xref: /linux/kernel/rcu/tree.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 
31 #define pr_fmt(fmt) "rcu: " fmt
32 
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate_wait.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/sched/debug.h>
42 #include <linux/nmi.h>
43 #include <linux/atomic.h>
44 #include <linux/bitops.h>
45 #include <linux/export.h>
46 #include <linux/completion.h>
47 #include <linux/moduleparam.h>
48 #include <linux/percpu.h>
49 #include <linux/notifier.h>
50 #include <linux/cpu.h>
51 #include <linux/mutex.h>
52 #include <linux/time.h>
53 #include <linux/kernel_stat.h>
54 #include <linux/wait.h>
55 #include <linux/kthread.h>
56 #include <uapi/linux/sched/types.h>
57 #include <linux/prefetch.h>
58 #include <linux/delay.h>
59 #include <linux/stop_machine.h>
60 #include <linux/random.h>
61 #include <linux/trace_events.h>
62 #include <linux/suspend.h>
63 #include <linux/ftrace.h>
64 
65 #include "tree.h"
66 #include "rcu.h"
67 
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72 
73 /* Data structures. */
74 
75 /*
76  * In order to export the rcu_state name to the tracing tools, it
77  * needs to be added in the __tracepoint_string section.
78  * This requires defining a separate variable tp_<sname>_varname
79  * that points to the string being used, and this will allow
80  * the tracing userspace tools to be able to decipher the string
81  * address to the matching string.
82  */
83 #ifdef CONFIG_TRACING
84 # define DEFINE_RCU_TPS(sname) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87 # define RCU_STATE_NAME(sname) sname##_varname
88 #else
89 # define DEFINE_RCU_TPS(sname)
90 # define RCU_STATE_NAME(sname) __stringify(sname)
91 #endif
92 
93 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94 DEFINE_RCU_TPS(sname) \
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96 struct rcu_state sname##_state = { \
97 	.level = { &sname##_state.node[0] }, \
98 	.rda = &sname##_data, \
99 	.call = cr, \
100 	.gp_state = RCU_GP_IDLE, \
101 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \
102 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 	.name = RCU_STATE_NAME(sname), \
104 	.abbr = sabbr, \
105 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 	.ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \
108 }
109 
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112 
113 static struct rcu_state *const rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115 
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 /* Number of rcu_nodes at specified level. */
127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly;
131 
132 /*
133  * The rcu_scheduler_active variable is initialized to the value
134  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
136  * RCU can assume that there is but one task, allowing RCU to (for example)
137  * optimize synchronize_rcu() to a simple barrier().  When this variable
138  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139  * to detect real grace periods.  This variable is also used to suppress
140  * boot-time false positives from lockdep-RCU error checking.  Finally, it
141  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142  * is fully initialized, including all of its kthreads having been spawned.
143  */
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146 
147 /*
148  * The rcu_scheduler_fully_active variable transitions from zero to one
149  * during the early_initcall() processing, which is after the scheduler
150  * is capable of creating new tasks.  So RCU processing (for example,
151  * creating tasks for RCU priority boosting) must be delayed until after
152  * rcu_scheduler_fully_active transitions from zero to one.  We also
153  * currently delay invocation of any RCU callbacks until after this point.
154  *
155  * It might later prove better for people registering RCU callbacks during
156  * early boot to take responsibility for these callbacks, but one step at
157  * a time.
158  */
159 static int rcu_scheduler_fully_active __read_mostly;
160 
161 static void
162 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
163 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags);
164 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
165 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
166 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
167 static void invoke_rcu_core(void);
168 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
169 static void rcu_report_exp_rdp(struct rcu_state *rsp,
170 			       struct rcu_data *rdp, bool wake);
171 static void sync_sched_exp_online_cleanup(int cpu);
172 
173 /* rcuc/rcub kthread realtime priority */
174 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175 module_param(kthread_prio, int, 0644);
176 
177 /* Delay in jiffies for grace-period initialization delays, debug only. */
178 
179 static int gp_preinit_delay;
180 module_param(gp_preinit_delay, int, 0444);
181 static int gp_init_delay;
182 module_param(gp_init_delay, int, 0444);
183 static int gp_cleanup_delay;
184 module_param(gp_cleanup_delay, int, 0444);
185 
186 /* Retreive RCU kthreads priority for rcutorture */
187 int rcu_get_gp_kthreads_prio(void)
188 {
189 	return kthread_prio;
190 }
191 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
192 
193 /*
194  * Number of grace periods between delays, normalized by the duration of
195  * the delay.  The longer the delay, the more the grace periods between
196  * each delay.  The reason for this normalization is that it means that,
197  * for non-zero delays, the overall slowdown of grace periods is constant
198  * regardless of the duration of the delay.  This arrangement balances
199  * the need for long delays to increase some race probabilities with the
200  * need for fast grace periods to increase other race probabilities.
201  */
202 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
203 
204 /*
205  * Compute the mask of online CPUs for the specified rcu_node structure.
206  * This will not be stable unless the rcu_node structure's ->lock is
207  * held, but the bit corresponding to the current CPU will be stable
208  * in most contexts.
209  */
210 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
211 {
212 	return READ_ONCE(rnp->qsmaskinitnext);
213 }
214 
215 /*
216  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
217  * permit this function to be invoked without holding the root rcu_node
218  * structure's ->lock, but of course results can be subject to change.
219  */
220 static int rcu_gp_in_progress(struct rcu_state *rsp)
221 {
222 	return rcu_seq_state(rcu_seq_current(&rsp->gp_seq));
223 }
224 
225 /*
226  * Note a quiescent state.  Because we do not need to know
227  * how many quiescent states passed, just if there was at least
228  * one since the start of the grace period, this just sets a flag.
229  * The caller must have disabled preemption.
230  */
231 void rcu_sched_qs(void)
232 {
233 	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
234 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
235 		return;
236 	trace_rcu_grace_period(TPS("rcu_sched"),
237 			       __this_cpu_read(rcu_sched_data.gp_seq),
238 			       TPS("cpuqs"));
239 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
240 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
241 		return;
242 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
243 	rcu_report_exp_rdp(&rcu_sched_state,
244 			   this_cpu_ptr(&rcu_sched_data), true);
245 }
246 
247 void rcu_bh_qs(void)
248 {
249 	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
250 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
251 		trace_rcu_grace_period(TPS("rcu_bh"),
252 				       __this_cpu_read(rcu_bh_data.gp_seq),
253 				       TPS("cpuqs"));
254 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
255 	}
256 }
257 
258 /*
259  * Steal a bit from the bottom of ->dynticks for idle entry/exit
260  * control.  Initially this is for TLB flushing.
261  */
262 #define RCU_DYNTICK_CTRL_MASK 0x1
263 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
264 #ifndef rcu_eqs_special_exit
265 #define rcu_eqs_special_exit() do { } while (0)
266 #endif
267 
268 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
269 	.dynticks_nesting = 1,
270 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
271 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
272 };
273 
274 /*
275  * Record entry into an extended quiescent state.  This is only to be
276  * called when not already in an extended quiescent state.
277  */
278 static void rcu_dynticks_eqs_enter(void)
279 {
280 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
281 	int seq;
282 
283 	/*
284 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
285 	 * critical sections, and we also must force ordering with the
286 	 * next idle sojourn.
287 	 */
288 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
289 	/* Better be in an extended quiescent state! */
290 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
291 		     (seq & RCU_DYNTICK_CTRL_CTR));
292 	/* Better not have special action (TLB flush) pending! */
293 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
294 		     (seq & RCU_DYNTICK_CTRL_MASK));
295 }
296 
297 /*
298  * Record exit from an extended quiescent state.  This is only to be
299  * called from an extended quiescent state.
300  */
301 static void rcu_dynticks_eqs_exit(void)
302 {
303 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
304 	int seq;
305 
306 	/*
307 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
308 	 * and we also must force ordering with the next RCU read-side
309 	 * critical section.
310 	 */
311 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
312 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
313 		     !(seq & RCU_DYNTICK_CTRL_CTR));
314 	if (seq & RCU_DYNTICK_CTRL_MASK) {
315 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
316 		smp_mb__after_atomic(); /* _exit after clearing mask. */
317 		/* Prefer duplicate flushes to losing a flush. */
318 		rcu_eqs_special_exit();
319 	}
320 }
321 
322 /*
323  * Reset the current CPU's ->dynticks counter to indicate that the
324  * newly onlined CPU is no longer in an extended quiescent state.
325  * This will either leave the counter unchanged, or increment it
326  * to the next non-quiescent value.
327  *
328  * The non-atomic test/increment sequence works because the upper bits
329  * of the ->dynticks counter are manipulated only by the corresponding CPU,
330  * or when the corresponding CPU is offline.
331  */
332 static void rcu_dynticks_eqs_online(void)
333 {
334 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
335 
336 	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
337 		return;
338 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
339 }
340 
341 /*
342  * Is the current CPU in an extended quiescent state?
343  *
344  * No ordering, as we are sampling CPU-local information.
345  */
346 bool rcu_dynticks_curr_cpu_in_eqs(void)
347 {
348 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
349 
350 	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
351 }
352 
353 /*
354  * Snapshot the ->dynticks counter with full ordering so as to allow
355  * stable comparison of this counter with past and future snapshots.
356  */
357 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
358 {
359 	int snap = atomic_add_return(0, &rdtp->dynticks);
360 
361 	return snap & ~RCU_DYNTICK_CTRL_MASK;
362 }
363 
364 /*
365  * Return true if the snapshot returned from rcu_dynticks_snap()
366  * indicates that RCU is in an extended quiescent state.
367  */
368 static bool rcu_dynticks_in_eqs(int snap)
369 {
370 	return !(snap & RCU_DYNTICK_CTRL_CTR);
371 }
372 
373 /*
374  * Return true if the CPU corresponding to the specified rcu_dynticks
375  * structure has spent some time in an extended quiescent state since
376  * rcu_dynticks_snap() returned the specified snapshot.
377  */
378 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
379 {
380 	return snap != rcu_dynticks_snap(rdtp);
381 }
382 
383 /*
384  * Set the special (bottom) bit of the specified CPU so that it
385  * will take special action (such as flushing its TLB) on the
386  * next exit from an extended quiescent state.  Returns true if
387  * the bit was successfully set, or false if the CPU was not in
388  * an extended quiescent state.
389  */
390 bool rcu_eqs_special_set(int cpu)
391 {
392 	int old;
393 	int new;
394 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
395 
396 	do {
397 		old = atomic_read(&rdtp->dynticks);
398 		if (old & RCU_DYNTICK_CTRL_CTR)
399 			return false;
400 		new = old | RCU_DYNTICK_CTRL_MASK;
401 	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
402 	return true;
403 }
404 
405 /*
406  * Let the RCU core know that this CPU has gone through the scheduler,
407  * which is a quiescent state.  This is called when the need for a
408  * quiescent state is urgent, so we burn an atomic operation and full
409  * memory barriers to let the RCU core know about it, regardless of what
410  * this CPU might (or might not) do in the near future.
411  *
412  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
413  *
414  * The caller must have disabled interrupts and must not be idle.
415  */
416 static void rcu_momentary_dyntick_idle(void)
417 {
418 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
419 	int special;
420 
421 	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
422 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
423 	/* It is illegal to call this from idle state. */
424 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
425 }
426 
427 /*
428  * Note a context switch.  This is a quiescent state for RCU-sched,
429  * and requires special handling for preemptible RCU.
430  * The caller must have disabled interrupts.
431  */
432 void rcu_note_context_switch(bool preempt)
433 {
434 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
435 	trace_rcu_utilization(TPS("Start context switch"));
436 	rcu_sched_qs();
437 	rcu_preempt_note_context_switch(preempt);
438 	/* Load rcu_urgent_qs before other flags. */
439 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
440 		goto out;
441 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
442 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
443 		rcu_momentary_dyntick_idle();
444 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
445 	if (!preempt)
446 		rcu_tasks_qs(current);
447 out:
448 	trace_rcu_utilization(TPS("End context switch"));
449 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
450 }
451 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
452 
453 /*
454  * Register a quiescent state for all RCU flavors.  If there is an
455  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
456  * dyntick-idle quiescent state visible to other CPUs (but only for those
457  * RCU flavors in desperate need of a quiescent state, which will normally
458  * be none of them).  Either way, do a lightweight quiescent state for
459  * all RCU flavors.
460  *
461  * The barrier() calls are redundant in the common case when this is
462  * called externally, but just in case this is called from within this
463  * file.
464  *
465  */
466 void rcu_all_qs(void)
467 {
468 	unsigned long flags;
469 
470 	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
471 		return;
472 	preempt_disable();
473 	/* Load rcu_urgent_qs before other flags. */
474 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
475 		preempt_enable();
476 		return;
477 	}
478 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
479 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
480 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
481 		local_irq_save(flags);
482 		rcu_momentary_dyntick_idle();
483 		local_irq_restore(flags);
484 	}
485 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
486 		rcu_sched_qs();
487 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
488 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
489 	preempt_enable();
490 }
491 EXPORT_SYMBOL_GPL(rcu_all_qs);
492 
493 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
494 static long blimit = DEFAULT_RCU_BLIMIT;
495 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
496 static long qhimark = DEFAULT_RCU_QHIMARK;
497 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
498 static long qlowmark = DEFAULT_RCU_QLOMARK;
499 
500 module_param(blimit, long, 0444);
501 module_param(qhimark, long, 0444);
502 module_param(qlowmark, long, 0444);
503 
504 static ulong jiffies_till_first_fqs = ULONG_MAX;
505 static ulong jiffies_till_next_fqs = ULONG_MAX;
506 static bool rcu_kick_kthreads;
507 
508 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
509 {
510 	ulong j;
511 	int ret = kstrtoul(val, 0, &j);
512 
513 	if (!ret)
514 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
515 	return ret;
516 }
517 
518 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
519 {
520 	ulong j;
521 	int ret = kstrtoul(val, 0, &j);
522 
523 	if (!ret)
524 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
525 	return ret;
526 }
527 
528 static struct kernel_param_ops first_fqs_jiffies_ops = {
529 	.set = param_set_first_fqs_jiffies,
530 	.get = param_get_ulong,
531 };
532 
533 static struct kernel_param_ops next_fqs_jiffies_ops = {
534 	.set = param_set_next_fqs_jiffies,
535 	.get = param_get_ulong,
536 };
537 
538 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
539 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
540 module_param(rcu_kick_kthreads, bool, 0644);
541 
542 /*
543  * How long the grace period must be before we start recruiting
544  * quiescent-state help from rcu_note_context_switch().
545  */
546 static ulong jiffies_till_sched_qs = HZ / 10;
547 module_param(jiffies_till_sched_qs, ulong, 0444);
548 
549 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
550 static void force_quiescent_state(struct rcu_state *rsp);
551 static int rcu_pending(void);
552 
553 /*
554  * Return the number of RCU GPs completed thus far for debug & stats.
555  */
556 unsigned long rcu_get_gp_seq(void)
557 {
558 	return READ_ONCE(rcu_state_p->gp_seq);
559 }
560 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
561 
562 /*
563  * Return the number of RCU-sched GPs completed thus far for debug & stats.
564  */
565 unsigned long rcu_sched_get_gp_seq(void)
566 {
567 	return READ_ONCE(rcu_sched_state.gp_seq);
568 }
569 EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq);
570 
571 /*
572  * Return the number of RCU-bh GPs completed thus far for debug & stats.
573  */
574 unsigned long rcu_bh_get_gp_seq(void)
575 {
576 	return READ_ONCE(rcu_bh_state.gp_seq);
577 }
578 EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq);
579 
580 /*
581  * Return the number of RCU expedited batches completed thus far for
582  * debug & stats.  Odd numbers mean that a batch is in progress, even
583  * numbers mean idle.  The value returned will thus be roughly double
584  * the cumulative batches since boot.
585  */
586 unsigned long rcu_exp_batches_completed(void)
587 {
588 	return rcu_state_p->expedited_sequence;
589 }
590 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
591 
592 /*
593  * Return the number of RCU-sched expedited batches completed thus far
594  * for debug & stats.  Similar to rcu_exp_batches_completed().
595  */
596 unsigned long rcu_exp_batches_completed_sched(void)
597 {
598 	return rcu_sched_state.expedited_sequence;
599 }
600 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
601 
602 /*
603  * Force a quiescent state.
604  */
605 void rcu_force_quiescent_state(void)
606 {
607 	force_quiescent_state(rcu_state_p);
608 }
609 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
610 
611 /*
612  * Force a quiescent state for RCU BH.
613  */
614 void rcu_bh_force_quiescent_state(void)
615 {
616 	force_quiescent_state(&rcu_bh_state);
617 }
618 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
619 
620 /*
621  * Force a quiescent state for RCU-sched.
