_cache_work: A work to refill the cache when it is empty
3099  * @work_in_progress: Indicates that page_cache_work is running
3100  * @hrtimer: A hrtimer for scheduling a page_cache_work
3101  * @nr_bkv_objs: number of allocated objects at @bkvcache.
3102  *
3103  * This is a per-CPU structure.  The reason that it is not included in
3104  * the rcu_data structure is to permit this code to be extracted from
3105  * the RCU files.  Such extraction could allow further optimization of
3106  * the interactions with the slab allocators.
3107  */
3108 struct kfree_rcu_cpu {
3109 	struct rcu_head *head;
3110 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3111 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3112 	raw_spinlock_t lock;
3113 	struct delayed_work monitor_work;
3114 	bool monitor_todo;
3115 	bool initialized;
3116 	int count;
3117 
3118 	struct work_struct page_cache_work;
3119 	atomic_t work_in_progress;
3120 	struct hrtimer hrtimer;
3121 
3122 	struct llist_head bkvcache;
3123 	int nr_bkv_objs;
3124 };
3125 
3126 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3127 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3128 };
3129 
3130 static __always_inline void
3131 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3132 {
3133 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3134 	int i;
3135 
3136 	for (i = 0; i < bhead->nr_records; i++)
3137 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3138 #endif
3139 }
3140 
3141 static inline struct kfree_rcu_cpu *
3142 krc_this_cpu_lock(unsigned long *flags)
3143 {
3144 	struct kfree_rcu_cpu *krcp;
3145 
3146 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3147 	krcp = this_cpu_ptr(&krc);
3148 	raw_spin_lock(&krcp->lock);
3149 
3150 	return krcp;
3151 }
3152 
3153 static inline void
3154 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3155 {
3156 	raw_spin_unlock(&krcp->lock);
3157 	local_irq_restore(flags);
3158 }
3159 
3160 static inline struct kvfree_rcu_bulk_data *
3161 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3162 {
3163 	if (!krcp->nr_bkv_objs)
3164 		return NULL;
3165 
3166 	krcp->nr_bkv_objs--;
3167 	return (struct kvfree_rcu_bulk_data *)
3168 		llist_del_first(&krcp->bkvcache);
3169 }
3170 
3171 static inline bool
3172 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3173 	struct kvfree_rcu_bulk_data *bnode)
3174 {
3175 	// Check the limit.
3176 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3177 		return false;
3178 
3179 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3180 	krcp->nr_bkv_objs++;
3181 	return true;
3182 
3183 }
3184 
3185 /*
3186  * This function is invoked in workqueue context after a grace period.
3187  * It frees all the objects queued on ->bhead_free or ->head_free.
3188  */
3189 static void kfree_rcu_work(struct work_struct *work)
3190 {
3191 	unsigned long flags;
3192 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3193 	struct rcu_head *head, *next;
3194 	struct kfree_rcu_cpu *krcp;
3195 	struct kfree_rcu_cpu_work *krwp;
3196 	int i, j;
3197 
3198 	krwp = container_of(to_rcu_work(work),
3199 			    struct kfree_rcu_cpu_work, rcu_work);
3200 	krcp = krwp->krcp;
3201 
3202 	raw_spin_lock_irqsave(&krcp->lock, flags);
3203 	// Channels 1 and 2.
3204 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3205 		bkvhead[i] = krwp->bkvhead_free[i];
3206 		krwp->bkvhead_free[i] = NULL;
3207 	}
3208 
3209 	// Channel 3.
3210 	head = krwp->head_free;
3211 	krwp->head_free = NULL;
3212 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3213 
3214 	// Handle two first channels.
3215 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3216 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3217 			bnext = bkvhead[i]->next;
3218 			debug_rcu_bhead_unqueue(bkvhead[i]);
3219 
3220 			rcu_lock_acquire(&rcu_callback_map);
3221 			if (i == 0) { // kmalloc() / kfree().
3222 				trace_rcu_invoke_kfree_bulk_callback(
3223 					rcu_state.name, bkvhead[i]->nr_records,
3224 					bkvhead[i]->records);
3225 
3226 				kfree_bulk(bkvhead[i]->nr_records,
3227 					bkvhead[i]->records);
3228 			} else { // vmalloc() / vfree().
3229 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3230 					trace_rcu_invoke_kvfree_callback(
3231 						rcu_state.name,
3232 						bkvhead[i]->records[j], 0);
3233 
3234 					vfree(bkvhead[i]->records[j]);
3235 				}
3236 			}
3237 			rcu_lock_release(&rcu_callback_map);
3238 
3239 			raw_spin_lock_irqsave(&krcp->lock, flags);
3240 			if (put_cached_bnode(krcp, bkvhead[i]))
3241 				bkvhead[i] = NULL;
3242 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3243 
3244 			if (bkvhead[i])
3245 				free_page((unsigned long) bkvhead[i]);
3246 
3247 			cond_resched_tasks_rcu_qs();
3248 		}
3249 	}
3250 
3251 	/*
3252 	 * Emergency case only. It can happen under low memory
3253 	 * condition when an allocation gets failed, so the "bulk"
3254 	 * path can not be temporary maintained.
3255 	 */
3256 	for (; head; head = next) {
3257 		unsigned long offset = (unsigned long)head->func;
3258 		void *ptr = (void *)head - offset;
3259 
3260 		next = head->next;
3261 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3262 		rcu_lock_acquire(&rcu_callback_map);
3263 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3264 
3265 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3266 			kvfree(ptr);
3267 
3268 		rcu_lock_release(&rcu_callback_map);
3269 		cond_resched_tasks_rcu_qs();
3270 	}
3271 }
3272 
3273 /*
3274  * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3275  *
3276  * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3277  * timeout has been reached.
