1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 80 .gpwrap = true, 81 #ifdef CONFIG_RCU_NOCB_CPU 82 .cblist.flags = SEGCBLIST_RCU_CORE, 83 #endif 84 }; 85 static struct rcu_state rcu_state = { 86 .level = { &rcu_state.node[0] }, 87 .gp_state = RCU_GP_IDLE, 88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 91 .name = RCU_NAME, 92 .abbr = RCU_ABBR, 93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 96 }; 97 98 /* Dump rcu_node combining tree at boot to verify correct setup. */ 99 static bool dump_tree; 100 module_param(dump_tree, bool, 0444); 101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 103 #ifndef CONFIG_PREEMPT_RT 104 module_param(use_softirq, bool, 0444); 105 #endif 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 117 /* 118 * The rcu_scheduler_active variable is initialized to the value 119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 121 * RCU can assume that there is but one task, allowing RCU to (for example) 122 * optimize synchronize_rcu() to a simple barrier(). When this variable 123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 124 * to detect real grace periods. This variable is also used to suppress 125 * boot-time false positives from lockdep-RCU error checking. Finally, it 126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 127 * is fully initialized, including all of its kthreads having been spawned. 128 */ 129 int rcu_scheduler_active __read_mostly; 130 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132 /* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144 static int rcu_scheduler_fully_active __read_mostly; 145 146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 147 unsigned long gps, unsigned long flags); 148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 149 static void invoke_rcu_core(void); 150 static void rcu_report_exp_rdp(struct rcu_data *rdp); 151 static void sync_sched_exp_online_cleanup(int cpu); 152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 155 static bool rcu_init_invoked(void); 156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 158 159 /* 160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 161 * real-time priority(enabling/disabling) is controlled by 162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 163 */ 164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 165 module_param(kthread_prio, int, 0444); 166 167 /* Delay in jiffies for grace-period initialization delays, debug only. */ 168 169 static int gp_preinit_delay; 170 module_param(gp_preinit_delay, int, 0444); 171 static int gp_init_delay; 172 module_param(gp_init_delay, int, 0444); 173 static int gp_cleanup_delay; 174 module_param(gp_cleanup_delay, int, 0444); 175 176 // Add delay to rcu_read_unlock() for strict grace periods. 177 static int rcu_unlock_delay; 178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 179 module_param(rcu_unlock_delay, int, 0444); 180 #endif 181 182 /* 183 * This rcu parameter is runtime-read-only. It reflects 184 * a minimum allowed number of objects which can be cached 185 * per-CPU. Object size is equal to one page. This value 186 * can be changed at boot time. 187 */ 188 static int rcu_min_cached_objs = 5; 189 module_param(rcu_min_cached_objs, int, 0444); 190 191 // A page shrinker can ask for pages to be freed to make them 192 // available for other parts of the system. This usually happens 193 // under low memory conditions, and in that case we should also 194 // defer page-cache filling for a short time period. 195 // 196 // The default value is 5 seconds, which is long enough to reduce 197 // interference with the shrinker while it asks other systems to 198 // drain their caches. 199 static int rcu_delay_page_cache_fill_msec = 5000; 200 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 201 202 /* Retrieve RCU kthreads priority for rcutorture */ 203 int rcu_get_gp_kthreads_prio(void) 204 { 205 return kthread_prio; 206 } 207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 208 209 /* 210 * Number of grace periods between delays, normalized by the duration of 211 * the delay. The longer the delay, the more the grace periods between 212 * each delay. The reason for this normalization is that it means that, 213 * for non-zero delays, the overall slowdown of grace periods is constant 214 * regardless of the duration of the delay. This arrangement balances 215 * the need for long delays to increase some race probabilities with the 216 * need for fast grace periods to increase other race probabilities. 217 */ 218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 219 220 /* 221 * Return true if an RCU grace period is in progress. The READ_ONCE()s 222 * permit this function to be invoked without holding the root rcu_node 223 * structure's ->lock, but of course results can be subject to change. 224 */ 225 static int rcu_gp_in_progress(void) 226 { 227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 228 } 229 230 /* 231 * Return the number of callbacks queued on the specified CPU. 232 * Handles both the nocbs and normal cases. 233 */ 234 static long rcu_get_n_cbs_cpu(int cpu) 235 { 236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 237 238 if (rcu_segcblist_is_enabled(&rdp->cblist)) 239 return rcu_segcblist_n_cbs(&rdp->cblist); 240 return 0; 241 } 242 243 void rcu_softirq_qs(void) 244 { 245 rcu_qs(); 246 rcu_preempt_deferred_qs(current); 247 rcu_tasks_qs(current, false); 248 } 249 250 /* 251 * Reset the current CPU's ->dynticks counter to indicate that the 252 * newly onlined CPU is no longer in an extended quiescent state. 253 * This will either leave the counter unchanged, or increment it 254 * to the next non-quiescent value. 255 * 256 * The non-atomic test/increment sequence works because the upper bits 257 * of the ->dynticks counter are manipulated only by the corresponding CPU, 258 * or when the corresponding CPU is offline. 259 */ 260 static void rcu_dynticks_eqs_online(void) 261 { 262 if (ct_dynticks() & RCU_DYNTICKS_IDX) 263 return; 264 ct_state_inc(RCU_DYNTICKS_IDX); 265 } 266 267 /* 268 * Snapshot the ->dynticks counter with full ordering so as to allow 269 * stable comparison of this counter with past and future snapshots. 270 */ 271 static int rcu_dynticks_snap(int cpu) 272 { 273 smp_mb(); // Fundamental RCU ordering guarantee. 274 return ct_dynticks_cpu_acquire(cpu); 275 } 276 277 /* 278 * Return true if the snapshot returned from rcu_dynticks_snap() 279 * indicates that RCU is in an extended quiescent state. 280 */ 281 static bool rcu_dynticks_in_eqs(int snap) 282 { 283 return !(snap & RCU_DYNTICKS_IDX); 284 } 285 286 /* 287 * Return true if the CPU corresponding to the specified rcu_data 288 * structure has spent some time in an extended quiescent state since 289 * rcu_dynticks_snap() returned the specified snapshot. 290 */ 291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 292 { 293 return snap != rcu_dynticks_snap(rdp->cpu); 294 } 295 296 /* 297 * Return true if the referenced integer is zero while the specified 298 * CPU remains within a single extended quiescent state. 299 */ 300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 301 { 302 int snap; 303 304 // If not quiescent, force back to earlier extended quiescent state. 305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 306 smp_rmb(); // Order ->dynticks and *vp reads. 307 if (READ_ONCE(*vp)) 308 return false; // Non-zero, so report failure; 309 smp_rmb(); // Order *vp read and ->dynticks re-read. 310 311 // If still in the same extended quiescent state, we are good! 312 return snap == ct_dynticks_cpu(cpu); 313 } 314 315 /* 316 * Let the RCU core know that this CPU has gone through the scheduler, 317 * which is a quiescent state. This is called when the need for a 318 * quiescent state is urgent, so we burn an atomic operation and full 319 * memory barriers to let the RCU core know about it, regardless of what 320 * this CPU might (or might not) do in the near future. 321 * 322 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 323 * 324 * The caller must have disabled interrupts and must not be idle. 325 */ 326 notrace void rcu_momentary_dyntick_idle(void) 327 { 328 int seq; 329 330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 332 /* It is illegal to call this from idle state. */ 333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 334 rcu_preempt_deferred_qs(current); 335 } 336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 337 338 /** 339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 340 * 341 * If the current CPU is idle and running at a first-level (not nested) 342 * interrupt, or directly, from idle, return true. 343 * 344 * The caller must have at least disabled IRQs. 345 */ 346 static int rcu_is_cpu_rrupt_from_idle(void) 347 { 348 long nesting; 349 350 /* 351 * Usually called from the tick; but also used from smp_function_call() 352 * for expedited grace periods. This latter can result in running from 353 * the idle task, instead of an actual IPI. 354 */ 355 lockdep_assert_irqs_disabled(); 356 357 /* Check for counter underflows */ 358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 359 "RCU dynticks_nesting counter underflow!"); 360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 361 "RCU dynticks_nmi_nesting counter underflow/zero!"); 362 363 /* Are we at first interrupt nesting level? */ 364 nesting = ct_dynticks_nmi_nesting(); 365 if (nesting > 1) 366 return false; 367 368 /* 369 * If we're not in an interrupt, we must be in the idle task! 370 */ 371 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 372 373 /* Does CPU appear to be idle from an RCU standpoint? */ 374 return ct_dynticks_nesting() == 0; 375 } 376 377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 378 // Maximum callbacks per rcu_do_batch ... 379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 380 static long blimit = DEFAULT_RCU_BLIMIT; 381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 382 static long qhimark = DEFAULT_RCU_QHIMARK; 383 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 384 static long qlowmark = DEFAULT_RCU_QLOMARK; 385 #define DEFAULT_RCU_QOVLD_MULT 2 386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 388 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 389 390 module_param(blimit, long, 0444); 391 module_param(qhimark, long, 0444); 392 module_param(qlowmark, long, 0444); 393 module_param(qovld, long, 0444); 394 395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 396 static ulong jiffies_till_next_fqs = ULONG_MAX; 397 static bool rcu_kick_kthreads; 398 static int rcu_divisor = 7; 399 module_param(rcu_divisor, int, 0644); 400 401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 403 module_param(rcu_resched_ns, long, 0644); 404 405 /* 406 * How long the grace period must be before we start recruiting 407 * quiescent-state help from rcu_note_context_switch(). 408 */ 409 static ulong jiffies_till_sched_qs = ULONG_MAX; 410 module_param(jiffies_till_sched_qs, ulong, 0444); 411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 413 414 /* 415 * Make sure that we give the grace-period kthread time to detect any 416 * idle CPUs before taking active measures to force quiescent states. 417 * However, don't go below 100 milliseconds, adjusted upwards for really 418 * large systems. 419 */ 420 static void adjust_jiffies_till_sched_qs(void) 421 { 422 unsigned long j; 423 424 /* If jiffies_till_sched_qs was specified, respect the request. */ 425 if (jiffies_till_sched_qs != ULONG_MAX) { 426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 427 return; 428 } 429 /* Otherwise, set to third fqs scan, but bound below on large system. */ 430 j = READ_ONCE(jiffies_till_first_fqs) + 431 2 * READ_ONCE(jiffies_till_next_fqs); 432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 435 WRITE_ONCE(jiffies_to_sched_qs, j); 436 } 437 438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 439 { 440 ulong j; 441 int ret = kstrtoul(val, 0, &j); 442 443 if (!ret) { 444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 445 adjust_jiffies_till_sched_qs(); 446 } 447 return ret; 448 } 449 450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 451 { 452 ulong j; 453 int ret = kstrtoul(val, 0, &j); 454 455 if (!ret) { 456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 457 adjust_jiffies_till_sched_qs(); 458 } 459 return ret; 460 } 461 462 static const struct kernel_param_ops first_fqs_jiffies_ops = { 463 .set = param_set_first_fqs_jiffies, 464 .get = param_get_ulong, 465 }; 466 467 static const struct kernel_param_ops next_fqs_jiffies_ops = { 468 .set = param_set_next_fqs_jiffies, 469 .get = param_get_ulong, 470 }; 471 472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 474 module_param(rcu_kick_kthreads, bool, 0644); 475 476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 477 static int rcu_pending(int user); 478 479 /* 480 * Return the number of RCU GPs completed thus far for debug & stats. 481 */ 482 unsigned long rcu_get_gp_seq(void) 483 { 484 return READ_ONCE(rcu_state.gp_seq); 485 } 486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 487 488 /* 489 * Return the number of RCU expedited batches completed thus far for 490 * debug & stats. Odd numbers mean that a batch is in progress, even 491 * numbers mean idle. The value returned will thus be roughly double 492 * the cumulative batches since boot. 493 */ 494 unsigned long rcu_exp_batches_completed(void) 495 { 496 return rcu_state.expedited_sequence; 497 } 498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 499 500 /* 501 * Return the root node of the rcu_state structure. 502 */ 503 static struct rcu_node *rcu_get_root(void) 504 { 505 return &rcu_state.node[0]; 506 } 507 508 /* 509 * Send along grace-period-related data for rcutorture diagnostics. 510 */ 511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 512 unsigned long *gp_seq) 513 { 514 switch (test_type) { 515 case RCU_FLAVOR: 516 *flags = READ_ONCE(rcu_state.gp_flags); 517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 518 break; 519 default: 520 break; 521 } 522 } 523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 524 525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 526 /* 527 * An empty function that will trigger a reschedule on 528 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 529 */ 530 static void late_wakeup_func(struct irq_work *work) 531 { 532 } 533 534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 535 IRQ_WORK_INIT(late_wakeup_func); 536 537 /* 538 * If either: 539 * 540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 542 * 543 * In these cases the late RCU wake ups aren't supported in the resched loops and our 544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 545 * get re-enabled again. 546 */ 547 noinstr void rcu_irq_work_resched(void) 548 { 549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 550 551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 552 return; 553 554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 555 return; 556 557 instrumentation_begin(); 558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 559 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 560 } 561 instrumentation_end(); 562 } 563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 564 565 #ifdef CONFIG_PROVE_RCU 566 /** 567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 568 */ 569 void rcu_irq_exit_check_preempt(void) 570 { 571 lockdep_assert_irqs_disabled(); 572 573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 574 "RCU dynticks_nesting counter underflow/zero!"); 575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 576 DYNTICK_IRQ_NONIDLE, 577 "Bad RCU dynticks_nmi_nesting counter\n"); 578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 579 "RCU in extended quiescent state!"); 580 } 581 #endif /* #ifdef CONFIG_PROVE_RCU */ 582 583 #ifdef CONFIG_NO_HZ_FULL 584 /** 585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 586 * 587 * The scheduler tick is not normally enabled when CPUs enter the kernel 588 * from nohz_full userspace execution. After all, nohz_full userspace 589 * execution is an RCU quiescent state and the time executing in the kernel 590 * is quite short. Except of course when it isn't. And it is not hard to 591 * cause a large system to spend tens of seconds or even minutes looping 592 * in the kernel, which can cause a number of problems, include RCU CPU 593 * stall warnings. 594 * 595 * Therefore, if a nohz_full CPU fails to report a quiescent state 596 * in a timely manner, the RCU grace-period kthread sets that CPU's 597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 598 * exception will invoke this function, which will turn on the scheduler 599 * tick, which will enable RCU to detect that CPU's quiescent states, 600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 601 * The tick will be disabled once a quiescent state is reported for 602 * this CPU. 603 * 604 * Of course, in carefully tuned systems, there might never be an 605 * interrupt or exception. In that case, the RCU grace-period kthread 606 * will eventually cause one to happen. However, in less carefully 607 * controlled environments, this function allows RCU to get what it 608 * needs without creating otherwise useless interruptions. 609 */ 610 void __rcu_irq_enter_check_tick(void) 611 { 612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 613 614 // If we're here from NMI there's nothing to do. 615 if (in_nmi()) 616 return; 617 618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 620 621 if (!tick_nohz_full_cpu(rdp->cpu) || 622 !READ_ONCE(rdp->rcu_urgent_qs) || 623 READ_ONCE(rdp->rcu_forced_tick)) { 624 // RCU doesn't need nohz_full help from this CPU, or it is 625 // already getting that help. 626 return; 627 } 628 629 // We get here only when not in an extended quiescent state and 630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 631 // already watching and (2) The fact that we are in an interrupt 632 // handler and that the rcu_node lock is an irq-disabled lock 633 // prevents self-deadlock. So we can safely recheck under the lock. 634 // Note that the nohz_full state currently cannot change. 635 raw_spin_lock_rcu_node(rdp->mynode); 636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 637 // A nohz_full CPU is in the kernel and RCU needs a 638 // quiescent state. Turn on the tick! 639 WRITE_ONCE(rdp->rcu_forced_tick, true); 640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 641 } 642 raw_spin_unlock_rcu_node(rdp->mynode); 643 } 644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 645 #endif /* CONFIG_NO_HZ_FULL */ 646 647 /* 648 * Check to see if any future non-offloaded RCU-related work will need 649 * to be done by the current CPU, even if none need be done immediately, 650 * returning 1 if so. This function is part of the RCU implementation; 651 * it is -not- an exported member of the RCU API. This is used by 652 * the idle-entry code to figure out whether it is safe to disable the 653 * scheduler-clock interrupt. 654 * 655 * Just check whether or not this CPU has non-offloaded RCU callbacks 656 * queued. 657 */ 658 int rcu_needs_cpu(void) 659 { 660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 662 } 663 664 /* 665 * If any sort of urgency was applied to the current CPU (for example, 666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 667 * to get to a quiescent state, disable it. 668 */ 669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 670 { 671 raw_lockdep_assert_held_rcu_node(rdp->mynode); 672 WRITE_ONCE(rdp->rcu_urgent_qs, false); 673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 676 WRITE_ONCE(rdp->rcu_forced_tick, false); 677 } 678 } 679 680 /** 681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 682 * 683 * Return @true if RCU is watching the running CPU and @false otherwise. 684 * An @true return means that this CPU can safely enter RCU read-side 685 * critical sections. 686 * 687 * Although calls to rcu_is_watching() from most parts of the kernel 688 * will return @true, there are important exceptions. For example, if the 689 * current CPU is deep within its idle loop, in kernel entry/exit code, 690 * or offline, rcu_is_watching() will return @false. 691 * 692 * Make notrace because it can be called by the internal functions of 693 * ftrace, and making this notrace removes unnecessary recursion calls. 694 */ 695 notrace bool rcu_is_watching(void) 696 { 697 bool ret; 698 699 preempt_disable_notrace(); 700 ret = !rcu_dynticks_curr_cpu_in_eqs(); 701 preempt_enable_notrace(); 702 return ret; 703 } 704 EXPORT_SYMBOL_GPL(rcu_is_watching); 705 706 /* 707 * If a holdout task is actually running, request an urgent quiescent 708 * state from its CPU. This is unsynchronized, so migrations can cause 709 * the request to go to the wrong CPU. Which is OK, all that will happen 710 * is that the CPU's next context switch will be a bit slower and next 711 * time around this task will generate another request. 712 */ 713 void rcu_request_urgent_qs_task(struct task_struct *t) 714 { 715 int cpu; 716 717 barrier(); 718 cpu = task_cpu(t); 719 if (!task_curr(t)) 720 return; /* This task is not running on that CPU. */ 721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 722 } 723 724 /* 725 * When trying to report a quiescent state on behalf of some other CPU, 726 * it is our responsibility to check for and handle potential overflow 727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 728 * After all, the CPU might be in deep idle state, and thus executing no 729 * code whatsoever. 730 */ 731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 732 { 733 raw_lockdep_assert_held_rcu_node(rnp); 734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 735 rnp->gp_seq)) 736 WRITE_ONCE(rdp->gpwrap, true); 737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 739 } 740 741 /* 742 * Snapshot the specified CPU's dynticks counter so that we can later 743 * credit them with an implicit quiescent state. Return 1 if this CPU 744 * is in dynticks idle mode, which is an extended quiescent state. 