622  */
623 void rcu_sched_force_quiescent_state(void)
624 {
625 	force_quiescent_state(&rcu_sched_state);
626 }
627 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
628 
629 /*
630  * Show the state of the grace-period kthreads.
631  */
632 void show_rcu_gp_kthreads(void)
633 {
634 	int cpu;
635 	struct rcu_data *rdp;
636 	struct rcu_node *rnp;
637 	struct rcu_state *rsp;
638 
639 	for_each_rcu_flavor(rsp) {
640 		pr_info("%s: wait state: %d ->state: %#lx\n",
641 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
642 		rcu_for_each_node_breadth_first(rsp, rnp) {
643 			if (ULONG_CMP_GE(rsp->gp_seq, rnp->gp_seq_needed))
644 				continue;
645 			pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
646 				rnp->grplo, rnp->grphi, rnp->gp_seq,
647 				rnp->gp_seq_needed);
648 			if (!rcu_is_leaf_node(rnp))
649 				continue;
650 			for_each_leaf_node_possible_cpu(rnp, cpu) {
651 				rdp = per_cpu_ptr(rsp->rda, cpu);
652 				if (rdp->gpwrap ||
653 				    ULONG_CMP_GE(rsp->gp_seq,
654 						 rdp->gp_seq_needed))
655 					continue;
656 				pr_info("\tcpu %d ->gp_seq_needed %lu\n",
657 					cpu, rdp->gp_seq_needed);
658 			}
659 		}
660 		/* sched_show_task(rsp->gp_kthread); */
661 	}
662 }
663 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
664 
665 /*
666  * Send along grace-period-related data for rcutorture diagnostics.
667  */
668 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
669 			    unsigned long *gp_seq)
670 {
671 	struct rcu_state *rsp = NULL;
672 
673 	switch (test_type) {
674 	case RCU_FLAVOR:
675 		rsp = rcu_state_p;
676 		break;
677 	case RCU_BH_FLAVOR:
678 		rsp = &rcu_bh_state;
679 		break;
680 	case RCU_SCHED_FLAVOR:
681 		rsp = &rcu_sched_state;
682 		break;
683 	default:
684 		break;
685 	}
686 	if (rsp == NULL)
687 		return;
688 	*flags = READ_ONCE(rsp->gp_flags);
689 	*gp_seq = rcu_seq_current(&rsp->gp_seq);
690 }
691 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
692 
693 /*
694  * Return the root node of the specified rcu_state structure.
695  */
696 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
697 {
698 	return &rsp->node[0];
699 }
700 
701 /*
702  * Enter an RCU extended quiescent state, which can be either the
703  * idle loop or adaptive-tickless usermode execution.
704  *
705  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
706  * the possibility of usermode upcalls having messed up our count
707  * of interrupt nesting level during the prior busy period.
708  */
709 static void rcu_eqs_enter(bool user)
710 {
711 	struct rcu_state *rsp;
712 	struct rcu_data *rdp;
713 	struct rcu_dynticks *rdtp;
714 
715 	rdtp = this_cpu_ptr(&rcu_dynticks);
716 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
717 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
718 		     rdtp->dynticks_nesting == 0);
719 	if (rdtp->dynticks_nesting != 1) {
720 		rdtp->dynticks_nesting--;
721 		return;
722 	}
723 
724 	lockdep_assert_irqs_disabled();
725 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
726 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
727 	for_each_rcu_flavor(rsp) {
728 		rdp = this_cpu_ptr(rsp->rda);
729 		do_nocb_deferred_wakeup(rdp);
730 	}
731 	rcu_prepare_for_idle();
732 	WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
733 	rcu_dynticks_eqs_enter();
734 	rcu_dynticks_task_enter();
735 }
736 
737 /**
738  * rcu_idle_enter - inform RCU that current CPU is entering idle
739  *
740  * Enter idle mode, in other words, -leave- the mode in which RCU
741  * read-side critical sections can occur.  (Though RCU read-side
742  * critical sections can occur in irq handlers in idle, a possibility
743  * handled by irq_enter() and irq_exit().)
744  *
745  * If you add or remove a call to rcu_idle_enter(), be sure to test with
746  * CONFIG_RCU_EQS_DEBUG=y.
747  */
748 void rcu_idle_enter(void)
749 {
750 	lockdep_assert_irqs_disabled();
751 	rcu_eqs_enter(false);
752 }
753 
754 #ifdef CONFIG_NO_HZ_FULL
755 /**
756  * rcu_user_enter - inform RCU that we are resuming userspace.
757  *
758  * Enter RCU idle mode right before resuming userspace.  No use of RCU
759  * is permitted between this call and rcu_user_exit(). This way the
760  * CPU doesn't need to maintain the tick for RCU maintenance purposes
761  * when the CPU runs in userspace.
762  *
763  * If you add or remove a call to rcu_user_enter(), be sure to test with
764  * CONFIG_RCU_EQS_DEBUG=y.
765  */
766 void rcu_user_enter(void)
767 {
768 	lockdep_assert_irqs_disabled();
769 	rcu_eqs_enter(true);
770 }
771 #endif /* CONFIG_NO_HZ_FULL */
772 
773 /**
774  * rcu_nmi_exit - inform RCU of exit from NMI context
775  *
776  * If we are returning from the outermost NMI handler that interrupted an
777  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
778  * to let the RCU grace-period handling know that the CPU is back to
779  * being RCU-idle.
780  *
781  * If you add or remove a call to rcu_nmi_exit(), be sure to test
782  * with CONFIG_RCU_EQS_DEBUG=y.
783  */
784 void rcu_nmi_exit(void)
785 {
786 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
787 
788 	/*
789 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
790 	 * (We are exiting an NMI handler, so RCU better be paying attention
791 	 * to us!)
792 	 */
793 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
794 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
795 
796 	/*
797 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
798 	 * leave it in non-RCU-idle state.
799 	 */
800 	if (rdtp->dynticks_nmi_nesting != 1) {
801 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
802 		WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
803 			   rdtp->dynticks_nmi_nesting - 2);
804 		return;
805 	}
806 
807 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
808 	trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
809 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
810 	rcu_dynticks_eqs_enter();
811 }
812 
813 /**
814  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
815  *
816  * Exit from an interrupt handler, which might possibly result in entering
817  * idle mode, in other words, leaving the mode in which read-side critical
818  * sections can occur.  The caller must have disabled interrupts.
819  *
820  * This code assumes that the idle loop never does anything that might
821  * result in unbalanced calls to irq_enter() and irq_exit().  If your
822  * architecture's idle loop violates this assumption, RCU will give you what
823  * you deserve, good and hard.  But very infrequently and irreproducibly.
824  *
825  * Use things like work queues to work around this limitation.
826  *
827  * You have been warned.
828  *
829  * If you add or remove a call to rcu_irq_exit(), be sure to test with
830  * CONFIG_RCU_EQS_DEBUG=y.
831  */
832 void rcu_irq_exit(void)
833 {
834 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
835 
836 	lockdep_assert_irqs_disabled();
837 	if (rdtp->dynticks_nmi_nesting == 1)
838 		rcu_prepare_for_idle();
839 	rcu_nmi_exit();
840 	if (rdtp->dynticks_nmi_nesting == 0)
841 		rcu_dynticks_task_enter();
842 }
843 
844 /*
845  * Wrapper for rcu_irq_exit() where interrupts are enabled.
846  *
847  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
848  * with CONFIG_RCU_EQS_DEBUG=y.
849  */
850 void rcu_irq_exit_irqson(void)
851 {
852 	unsigned long flags;
853 
854 	local_irq_save(flags);
855 	rcu_irq_exit();
856 	local_irq_restore(flags);
857 }
858 
859 /*
860  * Exit an RCU extended quiescent state, which can be either the
861  * idle loop or adaptive-tickless usermode execution.
862  *
863  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
864  * allow for the possibility of usermode upcalls messing up our count of
865  * interrupt nesting level during the busy period that is just now starting.
866  */
867 static void rcu_eqs_exit(bool user)
868 {
869 	struct rcu_dynticks *rdtp;
870 	long oldval;
871 
872 	lockdep_assert_irqs_disabled();
873 	rdtp = this_cpu_ptr(&rcu_dynticks);
874 	oldval = rdtp->dynticks_nesting;
875 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
876 	if (oldval) {
877 		rdtp->dynticks_nesting++;
878 		return;
879 	}
880 	rcu_dynticks_task_exit();
881 	rcu_dynticks_eqs_exit();
882 	rcu_cleanup_after_idle();
883 	trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
884 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
885 	WRITE_ONCE(rdtp->dynticks_nesting, 1);
886 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
887 }
888 
889 /**
890  * rcu_idle_exit - inform RCU that current CPU is leaving idle
891  *
892  * Exit idle mode, in other words, -enter- the mode in which RCU
893  * read-side critical sections can occur.
894  *
895  * If you add or remove a call to rcu_idle_exit(), be sure to test with
896  * CONFIG_RCU_EQS_DEBUG=y.
897  */
898 void rcu_idle_exit(void)
899 {
900 	unsigned long flags;
901 
902 	local_irq_save(flags);
903 	rcu_eqs_exit(false);
904 	local_irq_restore(flags);
905 }
906 
907 #ifdef CONFIG_NO_HZ_FULL
908 /**
909  * rcu_user_exit - inform RCU that we are exiting userspace.
910  *
911  * Exit RCU idle mode while entering the kernel because it can
912  * run a RCU read side critical section anytime.
913  *
914  * If you add or remove a call to rcu_user_exit(), be sure to test with
915  * CONFIG_RCU_EQS_DEBUG=y.
916  */
917 void rcu_user_exit(void)
918 {
919 	rcu_eqs_exit(1);
920 }
921 #endif /* CONFIG_NO_HZ_FULL */
922 
923 /**
924  * rcu_nmi_enter - inform RCU of entry to NMI context
925  *
926  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
927  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
928  * that the CPU is active.  This implementation permits nested NMIs, as
929  * long as the nesting level does not overflow an int.  (You will probably
930  * run out of stack space first.)
931  *
932  * If you add or remove a call to rcu_nmi_enter(), be sure to test
933  * with CONFIG_RCU_EQS_DEBUG=y.
934  */
935 void rcu_nmi_enter(void)
936 {
937 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
938 	long incby = 2;
939 
940 	/* Complain about underflow. */
941 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
942 
943 	/*
944 	 * If idle from RCU viewpoint, atomically increment ->dynticks
945 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
946 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
947 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
948 	 * to be in the outermost NMI handler that interrupted an RCU-idle
949 	 * period (observation due to Andy Lutomirski).
950 	 */
951 	if (rcu_dynticks_curr_cpu_in_eqs()) {
952 		rcu_dynticks_eqs_exit();
953 		incby = 1;
954 	}
955 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
956 			  rdtp->dynticks_nmi_nesting,
957 			  rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
958 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
959 		   rdtp->dynticks_nmi_nesting + incby);
960 	barrier();
961 }
962 
963 /**
964  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
965  *
966  * Enter an interrupt handler, which might possibly result in exiting
967  * idle mode, in other words, entering the mode in which read-side critical
968  * sections can occur.  The caller must have disabled interrupts.
969  *
970  * Note that the Linux kernel is fully capable of entering an interrupt
971  * handler that it never exits, for example when doing upcalls to user mode!
972  * This code assumes that the idle loop never does upcalls to user mode.
973  * If your architecture's idle loop does do upcalls to user mode (or does
974  * anything else that results in unbalanced calls to the irq_enter() and
975  * irq_exit() functions), RCU will give you what you deserve, good and hard.
976  * But very infrequently and irreproducibly.
977  *
978  * Use things like work queues to work around this limitation.
979  *
980  * You have been warned.
981  *
982  * If you add or remove a call to rcu_irq_enter(), be sure to test with
983  * CONFIG_RCU_EQS_DEBUG=y.
984  */
985 void rcu_irq_enter(void)
986 {
987 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
988 
989 	lockdep_assert_irqs_disabled();
990 	if (rdtp->dynticks_nmi_nesting == 0)
991 		rcu_dynticks_task_exit();
992 	rcu_nmi_enter();
993 	if (rdtp->dynticks_nmi_nesting == 1)
994 		rcu_cleanup_after_idle();
995 }
996 
997 /*
998  * Wrapper for rcu_irq_enter() where interrupts are enabled.
999  *
1000  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1001  * with CONFIG_RCU_EQS_DEBUG=y.
1002  */
1003 void rcu_irq_enter_irqson(void)
1004 {
1005 	unsigned long flags;
1006 
1007 	local_irq_save(flags);
1008 	rcu_irq_enter();
1009 	local_irq_restore(flags);
1010 }
1011 
1012 /**
1013  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1014  *
1015  * Return true if RCU is watching the running CPU, which means that this
1016  * CPU can safely enter RCU read-side critical sections.  In other words,
1017  * if the current CPU is in its idle loop and is neither in an interrupt
1018  * or NMI handler, return true.
1019  */
1020 bool notrace rcu_is_watching(void)
1021 {
1022 	bool ret;
1023 
1024 	preempt_disable_notrace();
1025 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1026 	preempt_enable_notrace();
1027 	return ret;
1028 }
1029 EXPORT_SYMBOL_GPL(rcu_is_watching);
1030 
1031 /*
1032  * If a holdout task is actually running, request an urgent quiescent
1033  * state from its CPU.  This is unsynchronized, so migrations can cause
1034  * the request to go to the wrong CPU.  Which is OK, all that will happen
1035  * is that the CPU's next context switch will be a bit slower and next
1036  * time around this task will generate another request.
1037  */
1038 void rcu_request_urgent_qs_task(struct task_struct *t)
1039 {
1040 	int cpu;
1041 
1042 	barrier();
1043 	cpu = task_cpu(t);
1044 	if (!task_curr(t))
1045 		return; /* This task is not running on that CPU. */
1046 	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1047 }
1048 
1049 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1050 
1051 /*
1052  * Is the current CPU online as far as RCU is concerned?
1053  *
1054  * Disable preemption to avoid false positives that could otherwise
1055  * happen due to the current CPU number being sampled, this task being
1056  * preempted, its old CPU being taken offline, resuming on some other CPU,
1057  * then determining that its old CPU is now offline.  Because there are
1058  * multiple flavors of RCU, and because this function can be called in the
1059  * midst of updating the flavors while a given CPU coming online or going
1060  * offline, it is necessary to check all flavors.  If any of the flavors
1061  * believe that given CPU is online, it is considered to be online.
1062  *
1063  * Disable checking if in an NMI handler because we cannot safely
1064  * report errors from NMI handlers anyway.  In addition, it is OK to use
1065  * RCU on an offline processor during initial boot, hence the check for
1066  * rcu_scheduler_fully_active.
1067  */
1068 bool rcu_lockdep_current_cpu_online(void)
1069 {
1070 	struct rcu_data *rdp;
1071 	struct rcu_node *rnp;
1072 	struct rcu_state *rsp;
1073 
1074 	if (in_nmi() || !rcu_scheduler_fully_active)
1075 		return true;
1076 	preempt_disable();
1077 	for_each_rcu_flavor(rsp) {
1078 		rdp = this_cpu_ptr(rsp->rda);
1079 		rnp = rdp->mynode;
1080 		if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) {
1081 			preempt_enable();
1082 			return true;
1083 		}
1084 	}
1085 	preempt_enable();
1086 	return false;
1087 }
1088 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1089 
1090 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1091 
1092 /**
1093  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1094  *
1095  * If the current CPU is idle or running at a first-level (not nested)
1096  * interrupt from idle, return true.  The caller must have at least
1097  * disabled preemption.
1098  */
1099 static int rcu_is_cpu_rrupt_from_idle(void)
1100 {
1101 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1102 	       __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1103 }
1104 
1105 /*
1106  * We are reporting a quiescent state on behalf of some other CPU, so
1107  * it is our responsibility to check for and handle potential overflow
1108  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1109  * After all, the CPU might be in deep idle state, and thus executing no
1110  * code whatsoever.
1111  */
1112 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1113 {
1114 	raw_lockdep_assert_held_rcu_node(rnp);
1115 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1116 			 rnp->gp_seq))
1117 		WRITE_ONCE(rdp->gpwrap, true);
1118 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1119 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1120 }
1121 
1122 /*
1123  * Snapshot the specified CPU's dynticks counter so that we can later
1124  * credit them with an implicit quiescent state.  Return 1 if this CPU
1125  * is in dynticks idle mode, which is an extended quiescent state.
1126  */
1127 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1128 {
1129 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1130 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1131 		trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1132 		rcu_gpnum_ovf(rdp->mynode, rdp);
1133 		return 1;
1134 	}
1135 	return 0;
1136 }
1137 
1138 /*
1139  * Handler for the irq_work request posted when a grace period has
1140  * gone on for too long, but not yet long enough for an RCU CPU
1141  * stall warning.  Set state appropriately, but just complain if
1142  * there is unexpected state on entry.