3278  */
3279 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3280 {
3281 	struct kfree_rcu_cpu_work *krwp;
3282 	bool repeat = false;
3283 	int i, j;
3284 
3285 	lockdep_assert_held(&krcp->lock);
3286 
3287 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3288 		krwp = &(krcp->krw_arr[i]);
3289 
3290 		/*
3291 		 * Try to detach bkvhead or head and attach it over any
3292 		 * available corresponding free channel. It can be that
3293 		 * a previous RCU batch is in progress, it means that
3294 		 * immediately to queue another one is not possible so
3295 		 * return false to tell caller to retry.
3296 		 */
3297 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3298 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3299 				(krcp->head && !krwp->head_free)) {
3300 			// Channel 1 corresponds to SLAB ptrs.
3301 			// Channel 2 corresponds to vmalloc ptrs.
3302 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3303 				if (!krwp->bkvhead_free[j]) {
3304 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3305 					krcp->bkvhead[j] = NULL;
3306 				}
3307 			}
3308 
3309 			// Channel 3 corresponds to emergency path.
3310 			if (!krwp->head_free) {
3311 				krwp->head_free = krcp->head;
3312 				krcp->head = NULL;
3313 			}
3314 
3315 			WRITE_ONCE(krcp->count, 0);
3316 
3317 			/*
3318 			 * One work is per one batch, so there are three
3319 			 * "free channels", the batch can handle. It can
3320 			 * be that the work is in the pending state when
3321 			 * channels have been detached following by each
3322 			 * other.
3323 			 */
3324 			queue_rcu_work(system_wq, &krwp->rcu_work);
3325 		}
3326 
3327 		// Repeat if any "free" corresponding channel is still busy.
3328 		if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3329 			repeat = true;
3330 	}
3331 
3332 	return !repeat;
3333 }
3334 
3335 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3336 					  unsigned long flags)
3337 {
3338 	// Attempt to start a new batch.
3339 	krcp->monitor_todo = false;
3340 	if (queue_kfree_rcu_work(krcp)) {
3341 		// Success! Our job is done here.
3342 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3343 		return;
3344 	}
3345 
3346 	// Previous RCU batch still in progress, try again later.
3347 	krcp->monitor_todo = true;
3348 	schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3349 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3350 }
3351 
3352 /*
3353  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3354  * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3355  */
3356 static void kfree_rcu_monitor(struct work_struct *work)
3357 {
3358 	unsigned long flags;
3359 	struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3360 						 monitor_work.work);
3361 
3362 	raw_spin_lock_irqsave(&krcp->lock, flags);
3363 	if (krcp->monitor_todo)
3364 		kfree_rcu_drain_unlock(krcp, flags);
3365 	else
3366 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3367 }
3368 
3369 static enum hrtimer_restart
3370 schedule_page_work_fn(struct hrtimer *t)
3371 {
3372 	struct kfree_rcu_cpu *krcp =
3373 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3374 
3375 	queue_work(system_highpri_wq, &krcp->page_cache_work);
3376 	return HRTIMER_NORESTART;
3377 }
3378 
3379 static void fill_page_cache_func(struct work_struct *work)
3380 {
3381 	struct kvfree_rcu_bulk_data *bnode;
3382 	struct kfree_rcu_cpu *krcp =
3383 		container_of(work, struct kfree_rcu_cpu,
3384 			page_cache_work);
3385 	unsigned long flags;
3386 	bool pushed;
3387 	int i;
3388 
3389 	for (i = 0; i < rcu_min_cached_objs; i++) {
3390 		bnode = (struct kvfree_rcu_bulk_data *)
3391 			__get_free_page(GFP_KERNEL | __GFP_NOWARN);
3392 
3393 		if (bnode) {
3394 			raw_spin_lock_irqsave(&krcp->lock, flags);
3395 			pushed = put_cached_bnode(krcp, bnode);
3396 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3397 
3398 			if (!pushed) {
3399 				free_page((unsigned long) bnode);
3400 				break;
3401 			}
3402 		}
3403 	}
3404 
3405 	atomic_set(&krcp->work_in_progress, 0);
3406 }
3407 
3408 static void
3409 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3410 {
3411 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3412 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3413 		hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC,
3414 			HRTIMER_MODE_REL);
3415 		krcp->hrtimer.function = schedule_page_work_fn;
3416 		hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3417 	}
3418 }
3419 
3420 static inline bool
3421 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3422 {
3423 	struct kvfree_rcu_bulk_data *bnode;
3424 	int idx;
3425 
3426 	if (unlikely(!krcp->initialized))
3427 		return false;
3428 
3429 	lockdep_assert_held(&krcp->lock);
3430 	idx = !!is_vmalloc_addr(ptr);
3431 
3432 	/* Check if a new block is required. */
3433 	if (!krcp->bkvhead[idx] ||
3434 			krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3435 		bnode = get_cached_bnode(krcp);
3436 		/* Switch to emergency path. */
3437 		if (!bnode)
3438 			return false;
3439 
3440 		/* Initialize the new block. */
3441 		bnode->nr_records = 0;
3442 		bnode->next = krcp->bkvhead[idx];
3443 
3444 		/* Attach it to the head. */
3445 		krcp->bkvhead[idx] = bnode;
3446 	}
3447 
3448 	/* Finally insert. */
3449 	krcp->bkvhead[idx]->records
3450 		[krcp->bkvhead[idx]->nr_records++] = ptr;
3451 
3452 	return true;
3453 }
3454 
3455 /*
3456  * Queue a request for lazy invocation of appropriate free routine after a
3457  * grace period. Please note there are three paths are maintained, two are the
3458  * main ones that use array of pointers interface and third one is emergency
3459  * one, that is used only when the main path can not be maintained temporary,
3460  * due to memory pressure.
3461  *
3462  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3463  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3464  * be free'd in workqueue context. This allows us to: batch requests together to
3465  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3466  */
3467 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3468 {
3469 	unsigned long flags;
3470 	struct kfree_rcu_cpu *krcp;
3471 	bool success;
3472 	void *ptr;
3473 
3474 	if (head) {
3475 		ptr = (void *) head - (unsigned long) func;
3476 	} else {
3477 		/*
3478 		 * Please note there is a limitation for the head-less
3479 		 * variant, that is why there is a clear rule for such
3480 		 * objects: it can be used from might_sleep() context
3481 		 * only. For other places please embed an rcu_head to
3482 		 * your data.
