1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 31 #define pr_fmt(fmt) "rcu: " fmt 32 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/rcupdate_wait.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/sched/debug.h> 42 #include <linux/nmi.h> 43 #include <linux/atomic.h> 44 #include <linux/bitops.h> 45 #include <linux/export.h> 46 #include <linux/completion.h> 47 #include <linux/moduleparam.h> 48 #include <linux/percpu.h> 49 #include <linux/notifier.h> 50 #include <linux/cpu.h> 51 #include <linux/mutex.h> 52 #include <linux/time.h> 53 #include <linux/kernel_stat.h> 54 #include <linux/wait.h> 55 #include <linux/kthread.h> 56 #include <uapi/linux/sched/types.h> 57 #include <linux/prefetch.h> 58 #include <linux/delay.h> 59 #include <linux/stop_machine.h> 60 #include <linux/random.h> 61 #include <linux/trace_events.h> 62 #include <linux/suspend.h> 63 #include <linux/ftrace.h> 64 65 #include "tree.h" 66 #include "rcu.h" 67 68 #ifdef MODULE_PARAM_PREFIX 69 #undef MODULE_PARAM_PREFIX 70 #endif 71 #define MODULE_PARAM_PREFIX "rcutree." 72 73 /* Data structures. */ 74 75 /* 76 * In order to export the rcu_state name to the tracing tools, it 77 * needs to be added in the __tracepoint_string section. 78 * This requires defining a separate variable tp_<sname>_varname 79 * that points to the string being used, and this will allow 80 * the tracing userspace tools to be able to decipher the string 81 * address to the matching string. 82 */ 83 #ifdef CONFIG_TRACING 84 # define DEFINE_RCU_TPS(sname) \ 85 static char sname##_varname[] = #sname; \ 86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 87 # define RCU_STATE_NAME(sname) sname##_varname 88 #else 89 # define DEFINE_RCU_TPS(sname) 90 # define RCU_STATE_NAME(sname) __stringify(sname) 91 #endif 92 93 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 94 DEFINE_RCU_TPS(sname) \ 95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 96 struct rcu_state sname##_state = { \ 97 .level = { &sname##_state.node[0] }, \ 98 .rda = &sname##_data, \ 99 .call = cr, \ 100 .gp_state = RCU_GP_IDLE, \ 101 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \ 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 103 .name = RCU_STATE_NAME(sname), \ 104 .abbr = sabbr, \ 105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 107 .ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \ 108 } 109 110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 112 113 static struct rcu_state *const rcu_state_p; 114 LIST_HEAD(rcu_struct_flavors); 115 116 /* Dump rcu_node combining tree at boot to verify correct setup. */ 117 static bool dump_tree; 118 module_param(dump_tree, bool, 0444); 119 /* Control rcu_node-tree auto-balancing at boot time. */ 120 static bool rcu_fanout_exact; 121 module_param(rcu_fanout_exact, bool, 0444); 122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 124 module_param(rcu_fanout_leaf, int, 0444); 125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 126 /* Number of rcu_nodes at specified level. */ 127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 129 /* panic() on RCU Stall sysctl. */ 130 int sysctl_panic_on_rcu_stall __read_mostly; 131 132 /* 133 * The rcu_scheduler_active variable is initialized to the value 134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 136 * RCU can assume that there is but one task, allowing RCU to (for example) 137 * optimize synchronize_rcu() to a simple barrier(). When this variable 138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 139 * to detect real grace periods. This variable is also used to suppress 140 * boot-time false positives from lockdep-RCU error checking. Finally, it 141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 142 * is fully initialized, including all of its kthreads having been spawned. 143 */ 144 int rcu_scheduler_active __read_mostly; 145 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 146 147 /* 148 * The rcu_scheduler_fully_active variable transitions from zero to one 149 * during the early_initcall() processing, which is after the scheduler 150 * is capable of creating new tasks. So RCU processing (for example, 151 * creating tasks for RCU priority boosting) must be delayed until after 152 * rcu_scheduler_fully_active transitions from zero to one. We also 153 * currently delay invocation of any RCU callbacks until after this point. 154 * 155 * It might later prove better for people registering RCU callbacks during 156 * early boot to take responsibility for these callbacks, but one step at 157 * a time. 158 */ 159 static int rcu_scheduler_fully_active __read_mostly; 160 161 static void 162 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 163 struct rcu_node *rnp, unsigned long gps, unsigned long flags); 164 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 165 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 166 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 167 static void invoke_rcu_core(void); 168 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 169 static void rcu_report_exp_rdp(struct rcu_state *rsp, 170 struct rcu_data *rdp, bool wake); 171 static void sync_sched_exp_online_cleanup(int cpu); 172 173 /* rcuc/rcub kthread realtime priority */ 174 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 175 module_param(kthread_prio, int, 0644); 176 177 /* Delay in jiffies for grace-period initialization delays, debug only. */ 178 179 static int gp_preinit_delay; 180 module_param(gp_preinit_delay, int, 0444); 181 static int gp_init_delay; 182 module_param(gp_init_delay, int, 0444); 183 static int gp_cleanup_delay; 184 module_param(gp_cleanup_delay, int, 0444); 185 186 /* Retreive RCU kthreads priority for rcutorture */ 187 int rcu_get_gp_kthreads_prio(void) 188 { 189 return kthread_prio; 190 } 191 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 192 193 /* 194 * Number of grace periods between delays, normalized by the duration of 195 * the delay. The longer the delay, the more the grace periods between 196 * each delay. The reason for this normalization is that it means that, 197 * for non-zero delays, the overall slowdown of grace periods is constant 198 * regardless of the duration of the delay. This arrangement balances 199 * the need for long delays to increase some race probabilities with the 200 * need for fast grace periods to increase other race probabilities. 201 */ 202 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 203 204 /* 205 * Compute the mask of online CPUs for the specified rcu_node structure. 206 * This will not be stable unless the rcu_node structure's ->lock is 207 * held, but the bit corresponding to the current CPU will be stable 208 * in most contexts. 209 */ 210 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 211 { 212 return READ_ONCE(rnp->qsmaskinitnext); 213 } 214 215 /* 216 * Return true if an RCU grace period is in progress. The READ_ONCE()s 217 * permit this function to be invoked without holding the root rcu_node 218 * structure's ->lock, but of course results can be subject to change. 219 */ 220 static int rcu_gp_in_progress(struct rcu_state *rsp) 221 { 222 return rcu_seq_state(rcu_seq_current(&rsp->gp_seq)); 223 } 224 225 /* 226 * Note a quiescent state. Because we do not need to know 227 * how many quiescent states passed, just if there was at least 228 * one since the start of the grace period, this just sets a flag. 229 * The caller must have disabled preemption. 230 */ 231 void rcu_sched_qs(void) 232 { 233 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); 234 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 235 return; 236 trace_rcu_grace_period(TPS("rcu_sched"), 237 __this_cpu_read(rcu_sched_data.gp_seq), 238 TPS("cpuqs")); 239 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 240 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 241 return; 242 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 243 rcu_report_exp_rdp(&rcu_sched_state, 244 this_cpu_ptr(&rcu_sched_data), true); 245 } 246 247 void rcu_bh_qs(void) 248 { 249 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); 250 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 251 trace_rcu_grace_period(TPS("rcu_bh"), 252 __this_cpu_read(rcu_bh_data.gp_seq), 253 TPS("cpuqs")); 254 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 255 } 256 } 257 258 /* 259 * Steal a bit from the bottom of ->dynticks for idle entry/exit 260 * control. Initially this is for TLB flushing. 261 */ 262 #define RCU_DYNTICK_CTRL_MASK 0x1 263 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 264 #ifndef rcu_eqs_special_exit 265 #define rcu_eqs_special_exit() do { } while (0) 266 #endif 267 268 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 269 .dynticks_nesting = 1, 270 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 271 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 272 }; 273 274 /* 275 * Record entry into an extended quiescent state. This is only to be 276 * called when not already in an extended quiescent state. 277 */ 278 static void rcu_dynticks_eqs_enter(void) 279 { 280 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 281 int seq; 282 283 /* 284 * CPUs seeing atomic_add_return() must see prior RCU read-side 285 * critical sections, and we also must force ordering with the 286 * next idle sojourn. 287 */ 288 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 289 /* Better be in an extended quiescent state! */ 290 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 291 (seq & RCU_DYNTICK_CTRL_CTR)); 292 /* Better not have special action (TLB flush) pending! */ 293 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 294 (seq & RCU_DYNTICK_CTRL_MASK)); 295 } 296 297 /* 298 * Record exit from an extended quiescent state. This is only to be 299 * called from an extended quiescent state. 300 */ 301 static void rcu_dynticks_eqs_exit(void) 302 { 303 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 304 int seq; 305 306 /* 307 * CPUs seeing atomic_add_return() must see prior idle sojourns, 308 * and we also must force ordering with the next RCU read-side 309 * critical section. 310 */ 311 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 312 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 313 !(seq & RCU_DYNTICK_CTRL_CTR)); 314 if (seq & RCU_DYNTICK_CTRL_MASK) { 315 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); 316 smp_mb__after_atomic(); /* _exit after clearing mask. */ 317 /* Prefer duplicate flushes to losing a flush. */ 318 rcu_eqs_special_exit(); 319 } 320 } 321 322 /* 323 * Reset the current CPU's ->dynticks counter to indicate that the 324 * newly onlined CPU is no longer in an extended quiescent state. 325 * This will either leave the counter unchanged, or increment it 326 * to the next non-quiescent value. 327 * 328 * The non-atomic test/increment sequence works because the upper bits 329 * of the ->dynticks counter are manipulated only by the corresponding CPU, 330 * or when the corresponding CPU is offline. 331 */ 332 static void rcu_dynticks_eqs_online(void) 333 { 334 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 335 336 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) 337 return; 338 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 339 } 340 341 /* 342 * Is the current CPU in an extended quiescent state? 343 * 344 * No ordering, as we are sampling CPU-local information. 345 */ 346 bool rcu_dynticks_curr_cpu_in_eqs(void) 347 { 348 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 349 350 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); 351 } 352 353 /* 354 * Snapshot the ->dynticks counter with full ordering so as to allow 355 * stable comparison of this counter with past and future snapshots. 356 */ 357 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 358 { 359 int snap = atomic_add_return(0, &rdtp->dynticks); 360 361 return snap & ~RCU_DYNTICK_CTRL_MASK; 362 } 363 364 /* 365 * Return true if the snapshot returned from rcu_dynticks_snap() 366 * indicates that RCU is in an extended quiescent state. 367 */ 368 static bool rcu_dynticks_in_eqs(int snap) 369 { 370 return !(snap & RCU_DYNTICK_CTRL_CTR); 371 } 372 373 /* 374 * Return true if the CPU corresponding to the specified rcu_dynticks 375 * structure has spent some time in an extended quiescent state since 376 * rcu_dynticks_snap() returned the specified snapshot. 377 */ 378 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 379 { 380 return snap != rcu_dynticks_snap(rdtp); 381 } 382 383 /* 384 * Set the special (bottom) bit of the specified CPU so that it 385 * will take special action (such as flushing its TLB) on the 386 * next exit from an extended quiescent state. Returns true if 387 * the bit was successfully set, or false if the CPU was not in 388 * an extended quiescent state. 389 */ 390 bool rcu_eqs_special_set(int cpu) 391 { 392 int old; 393 int new; 394 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 395 396 do { 397 old = atomic_read(&rdtp->dynticks); 398 if (old & RCU_DYNTICK_CTRL_CTR) 399 return false; 400 new = old | RCU_DYNTICK_CTRL_MASK; 401 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); 402 return true; 403 } 404 405 /* 406 * Let the RCU core know that this CPU has gone through the scheduler, 407 * which is a quiescent state. This is called when the need for a 408 * quiescent state is urgent, so we burn an atomic operation and full 409 * memory barriers to let the RCU core know about it, regardless of what 410 * this CPU might (or might not) do in the near future. 411 * 412 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 413 * 414 * The caller must have disabled interrupts and must not be idle. 415 */ 416 static void rcu_momentary_dyntick_idle(void) 417 { 418 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 419 int special; 420 421 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); 422 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 423 /* It is illegal to call this from idle state. */ 424 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 425 } 426 427 /* 428 * Note a context switch. This is a quiescent state for RCU-sched, 429 * and requires special handling for preemptible RCU. 430 * The caller must have disabled interrupts. 431 */ 432 void rcu_note_context_switch(bool preempt) 433 { 434 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 435 trace_rcu_utilization(TPS("Start context switch")); 436 rcu_sched_qs(); 437 rcu_preempt_note_context_switch(preempt); 438 /* Load rcu_urgent_qs before other flags. */ 439 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) 440 goto out; 441 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 442 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) 443 rcu_momentary_dyntick_idle(); 444 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 445 if (!preempt) 446 rcu_tasks_qs(current); 447 out: 448 trace_rcu_utilization(TPS("End context switch")); 449 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 450 } 451 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 452 453 /* 454 * Register a quiescent state for all RCU flavors. If there is an 455 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 456 * dyntick-idle quiescent state visible to other CPUs (but only for those 457 * RCU flavors in desperate need of a quiescent state, which will normally 458 * be none of them). Either way, do a lightweight quiescent state for 459 * all RCU flavors. 460 * 461 * The barrier() calls are redundant in the common case when this is 462 * called externally, but just in case this is called from within this 463 * file. 464 * 465 */ 466 void rcu_all_qs(void) 467 { 468 unsigned long flags; 469 470 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) 471 return; 472 preempt_disable(); 473 /* Load rcu_urgent_qs before other flags. */ 474 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { 475 preempt_enable(); 476 return; 477 } 478 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 479 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 480 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { 481 local_irq_save(flags); 482 rcu_momentary_dyntick_idle(); 483 local_irq_restore(flags); 484 } 485 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) 486 rcu_sched_qs(); 487 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 488 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 489 preempt_enable(); 490 } 491 EXPORT_SYMBOL_GPL(rcu_all_qs); 492 493 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 494 static long blimit = DEFAULT_RCU_BLIMIT; 495 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 496 static long qhimark = DEFAULT_RCU_QHIMARK; 497 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 498 static long qlowmark = DEFAULT_RCU_QLOMARK; 499 500 module_param(blimit, long, 0444); 501 module_param(qhimark, long, 0444); 502 module_param(qlowmark, long, 0444); 503 504 static ulong jiffies_till_first_fqs = ULONG_MAX; 505 static ulong jiffies_till_next_fqs = ULONG_MAX; 506 static bool rcu_kick_kthreads; 507 508 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 509 { 510 ulong j; 511 int ret = kstrtoul(val, 0, &j); 512 513 if (!ret) 514 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 515 return ret; 516 } 517 518 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 519 { 520 ulong j; 521 int ret = kstrtoul(val, 0, &j); 522 523 if (!ret) 524 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 525 return ret; 526 } 527 528 static struct kernel_param_ops first_fqs_jiffies_ops = { 529 .set = param_set_first_fqs_jiffies, 530 .get = param_get_ulong, 531 }; 532 533 static struct kernel_param_ops next_fqs_jiffies_ops = { 534 .set = param_set_next_fqs_jiffies, 535 .get = param_get_ulong, 536 }; 537 538 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 539 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 540 module_param(rcu_kick_kthreads, bool, 0644); 541 542 /* 543 * How long the grace period must be before we start recruiting 544 * quiescent-state help from rcu_note_context_switch(). 