745 */ 746 static int dyntick_save_progress_counter(struct rcu_data *rdp) 747 { 748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 751 rcu_gpnum_ovf(rdp->mynode, rdp); 752 return 1; 753 } 754 return 0; 755 } 756 757 /* 758 * Returns positive if the specified CPU has passed through a quiescent state 759 * by virtue of being in or having passed through an dynticks idle state since 760 * the last call to dyntick_save_progress_counter() for this same CPU, or by 761 * virtue of having been offline. 762 * 763 * Returns negative if the specified CPU needs a force resched. 764 * 765 * Returns zero otherwise. 766 */ 767 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 768 { 769 unsigned long jtsq; 770 int ret = 0; 771 struct rcu_node *rnp = rdp->mynode; 772 773 /* 774 * If the CPU passed through or entered a dynticks idle phase with 775 * no active irq/NMI handlers, then we can safely pretend that the CPU 776 * already acknowledged the request to pass through a quiescent 777 * state. Either way, that CPU cannot possibly be in an RCU 778 * read-side critical section that started before the beginning 779 * of the current RCU grace period. 780 */ 781 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 782 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 783 rcu_gpnum_ovf(rnp, rdp); 784 return 1; 785 } 786 787 /* 788 * Complain if a CPU that is considered to be offline from RCU's 789 * perspective has not yet reported a quiescent state. After all, 790 * the offline CPU should have reported a quiescent state during 791 * the CPU-offline process, or, failing that, by rcu_gp_init() 792 * if it ran concurrently with either the CPU going offline or the 793 * last task on a leaf rcu_node structure exiting its RCU read-side 794 * critical section while all CPUs corresponding to that structure 795 * are offline. This added warning detects bugs in any of these 796 * code paths. 797 * 798 * The rcu_node structure's ->lock is held here, which excludes 799 * the relevant portions the CPU-hotplug code, the grace-period 800 * initialization code, and the rcu_read_unlock() code paths. 801 * 802 * For more detail, please refer to the "Hotplug CPU" section 803 * of RCU's Requirements documentation. 804 */ 805 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 806 struct rcu_node *rnp1; 807 808 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 809 __func__, rnp->grplo, rnp->grphi, rnp->level, 810 (long)rnp->gp_seq, (long)rnp->completedqs); 811 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 812 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 813 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 814 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 815 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 816 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 817 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 818 return 1; /* Break things loose after complaining. */ 819 } 820 821 /* 822 * A CPU running for an extended time within the kernel can 823 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 824 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 825 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 826 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 827 * variable are safe because the assignments are repeated if this 828 * CPU failed to pass through a quiescent state. This code 829 * also checks .jiffies_resched in case jiffies_to_sched_qs 830 * is set way high. 831 */ 832 jtsq = READ_ONCE(jiffies_to_sched_qs); 833 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 834 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 835 time_after(jiffies, rcu_state.jiffies_resched) || 836 rcu_state.cbovld)) { 837 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 838 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 839 smp_store_release(&rdp->rcu_urgent_qs, true); 840 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 841 WRITE_ONCE(rdp->rcu_urgent_qs, true); 842 } 843 844 /* 845 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 846 * The above code handles this, but only for straight cond_resched(). 847 * And some in-kernel loops check need_resched() before calling 848 * cond_resched(), which defeats the above code for CPUs that are 849 * running in-kernel with scheduling-clock interrupts disabled. 850 * So hit them over the head with the resched_cpu() hammer! 851 */ 852 if (tick_nohz_full_cpu(rdp->cpu) && 853 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 854 rcu_state.cbovld)) { 855 WRITE_ONCE(rdp->rcu_urgent_qs, true); 856 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 857 ret = -1; 858 } 859 860 /* 861 * If more than halfway to RCU CPU stall-warning time, invoke 862 * resched_cpu() more frequently to try to loosen things up a bit. 863 * Also check to see if the CPU is getting hammered with interrupts, 864 * but only once per grace period, just to keep the IPIs down to 865 * a dull roar. 866 */ 867 if (time_after(jiffies, rcu_state.jiffies_resched)) { 868 if (time_after(jiffies, 869 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 870 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 871 ret = -1; 872 } 873 if (IS_ENABLED(CONFIG_IRQ_WORK) && 874 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 875 (rnp->ffmask & rdp->grpmask)) { 876 rdp->rcu_iw_pending = true; 877 rdp->rcu_iw_gp_seq = rnp->gp_seq; 878 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 879 } 880 881 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 882 int cpu = rdp->cpu; 883 struct rcu_snap_record *rsrp; 884 struct kernel_cpustat *kcsp; 885 886 kcsp = &kcpustat_cpu(cpu); 887 888 rsrp = &rdp->snap_record; 889 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 890 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 891 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 892 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 893 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 894 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 895 rsrp->jiffies = jiffies; 896 rsrp->gp_seq = rdp->gp_seq; 897 } 898 } 899 900 return ret; 901 } 902 903 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 904 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 905 unsigned long gp_seq_req, const char *s) 906 { 907 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 908 gp_seq_req, rnp->level, 909 rnp->grplo, rnp->grphi, s); 910 } 911 912 /* 913 * rcu_start_this_gp - Request the start of a particular grace period 914 * @rnp_start: The leaf node of the CPU from which to start. 915 * @rdp: The rcu_data corresponding to the CPU from which to start. 916 * @gp_seq_req: The gp_seq of the grace period to start. 917 * 918 * Start the specified grace period, as needed to handle newly arrived 919 * callbacks. The required future grace periods are recorded in each 920 * rcu_node structure's ->gp_seq_needed field. Returns true if there 921 * is reason to awaken the grace-period kthread. 922 * 923 * The caller must hold the specified rcu_node structure's ->lock, which 924 * is why the caller is responsible for waking the grace-period kthread. 925 * 926 * Returns true if the GP thread needs to be awakened else false. 927 */ 928 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 929 unsigned long gp_seq_req) 930 { 931 bool ret = false; 932 struct rcu_node *rnp; 933 934 /* 935 * Use funnel locking to either acquire the root rcu_node 936 * structure's lock or bail out if the need for this grace period 937 * has already been recorded -- or if that grace period has in 938 * fact already started. If there is already a grace period in 939 * progress in a non-leaf node, no recording is needed because the 940 * end of the grace period will scan the leaf rcu_node structures. 941 * Note that rnp_start->lock must not be released. 942 */ 943 raw_lockdep_assert_held_rcu_node(rnp_start); 944 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 945 for (rnp = rnp_start; 1; rnp = rnp->parent) { 946 if (rnp != rnp_start) 947 raw_spin_lock_rcu_node(rnp); 948 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 949 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 950 (rnp != rnp_start && 951 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 952 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 953 TPS("Prestarted")); 954 goto unlock_out; 955 } 956 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 957 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 958 /* 959 * We just marked the leaf or internal node, and a 960 * grace period is in progress, which means that 961 * rcu_gp_cleanup() will see the marking. Bail to 962 * reduce contention. 963 */ 964 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 965 TPS("Startedleaf")); 966 goto unlock_out; 967 } 968 if (rnp != rnp_start && rnp->parent != NULL) 969 raw_spin_unlock_rcu_node(rnp); 970 if (!rnp->parent) 971 break; /* At root, and perhaps also leaf. */ 972 } 973 974 /* If GP already in progress, just leave, otherwise start one. */ 975 if (rcu_gp_in_progress()) { 976 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 977 goto unlock_out; 978 } 979 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 980 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 981 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 982 if (!READ_ONCE(rcu_state.gp_kthread)) { 983 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 984 goto unlock_out; 985 } 986 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 987 ret = true; /* Caller must wake GP kthread. */ 988 unlock_out: 989 /* Push furthest requested GP to leaf node and rcu_data structure. */ 990 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 991 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 992 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 993 } 994 if (rnp != rnp_start) 995 raw_spin_unlock_rcu_node(rnp); 996 return ret; 997 } 998 999 /* 1000 * Clean up any old requests for the just-ended grace period. Also return 1001 * whether any additional grace periods have been requested. 1002 */ 1003 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1004 { 1005 bool needmore; 1006 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1007 1008 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1009 if (!needmore) 1010 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1011 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1012 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1013 return needmore; 1014 } 1015 1016 /* 1017 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1018 * interrupt or softirq handler, in which case we just might immediately 1019 * sleep upon return, resulting in a grace-period hang), and don't bother 1020 * awakening when there is nothing for the grace-period kthread to do 1021 * (as in several CPUs raced to awaken, we lost), and finally don't try 1022 * to awaken a kthread that has not yet been created. If all those checks 1023 * are passed, track some debug information and awaken. 1024 * 1025 * So why do the self-wakeup when in an interrupt or softirq handler 1026 * in the grace-period kthread's context? Because the kthread might have 1027 * been interrupted just as it was going to sleep, and just after the final 1028 * pre-sleep check of the awaken condition. In this case, a wakeup really 1029 * is required, and is therefore supplied. 1030 */ 1031 static void rcu_gp_kthread_wake(void) 1032 { 1033 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1034 1035 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1036 !READ_ONCE(rcu_state.gp_flags) || !t) 1037 return; 1038 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1039 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1040 swake_up_one(&rcu_state.gp_wq); 1041 } 1042 1043 /* 1044 * If there is room, assign a ->gp_seq number to any callbacks on this 1045 * CPU that have not already been assigned. Also accelerate any callbacks 1046 * that were previously assigned a ->gp_seq number that has since proven 1047 * to be too conservative, which can happen if callbacks get assigned a 1048 * ->gp_seq number while RCU is idle, but with reference to a non-root 1049 * rcu_node structure. This function is idempotent, so it does not hurt 1050 * to call it repeatedly. Returns an flag saying that we should awaken 1051 * the RCU grace-period kthread. 1052 * 1053 * The caller must hold rnp->lock with interrupts disabled. 1054 */ 1055 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1056 { 1057 unsigned long gp_seq_req; 1058 bool ret = false; 1059 1060 rcu_lockdep_assert_cblist_protected(rdp); 1061 raw_lockdep_assert_held_rcu_node(rnp); 1062 1063 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1064 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1065 return false; 1066 1067 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1068 1069 /* 1070 * Callbacks are often registered with incomplete grace-period 1071 * information. Something about the fact that getting exact 1072 * information requires acquiring a global lock... RCU therefore 1073 * makes a conservative estimate of the grace period number at which 1074 * a given callback will become ready to invoke. The following 1075 * code checks this estimate and improves it when possible, thus 1076 * accelerating callback invocation to an earlier grace-period 1077 * number. 1078 */ 1079 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1080 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1081 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1082 1083 /* Trace depending on how much we were able to accelerate. */ 1084 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1085 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1086 else 1087 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1088 1089 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1090 1091 return ret; 1092 } 1093 1094 /* 1095 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1096 * rcu_node structure's ->lock be held. It consults the cached value 1097 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1098 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1099 * while holding the leaf rcu_node structure's ->lock. 1100 */ 1101 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1102 struct rcu_data *rdp) 1103 { 1104 unsigned long c; 1105 bool needwake; 1106 1107 rcu_lockdep_assert_cblist_protected(rdp); 1108 c = rcu_seq_snap(&rcu_state.gp_seq); 1109 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1110 /* Old request still live, so mark recent callbacks. */ 1111 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1112 return; 1113 } 1114 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1115 needwake = rcu_accelerate_cbs(rnp, rdp); 1116 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1117 if (needwake) 1118 rcu_gp_kthread_wake(); 1119 } 1120 1121 /* 1122 * Move any callbacks whose grace period has completed to the 1123 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1124 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1125 * sublist. This function is idempotent, so it does not hurt to 1126 * invoke it repeatedly. As long as it is not invoked -too- often... 1127 * Returns true if the RCU grace-period kthread needs to be awakened. 1128 * 1129 * The caller must hold rnp->lock with interrupts disabled. 1130 */ 1131 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1132 { 1133 rcu_lockdep_assert_cblist_protected(rdp); 1134 raw_lockdep_assert_held_rcu_node(rnp); 1135 1136 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1137 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1138 return false; 1139 1140 /* 1141 * Find all callbacks whose ->gp_seq numbers indicate that they 1142 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1143 */ 1144 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1145 1146 /* Classify any remaining callbacks. */ 1147 return rcu_accelerate_cbs(rnp, rdp); 1148 } 1149 1150 /* 1151 * Move and classify callbacks, but only if doing so won't require 1152 * that the RCU grace-period kthread be awakened. 1153 */ 1154 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1155 struct rcu_data *rdp) 1156 { 1157 rcu_lockdep_assert_cblist_protected(rdp); 1158 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1159 return; 1160 // The grace period cannot end while we hold the rcu_node lock. 1161 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1162 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1163 raw_spin_unlock_rcu_node(rnp); 1164 } 1165 1166 /* 1167 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1168 * quiescent state. This is intended to be invoked when the CPU notices 1169 * a new grace period. 1170 */ 1171 static void rcu_strict_gp_check_qs(void) 1172 { 1173 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1174 rcu_read_lock(); 1175 rcu_read_unlock(); 1176 } 1177 } 1178 1179 /* 1180 * Update CPU-local rcu_data state to record the beginnings and ends of 1181 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1182 * structure corresponding to the current CPU, and must have irqs disabled. 1183 * Returns true if the grace-period kthread needs to be awakened. 1184 */ 1185 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1186 { 1187 bool ret = false; 1188 bool need_qs; 1189 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1190 1191 raw_lockdep_assert_held_rcu_node(rnp); 1192 1193 if (rdp->gp_seq == rnp->gp_seq) 1194 return false; /* Nothing to do. */ 1195 1196 /* Handle the ends of any preceding grace periods first. */ 1197 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1198 unlikely(READ_ONCE(rdp->gpwrap))) { 1199 if (!offloaded) 1200 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1201 rdp->core_needs_qs = false; 1202 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1203 } else { 1204 if (!offloaded) 1205 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1206 if (rdp->core_needs_qs) 1207 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1208 } 1209 1210 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1211 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1212 unlikely(READ_ONCE(rdp->gpwrap))) { 1213 /* 1214 * If the current grace period is waiting for this CPU, 1215 * set up to detect a quiescent state, otherwise don't 1216 * go looking for one. 1217 */ 1218 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1219 need_qs = !!(rnp->qsmask & rdp->grpmask); 1220 rdp->cpu_no_qs.b.norm = need_qs; 1221 rdp->core_needs_qs = need_qs; 1222 zero_cpu_stall_ticks(rdp); 1223 } 1224 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1225 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1226 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1227 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1228 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1229 WRITE_ONCE(rdp->gpwrap, false); 1230 rcu_gpnum_ovf(rnp, rdp); 1231 return ret; 1232 } 1233 1234 static void note_gp_changes(struct rcu_data *rdp) 1235 { 1236 unsigned long flags; 1237 bool needwake; 1238 struct rcu_node *rnp; 1239 1240 local_irq_save(flags); 1241 rnp = rdp->mynode; 1242 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1243 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1244 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1245 local_irq_restore(flags); 1246 return; 1247 } 1248 needwake = __note_gp_changes(rnp, rdp); 1249 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1250 rcu_strict_gp_check_qs(); 1251 if (needwake) 1252 rcu_gp_kthread_wake(); 1253 } 1254 1255 static atomic_t *rcu_gp_slow_suppress; 1256 1257 /* Register a counter to suppress debugging grace-period delays. */ 1258 void rcu_gp_slow_register(atomic_t *rgssp) 1259 { 1260 WARN_ON_ONCE(rcu_gp_slow_suppress); 1261 1262 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1263 } 1264 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1265 1266 /* Unregister a counter, with NULL for not caring which. */ 1267 void rcu_gp_slow_unregister(atomic_t *rgssp) 1268 { 1269 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1270 1271 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1272 } 1273 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1274 1275 static bool rcu_gp_slow_is_suppressed(void) 1276 { 1277 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1278 1279 return rgssp && atomic_read(rgssp); 1280 } 1281 1282 static void rcu_gp_slow(int delay) 1283 { 1284 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1285 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1286 schedule_timeout_idle(delay); 1287 } 1288 1289 static unsigned long sleep_duration; 1290 1291 /* Allow rcutorture to stall the grace-period kthread. */ 1292 void rcu_gp_set_torture_wait(int duration) 1293 { 1294 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1295 WRITE_ONCE(sleep_duration, duration); 1296 } 1297 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1298 1299 /* Actually implement the aforementioned wait. */ 1300 static void rcu_gp_torture_wait(void) 1301 { 1302 unsigned long duration; 1303 1304 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1305 return; 1306 duration = xchg(&sleep_duration, 0UL); 1307 if (duration > 0) { 1308 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1309 schedule_timeout_idle(duration); 1310 pr_alert("%s: Wait complete\n", __func__); 1311 } 1312 } 1313 1314 /* 1315 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1316 * processing. 1317 */ 1318 static void rcu_strict_gp_boundary(void *unused) 1319 { 1320 invoke_rcu_core(); 1321 } 1322 1323 // Make the polled API aware of the beginning of a grace period. 1324 static void rcu_poll_gp_seq_start(unsigned long *snap) 1325 { 1326 struct rcu_node *rnp = rcu_get_root(); 1327 1328 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1329 raw_lockdep_assert_held_rcu_node(rnp); 1330 1331 // If RCU was idle, note beginning of GP. 1332 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1333 rcu_seq_start(&rcu_state.gp_seq_polled); 1334 1335 // Either way, record current state. 