3483 		 */
3484 		might_sleep();
3485 		ptr = (unsigned long *) func;
3486 	}
3487 
3488 	krcp = krc_this_cpu_lock(&flags);
3489 
3490 	// Queue the object but don't yet schedule the batch.
3491 	if (debug_rcu_head_queue(ptr)) {
3492 		// Probable double kfree_rcu(), just leak.
3493 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3494 			  __func__, head);
3495 
3496 		// Mark as success and leave.
3497 		success = true;
3498 		goto unlock_return;
3499 	}
3500 
3501 	success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3502 	if (!success) {
3503 		run_page_cache_worker(krcp);
3504 
3505 		if (head == NULL)
3506 			// Inline if kvfree_rcu(one_arg) call.
3507 			goto unlock_return;
3508 
3509 		head->func = func;
3510 		head->next = krcp->head;
3511 		krcp->head = head;
3512 		success = true;
3513 	}
3514 
3515 	WRITE_ONCE(krcp->count, krcp->count + 1);
3516 
3517 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3518 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3519 	    !krcp->monitor_todo) {
3520 		krcp->monitor_todo = true;
3521 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3522 	}
3523 
3524 unlock_return:
3525 	krc_this_cpu_unlock(krcp, flags);
3526 
3527 	/*
3528 	 * Inline kvfree() after synchronize_rcu(). We can do
3529 	 * it from might_sleep() context only, so the current
3530 	 * CPU can pass the QS state.
3531 	 */
3532 	if (!success) {
3533 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3534 		synchronize_rcu();
3535 		kvfree(ptr);
3536 	}
3537 }
3538 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3539 
3540 static unsigned long
3541 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3542 {
3543 	int cpu;
3544 	unsigned long count = 0;
3545 
3546 	/* Snapshot count of all CPUs */
3547 	for_each_possible_cpu(cpu) {
3548 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3549 
3550 		count += READ_ONCE(krcp->count);
3551 	}
3552 
3553 	return count;
3554 }
3555 
3556 static unsigned long
3557 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3558 {
3559 	int cpu, freed = 0;
3560 	unsigned long flags;
3561 
3562 	for_each_possible_cpu(cpu) {
3563 		int count;
3564 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3565 
3566 		count = krcp->count;
3567 		raw_spin_lock_irqsave(&krcp->lock, flags);
3568 		if (krcp->monitor_todo)
3569 			kfree_rcu_drain_unlock(krcp, flags);
3570 		else
3571 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3572 
3573 		sc->nr_to_scan -= count;
3574 		freed += count;
3575 
3576 		if (sc->nr_to_scan <= 0)
3577 			break;
3578 	}
3579 
3580 	return freed == 0 ? SHRINK_STOP : freed;
3581 }
3582 
3583 static struct shrinker kfree_rcu_shrinker = {
3584 	.count_objects = kfree_rcu_shrink_count,
3585 	.scan_objects = kfree_rcu_shrink_scan,
3586 	.batch = 0,
3587 	.seeks = DEFAULT_SEEKS,
3588 };
3589 
3590 void __init kfree_rcu_scheduler_running(void)
3591 {
3592 	int cpu;
3593 	unsigned long flags;
3594 
3595 	for_each_possible_cpu(cpu) {
3596 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3597 
3598 		raw_spin_lock_irqsave(&krcp->lock, flags);
3599 		if (!krcp->head || krcp->monitor_todo) {
3600 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3601 			continue;
3602 		}
3603 		krcp->monitor_todo = true;
3604 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3605 					 KFREE_DRAIN_JIFFIES);
3606 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3607 	}
3608 }
3609 
3610 /*
3611  * During early boot, any blocking grace-period wait automatically
3612  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3613  *
3614  * However, because a context switch is a grace period for !PREEMPTION, any
3615  * blocking grace-period wait automatically implies a grace period if
3616  * there is only one CPU online at any point time during execution of
3617  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3618  * occasionally incorrectly indicate that there are multiple CPUs online
3619  * when there was in fact only one the whole time, as this just adds some
3620  * overhead: RCU still operates correctly.
3621  */
3622 static int rcu_blocking_is_gp(void)
3623 {
3624 	int ret;
3625 
3626 	if (IS_ENABLED(CONFIG_PREEMPTION))
3627 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3628 	might_sleep();  /* Check for RCU read-side critical section. */
3629 	preempt_disable();
3630 	/*
3631 	 * If the rcu_state.n_online_cpus counter is equal to one,
3632 	 * there is only one CPU, and that CPU sees all prior accesses
3633 	 * made by any CPU that was online at the time of its access.
3634 	 * Furthermore, if this counter is equal to one, its value cannot
3635 	 * change until after the preempt_enable() below.
3636 	 *
3637 	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3638 	 * all later CPUs (both this one and any that come online later
3639 	 * on) are guaranteed to see all accesses prior to this point
3640 	 * in the code, without the need for additional memory barriers.
3641 	 * Those memory barriers are provided by CPU-hotplug code.
3642 	 */
3643 	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3644 	preempt_enable();
3645 	return ret;
3646 }
3647 
3648 /**
3649  * synchronize_rcu - wait until a grace period has elapsed.
3650  *
3651  * Control will return to the caller some time after a full grace
3652  * period has elapsed, in other words after all currently executing RCU
3653  * read-side critical sections have completed.  Note, however, that
3654  * upon return from synchronize_rcu(), the caller might well be executing
3655  * concurrently with new RCU read-side critical sections that began while
3656  * synchronize_rcu() was waiting.  RCU read-side critical sections are
3657  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3658  * In addition, regions of code across which interrupts, preemption, or
3659  * softirqs have been disabled also serve as RCU read-side critical
3660  * sections.  This includes hardware interrupt handlers, softirq handlers,
3661  * and NMI handlers.