545 */ 546 static ulong jiffies_till_sched_qs = HZ / 10; 547 module_param(jiffies_till_sched_qs, ulong, 0444); 548 549 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); 550 static void force_quiescent_state(struct rcu_state *rsp); 551 static int rcu_pending(void); 552 553 /* 554 * Return the number of RCU GPs completed thus far for debug & stats. 555 */ 556 unsigned long rcu_get_gp_seq(void) 557 { 558 return READ_ONCE(rcu_state_p->gp_seq); 559 } 560 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 561 562 /* 563 * Return the number of RCU-sched GPs completed thus far for debug & stats. 564 */ 565 unsigned long rcu_sched_get_gp_seq(void) 566 { 567 return READ_ONCE(rcu_sched_state.gp_seq); 568 } 569 EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq); 570 571 /* 572 * Return the number of RCU-bh GPs completed thus far for debug & stats. 573 */ 574 unsigned long rcu_bh_get_gp_seq(void) 575 { 576 return READ_ONCE(rcu_bh_state.gp_seq); 577 } 578 EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq); 579 580 /* 581 * Return the number of RCU expedited batches completed thus far for 582 * debug & stats. Odd numbers mean that a batch is in progress, even 583 * numbers mean idle. The value returned will thus be roughly double 584 * the cumulative batches since boot. 585 */ 586 unsigned long rcu_exp_batches_completed(void) 587 { 588 return rcu_state_p->expedited_sequence; 589 } 590 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 591 592 /* 593 * Return the number of RCU-sched expedited batches completed thus far 594 * for debug & stats. Similar to rcu_exp_batches_completed(). 595 */ 596 unsigned long rcu_exp_batches_completed_sched(void) 597 { 598 return rcu_sched_state.expedited_sequence; 599 } 600 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 601 602 /* 603 * Force a quiescent state. 604 */ 605 void rcu_force_quiescent_state(void) 606 { 607 force_quiescent_state(rcu_state_p); 608 } 609 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 610 611 /* 612 * Force a quiescent state for RCU BH. 613 */ 614 void rcu_bh_force_quiescent_state(void) 615 { 616 force_quiescent_state(&rcu_bh_state); 617 } 618 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 619 620 /* 621 * Force a quiescent state for RCU-sched. 622 */ 623 void rcu_sched_force_quiescent_state(void) 624 { 625 force_quiescent_state(&rcu_sched_state); 626 } 627 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 628 629 /* 630 * Show the state of the grace-period kthreads. 631 */ 632 void show_rcu_gp_kthreads(void) 633 { 634 int cpu; 635 struct rcu_data *rdp; 636 struct rcu_node *rnp; 637 struct rcu_state *rsp; 638 639 for_each_rcu_flavor(rsp) { 640 pr_info("%s: wait state: %d ->state: %#lx\n", 641 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 642 rcu_for_each_node_breadth_first(rsp, rnp) { 643 if (ULONG_CMP_GE(rsp->gp_seq, rnp->gp_seq_needed)) 644 continue; 645 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n", 646 rnp->grplo, rnp->grphi, rnp->gp_seq, 647 rnp->gp_seq_needed); 648 if (!rcu_is_leaf_node(rnp)) 649 continue; 650 for_each_leaf_node_possible_cpu(rnp, cpu) { 651 rdp = per_cpu_ptr(rsp->rda, cpu); 652 if (rdp->gpwrap || 653 ULONG_CMP_GE(rsp->gp_seq, 654 rdp->gp_seq_needed)) 655 continue; 656 pr_info("\tcpu %d ->gp_seq_needed %lu\n", 657 cpu, rdp->gp_seq_needed); 658 } 659 } 660 /* sched_show_task(rsp->gp_kthread); */ 661 } 662 } 663 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 664 665 /* 666 * Send along grace-period-related data for rcutorture diagnostics. 667 */ 668 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 669 unsigned long *gp_seq) 670 { 671 struct rcu_state *rsp = NULL; 672 673 switch (test_type) { 674 case RCU_FLAVOR: 675 rsp = rcu_state_p; 676 break; 677 case RCU_BH_FLAVOR: 678 rsp = &rcu_bh_state; 679 break; 680 case RCU_SCHED_FLAVOR: 681 rsp = &rcu_sched_state; 682 break; 683 default: 684 break; 685 } 686 if (rsp == NULL) 687 return; 688 *flags = READ_ONCE(rsp->gp_flags); 689 *gp_seq = rcu_seq_current(&rsp->gp_seq); 690 } 691 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 692 693 /* 694 * Return the root node of the specified rcu_state structure. 695 */ 696 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 697 { 698 return &rsp->node[0]; 699 } 700 701 /* 702 * Enter an RCU extended quiescent state, which can be either the 703 * idle loop or adaptive-tickless usermode execution. 704 * 705 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 706 * the possibility of usermode upcalls having messed up our count 707 * of interrupt nesting level during the prior busy period. 708 */ 709 static void rcu_eqs_enter(bool user) 710 { 711 struct rcu_state *rsp; 712 struct rcu_data *rdp; 713 struct rcu_dynticks *rdtp; 714 715 rdtp = this_cpu_ptr(&rcu_dynticks); 716 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); 717 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 718 rdtp->dynticks_nesting == 0); 719 if (rdtp->dynticks_nesting != 1) { 720 rdtp->dynticks_nesting--; 721 return; 722 } 723 724 lockdep_assert_irqs_disabled(); 725 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks); 726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 727 for_each_rcu_flavor(rsp) { 728 rdp = this_cpu_ptr(rsp->rda); 729 do_nocb_deferred_wakeup(rdp); 730 } 731 rcu_prepare_for_idle(); 732 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 733 rcu_dynticks_eqs_enter(); 734 rcu_dynticks_task_enter(); 735 } 736 737 /** 738 * rcu_idle_enter - inform RCU that current CPU is entering idle 739 * 740 * Enter idle mode, in other words, -leave- the mode in which RCU 741 * read-side critical sections can occur. (Though RCU read-side 742 * critical sections can occur in irq handlers in idle, a possibility 743 * handled by irq_enter() and irq_exit().) 744 * 745 * If you add or remove a call to rcu_idle_enter(), be sure to test with 746 * CONFIG_RCU_EQS_DEBUG=y. 747 */ 748 void rcu_idle_enter(void) 749 { 750 lockdep_assert_irqs_disabled(); 751 rcu_eqs_enter(false); 752 } 753 754 #ifdef CONFIG_NO_HZ_FULL 755 /** 756 * rcu_user_enter - inform RCU that we are resuming userspace. 757 * 758 * Enter RCU idle mode right before resuming userspace. No use of RCU 759 * is permitted between this call and rcu_user_exit(). This way the 760 * CPU doesn't need to maintain the tick for RCU maintenance purposes 761 * when the CPU runs in userspace. 762 * 763 * If you add or remove a call to rcu_user_enter(), be sure to test with 764 * CONFIG_RCU_EQS_DEBUG=y. 765 */ 766 void rcu_user_enter(void) 767 { 768 lockdep_assert_irqs_disabled(); 769 rcu_eqs_enter(true); 770 } 771 #endif /* CONFIG_NO_HZ_FULL */ 772 773 /** 774 * rcu_nmi_exit - inform RCU of exit from NMI context 775 * 776 * If we are returning from the outermost NMI handler that interrupted an 777 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 778 * to let the RCU grace-period handling know that the CPU is back to 779 * being RCU-idle. 780 * 781 * If you add or remove a call to rcu_nmi_exit(), be sure to test 782 * with CONFIG_RCU_EQS_DEBUG=y. 783 */ 784 void rcu_nmi_exit(void) 785 { 786 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 787 788 /* 789 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 790 * (We are exiting an NMI handler, so RCU better be paying attention 791 * to us!) 792 */ 793 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 794 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 795 796 /* 797 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 798 * leave it in non-RCU-idle state. 799 */ 800 if (rdtp->dynticks_nmi_nesting != 1) { 801 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks); 802 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */ 803 rdtp->dynticks_nmi_nesting - 2); 804 return; 805 } 806 807 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 808 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks); 809 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 810 rcu_dynticks_eqs_enter(); 811 } 812 813 /** 814 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 815 * 816 * Exit from an interrupt handler, which might possibly result in entering 817 * idle mode, in other words, leaving the mode in which read-side critical 818 * sections can occur. The caller must have disabled interrupts. 819 * 820 * This code assumes that the idle loop never does anything that might 821 * result in unbalanced calls to irq_enter() and irq_exit(). If your 822 * architecture's idle loop violates this assumption, RCU will give you what 823 * you deserve, good and hard. But very infrequently and irreproducibly. 824 * 825 * Use things like work queues to work around this limitation. 826 * 827 * You have been warned. 828 * 829 * If you add or remove a call to rcu_irq_exit(), be sure to test with 830 * CONFIG_RCU_EQS_DEBUG=y. 831 */ 832 void rcu_irq_exit(void) 833 { 834 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 835 836 lockdep_assert_irqs_disabled(); 837 if (rdtp->dynticks_nmi_nesting == 1) 838 rcu_prepare_for_idle(); 839 rcu_nmi_exit(); 840 if (rdtp->dynticks_nmi_nesting == 0) 841 rcu_dynticks_task_enter(); 842 } 843 844 /* 845 * Wrapper for rcu_irq_exit() where interrupts are enabled. 846 * 847 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 848 * with CONFIG_RCU_EQS_DEBUG=y. 849 */ 850 void rcu_irq_exit_irqson(void) 851 { 852 unsigned long flags; 853 854 local_irq_save(flags); 855 rcu_irq_exit(); 856 local_irq_restore(flags); 857 } 858 859 /* 860 * Exit an RCU extended quiescent state, which can be either the 861 * idle loop or adaptive-tickless usermode execution. 862 * 863 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 864 * allow for the possibility of usermode upcalls messing up our count of 865 * interrupt nesting level during the busy period that is just now starting. 866 */ 867 static void rcu_eqs_exit(bool user) 868 { 869 struct rcu_dynticks *rdtp; 870 long oldval; 871 872 lockdep_assert_irqs_disabled(); 873 rdtp = this_cpu_ptr(&rcu_dynticks); 874 oldval = rdtp->dynticks_nesting; 875 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 876 if (oldval) { 877 rdtp->dynticks_nesting++; 878 return; 879 } 880 rcu_dynticks_task_exit(); 881 rcu_dynticks_eqs_exit(); 882 rcu_cleanup_after_idle(); 883 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks); 884 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 885 WRITE_ONCE(rdtp->dynticks_nesting, 1); 886 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 887 } 888 889 /** 890 * rcu_idle_exit - inform RCU that current CPU is leaving idle 891 * 892 * Exit idle mode, in other words, -enter- the mode in which RCU 893 * read-side critical sections can occur. 894 * 895 * If you add or remove a call to rcu_idle_exit(), be sure to test with 896 * CONFIG_RCU_EQS_DEBUG=y. 897 */ 898 void rcu_idle_exit(void) 899 { 900 unsigned long flags; 901 902 local_irq_save(flags); 903 rcu_eqs_exit(false); 904 local_irq_restore(flags); 905 } 906 907 #ifdef CONFIG_NO_HZ_FULL 908 /** 909 * rcu_user_exit - inform RCU that we are exiting userspace. 910 * 911 * Exit RCU idle mode while entering the kernel because it can 912 * run a RCU read side critical section anytime. 913 * 914 * If you add or remove a call to rcu_user_exit(), be sure to test with 915 * CONFIG_RCU_EQS_DEBUG=y. 916 */ 917 void rcu_user_exit(void) 918 { 919 rcu_eqs_exit(1); 920 } 921 #endif /* CONFIG_NO_HZ_FULL */ 922 923 /** 924 * rcu_nmi_enter - inform RCU of entry to NMI context 925 * 926 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 927 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 928 * that the CPU is active. This implementation permits nested NMIs, as 929 * long as the nesting level does not overflow an int. (You will probably 930 * run out of stack space first.) 931 * 932 * If you add or remove a call to rcu_nmi_enter(), be sure to test 933 * with CONFIG_RCU_EQS_DEBUG=y. 934 */ 935 void rcu_nmi_enter(void) 936 { 937 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 938 long incby = 2; 939 940 /* Complain about underflow. */ 941 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 942 943 /* 944 * If idle from RCU viewpoint, atomically increment ->dynticks 945 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 946 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 947 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 948 * to be in the outermost NMI handler that interrupted an RCU-idle 949 * period (observation due to Andy Lutomirski). 950 */ 951 if (rcu_dynticks_curr_cpu_in_eqs()) { 952 rcu_dynticks_eqs_exit(); 953 incby = 1; 954 } 955 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 956 rdtp->dynticks_nmi_nesting, 957 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks); 958 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */ 959 rdtp->dynticks_nmi_nesting + incby); 960 barrier(); 961 } 962 963 /** 964 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 965 * 966 * Enter an interrupt handler, which might possibly result in exiting 967 * idle mode, in other words, entering the mode in which read-side critical 968 * sections can occur. The caller must have disabled interrupts. 969 * 970 * Note that the Linux kernel is fully capable of entering an interrupt 971 * handler that it never exits, for example when doing upcalls to user mode! 972 * This code assumes that the idle loop never does upcalls to user mode. 973 * If your architecture's idle loop does do upcalls to user mode (or does 974 * anything else that results in unbalanced calls to the irq_enter() and 975 * irq_exit() functions), RCU will give you what you deserve, good and hard. 976 * But very infrequently and irreproducibly. 977 * 978 * Use things like work queues to work around this limitation. 979 * 980 * You have been warned. 981 * 982 * If you add or remove a call to rcu_irq_enter(), be sure to test with 983 * CONFIG_RCU_EQS_DEBUG=y. 984 */ 985 void rcu_irq_enter(void) 986 { 987 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 988 989 lockdep_assert_irqs_disabled(); 990 if (rdtp->dynticks_nmi_nesting == 0) 991 rcu_dynticks_task_exit(); 992 rcu_nmi_enter(); 993 if (rdtp->dynticks_nmi_nesting == 1) 994 rcu_cleanup_after_idle(); 995 } 996 997 /* 998 * Wrapper for rcu_irq_enter() where interrupts are enabled. 999 * 1000 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1001 * with CONFIG_RCU_EQS_DEBUG=y. 1002 */ 1003 void rcu_irq_enter_irqson(void) 1004 { 1005 unsigned long flags; 1006 1007 local_irq_save(flags); 1008 rcu_irq_enter(); 1009 local_irq_restore(flags); 1010 } 1011 1012 /** 1013 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1014 * 1015 * Return true if RCU is watching the running CPU, which means that this 1016 * CPU can safely enter RCU read-side critical sections. In other words, 1017 * if the current CPU is in its idle loop and is neither in an interrupt 1018 * or NMI handler, return true. 1019 */ 1020 bool notrace rcu_is_watching(void) 1021 { 1022 bool ret; 1023 1024 preempt_disable_notrace(); 1025 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1026 preempt_enable_notrace(); 1027 return ret; 1028 } 1029 EXPORT_SYMBOL_GPL(rcu_is_watching); 1030 1031 /* 1032 * If a holdout task is actually running, request an urgent quiescent 1033 * state from its CPU. This is unsynchronized, so migrations can cause 1034 * the request to go to the wrong CPU. Which is OK, all that will happen 1035 * is that the CPU's next context switch will be a bit slower and next 1036 * time around this task will generate another request. 1037 */ 1038 void rcu_request_urgent_qs_task(struct task_struct *t) 1039 { 1040 int cpu; 1041 1042 barrier(); 1043 cpu = task_cpu(t); 1044 if (!task_curr(t)) 1045 return; /* This task is not running on that CPU. */ 1046 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); 1047 } 1048 1049 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1050 1051 /* 1052 * Is the current CPU online as far as RCU is concerned? 1053 * 1054 * Disable preemption to avoid false positives that could otherwise 1055 * happen due to the current CPU number being sampled, this task being 1056 * preempted, its old CPU being taken offline, resuming on some other CPU, 1057 * then determining that its old CPU is now offline. Because there are 1058 * multiple flavors of RCU, and because this function can be called in the 1059 * midst of updating the flavors while a given CPU coming online or going 1060 * offline, it is necessary to check all flavors. If any of the flavors 1061 * believe that given CPU is online, it is considered to be online. 1062 * 1063 * Disable checking if in an NMI handler because we cannot safely 1064 * report errors from NMI handlers anyway. In addition, it is OK to use 1065 * RCU on an offline processor during initial boot, hence the check for 1066 * rcu_scheduler_fully_active. 1067 */ 1068 bool rcu_lockdep_current_cpu_online(void) 1069 { 1070 struct rcu_data *rdp; 1071 struct rcu_node *rnp; 1072 struct rcu_state *rsp; 1073 1074 if (in_nmi() || !rcu_scheduler_fully_active) 1075 return true; 1076 preempt_disable(); 1077 for_each_rcu_flavor(rsp) { 1078 rdp = this_cpu_ptr(rsp->rda); 1079 rnp = rdp->mynode; 1080 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) { 1081 preempt_enable(); 1082 return true; 1083 } 1084 } 1085 preempt_enable(); 1086 return false; 1087 } 1088 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1089 1090 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1091 1092 /** 1093 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1094 * 1095 * If the current CPU is idle or running at a first-level (not nested) 1096 * interrupt from idle, return true. The caller must have at least 1097 * disabled preemption. 