1143  */
1144 static void rcu_iw_handler(struct irq_work *iwp)
1145 {
1146 	struct rcu_data *rdp;
1147 	struct rcu_node *rnp;
1148 
1149 	rdp = container_of(iwp, struct rcu_data, rcu_iw);
1150 	rnp = rdp->mynode;
1151 	raw_spin_lock_rcu_node(rnp);
1152 	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1153 		rdp->rcu_iw_gp_seq = rnp->gp_seq;
1154 		rdp->rcu_iw_pending = false;
1155 	}
1156 	raw_spin_unlock_rcu_node(rnp);
1157 }
1158 
1159 /*
1160  * Return true if the specified CPU has passed through a quiescent
1161  * state by virtue of being in or having passed through an dynticks
1162  * idle state since the last call to dyntick_save_progress_counter()
1163  * for this same CPU, or by virtue of having been offline.
1164  */
1165 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1166 {
1167 	unsigned long jtsq;
1168 	bool *rnhqp;
1169 	bool *ruqp;
1170 	struct rcu_node *rnp = rdp->mynode;
1171 
1172 	/*
1173 	 * If the CPU passed through or entered a dynticks idle phase with
1174 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1175 	 * already acknowledged the request to pass through a quiescent
1176 	 * state.  Either way, that CPU cannot possibly be in an RCU
1177 	 * read-side critical section that started before the beginning
1178 	 * of the current RCU grace period.
1179 	 */
1180 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1181 		trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1182 		rdp->dynticks_fqs++;
1183 		rcu_gpnum_ovf(rnp, rdp);
1184 		return 1;
1185 	}
1186 
1187 	/*
1188 	 * Has this CPU encountered a cond_resched() since the beginning
1189 	 * of the grace period?  For this to be the case, the CPU has to
1190 	 * have noticed the current grace period.  This might not be the
1191 	 * case for nohz_full CPUs looping in the kernel.
1192 	 */
1193 	jtsq = jiffies_till_sched_qs;
1194 	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1195 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1196 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1197 	    rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) {
1198 		trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc"));
1199 		rcu_gpnum_ovf(rnp, rdp);
1200 		return 1;
1201 	} else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1202 		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1203 		smp_store_release(ruqp, true);
1204 	}
1205 
1206 	/* If waiting too long on an offline CPU, complain. */
1207 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1208 	    time_after(jiffies, rdp->rsp->gp_start + HZ)) {
1209 		bool onl;
1210 		struct rcu_node *rnp1;
1211 
1212 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1213 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1214 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1215 			(long)rnp->gp_seq, (long)rnp->completedqs);
1216 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1217 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1218 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1219 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1220 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1221 			__func__, rdp->cpu, ".o"[onl],
1222 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1223 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1224 		return 1; /* Break things loose after complaining. */
1225 	}
1226 
1227 	/*
1228 	 * A CPU running for an extended time within the kernel can
1229 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1230 	 * even context-switching back and forth between a pair of
1231 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1232 	 * So if the grace period is old enough, make the CPU pay attention.
1233 	 * Note that the unsynchronized assignments to the per-CPU
1234 	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1235 	 * bits can be lost, but they will be set again on the next
1236 	 * force-quiescent-state pass.  So lost bit sets do not result
1237 	 * in incorrect behavior, merely in a grace period lasting
1238 	 * a few jiffies longer than it might otherwise.  Because
1239 	 * there are at most four threads involved, and because the
1240 	 * updates are only once every few jiffies, the probability of
1241 	 * lossage (and thus of slight grace-period extension) is
1242 	 * quite low.
1243 	 */
1244 	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1245 	if (!READ_ONCE(*rnhqp) &&
1246 	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1247 	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1248 		WRITE_ONCE(*rnhqp, true);
1249 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1250 		smp_store_release(ruqp, true);
1251 		rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1252 	}
1253 
1254 	/*
1255 	 * If more than halfway to RCU CPU stall-warning time, do a
1256 	 * resched_cpu() to try to loosen things up a bit.  Also check to
1257 	 * see if the CPU is getting hammered with interrupts, but only
1258 	 * once per grace period, just to keep the IPIs down to a dull roar.
1259 	 */
1260 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1261 		resched_cpu(rdp->cpu);
1262 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1263 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1264 		    (rnp->ffmask & rdp->grpmask)) {
1265 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1266 			rdp->rcu_iw_pending = true;
1267 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1268 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1269 		}
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 static void record_gp_stall_check_time(struct rcu_state *rsp)
1276 {
1277 	unsigned long j = jiffies;
1278 	unsigned long j1;
1279 
1280 	rsp->gp_start = j;
1281 	j1 = rcu_jiffies_till_stall_check();
1282 	/* Record ->gp_start before ->jiffies_stall. */
1283 	smp_store_release(&rsp->jiffies_stall, j + j1); /* ^^^ */
1284 	rsp->jiffies_resched = j + j1 / 2;
1285 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1286 }
1287 
1288 /*
1289  * Convert a ->gp_state value to a character string.
1290  */
1291 static const char *gp_state_getname(short gs)
1292 {
1293 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1294 		return "???";
1295 	return gp_state_names[gs];
1296 }
1297 
1298 /*
1299  * Complain about starvation of grace-period kthread.
1300  */
1301 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1302 {
1303 	unsigned long gpa;
1304 	unsigned long j;
1305 
1306 	j = jiffies;
1307 	gpa = READ_ONCE(rsp->gp_activity);
1308 	if (j - gpa > 2 * HZ) {
1309 		pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1310 		       rsp->name, j - gpa,
1311 		       (long)rcu_seq_current(&rsp->gp_seq),
1312 		       rsp->gp_flags,
1313 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1314 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1315 		       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1316 		if (rsp->gp_kthread) {
1317 			pr_err("RCU grace-period kthread stack dump:\n");
1318 			sched_show_task(rsp->gp_kthread);
1319 			wake_up_process(rsp->gp_kthread);
1320 		}
1321 	}
1322 }
1323 
1324 /*
1325  * Dump stacks of all tasks running on stalled CPUs.  First try using
1326  * NMIs, but fall back to manual remote stack tracing on architectures
1327  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1328  * traces are more accurate because they are printed by the target CPU.
1329  */
1330 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1331 {
1332 	int cpu;
1333 	unsigned long flags;
1334 	struct rcu_node *rnp;
1335 
1336 	rcu_for_each_leaf_node(rsp, rnp) {
1337 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1338 		for_each_leaf_node_possible_cpu(rnp, cpu)
1339 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1340 				if (!trigger_single_cpu_backtrace(cpu))
1341 					dump_cpu_task(cpu);
1342 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1343 	}
1344 }
1345 
1346 /*
1347  * If too much time has passed in the current grace period, and if
1348  * so configured, go kick the relevant kthreads.
1349  */
1350 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1351 {
1352 	unsigned long j;
1353 
1354 	if (!rcu_kick_kthreads)
1355 		return;
1356 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1357 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1358 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1359 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1360 		rcu_ftrace_dump(DUMP_ALL);
1361 		wake_up_process(rsp->gp_kthread);
1362 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1363 	}
1364 }
1365 
1366 static void panic_on_rcu_stall(void)
1367 {
1368 	if (sysctl_panic_on_rcu_stall)
1369 		panic("RCU Stall\n");
1370 }
1371 
1372 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq)
1373 {
1374 	int cpu;
1375 	unsigned long flags;
1376 	unsigned long gpa;
1377 	unsigned long j;
1378 	int ndetected = 0;
1379 	struct rcu_node *rnp = rcu_get_root(rsp);
1380 	long totqlen = 0;
1381 
1382 	/* Kick and suppress, if so configured. */
1383 	rcu_stall_kick_kthreads(rsp);
1384 	if (rcu_cpu_stall_suppress)
1385 		return;
1386 
1387 	/*
1388 	 * OK, time to rat on our buddy...
1389 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1390 	 * RCU CPU stall warnings.
1391 	 */
1392 	pr_err("INFO: %s detected stalls on CPUs/tasks:", rsp->name);
1393 	print_cpu_stall_info_begin();
1394 	rcu_for_each_leaf_node(rsp, rnp) {
1395 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1396 		ndetected += rcu_print_task_stall(rnp);
1397 		if (rnp->qsmask != 0) {
1398 			for_each_leaf_node_possible_cpu(rnp, cpu)
1399 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1400 					print_cpu_stall_info(rsp, cpu);
1401 					ndetected++;
1402 				}
1403 		}
1404 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1405 	}
1406 
1407 	print_cpu_stall_info_end();
1408 	for_each_possible_cpu(cpu)
1409 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1410 							    cpu)->cblist);
1411 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1412 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1413 	       (long)rcu_seq_current(&rsp->gp_seq), totqlen);
1414 	if (ndetected) {
1415 		rcu_dump_cpu_stacks(rsp);
1416 
1417 		/* Complain about tasks blocking the grace period. */
1418 		rcu_print_detail_task_stall(rsp);
1419 	} else {
1420 		if (rcu_seq_current(&rsp->gp_seq) != gp_seq) {
1421 			pr_err("INFO: Stall ended before state dump start\n");
1422 		} else {
1423 			j = jiffies;
1424 			gpa = READ_ONCE(rsp->gp_activity);
1425 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1426 			       rsp->name, j - gpa, j, gpa,
1427 			       jiffies_till_next_fqs,
1428 			       rcu_get_root(rsp)->qsmask);
1429 			/* In this case, the current CPU might be at fault. */
1430 			sched_show_task(current);
1431 		}
1432 	}
1433 	/* Rewrite if needed in case of slow consoles. */
1434 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1435 		WRITE_ONCE(rsp->jiffies_stall,
1436 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1437 
1438 	rcu_check_gp_kthread_starvation(rsp);
1439 
1440 	panic_on_rcu_stall();
1441 
1442 	force_quiescent_state(rsp);  /* Kick them all. */
1443 }
1444 
1445 static void print_cpu_stall(struct rcu_state *rsp)
1446 {
1447 	int cpu;
1448 	unsigned long flags;
1449 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1450 	struct rcu_node *rnp = rcu_get_root(rsp);
1451 	long totqlen = 0;
1452 
1453 	/* Kick and suppress, if so configured. */
1454 	rcu_stall_kick_kthreads(rsp);
1455 	if (rcu_cpu_stall_suppress)
1456 		return;
1457 
1458 	/*
1459 	 * OK, time to rat on ourselves...
1460 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1461 	 * RCU CPU stall warnings.
1462 	 */
1463 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1464 	print_cpu_stall_info_begin();
1465 	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1466 	print_cpu_stall_info(rsp, smp_processor_id());
1467 	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1468 	print_cpu_stall_info_end();
1469 	for_each_possible_cpu(cpu)
1470 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1471 							    cpu)->cblist);
1472 	pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1473 		jiffies - rsp->gp_start,
1474 		(long)rcu_seq_current(&rsp->gp_seq), totqlen);
1475 
1476 	rcu_check_gp_kthread_starvation(rsp);
1477 
1478 	rcu_dump_cpu_stacks(rsp);
1479 
1480 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1481 	/* Rewrite if needed in case of slow consoles. */
1482 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1483 		WRITE_ONCE(rsp->jiffies_stall,
1484 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1485 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1486 
1487 	panic_on_rcu_stall();
1488 
1489 	/*
1490 	 * Attempt to revive the RCU machinery by forcing a context switch.
1491 	 *
1492 	 * A context switch would normally allow the RCU state machine to make
1493 	 * progress and it could be we're stuck in kernel space without context
1494 	 * switches for an entirely unreasonable amount of time.
1495 	 */
1496 	resched_cpu(smp_processor_id());
1497 }
1498 
1499 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1500 {
1501 	unsigned long gs1;
1502 	unsigned long gs2;
1503 	unsigned long gps;
1504 	unsigned long j;
1505 	unsigned long jn;
1506 	unsigned long js;
1507 	struct rcu_node *rnp;
1508 
1509 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1510 	    !rcu_gp_in_progress(rsp))
1511 		return;
1512 	rcu_stall_kick_kthreads(rsp);
1513 	j = jiffies;
1514 
1515 	/*
1516 	 * Lots of memory barriers to reject false positives.
1517 	 *
1518 	 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall,
1519 	 * then rsp->gp_start, and finally another copy of rsp->gp_seq.
1520 	 * These values are updated in the opposite order with memory
1521 	 * barriers (or equivalent) during grace-period initialization
1522 	 * and cleanup.  Now, a false positive can occur if we get an new
1523 	 * value of rsp->gp_start and a old value of rsp->jiffies_stall.
1524 	 * But given the memory barriers, the only way that this can happen
1525 	 * is if one grace period ends and another starts between these
1526 	 * two fetches.  This is detected by comparing the second fetch
1527 	 * of rsp->gp_seq with the previous fetch from rsp->gp_seq.
1528 	 *
1529 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1530 	 * and rsp->gp_start suffice to forestall false positives.
1531 	 */
1532 	gs1 = READ_ONCE(rsp->gp_seq);
1533 	smp_rmb(); /* Pick up ->gp_seq first... */
1534 	js = READ_ONCE(rsp->jiffies_stall);
1535 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1536 	gps = READ_ONCE(rsp->gp_start);
1537 	smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1538 	gs2 = READ_ONCE(rsp->gp_seq);
1539 	if (gs1 != gs2 ||
1540 	    ULONG_CMP_LT(j, js) ||
1541 	    ULONG_CMP_GE(gps, js))
1542 		return; /* No stall or GP completed since entering function. */
1543 	rnp = rdp->mynode;
1544 	jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1545 	if (rcu_gp_in_progress(rsp) &&
1546 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1547 	    cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
1548 
1549 		/* We haven't checked in, so go dump stack. */
1550 		print_cpu_stall(rsp);
1551 
1552 	} else if (rcu_gp_in_progress(rsp) &&
1553 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1554 		   cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
1555 
1556 		/* They had a few time units to dump stack, so complain. */
1557 		print_other_cpu_stall(rsp, gs2);
1558 	}
1559 }
1560 
1561 /**
1562  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1563  *
1564  * Set the stall-warning timeout way off into the future, thus preventing
1565  * any RCU CPU stall-warning messages from appearing in the current set of
1566  * RCU grace periods.
1567  *
1568  * The caller must disable hard irqs.
1569  */
1570 void rcu_cpu_stall_reset(void)
1571 {
1572 	struct rcu_state *rsp;
1573 
1574 	for_each_rcu_flavor(rsp)
1575 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1576 }
1577 
1578 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1579 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1580 			      unsigned long gp_seq_req, const char *s)
1581 {
1582 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req,
1583 				      rnp->level, rnp->grplo, rnp->grphi, s);
1584 }
1585 
1586 /*
1587  * rcu_start_this_gp - Request the start of a particular grace period
1588  * @rnp_start: The leaf node of the CPU from which to start.
1589  * @rdp: The rcu_data corresponding to the CPU from which to start.
1590  * @gp_seq_req: The gp_seq of the grace period to start.
1591  *
1592  * Start the specified grace period, as needed to handle newly arrived
1593  * callbacks.  The required future grace periods are recorded in each
1594  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1595  * is reason to awaken the grace-period kthread.
1596  *
1597  * The caller must hold the specified rcu_node structure's ->lock, which
1598  * is why the caller is responsible for waking the grace-period kthread.
1599  *
1600  * Returns true if the GP thread needs to be awakened else false.
1601  */
1602 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1603 			      unsigned long gp_seq_req)
1604 {
1605 	bool ret = false;
1606 	struct rcu_state *rsp = rdp->rsp;
1607 	struct rcu_node *rnp;
1608 
1609 	/*
1610 	 * Use funnel locking to either acquire the root rcu_node
1611 	 * structure's lock or bail out if the need for this grace period
1612 	 * has already been recorded -- or if that grace period has in
1613 	 * fact already started.  If there is already a grace period in
1614 	 * progress in a non-leaf node, no recording is needed because the
1615 	 * end of the grace period will scan the leaf rcu_node structures.
1616 	 * Note that rnp_start->lock must not be released.
1617 	 */
1618 	raw_lockdep_assert_held_rcu_node(rnp_start);
1619 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1620 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1621 		if (rnp != rnp_start)
1622 			raw_spin_lock_rcu_node(rnp);
1623 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1624 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1625 		    (rnp != rnp_start &&
1626 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1627 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1628 					  TPS("Prestarted"));
1629 			goto unlock_out;
1630 		}
1631 		rnp->gp_seq_needed = gp_seq_req;
1632 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1633 			/*
1634 			 * We just marked the leaf or internal node, and a
1635 			 * grace period is in progress, which means that
1636 			 * rcu_gp_cleanup() will see the marking.  Bail to
1637 			 * reduce contention.