1336 *snap = rcu_state.gp_seq_polled; 1337 } 1338 1339 // Make the polled API aware of the end of a grace period. 1340 static void rcu_poll_gp_seq_end(unsigned long *snap) 1341 { 1342 struct rcu_node *rnp = rcu_get_root(); 1343 1344 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1345 raw_lockdep_assert_held_rcu_node(rnp); 1346 1347 // If the previously noted GP is still in effect, record the 1348 // end of that GP. Either way, zero counter to avoid counter-wrap 1349 // problems. 1350 if (*snap && *snap == rcu_state.gp_seq_polled) { 1351 rcu_seq_end(&rcu_state.gp_seq_polled); 1352 rcu_state.gp_seq_polled_snap = 0; 1353 rcu_state.gp_seq_polled_exp_snap = 0; 1354 } else { 1355 *snap = 0; 1356 } 1357 } 1358 1359 // Make the polled API aware of the beginning of a grace period, but 1360 // where caller does not hold the root rcu_node structure's lock. 1361 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1362 { 1363 unsigned long flags; 1364 struct rcu_node *rnp = rcu_get_root(); 1365 1366 if (rcu_init_invoked()) { 1367 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1368 lockdep_assert_irqs_enabled(); 1369 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1370 } 1371 rcu_poll_gp_seq_start(snap); 1372 if (rcu_init_invoked()) 1373 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1374 } 1375 1376 // Make the polled API aware of the end of a grace period, but where 1377 // caller does not hold the root rcu_node structure's lock. 1378 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1379 { 1380 unsigned long flags; 1381 struct rcu_node *rnp = rcu_get_root(); 1382 1383 if (rcu_init_invoked()) { 1384 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1385 lockdep_assert_irqs_enabled(); 1386 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1387 } 1388 rcu_poll_gp_seq_end(snap); 1389 if (rcu_init_invoked()) 1390 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1391 } 1392 1393 /* 1394 * Initialize a new grace period. Return false if no grace period required. 1395 */ 1396 static noinline_for_stack bool rcu_gp_init(void) 1397 { 1398 unsigned long flags; 1399 unsigned long oldmask; 1400 unsigned long mask; 1401 struct rcu_data *rdp; 1402 struct rcu_node *rnp = rcu_get_root(); 1403 1404 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1405 raw_spin_lock_irq_rcu_node(rnp); 1406 if (!READ_ONCE(rcu_state.gp_flags)) { 1407 /* Spurious wakeup, tell caller to go back to sleep. */ 1408 raw_spin_unlock_irq_rcu_node(rnp); 1409 return false; 1410 } 1411 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1412 1413 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1414 /* 1415 * Grace period already in progress, don't start another. 1416 * Not supposed to be able to happen. 1417 */ 1418 raw_spin_unlock_irq_rcu_node(rnp); 1419 return false; 1420 } 1421 1422 /* Advance to a new grace period and initialize state. */ 1423 record_gp_stall_check_time(); 1424 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1425 rcu_seq_start(&rcu_state.gp_seq); 1426 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1427 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1428 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1429 raw_spin_unlock_irq_rcu_node(rnp); 1430 1431 /* 1432 * Apply per-leaf buffered online and offline operations to 1433 * the rcu_node tree. Note that this new grace period need not 1434 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1435 * offlining path, when combined with checks in this function, 1436 * will handle CPUs that are currently going offline or that will 1437 * go offline later. Please also refer to "Hotplug CPU" section 1438 * of RCU's Requirements documentation. 1439 */ 1440 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1441 /* Exclude CPU hotplug operations. */ 1442 rcu_for_each_leaf_node(rnp) { 1443 local_irq_save(flags); 1444 arch_spin_lock(&rcu_state.ofl_lock); 1445 raw_spin_lock_rcu_node(rnp); 1446 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1447 !rnp->wait_blkd_tasks) { 1448 /* Nothing to do on this leaf rcu_node structure. */ 1449 raw_spin_unlock_rcu_node(rnp); 1450 arch_spin_unlock(&rcu_state.ofl_lock); 1451 local_irq_restore(flags); 1452 continue; 1453 } 1454 1455 /* Record old state, apply changes to ->qsmaskinit field. */ 1456 oldmask = rnp->qsmaskinit; 1457 rnp->qsmaskinit = rnp->qsmaskinitnext; 1458 1459 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1460 if (!oldmask != !rnp->qsmaskinit) { 1461 if (!oldmask) { /* First online CPU for rcu_node. */ 1462 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1463 rcu_init_new_rnp(rnp); 1464 } else if (rcu_preempt_has_tasks(rnp)) { 1465 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1466 } else { /* Last offline CPU and can propagate. */ 1467 rcu_cleanup_dead_rnp(rnp); 1468 } 1469 } 1470 1471 /* 1472 * If all waited-on tasks from prior grace period are 1473 * done, and if all this rcu_node structure's CPUs are 1474 * still offline, propagate up the rcu_node tree and 1475 * clear ->wait_blkd_tasks. Otherwise, if one of this 1476 * rcu_node structure's CPUs has since come back online, 1477 * simply clear ->wait_blkd_tasks. 1478 */ 1479 if (rnp->wait_blkd_tasks && 1480 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1481 rnp->wait_blkd_tasks = false; 1482 if (!rnp->qsmaskinit) 1483 rcu_cleanup_dead_rnp(rnp); 1484 } 1485 1486 raw_spin_unlock_rcu_node(rnp); 1487 arch_spin_unlock(&rcu_state.ofl_lock); 1488 local_irq_restore(flags); 1489 } 1490 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1491 1492 /* 1493 * Set the quiescent-state-needed bits in all the rcu_node 1494 * structures for all currently online CPUs in breadth-first 1495 * order, starting from the root rcu_node structure, relying on the 1496 * layout of the tree within the rcu_state.node[] array. Note that 1497 * other CPUs will access only the leaves of the hierarchy, thus 1498 * seeing that no grace period is in progress, at least until the 1499 * corresponding leaf node has been initialized. 1500 * 1501 * The grace period cannot complete until the initialization 1502 * process finishes, because this kthread handles both. 1503 */ 1504 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1505 rcu_for_each_node_breadth_first(rnp) { 1506 rcu_gp_slow(gp_init_delay); 1507 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1508 rdp = this_cpu_ptr(&rcu_data); 1509 rcu_preempt_check_blocked_tasks(rnp); 1510 rnp->qsmask = rnp->qsmaskinit; 1511 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1512 if (rnp == rdp->mynode) 1513 (void)__note_gp_changes(rnp, rdp); 1514 rcu_preempt_boost_start_gp(rnp); 1515 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1516 rnp->level, rnp->grplo, 1517 rnp->grphi, rnp->qsmask); 1518 /* Quiescent states for tasks on any now-offline CPUs. */ 1519 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1520 rnp->rcu_gp_init_mask = mask; 1521 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1522 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1523 else 1524 raw_spin_unlock_irq_rcu_node(rnp); 1525 cond_resched_tasks_rcu_qs(); 1526 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1527 } 1528 1529 // If strict, make all CPUs aware of new grace period. 1530 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1531 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1532 1533 return true; 1534 } 1535 1536 /* 1537 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1538 * time. 1539 */ 1540 static bool rcu_gp_fqs_check_wake(int *gfp) 1541 { 1542 struct rcu_node *rnp = rcu_get_root(); 1543 1544 // If under overload conditions, force an immediate FQS scan. 1545 if (*gfp & RCU_GP_FLAG_OVLD) 1546 return true; 1547 1548 // Someone like call_rcu() requested a force-quiescent-state scan. 1549 *gfp = READ_ONCE(rcu_state.gp_flags); 1550 if (*gfp & RCU_GP_FLAG_FQS) 1551 return true; 1552 1553 // The current grace period has completed. 1554 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1555 return true; 1556 1557 return false; 1558 } 1559 1560 /* 1561 * Do one round of quiescent-state forcing. 1562 */ 1563 static void rcu_gp_fqs(bool first_time) 1564 { 1565 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1566 struct rcu_node *rnp = rcu_get_root(); 1567 1568 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1569 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1570 1571 WARN_ON_ONCE(nr_fqs > 3); 1572 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1573 if (nr_fqs) { 1574 if (nr_fqs == 1) { 1575 WRITE_ONCE(rcu_state.jiffies_stall, 1576 jiffies + rcu_jiffies_till_stall_check()); 1577 } 1578 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1579 } 1580 1581 if (first_time) { 1582 /* Collect dyntick-idle snapshots. */ 1583 force_qs_rnp(dyntick_save_progress_counter); 1584 } else { 1585 /* Handle dyntick-idle and offline CPUs. */ 1586 force_qs_rnp(rcu_implicit_dynticks_qs); 1587 } 1588 /* Clear flag to prevent immediate re-entry. */ 1589 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1590 raw_spin_lock_irq_rcu_node(rnp); 1591 WRITE_ONCE(rcu_state.gp_flags, 1592 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1593 raw_spin_unlock_irq_rcu_node(rnp); 1594 } 1595 } 1596 1597 /* 1598 * Loop doing repeated quiescent-state forcing until the grace period ends. 1599 */ 1600 static noinline_for_stack void rcu_gp_fqs_loop(void) 1601 { 1602 bool first_gp_fqs = true; 1603 int gf = 0; 1604 unsigned long j; 1605 int ret; 1606 struct rcu_node *rnp = rcu_get_root(); 1607 1608 j = READ_ONCE(jiffies_till_first_fqs); 1609 if (rcu_state.cbovld) 1610 gf = RCU_GP_FLAG_OVLD; 1611 ret = 0; 1612 for (;;) { 1613 if (rcu_state.cbovld) { 1614 j = (j + 2) / 3; 1615 if (j <= 0) 1616 j = 1; 1617 } 1618 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1619 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1620 /* 1621 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1622 * update; required for stall checks. 1623 */ 1624 smp_wmb(); 1625 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1626 jiffies + (j ? 3 * j : 2)); 1627 } 1628 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1629 TPS("fqswait")); 1630 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1631 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1632 rcu_gp_fqs_check_wake(&gf), j); 1633 rcu_gp_torture_wait(); 1634 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1635 /* Locking provides needed memory barriers. */ 1636 /* 1637 * Exit the loop if the root rcu_node structure indicates that the grace period 1638 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1639 * is required only for single-node rcu_node trees because readers blocking 1640 * the current grace period are queued only on leaf rcu_node structures. 1641 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1642 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1643 * the corresponding leaf nodes have passed through their quiescent state. 1644 */ 1645 if (!READ_ONCE(rnp->qsmask) && 1646 !rcu_preempt_blocked_readers_cgp(rnp)) 1647 break; 1648 /* If time for quiescent-state forcing, do it. */ 1649 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1650 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1651 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1652 TPS("fqsstart")); 1653 rcu_gp_fqs(first_gp_fqs); 1654 gf = 0; 1655 if (first_gp_fqs) { 1656 first_gp_fqs = false; 1657 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1658 } 1659 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1660 TPS("fqsend")); 1661 cond_resched_tasks_rcu_qs(); 1662 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1663 ret = 0; /* Force full wait till next FQS. */ 1664 j = READ_ONCE(jiffies_till_next_fqs); 1665 } else { 1666 /* Deal with stray signal. */ 1667 cond_resched_tasks_rcu_qs(); 1668 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1669 WARN_ON(signal_pending(current)); 1670 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1671 TPS("fqswaitsig")); 1672 ret = 1; /* Keep old FQS timing. */ 1673 j = jiffies; 1674 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1675 j = 1; 1676 else 1677 j = rcu_state.jiffies_force_qs - j; 1678 gf = 0; 1679 } 1680 } 1681 } 1682 1683 /* 1684 * Clean up after the old grace period. 1685 */ 1686 static noinline void rcu_gp_cleanup(void) 1687 { 1688 int cpu; 1689 bool needgp = false; 1690 unsigned long gp_duration; 1691 unsigned long new_gp_seq; 1692 bool offloaded; 1693 struct rcu_data *rdp; 1694 struct rcu_node *rnp = rcu_get_root(); 1695 struct swait_queue_head *sq; 1696 1697 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1698 raw_spin_lock_irq_rcu_node(rnp); 1699 rcu_state.gp_end = jiffies; 1700 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1701 if (gp_duration > rcu_state.gp_max) 1702 rcu_state.gp_max = gp_duration; 1703 1704 /* 1705 * We know the grace period is complete, but to everyone else 1706 * it appears to still be ongoing. But it is also the case 1707 * that to everyone else it looks like there is nothing that 1708 * they can do to advance the grace period. It is therefore 1709 * safe for us to drop the lock in order to mark the grace 1710 * period as completed in all of the rcu_node structures. 1711 */ 1712 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1713 raw_spin_unlock_irq_rcu_node(rnp); 1714 1715 /* 1716 * Propagate new ->gp_seq value to rcu_node structures so that 1717 * other CPUs don't have to wait until the start of the next grace 1718 * period to process their callbacks. This also avoids some nasty 1719 * RCU grace-period initialization races by forcing the end of 1720 * the current grace period to be completely recorded in all of 1721 * the rcu_node structures before the beginning of the next grace 1722 * period is recorded in any of the rcu_node structures. 1723 */ 1724 new_gp_seq = rcu_state.gp_seq; 1725 rcu_seq_end(&new_gp_seq); 1726 rcu_for_each_node_breadth_first(rnp) { 1727 raw_spin_lock_irq_rcu_node(rnp); 1728 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1729 dump_blkd_tasks(rnp, 10); 1730 WARN_ON_ONCE(rnp->qsmask); 1731 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1732 if (!rnp->parent) 1733 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1734 rdp = this_cpu_ptr(&rcu_data); 1735 if (rnp == rdp->mynode) 1736 needgp = __note_gp_changes(rnp, rdp) || needgp; 1737 /* smp_mb() provided by prior unlock-lock pair. */ 1738 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1739 // Reset overload indication for CPUs no longer overloaded 1740 if (rcu_is_leaf_node(rnp)) 1741 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1742 rdp = per_cpu_ptr(&rcu_data, cpu); 1743 check_cb_ovld_locked(rdp, rnp); 1744 } 1745 sq = rcu_nocb_gp_get(rnp); 1746 raw_spin_unlock_irq_rcu_node(rnp); 1747 rcu_nocb_gp_cleanup(sq); 1748 cond_resched_tasks_rcu_qs(); 1749 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1750 rcu_gp_slow(gp_cleanup_delay); 1751 } 1752 rnp = rcu_get_root(); 1753 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1754 1755 /* Declare grace period done, trace first to use old GP number. */ 1756 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1757 rcu_seq_end(&rcu_state.gp_seq); 1758 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1759 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1760 /* Check for GP requests since above loop. */ 1761 rdp = this_cpu_ptr(&rcu_data); 1762 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1763 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1764 TPS("CleanupMore")); 1765 needgp = true; 1766 } 1767 /* Advance CBs to reduce false positives below. */ 1768 offloaded = rcu_rdp_is_offloaded(rdp); 1769 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1770 1771 // We get here if a grace period was needed (“needgp”) 1772 // and the above call to rcu_accelerate_cbs() did not set 1773 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1774 // the need for another grace period). The purpose 1775 // of the “offloaded” check is to avoid invoking 1776 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1777 // hold the ->nocb_lock needed to safely access an offloaded 1778 // ->cblist. We do not want to acquire that lock because 1779 // it can be heavily contended during callback floods. 1780 1781 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1782 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1783 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1784 } else { 1785 1786 // We get here either if there is no need for an 1787 // additional grace period or if rcu_accelerate_cbs() has 1788 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1789 // So all we need to do is to clear all of the other 1790 // ->gp_flags bits. 1791 1792 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1793 } 1794 raw_spin_unlock_irq_rcu_node(rnp); 1795 1796 // If strict, make all CPUs aware of the end of the old grace period. 1797 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1798 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1799 } 1800 1801 /* 1802 * Body of kthread that handles grace periods. 1803 */ 1804 static int __noreturn rcu_gp_kthread(void *unused) 1805 { 1806 rcu_bind_gp_kthread(); 1807 for (;;) { 1808 1809 /* Handle grace-period start. */ 1810 for (;;) { 1811 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1812 TPS("reqwait")); 1813 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1814 swait_event_idle_exclusive(rcu_state.gp_wq, 1815 READ_ONCE(rcu_state.gp_flags) & 1816 RCU_GP_FLAG_INIT); 1817 rcu_gp_torture_wait(); 1818 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1819 /* Locking provides needed memory barrier. */ 1820 if (rcu_gp_init()) 1821 break; 1822 cond_resched_tasks_rcu_qs(); 1823 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1824 WARN_ON(signal_pending(current)); 1825 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1826 TPS("reqwaitsig")); 1827 } 1828 1829 /* Handle quiescent-state forcing. */ 1830 rcu_gp_fqs_loop(); 1831 1832 /* Handle grace-period end. */ 1833 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1834 rcu_gp_cleanup(); 1835 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1836 } 1837 } 1838 1839 /* 1840 * Report a full set of quiescent states to the rcu_state data structure. 1841 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1842 * another grace period is required. Whether we wake the grace-period 1843 * kthread or it awakens itself for the next round of quiescent-state 1844 * forcing, that kthread will clean up after the just-completed grace 1845 * period. Note that the caller must hold rnp->lock, which is released 1846 * before return. 1847 */ 1848 static void rcu_report_qs_rsp(unsigned long flags) 1849 __releases(rcu_get_root()->lock) 1850 { 1851 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1852 WARN_ON_ONCE(!rcu_gp_in_progress()); 1853 WRITE_ONCE(rcu_state.gp_flags, 1854 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1855 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1856 rcu_gp_kthread_wake(); 1857 } 1858 1859 /* 1860 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1861 * Allows quiescent states for a group of CPUs to be reported at one go 1862 * to the specified rcu_node structure, though all the CPUs in the group 1863 * must be represented by the same rcu_node structure (which need not be a 1864 * leaf rcu_node structure, though it often will be). The gps parameter 1865 * is the grace-period snapshot, which means that the quiescent states 1866 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1867 * must be held upon entry, and it is released before return. 1868 * 1869 * As a special case, if mask is zero, the bit-already-cleared check is 1870 * disabled. This allows propagating quiescent state due to resumed tasks 1871 * during grace-period initialization. 1872 */ 1873 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1874 unsigned long gps, unsigned long flags) 1875 __releases(rnp->lock) 1876 { 1877 unsigned long oldmask = 0; 1878 struct rcu_node *rnp_c; 1879 1880 raw_lockdep_assert_held_rcu_node(rnp); 1881 1882 /* Walk up the rcu_node hierarchy. */ 1883 for (;;) { 1884 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1885 1886 /* 1887 * Our bit has already been cleared, or the 1888 * relevant grace period is already over, so done. 1889 */ 1890 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1891 return; 1892 } 1893 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1894 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1895 rcu_preempt_blocked_readers_cgp(rnp)); 1896 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1897 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1898 mask, rnp->qsmask, rnp->level, 1899 rnp->grplo, rnp->grphi, 1900 !!rnp->gp_tasks); 1901 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1902 1903 /* Other bits still set at this level, so done. */ 1904 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1905 return; 1906 } 1907 rnp->completedqs = rnp->gp_seq; 1908 mask = rnp->grpmask; 1909 if (rnp->parent == NULL) { 1910 1911 /* No more levels. Exit loop holding root lock. */ 1912 1913 break; 1914 } 1915 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1916 rnp_c = rnp; 1917 rnp = rnp->parent; 1918 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1919 oldmask = READ_ONCE(rnp_c->qsmask); 1920 } 1921 1922 /* 1923 * Get here if we are the last CPU to pass through a quiescent 1924 * state for this grace period. Invoke rcu_report_qs_rsp() 1925 * to clean up and start the next grace period if one is needed. 1926 */ 1927 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1928 } 1929 1930 /* 1931 * Record a quiescent state for all tasks that were previously queued 1932 * on the specified rcu_node structure and that were blocking the current 1933 * RCU grace period. The caller must hold the corresponding rnp->lock with 1934 * irqs disabled, and this lock is released upon return, but irqs remain 1935 * disabled. 