1098 */ 1099 static int rcu_is_cpu_rrupt_from_idle(void) 1100 { 1101 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 && 1102 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1; 1103 } 1104 1105 /* 1106 * We are reporting a quiescent state on behalf of some other CPU, so 1107 * it is our responsibility to check for and handle potential overflow 1108 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1109 * After all, the CPU might be in deep idle state, and thus executing no 1110 * code whatsoever. 1111 */ 1112 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1113 { 1114 raw_lockdep_assert_held_rcu_node(rnp); 1115 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1116 rnp->gp_seq)) 1117 WRITE_ONCE(rdp->gpwrap, true); 1118 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1119 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1120 } 1121 1122 /* 1123 * Snapshot the specified CPU's dynticks counter so that we can later 1124 * credit them with an implicit quiescent state. Return 1 if this CPU 1125 * is in dynticks idle mode, which is an extended quiescent state. 1126 */ 1127 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1128 { 1129 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1130 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1131 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1132 rcu_gpnum_ovf(rdp->mynode, rdp); 1133 return 1; 1134 } 1135 return 0; 1136 } 1137 1138 /* 1139 * Handler for the irq_work request posted when a grace period has 1140 * gone on for too long, but not yet long enough for an RCU CPU 1141 * stall warning. Set state appropriately, but just complain if 1142 * there is unexpected state on entry. 1143 */ 1144 static void rcu_iw_handler(struct irq_work *iwp) 1145 { 1146 struct rcu_data *rdp; 1147 struct rcu_node *rnp; 1148 1149 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1150 rnp = rdp->mynode; 1151 raw_spin_lock_rcu_node(rnp); 1152 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1153 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1154 rdp->rcu_iw_pending = false; 1155 } 1156 raw_spin_unlock_rcu_node(rnp); 1157 } 1158 1159 /* 1160 * Return true if the specified CPU has passed through a quiescent 1161 * state by virtue of being in or having passed through an dynticks 1162 * idle state since the last call to dyntick_save_progress_counter() 1163 * for this same CPU, or by virtue of having been offline. 1164 */ 1165 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1166 { 1167 unsigned long jtsq; 1168 bool *rnhqp; 1169 bool *ruqp; 1170 struct rcu_node *rnp = rdp->mynode; 1171 1172 /* 1173 * If the CPU passed through or entered a dynticks idle phase with 1174 * no active irq/NMI handlers, then we can safely pretend that the CPU 1175 * already acknowledged the request to pass through a quiescent 1176 * state. Either way, that CPU cannot possibly be in an RCU 1177 * read-side critical section that started before the beginning 1178 * of the current RCU grace period. 1179 */ 1180 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1181 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1182 rdp->dynticks_fqs++; 1183 rcu_gpnum_ovf(rnp, rdp); 1184 return 1; 1185 } 1186 1187 /* 1188 * Has this CPU encountered a cond_resched() since the beginning 1189 * of the grace period? For this to be the case, the CPU has to 1190 * have noticed the current grace period. This might not be the 1191 * case for nohz_full CPUs looping in the kernel. 1192 */ 1193 jtsq = jiffies_till_sched_qs; 1194 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); 1195 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1196 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && 1197 rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) { 1198 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc")); 1199 rcu_gpnum_ovf(rnp, rdp); 1200 return 1; 1201 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) { 1202 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ 1203 smp_store_release(ruqp, true); 1204 } 1205 1206 /* If waiting too long on an offline CPU, complain. */ 1207 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1208 time_after(jiffies, rdp->rsp->gp_start + HZ)) { 1209 bool onl; 1210 struct rcu_node *rnp1; 1211 1212 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1213 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1214 __func__, rnp->grplo, rnp->grphi, rnp->level, 1215 (long)rnp->gp_seq, (long)rnp->completedqs); 1216 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1217 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1218 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1219 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1220 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1221 __func__, rdp->cpu, ".o"[onl], 1222 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1223 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1224 return 1; /* Break things loose after complaining. */ 1225 } 1226 1227 /* 1228 * A CPU running for an extended time within the kernel can 1229 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1230 * even context-switching back and forth between a pair of 1231 * in-kernel CPU-bound tasks cannot advance grace periods. 1232 * So if the grace period is old enough, make the CPU pay attention. 1233 * Note that the unsynchronized assignments to the per-CPU 1234 * rcu_need_heavy_qs variable are safe. Yes, setting of 1235 * bits can be lost, but they will be set again on the next 1236 * force-quiescent-state pass. So lost bit sets do not result 1237 * in incorrect behavior, merely in a grace period lasting 1238 * a few jiffies longer than it might otherwise. Because 1239 * there are at most four threads involved, and because the 1240 * updates are only once every few jiffies, the probability of 1241 * lossage (and thus of slight grace-period extension) is 1242 * quite low. 1243 */ 1244 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); 1245 if (!READ_ONCE(*rnhqp) && 1246 (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1247 time_after(jiffies, rdp->rsp->jiffies_resched))) { 1248 WRITE_ONCE(*rnhqp, true); 1249 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1250 smp_store_release(ruqp, true); 1251 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */ 1252 } 1253 1254 /* 1255 * If more than halfway to RCU CPU stall-warning time, do a 1256 * resched_cpu() to try to loosen things up a bit. Also check to 1257 * see if the CPU is getting hammered with interrupts, but only 1258 * once per grace period, just to keep the IPIs down to a dull roar. 1259 */ 1260 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) { 1261 resched_cpu(rdp->cpu); 1262 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1263 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1264 (rnp->ffmask & rdp->grpmask)) { 1265 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1266 rdp->rcu_iw_pending = true; 1267 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1268 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1269 } 1270 } 1271 1272 return 0; 1273 } 1274 1275 static void record_gp_stall_check_time(struct rcu_state *rsp) 1276 { 1277 unsigned long j = jiffies; 1278 unsigned long j1; 1279 1280 rsp->gp_start = j; 1281 j1 = rcu_jiffies_till_stall_check(); 1282 /* Record ->gp_start before ->jiffies_stall. */ 1283 smp_store_release(&rsp->jiffies_stall, j + j1); /* ^^^ */ 1284 rsp->jiffies_resched = j + j1 / 2; 1285 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1286 } 1287 1288 /* 1289 * Convert a ->gp_state value to a character string. 1290 */ 1291 static const char *gp_state_getname(short gs) 1292 { 1293 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1294 return "???"; 1295 return gp_state_names[gs]; 1296 } 1297 1298 /* 1299 * Complain about starvation of grace-period kthread. 1300 */ 1301 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1302 { 1303 unsigned long gpa; 1304 unsigned long j; 1305 1306 j = jiffies; 1307 gpa = READ_ONCE(rsp->gp_activity); 1308 if (j - gpa > 2 * HZ) { 1309 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1310 rsp->name, j - gpa, 1311 (long)rcu_seq_current(&rsp->gp_seq), 1312 rsp->gp_flags, 1313 gp_state_getname(rsp->gp_state), rsp->gp_state, 1314 rsp->gp_kthread ? rsp->gp_kthread->state : ~0, 1315 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1); 1316 if (rsp->gp_kthread) { 1317 pr_err("RCU grace-period kthread stack dump:\n"); 1318 sched_show_task(rsp->gp_kthread); 1319 wake_up_process(rsp->gp_kthread); 1320 } 1321 } 1322 } 1323 1324 /* 1325 * Dump stacks of all tasks running on stalled CPUs. First try using 1326 * NMIs, but fall back to manual remote stack tracing on architectures 1327 * that don't support NMI-based stack dumps. The NMI-triggered stack 1328 * traces are more accurate because they are printed by the target CPU. 1329 */ 1330 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1331 { 1332 int cpu; 1333 unsigned long flags; 1334 struct rcu_node *rnp; 1335 1336 rcu_for_each_leaf_node(rsp, rnp) { 1337 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1338 for_each_leaf_node_possible_cpu(rnp, cpu) 1339 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1340 if (!trigger_single_cpu_backtrace(cpu)) 1341 dump_cpu_task(cpu); 1342 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1343 } 1344 } 1345 1346 /* 1347 * If too much time has passed in the current grace period, and if 1348 * so configured, go kick the relevant kthreads. 1349 */ 1350 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1351 { 1352 unsigned long j; 1353 1354 if (!rcu_kick_kthreads) 1355 return; 1356 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1357 if (time_after(jiffies, j) && rsp->gp_kthread && 1358 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1359 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1360 rcu_ftrace_dump(DUMP_ALL); 1361 wake_up_process(rsp->gp_kthread); 1362 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1363 } 1364 } 1365 1366 static void panic_on_rcu_stall(void) 1367 { 1368 if (sysctl_panic_on_rcu_stall) 1369 panic("RCU Stall\n"); 1370 } 1371 1372 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq) 1373 { 1374 int cpu; 1375 unsigned long flags; 1376 unsigned long gpa; 1377 unsigned long j; 1378 int ndetected = 0; 1379 struct rcu_node *rnp = rcu_get_root(rsp); 1380 long totqlen = 0; 1381 1382 /* Kick and suppress, if so configured. */ 1383 rcu_stall_kick_kthreads(rsp); 1384 if (rcu_cpu_stall_suppress) 1385 return; 1386 1387 /* 1388 * OK, time to rat on our buddy... 1389 * See Documentation/RCU/stallwarn.txt for info on how to debug 1390 * RCU CPU stall warnings. 1391 */ 1392 pr_err("INFO: %s detected stalls on CPUs/tasks:", rsp->name); 1393 print_cpu_stall_info_begin(); 1394 rcu_for_each_leaf_node(rsp, rnp) { 1395 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1396 ndetected += rcu_print_task_stall(rnp); 1397 if (rnp->qsmask != 0) { 1398 for_each_leaf_node_possible_cpu(rnp, cpu) 1399 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1400 print_cpu_stall_info(rsp, cpu); 1401 ndetected++; 1402 } 1403 } 1404 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1405 } 1406 1407 print_cpu_stall_info_end(); 1408 for_each_possible_cpu(cpu) 1409 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1410 cpu)->cblist); 1411 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1412 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1413 (long)rcu_seq_current(&rsp->gp_seq), totqlen); 1414 if (ndetected) { 1415 rcu_dump_cpu_stacks(rsp); 1416 1417 /* Complain about tasks blocking the grace period. */ 1418 rcu_print_detail_task_stall(rsp); 1419 } else { 1420 if (rcu_seq_current(&rsp->gp_seq) != gp_seq) { 1421 pr_err("INFO: Stall ended before state dump start\n"); 1422 } else { 1423 j = jiffies; 1424 gpa = READ_ONCE(rsp->gp_activity); 1425 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1426 rsp->name, j - gpa, j, gpa, 1427 jiffies_till_next_fqs, 1428 rcu_get_root(rsp)->qsmask); 1429 /* In this case, the current CPU might be at fault. */ 1430 sched_show_task(current); 1431 } 1432 } 1433 /* Rewrite if needed in case of slow consoles. */ 1434 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1435 WRITE_ONCE(rsp->jiffies_stall, 1436 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1437 1438 rcu_check_gp_kthread_starvation(rsp); 1439 1440 panic_on_rcu_stall(); 1441 1442 force_quiescent_state(rsp); /* Kick them all. */ 1443 } 1444 1445 static void print_cpu_stall(struct rcu_state *rsp) 1446 { 1447 int cpu; 1448 unsigned long flags; 1449 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1450 struct rcu_node *rnp = rcu_get_root(rsp); 1451 long totqlen = 0; 1452 1453 /* Kick and suppress, if so configured. */ 1454 rcu_stall_kick_kthreads(rsp); 1455 if (rcu_cpu_stall_suppress) 1456 return; 1457 1458 /* 1459 * OK, time to rat on ourselves... 1460 * See Documentation/RCU/stallwarn.txt for info on how to debug 1461 * RCU CPU stall warnings. 1462 */ 1463 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1464 print_cpu_stall_info_begin(); 1465 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1466 print_cpu_stall_info(rsp, smp_processor_id()); 1467 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1468 print_cpu_stall_info_end(); 1469 for_each_possible_cpu(cpu) 1470 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1471 cpu)->cblist); 1472 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1473 jiffies - rsp->gp_start, 1474 (long)rcu_seq_current(&rsp->gp_seq), totqlen); 1475 1476 rcu_check_gp_kthread_starvation(rsp); 1477 1478 rcu_dump_cpu_stacks(rsp); 1479 1480 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1481 /* Rewrite if needed in case of slow consoles. */ 1482 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1483 WRITE_ONCE(rsp->jiffies_stall, 1484 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1485 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1486 1487 panic_on_rcu_stall(); 1488 1489 /* 1490 * Attempt to revive the RCU machinery by forcing a context switch. 1491 * 1492 * A context switch would normally allow the RCU state machine to make 1493 * progress and it could be we're stuck in kernel space without context 1494 * switches for an entirely unreasonable amount of time. 1495 */ 1496 resched_cpu(smp_processor_id()); 1497 } 1498 1499 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1500 { 1501 unsigned long gs1; 1502 unsigned long gs2; 1503 unsigned long gps; 1504 unsigned long j; 1505 unsigned long jn; 1506 unsigned long js; 1507 struct rcu_node *rnp; 1508 1509 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1510 !rcu_gp_in_progress(rsp)) 1511 return; 1512 rcu_stall_kick_kthreads(rsp); 1513 j = jiffies; 1514 1515 /* 1516 * Lots of memory barriers to reject false positives. 1517 * 1518 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall, 1519 * then rsp->gp_start, and finally another copy of rsp->gp_seq. 1520 * These values are updated in the opposite order with memory 1521 * barriers (or equivalent) during grace-period initialization 1522 * and cleanup. Now, a false positive can occur if we get an new 1523 * value of rsp->gp_start and a old value of rsp->jiffies_stall. 1524 * But given the memory barriers, the only way that this can happen 1525 * is if one grace period ends and another starts between these 1526 * two fetches. This is detected by comparing the second fetch 1527 * of rsp->gp_seq with the previous fetch from rsp->gp_seq. 1528 * 1529 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1530 * and rsp->gp_start suffice to forestall false positives. 1531 */ 1532 gs1 = READ_ONCE(rsp->gp_seq); 1533 smp_rmb(); /* Pick up ->gp_seq first... */ 1534 js = READ_ONCE(rsp->jiffies_stall); 1535 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1536 gps = READ_ONCE(rsp->gp_start); 1537 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1538 gs2 = READ_ONCE(rsp->gp_seq); 1539 if (gs1 != gs2 || 1540 ULONG_CMP_LT(j, js) || 1541 ULONG_CMP_GE(gps, js)) 1542 return; /* No stall or GP completed since entering function. */ 1543 rnp = rdp->mynode; 1544 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1545 if (rcu_gp_in_progress(rsp) && 1546 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1547 cmpxchg(&rsp->jiffies_stall, js, jn) == js) { 1548 1549 /* We haven't checked in, so go dump stack. */ 1550 print_cpu_stall(rsp); 1551 1552 } else if (rcu_gp_in_progress(rsp) && 1553 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1554 cmpxchg(&rsp->jiffies_stall, js, jn) == js) { 1555 1556 /* They had a few time units to dump stack, so complain. */ 1557 print_other_cpu_stall(rsp, gs2); 1558 } 1559 } 1560 1561 /** 1562 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1563 * 1564 * Set the stall-warning timeout way off into the future, thus preventing 1565 * any RCU CPU stall-warning messages from appearing in the current set of 1566 * RCU grace periods. 1567 * 1568 * The caller must disable hard irqs. 1569 */ 1570 void rcu_cpu_stall_reset(void) 1571 { 1572 struct rcu_state *rsp; 1573 1574 for_each_rcu_flavor(rsp) 1575 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1576 } 1577 1578 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1579 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1580 unsigned long gp_seq_req, const char *s) 1581 { 1582 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req, 1583 rnp->level, rnp->grplo, rnp->grphi, s); 1584 } 1585 1586 /* 1587 * rcu_start_this_gp - Request the start of a particular grace period 1588 * @rnp_start: The leaf node of the CPU from which to start. 1589 * @rdp: The rcu_data corresponding to the CPU from which to start. 1590 * @gp_seq_req: The gp_seq of the grace period to start. 1591 * 1592 * Start the specified grace period, as needed to handle newly arrived 1593 * callbacks. The required future grace periods are recorded in each 1594 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1595 * is reason to awaken the grace-period kthread. 