3662  *
3663  * Note that this guarantee implies further memory-ordering guarantees.
3664  * On systems with more than one CPU, when synchronize_rcu() returns,
3665  * each CPU is guaranteed to have executed a full memory barrier since
3666  * the end of its last RCU read-side critical section whose beginning
3667  * preceded the call to synchronize_rcu().  In addition, each CPU having
3668  * an RCU read-side critical section that extends beyond the return from
3669  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3670  * after the beginning of synchronize_rcu() and before the beginning of
3671  * that RCU read-side critical section.  Note that these guarantees include
3672  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3673  * that are executing in the kernel.
3674  *
3675  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3676  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3677  * to have executed a full memory barrier during the execution of
3678  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3679  * again only if the system has more than one CPU).
3680  */
3681 void synchronize_rcu(void)
3682 {
3683 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3684 			 lock_is_held(&rcu_lock_map) ||
3685 			 lock_is_held(&rcu_sched_lock_map),
3686 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3687 	if (rcu_blocking_is_gp())
3688 		return;  // Context allows vacuous grace periods.
3689 	if (rcu_gp_is_expedited())
3690 		synchronize_rcu_expedited();
3691 	else
3692 		wait_rcu_gp(call_rcu);
3693 }
3694 EXPORT_SYMBOL_GPL(synchronize_rcu);
3695 
3696 /**
3697  * get_state_synchronize_rcu - Snapshot current RCU state
3698  *
3699  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3700  * to determine whether or not a full grace period has elapsed in the
3701  * meantime.
3702  */
3703 unsigned long get_state_synchronize_rcu(void)
3704 {
3705 	/*
3706 	 * Any prior manipulation of RCU-protected data must happen
3707 	 * before the load from ->gp_seq.
3708 	 */
3709 	smp_mb();  /* ^^^ */
3710 	return rcu_seq_snap(&rcu_state.gp_seq);
3711 }
3712 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3713 
3714 /**
3715  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3716  *
3717  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3718  *
3719  * If a full RCU grace period has elapsed since the earlier call to
3720  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3721  * synchronize_rcu() to wait for a full grace period.
3722  *
3723  * Yes, this function does not take counter wrap into account.  But
3724  * counter wrap is harmless.  If the counter wraps, we have waited for
3725  * more than 2 billion grace periods (and way more on a 64-bit system!),
3726  * so waiting for one additional grace period should be just fine.
3727  */
3728 void cond_synchronize_rcu(unsigned long oldstate)
3729 {
3730 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3731 		synchronize_rcu();
3732 	else
3733 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3734 }
3735 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3736 
3737 /*
3738  * Check to see if there is any immediate RCU-related work to be done by
3739  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3740  * in order of increasing expense: checks that can be carried out against
3741  * CPU-local state are performed first.  However, we must check for CPU
3742  * stalls first, else we might not get a chance.
3743  */
3744 static int rcu_pending(int user)
3745 {
3746 	bool gp_in_progress;
3747 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3748 	struct rcu_node *rnp = rdp->mynode;
3749 
3750 	/* Check for CPU stalls, if enabled. */
3751 	check_cpu_stall(rdp);
3752 
3753 	/* Does this CPU need a deferred NOCB wakeup? */
3754 	if (rcu_nocb_need_deferred_wakeup(rdp))
3755 		return 1;
3756 
3757 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3758 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3759 		return 0;
3760 
3761 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3762 	gp_in_progress = rcu_gp_in_progress();
3763 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3764 		return 1;
3765 
3766 	/* Does this CPU have callbacks ready to invoke? */
3767 	if (!rcu_segcblist_is_offloaded(&rdp->cblist) &&
3768 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3769 		return 1;
3770 
3771 	/* Has RCU gone idle with this CPU needing another grace period? */
3772 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3773 	    !rcu_segcblist_is_offloaded(&rdp->cblist) &&
3774 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3775 		return 1;
3776 
3777 	/* Have RCU grace period completed or started?  */
3778 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3779 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3780 		return 1;
3781 
3782 	/* nothing to do */
3783 	return 0;
3784 }
3785 
3786 /*
3787  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3788  * the compiler is expected to optimize this away.
3789  */
3790 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3791 {
3792 	trace_rcu_barrier(rcu_state.name, s, cpu,
3793 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3794 }
3795 
3796 /*
3797  * RCU callback function for rcu_barrier().  If we are last, wake
3798  * up the task executing rcu_barrier().
3799  *
3800  * Note that the value of rcu_state.barrier_sequence must be captured
3801  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3802  * other CPUs might count the value down to zero before this CPU gets
3803  * around to invoking rcu_barrier_trace(), which might result in bogus
3804  * data from the next instance of rcu_barrier().
3805  */
3806 static void rcu_barrier_callback(struct rcu_head *rhp)
3807 {
3808 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3809 
3810 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3811 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3812 		complete(&rcu_state.barrier_completion);
3813 	} else {
3814 		rcu_barrier_trace(TPS("CB"), -1, s);
3815 	}
3816 }
3817 
3818 /*
3819  * Called with preemption disabled, and from cross-cpu IRQ context.
3820  */
3821 static void rcu_barrier_func(void *cpu_in)
3822 {
3823 	uintptr_t cpu = (uintptr_t)cpu_in;
3824 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3825 
3826 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3827 	rdp->barrier_head.func = rcu_barrier_callback;
3828 	debug_rcu_head_queue(&rdp->barrier_head);
3829 	rcu_nocb_lock(rdp);
3830 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3831 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3832 		atomic_inc(&rcu_state.barrier_cpu_count);
3833 	} else {
3834 		debug_rcu_head_unqueue(&rdp->barrier_head);
3835 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3836 				  rcu_state.barrier_sequence);
3837 	}
3838 	rcu_nocb_unlock(rdp);
3839 }
3840 
3841 /**
3842  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3843  *
3844  * Note that this primitive does not necessarily wait for an RCU grace period
3845  * to complete.  For example, if there are no RCU callbacks queued anywhere
3846  * in the system, then rcu_barrier() is within its rights to return
3847  * immediately, without waiting for anything, much less an RCU grace period.