1936 */ 1937 static void __maybe_unused 1938 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1939 __releases(rnp->lock) 1940 { 1941 unsigned long gps; 1942 unsigned long mask; 1943 struct rcu_node *rnp_p; 1944 1945 raw_lockdep_assert_held_rcu_node(rnp); 1946 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1947 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1948 rnp->qsmask != 0) { 1949 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1950 return; /* Still need more quiescent states! */ 1951 } 1952 1953 rnp->completedqs = rnp->gp_seq; 1954 rnp_p = rnp->parent; 1955 if (rnp_p == NULL) { 1956 /* 1957 * Only one rcu_node structure in the tree, so don't 1958 * try to report up to its nonexistent parent! 1959 */ 1960 rcu_report_qs_rsp(flags); 1961 return; 1962 } 1963 1964 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1965 gps = rnp->gp_seq; 1966 mask = rnp->grpmask; 1967 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1968 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1969 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1970 } 1971 1972 /* 1973 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1974 * structure. This must be called from the specified CPU. 1975 */ 1976 static void 1977 rcu_report_qs_rdp(struct rcu_data *rdp) 1978 { 1979 unsigned long flags; 1980 unsigned long mask; 1981 bool needacc = false; 1982 struct rcu_node *rnp; 1983 1984 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 1985 rnp = rdp->mynode; 1986 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1987 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1988 rdp->gpwrap) { 1989 1990 /* 1991 * The grace period in which this quiescent state was 1992 * recorded has ended, so don't report it upwards. 1993 * We will instead need a new quiescent state that lies 1994 * within the current grace period. 1995 */ 1996 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1998 return; 1999 } 2000 mask = rdp->grpmask; 2001 rdp->core_needs_qs = false; 2002 if ((rnp->qsmask & mask) == 0) { 2003 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2004 } else { 2005 /* 2006 * This GP can't end until cpu checks in, so all of our 2007 * callbacks can be processed during the next GP. 2008 * 2009 * NOCB kthreads have their own way to deal with that... 2010 */ 2011 if (!rcu_rdp_is_offloaded(rdp)) { 2012 /* 2013 * The current GP has not yet ended, so it 2014 * should not be possible for rcu_accelerate_cbs() 2015 * to return true. So complain, but don't awaken. 2016 */ 2017 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2018 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2019 /* 2020 * ...but NOCB kthreads may miss or delay callbacks acceleration 2021 * if in the middle of a (de-)offloading process. 2022 */ 2023 needacc = true; 2024 } 2025 2026 rcu_disable_urgency_upon_qs(rdp); 2027 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2028 /* ^^^ Released rnp->lock */ 2029 2030 if (needacc) { 2031 rcu_nocb_lock_irqsave(rdp, flags); 2032 rcu_accelerate_cbs_unlocked(rnp, rdp); 2033 rcu_nocb_unlock_irqrestore(rdp, flags); 2034 } 2035 } 2036 } 2037 2038 /* 2039 * Check to see if there is a new grace period of which this CPU 2040 * is not yet aware, and if so, set up local rcu_data state for it. 2041 * Otherwise, see if this CPU has just passed through its first 2042 * quiescent state for this grace period, and record that fact if so. 2043 */ 2044 static void 2045 rcu_check_quiescent_state(struct rcu_data *rdp) 2046 { 2047 /* Check for grace-period ends and beginnings. */ 2048 note_gp_changes(rdp); 2049 2050 /* 2051 * Does this CPU still need to do its part for current grace period? 2052 * If no, return and let the other CPUs do their part as well. 2053 */ 2054 if (!rdp->core_needs_qs) 2055 return; 2056 2057 /* 2058 * Was there a quiescent state since the beginning of the grace 2059 * period? If no, then exit and wait for the next call. 2060 */ 2061 if (rdp->cpu_no_qs.b.norm) 2062 return; 2063 2064 /* 2065 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2066 * judge of that). 2067 */ 2068 rcu_report_qs_rdp(rdp); 2069 } 2070 2071 /* Return true if callback-invocation time limit exceeded. */ 2072 static bool rcu_do_batch_check_time(long count, long tlimit, 2073 bool jlimit_check, unsigned long jlimit) 2074 { 2075 // Invoke local_clock() only once per 32 consecutive callbacks. 2076 return unlikely(tlimit) && 2077 (!likely(count & 31) || 2078 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2079 jlimit_check && time_after(jiffies, jlimit))) && 2080 local_clock() >= tlimit; 2081 } 2082 2083 /* 2084 * Invoke any RCU callbacks that have made it to the end of their grace 2085 * period. Throttle as specified by rdp->blimit. 2086 */ 2087 static void rcu_do_batch(struct rcu_data *rdp) 2088 { 2089 long bl; 2090 long count = 0; 2091 int div; 2092 bool __maybe_unused empty; 2093 unsigned long flags; 2094 unsigned long jlimit; 2095 bool jlimit_check = false; 2096 long pending; 2097 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2098 struct rcu_head *rhp; 2099 long tlimit = 0; 2100 2101 /* If no callbacks are ready, just return. */ 2102 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2103 trace_rcu_batch_start(rcu_state.name, 2104 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2105 trace_rcu_batch_end(rcu_state.name, 0, 2106 !rcu_segcblist_empty(&rdp->cblist), 2107 need_resched(), is_idle_task(current), 2108 rcu_is_callbacks_kthread(rdp)); 2109 return; 2110 } 2111 2112 /* 2113 * Extract the list of ready callbacks, disabling IRQs to prevent 2114 * races with call_rcu() from interrupt handlers. Leave the 2115 * callback counts, as rcu_barrier() needs to be conservative. 2116 */ 2117 rcu_nocb_lock_irqsave(rdp, flags); 2118 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2119 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2120 div = READ_ONCE(rcu_divisor); 2121 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2122 bl = max(rdp->blimit, pending >> div); 2123 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2124 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2125 const long npj = NSEC_PER_SEC / HZ; 2126 long rrn = READ_ONCE(rcu_resched_ns); 2127 2128 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2129 tlimit = local_clock() + rrn; 2130 jlimit = jiffies + (rrn + npj + 1) / npj; 2131 jlimit_check = true; 2132 } 2133 trace_rcu_batch_start(rcu_state.name, 2134 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2135 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2136 if (rcu_rdp_is_offloaded(rdp)) 2137 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2138 2139 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2140 rcu_nocb_unlock_irqrestore(rdp, flags); 2141 2142 /* Invoke callbacks. */ 2143 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2144 rhp = rcu_cblist_dequeue(&rcl); 2145 2146 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2147 rcu_callback_t f; 2148 2149 count++; 2150 debug_rcu_head_unqueue(rhp); 2151 2152 rcu_lock_acquire(&rcu_callback_map); 2153 trace_rcu_invoke_callback(rcu_state.name, rhp); 2154 2155 f = rhp->func; 2156 debug_rcu_head_callback(rhp); 2157 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2158 f(rhp); 2159 2160 rcu_lock_release(&rcu_callback_map); 2161 2162 /* 2163 * Stop only if limit reached and CPU has something to do. 2164 */ 2165 if (in_serving_softirq()) { 2166 if (count >= bl && (need_resched() || !is_idle_task(current))) 2167 break; 2168 /* 2169 * Make sure we don't spend too much time here and deprive other 2170 * softirq vectors of CPU cycles. 2171 */ 2172 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2173 break; 2174 } else { 2175 // In rcuc/rcuoc context, so no worries about 2176 // depriving other softirq vectors of CPU cycles. 2177 local_bh_enable(); 2178 lockdep_assert_irqs_enabled(); 2179 cond_resched_tasks_rcu_qs(); 2180 lockdep_assert_irqs_enabled(); 2181 local_bh_disable(); 2182 // But rcuc kthreads can delay quiescent-state 2183 // reporting, so check time limits for them. 2184 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2185 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2186 rdp->rcu_cpu_has_work = 1; 2187 break; 2188 } 2189 } 2190 } 2191 2192 rcu_nocb_lock_irqsave(rdp, flags); 2193 rdp->n_cbs_invoked += count; 2194 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2195 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2196 2197 /* Update counts and requeue any remaining callbacks. */ 2198 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2199 rcu_segcblist_add_len(&rdp->cblist, -count); 2200 2201 /* Reinstate batch limit if we have worked down the excess. */ 2202 count = rcu_segcblist_n_cbs(&rdp->cblist); 2203 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2204 rdp->blimit = blimit; 2205 2206 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2207 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2208 rdp->qlen_last_fqs_check = 0; 2209 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2210 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2211 rdp->qlen_last_fqs_check = count; 2212 2213 /* 2214 * The following usually indicates a double call_rcu(). To track 2215 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2216 */ 2217 empty = rcu_segcblist_empty(&rdp->cblist); 2218 WARN_ON_ONCE(count == 0 && !empty); 2219 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2220 count != 0 && empty); 2221 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2222 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2223 2224 rcu_nocb_unlock_irqrestore(rdp, flags); 2225 2226 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2227 } 2228 2229 /* 2230 * This function is invoked from each scheduling-clock interrupt, 2231 * and checks to see if this CPU is in a non-context-switch quiescent 2232 * state, for example, user mode or idle loop. It also schedules RCU 2233 * core processing. If the current grace period has gone on too long, 2234 * it will ask the scheduler to manufacture a context switch for the sole 2235 * purpose of providing the needed quiescent state. 2236 */ 2237 void rcu_sched_clock_irq(int user) 2238 { 2239 unsigned long j; 2240 2241 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2242 j = jiffies; 2243 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2244 __this_cpu_write(rcu_data.last_sched_clock, j); 2245 } 2246 trace_rcu_utilization(TPS("Start scheduler-tick")); 2247 lockdep_assert_irqs_disabled(); 2248 raw_cpu_inc(rcu_data.ticks_this_gp); 2249 /* The load-acquire pairs with the store-release setting to true. */ 2250 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2251 /* Idle and userspace execution already are quiescent states. */ 2252 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2253 set_tsk_need_resched(current); 2254 set_preempt_need_resched(); 2255 } 2256 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2257 } 2258 rcu_flavor_sched_clock_irq(user); 2259 if (rcu_pending(user)) 2260 invoke_rcu_core(); 2261 if (user || rcu_is_cpu_rrupt_from_idle()) 2262 rcu_note_voluntary_context_switch(current); 2263 lockdep_assert_irqs_disabled(); 2264 2265 trace_rcu_utilization(TPS("End scheduler-tick")); 2266 } 2267 2268 /* 2269 * Scan the leaf rcu_node structures. For each structure on which all 2270 * CPUs have reported a quiescent state and on which there are tasks 2271 * blocking the current grace period, initiate RCU priority boosting. 2272 * Otherwise, invoke the specified function to check dyntick state for 2273 * each CPU that has not yet reported a quiescent state. 2274 */ 2275 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2276 { 2277 int cpu; 2278 unsigned long flags; 2279 struct rcu_node *rnp; 2280 2281 rcu_state.cbovld = rcu_state.cbovldnext; 2282 rcu_state.cbovldnext = false; 2283 rcu_for_each_leaf_node(rnp) { 2284 unsigned long mask = 0; 2285 unsigned long rsmask = 0; 2286 2287 cond_resched_tasks_rcu_qs(); 2288 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2289 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2290 if (rnp->qsmask == 0) { 2291 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2292 /* 2293 * No point in scanning bits because they 2294 * are all zero. But we might need to 2295 * priority-boost blocked readers. 2296 */ 2297 rcu_initiate_boost(rnp, flags); 2298 /* rcu_initiate_boost() releases rnp->lock */ 2299 continue; 2300 } 2301 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2302 continue; 2303 } 2304 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2305 struct rcu_data *rdp; 2306 int ret; 2307 2308 rdp = per_cpu_ptr(&rcu_data, cpu); 2309 ret = f(rdp); 2310 if (ret > 0) { 2311 mask |= rdp->grpmask; 2312 rcu_disable_urgency_upon_qs(rdp); 2313 } 2314 if (ret < 0) 2315 rsmask |= rdp->grpmask; 2316 } 2317 if (mask != 0) { 2318 /* Idle/offline CPUs, report (releases rnp->lock). */ 2319 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2320 } else { 2321 /* Nothing to do here, so just drop the lock. */ 2322 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2323 } 2324 2325 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) 2326 resched_cpu(cpu); 2327 } 2328 } 2329 2330 /* 2331 * Force quiescent states on reluctant CPUs, and also detect which 2332 * CPUs are in dyntick-idle mode. 2333 */ 2334 void rcu_force_quiescent_state(void) 2335 { 2336 unsigned long flags; 2337 bool ret; 2338 struct rcu_node *rnp; 2339 struct rcu_node *rnp_old = NULL; 2340 2341 if (!rcu_gp_in_progress()) 2342 return; 2343 /* Funnel through hierarchy to reduce memory contention. */ 2344 rnp = raw_cpu_read(rcu_data.mynode); 2345 for (; rnp != NULL; rnp = rnp->parent) { 2346 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2347 !raw_spin_trylock(&rnp->fqslock); 2348 if (rnp_old != NULL) 2349 raw_spin_unlock(&rnp_old->fqslock); 2350 if (ret) 2351 return; 2352 rnp_old = rnp; 2353 } 2354 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2355 2356 /* Reached the root of the rcu_node tree, acquire lock. */ 2357 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2358 raw_spin_unlock(&rnp_old->fqslock); 2359 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2360 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2361 return; /* Someone beat us to it. */ 2362 } 2363 WRITE_ONCE(rcu_state.gp_flags, 2364 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2365 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2366 rcu_gp_kthread_wake(); 2367 } 2368 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2369 2370 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2371 // grace periods. 2372 static void strict_work_handler(struct work_struct *work) 2373 { 2374 rcu_read_lock(); 2375 rcu_read_unlock(); 2376 } 2377 2378 /* Perform RCU core processing work for the current CPU. */ 2379 static __latent_entropy void rcu_core(void) 2380 { 2381 unsigned long flags; 2382 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2383 struct rcu_node *rnp = rdp->mynode; 2384 /* 2385 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2386 * Therefore this function can race with concurrent NOCB (de-)offloading 2387 * on this CPU and the below condition must be considered volatile. 2388 * However if we race with: 2389 * 2390 * _ Offloading: In the worst case we accelerate or process callbacks 2391 * concurrently with NOCB kthreads. We are guaranteed to 2392 * call rcu_nocb_lock() if that happens. 2393 * 2394 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2395 * processing. This is fine because the early stage 2396 * of deoffloading invokes rcu_core() after setting 2397 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2398 * what could have been dismissed without the need to wait 2399 * for the next rcu_pending() check in the next jiffy. 2400 */ 2401 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2402 2403 if (cpu_is_offline(smp_processor_id())) 2404 return; 2405 trace_rcu_utilization(TPS("Start RCU core")); 2406 WARN_ON_ONCE(!rdp->beenonline); 2407 2408 /* Report any deferred quiescent states if preemption enabled. */ 2409 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2410 rcu_preempt_deferred_qs(current); 2411 } else if (rcu_preempt_need_deferred_qs(current)) { 2412 set_tsk_need_resched(current); 2413 set_preempt_need_resched(); 2414 } 2415 2416 /* Update RCU state based on any recent quiescent states. */ 2417 rcu_check_quiescent_state(rdp); 2418 2419 /* No grace period and unregistered callbacks? */ 2420 if (!rcu_gp_in_progress() && 2421 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2422 rcu_nocb_lock_irqsave(rdp, flags); 2423 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2424 rcu_accelerate_cbs_unlocked(rnp, rdp); 2425 rcu_nocb_unlock_irqrestore(rdp, flags); 2426 } 2427 2428 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2429 2430 /* If there are callbacks ready, invoke them. */ 2431 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2432 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2433 rcu_do_batch(rdp); 2434 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2435 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2436 invoke_rcu_core(); 2437 } 2438 2439 /* Do any needed deferred wakeups of rcuo kthreads. */ 2440 do_nocb_deferred_wakeup(rdp); 2441 trace_rcu_utilization(TPS("End RCU core")); 2442 2443 // If strict GPs, schedule an RCU reader in a clean environment. 2444 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2445 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2446 } 2447 2448 static void rcu_core_si(struct softirq_action *h) 2449 { 2450 rcu_core(); 2451 } 2452 2453 static void rcu_wake_cond(struct task_struct *t, int status) 2454 { 2455 /* 2456 * If the thread is yielding, only wake it when this 2457 * is invoked from idle 2458 */ 2459 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2460 wake_up_process(t); 2461 } 2462 2463 static void invoke_rcu_core_kthread(void) 2464 { 2465 struct task_struct *t; 2466 unsigned long flags; 2467 2468 local_irq_save(flags); 2469 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2470 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2471 if (t != NULL && t != current) 2472 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2473 local_irq_restore(flags); 2474 } 2475 2476 /* 2477 * Wake up this CPU's rcuc kthread to do RCU core processing. 2478 */ 2479 static void invoke_rcu_core(void) 2480 { 2481 if (!cpu_online(smp_processor_id())) 2482 return; 2483 if (use_softirq) 2484 raise_softirq(RCU_SOFTIRQ); 2485 else 2486 invoke_rcu_core_kthread(); 2487 } 2488 2489 static void rcu_cpu_kthread_park(unsigned int cpu) 2490 { 2491 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2492 } 2493 2494 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2495 { 2496 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2497 } 2498 2499 /* 2500 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2501 * the RCU softirq used in configurations of RCU that do not support RCU 2502 * priority boosting. 2503 */ 2504 static void rcu_cpu_kthread(unsigned int cpu) 2505 { 2506 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2507 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2508 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2509 int spincnt; 2510 2511 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2512 for (spincnt = 0; spincnt < 10; spincnt++) { 2513 WRITE_ONCE(*j, jiffies); 2514 local_bh_disable(); 2515 *statusp = RCU_KTHREAD_RUNNING; 2516 local_irq_disable(); 2517 work = *workp; 2518 WRITE_ONCE(*workp, 0); 2519 local_irq_enable(); 2520 if (work) 2521 rcu_core(); 2522 local_bh_enable(); 2523 if (!READ_ONCE(*workp)) { 2524 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2525 *statusp = RCU_KTHREAD_WAITING; 2526 return; 2527 } 2528 } 2529 *statusp = RCU_KTHREAD_YIELDING; 2530 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2531 schedule_timeout_idle(2); 2532 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2533 *statusp = RCU_KTHREAD_WAITING; 2534 WRITE_ONCE(*j, jiffies); 2535 } 2536 2537 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2538 .store = &rcu_data.rcu_cpu_kthread_task, 2539 .thread_should_run = rcu_cpu_kthread_should_run, 2540 .thread_fn = rcu_cpu_kthread, 2541 .thread_comm = "rcuc/%u", 2542 .setup = rcu_cpu_kthread_setup, 2543 .park = rcu_cpu_kthread_park, 2544 }; 2545 2546 /* 2547 * Spawn per-CPU RCU core processing kthreads. 2548 */ 2549 static int __init rcu_spawn_core_kthreads(void) 2550 { 2551 int cpu; 2552 2553 for_each_possible_cpu(cpu) 2554 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2555 if (use_softirq) 2556 return 0; 2557 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2558 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2559 return 0; 2560 } 2561 2562 /* 2563 * Handle any core-RCU processing required by a call_rcu() invocation. 2564 */ 2565 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2566 unsigned long flags) 2567 { 2568 /* 2569 * If called from an extended quiescent state, invoke the RCU 2570 * core in order to force a re-evaluation of RCU's idleness. 2571 */ 2572 if (!rcu_is_watching()) 2573 invoke_rcu_core(); 2574 2575 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2576 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2577 return; 2578 2579 /* 2580 * Force the grace period if too many callbacks or too long waiting. 2581 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2582 * if some other CPU has recently done so. Also, don't bother 2583 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2584 * is the only one waiting for a grace period to complete. 2585 */ 2586 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2587 rdp->qlen_last_fqs_check + qhimark)) { 2588 2589 /* Are we ignoring a completed grace period? */ 2590 note_gp_changes(rdp); 2591 2592 /* Start a new grace period if one not already started. */ 2593 if (!rcu_gp_in_progress()) { 2594 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2595 } else { 2596 /* Give the grace period a kick. */ 2597 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2598 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2599 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2600 rcu_force_quiescent_state(); 2601 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2602 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2603 } 2604 } 2605 } 2606 2607 /* 2608 * RCU callback function to leak a callback. 