1596 * 1597 * The caller must hold the specified rcu_node structure's ->lock, which 1598 * is why the caller is responsible for waking the grace-period kthread. 1599 * 1600 * Returns true if the GP thread needs to be awakened else false. 1601 */ 1602 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1603 unsigned long gp_seq_req) 1604 { 1605 bool ret = false; 1606 struct rcu_state *rsp = rdp->rsp; 1607 struct rcu_node *rnp; 1608 1609 /* 1610 * Use funnel locking to either acquire the root rcu_node 1611 * structure's lock or bail out if the need for this grace period 1612 * has already been recorded -- or if that grace period has in 1613 * fact already started. If there is already a grace period in 1614 * progress in a non-leaf node, no recording is needed because the 1615 * end of the grace period will scan the leaf rcu_node structures. 1616 * Note that rnp_start->lock must not be released. 1617 */ 1618 raw_lockdep_assert_held_rcu_node(rnp_start); 1619 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1620 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1621 if (rnp != rnp_start) 1622 raw_spin_lock_rcu_node(rnp); 1623 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1624 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1625 (rnp != rnp_start && 1626 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1627 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1628 TPS("Prestarted")); 1629 goto unlock_out; 1630 } 1631 rnp->gp_seq_needed = gp_seq_req; 1632 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1633 /* 1634 * We just marked the leaf or internal node, and a 1635 * grace period is in progress, which means that 1636 * rcu_gp_cleanup() will see the marking. Bail to 1637 * reduce contention. 1638 */ 1639 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1640 TPS("Startedleaf")); 1641 goto unlock_out; 1642 } 1643 if (rnp != rnp_start && rnp->parent != NULL) 1644 raw_spin_unlock_rcu_node(rnp); 1645 if (!rnp->parent) 1646 break; /* At root, and perhaps also leaf. */ 1647 } 1648 1649 /* If GP already in progress, just leave, otherwise start one. */ 1650 if (rcu_gp_in_progress(rsp)) { 1651 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1652 goto unlock_out; 1653 } 1654 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1655 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT); 1656 rsp->gp_req_activity = jiffies; 1657 if (!rsp->gp_kthread) { 1658 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1659 goto unlock_out; 1660 } 1661 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq")); 1662 ret = true; /* Caller must wake GP kthread. */ 1663 unlock_out: 1664 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1665 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1666 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1667 rdp->gp_seq_needed = rnp->gp_seq_needed; 1668 } 1669 if (rnp != rnp_start) 1670 raw_spin_unlock_rcu_node(rnp); 1671 return ret; 1672 } 1673 1674 /* 1675 * Clean up any old requests for the just-ended grace period. Also return 1676 * whether any additional grace periods have been requested. 1677 */ 1678 static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1679 { 1680 bool needmore; 1681 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1682 1683 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1684 if (!needmore) 1685 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1686 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1687 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1688 return needmore; 1689 } 1690 1691 /* 1692 * Awaken the grace-period kthread for the specified flavor of RCU. 1693 * Don't do a self-awaken, and don't bother awakening when there is 1694 * nothing for the grace-period kthread to do (as in several CPUs 1695 * raced to awaken, and we lost), and finally don't try to awaken 1696 * a kthread that has not yet been created. 1697 */ 1698 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1699 { 1700 if (current == rsp->gp_kthread || 1701 !READ_ONCE(rsp->gp_flags) || 1702 !rsp->gp_kthread) 1703 return; 1704 swake_up_one(&rsp->gp_wq); 1705 } 1706 1707 /* 1708 * If there is room, assign a ->gp_seq number to any callbacks on this 1709 * CPU that have not already been assigned. Also accelerate any callbacks 1710 * that were previously assigned a ->gp_seq number that has since proven 1711 * to be too conservative, which can happen if callbacks get assigned a 1712 * ->gp_seq number while RCU is idle, but with reference to a non-root 1713 * rcu_node structure. This function is idempotent, so it does not hurt 1714 * to call it repeatedly. Returns an flag saying that we should awaken 1715 * the RCU grace-period kthread. 1716 * 1717 * The caller must hold rnp->lock with interrupts disabled. 1718 */ 1719 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1720 struct rcu_data *rdp) 1721 { 1722 unsigned long gp_seq_req; 1723 bool ret = false; 1724 1725 raw_lockdep_assert_held_rcu_node(rnp); 1726 1727 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1728 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1729 return false; 1730 1731 /* 1732 * Callbacks are often registered with incomplete grace-period 1733 * information. Something about the fact that getting exact 1734 * information requires acquiring a global lock... RCU therefore 1735 * makes a conservative estimate of the grace period number at which 1736 * a given callback will become ready to invoke. The following 1737 * code checks this estimate and improves it when possible, thus 1738 * accelerating callback invocation to an earlier grace-period 1739 * number. 1740 */ 1741 gp_seq_req = rcu_seq_snap(&rsp->gp_seq); 1742 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1743 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1744 1745 /* Trace depending on how much we were able to accelerate. */ 1746 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1747 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB")); 1748 else 1749 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB")); 1750 return ret; 1751 } 1752 1753 /* 1754 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1755 * rcu_node structure's ->lock be held. It consults the cached value 1756 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1757 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1758 * while holding the leaf rcu_node structure's ->lock. 1759 */ 1760 static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp, 1761 struct rcu_node *rnp, 1762 struct rcu_data *rdp) 1763 { 1764 unsigned long c; 1765 bool needwake; 1766 1767 lockdep_assert_irqs_disabled(); 1768 c = rcu_seq_snap(&rsp->gp_seq); 1769 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1770 /* Old request still live, so mark recent callbacks. */ 1771 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1772 return; 1773 } 1774 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1775 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 1776 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1777 if (needwake) 1778 rcu_gp_kthread_wake(rsp); 1779 } 1780 1781 /* 1782 * Move any callbacks whose grace period has completed to the 1783 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1784 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1785 * sublist. This function is idempotent, so it does not hurt to 1786 * invoke it repeatedly. As long as it is not invoked -too- often... 1787 * Returns true if the RCU grace-period kthread needs to be awakened. 1788 * 1789 * The caller must hold rnp->lock with interrupts disabled. 1790 */ 1791 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1792 struct rcu_data *rdp) 1793 { 1794 raw_lockdep_assert_held_rcu_node(rnp); 1795 1796 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1797 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1798 return false; 1799 1800 /* 1801 * Find all callbacks whose ->gp_seq numbers indicate that they 1802 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1803 */ 1804 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1805 1806 /* Classify any remaining callbacks. */ 1807 return rcu_accelerate_cbs(rsp, rnp, rdp); 1808 } 1809 1810 /* 1811 * Update CPU-local rcu_data state to record the beginnings and ends of 1812 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1813 * structure corresponding to the current CPU, and must have irqs disabled. 1814 * Returns true if the grace-period kthread needs to be awakened. 1815 */ 1816 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1817 struct rcu_data *rdp) 1818 { 1819 bool ret; 1820 bool need_gp; 1821 1822 raw_lockdep_assert_held_rcu_node(rnp); 1823 1824 if (rdp->gp_seq == rnp->gp_seq) 1825 return false; /* Nothing to do. */ 1826 1827 /* Handle the ends of any preceding grace periods first. */ 1828 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1829 unlikely(READ_ONCE(rdp->gpwrap))) { 1830 ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */ 1831 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend")); 1832 } else { 1833 ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */ 1834 } 1835 1836 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1837 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1838 unlikely(READ_ONCE(rdp->gpwrap))) { 1839 /* 1840 * If the current grace period is waiting for this CPU, 1841 * set up to detect a quiescent state, otherwise don't 1842 * go looking for one. 1843 */ 1844 trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart")); 1845 need_gp = !!(rnp->qsmask & rdp->grpmask); 1846 rdp->cpu_no_qs.b.norm = need_gp; 1847 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 1848 rdp->core_needs_qs = need_gp; 1849 zero_cpu_stall_ticks(rdp); 1850 } 1851 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1852 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap) 1853 rdp->gp_seq_needed = rnp->gp_seq_needed; 1854 WRITE_ONCE(rdp->gpwrap, false); 1855 rcu_gpnum_ovf(rnp, rdp); 1856 return ret; 1857 } 1858 1859 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1860 { 1861 unsigned long flags; 1862 bool needwake; 1863 struct rcu_node *rnp; 1864 1865 local_irq_save(flags); 1866 rnp = rdp->mynode; 1867 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1868 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1869 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1870 local_irq_restore(flags); 1871 return; 1872 } 1873 needwake = __note_gp_changes(rsp, rnp, rdp); 1874 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1875 if (needwake) 1876 rcu_gp_kthread_wake(rsp); 1877 } 1878 1879 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1880 { 1881 if (delay > 0 && 1882 !(rcu_seq_ctr(rsp->gp_seq) % 1883 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1884 schedule_timeout_uninterruptible(delay); 1885 } 1886 1887 /* 1888 * Initialize a new grace period. Return false if no grace period required. 1889 */ 1890 static bool rcu_gp_init(struct rcu_state *rsp) 1891 { 1892 unsigned long flags; 1893 unsigned long oldmask; 1894 unsigned long mask; 1895 struct rcu_data *rdp; 1896 struct rcu_node *rnp = rcu_get_root(rsp); 1897 1898 WRITE_ONCE(rsp->gp_activity, jiffies); 1899 raw_spin_lock_irq_rcu_node(rnp); 1900 if (!READ_ONCE(rsp->gp_flags)) { 1901 /* Spurious wakeup, tell caller to go back to sleep. */ 1902 raw_spin_unlock_irq_rcu_node(rnp); 1903 return false; 1904 } 1905 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1906 1907 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1908 /* 1909 * Grace period already in progress, don't start another. 1910 * Not supposed to be able to happen. 1911 */ 1912 raw_spin_unlock_irq_rcu_node(rnp); 1913 return false; 1914 } 1915 1916 /* Advance to a new grace period and initialize state. */ 1917 record_gp_stall_check_time(rsp); 1918 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1919 rcu_seq_start(&rsp->gp_seq); 1920 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start")); 1921 raw_spin_unlock_irq_rcu_node(rnp); 1922 1923 /* 1924 * Apply per-leaf buffered online and offline operations to the 1925 * rcu_node tree. Note that this new grace period need not wait 1926 * for subsequent online CPUs, and that quiescent-state forcing 1927 * will handle subsequent offline CPUs. 1928 */ 1929 rsp->gp_state = RCU_GP_ONOFF; 1930 rcu_for_each_leaf_node(rsp, rnp) { 1931 spin_lock(&rsp->ofl_lock); 1932 raw_spin_lock_irq_rcu_node(rnp); 1933 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1934 !rnp->wait_blkd_tasks) { 1935 /* Nothing to do on this leaf rcu_node structure. */ 1936 raw_spin_unlock_irq_rcu_node(rnp); 1937 spin_unlock(&rsp->ofl_lock); 1938 continue; 1939 } 1940 1941 /* Record old state, apply changes to ->qsmaskinit field. */ 1942 oldmask = rnp->qsmaskinit; 1943 rnp->qsmaskinit = rnp->qsmaskinitnext; 1944 1945 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1946 if (!oldmask != !rnp->qsmaskinit) { 1947 if (!oldmask) { /* First online CPU for rcu_node. */ 1948 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1949 rcu_init_new_rnp(rnp); 1950 } else if (rcu_preempt_has_tasks(rnp)) { 1951 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1952 } else { /* Last offline CPU and can propagate. */ 1953 rcu_cleanup_dead_rnp(rnp); 1954 } 1955 } 1956 1957 /* 1958 * If all waited-on tasks from prior grace period are 1959 * done, and if all this rcu_node structure's CPUs are 1960 * still offline, propagate up the rcu_node tree and 1961 * clear ->wait_blkd_tasks. Otherwise, if one of this 1962 * rcu_node structure's CPUs has since come back online, 1963 * simply clear ->wait_blkd_tasks. 1964 */ 1965 if (rnp->wait_blkd_tasks && 1966 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1967 rnp->wait_blkd_tasks = false; 1968 if (!rnp->qsmaskinit) 1969 rcu_cleanup_dead_rnp(rnp); 1970 } 1971 1972 raw_spin_unlock_irq_rcu_node(rnp); 1973 spin_unlock(&rsp->ofl_lock); 1974 } 1975 rcu_gp_slow(rsp, gp_preinit_delay); /* Races with CPU hotplug. */ 1976 1977 /* 1978 * Set the quiescent-state-needed bits in all the rcu_node 1979 * structures for all currently online CPUs in breadth-first order, 1980 * starting from the root rcu_node structure, relying on the layout 1981 * of the tree within the rsp->node[] array. Note that other CPUs 1982 * will access only the leaves of the hierarchy, thus seeing that no 1983 * grace period is in progress, at least until the corresponding 1984 * leaf node has been initialized. 1985 * 1986 * The grace period cannot complete until the initialization 1987 * process finishes, because this kthread handles both. 1988 */ 1989 rsp->gp_state = RCU_GP_INIT; 1990 rcu_for_each_node_breadth_first(rsp, rnp) { 1991 rcu_gp_slow(rsp, gp_init_delay); 1992 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1993 rdp = this_cpu_ptr(rsp->rda); 1994 rcu_preempt_check_blocked_tasks(rsp, rnp); 1995 rnp->qsmask = rnp->qsmaskinit; 1996 WRITE_ONCE(rnp->gp_seq, rsp->gp_seq); 1997 if (rnp == rdp->mynode) 1998 (void)__note_gp_changes(rsp, rnp, rdp); 1999 rcu_preempt_boost_start_gp(rnp); 2000 trace_rcu_grace_period_init(rsp->name, rnp->gp_seq, 2001 rnp->level, rnp->grplo, 2002 rnp->grphi, rnp->qsmask); 2003 /* Quiescent states for tasks on any now-offline CPUs. */ 2004 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 2005 rnp->rcu_gp_init_mask = mask; 2006 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 2007 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 2008 else 2009 raw_spin_unlock_irq_rcu_node(rnp); 2010 cond_resched_tasks_rcu_qs(); 2011 WRITE_ONCE(rsp->gp_activity, jiffies); 2012 } 2013 2014 return true; 2015 } 2016 2017 /* 2018 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 2019 * time. 2020 */ 2021 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2022 { 2023 struct rcu_node *rnp = rcu_get_root(rsp); 2024 2025 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2026 *gfp = READ_ONCE(rsp->gp_flags); 2027 if (*gfp & RCU_GP_FLAG_FQS) 2028 return true; 2029 2030 /* The current grace period has completed. */ 2031 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2032 return true; 2033 2034 return false; 2035 } 2036 2037 /* 2038 * Do one round of quiescent-state forcing. 2039 */ 2040 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2041 { 2042 struct rcu_node *rnp = rcu_get_root(rsp); 2043 2044 WRITE_ONCE(rsp->gp_activity, jiffies); 2045 rsp->n_force_qs++; 2046 if (first_time) { 2047 /* Collect dyntick-idle snapshots. */ 2048 force_qs_rnp(rsp, dyntick_save_progress_counter); 2049 } else { 2050 /* Handle dyntick-idle and offline CPUs. */ 2051 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 2052 } 2053 /* Clear flag to prevent immediate re-entry. */ 2054 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2055 raw_spin_lock_irq_rcu_node(rnp); 2056 WRITE_ONCE(rsp->gp_flags, 2057 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2058 raw_spin_unlock_irq_rcu_node(rnp); 2059 } 2060 } 2061 2062 /* 2063 * Clean up after the old grace period. 2064 */ 2065 static void rcu_gp_cleanup(struct rcu_state *rsp) 2066 { 2067 unsigned long gp_duration; 2068 bool needgp = false; 2069 unsigned long new_gp_seq; 2070 struct rcu_data *rdp; 2071 struct rcu_node *rnp = rcu_get_root(rsp); 2072 struct swait_queue_head *sq; 2073 2074 WRITE_ONCE(rsp->gp_activity, jiffies); 2075 raw_spin_lock_irq_rcu_node(rnp); 2076 gp_duration = jiffies - rsp->gp_start; 2077 if (gp_duration > rsp->gp_max) 2078 rsp->gp_max = gp_duration; 2079 2080 /* 2081 * We know the grace period is complete, but to everyone else 2082 * it appears to still be ongoing. But it is also the case 2083 * that to everyone else it looks like there is nothing that 2084 * they can do to advance the grace period. It is therefore 2085 * safe for us to drop the lock in order to mark the grace 2086 * period as completed in all of the rcu_node structures. 