1638 			 */
1639 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1640 					  TPS("Startedleaf"));
1641 			goto unlock_out;
1642 		}
1643 		if (rnp != rnp_start && rnp->parent != NULL)
1644 			raw_spin_unlock_rcu_node(rnp);
1645 		if (!rnp->parent)
1646 			break;  /* At root, and perhaps also leaf. */
1647 	}
1648 
1649 	/* If GP already in progress, just leave, otherwise start one. */
1650 	if (rcu_gp_in_progress(rsp)) {
1651 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1652 		goto unlock_out;
1653 	}
1654 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1655 	WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT);
1656 	rsp->gp_req_activity = jiffies;
1657 	if (!rsp->gp_kthread) {
1658 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1659 		goto unlock_out;
1660 	}
1661 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq"));
1662 	ret = true;  /* Caller must wake GP kthread. */
1663 unlock_out:
1664 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1665 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1666 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1667 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1668 	}
1669 	if (rnp != rnp_start)
1670 		raw_spin_unlock_rcu_node(rnp);
1671 	return ret;
1672 }
1673 
1674 /*
1675  * Clean up any old requests for the just-ended grace period.  Also return
1676  * whether any additional grace periods have been requested.
1677  */
1678 static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1679 {
1680 	bool needmore;
1681 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1682 
1683 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1684 	if (!needmore)
1685 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1686 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1687 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1688 	return needmore;
1689 }
1690 
1691 /*
1692  * Awaken the grace-period kthread for the specified flavor of RCU.
1693  * Don't do a self-awaken, and don't bother awakening when there is
1694  * nothing for the grace-period kthread to do (as in several CPUs
1695  * raced to awaken, and we lost), and finally don't try to awaken
1696  * a kthread that has not yet been created.
1697  */
1698 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1699 {
1700 	if (current == rsp->gp_kthread ||
1701 	    !READ_ONCE(rsp->gp_flags) ||
1702 	    !rsp->gp_kthread)
1703 		return;
1704 	swake_up_one(&rsp->gp_wq);
1705 }
1706 
1707 /*
1708  * If there is room, assign a ->gp_seq number to any callbacks on this
1709  * CPU that have not already been assigned.  Also accelerate any callbacks
1710  * that were previously assigned a ->gp_seq number that has since proven
1711  * to be too conservative, which can happen if callbacks get assigned a
1712  * ->gp_seq number while RCU is idle, but with reference to a non-root
1713  * rcu_node structure.  This function is idempotent, so it does not hurt
1714  * to call it repeatedly.  Returns an flag saying that we should awaken
1715  * the RCU grace-period kthread.
1716  *
1717  * The caller must hold rnp->lock with interrupts disabled.
1718  */
1719 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1720 			       struct rcu_data *rdp)
1721 {
1722 	unsigned long gp_seq_req;
1723 	bool ret = false;
1724 
1725 	raw_lockdep_assert_held_rcu_node(rnp);
1726 
1727 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1728 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1729 		return false;
1730 
1731 	/*
1732 	 * Callbacks are often registered with incomplete grace-period
1733 	 * information.  Something about the fact that getting exact
1734 	 * information requires acquiring a global lock...  RCU therefore
1735 	 * makes a conservative estimate of the grace period number at which
1736 	 * a given callback will become ready to invoke.	The following
1737 	 * code checks this estimate and improves it when possible, thus
1738 	 * accelerating callback invocation to an earlier grace-period
1739 	 * number.
1740 	 */
1741 	gp_seq_req = rcu_seq_snap(&rsp->gp_seq);
1742 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1743 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1744 
1745 	/* Trace depending on how much we were able to accelerate. */
1746 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1747 		trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB"));
1748 	else
1749 		trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB"));
1750 	return ret;
1751 }
1752 
1753 /*
1754  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1755  * rcu_node structure's ->lock be held.  It consults the cached value
1756  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1757  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1758  * while holding the leaf rcu_node structure's ->lock.
1759  */
1760 static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp,
1761 					struct rcu_node *rnp,
1762 					struct rcu_data *rdp)
1763 {
1764 	unsigned long c;
1765 	bool needwake;
1766 
1767 	lockdep_assert_irqs_disabled();
1768 	c = rcu_seq_snap(&rsp->gp_seq);
1769 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1770 		/* Old request still live, so mark recent callbacks. */
1771 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1772 		return;
1773 	}
1774 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1775 	needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1776 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1777 	if (needwake)
1778 		rcu_gp_kthread_wake(rsp);
1779 }
1780 
1781 /*
1782  * Move any callbacks whose grace period has completed to the
1783  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1784  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1785  * sublist.  This function is idempotent, so it does not hurt to
1786  * invoke it repeatedly.  As long as it is not invoked -too- often...
1787  * Returns true if the RCU grace-period kthread needs to be awakened.
1788  *
1789  * The caller must hold rnp->lock with interrupts disabled.
1790  */
1791 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1792 			    struct rcu_data *rdp)
1793 {
1794 	raw_lockdep_assert_held_rcu_node(rnp);
1795 
1796 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1797 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1798 		return false;
1799 
1800 	/*
1801 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1802 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1803 	 */
1804 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1805 
1806 	/* Classify any remaining callbacks. */
1807 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1808 }
1809 
1810 /*
1811  * Update CPU-local rcu_data state to record the beginnings and ends of
1812  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1813  * structure corresponding to the current CPU, and must have irqs disabled.
1814  * Returns true if the grace-period kthread needs to be awakened.
1815  */
1816 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1817 			      struct rcu_data *rdp)
1818 {
1819 	bool ret;
1820 	bool need_gp;
1821 
1822 	raw_lockdep_assert_held_rcu_node(rnp);
1823 
1824 	if (rdp->gp_seq == rnp->gp_seq)
1825 		return false; /* Nothing to do. */
1826 
1827 	/* Handle the ends of any preceding grace periods first. */
1828 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1829 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1830 		ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */
1831 		trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend"));
1832 	} else {
1833 		ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */
1834 	}
1835 
1836 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1837 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1838 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1839 		/*
1840 		 * If the current grace period is waiting for this CPU,
1841 		 * set up to detect a quiescent state, otherwise don't
1842 		 * go looking for one.
1843 		 */
1844 		trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart"));
1845 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1846 		rdp->cpu_no_qs.b.norm = need_gp;
1847 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1848 		rdp->core_needs_qs = need_gp;
1849 		zero_cpu_stall_ticks(rdp);
1850 	}
1851 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1852 	if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1853 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1854 	WRITE_ONCE(rdp->gpwrap, false);
1855 	rcu_gpnum_ovf(rnp, rdp);
1856 	return ret;
1857 }
1858 
1859 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1860 {
1861 	unsigned long flags;
1862 	bool needwake;
1863 	struct rcu_node *rnp;
1864 
1865 	local_irq_save(flags);
1866 	rnp = rdp->mynode;
1867 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1868 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1869 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1870 		local_irq_restore(flags);
1871 		return;
1872 	}
1873 	needwake = __note_gp_changes(rsp, rnp, rdp);
1874 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1875 	if (needwake)
1876 		rcu_gp_kthread_wake(rsp);
1877 }
1878 
1879 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1880 {
1881 	if (delay > 0 &&
1882 	    !(rcu_seq_ctr(rsp->gp_seq) %
1883 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1884 		schedule_timeout_uninterruptible(delay);
1885 }
1886 
1887 /*
1888  * Initialize a new grace period.  Return false if no grace period required.
1889  */
1890 static bool rcu_gp_init(struct rcu_state *rsp)
1891 {
1892 	unsigned long flags;
1893 	unsigned long oldmask;
1894 	unsigned long mask;
1895 	struct rcu_data *rdp;
1896 	struct rcu_node *rnp = rcu_get_root(rsp);
1897 
1898 	WRITE_ONCE(rsp->gp_activity, jiffies);
1899 	raw_spin_lock_irq_rcu_node(rnp);
1900 	if (!READ_ONCE(rsp->gp_flags)) {
1901 		/* Spurious wakeup, tell caller to go back to sleep.  */
1902 		raw_spin_unlock_irq_rcu_node(rnp);
1903 		return false;
1904 	}
1905 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1906 
1907 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1908 		/*
1909 		 * Grace period already in progress, don't start another.
1910 		 * Not supposed to be able to happen.
1911 		 */
1912 		raw_spin_unlock_irq_rcu_node(rnp);
1913 		return false;
1914 	}
1915 
1916 	/* Advance to a new grace period and initialize state. */
1917 	record_gp_stall_check_time(rsp);
1918 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1919 	rcu_seq_start(&rsp->gp_seq);
1920 	trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start"));
1921 	raw_spin_unlock_irq_rcu_node(rnp);
1922 
1923 	/*
1924 	 * Apply per-leaf buffered online and offline operations to the
1925 	 * rcu_node tree.  Note that this new grace period need not wait
1926 	 * for subsequent online CPUs, and that quiescent-state forcing
1927 	 * will handle subsequent offline CPUs.
1928 	 */
1929 	rsp->gp_state = RCU_GP_ONOFF;
1930 	rcu_for_each_leaf_node(rsp, rnp) {
1931 		spin_lock(&rsp->ofl_lock);
1932 		raw_spin_lock_irq_rcu_node(rnp);
1933 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1934 		    !rnp->wait_blkd_tasks) {
1935 			/* Nothing to do on this leaf rcu_node structure. */
1936 			raw_spin_unlock_irq_rcu_node(rnp);
1937 			spin_unlock(&rsp->ofl_lock);
1938 			continue;
1939 		}
1940 
1941 		/* Record old state, apply changes to ->qsmaskinit field. */
1942 		oldmask = rnp->qsmaskinit;
1943 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1944 
1945 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1946 		if (!oldmask != !rnp->qsmaskinit) {
1947 			if (!oldmask) { /* First online CPU for rcu_node. */
1948 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1949 					rcu_init_new_rnp(rnp);
1950 			} else if (rcu_preempt_has_tasks(rnp)) {
1951 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1952 			} else { /* Last offline CPU and can propagate. */
1953 				rcu_cleanup_dead_rnp(rnp);
1954 			}
1955 		}
1956 
1957 		/*
1958 		 * If all waited-on tasks from prior grace period are
1959 		 * done, and if all this rcu_node structure's CPUs are
1960 		 * still offline, propagate up the rcu_node tree and
1961 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1962 		 * rcu_node structure's CPUs has since come back online,
1963 		 * simply clear ->wait_blkd_tasks.
1964 		 */
1965 		if (rnp->wait_blkd_tasks &&
1966 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1967 			rnp->wait_blkd_tasks = false;
1968 			if (!rnp->qsmaskinit)
1969 				rcu_cleanup_dead_rnp(rnp);
1970 		}
1971 
1972 		raw_spin_unlock_irq_rcu_node(rnp);
1973 		spin_unlock(&rsp->ofl_lock);
1974 	}
1975 	rcu_gp_slow(rsp, gp_preinit_delay); /* Races with CPU hotplug. */
1976 
1977 	/*
1978 	 * Set the quiescent-state-needed bits in all the rcu_node
1979 	 * structures for all currently online CPUs in breadth-first order,
1980 	 * starting from the root rcu_node structure, relying on the layout
1981 	 * of the tree within the rsp->node[] array.  Note that other CPUs
1982 	 * will access only the leaves of the hierarchy, thus seeing that no
1983 	 * grace period is in progress, at least until the corresponding
1984 	 * leaf node has been initialized.
1985 	 *
1986 	 * The grace period cannot complete until the initialization
1987 	 * process finishes, because this kthread handles both.
1988 	 */
1989 	rsp->gp_state = RCU_GP_INIT;
1990 	rcu_for_each_node_breadth_first(rsp, rnp) {
1991 		rcu_gp_slow(rsp, gp_init_delay);
1992 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1993 		rdp = this_cpu_ptr(rsp->rda);
1994 		rcu_preempt_check_blocked_tasks(rsp, rnp);
1995 		rnp->qsmask = rnp->qsmaskinit;
1996 		WRITE_ONCE(rnp->gp_seq, rsp->gp_seq);
1997 		if (rnp == rdp->mynode)
1998 			(void)__note_gp_changes(rsp, rnp, rdp);
1999 		rcu_preempt_boost_start_gp(rnp);
2000 		trace_rcu_grace_period_init(rsp->name, rnp->gp_seq,
2001 					    rnp->level, rnp->grplo,
2002 					    rnp->grphi, rnp->qsmask);
2003 		/* Quiescent states for tasks on any now-offline CPUs. */
2004 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
2005 		rnp->rcu_gp_init_mask = mask;
2006 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
2007 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2008 		else
2009 			raw_spin_unlock_irq_rcu_node(rnp);
2010 		cond_resched_tasks_rcu_qs();
2011 		WRITE_ONCE(rsp->gp_activity, jiffies);
2012 	}
2013 
2014 	return true;
2015 }
2016 
2017 /*
2018  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
2019  * time.
2020  */
2021 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2022 {
2023 	struct rcu_node *rnp = rcu_get_root(rsp);
2024 
2025 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2026 	*gfp = READ_ONCE(rsp->gp_flags);
2027 	if (*gfp & RCU_GP_FLAG_FQS)
2028 		return true;
2029 
2030 	/* The current grace period has completed. */
2031 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2032 		return true;
2033 
2034 	return false;
2035 }
2036 
2037 /*
2038  * Do one round of quiescent-state forcing.
2039  */
2040 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2041 {
2042 	struct rcu_node *rnp = rcu_get_root(rsp);
2043 
2044 	WRITE_ONCE(rsp->gp_activity, jiffies);
2045 	rsp->n_force_qs++;
2046 	if (first_time) {
2047 		/* Collect dyntick-idle snapshots. */
2048 		force_qs_rnp(rsp, dyntick_save_progress_counter);
2049 	} else {
2050 		/* Handle dyntick-idle and offline CPUs. */
2051 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2052 	}
2053 	/* Clear flag to prevent immediate re-entry. */
2054 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2055 		raw_spin_lock_irq_rcu_node(rnp);
2056 		WRITE_ONCE(rsp->gp_flags,
2057 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2058 		raw_spin_unlock_irq_rcu_node(rnp);
2059 	}
2060 }
2061 
2062 /*
2063  * Clean up after the old grace period.
2064  */
2065 static void rcu_gp_cleanup(struct rcu_state *rsp)
2066 {
2067 	unsigned long gp_duration;
2068 	bool needgp = false;
2069 	unsigned long new_gp_seq;
2070 	struct rcu_data *rdp;
2071 	struct rcu_node *rnp = rcu_get_root(rsp);
2072 	struct swait_queue_head *sq;
2073 
2074 	WRITE_ONCE(rsp->gp_activity, jiffies);
2075 	raw_spin_lock_irq_rcu_node(rnp);
2076 	gp_duration = jiffies - rsp->gp_start;
2077 	if (gp_duration > rsp->gp_max)
2078 		rsp->gp_max = gp_duration;
2079 
2080 	/*
2081 	 * We know the grace period is complete, but to everyone else
2082 	 * it appears to still be ongoing.  But it is also the case
2083 	 * that to everyone else it looks like there is nothing that
2084 	 * they can do to advance the grace period.  It is therefore
2085 	 * safe for us to drop the lock in order to mark the grace
2086 	 * period as completed in all of the rcu_node structures.
2087 	 */
2088 	raw_spin_unlock_irq_rcu_node(rnp);
2089 
2090 	/*
2091 	 * Propagate new ->gp_seq value to rcu_node structures so that
2092 	 * other CPUs don't have to wait until the start of the next grace
2093 	 * period to process their callbacks.  This also avoids some nasty
2094 	 * RCU grace-period initialization races by forcing the end of
2095 	 * the current grace period to be completely recorded in all of
2096 	 * the rcu_node structures before the beginning of the next grace
2097 	 * period is recorded in any of the rcu_node structures.
2098 	 */
2099 	new_gp_seq = rsp->gp_seq;
2100 	rcu_seq_end(&new_gp_seq);
2101 	rcu_for_each_node_breadth_first(rsp, rnp) {
2102 		raw_spin_lock_irq_rcu_node(rnp);
2103 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2104 			dump_blkd_tasks(rsp, rnp, 10);
2105 		WARN_ON_ONCE(rnp->qsmask);
2106 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2107 		rdp = this_cpu_ptr(rsp->rda);
2108 		if (rnp == rdp->mynode)
2109 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2110 		/* smp_mb() provided by prior unlock-lock pair. */
2111 		needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp;
2112 		sq = rcu_nocb_gp_get(rnp);
2113 		raw_spin_unlock_irq_rcu_node(rnp);
2114 		rcu_nocb_gp_cleanup(sq);
2115 		cond_resched_tasks_rcu_qs();
2116 		WRITE_ONCE(rsp->gp_activity, jiffies);
2117 		rcu_gp_slow(rsp, gp_cleanup_delay);
2118 	}
2119 	rnp = rcu_get_root(rsp);
2120 	raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */
2121 
2122 	/* Declare grace period done. */
2123 	rcu_seq_end(&rsp->gp_seq);
2124 	trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end"));
2125 	rsp->gp_state = RCU_GP_IDLE;
2126 	/* Check for GP requests since above loop. */
2127 	rdp = this_cpu_ptr(rsp->rda);
2128 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2129 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2130 				  TPS("CleanupMore"));
2131 		needgp = true;
2132 	}
2133 	/* Advance CBs to reduce false positives below. */
2134 	if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) {
2135 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2136 		rsp->gp_req_activity = jiffies;
2137 		trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq),
2138 				       TPS("newreq"));
2139 	} else {
2140 		WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT);
2141 	}
2142 	raw_spin_unlock_irq_rcu_node(rnp);
2143 }
2144 
2145 /*
2146  * Body of kthread that handles grace periods.