2609 */ 2610 static void rcu_leak_callback(struct rcu_head *rhp) 2611 { 2612 } 2613 2614 /* 2615 * Check and if necessary update the leaf rcu_node structure's 2616 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2617 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2618 * structure's ->lock. 2619 */ 2620 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2621 { 2622 raw_lockdep_assert_held_rcu_node(rnp); 2623 if (qovld_calc <= 0) 2624 return; // Early boot and wildcard value set. 2625 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2626 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2627 else 2628 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2629 } 2630 2631 /* 2632 * Check and if necessary update the leaf rcu_node structure's 2633 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2634 * number of queued RCU callbacks. No locks need be held, but the 2635 * caller must have disabled interrupts. 2636 * 2637 * Note that this function ignores the possibility that there are a lot 2638 * of callbacks all of which have already seen the end of their respective 2639 * grace periods. This omission is due to the need for no-CBs CPUs to 2640 * be holding ->nocb_lock to do this check, which is too heavy for a 2641 * common-case operation. 2642 */ 2643 static void check_cb_ovld(struct rcu_data *rdp) 2644 { 2645 struct rcu_node *const rnp = rdp->mynode; 2646 2647 if (qovld_calc <= 0 || 2648 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2649 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2650 return; // Early boot wildcard value or already set correctly. 2651 raw_spin_lock_rcu_node(rnp); 2652 check_cb_ovld_locked(rdp, rnp); 2653 raw_spin_unlock_rcu_node(rnp); 2654 } 2655 2656 static void 2657 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2658 { 2659 static atomic_t doublefrees; 2660 unsigned long flags; 2661 bool lazy; 2662 struct rcu_data *rdp; 2663 bool was_alldone; 2664 2665 /* Misaligned rcu_head! */ 2666 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2667 2668 if (debug_rcu_head_queue(head)) { 2669 /* 2670 * Probable double call_rcu(), so leak the callback. 2671 * Use rcu:rcu_callback trace event to find the previous 2672 * time callback was passed to call_rcu(). 2673 */ 2674 if (atomic_inc_return(&doublefrees) < 4) { 2675 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2676 mem_dump_obj(head); 2677 } 2678 WRITE_ONCE(head->func, rcu_leak_callback); 2679 return; 2680 } 2681 head->func = func; 2682 head->next = NULL; 2683 kasan_record_aux_stack_noalloc(head); 2684 local_irq_save(flags); 2685 rdp = this_cpu_ptr(&rcu_data); 2686 lazy = lazy_in && !rcu_async_should_hurry(); 2687 2688 /* Add the callback to our list. */ 2689 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2690 // This can trigger due to call_rcu() from offline CPU: 2691 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2692 WARN_ON_ONCE(!rcu_is_watching()); 2693 // Very early boot, before rcu_init(). Initialize if needed 2694 // and then drop through to queue the callback. 2695 if (rcu_segcblist_empty(&rdp->cblist)) 2696 rcu_segcblist_init(&rdp->cblist); 2697 } 2698 2699 check_cb_ovld(rdp); 2700 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2701 return; // Enqueued onto ->nocb_bypass, so just leave. 2702 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2703 rcu_segcblist_enqueue(&rdp->cblist, head); 2704 if (__is_kvfree_rcu_offset((unsigned long)func)) 2705 trace_rcu_kvfree_callback(rcu_state.name, head, 2706 (unsigned long)func, 2707 rcu_segcblist_n_cbs(&rdp->cblist)); 2708 else 2709 trace_rcu_callback(rcu_state.name, head, 2710 rcu_segcblist_n_cbs(&rdp->cblist)); 2711 2712 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2713 2714 /* Go handle any RCU core processing required. */ 2715 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2716 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2717 } else { 2718 __call_rcu_core(rdp, head, flags); 2719 local_irq_restore(flags); 2720 } 2721 } 2722 2723 #ifdef CONFIG_RCU_LAZY 2724 /** 2725 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2726 * flush all lazy callbacks (including the new one) to the main ->cblist while 2727 * doing so. 2728 * 2729 * @head: structure to be used for queueing the RCU updates. 2730 * @func: actual callback function to be invoked after the grace period 2731 * 2732 * The callback function will be invoked some time after a full grace 2733 * period elapses, in other words after all pre-existing RCU read-side 2734 * critical sections have completed. 2735 * 2736 * Use this API instead of call_rcu() if you don't want the callback to be 2737 * invoked after very long periods of time, which can happen on systems without 2738 * memory pressure and on systems which are lightly loaded or mostly idle. 2739 * This function will cause callbacks to be invoked sooner than later at the 2740 * expense of extra power. Other than that, this function is identical to, and 2741 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2742 * ordering and other functionality. 2743 */ 2744 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2745 { 2746 __call_rcu_common(head, func, false); 2747 } 2748 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2749 #endif 2750 2751 /** 2752 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2753 * By default the callbacks are 'lazy' and are kept hidden from the main 2754 * ->cblist to prevent starting of grace periods too soon. 2755 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2756 * 2757 * @head: structure to be used for queueing the RCU updates. 2758 * @func: actual callback function to be invoked after the grace period 2759 * 2760 * The callback function will be invoked some time after a full grace 2761 * period elapses, in other words after all pre-existing RCU read-side 2762 * critical sections have completed. However, the callback function 2763 * might well execute concurrently with RCU read-side critical sections 2764 * that started after call_rcu() was invoked. 2765 * 2766 * RCU read-side critical sections are delimited by rcu_read_lock() 2767 * and rcu_read_unlock(), and may be nested. In addition, but only in 2768 * v5.0 and later, regions of code across which interrupts, preemption, 2769 * or softirqs have been disabled also serve as RCU read-side critical 2770 * sections. This includes hardware interrupt handlers, softirq handlers, 2771 * and NMI handlers. 2772 * 2773 * Note that all CPUs must agree that the grace period extended beyond 2774 * all pre-existing RCU read-side critical section. On systems with more 2775 * than one CPU, this means that when "func()" is invoked, each CPU is 2776 * guaranteed to have executed a full memory barrier since the end of its 2777 * last RCU read-side critical section whose beginning preceded the call 2778 * to call_rcu(). It also means that each CPU executing an RCU read-side 2779 * critical section that continues beyond the start of "func()" must have 2780 * executed a memory barrier after the call_rcu() but before the beginning 2781 * of that RCU read-side critical section. Note that these guarantees 2782 * include CPUs that are offline, idle, or executing in user mode, as 2783 * well as CPUs that are executing in the kernel. 2784 * 2785 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2786 * resulting RCU callback function "func()", then both CPU A and CPU B are 2787 * guaranteed to execute a full memory barrier during the time interval 2788 * between the call to call_rcu() and the invocation of "func()" -- even 2789 * if CPU A and CPU B are the same CPU (but again only if the system has 2790 * more than one CPU). 2791 * 2792 * Implementation of these memory-ordering guarantees is described here: 2793 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2794 */ 2795 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2796 { 2797 __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2798 } 2799 EXPORT_SYMBOL_GPL(call_rcu); 2800 2801 /* Maximum number of jiffies to wait before draining a batch. */ 2802 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2803 #define KFREE_N_BATCHES 2 2804 #define FREE_N_CHANNELS 2 2805 2806 /** 2807 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2808 * @list: List node. All blocks are linked between each other 2809 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2810 * @nr_records: Number of active pointers in the array 2811 * @records: Array of the kvfree_rcu() pointers 2812 */ 2813 struct kvfree_rcu_bulk_data { 2814 struct list_head list; 2815 struct rcu_gp_oldstate gp_snap; 2816 unsigned long nr_records; 2817 void *records[]; 2818 }; 2819 2820 /* 2821 * This macro defines how many entries the "records" array 2822 * will contain. It is based on the fact that the size of 2823 * kvfree_rcu_bulk_data structure becomes exactly one page. 2824 */ 2825 #define KVFREE_BULK_MAX_ENTR \ 2826 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2827 2828 /** 2829 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2830 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2831 * @head_free: List of kfree_rcu() objects waiting for a grace period 2832 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 2833 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2834 * @krcp: Pointer to @kfree_rcu_cpu structure 2835 */ 2836 2837 struct kfree_rcu_cpu_work { 2838 struct rcu_work rcu_work; 2839 struct rcu_head *head_free; 2840 struct rcu_gp_oldstate head_free_gp_snap; 2841 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2842 struct kfree_rcu_cpu *krcp; 2843 }; 2844 2845 /** 2846 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2847 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2848 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2849 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2850 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2851 * @lock: Synchronize access to this structure 2852 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2853 * @initialized: The @rcu_work fields have been initialized 2854 * @head_count: Number of objects in rcu_head singular list 2855 * @bulk_count: Number of objects in bulk-list 2856 * @bkvcache: 2857 * A simple cache list that contains objects for reuse purpose. 2858 * In order to save some per-cpu space the list is singular. 2859 * Even though it is lockless an access has to be protected by the 2860 * per-cpu lock. 2861 * @page_cache_work: A work to refill the cache when it is empty 2862 * @backoff_page_cache_fill: Delay cache refills 2863 * @work_in_progress: Indicates that page_cache_work is running 2864 * @hrtimer: A hrtimer for scheduling a page_cache_work 2865 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2866 * 2867 * This is a per-CPU structure. The reason that it is not included in 2868 * the rcu_data structure is to permit this code to be extracted from 2869 * the RCU files. Such extraction could allow further optimization of 2870 * the interactions with the slab allocators. 2871 */ 2872 struct kfree_rcu_cpu { 2873 // Objects queued on a linked list 2874 // through their rcu_head structures. 2875 struct rcu_head *head; 2876 unsigned long head_gp_snap; 2877 atomic_t head_count; 2878 2879 // Objects queued on a bulk-list. 2880 struct list_head bulk_head[FREE_N_CHANNELS]; 2881 atomic_t bulk_count[FREE_N_CHANNELS]; 2882 2883 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2884 raw_spinlock_t lock; 2885 struct delayed_work monitor_work; 2886 bool initialized; 2887 2888 struct delayed_work page_cache_work; 2889 atomic_t backoff_page_cache_fill; 2890 atomic_t work_in_progress; 2891 struct hrtimer hrtimer; 2892 2893 struct llist_head bkvcache; 2894 int nr_bkv_objs; 2895 }; 2896 2897 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2898 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2899 }; 2900 2901 static __always_inline void 2902 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2903 { 2904 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2905 int i; 2906 2907 for (i = 0; i < bhead->nr_records; i++) 2908 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2909 #endif 2910 } 2911 2912 static inline struct kfree_rcu_cpu * 2913 krc_this_cpu_lock(unsigned long *flags) 2914 { 2915 struct kfree_rcu_cpu *krcp; 2916 2917 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2918 krcp = this_cpu_ptr(&krc); 2919 raw_spin_lock(&krcp->lock); 2920 2921 return krcp; 2922 } 2923 2924 static inline void 2925 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2926 { 2927 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2928 } 2929 2930 static inline struct kvfree_rcu_bulk_data * 2931 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2932 { 2933 if (!krcp->nr_bkv_objs) 2934 return NULL; 2935 2936 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2937 return (struct kvfree_rcu_bulk_data *) 2938 llist_del_first(&krcp->bkvcache); 2939 } 2940 2941 static inline bool 2942 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2943 struct kvfree_rcu_bulk_data *bnode) 2944 { 2945 // Check the limit. 2946 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2947 return false; 2948 2949 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2950 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2951 return true; 2952 } 2953 2954 static int 2955 drain_page_cache(struct kfree_rcu_cpu *krcp) 2956 { 2957 unsigned long flags; 2958 struct llist_node *page_list, *pos, *n; 2959 int freed = 0; 2960 2961 if (!rcu_min_cached_objs) 2962 return 0; 2963 2964 raw_spin_lock_irqsave(&krcp->lock, flags); 2965 page_list = llist_del_all(&krcp->bkvcache); 2966 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2967 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2968 2969 llist_for_each_safe(pos, n, page_list) { 2970 free_page((unsigned long)pos); 2971 freed++; 2972 } 2973 2974 return freed; 2975 } 2976 2977 static void 2978 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 2979 struct kvfree_rcu_bulk_data *bnode, int idx) 2980 { 2981 unsigned long flags; 2982 int i; 2983 2984 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 2985 debug_rcu_bhead_unqueue(bnode); 2986 rcu_lock_acquire(&rcu_callback_map); 2987 if (idx == 0) { // kmalloc() / kfree(). 2988 trace_rcu_invoke_kfree_bulk_callback( 2989 rcu_state.name, bnode->nr_records, 2990 bnode->records); 2991 2992 kfree_bulk(bnode->nr_records, bnode->records); 2993 } else { // vmalloc() / vfree(). 2994 for (i = 0; i < bnode->nr_records; i++) { 2995 trace_rcu_invoke_kvfree_callback( 2996 rcu_state.name, bnode->records[i], 0); 2997 2998 vfree(bnode->records[i]); 2999 } 3000 } 3001 rcu_lock_release(&rcu_callback_map); 3002 } 3003 3004 raw_spin_lock_irqsave(&krcp->lock, flags); 3005 if (put_cached_bnode(krcp, bnode)) 3006 bnode = NULL; 3007 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3008 3009 if (bnode) 3010 free_page((unsigned long) bnode); 3011 3012 cond_resched_tasks_rcu_qs(); 3013 } 3014 3015 static void 3016 kvfree_rcu_list(struct rcu_head *head) 3017 { 3018 struct rcu_head *next; 3019 3020 for (; head; head = next) { 3021 void *ptr = (void *) head->func; 3022 unsigned long offset = (void *) head - ptr; 3023 3024 next = head->next; 3025 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3026 rcu_lock_acquire(&rcu_callback_map); 3027 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3028 3029 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3030 kvfree(ptr); 3031 3032 rcu_lock_release(&rcu_callback_map); 3033 cond_resched_tasks_rcu_qs(); 3034 } 3035 } 3036 3037 /* 3038 * This function is invoked in workqueue context after a grace period. 3039 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3040 */ 3041 static void kfree_rcu_work(struct work_struct *work) 3042 { 3043 unsigned long flags; 3044 struct kvfree_rcu_bulk_data *bnode, *n; 3045 struct list_head bulk_head[FREE_N_CHANNELS]; 3046 struct rcu_head *head; 3047 struct kfree_rcu_cpu *krcp; 3048 struct kfree_rcu_cpu_work *krwp; 3049 struct rcu_gp_oldstate head_gp_snap; 3050 int i; 3051 3052 krwp = container_of(to_rcu_work(work), 3053 struct kfree_rcu_cpu_work, rcu_work); 3054 krcp = krwp->krcp; 3055 3056 raw_spin_lock_irqsave(&krcp->lock, flags); 3057 // Channels 1 and 2. 3058 for (i = 0; i < FREE_N_CHANNELS; i++) 3059 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3060 3061 // Channel 3. 3062 head = krwp->head_free; 3063 krwp->head_free = NULL; 3064 head_gp_snap = krwp->head_free_gp_snap; 3065 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3066 3067 // Handle the first two channels. 3068 for (i = 0; i < FREE_N_CHANNELS; i++) { 3069 // Start from the tail page, so a GP is likely passed for it. 3070 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3071 kvfree_rcu_bulk(krcp, bnode, i); 3072 } 3073 3074 /* 3075 * This is used when the "bulk" path can not be used for the 3076 * double-argument of kvfree_rcu(). This happens when the 3077 * page-cache is empty, which means that objects are instead 3078 * queued on a linked list through their rcu_head structures. 3079 * This list is named "Channel 3". 3080 */ 3081 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3082 kvfree_rcu_list(head); 3083 } 3084 3085 static bool 3086 need_offload_krc(struct kfree_rcu_cpu *krcp) 3087 { 3088 int i; 3089 3090 for (i = 0; i < FREE_N_CHANNELS; i++) 3091 if (!list_empty(&krcp->bulk_head[i])) 3092 return true; 3093 3094 return !!READ_ONCE(krcp->head); 3095 } 3096 3097 static bool 3098 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3099 { 3100 int i; 3101 3102 for (i = 0; i < FREE_N_CHANNELS; i++) 3103 if (!list_empty(&krwp->bulk_head_free[i])) 3104 return true; 3105 3106 return !!krwp->head_free; 3107 } 3108 3109 static int krc_count(struct kfree_rcu_cpu *krcp) 3110 { 3111 int sum = atomic_read(&krcp->head_count); 3112 int i; 3113 3114 for (i = 0; i < FREE_N_CHANNELS; i++) 3115 sum += atomic_read(&krcp->bulk_count[i]); 3116 3117 return sum; 3118 } 3119 3120 static void 3121 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3122 { 3123 long delay, delay_left; 3124 3125 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3126 if (delayed_work_pending(&krcp->monitor_work)) { 3127 delay_left = krcp->monitor_work.timer.expires - jiffies; 3128 if (delay < delay_left) 3129 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3130 return; 3131 } 3132 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3133 } 3134 3135 static void 3136 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3137 { 3138 struct list_head bulk_ready[FREE_N_CHANNELS]; 3139 struct kvfree_rcu_bulk_data *bnode, *n; 3140 struct rcu_head *head_ready = NULL; 3141 unsigned long flags; 3142 int i; 3143 3144 raw_spin_lock_irqsave(&krcp->lock, flags); 3145 for (i = 0; i < FREE_N_CHANNELS; i++) { 3146 INIT_LIST_HEAD(&bulk_ready[i]); 3147 3148 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3149 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3150 break; 3151 3152 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3153 list_move(&bnode->list, &bulk_ready[i]); 3154 } 3155 } 3156 3157 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3158 head_ready = krcp->head; 3159 atomic_set(&krcp->head_count, 0); 3160 WRITE_ONCE(krcp->head, NULL); 3161 } 3162 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3163 3164 for (i = 0; i < FREE_N_CHANNELS; i++) { 3165 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3166 kvfree_rcu_bulk(krcp, bnode, i); 3167 } 3168 3169 if (head_ready) 3170 kvfree_rcu_list(head_ready); 3171 } 3172 3173 /* 3174 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3175 */ 3176 static void kfree_rcu_monitor(struct work_struct *work) 3177 { 3178 struct kfree_rcu_cpu *krcp = container_of(work, 3179 struct kfree_rcu_cpu, monitor_work.work); 3180 unsigned long flags; 3181 int i, j; 3182 3183 // Drain ready for reclaim. 3184 kvfree_rcu_drain_ready(krcp); 3185 3186 raw_spin_lock_irqsave(&krcp->lock, flags); 3187 3188 // Attempt to start a new batch. 3189 for (i = 0; i < KFREE_N_BATCHES; i++) { 3190 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3191 3192 // Try to detach bulk_head or head and attach it, only when 3193 // all channels are free. Any channel is not free means at krwp 3194 // there is on-going rcu work to handle krwp's free business. 3195 if (need_wait_for_krwp_work(krwp)) 3196 continue; 3197 3198 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3199 if (need_offload_krc(krcp)) { 3200 // Channel 1 corresponds to the SLAB-pointer bulk path. 3201 // Channel 2 corresponds to vmalloc-pointer bulk path. 3202 for (j = 0; j < FREE_N_CHANNELS; j++) { 3203 if (list_empty(&krwp->bulk_head_free[j])) { 3204 atomic_set(&krcp->bulk_count[j], 0); 3205 list_replace_init(&krcp->bulk_head[j], 3206 &krwp->bulk_head_free[j]); 3207 } 3208 } 3209 3210 // Channel 3 corresponds to both SLAB and vmalloc 3211 // objects queued on the linked list. 3212 if (!krwp->head_free) { 3213 krwp->head_free = krcp->head; 3214 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3215 atomic_set(&krcp->head_count, 0); 3216 WRITE_ONCE(krcp->head, NULL); 3217 } 3218 3219 // One work is per one batch, so there are three 3220 // "free channels", the batch can handle. It can 3221 // be that the work is in the pending state when 3222 // channels have been detached following by each 3223 // other. 3224 queue_rcu_work(system_wq, &krwp->rcu_work); 3225 } 3226 } 3227 3228 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3229 3230 // If there is nothing to detach, it means that our job is 3231 // successfully done here. In case of having at least one 3232 // of the channels that is still busy we should rearm the 3233 // work to repeat an attempt. Because previous batches are 3234 // still in progress. 