2087 */ 2088 raw_spin_unlock_irq_rcu_node(rnp); 2089 2090 /* 2091 * Propagate new ->gp_seq value to rcu_node structures so that 2092 * other CPUs don't have to wait until the start of the next grace 2093 * period to process their callbacks. This also avoids some nasty 2094 * RCU grace-period initialization races by forcing the end of 2095 * the current grace period to be completely recorded in all of 2096 * the rcu_node structures before the beginning of the next grace 2097 * period is recorded in any of the rcu_node structures. 2098 */ 2099 new_gp_seq = rsp->gp_seq; 2100 rcu_seq_end(&new_gp_seq); 2101 rcu_for_each_node_breadth_first(rsp, rnp) { 2102 raw_spin_lock_irq_rcu_node(rnp); 2103 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2104 dump_blkd_tasks(rsp, rnp, 10); 2105 WARN_ON_ONCE(rnp->qsmask); 2106 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2107 rdp = this_cpu_ptr(rsp->rda); 2108 if (rnp == rdp->mynode) 2109 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2110 /* smp_mb() provided by prior unlock-lock pair. */ 2111 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp; 2112 sq = rcu_nocb_gp_get(rnp); 2113 raw_spin_unlock_irq_rcu_node(rnp); 2114 rcu_nocb_gp_cleanup(sq); 2115 cond_resched_tasks_rcu_qs(); 2116 WRITE_ONCE(rsp->gp_activity, jiffies); 2117 rcu_gp_slow(rsp, gp_cleanup_delay); 2118 } 2119 rnp = rcu_get_root(rsp); 2120 raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */ 2121 2122 /* Declare grace period done. */ 2123 rcu_seq_end(&rsp->gp_seq); 2124 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end")); 2125 rsp->gp_state = RCU_GP_IDLE; 2126 /* Check for GP requests since above loop. */ 2127 rdp = this_cpu_ptr(rsp->rda); 2128 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2129 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2130 TPS("CleanupMore")); 2131 needgp = true; 2132 } 2133 /* Advance CBs to reduce false positives below. */ 2134 if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) { 2135 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2136 rsp->gp_req_activity = jiffies; 2137 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), 2138 TPS("newreq")); 2139 } else { 2140 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT); 2141 } 2142 raw_spin_unlock_irq_rcu_node(rnp); 2143 } 2144 2145 /* 2146 * Body of kthread that handles grace periods. 2147 */ 2148 static int __noreturn rcu_gp_kthread(void *arg) 2149 { 2150 bool first_gp_fqs; 2151 int gf; 2152 unsigned long j; 2153 int ret; 2154 struct rcu_state *rsp = arg; 2155 struct rcu_node *rnp = rcu_get_root(rsp); 2156 2157 rcu_bind_gp_kthread(); 2158 for (;;) { 2159 2160 /* Handle grace-period start. */ 2161 for (;;) { 2162 trace_rcu_grace_period(rsp->name, 2163 READ_ONCE(rsp->gp_seq), 2164 TPS("reqwait")); 2165 rsp->gp_state = RCU_GP_WAIT_GPS; 2166 swait_event_idle_exclusive(rsp->gp_wq, READ_ONCE(rsp->gp_flags) & 2167 RCU_GP_FLAG_INIT); 2168 rsp->gp_state = RCU_GP_DONE_GPS; 2169 /* Locking provides needed memory barrier. */ 2170 if (rcu_gp_init(rsp)) 2171 break; 2172 cond_resched_tasks_rcu_qs(); 2173 WRITE_ONCE(rsp->gp_activity, jiffies); 2174 WARN_ON(signal_pending(current)); 2175 trace_rcu_grace_period(rsp->name, 2176 READ_ONCE(rsp->gp_seq), 2177 TPS("reqwaitsig")); 2178 } 2179 2180 /* Handle quiescent-state forcing. */ 2181 first_gp_fqs = true; 2182 j = jiffies_till_first_fqs; 2183 ret = 0; 2184 for (;;) { 2185 if (!ret) { 2186 rsp->jiffies_force_qs = jiffies + j; 2187 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2188 jiffies + 3 * j); 2189 } 2190 trace_rcu_grace_period(rsp->name, 2191 READ_ONCE(rsp->gp_seq), 2192 TPS("fqswait")); 2193 rsp->gp_state = RCU_GP_WAIT_FQS; 2194 ret = swait_event_idle_timeout_exclusive(rsp->gp_wq, 2195 rcu_gp_fqs_check_wake(rsp, &gf), j); 2196 rsp->gp_state = RCU_GP_DOING_FQS; 2197 /* Locking provides needed memory barriers. */ 2198 /* If grace period done, leave loop. */ 2199 if (!READ_ONCE(rnp->qsmask) && 2200 !rcu_preempt_blocked_readers_cgp(rnp)) 2201 break; 2202 /* If time for quiescent-state forcing, do it. */ 2203 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2204 (gf & RCU_GP_FLAG_FQS)) { 2205 trace_rcu_grace_period(rsp->name, 2206 READ_ONCE(rsp->gp_seq), 2207 TPS("fqsstart")); 2208 rcu_gp_fqs(rsp, first_gp_fqs); 2209 first_gp_fqs = false; 2210 trace_rcu_grace_period(rsp->name, 2211 READ_ONCE(rsp->gp_seq), 2212 TPS("fqsend")); 2213 cond_resched_tasks_rcu_qs(); 2214 WRITE_ONCE(rsp->gp_activity, jiffies); 2215 ret = 0; /* Force full wait till next FQS. */ 2216 j = jiffies_till_next_fqs; 2217 } else { 2218 /* Deal with stray signal. */ 2219 cond_resched_tasks_rcu_qs(); 2220 WRITE_ONCE(rsp->gp_activity, jiffies); 2221 WARN_ON(signal_pending(current)); 2222 trace_rcu_grace_period(rsp->name, 2223 READ_ONCE(rsp->gp_seq), 2224 TPS("fqswaitsig")); 2225 ret = 1; /* Keep old FQS timing. */ 2226 j = jiffies; 2227 if (time_after(jiffies, rsp->jiffies_force_qs)) 2228 j = 1; 2229 else 2230 j = rsp->jiffies_force_qs - j; 2231 } 2232 } 2233 2234 /* Handle grace-period end. */ 2235 rsp->gp_state = RCU_GP_CLEANUP; 2236 rcu_gp_cleanup(rsp); 2237 rsp->gp_state = RCU_GP_CLEANED; 2238 } 2239 } 2240 2241 /* 2242 * Report a full set of quiescent states to the specified rcu_state data 2243 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2244 * kthread if another grace period is required. Whether we wake 2245 * the grace-period kthread or it awakens itself for the next round 2246 * of quiescent-state forcing, that kthread will clean up after the 2247 * just-completed grace period. Note that the caller must hold rnp->lock, 2248 * which is released before return. 2249 */ 2250 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2251 __releases(rcu_get_root(rsp)->lock) 2252 { 2253 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp)); 2254 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2255 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2256 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2257 rcu_gp_kthread_wake(rsp); 2258 } 2259 2260 /* 2261 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2262 * Allows quiescent states for a group of CPUs to be reported at one go 2263 * to the specified rcu_node structure, though all the CPUs in the group 2264 * must be represented by the same rcu_node structure (which need not be a 2265 * leaf rcu_node structure, though it often will be). The gps parameter 2266 * is the grace-period snapshot, which means that the quiescent states 2267 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2268 * must be held upon entry, and it is released before return. 2269 * 2270 * As a special case, if mask is zero, the bit-already-cleared check is 2271 * disabled. This allows propagating quiescent state due to resumed tasks 2272 * during grace-period initialization. 2273 */ 2274 static void 2275 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2276 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2277 __releases(rnp->lock) 2278 { 2279 unsigned long oldmask = 0; 2280 struct rcu_node *rnp_c; 2281 2282 raw_lockdep_assert_held_rcu_node(rnp); 2283 2284 /* Walk up the rcu_node hierarchy. */ 2285 for (;;) { 2286 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2287 2288 /* 2289 * Our bit has already been cleared, or the 2290 * relevant grace period is already over, so done. 2291 */ 2292 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2293 return; 2294 } 2295 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2296 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2297 rcu_preempt_blocked_readers_cgp(rnp)); 2298 rnp->qsmask &= ~mask; 2299 trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq, 2300 mask, rnp->qsmask, rnp->level, 2301 rnp->grplo, rnp->grphi, 2302 !!rnp->gp_tasks); 2303 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2304 2305 /* Other bits still set at this level, so done. */ 2306 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2307 return; 2308 } 2309 rnp->completedqs = rnp->gp_seq; 2310 mask = rnp->grpmask; 2311 if (rnp->parent == NULL) { 2312 2313 /* No more levels. Exit loop holding root lock. */ 2314 2315 break; 2316 } 2317 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2318 rnp_c = rnp; 2319 rnp = rnp->parent; 2320 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2321 oldmask = rnp_c->qsmask; 2322 } 2323 2324 /* 2325 * Get here if we are the last CPU to pass through a quiescent 2326 * state for this grace period. Invoke rcu_report_qs_rsp() 2327 * to clean up and start the next grace period if one is needed. 2328 */ 2329 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2330 } 2331 2332 /* 2333 * Record a quiescent state for all tasks that were previously queued 2334 * on the specified rcu_node structure and that were blocking the current 2335 * RCU grace period. The caller must hold the specified rnp->lock with 2336 * irqs disabled, and this lock is released upon return, but irqs remain 2337 * disabled. 2338 */ 2339 static void __maybe_unused 2340 rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2341 struct rcu_node *rnp, unsigned long flags) 2342 __releases(rnp->lock) 2343 { 2344 unsigned long gps; 2345 unsigned long mask; 2346 struct rcu_node *rnp_p; 2347 2348 raw_lockdep_assert_held_rcu_node(rnp); 2349 if (WARN_ON_ONCE(rcu_state_p == &rcu_sched_state) || 2350 WARN_ON_ONCE(rsp != rcu_state_p) || 2351 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2352 rnp->qsmask != 0) { 2353 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2354 return; /* Still need more quiescent states! */ 2355 } 2356 2357 rnp->completedqs = rnp->gp_seq; 2358 rnp_p = rnp->parent; 2359 if (rnp_p == NULL) { 2360 /* 2361 * Only one rcu_node structure in the tree, so don't 2362 * try to report up to its nonexistent parent! 2363 */ 2364 rcu_report_qs_rsp(rsp, flags); 2365 return; 2366 } 2367 2368 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2369 gps = rnp->gp_seq; 2370 mask = rnp->grpmask; 2371 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2372 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2373 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2374 } 2375 2376 /* 2377 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2378 * structure. This must be called from the specified CPU. 2379 */ 2380 static void 2381 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2382 { 2383 unsigned long flags; 2384 unsigned long mask; 2385 bool needwake; 2386 struct rcu_node *rnp; 2387 2388 rnp = rdp->mynode; 2389 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2390 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2391 rdp->gpwrap) { 2392 2393 /* 2394 * The grace period in which this quiescent state was 2395 * recorded has ended, so don't report it upwards. 2396 * We will instead need a new quiescent state that lies 2397 * within the current grace period. 2398 */ 2399 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2400 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 2401 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2402 return; 2403 } 2404 mask = rdp->grpmask; 2405 if ((rnp->qsmask & mask) == 0) { 2406 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2407 } else { 2408 rdp->core_needs_qs = false; 2409 2410 /* 2411 * This GP can't end until cpu checks in, so all of our 2412 * callbacks can be processed during the next GP. 2413 */ 2414 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2415 2416 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 2417 /* ^^^ Released rnp->lock */ 2418 if (needwake) 2419 rcu_gp_kthread_wake(rsp); 2420 } 2421 } 2422 2423 /* 2424 * Check to see if there is a new grace period of which this CPU 2425 * is not yet aware, and if so, set up local rcu_data state for it. 2426 * Otherwise, see if this CPU has just passed through its first 2427 * quiescent state for this grace period, and record that fact if so. 2428 */ 2429 static void 2430 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2431 { 2432 /* Check for grace-period ends and beginnings. */ 2433 note_gp_changes(rsp, rdp); 2434 2435 /* 2436 * Does this CPU still need to do its part for current grace period? 2437 * If no, return and let the other CPUs do their part as well. 2438 */ 2439 if (!rdp->core_needs_qs) 2440 return; 2441 2442 /* 2443 * Was there a quiescent state since the beginning of the grace 2444 * period? If no, then exit and wait for the next call. 2445 */ 2446 if (rdp->cpu_no_qs.b.norm) 2447 return; 2448 2449 /* 2450 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2451 * judge of that). 2452 */ 2453 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2454 } 2455 2456 /* 2457 * Trace the fact that this CPU is going offline. 2458 */ 2459 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2460 { 2461 RCU_TRACE(bool blkd;) 2462 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) 2463 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2464 2465 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2466 return; 2467 2468 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2469 trace_rcu_grace_period(rsp->name, rnp->gp_seq, 2470 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2471 } 2472 2473 /* 2474 * All CPUs for the specified rcu_node structure have gone offline, 2475 * and all tasks that were preempted within an RCU read-side critical 2476 * section while running on one of those CPUs have since exited their RCU 2477 * read-side critical section. Some other CPU is reporting this fact with 2478 * the specified rcu_node structure's ->lock held and interrupts disabled. 2479 * This function therefore goes up the tree of rcu_node structures, 2480 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2481 * the leaf rcu_node structure's ->qsmaskinit field has already been 2482 * updated. 2483 * 2484 * This function does check that the specified rcu_node structure has 2485 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2486 * prematurely. That said, invoking it after the fact will cost you 2487 * a needless lock acquisition. So once it has done its work, don't 2488 * invoke it again. 2489 */ 2490 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2491 { 2492 long mask; 2493 struct rcu_node *rnp = rnp_leaf; 2494 2495 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2496 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2497 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2498 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2499 return; 2500 for (;;) { 2501 mask = rnp->grpmask; 2502 rnp = rnp->parent; 2503 if (!rnp) 2504 break; 2505 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2506 rnp->qsmaskinit &= ~mask; 2507 /* Between grace periods, so better already be zero! */ 2508 WARN_ON_ONCE(rnp->qsmask); 2509 if (rnp->qsmaskinit) { 2510 raw_spin_unlock_rcu_node(rnp); 2511 /* irqs remain disabled. */ 2512 return; 2513 } 2514 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2515 } 2516 } 2517 2518 /* 2519 * The CPU has been completely removed, and some other CPU is reporting 2520 * this fact from process context. Do the remainder of the cleanup. 2521 * There can only be one CPU hotplug operation at a time, so no need for 2522 * explicit locking. 2523 */ 2524 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2525 { 2526 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2527 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2528 2529 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2530 return; 2531 2532 /* Adjust any no-longer-needed kthreads. */ 2533 rcu_boost_kthread_setaffinity(rnp, -1); 2534 } 2535 2536 /* 2537 * Invoke any RCU callbacks that have made it to the end of their grace 2538 * period. Thottle as specified by rdp->blimit. 2539 */ 2540 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2541 { 2542 unsigned long flags; 2543 struct rcu_head *rhp; 2544 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2545 long bl, count; 2546 2547 /* If no callbacks are ready, just return. */ 2548 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2549 trace_rcu_batch_start(rsp->name, 2550 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2551 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2552 trace_rcu_batch_end(rsp->name, 0, 2553 !rcu_segcblist_empty(&rdp->cblist), 2554 need_resched(), is_idle_task(current), 2555 rcu_is_callbacks_kthread()); 2556 return; 2557 } 2558 2559 /* 2560 * Extract the list of ready callbacks, disabling to prevent 2561 * races with call_rcu() from interrupt handlers. Leave the 2562 * callback counts, as rcu_barrier() needs to be conservative. 2563 */ 2564 local_irq_save(flags); 2565 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2566 bl = rdp->blimit; 2567 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2568 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2569 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2570 local_irq_restore(flags); 2571 2572 /* Invoke callbacks. */ 2573 rhp = rcu_cblist_dequeue(&rcl); 2574 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2575 debug_rcu_head_unqueue(rhp); 2576 if (__rcu_reclaim(rsp->name, rhp)) 2577 rcu_cblist_dequeued_lazy(&rcl); 2578 /* 2579 * Stop only if limit reached and CPU has something to do. 2580 * Note: The rcl structure counts down from zero. 2581 */ 2582 if (-rcl.len >= bl && 2583 (need_resched() || 2584 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2585 break; 2586 } 2587 2588 local_irq_save(flags); 2589 count = -rcl.len; 2590 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), 2591 is_idle_task(current), rcu_is_callbacks_kthread()); 2592 2593 /* Update counts and requeue any remaining callbacks. */ 2594 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2595 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2596 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2597 2598 /* Reinstate batch limit if we have worked down the excess. */ 2599 count = rcu_segcblist_n_cbs(&rdp->cblist); 2600 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2601 rdp->blimit = blimit; 2602 2603 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2604 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2605 rdp->qlen_last_fqs_check = 0; 2606 rdp->n_force_qs_snap = rsp->n_force_qs; 2607 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2608 rdp->qlen_last_fqs_check = count; 2609 2610 /* 2611 * The following usually indicates a double call_rcu(). To track 2612 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2613 */ 2614 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2615 2616 local_irq_restore(flags); 2617 2618 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2619 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2620 invoke_rcu_core(); 2621 } 2622 2623 /* 2624 * Check to see if this CPU is in a non-context-switch quiescent state 2625 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2626 * Also schedule RCU core processing. 