3848  */
3849 void rcu_barrier(void)
3850 {
3851 	uintptr_t cpu;
3852 	struct rcu_data *rdp;
3853 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3854 
3855 	rcu_barrier_trace(TPS("Begin"), -1, s);
3856 
3857 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3858 	mutex_lock(&rcu_state.barrier_mutex);
3859 
3860 	/* Did someone else do our work for us? */
3861 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3862 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3863 				  rcu_state.barrier_sequence);
3864 		smp_mb(); /* caller's subsequent code after above check. */
3865 		mutex_unlock(&rcu_state.barrier_mutex);
3866 		return;
3867 	}
3868 
3869 	/* Mark the start of the barrier operation. */
3870 	rcu_seq_start(&rcu_state.barrier_sequence);
3871 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3872 
3873 	/*
3874 	 * Initialize the count to two rather than to zero in order
3875 	 * to avoid a too-soon return to zero in case of an immediate
3876 	 * invocation of the just-enqueued callback (or preemption of
3877 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3878 	 * offline non-offloaded CPU has callbacks queued.
3879 	 */
3880 	init_completion(&rcu_state.barrier_completion);
3881 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3882 	get_online_cpus();
3883 
3884 	/*
3885 	 * Force each CPU with callbacks to register a new callback.
3886 	 * When that callback is invoked, we will know that all of the
3887 	 * corresponding CPU's preceding callbacks have been invoked.
3888 	 */
3889 	for_each_possible_cpu(cpu) {
3890 		rdp = per_cpu_ptr(&rcu_data, cpu);
3891 		if (cpu_is_offline(cpu) &&
3892 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
3893 			continue;
3894 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3895 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3896 					  rcu_state.barrier_sequence);
3897 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3898 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3899 			   cpu_is_offline(cpu)) {
3900 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3901 					  rcu_state.barrier_sequence);
3902 			local_irq_disable();
3903 			rcu_barrier_func((void *)cpu);
3904 			local_irq_enable();
3905 		} else if (cpu_is_offline(cpu)) {
3906 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3907 					  rcu_state.barrier_sequence);
3908 		} else {
3909 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3910 					  rcu_state.barrier_sequence);
3911 		}
3912 	}
3913 	put_online_cpus();
3914 
3915 	/*
3916 	 * Now that we have an rcu_barrier_callback() callback on each
3917 	 * CPU, and thus each counted, remove the initial count.
3918 	 */
3919 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3920 		complete(&rcu_state.barrier_completion);
3921 
3922 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3923 	wait_for_completion(&rcu_state.barrier_completion);
3924 
3925 	/* Mark the end of the barrier operation. */
3926 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3927 	rcu_seq_end(&rcu_state.barrier_sequence);
3928 
3929 	/* Other rcu_barrier() invocations can now safely proceed. */
3930 	mutex_unlock(&rcu_state.barrier_mutex);
3931 }
3932 EXPORT_SYMBOL_GPL(rcu_barrier);
3933 
3934 /*
3935  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3936  * first CPU in a given leaf rcu_node structure coming online.  The caller
3937  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3938  * disabled.
3939  */
3940 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3941 {
3942 	long mask;
3943 	long oldmask;
3944 	struct rcu_node *rnp = rnp_leaf;
3945 
3946 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3947 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3948 	for (;;) {
3949 		mask = rnp->grpmask;
3950 		rnp = rnp->parent;
3951 		if (rnp == NULL)
3952 			return;
3953 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3954 		oldmask = rnp->qsmaskinit;
3955 		rnp->qsmaskinit |= mask;
3956 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3957 		if (oldmask)
3958 			return;
3959 	}
3960 }
3961 
3962 /*
3963  * Do boot-time initialization of a CPU's per-CPU RCU data.
3964  */
3965 static void __init
3966 rcu_boot_init_percpu_data(int cpu)
3967 {
3968 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3969 
3970 	/* Set up local state, ensuring consistent view of global state. */
3971 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3972 	INIT_WORK(&rdp->strict_work, strict_work_handler);
3973 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3974 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3975 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3976 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3977 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3978 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3979 	rdp->cpu = cpu;
3980 	rcu_boot_init_nocb_percpu_data(rdp);
3981 }
3982 
3983 /*
3984  * Invoked early in the CPU-online process, when pretty much all services
3985  * are available.  The incoming CPU is not present.
3986  *
3987  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3988  * offline event can be happening at a given time.  Note also that we can
3989  * accept some slop in the rsp->gp_seq access due to the fact that this
3990  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3991  * And any offloaded callbacks are being numbered elsewhere.
3992  */
3993 int rcutree_prepare_cpu(unsigned int cpu)
3994 {
3995 	unsigned long flags;
3996 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3997 	struct rcu_node *rnp = rcu_get_root();
3998 
3999 	/* Set up local state, ensuring consistent view of global state. */
4000 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4001 	rdp->qlen_last_fqs_check = 0;
4002 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
4003 	rdp->blimit = blimit;
4004 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
4005 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
4006 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4007 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4008 	rcu_dynticks_eqs_online();
4009 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4010 
4011 	/*
4012 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4013 	 * propagation up the rcu_node tree will happen at the beginning
4014 	 * of the next grace period.
4015 	 */
4016 	rnp = rdp->mynode;
4017 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4018 	rdp->beenonline = true;	 /* We have now been online. */
4019 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4020 	rdp->gp_seq_needed = rdp->gp_seq;
4021 	rdp->cpu_no_qs.b.norm = true;
4022 	rdp->core_needs_qs = false;
4023 	rdp->rcu_iw_pending = false;
4024 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4025 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4026 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4027 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4028 	rcu_prepare_kthreads(cpu);
4029 	rcu_spawn_cpu_nocb_kthread(cpu);
4030 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4031 
4032 	return 0;
4033 }
4034 
4035 /*
4036  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4037  */
4038 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4039 {
4040 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4041 
4042 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4043 }
4044 
4045 /*
4046  * Near the end of the CPU-online process.  Pretty much all services
4047  * enabled, and the CPU is now very much alive.