2147  */
2148 static int __noreturn rcu_gp_kthread(void *arg)
2149 {
2150 	bool first_gp_fqs;
2151 	int gf;
2152 	unsigned long j;
2153 	int ret;
2154 	struct rcu_state *rsp = arg;
2155 	struct rcu_node *rnp = rcu_get_root(rsp);
2156 
2157 	rcu_bind_gp_kthread();
2158 	for (;;) {
2159 
2160 		/* Handle grace-period start. */
2161 		for (;;) {
2162 			trace_rcu_grace_period(rsp->name,
2163 					       READ_ONCE(rsp->gp_seq),
2164 					       TPS("reqwait"));
2165 			rsp->gp_state = RCU_GP_WAIT_GPS;
2166 			swait_event_idle_exclusive(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2167 						     RCU_GP_FLAG_INIT);
2168 			rsp->gp_state = RCU_GP_DONE_GPS;
2169 			/* Locking provides needed memory barrier. */
2170 			if (rcu_gp_init(rsp))
2171 				break;
2172 			cond_resched_tasks_rcu_qs();
2173 			WRITE_ONCE(rsp->gp_activity, jiffies);
2174 			WARN_ON(signal_pending(current));
2175 			trace_rcu_grace_period(rsp->name,
2176 					       READ_ONCE(rsp->gp_seq),
2177 					       TPS("reqwaitsig"));
2178 		}
2179 
2180 		/* Handle quiescent-state forcing. */
2181 		first_gp_fqs = true;
2182 		j = jiffies_till_first_fqs;
2183 		ret = 0;
2184 		for (;;) {
2185 			if (!ret) {
2186 				rsp->jiffies_force_qs = jiffies + j;
2187 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2188 					   jiffies + 3 * j);
2189 			}
2190 			trace_rcu_grace_period(rsp->name,
2191 					       READ_ONCE(rsp->gp_seq),
2192 					       TPS("fqswait"));
2193 			rsp->gp_state = RCU_GP_WAIT_FQS;
2194 			ret = swait_event_idle_timeout_exclusive(rsp->gp_wq,
2195 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2196 			rsp->gp_state = RCU_GP_DOING_FQS;
2197 			/* Locking provides needed memory barriers. */
2198 			/* If grace period done, leave loop. */
2199 			if (!READ_ONCE(rnp->qsmask) &&
2200 			    !rcu_preempt_blocked_readers_cgp(rnp))
2201 				break;
2202 			/* If time for quiescent-state forcing, do it. */
2203 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2204 			    (gf & RCU_GP_FLAG_FQS)) {
2205 				trace_rcu_grace_period(rsp->name,
2206 						       READ_ONCE(rsp->gp_seq),
2207 						       TPS("fqsstart"));
2208 				rcu_gp_fqs(rsp, first_gp_fqs);
2209 				first_gp_fqs = false;
2210 				trace_rcu_grace_period(rsp->name,
2211 						       READ_ONCE(rsp->gp_seq),
2212 						       TPS("fqsend"));
2213 				cond_resched_tasks_rcu_qs();
2214 				WRITE_ONCE(rsp->gp_activity, jiffies);
2215 				ret = 0; /* Force full wait till next FQS. */
2216 				j = jiffies_till_next_fqs;
2217 			} else {
2218 				/* Deal with stray signal. */
2219 				cond_resched_tasks_rcu_qs();
2220 				WRITE_ONCE(rsp->gp_activity, jiffies);
2221 				WARN_ON(signal_pending(current));
2222 				trace_rcu_grace_period(rsp->name,
2223 						       READ_ONCE(rsp->gp_seq),
2224 						       TPS("fqswaitsig"));
2225 				ret = 1; /* Keep old FQS timing. */
2226 				j = jiffies;
2227 				if (time_after(jiffies, rsp->jiffies_force_qs))
2228 					j = 1;
2229 				else
2230 					j = rsp->jiffies_force_qs - j;
2231 			}
2232 		}
2233 
2234 		/* Handle grace-period end. */
2235 		rsp->gp_state = RCU_GP_CLEANUP;
2236 		rcu_gp_cleanup(rsp);
2237 		rsp->gp_state = RCU_GP_CLEANED;
2238 	}
2239 }
2240 
2241 /*
2242  * Report a full set of quiescent states to the specified rcu_state data
2243  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2244  * kthread if another grace period is required.  Whether we wake
2245  * the grace-period kthread or it awakens itself for the next round
2246  * of quiescent-state forcing, that kthread will clean up after the
2247  * just-completed grace period.  Note that the caller must hold rnp->lock,
2248  * which is released before return.
2249  */
2250 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2251 	__releases(rcu_get_root(rsp)->lock)
2252 {
2253 	raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
2254 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2255 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2256 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2257 	rcu_gp_kthread_wake(rsp);
2258 }
2259 
2260 /*
2261  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2262  * Allows quiescent states for a group of CPUs to be reported at one go
2263  * to the specified rcu_node structure, though all the CPUs in the group
2264  * must be represented by the same rcu_node structure (which need not be a
2265  * leaf rcu_node structure, though it often will be).  The gps parameter
2266  * is the grace-period snapshot, which means that the quiescent states
2267  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2268  * must be held upon entry, and it is released before return.
2269  *
2270  * As a special case, if mask is zero, the bit-already-cleared check is
2271  * disabled.  This allows propagating quiescent state due to resumed tasks
2272  * during grace-period initialization.
2273  */
2274 static void
2275 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2276 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2277 	__releases(rnp->lock)
2278 {
2279 	unsigned long oldmask = 0;
2280 	struct rcu_node *rnp_c;
2281 
2282 	raw_lockdep_assert_held_rcu_node(rnp);
2283 
2284 	/* Walk up the rcu_node hierarchy. */
2285 	for (;;) {
2286 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2287 
2288 			/*
2289 			 * Our bit has already been cleared, or the
2290 			 * relevant grace period is already over, so done.
2291 			 */
2292 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2293 			return;
2294 		}
2295 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2296 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2297 			     rcu_preempt_blocked_readers_cgp(rnp));
2298 		rnp->qsmask &= ~mask;
2299 		trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq,
2300 						 mask, rnp->qsmask, rnp->level,
2301 						 rnp->grplo, rnp->grphi,
2302 						 !!rnp->gp_tasks);
2303 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2304 
2305 			/* Other bits still set at this level, so done. */
2306 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2307 			return;
2308 		}
2309 		rnp->completedqs = rnp->gp_seq;
2310 		mask = rnp->grpmask;
2311 		if (rnp->parent == NULL) {
2312 
2313 			/* No more levels.  Exit loop holding root lock. */
2314 
2315 			break;
2316 		}
2317 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2318 		rnp_c = rnp;
2319 		rnp = rnp->parent;
2320 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2321 		oldmask = rnp_c->qsmask;
2322 	}
2323 
2324 	/*
2325 	 * Get here if we are the last CPU to pass through a quiescent
2326 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2327 	 * to clean up and start the next grace period if one is needed.
2328 	 */
2329 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2330 }
2331 
2332 /*
2333  * Record a quiescent state for all tasks that were previously queued
2334  * on the specified rcu_node structure and that were blocking the current
2335  * RCU grace period.  The caller must hold the specified rnp->lock with
2336  * irqs disabled, and this lock is released upon return, but irqs remain
2337  * disabled.
2338  */
2339 static void __maybe_unused
2340 rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2341 			  struct rcu_node *rnp, unsigned long flags)
2342 	__releases(rnp->lock)
2343 {
2344 	unsigned long gps;
2345 	unsigned long mask;
2346 	struct rcu_node *rnp_p;
2347 
2348 	raw_lockdep_assert_held_rcu_node(rnp);
2349 	if (WARN_ON_ONCE(rcu_state_p == &rcu_sched_state) ||
2350 	    WARN_ON_ONCE(rsp != rcu_state_p) ||
2351 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2352 	    rnp->qsmask != 0) {
2353 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2354 		return;  /* Still need more quiescent states! */
2355 	}
2356 
2357 	rnp->completedqs = rnp->gp_seq;
2358 	rnp_p = rnp->parent;
2359 	if (rnp_p == NULL) {
2360 		/*
2361 		 * Only one rcu_node structure in the tree, so don't
2362 		 * try to report up to its nonexistent parent!
2363 		 */
2364 		rcu_report_qs_rsp(rsp, flags);
2365 		return;
2366 	}
2367 
2368 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2369 	gps = rnp->gp_seq;
2370 	mask = rnp->grpmask;
2371 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2372 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2373 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2374 }
2375 
2376 /*
2377  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2378  * structure.  This must be called from the specified CPU.
2379  */
2380 static void
2381 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2382 {
2383 	unsigned long flags;
2384 	unsigned long mask;
2385 	bool needwake;
2386 	struct rcu_node *rnp;
2387 
2388 	rnp = rdp->mynode;
2389 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2390 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2391 	    rdp->gpwrap) {
2392 
2393 		/*
2394 		 * The grace period in which this quiescent state was
2395 		 * recorded has ended, so don't report it upwards.
2396 		 * We will instead need a new quiescent state that lies
2397 		 * within the current grace period.
2398 		 */
2399 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2400 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2401 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2402 		return;
2403 	}
2404 	mask = rdp->grpmask;
2405 	if ((rnp->qsmask & mask) == 0) {
2406 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2407 	} else {
2408 		rdp->core_needs_qs = false;
2409 
2410 		/*
2411 		 * This GP can't end until cpu checks in, so all of our
2412 		 * callbacks can be processed during the next GP.
2413 		 */
2414 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2415 
2416 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2417 		/* ^^^ Released rnp->lock */
2418 		if (needwake)
2419 			rcu_gp_kthread_wake(rsp);
2420 	}
2421 }
2422 
2423 /*
2424  * Check to see if there is a new grace period of which this CPU
2425  * is not yet aware, and if so, set up local rcu_data state for it.
2426  * Otherwise, see if this CPU has just passed through its first
2427  * quiescent state for this grace period, and record that fact if so.
2428  */
2429 static void
2430 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2431 {
2432 	/* Check for grace-period ends and beginnings. */
2433 	note_gp_changes(rsp, rdp);
2434 
2435 	/*
2436 	 * Does this CPU still need to do its part for current grace period?
2437 	 * If no, return and let the other CPUs do their part as well.
2438 	 */
2439 	if (!rdp->core_needs_qs)
2440 		return;
2441 
2442 	/*
2443 	 * Was there a quiescent state since the beginning of the grace
2444 	 * period? If no, then exit and wait for the next call.
2445 	 */
2446 	if (rdp->cpu_no_qs.b.norm)
2447 		return;
2448 
2449 	/*
2450 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2451 	 * judge of that).
2452 	 */
2453 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2454 }
2455 
2456 /*
2457  * Trace the fact that this CPU is going offline.
2458  */
2459 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2460 {
2461 	RCU_TRACE(bool blkd;)
2462 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2463 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2464 
2465 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2466 		return;
2467 
2468 	RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2469 	trace_rcu_grace_period(rsp->name, rnp->gp_seq,
2470 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2471 }
2472 
2473 /*
2474  * All CPUs for the specified rcu_node structure have gone offline,
2475  * and all tasks that were preempted within an RCU read-side critical
2476  * section while running on one of those CPUs have since exited their RCU
2477  * read-side critical section.  Some other CPU is reporting this fact with
2478  * the specified rcu_node structure's ->lock held and interrupts disabled.
2479  * This function therefore goes up the tree of rcu_node structures,
2480  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2481  * the leaf rcu_node structure's ->qsmaskinit field has already been
2482  * updated.
2483  *
2484  * This function does check that the specified rcu_node structure has
2485  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2486  * prematurely.  That said, invoking it after the fact will cost you
2487  * a needless lock acquisition.  So once it has done its work, don't
2488  * invoke it again.
2489  */
2490 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2491 {
2492 	long mask;
2493 	struct rcu_node *rnp = rnp_leaf;
2494 
2495 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2496 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2497 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2498 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2499 		return;
2500 	for (;;) {
2501 		mask = rnp->grpmask;
2502 		rnp = rnp->parent;
2503 		if (!rnp)
2504 			break;
2505 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2506 		rnp->qsmaskinit &= ~mask;
2507 		/* Between grace periods, so better already be zero! */
2508 		WARN_ON_ONCE(rnp->qsmask);
2509 		if (rnp->qsmaskinit) {
2510 			raw_spin_unlock_rcu_node(rnp);
2511 			/* irqs remain disabled. */
2512 			return;
2513 		}
2514 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2515 	}
2516 }
2517 
2518 /*
2519  * The CPU has been completely removed, and some other CPU is reporting
2520  * this fact from process context.  Do the remainder of the cleanup.
2521  * There can only be one CPU hotplug operation at a time, so no need for
2522  * explicit locking.
2523  */
2524 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2525 {
2526 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2527 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2528 
2529 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2530 		return;
2531 
2532 	/* Adjust any no-longer-needed kthreads. */
2533 	rcu_boost_kthread_setaffinity(rnp, -1);
2534 }
2535 
2536 /*
2537  * Invoke any RCU callbacks that have made it to the end of their grace
2538  * period.  Thottle as specified by rdp->blimit.
2539  */
2540 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2541 {
2542 	unsigned long flags;
2543 	struct rcu_head *rhp;
2544 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2545 	long bl, count;
2546 
2547 	/* If no callbacks are ready, just return. */
2548 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2549 		trace_rcu_batch_start(rsp->name,
2550 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2551 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2552 		trace_rcu_batch_end(rsp->name, 0,
2553 				    !rcu_segcblist_empty(&rdp->cblist),
2554 				    need_resched(), is_idle_task(current),
2555 				    rcu_is_callbacks_kthread());
2556 		return;
2557 	}
2558 
2559 	/*
2560 	 * Extract the list of ready callbacks, disabling to prevent
2561 	 * races with call_rcu() from interrupt handlers.  Leave the
2562 	 * callback counts, as rcu_barrier() needs to be conservative.
2563 	 */
2564 	local_irq_save(flags);
2565 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2566 	bl = rdp->blimit;
2567 	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2568 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2569 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2570 	local_irq_restore(flags);
2571 
2572 	/* Invoke callbacks. */
2573 	rhp = rcu_cblist_dequeue(&rcl);
2574 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2575 		debug_rcu_head_unqueue(rhp);
2576 		if (__rcu_reclaim(rsp->name, rhp))
2577 			rcu_cblist_dequeued_lazy(&rcl);
2578 		/*
2579 		 * Stop only if limit reached and CPU has something to do.
2580 		 * Note: The rcl structure counts down from zero.
2581 		 */
2582 		if (-rcl.len >= bl &&
2583 		    (need_resched() ||
2584 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2585 			break;
2586 	}
2587 
2588 	local_irq_save(flags);
2589 	count = -rcl.len;
2590 	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2591 			    is_idle_task(current), rcu_is_callbacks_kthread());
2592 
2593 	/* Update counts and requeue any remaining callbacks. */
2594 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2595 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2596 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2597 
2598 	/* Reinstate batch limit if we have worked down the excess. */
2599 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2600 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2601 		rdp->blimit = blimit;
2602 
2603 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2604 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2605 		rdp->qlen_last_fqs_check = 0;
2606 		rdp->n_force_qs_snap = rsp->n_force_qs;
2607 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2608 		rdp->qlen_last_fqs_check = count;
2609 
2610 	/*
2611 	 * The following usually indicates a double call_rcu().  To track
2612 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2613 	 */
2614 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2615 
2616 	local_irq_restore(flags);
2617 
2618 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2619 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2620 		invoke_rcu_core();
2621 }
2622 
2623 /*
2624  * Check to see if this CPU is in a non-context-switch quiescent state
2625  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2626  * Also schedule RCU core processing.
2627  *
2628  * This function must be called from hardirq context.  It is normally
2629  * invoked from the scheduling-clock interrupt.