2627 * 2628 * This function must be called from hardirq context. It is normally 2629 * invoked from the scheduling-clock interrupt. 2630 */ 2631 void rcu_check_callbacks(int user) 2632 { 2633 trace_rcu_utilization(TPS("Start scheduler-tick")); 2634 increment_cpu_stall_ticks(); 2635 if (user || rcu_is_cpu_rrupt_from_idle()) { 2636 2637 /* 2638 * Get here if this CPU took its interrupt from user 2639 * mode or from the idle loop, and if this is not a 2640 * nested interrupt. In this case, the CPU is in 2641 * a quiescent state, so note it. 2642 * 2643 * No memory barrier is required here because both 2644 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2645 * variables that other CPUs neither access nor modify, 2646 * at least not while the corresponding CPU is online. 2647 */ 2648 2649 rcu_sched_qs(); 2650 rcu_bh_qs(); 2651 rcu_note_voluntary_context_switch(current); 2652 2653 } else if (!in_softirq()) { 2654 2655 /* 2656 * Get here if this CPU did not take its interrupt from 2657 * softirq, in other words, if it is not interrupting 2658 * a rcu_bh read-side critical section. This is an _bh 2659 * critical section, so note it. 2660 */ 2661 2662 rcu_bh_qs(); 2663 } 2664 rcu_preempt_check_callbacks(); 2665 if (rcu_pending()) 2666 invoke_rcu_core(); 2667 2668 trace_rcu_utilization(TPS("End scheduler-tick")); 2669 } 2670 2671 /* 2672 * Scan the leaf rcu_node structures, processing dyntick state for any that 2673 * have not yet encountered a quiescent state, using the function specified. 2674 * Also initiate boosting for any threads blocked on the root rcu_node. 2675 * 2676 * The caller must have suppressed start of new grace periods. 2677 */ 2678 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) 2679 { 2680 int cpu; 2681 unsigned long flags; 2682 unsigned long mask; 2683 struct rcu_node *rnp; 2684 2685 rcu_for_each_leaf_node(rsp, rnp) { 2686 cond_resched_tasks_rcu_qs(); 2687 mask = 0; 2688 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2689 if (rnp->qsmask == 0) { 2690 if (rcu_state_p == &rcu_sched_state || 2691 rsp != rcu_state_p || 2692 rcu_preempt_blocked_readers_cgp(rnp)) { 2693 /* 2694 * No point in scanning bits because they 2695 * are all zero. But we might need to 2696 * priority-boost blocked readers. 2697 */ 2698 rcu_initiate_boost(rnp, flags); 2699 /* rcu_initiate_boost() releases rnp->lock */ 2700 continue; 2701 } 2702 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2703 continue; 2704 } 2705 for_each_leaf_node_possible_cpu(rnp, cpu) { 2706 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2707 if ((rnp->qsmask & bit) != 0) { 2708 if (f(per_cpu_ptr(rsp->rda, cpu))) 2709 mask |= bit; 2710 } 2711 } 2712 if (mask != 0) { 2713 /* Idle/offline CPUs, report (releases rnp->lock). */ 2714 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 2715 } else { 2716 /* Nothing to do here, so just drop the lock. */ 2717 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2718 } 2719 } 2720 } 2721 2722 /* 2723 * Force quiescent states on reluctant CPUs, and also detect which 2724 * CPUs are in dyntick-idle mode. 2725 */ 2726 static void force_quiescent_state(struct rcu_state *rsp) 2727 { 2728 unsigned long flags; 2729 bool ret; 2730 struct rcu_node *rnp; 2731 struct rcu_node *rnp_old = NULL; 2732 2733 /* Funnel through hierarchy to reduce memory contention. */ 2734 rnp = __this_cpu_read(rsp->rda->mynode); 2735 for (; rnp != NULL; rnp = rnp->parent) { 2736 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2737 !raw_spin_trylock(&rnp->fqslock); 2738 if (rnp_old != NULL) 2739 raw_spin_unlock(&rnp_old->fqslock); 2740 if (ret) 2741 return; 2742 rnp_old = rnp; 2743 } 2744 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2745 2746 /* Reached the root of the rcu_node tree, acquire lock. */ 2747 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2748 raw_spin_unlock(&rnp_old->fqslock); 2749 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2750 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2751 return; /* Someone beat us to it. */ 2752 } 2753 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2754 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2755 rcu_gp_kthread_wake(rsp); 2756 } 2757 2758 /* 2759 * This function checks for grace-period requests that fail to motivate 2760 * RCU to come out of its idle mode. 2761 */ 2762 static void 2763 rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp, 2764 struct rcu_data *rdp) 2765 { 2766 const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ; 2767 unsigned long flags; 2768 unsigned long j; 2769 struct rcu_node *rnp_root = rcu_get_root(rsp); 2770 static atomic_t warned = ATOMIC_INIT(0); 2771 2772 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) || 2773 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2774 return; 2775 j = jiffies; /* Expensive access, and in common case don't get here. */ 2776 if (time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) || 2777 time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) || 2778 atomic_read(&warned)) 2779 return; 2780 2781 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2782 j = jiffies; 2783 if (rcu_gp_in_progress(rsp) || 2784 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2785 time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) || 2786 time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) || 2787 atomic_read(&warned)) { 2788 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2789 return; 2790 } 2791 /* Hold onto the leaf lock to make others see warned==1. */ 2792 2793 if (rnp_root != rnp) 2794 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2795 j = jiffies; 2796 if (rcu_gp_in_progress(rsp) || 2797 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2798 time_before(j, rsp->gp_req_activity + gpssdelay) || 2799 time_before(j, rsp->gp_activity + gpssdelay) || 2800 atomic_xchg(&warned, 1)) { 2801 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2802 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2803 return; 2804 } 2805 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n", 2806 __func__, (long)READ_ONCE(rsp->gp_seq), 2807 (long)READ_ONCE(rnp_root->gp_seq_needed), 2808 j - rsp->gp_req_activity, j - rsp->gp_activity, 2809 rsp->gp_flags, rsp->gp_state, rsp->name, 2810 rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL); 2811 WARN_ON(1); 2812 if (rnp_root != rnp) 2813 raw_spin_unlock_rcu_node(rnp_root); 2814 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2815 } 2816 2817 /* 2818 * This does the RCU core processing work for the specified rcu_state 2819 * and rcu_data structures. This may be called only from the CPU to 2820 * whom the rdp belongs. 2821 */ 2822 static void 2823 __rcu_process_callbacks(struct rcu_state *rsp) 2824 { 2825 unsigned long flags; 2826 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2827 struct rcu_node *rnp = rdp->mynode; 2828 2829 WARN_ON_ONCE(!rdp->beenonline); 2830 2831 /* Update RCU state based on any recent quiescent states. */ 2832 rcu_check_quiescent_state(rsp, rdp); 2833 2834 /* No grace period and unregistered callbacks? */ 2835 if (!rcu_gp_in_progress(rsp) && 2836 rcu_segcblist_is_enabled(&rdp->cblist)) { 2837 local_irq_save(flags); 2838 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2839 rcu_accelerate_cbs_unlocked(rsp, rnp, rdp); 2840 local_irq_restore(flags); 2841 } 2842 2843 rcu_check_gp_start_stall(rsp, rnp, rdp); 2844 2845 /* If there are callbacks ready, invoke them. */ 2846 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2847 invoke_rcu_callbacks(rsp, rdp); 2848 2849 /* Do any needed deferred wakeups of rcuo kthreads. */ 2850 do_nocb_deferred_wakeup(rdp); 2851 } 2852 2853 /* 2854 * Do RCU core processing for the current CPU. 2855 */ 2856 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2857 { 2858 struct rcu_state *rsp; 2859 2860 if (cpu_is_offline(smp_processor_id())) 2861 return; 2862 trace_rcu_utilization(TPS("Start RCU core")); 2863 for_each_rcu_flavor(rsp) 2864 __rcu_process_callbacks(rsp); 2865 trace_rcu_utilization(TPS("End RCU core")); 2866 } 2867 2868 /* 2869 * Schedule RCU callback invocation. If the specified type of RCU 2870 * does not support RCU priority boosting, just do a direct call, 2871 * otherwise wake up the per-CPU kernel kthread. Note that because we 2872 * are running on the current CPU with softirqs disabled, the 2873 * rcu_cpu_kthread_task cannot disappear out from under us. 2874 */ 2875 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2876 { 2877 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2878 return; 2879 if (likely(!rsp->boost)) { 2880 rcu_do_batch(rsp, rdp); 2881 return; 2882 } 2883 invoke_rcu_callbacks_kthread(); 2884 } 2885 2886 static void invoke_rcu_core(void) 2887 { 2888 if (cpu_online(smp_processor_id())) 2889 raise_softirq(RCU_SOFTIRQ); 2890 } 2891 2892 /* 2893 * Handle any core-RCU processing required by a call_rcu() invocation. 2894 */ 2895 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2896 struct rcu_head *head, unsigned long flags) 2897 { 2898 /* 2899 * If called from an extended quiescent state, invoke the RCU 2900 * core in order to force a re-evaluation of RCU's idleness. 2901 */ 2902 if (!rcu_is_watching()) 2903 invoke_rcu_core(); 2904 2905 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2906 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2907 return; 2908 2909 /* 2910 * Force the grace period if too many callbacks or too long waiting. 2911 * Enforce hysteresis, and don't invoke force_quiescent_state() 2912 * if some other CPU has recently done so. Also, don't bother 2913 * invoking force_quiescent_state() if the newly enqueued callback 2914 * is the only one waiting for a grace period to complete. 2915 */ 2916 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2917 rdp->qlen_last_fqs_check + qhimark)) { 2918 2919 /* Are we ignoring a completed grace period? */ 2920 note_gp_changes(rsp, rdp); 2921 2922 /* Start a new grace period if one not already started. */ 2923 if (!rcu_gp_in_progress(rsp)) { 2924 rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp); 2925 } else { 2926 /* Give the grace period a kick. */ 2927 rdp->blimit = LONG_MAX; 2928 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2929 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2930 force_quiescent_state(rsp); 2931 rdp->n_force_qs_snap = rsp->n_force_qs; 2932 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2933 } 2934 } 2935 } 2936 2937 /* 2938 * RCU callback function to leak a callback. 2939 */ 2940 static void rcu_leak_callback(struct rcu_head *rhp) 2941 { 2942 } 2943 2944 /* 2945 * Helper function for call_rcu() and friends. The cpu argument will 2946 * normally be -1, indicating "currently running CPU". It may specify 2947 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2948 * is expected to specify a CPU. 2949 */ 2950 static void 2951 __call_rcu(struct rcu_head *head, rcu_callback_t func, 2952 struct rcu_state *rsp, int cpu, bool lazy) 2953 { 2954 unsigned long flags; 2955 struct rcu_data *rdp; 2956 2957 /* Misaligned rcu_head! */ 2958 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2959 2960 if (debug_rcu_head_queue(head)) { 2961 /* 2962 * Probable double call_rcu(), so leak the callback. 2963 * Use rcu:rcu_callback trace event to find the previous 2964 * time callback was passed to __call_rcu(). 2965 */ 2966 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2967 head, head->func); 2968 WRITE_ONCE(head->func, rcu_leak_callback); 2969 return; 2970 } 2971 head->func = func; 2972 head->next = NULL; 2973 local_irq_save(flags); 2974 rdp = this_cpu_ptr(rsp->rda); 2975 2976 /* Add the callback to our list. */ 2977 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2978 int offline; 2979 2980 if (cpu != -1) 2981 rdp = per_cpu_ptr(rsp->rda, cpu); 2982 if (likely(rdp->mynode)) { 2983 /* Post-boot, so this should be for a no-CBs CPU. */ 2984 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2985 WARN_ON_ONCE(offline); 2986 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2987 local_irq_restore(flags); 2988 return; 2989 } 2990 /* 2991 * Very early boot, before rcu_init(). Initialize if needed 2992 * and then drop through to queue the callback. 2993 */ 2994 BUG_ON(cpu != -1); 2995 WARN_ON_ONCE(!rcu_is_watching()); 2996 if (rcu_segcblist_empty(&rdp->cblist)) 2997 rcu_segcblist_init(&rdp->cblist); 2998 } 2999 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 3000 if (!lazy) 3001 rcu_idle_count_callbacks_posted(); 3002 3003 if (__is_kfree_rcu_offset((unsigned long)func)) 3004 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3005 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3006 rcu_segcblist_n_cbs(&rdp->cblist)); 3007 else 3008 trace_rcu_callback(rsp->name, head, 3009 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3010 rcu_segcblist_n_cbs(&rdp->cblist)); 3011 3012 /* Go handle any RCU core processing required. */ 3013 __call_rcu_core(rsp, rdp, head, flags); 3014 local_irq_restore(flags); 3015 } 3016 3017 /** 3018 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 3019 * @head: structure to be used for queueing the RCU updates. 3020 * @func: actual callback function to be invoked after the grace period 3021 * 3022 * The callback function will be invoked some time after a full grace 3023 * period elapses, in other words after all currently executing RCU 3024 * read-side critical sections have completed. call_rcu_sched() assumes 3025 * that the read-side critical sections end on enabling of preemption 3026 * or on voluntary preemption. 3027 * RCU read-side critical sections are delimited by: 3028 * 3029 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR 3030 * - anything that disables preemption. 3031 * 3032 * These may be nested. 3033 * 3034 * See the description of call_rcu() for more detailed information on 3035 * memory ordering guarantees. 3036 */ 3037 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3038 { 3039 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3040 } 3041 EXPORT_SYMBOL_GPL(call_rcu_sched); 3042 3043 /** 3044 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 3045 * @head: structure to be used for queueing the RCU updates. 3046 * @func: actual callback function to be invoked after the grace period 3047 * 3048 * The callback function will be invoked some time after a full grace 3049 * period elapses, in other words after all currently executing RCU 3050 * read-side critical sections have completed. call_rcu_bh() assumes 3051 * that the read-side critical sections end on completion of a softirq 3052 * handler. This means that read-side critical sections in process 3053 * context must not be interrupted by softirqs. This interface is to be 3054 * used when most of the read-side critical sections are in softirq context. 3055 * RCU read-side critical sections are delimited by: 3056 * 3057 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR 3058 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 3059 * 3060 * These may be nested. 3061 * 3062 * See the description of call_rcu() for more detailed information on 3063 * memory ordering guarantees. 3064 */ 3065 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3066 { 3067 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3068 } 3069 EXPORT_SYMBOL_GPL(call_rcu_bh); 3070 3071 /* 3072 * Queue an RCU callback for lazy invocation after a grace period. 3073 * This will likely be later named something like "call_rcu_lazy()", 3074 * but this change will require some way of tagging the lazy RCU 3075 * callbacks in the list of pending callbacks. Until then, this 3076 * function may only be called from __kfree_rcu(). 3077 */ 3078 void kfree_call_rcu(struct rcu_head *head, 3079 rcu_callback_t func) 3080 { 3081 __call_rcu(head, func, rcu_state_p, -1, 1); 3082 } 3083 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3084 3085 /* 3086 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3087 * any blocking grace-period wait automatically implies a grace period 3088 * if there is only one CPU online at any point time during execution 3089 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3090 * occasionally incorrectly indicate that there are multiple CPUs online 3091 * when there was in fact only one the whole time, as this just adds 3092 * some overhead: RCU still operates correctly. 3093 */ 3094 static int rcu_blocking_is_gp(void) 3095 { 3096 int ret; 3097 3098 might_sleep(); /* Check for RCU read-side critical section. */ 3099 preempt_disable(); 3100 ret = num_online_cpus() <= 1; 3101 preempt_enable(); 3102 return ret; 3103 } 3104 3105 /** 3106 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3107 * 3108 * Control will return to the caller some time after a full rcu-sched 3109 * grace period has elapsed, in other words after all currently executing 3110 * rcu-sched read-side critical sections have completed. These read-side 3111 * critical sections are delimited by rcu_read_lock_sched() and 3112 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3113 * local_irq_disable(), and so on may be used in place of 3114 * rcu_read_lock_sched(). 