4048  */
4049 int rcutree_online_cpu(unsigned int cpu)
4050 {
4051 	unsigned long flags;
4052 	struct rcu_data *rdp;
4053 	struct rcu_node *rnp;
4054 
4055 	rdp = per_cpu_ptr(&rcu_data, cpu);
4056 	rnp = rdp->mynode;
4057 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4058 	rnp->ffmask |= rdp->grpmask;
4059 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4060 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4061 		return 0; /* Too early in boot for scheduler work. */
4062 	sync_sched_exp_online_cleanup(cpu);
4063 	rcutree_affinity_setting(cpu, -1);
4064 
4065 	// Stop-machine done, so allow nohz_full to disable tick.
4066 	tick_dep_clear(TICK_DEP_BIT_RCU);
4067 	return 0;
4068 }
4069 
4070 /*
4071  * Near the beginning of the process.  The CPU is still very much alive
4072  * with pretty much all services enabled.
4073  */
4074 int rcutree_offline_cpu(unsigned int cpu)
4075 {
4076 	unsigned long flags;
4077 	struct rcu_data *rdp;
4078 	struct rcu_node *rnp;
4079 
4080 	rdp = per_cpu_ptr(&rcu_data, cpu);
4081 	rnp = rdp->mynode;
4082 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4083 	rnp->ffmask &= ~rdp->grpmask;
4084 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4085 
4086 	rcutree_affinity_setting(cpu, cpu);
4087 
4088 	// nohz_full CPUs need the tick for stop-machine to work quickly
4089 	tick_dep_set(TICK_DEP_BIT_RCU);
4090 	return 0;
4091 }
4092 
4093 /*
4094  * Mark the specified CPU as being online so that subsequent grace periods
4095  * (both expedited and normal) will wait on it.  Note that this means that
4096  * incoming CPUs are not allowed to use RCU read-side critical sections
4097  * until this function is called.  Failing to observe this restriction
4098  * will result in lockdep splats.
4099  *
4100  * Note that this function is special in that it is invoked directly
4101  * from the incoming CPU rather than from the cpuhp_step mechanism.
4102  * This is because this function must be invoked at a precise location.
4103  */
4104 void rcu_cpu_starting(unsigned int cpu)
4105 {
4106 	unsigned long flags;
4107 	unsigned long mask;
4108 	struct rcu_data *rdp;
4109 	struct rcu_node *rnp;
4110 	bool newcpu;
4111 
4112 	rdp = per_cpu_ptr(&rcu_data, cpu);
4113 	if (rdp->cpu_started)
4114 		return;
4115 	rdp->cpu_started = true;
4116 
4117 	rnp = rdp->mynode;
4118 	mask = rdp->grpmask;
4119 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4120 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4121 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4122 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4123 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4124 	newcpu = !(rnp->expmaskinitnext & mask);
4125 	rnp->expmaskinitnext |= mask;
4126 	/* Allow lockless access for expedited grace periods. */
4127 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4128 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4129 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4130 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4131 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4132 
4133 	/* An incoming CPU should never be blocking a grace period. */
4134 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4135 		rcu_disable_urgency_upon_qs(rdp);
4136 		/* Report QS -after- changing ->qsmaskinitnext! */
4137 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4138 	} else {
4139 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4140 	}
4141 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4142 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4143 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4144 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4145 }
4146 
4147 /*
4148  * The outgoing function has no further need of RCU, so remove it from
4149  * the rcu_node tree's ->qsmaskinitnext bit masks.
4150  *
4151  * Note that this function is special in that it is invoked directly
4152  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4153  * This is because this function must be invoked at a precise location.
4154  */
4155 void rcu_report_dead(unsigned int cpu)
4156 {
4157 	unsigned long flags;
4158 	unsigned long mask;
4159 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4160 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4161 
4162 	/* QS for any half-done expedited grace period. */
4163 	preempt_disable();
4164 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4165 	preempt_enable();
4166 	rcu_preempt_deferred_qs(current);
4167 
4168 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4169 	mask = rdp->grpmask;
4170 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4171 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4172 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4173 	raw_spin_lock(&rcu_state.ofl_lock);
4174 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4175 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4176 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4177 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4178 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4179 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4180 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4181 	}
4182 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4183 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4184 	raw_spin_unlock(&rcu_state.ofl_lock);
4185 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4186 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4187 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4188 
4189 	rdp->cpu_started = false;
4190 }
4191 
4192 #ifdef CONFIG_HOTPLUG_CPU
4193 /*
4194  * The outgoing CPU has just passed through the dying-idle state, and we
4195  * are being invoked from the CPU that was IPIed to continue the offline
4196  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4197  */
4198 void rcutree_migrate_callbacks(int cpu)
4199 {
4200 	unsigned long flags;
4201 	struct rcu_data *my_rdp;
4202 	struct rcu_node *my_rnp;
4203 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4204 	bool needwake;
4205 
4206 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4207 	    rcu_segcblist_empty(&rdp->cblist))
4208 		return;  /* No callbacks to migrate. */
4209 
4210 	local_irq_save(flags);
4211 	my_rdp = this_cpu_ptr(&rcu_data);
4212 	my_rnp = my_rdp->mynode;
4213 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4214 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4215 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4216 	/* Leverage recent GPs and set GP for new callbacks. */
4217 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4218 		   rcu_advance_cbs(my_rnp, my_rdp);
4219 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4220 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4221 	rcu_segcblist_disable(&rdp->cblist);
4222 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4223 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4224 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4225 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4226 		__call_rcu_nocb_wake(my_rdp, true, flags);
4227 	} else {
4228 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4229 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4230 	}
4231 	if (needwake)
4232 		rcu_gp_kthread_wake();
4233 	lockdep_assert_irqs_enabled();
4234 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4235 		  !rcu_segcblist_empty(&rdp->cblist),
4236 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4237 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4238 		  rcu_segcblist_first_cb(&rdp->cblist));
4239 }
4240 #endif
4241 
4242 /*
4243  * On non-huge systems, use expedited RCU grace periods to make suspend
4244  * and hibernation run faster.