2630  */
2631 void rcu_check_callbacks(int user)
2632 {
2633 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2634 	increment_cpu_stall_ticks();
2635 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2636 
2637 		/*
2638 		 * Get here if this CPU took its interrupt from user
2639 		 * mode or from the idle loop, and if this is not a
2640 		 * nested interrupt.  In this case, the CPU is in
2641 		 * a quiescent state, so note it.
2642 		 *
2643 		 * No memory barrier is required here because both
2644 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2645 		 * variables that other CPUs neither access nor modify,
2646 		 * at least not while the corresponding CPU is online.
2647 		 */
2648 
2649 		rcu_sched_qs();
2650 		rcu_bh_qs();
2651 		rcu_note_voluntary_context_switch(current);
2652 
2653 	} else if (!in_softirq()) {
2654 
2655 		/*
2656 		 * Get here if this CPU did not take its interrupt from
2657 		 * softirq, in other words, if it is not interrupting
2658 		 * a rcu_bh read-side critical section.  This is an _bh
2659 		 * critical section, so note it.
2660 		 */
2661 
2662 		rcu_bh_qs();
2663 	}
2664 	rcu_preempt_check_callbacks();
2665 	if (rcu_pending())
2666 		invoke_rcu_core();
2667 
2668 	trace_rcu_utilization(TPS("End scheduler-tick"));
2669 }
2670 
2671 /*
2672  * Scan the leaf rcu_node structures, processing dyntick state for any that
2673  * have not yet encountered a quiescent state, using the function specified.
2674  * Also initiate boosting for any threads blocked on the root rcu_node.
2675  *
2676  * The caller must have suppressed start of new grace periods.
2677  */
2678 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2679 {
2680 	int cpu;
2681 	unsigned long flags;
2682 	unsigned long mask;
2683 	struct rcu_node *rnp;
2684 
2685 	rcu_for_each_leaf_node(rsp, rnp) {
2686 		cond_resched_tasks_rcu_qs();
2687 		mask = 0;
2688 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2689 		if (rnp->qsmask == 0) {
2690 			if (rcu_state_p == &rcu_sched_state ||
2691 			    rsp != rcu_state_p ||
2692 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2693 				/*
2694 				 * No point in scanning bits because they
2695 				 * are all zero.  But we might need to
2696 				 * priority-boost blocked readers.
2697 				 */
2698 				rcu_initiate_boost(rnp, flags);
2699 				/* rcu_initiate_boost() releases rnp->lock */
2700 				continue;
2701 			}
2702 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2703 			continue;
2704 		}
2705 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2706 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2707 			if ((rnp->qsmask & bit) != 0) {
2708 				if (f(per_cpu_ptr(rsp->rda, cpu)))
2709 					mask |= bit;
2710 			}
2711 		}
2712 		if (mask != 0) {
2713 			/* Idle/offline CPUs, report (releases rnp->lock). */
2714 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2715 		} else {
2716 			/* Nothing to do here, so just drop the lock. */
2717 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2718 		}
2719 	}
2720 }
2721 
2722 /*
2723  * Force quiescent states on reluctant CPUs, and also detect which
2724  * CPUs are in dyntick-idle mode.
2725  */
2726 static void force_quiescent_state(struct rcu_state *rsp)
2727 {
2728 	unsigned long flags;
2729 	bool ret;
2730 	struct rcu_node *rnp;
2731 	struct rcu_node *rnp_old = NULL;
2732 
2733 	/* Funnel through hierarchy to reduce memory contention. */
2734 	rnp = __this_cpu_read(rsp->rda->mynode);
2735 	for (; rnp != NULL; rnp = rnp->parent) {
2736 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2737 		      !raw_spin_trylock(&rnp->fqslock);
2738 		if (rnp_old != NULL)
2739 			raw_spin_unlock(&rnp_old->fqslock);
2740 		if (ret)
2741 			return;
2742 		rnp_old = rnp;
2743 	}
2744 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2745 
2746 	/* Reached the root of the rcu_node tree, acquire lock. */
2747 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2748 	raw_spin_unlock(&rnp_old->fqslock);
2749 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2750 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2751 		return;  /* Someone beat us to it. */
2752 	}
2753 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2754 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2755 	rcu_gp_kthread_wake(rsp);
2756 }
2757 
2758 /*
2759  * This function checks for grace-period requests that fail to motivate
2760  * RCU to come out of its idle mode.
2761  */
2762 static void
2763 rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp,
2764 			 struct rcu_data *rdp)
2765 {
2766 	const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
2767 	unsigned long flags;
2768 	unsigned long j;
2769 	struct rcu_node *rnp_root = rcu_get_root(rsp);
2770 	static atomic_t warned = ATOMIC_INIT(0);
2771 
2772 	if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) ||
2773 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2774 		return;
2775 	j = jiffies; /* Expensive access, and in common case don't get here. */
2776 	if (time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) ||
2777 	    time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) ||
2778 	    atomic_read(&warned))
2779 		return;
2780 
2781 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2782 	j = jiffies;
2783 	if (rcu_gp_in_progress(rsp) ||
2784 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2785 	    time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) ||
2786 	    time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) ||
2787 	    atomic_read(&warned)) {
2788 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2789 		return;
2790 	}
2791 	/* Hold onto the leaf lock to make others see warned==1. */
2792 
2793 	if (rnp_root != rnp)
2794 		raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2795 	j = jiffies;
2796 	if (rcu_gp_in_progress(rsp) ||
2797 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2798 	    time_before(j, rsp->gp_req_activity + gpssdelay) ||
2799 	    time_before(j, rsp->gp_activity + gpssdelay) ||
2800 	    atomic_xchg(&warned, 1)) {
2801 		raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2802 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2803 		return;
2804 	}
2805 	pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2806 		 __func__, (long)READ_ONCE(rsp->gp_seq),
2807 		 (long)READ_ONCE(rnp_root->gp_seq_needed),
2808 		 j - rsp->gp_req_activity, j - rsp->gp_activity,
2809 		 rsp->gp_flags, rsp->gp_state, rsp->name,
2810 		 rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL);
2811 	WARN_ON(1);
2812 	if (rnp_root != rnp)
2813 		raw_spin_unlock_rcu_node(rnp_root);
2814 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2815 }
2816 
2817 /*
2818  * This does the RCU core processing work for the specified rcu_state
2819  * and rcu_data structures.  This may be called only from the CPU to
2820  * whom the rdp belongs.
2821  */
2822 static void
2823 __rcu_process_callbacks(struct rcu_state *rsp)
2824 {
2825 	unsigned long flags;
2826 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2827 	struct rcu_node *rnp = rdp->mynode;
2828 
2829 	WARN_ON_ONCE(!rdp->beenonline);
2830 
2831 	/* Update RCU state based on any recent quiescent states. */
2832 	rcu_check_quiescent_state(rsp, rdp);
2833 
2834 	/* No grace period and unregistered callbacks? */
2835 	if (!rcu_gp_in_progress(rsp) &&
2836 	    rcu_segcblist_is_enabled(&rdp->cblist)) {
2837 		local_irq_save(flags);
2838 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2839 			rcu_accelerate_cbs_unlocked(rsp, rnp, rdp);
2840 		local_irq_restore(flags);
2841 	}
2842 
2843 	rcu_check_gp_start_stall(rsp, rnp, rdp);
2844 
2845 	/* If there are callbacks ready, invoke them. */
2846 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2847 		invoke_rcu_callbacks(rsp, rdp);
2848 
2849 	/* Do any needed deferred wakeups of rcuo kthreads. */
2850 	do_nocb_deferred_wakeup(rdp);
2851 }
2852 
2853 /*
2854  * Do RCU core processing for the current CPU.
2855  */
2856 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2857 {
2858 	struct rcu_state *rsp;
2859 
2860 	if (cpu_is_offline(smp_processor_id()))
2861 		return;
2862 	trace_rcu_utilization(TPS("Start RCU core"));
2863 	for_each_rcu_flavor(rsp)
2864 		__rcu_process_callbacks(rsp);
2865 	trace_rcu_utilization(TPS("End RCU core"));
2866 }
2867 
2868 /*
2869  * Schedule RCU callback invocation.  If the specified type of RCU
2870  * does not support RCU priority boosting, just do a direct call,
2871  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2872  * are running on the current CPU with softirqs disabled, the
2873  * rcu_cpu_kthread_task cannot disappear out from under us.
2874  */
2875 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2876 {
2877 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2878 		return;
2879 	if (likely(!rsp->boost)) {
2880 		rcu_do_batch(rsp, rdp);
2881 		return;
2882 	}
2883 	invoke_rcu_callbacks_kthread();
2884 }
2885 
2886 static void invoke_rcu_core(void)
2887 {
2888 	if (cpu_online(smp_processor_id()))
2889 		raise_softirq(RCU_SOFTIRQ);
2890 }
2891 
2892 /*
2893  * Handle any core-RCU processing required by a call_rcu() invocation.
2894  */
2895 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2896 			    struct rcu_head *head, unsigned long flags)
2897 {
2898 	/*
2899 	 * If called from an extended quiescent state, invoke the RCU
2900 	 * core in order to force a re-evaluation of RCU's idleness.
2901 	 */
2902 	if (!rcu_is_watching())
2903 		invoke_rcu_core();
2904 
2905 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2906 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2907 		return;
2908 
2909 	/*
2910 	 * Force the grace period if too many callbacks or too long waiting.
2911 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2912 	 * if some other CPU has recently done so.  Also, don't bother
2913 	 * invoking force_quiescent_state() if the newly enqueued callback
2914 	 * is the only one waiting for a grace period to complete.
2915 	 */
2916 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2917 		     rdp->qlen_last_fqs_check + qhimark)) {
2918 
2919 		/* Are we ignoring a completed grace period? */
2920 		note_gp_changes(rsp, rdp);
2921 
2922 		/* Start a new grace period if one not already started. */
2923 		if (!rcu_gp_in_progress(rsp)) {
2924 			rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp);
2925 		} else {
2926 			/* Give the grace period a kick. */
2927 			rdp->blimit = LONG_MAX;
2928 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2929 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2930 				force_quiescent_state(rsp);
2931 			rdp->n_force_qs_snap = rsp->n_force_qs;
2932 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2933 		}
2934 	}
2935 }
2936 
2937 /*
2938  * RCU callback function to leak a callback.
2939  */
2940 static void rcu_leak_callback(struct rcu_head *rhp)
2941 {
2942 }
2943 
2944 /*
2945  * Helper function for call_rcu() and friends.  The cpu argument will
2946  * normally be -1, indicating "currently running CPU".  It may specify
2947  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2948  * is expected to specify a CPU.
2949  */
2950 static void
2951 __call_rcu(struct rcu_head *head, rcu_callback_t func,
2952 	   struct rcu_state *rsp, int cpu, bool lazy)
2953 {
2954 	unsigned long flags;
2955 	struct rcu_data *rdp;
2956 
2957 	/* Misaligned rcu_head! */
2958 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2959 
2960 	if (debug_rcu_head_queue(head)) {
2961 		/*
2962 		 * Probable double call_rcu(), so leak the callback.
2963 		 * Use rcu:rcu_callback trace event to find the previous
2964 		 * time callback was passed to __call_rcu().
2965 		 */
2966 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2967 			  head, head->func);
2968 		WRITE_ONCE(head->func, rcu_leak_callback);
2969 		return;
2970 	}
2971 	head->func = func;
2972 	head->next = NULL;
2973 	local_irq_save(flags);
2974 	rdp = this_cpu_ptr(rsp->rda);
2975 
2976 	/* Add the callback to our list. */
2977 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2978 		int offline;
2979 
2980 		if (cpu != -1)
2981 			rdp = per_cpu_ptr(rsp->rda, cpu);
2982 		if (likely(rdp->mynode)) {
2983 			/* Post-boot, so this should be for a no-CBs CPU. */
2984 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2985 			WARN_ON_ONCE(offline);
2986 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
2987 			local_irq_restore(flags);
2988 			return;
2989 		}
2990 		/*
2991 		 * Very early boot, before rcu_init().  Initialize if needed
2992 		 * and then drop through to queue the callback.
2993 		 */
2994 		BUG_ON(cpu != -1);
2995 		WARN_ON_ONCE(!rcu_is_watching());
2996 		if (rcu_segcblist_empty(&rdp->cblist))
2997 			rcu_segcblist_init(&rdp->cblist);
2998 	}
2999 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3000 	if (!lazy)
3001 		rcu_idle_count_callbacks_posted();
3002 
3003 	if (__is_kfree_rcu_offset((unsigned long)func))
3004 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3005 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3006 					 rcu_segcblist_n_cbs(&rdp->cblist));
3007 	else
3008 		trace_rcu_callback(rsp->name, head,
3009 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3010 				   rcu_segcblist_n_cbs(&rdp->cblist));
3011 
3012 	/* Go handle any RCU core processing required. */
3013 	__call_rcu_core(rsp, rdp, head, flags);
3014 	local_irq_restore(flags);
3015 }
3016 
3017 /**
3018  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3019  * @head: structure to be used for queueing the RCU updates.
3020  * @func: actual callback function to be invoked after the grace period
3021  *
3022  * The callback function will be invoked some time after a full grace
3023  * period elapses, in other words after all currently executing RCU
3024  * read-side critical sections have completed. call_rcu_sched() assumes
3025  * that the read-side critical sections end on enabling of preemption
3026  * or on voluntary preemption.
3027  * RCU read-side critical sections are delimited by:
3028  *
3029  * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3030  * - anything that disables preemption.
3031  *
3032  *  These may be nested.
3033  *
3034  * See the description of call_rcu() for more detailed information on
3035  * memory ordering guarantees.
3036  */
3037 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3038 {
3039 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3040 }
3041 EXPORT_SYMBOL_GPL(call_rcu_sched);
3042 
3043 /**
3044  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3045  * @head: structure to be used for queueing the RCU updates.
3046  * @func: actual callback function to be invoked after the grace period
3047  *
3048  * The callback function will be invoked some time after a full grace
3049  * period elapses, in other words after all currently executing RCU
3050  * read-side critical sections have completed. call_rcu_bh() assumes
3051  * that the read-side critical sections end on completion of a softirq
3052  * handler. This means that read-side critical sections in process
3053  * context must not be interrupted by softirqs. This interface is to be
3054  * used when most of the read-side critical sections are in softirq context.
3055  * RCU read-side critical sections are delimited by:
3056  *
3057  * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
3058  * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3059  *
3060  * These may be nested.
3061  *
3062  * See the description of call_rcu() for more detailed information on
3063  * memory ordering guarantees.
3064  */
3065 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3066 {
3067 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3068 }
3069 EXPORT_SYMBOL_GPL(call_rcu_bh);
3070 
3071 /*
3072  * Queue an RCU callback for lazy invocation after a grace period.
3073  * This will likely be later named something like "call_rcu_lazy()",
3074  * but this change will require some way of tagging the lazy RCU
3075  * callbacks in the list of pending callbacks. Until then, this
3076  * function may only be called from __kfree_rcu().
3077  */
3078 void kfree_call_rcu(struct rcu_head *head,
3079 		    rcu_callback_t func)
3080 {
3081 	__call_rcu(head, func, rcu_state_p, -1, 1);
3082 }
3083 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3084 
3085 /*
3086  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3087  * any blocking grace-period wait automatically implies a grace period
3088  * if there is only one CPU online at any point time during execution
3089  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3090  * occasionally incorrectly indicate that there are multiple CPUs online
3091  * when there was in fact only one the whole time, as this just adds
3092  * some overhead: RCU still operates correctly.
3093  */
3094 static int rcu_blocking_is_gp(void)
3095 {
3096 	int ret;
3097 
3098 	might_sleep();  /* Check for RCU read-side critical section. */
3099 	preempt_disable();
3100 	ret = num_online_cpus() <= 1;
3101 	preempt_enable();
3102 	return ret;
3103 }
3104 
3105 /**
3106  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3107  *
3108  * Control will return to the caller some time after a full rcu-sched
3109  * grace period has elapsed, in other words after all currently executing
3110  * rcu-sched read-side critical sections have completed.   These read-side
3111  * critical sections are delimited by rcu_read_lock_sched() and
3112  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3113  * local_irq_disable(), and so on may be used in place of
3114  * rcu_read_lock_sched().
3115  *
3116  * This means that all preempt_disable code sequences, including NMI and
3117  * non-threaded hardware-interrupt handlers, in progress on entry will
3118  * have completed before this primitive returns.  However, this does not
3119  * guarantee that softirq handlers will have completed, since in some
3120  * kernels, these handlers can run in process context, and can block.
3121  *
3122  * Note that this guarantee implies further memory-ordering guarantees.