3115 * 3116 * This means that all preempt_disable code sequences, including NMI and 3117 * non-threaded hardware-interrupt handlers, in progress on entry will 3118 * have completed before this primitive returns. However, this does not 3119 * guarantee that softirq handlers will have completed, since in some 3120 * kernels, these handlers can run in process context, and can block. 3121 * 3122 * Note that this guarantee implies further memory-ordering guarantees. 3123 * On systems with more than one CPU, when synchronize_sched() returns, 3124 * each CPU is guaranteed to have executed a full memory barrier since the 3125 * end of its last RCU-sched read-side critical section whose beginning 3126 * preceded the call to synchronize_sched(). In addition, each CPU having 3127 * an RCU read-side critical section that extends beyond the return from 3128 * synchronize_sched() is guaranteed to have executed a full memory barrier 3129 * after the beginning of synchronize_sched() and before the beginning of 3130 * that RCU read-side critical section. Note that these guarantees include 3131 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3132 * that are executing in the kernel. 3133 * 3134 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3135 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3136 * to have executed a full memory barrier during the execution of 3137 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3138 * again only if the system has more than one CPU). 3139 */ 3140 void synchronize_sched(void) 3141 { 3142 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3143 lock_is_held(&rcu_lock_map) || 3144 lock_is_held(&rcu_sched_lock_map), 3145 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3146 if (rcu_blocking_is_gp()) 3147 return; 3148 if (rcu_gp_is_expedited()) 3149 synchronize_sched_expedited(); 3150 else 3151 wait_rcu_gp(call_rcu_sched); 3152 } 3153 EXPORT_SYMBOL_GPL(synchronize_sched); 3154 3155 /** 3156 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3157 * 3158 * Control will return to the caller some time after a full rcu_bh grace 3159 * period has elapsed, in other words after all currently executing rcu_bh 3160 * read-side critical sections have completed. RCU read-side critical 3161 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3162 * and may be nested. 3163 * 3164 * See the description of synchronize_sched() for more detailed information 3165 * on memory ordering guarantees. 3166 */ 3167 void synchronize_rcu_bh(void) 3168 { 3169 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3170 lock_is_held(&rcu_lock_map) || 3171 lock_is_held(&rcu_sched_lock_map), 3172 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3173 if (rcu_blocking_is_gp()) 3174 return; 3175 if (rcu_gp_is_expedited()) 3176 synchronize_rcu_bh_expedited(); 3177 else 3178 wait_rcu_gp(call_rcu_bh); 3179 } 3180 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3181 3182 /** 3183 * get_state_synchronize_rcu - Snapshot current RCU state 3184 * 3185 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3186 * to determine whether or not a full grace period has elapsed in the 3187 * meantime. 3188 */ 3189 unsigned long get_state_synchronize_rcu(void) 3190 { 3191 /* 3192 * Any prior manipulation of RCU-protected data must happen 3193 * before the load from ->gp_seq. 3194 */ 3195 smp_mb(); /* ^^^ */ 3196 return rcu_seq_snap(&rcu_state_p->gp_seq); 3197 } 3198 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3199 3200 /** 3201 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3202 * 3203 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3204 * 3205 * If a full RCU grace period has elapsed since the earlier call to 3206 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3207 * synchronize_rcu() to wait for a full grace period. 3208 * 3209 * Yes, this function does not take counter wrap into account. But 3210 * counter wrap is harmless. If the counter wraps, we have waited for 3211 * more than 2 billion grace periods (and way more on a 64-bit system!), 3212 * so waiting for one additional grace period should be just fine. 3213 */ 3214 void cond_synchronize_rcu(unsigned long oldstate) 3215 { 3216 if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate)) 3217 synchronize_rcu(); 3218 else 3219 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3220 } 3221 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3222 3223 /** 3224 * get_state_synchronize_sched - Snapshot current RCU-sched state 3225 * 3226 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3227 * to determine whether or not a full grace period has elapsed in the 3228 * meantime. 3229 */ 3230 unsigned long get_state_synchronize_sched(void) 3231 { 3232 /* 3233 * Any prior manipulation of RCU-protected data must happen 3234 * before the load from ->gp_seq. 3235 */ 3236 smp_mb(); /* ^^^ */ 3237 return rcu_seq_snap(&rcu_sched_state.gp_seq); 3238 } 3239 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3240 3241 /** 3242 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3243 * 3244 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3245 * 3246 * If a full RCU-sched grace period has elapsed since the earlier call to 3247 * get_state_synchronize_sched(), just return. Otherwise, invoke 3248 * synchronize_sched() to wait for a full grace period. 3249 * 3250 * Yes, this function does not take counter wrap into account. But 3251 * counter wrap is harmless. If the counter wraps, we have waited for 3252 * more than 2 billion grace periods (and way more on a 64-bit system!), 3253 * so waiting for one additional grace period should be just fine. 3254 */ 3255 void cond_synchronize_sched(unsigned long oldstate) 3256 { 3257 if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate)) 3258 synchronize_sched(); 3259 else 3260 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3261 } 3262 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3263 3264 /* 3265 * Check to see if there is any immediate RCU-related work to be done 3266 * by the current CPU, for the specified type of RCU, returning 1 if so. 3267 * The checks are in order of increasing expense: checks that can be 3268 * carried out against CPU-local state are performed first. However, 3269 * we must check for CPU stalls first, else we might not get a chance. 3270 */ 3271 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3272 { 3273 struct rcu_node *rnp = rdp->mynode; 3274 3275 /* Check for CPU stalls, if enabled. */ 3276 check_cpu_stall(rsp, rdp); 3277 3278 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3279 if (rcu_nohz_full_cpu(rsp)) 3280 return 0; 3281 3282 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3283 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3284 return 1; 3285 3286 /* Does this CPU have callbacks ready to invoke? */ 3287 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3288 return 1; 3289 3290 /* Has RCU gone idle with this CPU needing another grace period? */ 3291 if (!rcu_gp_in_progress(rsp) && 3292 rcu_segcblist_is_enabled(&rdp->cblist) && 3293 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3294 return 1; 3295 3296 /* Have RCU grace period completed or started? */ 3297 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3298 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3299 return 1; 3300 3301 /* Does this CPU need a deferred NOCB wakeup? */ 3302 if (rcu_nocb_need_deferred_wakeup(rdp)) 3303 return 1; 3304 3305 /* nothing to do */ 3306 return 0; 3307 } 3308 3309 /* 3310 * Check to see if there is any immediate RCU-related work to be done 3311 * by the current CPU, returning 1 if so. This function is part of the 3312 * RCU implementation; it is -not- an exported member of the RCU API. 3313 */ 3314 static int rcu_pending(void) 3315 { 3316 struct rcu_state *rsp; 3317 3318 for_each_rcu_flavor(rsp) 3319 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3320 return 1; 3321 return 0; 3322 } 3323 3324 /* 3325 * Return true if the specified CPU has any callback. If all_lazy is 3326 * non-NULL, store an indication of whether all callbacks are lazy. 3327 * (If there are no callbacks, all of them are deemed to be lazy.) 3328 */ 3329 static bool rcu_cpu_has_callbacks(bool *all_lazy) 3330 { 3331 bool al = true; 3332 bool hc = false; 3333 struct rcu_data *rdp; 3334 struct rcu_state *rsp; 3335 3336 for_each_rcu_flavor(rsp) { 3337 rdp = this_cpu_ptr(rsp->rda); 3338 if (rcu_segcblist_empty(&rdp->cblist)) 3339 continue; 3340 hc = true; 3341 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { 3342 al = false; 3343 break; 3344 } 3345 } 3346 if (all_lazy) 3347 *all_lazy = al; 3348 return hc; 3349 } 3350 3351 /* 3352 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3353 * the compiler is expected to optimize this away. 3354 */ 3355 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3356 int cpu, unsigned long done) 3357 { 3358 trace_rcu_barrier(rsp->name, s, cpu, 3359 atomic_read(&rsp->barrier_cpu_count), done); 3360 } 3361 3362 /* 3363 * RCU callback function for _rcu_barrier(). If we are last, wake 3364 * up the task executing _rcu_barrier(). 3365 */ 3366 static void rcu_barrier_callback(struct rcu_head *rhp) 3367 { 3368 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3369 struct rcu_state *rsp = rdp->rsp; 3370 3371 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3372 _rcu_barrier_trace(rsp, TPS("LastCB"), -1, 3373 rsp->barrier_sequence); 3374 complete(&rsp->barrier_completion); 3375 } else { 3376 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence); 3377 } 3378 } 3379 3380 /* 3381 * Called with preemption disabled, and from cross-cpu IRQ context. 3382 */ 3383 static void rcu_barrier_func(void *type) 3384 { 3385 struct rcu_state *rsp = type; 3386 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3387 3388 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence); 3389 rdp->barrier_head.func = rcu_barrier_callback; 3390 debug_rcu_head_queue(&rdp->barrier_head); 3391 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3392 atomic_inc(&rsp->barrier_cpu_count); 3393 } else { 3394 debug_rcu_head_unqueue(&rdp->barrier_head); 3395 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1, 3396 rsp->barrier_sequence); 3397 } 3398 } 3399 3400 /* 3401 * Orchestrate the specified type of RCU barrier, waiting for all 3402 * RCU callbacks of the specified type to complete. 3403 */ 3404 static void _rcu_barrier(struct rcu_state *rsp) 3405 { 3406 int cpu; 3407 struct rcu_data *rdp; 3408 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3409 3410 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s); 3411 3412 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3413 mutex_lock(&rsp->barrier_mutex); 3414 3415 /* Did someone else do our work for us? */ 3416 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3417 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1, 3418 rsp->barrier_sequence); 3419 smp_mb(); /* caller's subsequent code after above check. */ 3420 mutex_unlock(&rsp->barrier_mutex); 3421 return; 3422 } 3423 3424 /* Mark the start of the barrier operation. */ 3425 rcu_seq_start(&rsp->barrier_sequence); 3426 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence); 3427 3428 /* 3429 * Initialize the count to one rather than to zero in order to 3430 * avoid a too-soon return to zero in case of a short grace period 3431 * (or preemption of this task). Exclude CPU-hotplug operations 3432 * to ensure that no offline CPU has callbacks queued. 3433 */ 3434 init_completion(&rsp->barrier_completion); 3435 atomic_set(&rsp->barrier_cpu_count, 1); 3436 get_online_cpus(); 3437 3438 /* 3439 * Force each CPU with callbacks to register a new callback. 3440 * When that callback is invoked, we will know that all of the 3441 * corresponding CPU's preceding callbacks have been invoked. 3442 */ 3443 for_each_possible_cpu(cpu) { 3444 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3445 continue; 3446 rdp = per_cpu_ptr(rsp->rda, cpu); 3447 if (rcu_is_nocb_cpu(cpu)) { 3448 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3449 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu, 3450 rsp->barrier_sequence); 3451 } else { 3452 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu, 3453 rsp->barrier_sequence); 3454 smp_mb__before_atomic(); 3455 atomic_inc(&rsp->barrier_cpu_count); 3456 __call_rcu(&rdp->barrier_head, 3457 rcu_barrier_callback, rsp, cpu, 0); 3458 } 3459 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3460 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu, 3461 rsp->barrier_sequence); 3462 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3463 } else { 3464 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu, 3465 rsp->barrier_sequence); 3466 } 3467 } 3468 put_online_cpus(); 3469 3470 /* 3471 * Now that we have an rcu_barrier_callback() callback on each 3472 * CPU, and thus each counted, remove the initial count. 3473 */ 3474 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3475 complete(&rsp->barrier_completion); 3476 3477 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3478 wait_for_completion(&rsp->barrier_completion); 3479 3480 /* Mark the end of the barrier operation. */ 3481 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence); 3482 rcu_seq_end(&rsp->barrier_sequence); 3483 3484 /* Other rcu_barrier() invocations can now safely proceed. */ 3485 mutex_unlock(&rsp->barrier_mutex); 3486 } 3487 3488 /** 3489 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3490 */ 3491 void rcu_barrier_bh(void) 3492 { 3493 _rcu_barrier(&rcu_bh_state); 3494 } 3495 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3496 3497 /** 3498 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3499 */ 3500 void rcu_barrier_sched(void) 3501 { 3502 _rcu_barrier(&rcu_sched_state); 3503 } 3504 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3505 3506 /* 3507 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3508 * first CPU in a given leaf rcu_node structure coming online. The caller 3509 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3510 * disabled. 3511 */ 3512 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3513 { 3514 long mask; 3515 long oldmask; 3516 struct rcu_node *rnp = rnp_leaf; 3517 3518 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3519 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3520 for (;;) { 3521 mask = rnp->grpmask; 3522 rnp = rnp->parent; 3523 if (rnp == NULL) 3524 return; 3525 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3526 oldmask = rnp->qsmaskinit; 3527 rnp->qsmaskinit |= mask; 3528 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3529 if (oldmask) 3530 return; 3531 } 3532 } 3533 3534 /* 3535 * Do boot-time initialization of a CPU's per-CPU RCU data. 3536 */ 3537 static void __init 3538 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3539 { 3540 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3541 3542 /* Set up local state, ensuring consistent view of global state. */ 3543 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3544 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3545 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1); 3546 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3547 rdp->rcu_ofl_gp_seq = rsp->gp_seq; 3548 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3549 rdp->rcu_onl_gp_seq = rsp->gp_seq; 3550 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3551 rdp->cpu = cpu; 3552 rdp->rsp = rsp; 3553 rcu_boot_init_nocb_percpu_data(rdp); 3554 } 3555 3556 /* 3557 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3558 * offline event can be happening at a given time. Note also that we can 3559 * accept some slop in the rsp->gp_seq access due to the fact that this 3560 * CPU cannot possibly have any RCU callbacks in flight yet. 3561 */ 3562 static void 3563 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3564 { 3565 unsigned long flags; 3566 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3567 struct rcu_node *rnp = rcu_get_root(rsp); 3568 3569 /* Set up local state, ensuring consistent view of global state. */ 3570 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3571 rdp->qlen_last_fqs_check = 0; 3572 rdp->n_force_qs_snap = rsp->n_force_qs; 3573 rdp->blimit = blimit; 3574 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3575 !init_nocb_callback_list(rdp)) 3576 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3577 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3578 rcu_dynticks_eqs_online(); 3579 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3580 3581 /* 3582 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3583 * propagation up the rcu_node tree will happen at the beginning 3584 * of the next grace period. 3585 */ 3586 rnp = rdp->mynode; 3587 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3588 rdp->beenonline = true; /* We have now been online. */ 3589 rdp->gp_seq = rnp->gp_seq; 3590 rdp->gp_seq_needed = rnp->gp_seq; 3591 rdp->cpu_no_qs.b.norm = true; 3592 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); 3593 rdp->core_needs_qs = false; 3594 rdp->rcu_iw_pending = false; 3595 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3596 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl")); 3597 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3598 } 3599 3600 /* 3601 * Invoked early in the CPU-online process, when pretty much all 3602 * services are available. The incoming CPU is not present. 3603 */ 3604 int rcutree_prepare_cpu(unsigned int cpu) 3605 { 3606 struct rcu_state *rsp; 3607 3608 for_each_rcu_flavor(rsp) 3609 rcu_init_percpu_data(cpu, rsp); 3610 3611 rcu_prepare_kthreads(cpu); 3612 rcu_spawn_all_nocb_kthreads(cpu); 3613 3614 return 0; 3615 } 3616 3617 /* 3618 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3619 */ 3620 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3621 { 3622 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3623 3624 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3625 } 3626 3627 /* 3628 * Near the end of the CPU-online process. Pretty much all services 3629 * enabled, and the CPU is now very much alive. 