3235 if (need_offload_krc(krcp)) 3236 schedule_delayed_monitor_work(krcp); 3237 } 3238 3239 static enum hrtimer_restart 3240 schedule_page_work_fn(struct hrtimer *t) 3241 { 3242 struct kfree_rcu_cpu *krcp = 3243 container_of(t, struct kfree_rcu_cpu, hrtimer); 3244 3245 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3246 return HRTIMER_NORESTART; 3247 } 3248 3249 static void fill_page_cache_func(struct work_struct *work) 3250 { 3251 struct kvfree_rcu_bulk_data *bnode; 3252 struct kfree_rcu_cpu *krcp = 3253 container_of(work, struct kfree_rcu_cpu, 3254 page_cache_work.work); 3255 unsigned long flags; 3256 int nr_pages; 3257 bool pushed; 3258 int i; 3259 3260 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3261 1 : rcu_min_cached_objs; 3262 3263 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3264 bnode = (struct kvfree_rcu_bulk_data *) 3265 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3266 3267 if (!bnode) 3268 break; 3269 3270 raw_spin_lock_irqsave(&krcp->lock, flags); 3271 pushed = put_cached_bnode(krcp, bnode); 3272 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3273 3274 if (!pushed) { 3275 free_page((unsigned long) bnode); 3276 break; 3277 } 3278 } 3279 3280 atomic_set(&krcp->work_in_progress, 0); 3281 atomic_set(&krcp->backoff_page_cache_fill, 0); 3282 } 3283 3284 static void 3285 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3286 { 3287 // If cache disabled, bail out. 3288 if (!rcu_min_cached_objs) 3289 return; 3290 3291 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3292 !atomic_xchg(&krcp->work_in_progress, 1)) { 3293 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3294 queue_delayed_work(system_wq, 3295 &krcp->page_cache_work, 3296 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3297 } else { 3298 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3299 krcp->hrtimer.function = schedule_page_work_fn; 3300 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3301 } 3302 } 3303 } 3304 3305 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3306 // state specified by flags. If can_alloc is true, the caller must 3307 // be schedulable and not be holding any locks or mutexes that might be 3308 // acquired by the memory allocator or anything that it might invoke. 3309 // Returns true if ptr was successfully recorded, else the caller must 3310 // use a fallback. 3311 static inline bool 3312 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3313 unsigned long *flags, void *ptr, bool can_alloc) 3314 { 3315 struct kvfree_rcu_bulk_data *bnode; 3316 int idx; 3317 3318 *krcp = krc_this_cpu_lock(flags); 3319 if (unlikely(!(*krcp)->initialized)) 3320 return false; 3321 3322 idx = !!is_vmalloc_addr(ptr); 3323 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3324 struct kvfree_rcu_bulk_data, list); 3325 3326 /* Check if a new block is required. */ 3327 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3328 bnode = get_cached_bnode(*krcp); 3329 if (!bnode && can_alloc) { 3330 krc_this_cpu_unlock(*krcp, *flags); 3331 3332 // __GFP_NORETRY - allows a light-weight direct reclaim 3333 // what is OK from minimizing of fallback hitting point of 3334 // view. Apart of that it forbids any OOM invoking what is 3335 // also beneficial since we are about to release memory soon. 3336 // 3337 // __GFP_NOMEMALLOC - prevents from consuming of all the 3338 // memory reserves. Please note we have a fallback path. 3339 // 3340 // __GFP_NOWARN - it is supposed that an allocation can 3341 // be failed under low memory or high memory pressure 3342 // scenarios. 3343 bnode = (struct kvfree_rcu_bulk_data *) 3344 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3345 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3346 } 3347 3348 if (!bnode) 3349 return false; 3350 3351 // Initialize the new block and attach it. 3352 bnode->nr_records = 0; 3353 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3354 } 3355 3356 // Finally insert and update the GP for this page. 3357 bnode->records[bnode->nr_records++] = ptr; 3358 get_state_synchronize_rcu_full(&bnode->gp_snap); 3359 atomic_inc(&(*krcp)->bulk_count[idx]); 3360 3361 return true; 3362 } 3363 3364 /* 3365 * Queue a request for lazy invocation of the appropriate free routine 3366 * after a grace period. Please note that three paths are maintained, 3367 * two for the common case using arrays of pointers and a third one that 3368 * is used only when the main paths cannot be used, for example, due to 3369 * memory pressure. 3370 * 3371 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3372 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3373 * be free'd in workqueue context. This allows us to: batch requests together to 3374 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3375 */ 3376 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3377 { 3378 unsigned long flags; 3379 struct kfree_rcu_cpu *krcp; 3380 bool success; 3381 3382 /* 3383 * Please note there is a limitation for the head-less 3384 * variant, that is why there is a clear rule for such 3385 * objects: it can be used from might_sleep() context 3386 * only. For other places please embed an rcu_head to 3387 * your data. 3388 */ 3389 if (!head) 3390 might_sleep(); 3391 3392 // Queue the object but don't yet schedule the batch. 3393 if (debug_rcu_head_queue(ptr)) { 3394 // Probable double kfree_rcu(), just leak. 3395 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3396 __func__, head); 3397 3398 // Mark as success and leave. 3399 return; 3400 } 3401 3402 kasan_record_aux_stack_noalloc(ptr); 3403 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3404 if (!success) { 3405 run_page_cache_worker(krcp); 3406 3407 if (head == NULL) 3408 // Inline if kvfree_rcu(one_arg) call. 3409 goto unlock_return; 3410 3411 head->func = ptr; 3412 head->next = krcp->head; 3413 WRITE_ONCE(krcp->head, head); 3414 atomic_inc(&krcp->head_count); 3415 3416 // Take a snapshot for this krcp. 3417 krcp->head_gp_snap = get_state_synchronize_rcu(); 3418 success = true; 3419 } 3420 3421 /* 3422 * The kvfree_rcu() caller considers the pointer freed at this point 3423 * and likely removes any references to it. Since the actual slab 3424 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore 3425 * this object (no scanning or false positives reporting). 3426 */ 3427 kmemleak_ignore(ptr); 3428 3429 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3430 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3431 schedule_delayed_monitor_work(krcp); 3432 3433 unlock_return: 3434 krc_this_cpu_unlock(krcp, flags); 3435 3436 /* 3437 * Inline kvfree() after synchronize_rcu(). We can do 3438 * it from might_sleep() context only, so the current 3439 * CPU can pass the QS state. 3440 */ 3441 if (!success) { 3442 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3443 synchronize_rcu(); 3444 kvfree(ptr); 3445 } 3446 } 3447 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3448 3449 static unsigned long 3450 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3451 { 3452 int cpu; 3453 unsigned long count = 0; 3454 3455 /* Snapshot count of all CPUs */ 3456 for_each_possible_cpu(cpu) { 3457 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3458 3459 count += krc_count(krcp); 3460 count += READ_ONCE(krcp->nr_bkv_objs); 3461 atomic_set(&krcp->backoff_page_cache_fill, 1); 3462 } 3463 3464 return count == 0 ? SHRINK_EMPTY : count; 3465 } 3466 3467 static unsigned long 3468 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3469 { 3470 int cpu, freed = 0; 3471 3472 for_each_possible_cpu(cpu) { 3473 int count; 3474 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3475 3476 count = krc_count(krcp); 3477 count += drain_page_cache(krcp); 3478 kfree_rcu_monitor(&krcp->monitor_work.work); 3479 3480 sc->nr_to_scan -= count; 3481 freed += count; 3482 3483 if (sc->nr_to_scan <= 0) 3484 break; 3485 } 3486 3487 return freed == 0 ? SHRINK_STOP : freed; 3488 } 3489 3490 void __init kfree_rcu_scheduler_running(void) 3491 { 3492 int cpu; 3493 3494 for_each_possible_cpu(cpu) { 3495 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3496 3497 if (need_offload_krc(krcp)) 3498 schedule_delayed_monitor_work(krcp); 3499 } 3500 } 3501 3502 /* 3503 * During early boot, any blocking grace-period wait automatically 3504 * implies a grace period. 3505 * 3506 * Later on, this could in theory be the case for kernels built with 3507 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3508 * is not a common case. Furthermore, this optimization would cause 3509 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3510 * grace-period optimization is ignored once the scheduler is running. 3511 */ 3512 static int rcu_blocking_is_gp(void) 3513 { 3514 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3515 might_sleep(); 3516 return false; 3517 } 3518 return true; 3519 } 3520 3521 /** 3522 * synchronize_rcu - wait until a grace period has elapsed. 3523 * 3524 * Control will return to the caller some time after a full grace 3525 * period has elapsed, in other words after all currently executing RCU 3526 * read-side critical sections have completed. Note, however, that 3527 * upon return from synchronize_rcu(), the caller might well be executing 3528 * concurrently with new RCU read-side critical sections that began while 3529 * synchronize_rcu() was waiting. 3530 * 3531 * RCU read-side critical sections are delimited by rcu_read_lock() 3532 * and rcu_read_unlock(), and may be nested. In addition, but only in 3533 * v5.0 and later, regions of code across which interrupts, preemption, 3534 * or softirqs have been disabled also serve as RCU read-side critical 3535 * sections. This includes hardware interrupt handlers, softirq handlers, 3536 * and NMI handlers. 3537 * 3538 * Note that this guarantee implies further memory-ordering guarantees. 3539 * On systems with more than one CPU, when synchronize_rcu() returns, 3540 * each CPU is guaranteed to have executed a full memory barrier since 3541 * the end of its last RCU read-side critical section whose beginning 3542 * preceded the call to synchronize_rcu(). In addition, each CPU having 3543 * an RCU read-side critical section that extends beyond the return from 3544 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3545 * after the beginning of synchronize_rcu() and before the beginning of 3546 * that RCU read-side critical section. Note that these guarantees include 3547 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3548 * that are executing in the kernel. 3549 * 3550 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3551 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3552 * to have executed a full memory barrier during the execution of 3553 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3554 * again only if the system has more than one CPU). 3555 * 3556 * Implementation of these memory-ordering guarantees is described here: 3557 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3558 */ 3559 void synchronize_rcu(void) 3560 { 3561 unsigned long flags; 3562 struct rcu_node *rnp; 3563 3564 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3565 lock_is_held(&rcu_lock_map) || 3566 lock_is_held(&rcu_sched_lock_map), 3567 "Illegal synchronize_rcu() in RCU read-side critical section"); 3568 if (!rcu_blocking_is_gp()) { 3569 if (rcu_gp_is_expedited()) 3570 synchronize_rcu_expedited(); 3571 else 3572 wait_rcu_gp(call_rcu_hurry); 3573 return; 3574 } 3575 3576 // Context allows vacuous grace periods. 3577 // Note well that this code runs with !PREEMPT && !SMP. 3578 // In addition, all code that advances grace periods runs at 3579 // process level. Therefore, this normal GP overlaps with other 3580 // normal GPs only by being fully nested within them, which allows 3581 // reuse of ->gp_seq_polled_snap. 3582 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3583 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3584 3585 // Update the normal grace-period counters to record 3586 // this grace period, but only those used by the boot CPU. 3587 // The rcu_scheduler_starting() will take care of the rest of 3588 // these counters. 3589 local_irq_save(flags); 3590 WARN_ON_ONCE(num_online_cpus() > 1); 3591 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3592 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3593 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3594 local_irq_restore(flags); 3595 } 3596 EXPORT_SYMBOL_GPL(synchronize_rcu); 3597 3598 /** 3599 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3600 * @rgosp: Place to put state cookie 3601 * 3602 * Stores into @rgosp a value that will always be treated by functions 3603 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3604 * has already completed. 3605 */ 3606 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3607 { 3608 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3609 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3610 } 3611 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3612 3613 /** 3614 * get_state_synchronize_rcu - Snapshot current RCU state 3615 * 3616 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3617 * or poll_state_synchronize_rcu() to determine whether or not a full 3618 * grace period has elapsed in the meantime. 3619 */ 3620 unsigned long get_state_synchronize_rcu(void) 3621 { 3622 /* 3623 * Any prior manipulation of RCU-protected data must happen 3624 * before the load from ->gp_seq. 3625 */ 3626 smp_mb(); /* ^^^ */ 3627 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3628 } 3629 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3630 3631 /** 3632 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3633 * @rgosp: location to place combined normal/expedited grace-period state 3634 * 3635 * Places the normal and expedited grace-period states in @rgosp. This 3636 * state value can be passed to a later call to cond_synchronize_rcu_full() 3637 * or poll_state_synchronize_rcu_full() to determine whether or not a 3638 * grace period (whether normal or expedited) has elapsed in the meantime. 3639 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3640 * long, but is guaranteed to see all grace periods. In contrast, the 3641 * combined state occupies less memory, but can sometimes fail to take 3642 * grace periods into account. 3643 * 3644 * This does not guarantee that the needed grace period will actually 3645 * start. 3646 */ 3647 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3648 { 3649 struct rcu_node *rnp = rcu_get_root(); 3650 3651 /* 3652 * Any prior manipulation of RCU-protected data must happen 3653 * before the loads from ->gp_seq and ->expedited_sequence. 3654 */ 3655 smp_mb(); /* ^^^ */ 3656 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3657 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3658 } 3659 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3660 3661 /* 3662 * Helper function for start_poll_synchronize_rcu() and 3663 * start_poll_synchronize_rcu_full(). 3664 */ 3665 static void start_poll_synchronize_rcu_common(void) 3666 { 3667 unsigned long flags; 3668 bool needwake; 3669 struct rcu_data *rdp; 3670 struct rcu_node *rnp; 3671 3672 lockdep_assert_irqs_enabled(); 3673 local_irq_save(flags); 3674 rdp = this_cpu_ptr(&rcu_data); 3675 rnp = rdp->mynode; 3676 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3677 // Note it is possible for a grace period to have elapsed between 3678 // the above call to get_state_synchronize_rcu() and the below call 3679 // to rcu_seq_snap. This is OK, the worst that happens is that we 3680 // get a grace period that no one needed. These accesses are ordered 3681 // by smp_mb(), and we are accessing them in the opposite order 3682 // from which they are updated at grace-period start, as required. 3683 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3684 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3685 if (needwake) 3686 rcu_gp_kthread_wake(); 3687 } 3688 3689 /** 3690 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3691 * 3692 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3693 * or poll_state_synchronize_rcu() to determine whether or not a full 3694 * grace period has elapsed in the meantime. If the needed grace period 3695 * is not already slated to start, notifies RCU core of the need for that 3696 * grace period. 3697 * 3698 * Interrupts must be enabled for the case where it is necessary to awaken 3699 * the grace-period kthread. 3700 */ 3701 unsigned long start_poll_synchronize_rcu(void) 3702 { 3703 unsigned long gp_seq = get_state_synchronize_rcu(); 3704 3705 start_poll_synchronize_rcu_common(); 3706 return gp_seq; 3707 } 3708 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3709 3710 /** 3711 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3712 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3713 * 3714 * Places the normal and expedited grace-period states in *@rgos. This 3715 * state value can be passed to a later call to cond_synchronize_rcu_full() 3716 * or poll_state_synchronize_rcu_full() to determine whether or not a 3717 * grace period (whether normal or expedited) has elapsed in the meantime. 3718 * If the needed grace period is not already slated to start, notifies 3719 * RCU core of the need for that grace period. 3720 * 3721 * Interrupts must be enabled for the case where it is necessary to awaken 3722 * the grace-period kthread. 3723 */ 3724 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3725 { 3726 get_state_synchronize_rcu_full(rgosp); 3727 3728 start_poll_synchronize_rcu_common(); 3729 } 3730 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3731 3732 /** 3733 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3734 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3735 * 3736 * If a full RCU grace period has elapsed since the earlier call from 3737 * which @oldstate was obtained, return @true, otherwise return @false. 3738 * If @false is returned, it is the caller's responsibility to invoke this 3739 * function later on until it does return @true. Alternatively, the caller 3740 * can explicitly wait for a grace period, for example, by passing @oldstate 3741 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3742 * on the one hand or by directly invoking either synchronize_rcu() or 3743 * synchronize_rcu_expedited() on the other. 3744 * 3745 * Yes, this function does not take counter wrap into account. 3746 * But counter wrap is harmless. If the counter wraps, we have waited for 3747 * more than a billion grace periods (and way more on a 64-bit system!). 3748 * Those needing to keep old state values for very long time periods 3749 * (many hours even on 32-bit systems) should check them occasionally and 3750 * either refresh them or set a flag indicating that the grace period has 3751 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3752 * to get a guaranteed-completed grace-period state. 3753 * 3754 * In addition, because oldstate compresses the grace-period state for 3755 * both normal and expedited grace periods into a single unsigned long, 3756 * it can miss a grace period when synchronize_rcu() runs concurrently 3757 * with synchronize_rcu_expedited(). If this is unacceptable, please 3758 * instead use the _full() variant of these polling APIs. 3759 * 3760 * This function provides the same memory-ordering guarantees that 3761 * would be provided by a synchronize_rcu() that was invoked at the call 3762 * to the function that provided @oldstate, and that returned at the end 3763 * of this function. 3764 */ 3765 bool poll_state_synchronize_rcu(unsigned long oldstate) 3766 { 3767 if (oldstate == RCU_GET_STATE_COMPLETED || 3768 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3769 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3770 return true; 3771 } 3772 return false; 3773 } 3774 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3775 3776 /** 3777 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3778 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3779 * 3780 * If a full RCU grace period has elapsed since the earlier call from 3781 * which *rgosp was obtained, return @true, otherwise return @false. 3782 * If @false is returned, it is the caller's responsibility to invoke this 3783 * function later on until it does return @true. Alternatively, the caller 3784 * can explicitly wait for a grace period, for example, by passing @rgosp 3785 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3786 * 3787 * Yes, this function does not take counter wrap into account. 3788 * But counter wrap is harmless. If the counter wraps, we have waited 3789 * for more than a billion grace periods (and way more on a 64-bit 3790 * system!). Those needing to keep rcu_gp_oldstate values for very 3791 * long time periods (many hours even on 32-bit systems) should check 3792 * them occasionally and either refresh them or set a flag indicating 3793 * that the grace period has completed. Alternatively, they can use 3794 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3795 * grace-period state. 3796 * 3797 * This function provides the same memory-ordering guarantees that would 3798 * be provided by a synchronize_rcu() that was invoked at the call to 3799 * the function that provided @rgosp, and that returned at the end of this 3800 * function. And this guarantee requires that the root rcu_node structure's 3801 * ->gp_seq field be checked instead of that of the rcu_state structure. 3802 * The problem is that the just-ending grace-period's callbacks can be 3803 * invoked between the time that the root rcu_node structure's ->gp_seq 3804 * field is updated and the time that the rcu_state structure's ->gp_seq 3805 * field is updated. Therefore, if a single synchronize_rcu() is to 3806 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3807 * then the root rcu_node structure is the one that needs to be polled. 