3123  * On systems with more than one CPU, when synchronize_sched() returns,
3124  * each CPU is guaranteed to have executed a full memory barrier since the
3125  * end of its last RCU-sched read-side critical section whose beginning
3126  * preceded the call to synchronize_sched().  In addition, each CPU having
3127  * an RCU read-side critical section that extends beyond the return from
3128  * synchronize_sched() is guaranteed to have executed a full memory barrier
3129  * after the beginning of synchronize_sched() and before the beginning of
3130  * that RCU read-side critical section.  Note that these guarantees include
3131  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3132  * that are executing in the kernel.
3133  *
3134  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3135  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3136  * to have executed a full memory barrier during the execution of
3137  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3138  * again only if the system has more than one CPU).
3139  */
3140 void synchronize_sched(void)
3141 {
3142 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3143 			 lock_is_held(&rcu_lock_map) ||
3144 			 lock_is_held(&rcu_sched_lock_map),
3145 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3146 	if (rcu_blocking_is_gp())
3147 		return;
3148 	if (rcu_gp_is_expedited())
3149 		synchronize_sched_expedited();
3150 	else
3151 		wait_rcu_gp(call_rcu_sched);
3152 }
3153 EXPORT_SYMBOL_GPL(synchronize_sched);
3154 
3155 /**
3156  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3157  *
3158  * Control will return to the caller some time after a full rcu_bh grace
3159  * period has elapsed, in other words after all currently executing rcu_bh
3160  * read-side critical sections have completed.  RCU read-side critical
3161  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3162  * and may be nested.
3163  *
3164  * See the description of synchronize_sched() for more detailed information
3165  * on memory ordering guarantees.
3166  */
3167 void synchronize_rcu_bh(void)
3168 {
3169 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3170 			 lock_is_held(&rcu_lock_map) ||
3171 			 lock_is_held(&rcu_sched_lock_map),
3172 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3173 	if (rcu_blocking_is_gp())
3174 		return;
3175 	if (rcu_gp_is_expedited())
3176 		synchronize_rcu_bh_expedited();
3177 	else
3178 		wait_rcu_gp(call_rcu_bh);
3179 }
3180 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3181 
3182 /**
3183  * get_state_synchronize_rcu - Snapshot current RCU state
3184  *
3185  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3186  * to determine whether or not a full grace period has elapsed in the
3187  * meantime.
3188  */
3189 unsigned long get_state_synchronize_rcu(void)
3190 {
3191 	/*
3192 	 * Any prior manipulation of RCU-protected data must happen
3193 	 * before the load from ->gp_seq.
3194 	 */
3195 	smp_mb();  /* ^^^ */
3196 	return rcu_seq_snap(&rcu_state_p->gp_seq);
3197 }
3198 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3199 
3200 /**
3201  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3202  *
3203  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3204  *
3205  * If a full RCU grace period has elapsed since the earlier call to
3206  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3207  * synchronize_rcu() to wait for a full grace period.
3208  *
3209  * Yes, this function does not take counter wrap into account.  But
3210  * counter wrap is harmless.  If the counter wraps, we have waited for
3211  * more than 2 billion grace periods (and way more on a 64-bit system!),
3212  * so waiting for one additional grace period should be just fine.
3213  */
3214 void cond_synchronize_rcu(unsigned long oldstate)
3215 {
3216 	if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate))
3217 		synchronize_rcu();
3218 	else
3219 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3220 }
3221 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3222 
3223 /**
3224  * get_state_synchronize_sched - Snapshot current RCU-sched state
3225  *
3226  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3227  * to determine whether or not a full grace period has elapsed in the
3228  * meantime.
3229  */
3230 unsigned long get_state_synchronize_sched(void)
3231 {
3232 	/*
3233 	 * Any prior manipulation of RCU-protected data must happen
3234 	 * before the load from ->gp_seq.
3235 	 */
3236 	smp_mb();  /* ^^^ */
3237 	return rcu_seq_snap(&rcu_sched_state.gp_seq);
3238 }
3239 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3240 
3241 /**
3242  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3243  *
3244  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3245  *
3246  * If a full RCU-sched grace period has elapsed since the earlier call to
3247  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3248  * synchronize_sched() to wait for a full grace period.
3249  *
3250  * Yes, this function does not take counter wrap into account.  But
3251  * counter wrap is harmless.  If the counter wraps, we have waited for
3252  * more than 2 billion grace periods (and way more on a 64-bit system!),
3253  * so waiting for one additional grace period should be just fine.
3254  */
3255 void cond_synchronize_sched(unsigned long oldstate)
3256 {
3257 	if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate))
3258 		synchronize_sched();
3259 	else
3260 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3261 }
3262 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3263 
3264 /*
3265  * Check to see if there is any immediate RCU-related work to be done
3266  * by the current CPU, for the specified type of RCU, returning 1 if so.
3267  * The checks are in order of increasing expense: checks that can be
3268  * carried out against CPU-local state are performed first.  However,
3269  * we must check for CPU stalls first, else we might not get a chance.
3270  */
3271 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3272 {
3273 	struct rcu_node *rnp = rdp->mynode;
3274 
3275 	/* Check for CPU stalls, if enabled. */
3276 	check_cpu_stall(rsp, rdp);
3277 
3278 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3279 	if (rcu_nohz_full_cpu(rsp))
3280 		return 0;
3281 
3282 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3283 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3284 		return 1;
3285 
3286 	/* Does this CPU have callbacks ready to invoke? */
3287 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3288 		return 1;
3289 
3290 	/* Has RCU gone idle with this CPU needing another grace period? */
3291 	if (!rcu_gp_in_progress(rsp) &&
3292 	    rcu_segcblist_is_enabled(&rdp->cblist) &&
3293 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3294 		return 1;
3295 
3296 	/* Have RCU grace period completed or started?  */
3297 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3298 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3299 		return 1;
3300 
3301 	/* Does this CPU need a deferred NOCB wakeup? */
3302 	if (rcu_nocb_need_deferred_wakeup(rdp))
3303 		return 1;
3304 
3305 	/* nothing to do */
3306 	return 0;
3307 }
3308 
3309 /*
3310  * Check to see if there is any immediate RCU-related work to be done
3311  * by the current CPU, returning 1 if so.  This function is part of the
3312  * RCU implementation; it is -not- an exported member of the RCU API.
3313  */
3314 static int rcu_pending(void)
3315 {
3316 	struct rcu_state *rsp;
3317 
3318 	for_each_rcu_flavor(rsp)
3319 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3320 			return 1;
3321 	return 0;
3322 }
3323 
3324 /*
3325  * Return true if the specified CPU has any callback.  If all_lazy is
3326  * non-NULL, store an indication of whether all callbacks are lazy.
3327  * (If there are no callbacks, all of them are deemed to be lazy.)
3328  */
3329 static bool rcu_cpu_has_callbacks(bool *all_lazy)
3330 {
3331 	bool al = true;
3332 	bool hc = false;
3333 	struct rcu_data *rdp;
3334 	struct rcu_state *rsp;
3335 
3336 	for_each_rcu_flavor(rsp) {
3337 		rdp = this_cpu_ptr(rsp->rda);
3338 		if (rcu_segcblist_empty(&rdp->cblist))
3339 			continue;
3340 		hc = true;
3341 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3342 			al = false;
3343 			break;
3344 		}
3345 	}
3346 	if (all_lazy)
3347 		*all_lazy = al;
3348 	return hc;
3349 }
3350 
3351 /*
3352  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3353  * the compiler is expected to optimize this away.
3354  */
3355 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3356 			       int cpu, unsigned long done)
3357 {
3358 	trace_rcu_barrier(rsp->name, s, cpu,
3359 			  atomic_read(&rsp->barrier_cpu_count), done);
3360 }
3361 
3362 /*
3363  * RCU callback function for _rcu_barrier().  If we are last, wake
3364  * up the task executing _rcu_barrier().
3365  */
3366 static void rcu_barrier_callback(struct rcu_head *rhp)
3367 {
3368 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3369 	struct rcu_state *rsp = rdp->rsp;
3370 
3371 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3372 		_rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3373 				   rsp->barrier_sequence);
3374 		complete(&rsp->barrier_completion);
3375 	} else {
3376 		_rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3377 	}
3378 }
3379 
3380 /*
3381  * Called with preemption disabled, and from cross-cpu IRQ context.
3382  */
3383 static void rcu_barrier_func(void *type)
3384 {
3385 	struct rcu_state *rsp = type;
3386 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3387 
3388 	_rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3389 	rdp->barrier_head.func = rcu_barrier_callback;
3390 	debug_rcu_head_queue(&rdp->barrier_head);
3391 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3392 		atomic_inc(&rsp->barrier_cpu_count);
3393 	} else {
3394 		debug_rcu_head_unqueue(&rdp->barrier_head);
3395 		_rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3396 				   rsp->barrier_sequence);
3397 	}
3398 }
3399 
3400 /*
3401  * Orchestrate the specified type of RCU barrier, waiting for all
3402  * RCU callbacks of the specified type to complete.
3403  */
3404 static void _rcu_barrier(struct rcu_state *rsp)
3405 {
3406 	int cpu;
3407 	struct rcu_data *rdp;
3408 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3409 
3410 	_rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3411 
3412 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3413 	mutex_lock(&rsp->barrier_mutex);
3414 
3415 	/* Did someone else do our work for us? */
3416 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3417 		_rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3418 				   rsp->barrier_sequence);
3419 		smp_mb(); /* caller's subsequent code after above check. */
3420 		mutex_unlock(&rsp->barrier_mutex);
3421 		return;
3422 	}
3423 
3424 	/* Mark the start of the barrier operation. */
3425 	rcu_seq_start(&rsp->barrier_sequence);
3426 	_rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3427 
3428 	/*
3429 	 * Initialize the count to one rather than to zero in order to
3430 	 * avoid a too-soon return to zero in case of a short grace period
3431 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3432 	 * to ensure that no offline CPU has callbacks queued.
3433 	 */
3434 	init_completion(&rsp->barrier_completion);
3435 	atomic_set(&rsp->barrier_cpu_count, 1);
3436 	get_online_cpus();
3437 
3438 	/*
3439 	 * Force each CPU with callbacks to register a new callback.
3440 	 * When that callback is invoked, we will know that all of the
3441 	 * corresponding CPU's preceding callbacks have been invoked.
3442 	 */
3443 	for_each_possible_cpu(cpu) {
3444 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3445 			continue;
3446 		rdp = per_cpu_ptr(rsp->rda, cpu);
3447 		if (rcu_is_nocb_cpu(cpu)) {
3448 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3449 				_rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3450 						   rsp->barrier_sequence);
3451 			} else {
3452 				_rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3453 						   rsp->barrier_sequence);
3454 				smp_mb__before_atomic();
3455 				atomic_inc(&rsp->barrier_cpu_count);
3456 				__call_rcu(&rdp->barrier_head,
3457 					   rcu_barrier_callback, rsp, cpu, 0);
3458 			}
3459 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3460 			_rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3461 					   rsp->barrier_sequence);
3462 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3463 		} else {
3464 			_rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3465 					   rsp->barrier_sequence);
3466 		}
3467 	}
3468 	put_online_cpus();
3469 
3470 	/*
3471 	 * Now that we have an rcu_barrier_callback() callback on each
3472 	 * CPU, and thus each counted, remove the initial count.
3473 	 */
3474 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3475 		complete(&rsp->barrier_completion);
3476 
3477 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3478 	wait_for_completion(&rsp->barrier_completion);
3479 
3480 	/* Mark the end of the barrier operation. */
3481 	_rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3482 	rcu_seq_end(&rsp->barrier_sequence);
3483 
3484 	/* Other rcu_barrier() invocations can now safely proceed. */
3485 	mutex_unlock(&rsp->barrier_mutex);
3486 }
3487 
3488 /**
3489  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3490  */
3491 void rcu_barrier_bh(void)
3492 {
3493 	_rcu_barrier(&rcu_bh_state);
3494 }
3495 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3496 
3497 /**
3498  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3499  */
3500 void rcu_barrier_sched(void)
3501 {
3502 	_rcu_barrier(&rcu_sched_state);
3503 }
3504 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3505 
3506 /*
3507  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3508  * first CPU in a given leaf rcu_node structure coming online.  The caller
3509  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3510  * disabled.
3511  */
3512 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3513 {
3514 	long mask;
3515 	long oldmask;
3516 	struct rcu_node *rnp = rnp_leaf;
3517 
3518 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3519 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3520 	for (;;) {
3521 		mask = rnp->grpmask;
3522 		rnp = rnp->parent;
3523 		if (rnp == NULL)
3524 			return;
3525 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3526 		oldmask = rnp->qsmaskinit;
3527 		rnp->qsmaskinit |= mask;
3528 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3529 		if (oldmask)
3530 			return;
3531 	}
3532 }
3533 
3534 /*
3535  * Do boot-time initialization of a CPU's per-CPU RCU data.
3536  */
3537 static void __init
3538 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3539 {
3540 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3541 
3542 	/* Set up local state, ensuring consistent view of global state. */
3543 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3544 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3545 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3546 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3547 	rdp->rcu_ofl_gp_seq = rsp->gp_seq;
3548 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3549 	rdp->rcu_onl_gp_seq = rsp->gp_seq;
3550 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3551 	rdp->cpu = cpu;
3552 	rdp->rsp = rsp;
3553 	rcu_boot_init_nocb_percpu_data(rdp);
3554 }
3555 
3556 /*
3557  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3558  * offline event can be happening at a given time.  Note also that we can
3559  * accept some slop in the rsp->gp_seq access due to the fact that this
3560  * CPU cannot possibly have any RCU callbacks in flight yet.
3561  */
3562 static void
3563 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3564 {
3565 	unsigned long flags;
3566 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3567 	struct rcu_node *rnp = rcu_get_root(rsp);
3568 
3569 	/* Set up local state, ensuring consistent view of global state. */
3570 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3571 	rdp->qlen_last_fqs_check = 0;
3572 	rdp->n_force_qs_snap = rsp->n_force_qs;
3573 	rdp->blimit = blimit;
3574 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3575 	    !init_nocb_callback_list(rdp))
3576 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3577 	rdp->dynticks->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3578 	rcu_dynticks_eqs_online();
3579 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3580 
3581 	/*
3582 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3583 	 * propagation up the rcu_node tree will happen at the beginning
3584 	 * of the next grace period.
3585 	 */
3586 	rnp = rdp->mynode;
3587 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3588 	rdp->beenonline = true;	 /* We have now been online. */
3589 	rdp->gp_seq = rnp->gp_seq;
3590 	rdp->gp_seq_needed = rnp->gp_seq;
3591 	rdp->cpu_no_qs.b.norm = true;
3592 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3593 	rdp->core_needs_qs = false;
3594 	rdp->rcu_iw_pending = false;
3595 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3596 	trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl"));
3597 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3598 }
3599 
3600 /*
3601  * Invoked early in the CPU-online process, when pretty much all
3602  * services are available.  The incoming CPU is not present.
3603  */
3604 int rcutree_prepare_cpu(unsigned int cpu)
3605 {
3606 	struct rcu_state *rsp;
3607 
3608 	for_each_rcu_flavor(rsp)
3609 		rcu_init_percpu_data(cpu, rsp);
3610 
3611 	rcu_prepare_kthreads(cpu);
3612 	rcu_spawn_all_nocb_kthreads(cpu);
3613 
3614 	return 0;
3615 }
3616 
3617 /*
3618  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3619  */
3620 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3621 {
3622 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3623 
3624 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3625 }
3626 
3627 /*
3628  * Near the end of the CPU-online process.  Pretty much all services
3629  * enabled, and the CPU is now very much alive.
3630  */
3631 int rcutree_online_cpu(unsigned int cpu)
3632 {
3633 	unsigned long flags;
3634 	struct rcu_data *rdp;
3635 	struct rcu_node *rnp;
3636 	struct rcu_state *rsp;
3637 
3638 	for_each_rcu_flavor(rsp) {
3639 		rdp = per_cpu_ptr(rsp->rda, cpu);
3640 		rnp = rdp->mynode;
3641 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3642 		rnp->ffmask |= rdp->grpmask;
3643 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3644 	}
3645 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3646 		srcu_online_cpu(cpu);
3647 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3648 		return 0; /* Too early in boot for scheduler work. */
3649 	sync_sched_exp_online_cleanup(cpu);
3650 	rcutree_affinity_setting(cpu, -1);
3651 	return 0;
3652 }
3653 
3654 /*
3655  * Near the beginning of the process.  The CPU is still very much alive
3656  * with pretty much all services enabled.
3657  */
3658 int rcutree_offline_cpu(unsigned int cpu)
3659 {
3660 	unsigned long flags;
3661 	struct rcu_data *rdp;
3662 	struct rcu_node *rnp;
3663 	struct rcu_state *rsp;
3664 
3665 	for_each_rcu_flavor(rsp) {
3666 		rdp = per_cpu_ptr(rsp->rda, cpu);
3667 		rnp = rdp->mynode;
3668 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3669 		rnp->ffmask &= ~rdp->grpmask;
3670 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3671 	}
3672 
3673 	rcutree_affinity_setting(cpu, cpu);
3674 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3675 		srcu_offline_cpu(cpu);
3676 	return 0;
3677 }
3678 
3679 /*
3680  * Near the end of the offline process.  We do only tracing here.