3630 */ 3631 int rcutree_online_cpu(unsigned int cpu) 3632 { 3633 unsigned long flags; 3634 struct rcu_data *rdp; 3635 struct rcu_node *rnp; 3636 struct rcu_state *rsp; 3637 3638 for_each_rcu_flavor(rsp) { 3639 rdp = per_cpu_ptr(rsp->rda, cpu); 3640 rnp = rdp->mynode; 3641 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3642 rnp->ffmask |= rdp->grpmask; 3643 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3644 } 3645 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3646 srcu_online_cpu(cpu); 3647 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3648 return 0; /* Too early in boot for scheduler work. */ 3649 sync_sched_exp_online_cleanup(cpu); 3650 rcutree_affinity_setting(cpu, -1); 3651 return 0; 3652 } 3653 3654 /* 3655 * Near the beginning of the process. The CPU is still very much alive 3656 * with pretty much all services enabled. 3657 */ 3658 int rcutree_offline_cpu(unsigned int cpu) 3659 { 3660 unsigned long flags; 3661 struct rcu_data *rdp; 3662 struct rcu_node *rnp; 3663 struct rcu_state *rsp; 3664 3665 for_each_rcu_flavor(rsp) { 3666 rdp = per_cpu_ptr(rsp->rda, cpu); 3667 rnp = rdp->mynode; 3668 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3669 rnp->ffmask &= ~rdp->grpmask; 3670 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3671 } 3672 3673 rcutree_affinity_setting(cpu, cpu); 3674 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3675 srcu_offline_cpu(cpu); 3676 return 0; 3677 } 3678 3679 /* 3680 * Near the end of the offline process. We do only tracing here. 3681 */ 3682 int rcutree_dying_cpu(unsigned int cpu) 3683 { 3684 struct rcu_state *rsp; 3685 3686 for_each_rcu_flavor(rsp) 3687 rcu_cleanup_dying_cpu(rsp); 3688 return 0; 3689 } 3690 3691 /* 3692 * The outgoing CPU is gone and we are running elsewhere. 3693 */ 3694 int rcutree_dead_cpu(unsigned int cpu) 3695 { 3696 struct rcu_state *rsp; 3697 3698 for_each_rcu_flavor(rsp) { 3699 rcu_cleanup_dead_cpu(cpu, rsp); 3700 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3701 } 3702 return 0; 3703 } 3704 3705 static DEFINE_PER_CPU(int, rcu_cpu_started); 3706 3707 /* 3708 * Mark the specified CPU as being online so that subsequent grace periods 3709 * (both expedited and normal) will wait on it. Note that this means that 3710 * incoming CPUs are not allowed to use RCU read-side critical sections 3711 * until this function is called. Failing to observe this restriction 3712 * will result in lockdep splats. 3713 * 3714 * Note that this function is special in that it is invoked directly 3715 * from the incoming CPU rather than from the cpuhp_step mechanism. 3716 * This is because this function must be invoked at a precise location. 3717 */ 3718 void rcu_cpu_starting(unsigned int cpu) 3719 { 3720 unsigned long flags; 3721 unsigned long mask; 3722 int nbits; 3723 unsigned long oldmask; 3724 struct rcu_data *rdp; 3725 struct rcu_node *rnp; 3726 struct rcu_state *rsp; 3727 3728 if (per_cpu(rcu_cpu_started, cpu)) 3729 return; 3730 3731 per_cpu(rcu_cpu_started, cpu) = 1; 3732 3733 for_each_rcu_flavor(rsp) { 3734 rdp = per_cpu_ptr(rsp->rda, cpu); 3735 rnp = rdp->mynode; 3736 mask = rdp->grpmask; 3737 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3738 rnp->qsmaskinitnext |= mask; 3739 oldmask = rnp->expmaskinitnext; 3740 rnp->expmaskinitnext |= mask; 3741 oldmask ^= rnp->expmaskinitnext; 3742 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3743 /* Allow lockless access for expedited grace periods. */ 3744 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */ 3745 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3746 rdp->rcu_onl_gp_seq = READ_ONCE(rsp->gp_seq); 3747 rdp->rcu_onl_gp_flags = READ_ONCE(rsp->gp_flags); 3748 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3749 /* Report QS -after- changing ->qsmaskinitnext! */ 3750 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 3751 } else { 3752 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3753 } 3754 } 3755 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3756 } 3757 3758 #ifdef CONFIG_HOTPLUG_CPU 3759 /* 3760 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3761 * function. We now remove it from the rcu_node tree's ->qsmaskinitnext 3762 * bit masks. 3763 */ 3764 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3765 { 3766 unsigned long flags; 3767 unsigned long mask; 3768 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3769 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3770 3771 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3772 mask = rdp->grpmask; 3773 spin_lock(&rsp->ofl_lock); 3774 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3775 rdp->rcu_ofl_gp_seq = READ_ONCE(rsp->gp_seq); 3776 rdp->rcu_ofl_gp_flags = READ_ONCE(rsp->gp_flags); 3777 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3778 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3779 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); 3780 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3781 } 3782 rnp->qsmaskinitnext &= ~mask; 3783 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3784 spin_unlock(&rsp->ofl_lock); 3785 } 3786 3787 /* 3788 * The outgoing function has no further need of RCU, so remove it from 3789 * the list of CPUs that RCU must track. 3790 * 3791 * Note that this function is special in that it is invoked directly 3792 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3793 * This is because this function must be invoked at a precise location. 3794 */ 3795 void rcu_report_dead(unsigned int cpu) 3796 { 3797 struct rcu_state *rsp; 3798 3799 /* QS for any half-done expedited RCU-sched GP. */ 3800 preempt_disable(); 3801 rcu_report_exp_rdp(&rcu_sched_state, 3802 this_cpu_ptr(rcu_sched_state.rda), true); 3803 preempt_enable(); 3804 for_each_rcu_flavor(rsp) 3805 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3806 3807 per_cpu(rcu_cpu_started, cpu) = 0; 3808 } 3809 3810 /* Migrate the dead CPU's callbacks to the current CPU. */ 3811 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp) 3812 { 3813 unsigned long flags; 3814 struct rcu_data *my_rdp; 3815 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3816 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 3817 bool needwake; 3818 3819 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3820 return; /* No callbacks to migrate. */ 3821 3822 local_irq_save(flags); 3823 my_rdp = this_cpu_ptr(rsp->rda); 3824 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3825 local_irq_restore(flags); 3826 return; 3827 } 3828 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3829 /* Leverage recent GPs and set GP for new callbacks. */ 3830 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) || 3831 rcu_advance_cbs(rsp, rnp_root, my_rdp); 3832 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3833 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3834 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3835 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3836 if (needwake) 3837 rcu_gp_kthread_wake(rsp); 3838 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3839 !rcu_segcblist_empty(&rdp->cblist), 3840 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3841 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3842 rcu_segcblist_first_cb(&rdp->cblist)); 3843 } 3844 3845 /* 3846 * The outgoing CPU has just passed through the dying-idle state, 3847 * and we are being invoked from the CPU that was IPIed to continue the 3848 * offline operation. We need to migrate the outgoing CPU's callbacks. 3849 */ 3850 void rcutree_migrate_callbacks(int cpu) 3851 { 3852 struct rcu_state *rsp; 3853 3854 for_each_rcu_flavor(rsp) 3855 rcu_migrate_callbacks(cpu, rsp); 3856 } 3857 #endif 3858 3859 /* 3860 * On non-huge systems, use expedited RCU grace periods to make suspend 3861 * and hibernation run faster. 3862 */ 3863 static int rcu_pm_notify(struct notifier_block *self, 3864 unsigned long action, void *hcpu) 3865 { 3866 switch (action) { 3867 case PM_HIBERNATION_PREPARE: 3868 case PM_SUSPEND_PREPARE: 3869 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3870 rcu_expedite_gp(); 3871 break; 3872 case PM_POST_HIBERNATION: 3873 case PM_POST_SUSPEND: 3874 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3875 rcu_unexpedite_gp(); 3876 break; 3877 default: 3878 break; 3879 } 3880 return NOTIFY_OK; 3881 } 3882 3883 /* 3884 * Spawn the kthreads that handle each RCU flavor's grace periods. 3885 */ 3886 static int __init rcu_spawn_gp_kthread(void) 3887 { 3888 unsigned long flags; 3889 int kthread_prio_in = kthread_prio; 3890 struct rcu_node *rnp; 3891 struct rcu_state *rsp; 3892 struct sched_param sp; 3893 struct task_struct *t; 3894 3895 /* Force priority into range. */ 3896 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3897 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3898 kthread_prio = 2; 3899 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3900 kthread_prio = 1; 3901 else if (kthread_prio < 0) 3902 kthread_prio = 0; 3903 else if (kthread_prio > 99) 3904 kthread_prio = 99; 3905 3906 if (kthread_prio != kthread_prio_in) 3907 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3908 kthread_prio, kthread_prio_in); 3909 3910 rcu_scheduler_fully_active = 1; 3911 for_each_rcu_flavor(rsp) { 3912 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3913 BUG_ON(IS_ERR(t)); 3914 rnp = rcu_get_root(rsp); 3915 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3916 rsp->gp_kthread = t; 3917 if (kthread_prio) { 3918 sp.sched_priority = kthread_prio; 3919 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3920 } 3921 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3922 wake_up_process(t); 3923 } 3924 rcu_spawn_nocb_kthreads(); 3925 rcu_spawn_boost_kthreads(); 3926 return 0; 3927 } 3928 early_initcall(rcu_spawn_gp_kthread); 3929 3930 /* 3931 * This function is invoked towards the end of the scheduler's 3932 * initialization process. Before this is called, the idle task might 3933 * contain synchronous grace-period primitives (during which time, this idle 3934 * task is booting the system, and such primitives are no-ops). After this 3935 * function is called, any synchronous grace-period primitives are run as 3936 * expedited, with the requesting task driving the grace period forward. 3937 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3938 * runtime RCU functionality. 3939 */ 3940 void rcu_scheduler_starting(void) 3941 { 3942 WARN_ON(num_online_cpus() != 1); 3943 WARN_ON(nr_context_switches() > 0); 3944 rcu_test_sync_prims(); 3945 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3946 rcu_test_sync_prims(); 3947 } 3948 3949 /* 3950 * Helper function for rcu_init() that initializes one rcu_state structure. 3951 */ 3952 static void __init rcu_init_one(struct rcu_state *rsp) 3953 { 3954 static const char * const buf[] = RCU_NODE_NAME_INIT; 3955 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3956 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3957 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3958 3959 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3960 int cpustride = 1; 3961 int i; 3962 int j; 3963 struct rcu_node *rnp; 3964 3965 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3966 3967 /* Silence gcc 4.8 false positive about array index out of range. */ 3968 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3969 panic("rcu_init_one: rcu_num_lvls out of range"); 3970 3971 /* Initialize the level-tracking arrays. */ 3972 3973 for (i = 1; i < rcu_num_lvls; i++) 3974 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; 3975 rcu_init_levelspread(levelspread, num_rcu_lvl); 3976 3977 /* Initialize the elements themselves, starting from the leaves. */ 3978 3979 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3980 cpustride *= levelspread[i]; 3981 rnp = rsp->level[i]; 3982 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3983 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3984 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3985 &rcu_node_class[i], buf[i]); 3986 raw_spin_lock_init(&rnp->fqslock); 3987 lockdep_set_class_and_name(&rnp->fqslock, 3988 &rcu_fqs_class[i], fqs[i]); 3989 rnp->gp_seq = rsp->gp_seq; 3990 rnp->gp_seq_needed = rsp->gp_seq; 3991 rnp->completedqs = rsp->gp_seq; 3992 rnp->qsmask = 0; 3993 rnp->qsmaskinit = 0; 3994 rnp->grplo = j * cpustride; 3995 rnp->grphi = (j + 1) * cpustride - 1; 3996 if (rnp->grphi >= nr_cpu_ids) 3997 rnp->grphi = nr_cpu_ids - 1; 3998 if (i == 0) { 3999 rnp->grpnum = 0; 4000 rnp->grpmask = 0; 4001 rnp->parent = NULL; 4002 } else { 4003 rnp->grpnum = j % levelspread[i - 1]; 4004 rnp->grpmask = 1UL << rnp->grpnum; 4005 rnp->parent = rsp->level[i - 1] + 4006 j / levelspread[i - 1]; 4007 } 4008 rnp->level = i; 4009 INIT_LIST_HEAD(&rnp->blkd_tasks); 4010 rcu_init_one_nocb(rnp); 4011 init_waitqueue_head(&rnp->exp_wq[0]); 4012 init_waitqueue_head(&rnp->exp_wq[1]); 4013 init_waitqueue_head(&rnp->exp_wq[2]); 4014 init_waitqueue_head(&rnp->exp_wq[3]); 4015 spin_lock_init(&rnp->exp_lock); 4016 } 4017 } 4018 4019 init_swait_queue_head(&rsp->gp_wq); 4020 init_swait_queue_head(&rsp->expedited_wq); 4021 rnp = rcu_first_leaf_node(rsp); 4022 for_each_possible_cpu(i) { 4023 while (i > rnp->grphi) 4024 rnp++; 4025 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4026 rcu_boot_init_percpu_data(i, rsp); 4027 } 4028 list_add(&rsp->flavors, &rcu_struct_flavors); 4029 } 4030 4031 /* 4032 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4033 * replace the definitions in tree.h because those are needed to size 4034 * the ->node array in the rcu_state structure. 4035 */ 4036 static void __init rcu_init_geometry(void) 4037 { 4038 ulong d; 4039 int i; 4040 int rcu_capacity[RCU_NUM_LVLS]; 4041 4042 /* 4043 * Initialize any unspecified boot parameters. 4044 * The default values of jiffies_till_first_fqs and 4045 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4046 * value, which is a function of HZ, then adding one for each 4047 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4048 */ 4049 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4050 if (jiffies_till_first_fqs == ULONG_MAX) 4051 jiffies_till_first_fqs = d; 4052 if (jiffies_till_next_fqs == ULONG_MAX) 4053 jiffies_till_next_fqs = d; 4054 4055 /* If the compile-time values are accurate, just leave. */ 4056 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4057 nr_cpu_ids == NR_CPUS) 4058 return; 4059 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4060 rcu_fanout_leaf, nr_cpu_ids); 4061 4062 /* 4063 * The boot-time rcu_fanout_leaf parameter must be at least two 4064 * and cannot exceed the number of bits in the rcu_node masks. 4065 * Complain and fall back to the compile-time values if this 4066 * limit is exceeded. 4067 */ 4068 if (rcu_fanout_leaf < 2 || 4069 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4070 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4071 WARN_ON(1); 4072 return; 4073 } 4074 4075 /* 4076 * Compute number of nodes that can be handled an rcu_node tree 4077 * with the given number of levels. 4078 */ 4079 rcu_capacity[0] = rcu_fanout_leaf; 4080 for (i = 1; i < RCU_NUM_LVLS; i++) 4081 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4082 4083 /* 4084 * The tree must be able to accommodate the configured number of CPUs. 4085 * If this limit is exceeded, fall back to the compile-time values. 4086 */ 4087 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4088 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4089 WARN_ON(1); 4090 return; 4091 } 4092 4093 /* Calculate the number of levels in the tree. */ 4094 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4095 } 4096 rcu_num_lvls = i + 1; 4097 4098 /* Calculate the number of rcu_nodes at each level of the tree. */ 4099 for (i = 0; i < rcu_num_lvls; i++) { 4100 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4101 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4102 } 4103 4104 /* Calculate the total number of rcu_node structures. */ 4105 rcu_num_nodes = 0; 4106 for (i = 0; i < rcu_num_lvls; i++) 4107 rcu_num_nodes += num_rcu_lvl[i]; 4108 } 4109 4110 /* 4111 * Dump out the structure of the rcu_node combining tree associated 4112 * with the rcu_state structure referenced by rsp. 4113 */ 4114 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4115 { 4116 int level = 0; 4117 struct rcu_node *rnp; 4118 4119 pr_info("rcu_node tree layout dump\n"); 4120 pr_info(" "); 4121 rcu_for_each_node_breadth_first(rsp, rnp) { 4122 if (rnp->level != level) { 4123 pr_cont("\n"); 4124 pr_info(" "); 4125 level = rnp->level; 4126 } 4127 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4128 } 4129 pr_cont("\n"); 4130 } 4131 4132 struct workqueue_struct *rcu_gp_wq; 4133 struct workqueue_struct *rcu_par_gp_wq; 4134 4135 void __init rcu_init(void) 4136 { 4137 int cpu; 4138 4139 rcu_early_boot_tests(); 4140 4141 rcu_bootup_announce(); 4142 rcu_init_geometry(); 4143 rcu_init_one(&rcu_bh_state); 4144 rcu_init_one(&rcu_sched_state); 4145 if (dump_tree) 4146 rcu_dump_rcu_node_tree(&rcu_sched_state); 4147 __rcu_init_preempt(); 4148 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4149 4150 /* 4151 * We don't need protection against CPU-hotplug here because 4152 * this is called early in boot, before either interrupts 4153 * or the scheduler are operational. 4154 */ 4155 pm_notifier(rcu_pm_notify, 0); 4156 for_each_online_cpu(cpu) { 4157 rcutree_prepare_cpu(cpu); 4158 rcu_cpu_starting(cpu); 4159 rcutree_online_cpu(cpu); 4160 } 4161 4162 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4163 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4164 WARN_ON(!rcu_gp_wq); 4165 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4166 WARN_ON(!rcu_par_gp_wq); 4167 } 4168 4169 #include "tree_exp.h" 4170 #include "tree_plugin.h" 4171