4245  */
4246 static int rcu_pm_notify(struct notifier_block *self,
4247 			 unsigned long action, void *hcpu)
4248 {
4249 	switch (action) {
4250 	case PM_HIBERNATION_PREPARE:
4251 	case PM_SUSPEND_PREPARE:
4252 		rcu_expedite_gp();
4253 		break;
4254 	case PM_POST_HIBERNATION:
4255 	case PM_POST_SUSPEND:
4256 		rcu_unexpedite_gp();
4257 		break;
4258 	default:
4259 		break;
4260 	}
4261 	return NOTIFY_OK;
4262 }
4263 
4264 /*
4265  * Spawn the kthreads that handle RCU's grace periods.
4266  */
4267 static int __init rcu_spawn_gp_kthread(void)
4268 {
4269 	unsigned long flags;
4270 	int kthread_prio_in = kthread_prio;
4271 	struct rcu_node *rnp;
4272 	struct sched_param sp;
4273 	struct task_struct *t;
4274 
4275 	/* Force priority into range. */
4276 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4277 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4278 		kthread_prio = 2;
4279 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4280 		kthread_prio = 1;
4281 	else if (kthread_prio < 0)
4282 		kthread_prio = 0;
4283 	else if (kthread_prio > 99)
4284 		kthread_prio = 99;
4285 
4286 	if (kthread_prio != kthread_prio_in)
4287 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4288 			 kthread_prio, kthread_prio_in);
4289 
4290 	rcu_scheduler_fully_active = 1;
4291 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4292 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4293 		return 0;
4294 	if (kthread_prio) {
4295 		sp.sched_priority = kthread_prio;
4296 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4297 	}
4298 	rnp = rcu_get_root();
4299 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4300 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4301 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4302 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4303 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4304 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4305 	wake_up_process(t);
4306 	rcu_spawn_nocb_kthreads();
4307 	rcu_spawn_boost_kthreads();
4308 	return 0;
4309 }
4310 early_initcall(rcu_spawn_gp_kthread);
4311 
4312 /*
4313  * This function is invoked towards the end of the scheduler's
4314  * initialization process.  Before this is called, the idle task might
4315  * contain synchronous grace-period primitives (during which time, this idle
4316  * task is booting the system, and such primitives are no-ops).  After this
4317  * function is called, any synchronous grace-period primitives are run as
4318  * expedited, with the requesting task driving the grace period forward.
4319  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4320  * runtime RCU functionality.
4321  */
4322 void rcu_scheduler_starting(void)
4323 {
4324 	WARN_ON(num_online_cpus() != 1);
4325 	WARN_ON(nr_context_switches() > 0);
4326 	rcu_test_sync_prims();
4327 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4328 	rcu_test_sync_prims();
4329 }
4330 
4331 /*
4332  * Helper function for rcu_init() that initializes the rcu_state structure.
4333  */
4334 static void __init rcu_init_one(void)
4335 {
4336 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4337 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4338 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4339 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4340 
4341 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4342 	int cpustride = 1;
4343 	int i;
4344 	int j;
4345 	struct rcu_node *rnp;
4346 
4347 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4348 
4349 	/* Silence gcc 4.8 false positive about array index out of range. */
4350 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4351 		panic("rcu_init_one: rcu_num_lvls out of range");
4352 
4353 	/* Initialize the level-tracking arrays. */
4354 
4355 	for (i = 1; i < rcu_num_lvls; i++)
4356 		rcu_state.level[i] =
4357 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4358 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4359 
4360 	/* Initialize the elements themselves, starting from the leaves. */
4361 
4362 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4363 		cpustride *= levelspread[i];
4364 		rnp = rcu_state.level[i];
4365 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4366 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4367 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4368 						   &rcu_node_class[i], buf[i]);
4369 			raw_spin_lock_init(&rnp->fqslock);
4370 			lockdep_set_class_and_name(&rnp->fqslock,
4371 						   &rcu_fqs_class[i], fqs[i]);
4372 			rnp->gp_seq = rcu_state.gp_seq;
4373 			rnp->gp_seq_needed = rcu_state.gp_seq;
4374 			rnp->completedqs = rcu_state.gp_seq;
4375 			rnp->qsmask = 0;
4376 			rnp->qsmaskinit = 0;
4377 			rnp->grplo = j * cpustride;
4378 			rnp->grphi = (j + 1) * cpustride - 1;
4379 			if (rnp->grphi >= nr_cpu_ids)
4380 				rnp->grphi = nr_cpu_ids - 1;
4381 			if (i == 0) {
4382 				rnp->grpnum = 0;
4383 				rnp->grpmask = 0;
4384 				rnp->parent = NULL;
4385 			} else {
4386 				rnp->grpnum = j % levelspread[i - 1];
4387 				rnp->grpmask = BIT(rnp->grpnum);
4388 				rnp->parent = rcu_state.level[i - 1] +
4389 					      j / levelspread[i - 1];
4390 			}
4391 			rnp->level = i;
4392 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4393 			rcu_init_one_nocb(rnp);
4394 			init_waitqueue_head(&rnp->exp_wq[0]);
4395 			init_waitqueue_head(&rnp->exp_wq[1]);
4396 			init_waitqueue_head(&rnp->exp_wq[2]);
4397 			init_waitqueue_head(&rnp->exp_wq[3]);
4398 			spin_lock_init(&rnp->exp_lock);
4399 		}
4400 	}
4401 
4402 	init_swait_queue_head(&rcu_state.gp_wq);
4403 	init_swait_queue_head(&rcu_state.expedited_wq);
4404 	rnp = rcu_first_leaf_node();
4405 	for_each_possible_cpu(i) {
4406 		while (i > rnp->grphi)
4407 			rnp++;
4408 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4409 		rcu_boot_init_percpu_data(i);
4410 	}
4411 }
4412 
4413 /*
4414  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4415  * replace the definitions in tree.h because those are needed to size
4416  * the ->node array in the rcu_state structure.