3681  */
3682 int rcutree_dying_cpu(unsigned int cpu)
3683 {
3684 	struct rcu_state *rsp;
3685 
3686 	for_each_rcu_flavor(rsp)
3687 		rcu_cleanup_dying_cpu(rsp);
3688 	return 0;
3689 }
3690 
3691 /*
3692  * The outgoing CPU is gone and we are running elsewhere.
3693  */
3694 int rcutree_dead_cpu(unsigned int cpu)
3695 {
3696 	struct rcu_state *rsp;
3697 
3698 	for_each_rcu_flavor(rsp) {
3699 		rcu_cleanup_dead_cpu(cpu, rsp);
3700 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3701 	}
3702 	return 0;
3703 }
3704 
3705 static DEFINE_PER_CPU(int, rcu_cpu_started);
3706 
3707 /*
3708  * Mark the specified CPU as being online so that subsequent grace periods
3709  * (both expedited and normal) will wait on it.  Note that this means that
3710  * incoming CPUs are not allowed to use RCU read-side critical sections
3711  * until this function is called.  Failing to observe this restriction
3712  * will result in lockdep splats.
3713  *
3714  * Note that this function is special in that it is invoked directly
3715  * from the incoming CPU rather than from the cpuhp_step mechanism.
3716  * This is because this function must be invoked at a precise location.
3717  */
3718 void rcu_cpu_starting(unsigned int cpu)
3719 {
3720 	unsigned long flags;
3721 	unsigned long mask;
3722 	int nbits;
3723 	unsigned long oldmask;
3724 	struct rcu_data *rdp;
3725 	struct rcu_node *rnp;
3726 	struct rcu_state *rsp;
3727 
3728 	if (per_cpu(rcu_cpu_started, cpu))
3729 		return;
3730 
3731 	per_cpu(rcu_cpu_started, cpu) = 1;
3732 
3733 	for_each_rcu_flavor(rsp) {
3734 		rdp = per_cpu_ptr(rsp->rda, cpu);
3735 		rnp = rdp->mynode;
3736 		mask = rdp->grpmask;
3737 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3738 		rnp->qsmaskinitnext |= mask;
3739 		oldmask = rnp->expmaskinitnext;
3740 		rnp->expmaskinitnext |= mask;
3741 		oldmask ^= rnp->expmaskinitnext;
3742 		nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3743 		/* Allow lockless access for expedited grace periods. */
3744 		smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3745 		rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3746 		rdp->rcu_onl_gp_seq = READ_ONCE(rsp->gp_seq);
3747 		rdp->rcu_onl_gp_flags = READ_ONCE(rsp->gp_flags);
3748 		if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3749 			/* Report QS -after- changing ->qsmaskinitnext! */
3750 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
3751 		} else {
3752 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3753 		}
3754 	}
3755 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3756 }
3757 
3758 #ifdef CONFIG_HOTPLUG_CPU
3759 /*
3760  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3761  * function.  We now remove it from the rcu_node tree's ->qsmaskinitnext
3762  * bit masks.
3763  */
3764 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3765 {
3766 	unsigned long flags;
3767 	unsigned long mask;
3768 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3769 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3770 
3771 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3772 	mask = rdp->grpmask;
3773 	spin_lock(&rsp->ofl_lock);
3774 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3775 	rdp->rcu_ofl_gp_seq = READ_ONCE(rsp->gp_seq);
3776 	rdp->rcu_ofl_gp_flags = READ_ONCE(rsp->gp_flags);
3777 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3778 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3779 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
3780 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3781 	}
3782 	rnp->qsmaskinitnext &= ~mask;
3783 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3784 	spin_unlock(&rsp->ofl_lock);
3785 }
3786 
3787 /*
3788  * The outgoing function has no further need of RCU, so remove it from
3789  * the list of CPUs that RCU must track.
3790  *
3791  * Note that this function is special in that it is invoked directly
3792  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3793  * This is because this function must be invoked at a precise location.
3794  */
3795 void rcu_report_dead(unsigned int cpu)
3796 {
3797 	struct rcu_state *rsp;
3798 
3799 	/* QS for any half-done expedited RCU-sched GP. */
3800 	preempt_disable();
3801 	rcu_report_exp_rdp(&rcu_sched_state,
3802 			   this_cpu_ptr(rcu_sched_state.rda), true);
3803 	preempt_enable();
3804 	for_each_rcu_flavor(rsp)
3805 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3806 
3807 	per_cpu(rcu_cpu_started, cpu) = 0;
3808 }
3809 
3810 /* Migrate the dead CPU's callbacks to the current CPU. */
3811 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3812 {
3813 	unsigned long flags;
3814 	struct rcu_data *my_rdp;
3815 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3816 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3817 	bool needwake;
3818 
3819 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3820 		return;  /* No callbacks to migrate. */
3821 
3822 	local_irq_save(flags);
3823 	my_rdp = this_cpu_ptr(rsp->rda);
3824 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3825 		local_irq_restore(flags);
3826 		return;
3827 	}
3828 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3829 	/* Leverage recent GPs and set GP for new callbacks. */
3830 	needwake = rcu_advance_cbs(rsp, rnp_root, rdp) ||
3831 		   rcu_advance_cbs(rsp, rnp_root, my_rdp);
3832 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3833 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3834 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3835 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3836 	if (needwake)
3837 		rcu_gp_kthread_wake(rsp);
3838 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3839 		  !rcu_segcblist_empty(&rdp->cblist),
3840 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3841 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3842 		  rcu_segcblist_first_cb(&rdp->cblist));
3843 }
3844 
3845 /*
3846  * The outgoing CPU has just passed through the dying-idle state,
3847  * and we are being invoked from the CPU that was IPIed to continue the
3848  * offline operation.  We need to migrate the outgoing CPU's callbacks.
3849  */
3850 void rcutree_migrate_callbacks(int cpu)
3851 {
3852 	struct rcu_state *rsp;
3853 
3854 	for_each_rcu_flavor(rsp)
3855 		rcu_migrate_callbacks(cpu, rsp);
3856 }
3857 #endif
3858 
3859 /*
3860  * On non-huge systems, use expedited RCU grace periods to make suspend
3861  * and hibernation run faster.
3862  */
3863 static int rcu_pm_notify(struct notifier_block *self,
3864 			 unsigned long action, void *hcpu)
3865 {
3866 	switch (action) {
3867 	case PM_HIBERNATION_PREPARE:
3868 	case PM_SUSPEND_PREPARE:
3869 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3870 			rcu_expedite_gp();
3871 		break;
3872 	case PM_POST_HIBERNATION:
3873 	case PM_POST_SUSPEND:
3874 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3875 			rcu_unexpedite_gp();
3876 		break;
3877 	default:
3878 		break;
3879 	}
3880 	return NOTIFY_OK;
3881 }
3882 
3883 /*
3884  * Spawn the kthreads that handle each RCU flavor's grace periods.
3885  */
3886 static int __init rcu_spawn_gp_kthread(void)
3887 {
3888 	unsigned long flags;
3889 	int kthread_prio_in = kthread_prio;
3890 	struct rcu_node *rnp;
3891 	struct rcu_state *rsp;
3892 	struct sched_param sp;
3893 	struct task_struct *t;
3894 
3895 	/* Force priority into range. */
3896 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3897 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3898 		kthread_prio = 2;
3899 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3900 		kthread_prio = 1;
3901 	else if (kthread_prio < 0)
3902 		kthread_prio = 0;
3903 	else if (kthread_prio > 99)
3904 		kthread_prio = 99;
3905 
3906 	if (kthread_prio != kthread_prio_in)
3907 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3908 			 kthread_prio, kthread_prio_in);
3909 
3910 	rcu_scheduler_fully_active = 1;
3911 	for_each_rcu_flavor(rsp) {
3912 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3913 		BUG_ON(IS_ERR(t));
3914 		rnp = rcu_get_root(rsp);
3915 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3916 		rsp->gp_kthread = t;
3917 		if (kthread_prio) {
3918 			sp.sched_priority = kthread_prio;
3919 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3920 		}
3921 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3922 		wake_up_process(t);
3923 	}
3924 	rcu_spawn_nocb_kthreads();
3925 	rcu_spawn_boost_kthreads();
3926 	return 0;
3927 }
3928 early_initcall(rcu_spawn_gp_kthread);
3929 
3930 /*
3931  * This function is invoked towards the end of the scheduler's
3932  * initialization process.  Before this is called, the idle task might
3933  * contain synchronous grace-period primitives (during which time, this idle
3934  * task is booting the system, and such primitives are no-ops).  After this
3935  * function is called, any synchronous grace-period primitives are run as
3936  * expedited, with the requesting task driving the grace period forward.
3937  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3938  * runtime RCU functionality.
3939  */
3940 void rcu_scheduler_starting(void)
3941 {
3942 	WARN_ON(num_online_cpus() != 1);
3943 	WARN_ON(nr_context_switches() > 0);
3944 	rcu_test_sync_prims();
3945 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3946 	rcu_test_sync_prims();
3947 }
3948 
3949 /*
3950  * Helper function for rcu_init() that initializes one rcu_state structure.
3951  */
3952 static void __init rcu_init_one(struct rcu_state *rsp)
3953 {
3954 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3955 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3956 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3957 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3958 
3959 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3960 	int cpustride = 1;
3961 	int i;
3962 	int j;
3963 	struct rcu_node *rnp;
3964 
3965 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3966 
3967 	/* Silence gcc 4.8 false positive about array index out of range. */
3968 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3969 		panic("rcu_init_one: rcu_num_lvls out of range");
3970 
3971 	/* Initialize the level-tracking arrays. */
3972 
3973 	for (i = 1; i < rcu_num_lvls; i++)
3974 		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
3975 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3976 
3977 	/* Initialize the elements themselves, starting from the leaves. */
3978 
3979 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3980 		cpustride *= levelspread[i];
3981 		rnp = rsp->level[i];
3982 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3983 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3984 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3985 						   &rcu_node_class[i], buf[i]);
3986 			raw_spin_lock_init(&rnp->fqslock);
3987 			lockdep_set_class_and_name(&rnp->fqslock,
3988 						   &rcu_fqs_class[i], fqs[i]);
3989 			rnp->gp_seq = rsp->gp_seq;
3990 			rnp->gp_seq_needed = rsp->gp_seq;
3991 			rnp->completedqs = rsp->gp_seq;
3992 			rnp->qsmask = 0;
3993 			rnp->qsmaskinit = 0;
3994 			rnp->grplo = j * cpustride;
3995 			rnp->grphi = (j + 1) * cpustride - 1;
3996 			if (rnp->grphi >= nr_cpu_ids)
3997 				rnp->grphi = nr_cpu_ids - 1;
3998 			if (i == 0) {
3999 				rnp->grpnum = 0;
4000 				rnp->grpmask = 0;
4001 				rnp->parent = NULL;
4002 			} else {
4003 				rnp->grpnum = j % levelspread[i - 1];
4004 				rnp->grpmask = 1UL << rnp->grpnum;
4005 				rnp->parent = rsp->level[i - 1] +
4006 					      j / levelspread[i - 1];
4007 			}
4008 			rnp->level = i;
4009 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4010 			rcu_init_one_nocb(rnp);
4011 			init_waitqueue_head(&rnp->exp_wq[0]);
4012 			init_waitqueue_head(&rnp->exp_wq[1]);
4013 			init_waitqueue_head(&rnp->exp_wq[2]);
4014 			init_waitqueue_head(&rnp->exp_wq[3]);
4015 			spin_lock_init(&rnp->exp_lock);
4016 		}
4017 	}
4018 
4019 	init_swait_queue_head(&rsp->gp_wq);
4020 	init_swait_queue_head(&rsp->expedited_wq);
4021 	rnp = rcu_first_leaf_node(rsp);
4022 	for_each_possible_cpu(i) {
4023 		while (i > rnp->grphi)
4024 			rnp++;
4025 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4026 		rcu_boot_init_percpu_data(i, rsp);
4027 	}
4028 	list_add(&rsp->flavors, &rcu_struct_flavors);
4029 }
4030 
4031 /*
4032  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4033  * replace the definitions in tree.h because those are needed to size
4034  * the ->node array in the rcu_state structure.
4035  */
4036 static void __init rcu_init_geometry(void)
4037 {
4038 	ulong d;
4039 	int i;
4040 	int rcu_capacity[RCU_NUM_LVLS];
4041 
4042 	/*
4043 	 * Initialize any unspecified boot parameters.
4044 	 * The default values of jiffies_till_first_fqs and
4045 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4046 	 * value, which is a function of HZ, then adding one for each
4047 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4048 	 */
4049 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4050 	if (jiffies_till_first_fqs == ULONG_MAX)
4051 		jiffies_till_first_fqs = d;
4052 	if (jiffies_till_next_fqs == ULONG_MAX)
4053 		jiffies_till_next_fqs = d;
4054 
4055 	/* If the compile-time values are accurate, just leave. */
4056 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4057 	    nr_cpu_ids == NR_CPUS)
4058 		return;
4059 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4060 		rcu_fanout_leaf, nr_cpu_ids);
4061 
4062 	/*
4063 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4064 	 * and cannot exceed the number of bits in the rcu_node masks.
4065 	 * Complain and fall back to the compile-time values if this
4066 	 * limit is exceeded.
4067 	 */
4068 	if (rcu_fanout_leaf < 2 ||
4069 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4070 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4071 		WARN_ON(1);
4072 		return;
4073 	}
4074 
4075 	/*
4076 	 * Compute number of nodes that can be handled an rcu_node tree
4077 	 * with the given number of levels.
4078 	 */
4079 	rcu_capacity[0] = rcu_fanout_leaf;
4080 	for (i = 1; i < RCU_NUM_LVLS; i++)
4081 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4082 
4083 	/*
4084 	 * The tree must be able to accommodate the configured number of CPUs.
4085 	 * If this limit is exceeded, fall back to the compile-time values.
4086 	 */
4087 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4088 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4089 		WARN_ON(1);
4090 		return;
4091 	}
4092 
4093 	/* Calculate the number of levels in the tree. */
4094 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4095 	}
4096 	rcu_num_lvls = i + 1;
4097 
4098 	/* Calculate the number of rcu_nodes at each level of the tree. */
4099 	for (i = 0; i < rcu_num_lvls; i++) {
4100 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4101 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4102 	}
4103 
4104 	/* Calculate the total number of rcu_node structures. */
4105 	rcu_num_nodes = 0;
4106 	for (i = 0; i < rcu_num_lvls; i++)
4107 		rcu_num_nodes += num_rcu_lvl[i];
4108 }
4109 
4110 /*
4111  * Dump out the structure of the rcu_node combining tree associated
4112  * with the rcu_state structure referenced by rsp.
4113  */
4114 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4115 {
4116 	int level = 0;
4117 	struct rcu_node *rnp;
4118 
4119 	pr_info("rcu_node tree layout dump\n");
4120 	pr_info(" ");
4121 	rcu_for_each_node_breadth_first(rsp, rnp) {
4122 		if (rnp->level != level) {
4123 			pr_cont("\n");
4124 			pr_info(" ");
4125 			level = rnp->level;
4126 		}
4127 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4128 	}
4129 	pr_cont("\n");
4130 }
4131 
4132 struct workqueue_struct *rcu_gp_wq;
4133 struct workqueue_struct *rcu_par_gp_wq;
4134 
4135 void __init rcu_init(void)
4136 {
4137 	int cpu;
4138 
4139 	rcu_early_boot_tests();
4140 
4141 	rcu_bootup_announce();
4142 	rcu_init_geometry();
4143 	rcu_init_one(&rcu_bh_state);
4144 	rcu_init_one(&rcu_sched_state);
4145 	if (dump_tree)
4146 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4147 	__rcu_init_preempt();
4148 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4149 
4150 	/*
4151 	 * We don't need protection against CPU-hotplug here because
4152 	 * this is called early in boot, before either interrupts
4153 	 * or the scheduler are operational.
4154 	 */
4155 	pm_notifier(rcu_pm_notify, 0);
4156 	for_each_online_cpu(cpu) {
4157 		rcutree_prepare_cpu(cpu);
4158 		rcu_cpu_starting(cpu);
4159 		rcutree_online_cpu(cpu);
4160 	}
4161 
4162 	/* Create workqueue for expedited GPs and for Tree SRCU. */
4163 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4164 	WARN_ON(!rcu_gp_wq);
4165 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4166 	WARN_ON(!rcu_par_gp_wq);
4167 }
4168 
4169 #include "tree_exp.h"
4170 #include "tree_plugin.h"
4171