3808 */ 3809 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3810 { 3811 struct rcu_node *rnp = rcu_get_root(); 3812 3813 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3814 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3815 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3816 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3817 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3818 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3819 return true; 3820 } 3821 return false; 3822 } 3823 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3824 3825 /** 3826 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3827 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3828 * 3829 * If a full RCU grace period has elapsed since the earlier call to 3830 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3831 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3832 * 3833 * Yes, this function does not take counter wrap into account. 3834 * But counter wrap is harmless. If the counter wraps, we have waited for 3835 * more than 2 billion grace periods (and way more on a 64-bit system!), 3836 * so waiting for a couple of additional grace periods should be just fine. 3837 * 3838 * This function provides the same memory-ordering guarantees that 3839 * would be provided by a synchronize_rcu() that was invoked at the call 3840 * to the function that provided @oldstate and that returned at the end 3841 * of this function. 3842 */ 3843 void cond_synchronize_rcu(unsigned long oldstate) 3844 { 3845 if (!poll_state_synchronize_rcu(oldstate)) 3846 synchronize_rcu(); 3847 } 3848 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3849 3850 /** 3851 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3852 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3853 * 3854 * If a full RCU grace period has elapsed since the call to 3855 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3856 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3857 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3858 * for a full grace period. 3859 * 3860 * Yes, this function does not take counter wrap into account. 3861 * But counter wrap is harmless. If the counter wraps, we have waited for 3862 * more than 2 billion grace periods (and way more on a 64-bit system!), 3863 * so waiting for a couple of additional grace periods should be just fine. 3864 * 3865 * This function provides the same memory-ordering guarantees that 3866 * would be provided by a synchronize_rcu() that was invoked at the call 3867 * to the function that provided @rgosp and that returned at the end of 3868 * this function. 3869 */ 3870 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3871 { 3872 if (!poll_state_synchronize_rcu_full(rgosp)) 3873 synchronize_rcu(); 3874 } 3875 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3876 3877 /* 3878 * Check to see if there is any immediate RCU-related work to be done by 3879 * the current CPU, returning 1 if so and zero otherwise. The checks are 3880 * in order of increasing expense: checks that can be carried out against 3881 * CPU-local state are performed first. However, we must check for CPU 3882 * stalls first, else we might not get a chance. 3883 */ 3884 static int rcu_pending(int user) 3885 { 3886 bool gp_in_progress; 3887 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3888 struct rcu_node *rnp = rdp->mynode; 3889 3890 lockdep_assert_irqs_disabled(); 3891 3892 /* Check for CPU stalls, if enabled. */ 3893 check_cpu_stall(rdp); 3894 3895 /* Does this CPU need a deferred NOCB wakeup? */ 3896 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3897 return 1; 3898 3899 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3900 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3901 return 0; 3902 3903 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3904 gp_in_progress = rcu_gp_in_progress(); 3905 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3906 return 1; 3907 3908 /* Does this CPU have callbacks ready to invoke? */ 3909 if (!rcu_rdp_is_offloaded(rdp) && 3910 rcu_segcblist_ready_cbs(&rdp->cblist)) 3911 return 1; 3912 3913 /* Has RCU gone idle with this CPU needing another grace period? */ 3914 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3915 !rcu_rdp_is_offloaded(rdp) && 3916 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3917 return 1; 3918 3919 /* Have RCU grace period completed or started? */ 3920 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3921 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3922 return 1; 3923 3924 /* nothing to do */ 3925 return 0; 3926 } 3927 3928 /* 3929 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3930 * the compiler is expected to optimize this away. 3931 */ 3932 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3933 { 3934 trace_rcu_barrier(rcu_state.name, s, cpu, 3935 atomic_read(&rcu_state.barrier_cpu_count), done); 3936 } 3937 3938 /* 3939 * RCU callback function for rcu_barrier(). If we are last, wake 3940 * up the task executing rcu_barrier(). 3941 * 3942 * Note that the value of rcu_state.barrier_sequence must be captured 3943 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3944 * other CPUs might count the value down to zero before this CPU gets 3945 * around to invoking rcu_barrier_trace(), which might result in bogus 3946 * data from the next instance of rcu_barrier(). 3947 */ 3948 static void rcu_barrier_callback(struct rcu_head *rhp) 3949 { 3950 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3951 3952 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3953 rcu_barrier_trace(TPS("LastCB"), -1, s); 3954 complete(&rcu_state.barrier_completion); 3955 } else { 3956 rcu_barrier_trace(TPS("CB"), -1, s); 3957 } 3958 } 3959 3960 /* 3961 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3962 */ 3963 static void rcu_barrier_entrain(struct rcu_data *rdp) 3964 { 3965 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3966 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3967 bool wake_nocb = false; 3968 bool was_alldone = false; 3969 3970 lockdep_assert_held(&rcu_state.barrier_lock); 3971 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3972 return; 3973 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3974 rdp->barrier_head.func = rcu_barrier_callback; 3975 debug_rcu_head_queue(&rdp->barrier_head); 3976 rcu_nocb_lock(rdp); 3977 /* 3978 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3979 * queue. This way we don't wait for bypass timer that can reach seconds 3980 * if it's fully lazy. 3981 */ 3982 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3983 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3984 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3985 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3986 atomic_inc(&rcu_state.barrier_cpu_count); 3987 } else { 3988 debug_rcu_head_unqueue(&rdp->barrier_head); 3989 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3990 } 3991 rcu_nocb_unlock(rdp); 3992 if (wake_nocb) 3993 wake_nocb_gp(rdp, false); 3994 smp_store_release(&rdp->barrier_seq_snap, gseq); 3995 } 3996 3997 /* 3998 * Called with preemption disabled, and from cross-cpu IRQ context. 3999 */ 4000 static void rcu_barrier_handler(void *cpu_in) 4001 { 4002 uintptr_t cpu = (uintptr_t)cpu_in; 4003 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4004 4005 lockdep_assert_irqs_disabled(); 4006 WARN_ON_ONCE(cpu != rdp->cpu); 4007 WARN_ON_ONCE(cpu != smp_processor_id()); 4008 raw_spin_lock(&rcu_state.barrier_lock); 4009 rcu_barrier_entrain(rdp); 4010 raw_spin_unlock(&rcu_state.barrier_lock); 4011 } 4012 4013 /** 4014 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4015 * 4016 * Note that this primitive does not necessarily wait for an RCU grace period 4017 * to complete. For example, if there are no RCU callbacks queued anywhere 4018 * in the system, then rcu_barrier() is within its rights to return 4019 * immediately, without waiting for anything, much less an RCU grace period. 4020 */ 4021 void rcu_barrier(void) 4022 { 4023 uintptr_t cpu; 4024 unsigned long flags; 4025 unsigned long gseq; 4026 struct rcu_data *rdp; 4027 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4028 4029 rcu_barrier_trace(TPS("Begin"), -1, s); 4030 4031 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4032 mutex_lock(&rcu_state.barrier_mutex); 4033 4034 /* Did someone else do our work for us? */ 4035 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4036 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4037 smp_mb(); /* caller's subsequent code after above check. */ 4038 mutex_unlock(&rcu_state.barrier_mutex); 4039 return; 4040 } 4041 4042 /* Mark the start of the barrier operation. */ 4043 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4044 rcu_seq_start(&rcu_state.barrier_sequence); 4045 gseq = rcu_state.barrier_sequence; 4046 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4047 4048 /* 4049 * Initialize the count to two rather than to zero in order 4050 * to avoid a too-soon return to zero in case of an immediate 4051 * invocation of the just-enqueued callback (or preemption of 4052 * this task). Exclude CPU-hotplug operations to ensure that no 4053 * offline non-offloaded CPU has callbacks queued. 4054 */ 4055 init_completion(&rcu_state.barrier_completion); 4056 atomic_set(&rcu_state.barrier_cpu_count, 2); 4057 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4058 4059 /* 4060 * Force each CPU with callbacks to register a new callback. 4061 * When that callback is invoked, we will know that all of the 4062 * corresponding CPU's preceding callbacks have been invoked. 4063 */ 4064 for_each_possible_cpu(cpu) { 4065 rdp = per_cpu_ptr(&rcu_data, cpu); 4066 retry: 4067 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4068 continue; 4069 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4070 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4071 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4072 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4073 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4074 continue; 4075 } 4076 if (!rcu_rdp_cpu_online(rdp)) { 4077 rcu_barrier_entrain(rdp); 4078 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4079 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4080 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4081 continue; 4082 } 4083 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4084 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4085 schedule_timeout_uninterruptible(1); 4086 goto retry; 4087 } 4088 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4089 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4090 } 4091 4092 /* 4093 * Now that we have an rcu_barrier_callback() callback on each 4094 * CPU, and thus each counted, remove the initial count. 4095 */ 4096 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4097 complete(&rcu_state.barrier_completion); 4098 4099 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4100 wait_for_completion(&rcu_state.barrier_completion); 4101 4102 /* Mark the end of the barrier operation. */ 4103 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4104 rcu_seq_end(&rcu_state.barrier_sequence); 4105 gseq = rcu_state.barrier_sequence; 4106 for_each_possible_cpu(cpu) { 4107 rdp = per_cpu_ptr(&rcu_data, cpu); 4108 4109 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4110 } 4111 4112 /* Other rcu_barrier() invocations can now safely proceed. */ 4113 mutex_unlock(&rcu_state.barrier_mutex); 4114 } 4115 EXPORT_SYMBOL_GPL(rcu_barrier); 4116 4117 static unsigned long rcu_barrier_last_throttle; 4118 4119 /** 4120 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 4121 * 4122 * This can be thought of as guard rails around rcu_barrier() that 4123 * permits unrestricted userspace use, at least assuming the hardware's 4124 * try_cmpxchg() is robust. There will be at most one call per second to 4125 * rcu_barrier() system-wide from use of this function, which means that 4126 * callers might needlessly wait a second or three. 4127 * 4128 * This is intended for use by test suites to avoid OOM by flushing RCU 4129 * callbacks from the previous test before starting the next. See the 4130 * rcutree.do_rcu_barrier module parameter for more information. 4131 * 4132 * Why not simply make rcu_barrier() more scalable? That might be 4133 * the eventual endpoint, but let's keep it simple for the time being. 4134 * Note that the module parameter infrastructure serializes calls to a 4135 * given .set() function, but should concurrent .set() invocation ever be 4136 * possible, we are ready! 4137 */ 4138 static void rcu_barrier_throttled(void) 4139 { 4140 unsigned long j = jiffies; 4141 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 4142 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4143 4144 while (time_in_range(j, old, old + HZ / 16) || 4145 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 4146 schedule_timeout_idle(HZ / 16); 4147 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4148 smp_mb(); /* caller's subsequent code after above check. */ 4149 return; 4150 } 4151 j = jiffies; 4152 old = READ_ONCE(rcu_barrier_last_throttle); 4153 } 4154 rcu_barrier(); 4155 } 4156 4157 /* 4158 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 4159 * request arrives. We insist on a true value to allow for possible 4160 * future expansion. 4161 */ 4162 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 4163 { 4164 bool b; 4165 int ret; 4166 4167 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 4168 return -EAGAIN; 4169 ret = kstrtobool(val, &b); 4170 if (!ret && b) { 4171 atomic_inc((atomic_t *)kp->arg); 4172 rcu_barrier_throttled(); 4173 atomic_dec((atomic_t *)kp->arg); 4174 } 4175 return ret; 4176 } 4177 4178 /* 4179 * Output the number of outstanding rcutree.do_rcu_barrier requests. 4180 */ 4181 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 4182 { 4183 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 4184 } 4185 4186 static const struct kernel_param_ops do_rcu_barrier_ops = { 4187 .set = param_set_do_rcu_barrier, 4188 .get = param_get_do_rcu_barrier, 4189 }; 4190 static atomic_t do_rcu_barrier; 4191 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 4192 4193 /* 4194 * Compute the mask of online CPUs for the specified rcu_node structure. 4195 * This will not be stable unless the rcu_node structure's ->lock is 4196 * held, but the bit corresponding to the current CPU will be stable 4197 * in most contexts. 4198 */ 4199 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4200 { 4201 return READ_ONCE(rnp->qsmaskinitnext); 4202 } 4203 4204 /* 4205 * Is the CPU corresponding to the specified rcu_data structure online 4206 * from RCU's perspective? This perspective is given by that structure's 4207 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4208 */ 4209 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4210 { 4211 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4212 } 4213 4214 bool rcu_cpu_online(int cpu) 4215 { 4216 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4217 4218 return rcu_rdp_cpu_online(rdp); 4219 } 4220 4221 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4222 4223 /* 4224 * Is the current CPU online as far as RCU is concerned? 4225 * 4226 * Disable preemption to avoid false positives that could otherwise 4227 * happen due to the current CPU number being sampled, this task being 4228 * preempted, its old CPU being taken offline, resuming on some other CPU, 4229 * then determining that its old CPU is now offline. 4230 * 4231 * Disable checking if in an NMI handler because we cannot safely 4232 * report errors from NMI handlers anyway. In addition, it is OK to use 4233 * RCU on an offline processor during initial boot, hence the check for 4234 * rcu_scheduler_fully_active. 4235 */ 4236 bool rcu_lockdep_current_cpu_online(void) 4237 { 4238 struct rcu_data *rdp; 4239 bool ret = false; 4240 4241 if (in_nmi() || !rcu_scheduler_fully_active) 4242 return true; 4243 preempt_disable_notrace(); 4244 rdp = this_cpu_ptr(&rcu_data); 4245 /* 4246 * Strictly, we care here about the case where the current CPU is 4247 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 4248 * not being up to date. So arch_spin_is_locked() might have a 4249 * false positive if it's held by some *other* CPU, but that's 4250 * OK because that just means a false *negative* on the warning. 4251 */ 4252 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4253 ret = true; 4254 preempt_enable_notrace(); 4255 return ret; 4256 } 4257 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4258 4259 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4260 4261 // Has rcu_init() been invoked? This is used (for example) to determine 4262 // whether spinlocks may be acquired safely. 4263 static bool rcu_init_invoked(void) 4264 { 4265 return !!rcu_state.n_online_cpus; 4266 } 4267 4268 /* 4269 * All CPUs for the specified rcu_node structure have gone offline, 4270 * and all tasks that were preempted within an RCU read-side critical 4271 * section while running on one of those CPUs have since exited their RCU 4272 * read-side critical section. Some other CPU is reporting this fact with 4273 * the specified rcu_node structure's ->lock held and interrupts disabled. 4274 * This function therefore goes up the tree of rcu_node structures, 4275 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4276 * the leaf rcu_node structure's ->qsmaskinit field has already been 4277 * updated. 4278 * 4279 * This function does check that the specified rcu_node structure has 4280 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4281 * prematurely. That said, invoking it after the fact will cost you 4282 * a needless lock acquisition. So once it has done its work, don't 4283 * invoke it again. 4284 */ 4285 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4286 { 4287 long mask; 4288 struct rcu_node *rnp = rnp_leaf; 4289 4290 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4291 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4292 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4293 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4294 return; 4295 for (;;) { 4296 mask = rnp->grpmask; 4297 rnp = rnp->parent; 4298 if (!rnp) 4299 break; 4300 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4301 rnp->qsmaskinit &= ~mask; 4302 /* Between grace periods, so better already be zero! */ 4303 WARN_ON_ONCE(rnp->qsmask); 4304 if (rnp->qsmaskinit) { 4305 raw_spin_unlock_rcu_node(rnp); 4306 /* irqs remain disabled. */ 4307 return; 4308 } 4309 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4310 } 4311 } 4312 4313 /* 4314 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4315 * first CPU in a given leaf rcu_node structure coming online. The caller 4316 * must hold the corresponding leaf rcu_node ->lock with interrupts 4317 * disabled. 4318 */ 4319 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4320 { 4321 long mask; 4322 long oldmask; 4323 struct rcu_node *rnp = rnp_leaf; 4324 4325 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4326 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4327 for (;;) { 4328 mask = rnp->grpmask; 4329 rnp = rnp->parent; 4330 if (rnp == NULL) 4331 return; 4332 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4333 oldmask = rnp->qsmaskinit; 4334 rnp->qsmaskinit |= mask; 4335 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4336 if (oldmask) 4337 return; 4338 } 4339 } 4340 4341 /* 4342 * Do boot-time initialization of a CPU's per-CPU RCU data. 4343 */ 4344 static void __init 4345 rcu_boot_init_percpu_data(int cpu) 4346 { 4347 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4348 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4349 4350 /* Set up local state, ensuring consistent view of global state. */ 4351 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4352 INIT_WORK(&rdp->strict_work, strict_work_handler); 4353 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4354 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4355 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4356 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4357 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4358 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4359 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4360 rdp->last_sched_clock = jiffies; 4361 rdp->cpu = cpu; 4362 rcu_boot_init_nocb_percpu_data(rdp); 4363 } 4364 4365 /* 4366 * Invoked early in the CPU-online process, when pretty much all services 4367 * are available. The incoming CPU is not present. 4368 * 4369 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4370 * offline event can be happening at a given time. Note also that we can 4371 * accept some slop in the rsp->gp_seq access due to the fact that this 4372 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4373 * And any offloaded callbacks are being numbered elsewhere. 4374 */ 4375 int rcutree_prepare_cpu(unsigned int cpu) 4376 { 4377 unsigned long flags; 4378 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4379 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4380 struct rcu_node *rnp = rcu_get_root(); 4381 4382 /* Set up local state, ensuring consistent view of global state. */ 4383 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4384 rdp->qlen_last_fqs_check = 0; 4385 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4386 rdp->blimit = blimit; 4387 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4388 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4389 4390 /* 4391 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4392 * (re-)initialized. 4393 */ 4394 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4395 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4396 4397 /* 4398 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4399 * propagation up the rcu_node tree will happen at the beginning 4400 * of the next grace period. 