4417  */
4418 static void __init rcu_init_geometry(void)
4419 {
4420 	ulong d;
4421 	int i;
4422 	int rcu_capacity[RCU_NUM_LVLS];
4423 
4424 	/*
4425 	 * Initialize any unspecified boot parameters.
4426 	 * The default values of jiffies_till_first_fqs and
4427 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4428 	 * value, which is a function of HZ, then adding one for each
4429 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4430 	 */
4431 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4432 	if (jiffies_till_first_fqs == ULONG_MAX)
4433 		jiffies_till_first_fqs = d;
4434 	if (jiffies_till_next_fqs == ULONG_MAX)
4435 		jiffies_till_next_fqs = d;
4436 	adjust_jiffies_till_sched_qs();
4437 
4438 	/* If the compile-time values are accurate, just leave. */
4439 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4440 	    nr_cpu_ids == NR_CPUS)
4441 		return;
4442 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4443 		rcu_fanout_leaf, nr_cpu_ids);
4444 
4445 	/*
4446 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4447 	 * and cannot exceed the number of bits in the rcu_node masks.
4448 	 * Complain and fall back to the compile-time values if this
4449 	 * limit is exceeded.
4450 	 */
4451 	if (rcu_fanout_leaf < 2 ||
4452 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4453 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4454 		WARN_ON(1);
4455 		return;
4456 	}
4457 
4458 	/*
4459 	 * Compute number of nodes that can be handled an rcu_node tree
4460 	 * with the given number of levels.
4461 	 */
4462 	rcu_capacity[0] = rcu_fanout_leaf;
4463 	for (i = 1; i < RCU_NUM_LVLS; i++)
4464 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4465 
4466 	/*
4467 	 * The tree must be able to accommodate the configured number of CPUs.
4468 	 * If this limit is exceeded, fall back to the compile-time values.
4469 	 */
4470 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4471 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4472 		WARN_ON(1);
4473 		return;
4474 	}
4475 
4476 	/* Calculate the number of levels in the tree. */
4477 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4478 	}
4479 	rcu_num_lvls = i + 1;
4480 
4481 	/* Calculate the number of rcu_nodes at each level of the tree. */
4482 	for (i = 0; i < rcu_num_lvls; i++) {
4483 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4484 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4485 	}
4486 
4487 	/* Calculate the total number of rcu_node structures. */
4488 	rcu_num_nodes = 0;
4489 	for (i = 0; i < rcu_num_lvls; i++)
4490 		rcu_num_nodes += num_rcu_lvl[i];
4491 }
4492 
4493 /*
4494  * Dump out the structure of the rcu_node combining tree associated
4495  * with the rcu_state structure.
4496  */
4497 static void __init rcu_dump_rcu_node_tree(void)
4498 {
4499 	int level = 0;
4500 	struct rcu_node *rnp;
4501 
4502 	pr_info("rcu_node tree layout dump\n");
4503 	pr_info(" ");
4504 	rcu_for_each_node_breadth_first(rnp) {
4505 		if (rnp->level != level) {
4506 			pr_cont("\n");
4507 			pr_info(" ");
4508 			level = rnp->level;
4509 		}
4510 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4511 	}
4512 	pr_cont("\n");
4513 }
4514 
4515 struct workqueue_struct *rcu_gp_wq;
4516 struct workqueue_struct *rcu_par_gp_wq;
4517 
4518 static void __init kfree_rcu_batch_init(void)
4519 {
4520 	int cpu;
4521 	int i;
4522 
4523 	for_each_possible_cpu(cpu) {
4524 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4525 
4526 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4527 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4528 			krcp->krw_arr[i].krcp = krcp;
4529 		}
4530 
4531 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4532 		INIT_WORK(&krcp->page_cache_work, fill_page_cache_func);
4533 		krcp->initialized = true;
4534 	}
4535 	if (register_shrinker(&kfree_rcu_shrinker))
4536 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4537 }
4538 
4539 void __init rcu_init(void)
4540 {
4541 	int cpu;
4542 
4543 	rcu_early_boot_tests();
4544 
4545 	kfree_rcu_batch_init();
4546 	rcu_bootup_announce();
4547 	rcu_init_geometry();
4548 	rcu_init_one();
4549 	if (dump_tree)
4550 		rcu_dump_rcu_node_tree();
4551 	if (use_softirq)
4552 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4553 
4554 	/*
4555 	 * We don't need protection against CPU-hotplug here because
4556 	 * this is called early in boot, before either interrupts
4557 	 * or the scheduler are operational.
4558 	 */
4559 	pm_notifier(rcu_pm_notify, 0);
4560 	for_each_online_cpu(cpu) {
4561 		rcutree_prepare_cpu(cpu);
4562 		rcu_cpu_starting(cpu);
4563 		rcutree_online_cpu(cpu);
4564 	}
4565 
4566 	/* Create workqueue for expedited GPs and for Tree SRCU. */
4567 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4568 	WARN_ON(!rcu_gp_wq);
4569 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4570 	WARN_ON(!rcu_par_gp_wq);
4571 	srcu_init();
4572 
4573 	/* Fill in default value for rcutree.qovld boot parameter. */
4574 	/* -After- the rcu_node ->lock fields are initialized! */
4575 	if (qovld < 0)
4576 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4577 	else
4578 		qovld_calc = qovld;
4579 }
4580 
4581 #include "tree_stall.h"
4582 #include "tree_exp.h"
4583 #include "tree_plugin.h"
4584