4401 */ 4402 rnp = rdp->mynode; 4403 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4404 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4405 rdp->gp_seq_needed = rdp->gp_seq; 4406 rdp->cpu_no_qs.b.norm = true; 4407 rdp->core_needs_qs = false; 4408 rdp->rcu_iw_pending = false; 4409 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4410 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4411 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4412 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4413 rcu_spawn_one_boost_kthread(rnp); 4414 rcu_spawn_cpu_nocb_kthread(cpu); 4415 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4416 4417 return 0; 4418 } 4419 4420 /* 4421 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4422 */ 4423 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4424 { 4425 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4426 4427 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4428 } 4429 4430 /* 4431 * Has the specified (known valid) CPU ever been fully online? 4432 */ 4433 bool rcu_cpu_beenfullyonline(int cpu) 4434 { 4435 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4436 4437 return smp_load_acquire(&rdp->beenonline); 4438 } 4439 4440 /* 4441 * Near the end of the CPU-online process. Pretty much all services 4442 * enabled, and the CPU is now very much alive. 4443 */ 4444 int rcutree_online_cpu(unsigned int cpu) 4445 { 4446 unsigned long flags; 4447 struct rcu_data *rdp; 4448 struct rcu_node *rnp; 4449 4450 rdp = per_cpu_ptr(&rcu_data, cpu); 4451 rnp = rdp->mynode; 4452 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4453 rnp->ffmask |= rdp->grpmask; 4454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4455 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4456 return 0; /* Too early in boot for scheduler work. */ 4457 sync_sched_exp_online_cleanup(cpu); 4458 rcutree_affinity_setting(cpu, -1); 4459 4460 // Stop-machine done, so allow nohz_full to disable tick. 4461 tick_dep_clear(TICK_DEP_BIT_RCU); 4462 return 0; 4463 } 4464 4465 /* 4466 * Mark the specified CPU as being online so that subsequent grace periods 4467 * (both expedited and normal) will wait on it. Note that this means that 4468 * incoming CPUs are not allowed to use RCU read-side critical sections 4469 * until this function is called. Failing to observe this restriction 4470 * will result in lockdep splats. 4471 * 4472 * Note that this function is special in that it is invoked directly 4473 * from the incoming CPU rather than from the cpuhp_step mechanism. 4474 * This is because this function must be invoked at a precise location. 4475 * This incoming CPU must not have enabled interrupts yet. 4476 * 4477 * This mirrors the effects of rcutree_report_cpu_dead(). 4478 */ 4479 void rcutree_report_cpu_starting(unsigned int cpu) 4480 { 4481 unsigned long mask; 4482 struct rcu_data *rdp; 4483 struct rcu_node *rnp; 4484 bool newcpu; 4485 4486 lockdep_assert_irqs_disabled(); 4487 rdp = per_cpu_ptr(&rcu_data, cpu); 4488 if (rdp->cpu_started) 4489 return; 4490 rdp->cpu_started = true; 4491 4492 rnp = rdp->mynode; 4493 mask = rdp->grpmask; 4494 arch_spin_lock(&rcu_state.ofl_lock); 4495 rcu_dynticks_eqs_online(); 4496 raw_spin_lock(&rcu_state.barrier_lock); 4497 raw_spin_lock_rcu_node(rnp); 4498 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4499 raw_spin_unlock(&rcu_state.barrier_lock); 4500 newcpu = !(rnp->expmaskinitnext & mask); 4501 rnp->expmaskinitnext |= mask; 4502 /* Allow lockless access for expedited grace periods. */ 4503 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4504 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4505 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4506 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4507 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4508 4509 /* An incoming CPU should never be blocking a grace period. */ 4510 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4511 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4512 unsigned long flags; 4513 4514 local_irq_save(flags); 4515 rcu_disable_urgency_upon_qs(rdp); 4516 /* Report QS -after- changing ->qsmaskinitnext! */ 4517 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4518 } else { 4519 raw_spin_unlock_rcu_node(rnp); 4520 } 4521 arch_spin_unlock(&rcu_state.ofl_lock); 4522 smp_store_release(&rdp->beenonline, true); 4523 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4524 } 4525 4526 /* 4527 * The outgoing function has no further need of RCU, so remove it from 4528 * the rcu_node tree's ->qsmaskinitnext bit masks. 4529 * 4530 * Note that this function is special in that it is invoked directly 4531 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4532 * This is because this function must be invoked at a precise location. 4533 * 4534 * This mirrors the effect of rcutree_report_cpu_starting(). 4535 */ 4536 void rcutree_report_cpu_dead(void) 4537 { 4538 unsigned long flags; 4539 unsigned long mask; 4540 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4541 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4542 4543 /* 4544 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 4545 * may introduce a new READ-side while it is actually off the QS masks. 4546 */ 4547 lockdep_assert_irqs_disabled(); 4548 // Do any dangling deferred wakeups. 4549 do_nocb_deferred_wakeup(rdp); 4550 4551 rcu_preempt_deferred_qs(current); 4552 4553 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4554 mask = rdp->grpmask; 4555 arch_spin_lock(&rcu_state.ofl_lock); 4556 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4557 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4558 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4559 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4560 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4561 rcu_disable_urgency_upon_qs(rdp); 4562 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4563 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4564 } 4565 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4566 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4567 arch_spin_unlock(&rcu_state.ofl_lock); 4568 rdp->cpu_started = false; 4569 } 4570 4571 #ifdef CONFIG_HOTPLUG_CPU 4572 /* 4573 * The outgoing CPU has just passed through the dying-idle state, and we 4574 * are being invoked from the CPU that was IPIed to continue the offline 4575 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4576 */ 4577 void rcutree_migrate_callbacks(int cpu) 4578 { 4579 unsigned long flags; 4580 struct rcu_data *my_rdp; 4581 struct rcu_node *my_rnp; 4582 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4583 bool needwake; 4584 4585 if (rcu_rdp_is_offloaded(rdp) || 4586 rcu_segcblist_empty(&rdp->cblist)) 4587 return; /* No callbacks to migrate. */ 4588 4589 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4590 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4591 rcu_barrier_entrain(rdp); 4592 my_rdp = this_cpu_ptr(&rcu_data); 4593 my_rnp = my_rdp->mynode; 4594 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4595 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4596 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4597 /* Leverage recent GPs and set GP for new callbacks. */ 4598 needwake = rcu_advance_cbs(my_rnp, rdp) || 4599 rcu_advance_cbs(my_rnp, my_rdp); 4600 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4601 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4602 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4603 rcu_segcblist_disable(&rdp->cblist); 4604 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4605 check_cb_ovld_locked(my_rdp, my_rnp); 4606 if (rcu_rdp_is_offloaded(my_rdp)) { 4607 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4608 __call_rcu_nocb_wake(my_rdp, true, flags); 4609 } else { 4610 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4611 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4612 } 4613 if (needwake) 4614 rcu_gp_kthread_wake(); 4615 lockdep_assert_irqs_enabled(); 4616 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4617 !rcu_segcblist_empty(&rdp->cblist), 4618 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4619 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4620 rcu_segcblist_first_cb(&rdp->cblist)); 4621 } 4622 4623 /* 4624 * The CPU has been completely removed, and some other CPU is reporting 4625 * this fact from process context. Do the remainder of the cleanup. 4626 * There can only be one CPU hotplug operation at a time, so no need for 4627 * explicit locking. 4628 */ 4629 int rcutree_dead_cpu(unsigned int cpu) 4630 { 4631 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4632 // Stop-machine done, so allow nohz_full to disable tick. 4633 tick_dep_clear(TICK_DEP_BIT_RCU); 4634 return 0; 4635 } 4636 4637 /* 4638 * Near the end of the offline process. Trace the fact that this CPU 4639 * is going offline. 4640 */ 4641 int rcutree_dying_cpu(unsigned int cpu) 4642 { 4643 bool blkd; 4644 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4645 struct rcu_node *rnp = rdp->mynode; 4646 4647 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4648 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4649 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4650 return 0; 4651 } 4652 4653 /* 4654 * Near the beginning of the process. The CPU is still very much alive 4655 * with pretty much all services enabled. 4656 */ 4657 int rcutree_offline_cpu(unsigned int cpu) 4658 { 4659 unsigned long flags; 4660 struct rcu_data *rdp; 4661 struct rcu_node *rnp; 4662 4663 rdp = per_cpu_ptr(&rcu_data, cpu); 4664 rnp = rdp->mynode; 4665 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4666 rnp->ffmask &= ~rdp->grpmask; 4667 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4668 4669 rcutree_affinity_setting(cpu, cpu); 4670 4671 // nohz_full CPUs need the tick for stop-machine to work quickly 4672 tick_dep_set(TICK_DEP_BIT_RCU); 4673 return 0; 4674 } 4675 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 4676 4677 /* 4678 * On non-huge systems, use expedited RCU grace periods to make suspend 4679 * and hibernation run faster. 4680 */ 4681 static int rcu_pm_notify(struct notifier_block *self, 4682 unsigned long action, void *hcpu) 4683 { 4684 switch (action) { 4685 case PM_HIBERNATION_PREPARE: 4686 case PM_SUSPEND_PREPARE: 4687 rcu_async_hurry(); 4688 rcu_expedite_gp(); 4689 break; 4690 case PM_POST_HIBERNATION: 4691 case PM_POST_SUSPEND: 4692 rcu_unexpedite_gp(); 4693 rcu_async_relax(); 4694 break; 4695 default: 4696 break; 4697 } 4698 return NOTIFY_OK; 4699 } 4700 4701 #ifdef CONFIG_RCU_EXP_KTHREAD 4702 struct kthread_worker *rcu_exp_gp_kworker; 4703 struct kthread_worker *rcu_exp_par_gp_kworker; 4704 4705 static void __init rcu_start_exp_gp_kworkers(void) 4706 { 4707 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4708 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4709 struct sched_param param = { .sched_priority = kthread_prio }; 4710 4711 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4712 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4713 pr_err("Failed to create %s!\n", gp_kworker_name); 4714 return; 4715 } 4716 4717 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4718 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4719 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4720 kthread_destroy_worker(rcu_exp_gp_kworker); 4721 return; 4722 } 4723 4724 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4725 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4726 ¶m); 4727 } 4728 4729 static inline void rcu_alloc_par_gp_wq(void) 4730 { 4731 } 4732 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4733 struct workqueue_struct *rcu_par_gp_wq; 4734 4735 static void __init rcu_start_exp_gp_kworkers(void) 4736 { 4737 } 4738 4739 static inline void rcu_alloc_par_gp_wq(void) 4740 { 4741 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4742 WARN_ON(!rcu_par_gp_wq); 4743 } 4744 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4745 4746 /* 4747 * Spawn the kthreads that handle RCU's grace periods. 4748 */ 4749 static int __init rcu_spawn_gp_kthread(void) 4750 { 4751 unsigned long flags; 4752 struct rcu_node *rnp; 4753 struct sched_param sp; 4754 struct task_struct *t; 4755 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4756 4757 rcu_scheduler_fully_active = 1; 4758 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4759 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4760 return 0; 4761 if (kthread_prio) { 4762 sp.sched_priority = kthread_prio; 4763 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4764 } 4765 rnp = rcu_get_root(); 4766 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4767 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4768 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4769 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4770 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4771 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4772 wake_up_process(t); 4773 /* This is a pre-SMP initcall, we expect a single CPU */ 4774 WARN_ON(num_online_cpus() > 1); 4775 /* 4776 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4777 * due to rcu_scheduler_fully_active. 4778 */ 4779 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4780 rcu_spawn_one_boost_kthread(rdp->mynode); 4781 rcu_spawn_core_kthreads(); 4782 /* Create kthread worker for expedited GPs */ 4783 rcu_start_exp_gp_kworkers(); 4784 return 0; 4785 } 4786 early_initcall(rcu_spawn_gp_kthread); 4787 4788 /* 4789 * This function is invoked towards the end of the scheduler's 4790 * initialization process. Before this is called, the idle task might 4791 * contain synchronous grace-period primitives (during which time, this idle 4792 * task is booting the system, and such primitives are no-ops). After this 4793 * function is called, any synchronous grace-period primitives are run as 4794 * expedited, with the requesting task driving the grace period forward. 4795 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4796 * runtime RCU functionality. 4797 */ 4798 void rcu_scheduler_starting(void) 4799 { 4800 unsigned long flags; 4801 struct rcu_node *rnp; 4802 4803 WARN_ON(num_online_cpus() != 1); 4804 WARN_ON(nr_context_switches() > 0); 4805 rcu_test_sync_prims(); 4806 4807 // Fix up the ->gp_seq counters. 4808 local_irq_save(flags); 4809 rcu_for_each_node_breadth_first(rnp) 4810 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4811 local_irq_restore(flags); 4812 4813 // Switch out of early boot mode. 4814 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4815 rcu_test_sync_prims(); 4816 } 4817 4818 /* 4819 * Helper function for rcu_init() that initializes the rcu_state structure. 4820 */ 4821 static void __init rcu_init_one(void) 4822 { 4823 static const char * const buf[] = RCU_NODE_NAME_INIT; 4824 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4825 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4826 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4827 4828 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4829 int cpustride = 1; 4830 int i; 4831 int j; 4832 struct rcu_node *rnp; 4833 4834 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4835 4836 /* Silence gcc 4.8 false positive about array index out of range. */ 4837 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4838 panic("rcu_init_one: rcu_num_lvls out of range"); 4839 4840 /* Initialize the level-tracking arrays. */ 4841 4842 for (i = 1; i < rcu_num_lvls; i++) 4843 rcu_state.level[i] = 4844 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4845 rcu_init_levelspread(levelspread, num_rcu_lvl); 4846 4847 /* Initialize the elements themselves, starting from the leaves. */ 4848 4849 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4850 cpustride *= levelspread[i]; 4851 rnp = rcu_state.level[i]; 4852 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4853 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4854 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4855 &rcu_node_class[i], buf[i]); 4856 raw_spin_lock_init(&rnp->fqslock); 4857 lockdep_set_class_and_name(&rnp->fqslock, 4858 &rcu_fqs_class[i], fqs[i]); 4859 rnp->gp_seq = rcu_state.gp_seq; 4860 rnp->gp_seq_needed = rcu_state.gp_seq; 4861 rnp->completedqs = rcu_state.gp_seq; 4862 rnp->qsmask = 0; 4863 rnp->qsmaskinit = 0; 4864 rnp->grplo = j * cpustride; 4865 rnp->grphi = (j + 1) * cpustride - 1; 4866 if (rnp->grphi >= nr_cpu_ids) 4867 rnp->grphi = nr_cpu_ids - 1; 4868 if (i == 0) { 4869 rnp->grpnum = 0; 4870 rnp->grpmask = 0; 4871 rnp->parent = NULL; 4872 } else { 4873 rnp->grpnum = j % levelspread[i - 1]; 4874 rnp->grpmask = BIT(rnp->grpnum); 4875 rnp->parent = rcu_state.level[i - 1] + 4876 j / levelspread[i - 1]; 4877 } 4878 rnp->level = i; 4879 INIT_LIST_HEAD(&rnp->blkd_tasks); 4880 rcu_init_one_nocb(rnp); 4881 init_waitqueue_head(&rnp->exp_wq[0]); 4882 init_waitqueue_head(&rnp->exp_wq[1]); 4883 init_waitqueue_head(&rnp->exp_wq[2]); 4884 init_waitqueue_head(&rnp->exp_wq[3]); 4885 spin_lock_init(&rnp->exp_lock); 4886 mutex_init(&rnp->boost_kthread_mutex); 4887 raw_spin_lock_init(&rnp->exp_poll_lock); 4888 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4889 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4890 } 4891 } 4892 4893 init_swait_queue_head(&rcu_state.gp_wq); 4894 init_swait_queue_head(&rcu_state.expedited_wq); 4895 rnp = rcu_first_leaf_node(); 4896 for_each_possible_cpu(i) { 4897 while (i > rnp->grphi) 4898 rnp++; 4899 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4900 rcu_boot_init_percpu_data(i); 4901 } 4902 } 4903 4904 /* 4905 * Force priority from the kernel command-line into range. 4906 */ 4907 static void __init sanitize_kthread_prio(void) 4908 { 4909 int kthread_prio_in = kthread_prio; 4910 4911 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4912 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4913 kthread_prio = 2; 4914 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4915 kthread_prio = 1; 4916 else if (kthread_prio < 0) 4917 kthread_prio = 0; 4918 else if (kthread_prio > 99) 4919 kthread_prio = 99; 4920 4921 if (kthread_prio != kthread_prio_in) 4922 pr_alert("%s: Limited prio to %d from %d\n", 4923 __func__, kthread_prio, kthread_prio_in); 4924 } 4925 4926 /* 4927 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4928 * replace the definitions in tree.h because those are needed to size 4929 * the ->node array in the rcu_state structure. 4930 */ 4931 void rcu_init_geometry(void) 4932 { 4933 ulong d; 4934 int i; 4935 static unsigned long old_nr_cpu_ids; 4936 int rcu_capacity[RCU_NUM_LVLS]; 4937 static bool initialized; 4938 4939 if (initialized) { 4940 /* 4941 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4942 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4943 */ 4944 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4945 return; 4946 } 4947 4948 old_nr_cpu_ids = nr_cpu_ids; 4949 initialized = true; 4950 4951 /* 4952 * Initialize any unspecified boot parameters. 4953 * The default values of jiffies_till_first_fqs and 4954 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4955 * value, which is a function of HZ, then adding one for each 4956 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4957 */ 4958 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4959 if (jiffies_till_first_fqs == ULONG_MAX) 4960 jiffies_till_first_fqs = d; 4961 if (jiffies_till_next_fqs == ULONG_MAX) 4962 jiffies_till_next_fqs = d; 4963 adjust_jiffies_till_sched_qs(); 4964 4965 /* If the compile-time values are accurate, just leave. */ 4966 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4967 nr_cpu_ids == NR_CPUS) 4968 return; 4969 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4970 rcu_fanout_leaf, nr_cpu_ids); 4971 4972 /* 4973 * The boot-time rcu_fanout_leaf parameter must be at least two 4974 * and cannot exceed the number of bits in the rcu_node masks. 4975 * Complain and fall back to the compile-time values if this 4976 * limit is exceeded. 4977 */ 4978 if (rcu_fanout_leaf < 2 || 4979 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4980 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4981 WARN_ON(1); 4982 return; 4983 } 4984 4985 /* 4986 * Compute number of nodes that can be handled an rcu_node tree 4987 * with the given number of levels. 4988 */ 4989 rcu_capacity[0] = rcu_fanout_leaf; 4990 for (i = 1; i < RCU_NUM_LVLS; i++) 4991 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4992 4993 /* 4994 * The tree must be able to accommodate the configured number of CPUs. 4995 * If this limit is exceeded, fall back to the compile-time values. 4996 */ 4997 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4998 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4999 WARN_ON(1); 5000 return; 5001 } 5002 5003 /* Calculate the number of levels in the tree. */ 5004 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 5005 } 5006 rcu_num_lvls = i + 1; 5007 5008 /* Calculate the number of rcu_nodes at each level of the tree. */ 5009 for (i = 0; i < rcu_num_lvls; i++) { 5010 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 5011 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 5012 } 5013 5014 /* Calculate the total number of rcu_node structures. */ 5015 rcu_num_nodes = 0; 5016 for (i = 0; i < rcu_num_lvls; i++) 5017 rcu_num_nodes += num_rcu_lvl[i]; 5018 } 5019 5020 /* 5021 * Dump out the structure of the rcu_node combining tree associated 5022 * with the rcu_state structure. 5023 */ 5024 static void __init rcu_dump_rcu_node_tree(void) 5025 { 5026 int level = 0; 5027 struct rcu_node *rnp; 5028 5029 pr_info("rcu_node tree layout dump\n"); 5030 pr_info(" "); 5031 rcu_for_each_node_breadth_first(rnp) { 5032 if (rnp->level != level) { 5033 pr_cont("\n"); 5034 pr_info(" "); 5035 level = rnp->level; 5036 } 5037 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 5038 } 5039 pr_cont("\n"); 5040 } 5041 5042 struct workqueue_struct *rcu_gp_wq; 5043 5044 static void __init kfree_rcu_batch_init(void) 5045 { 5046 int cpu; 5047 int i, j; 5048 struct shrinker *kfree_rcu_shrinker; 5049 5050 /* Clamp it to [0:100] seconds interval. */ 5051 if (rcu_delay_page_cache_fill_msec < 0 || 5052 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 5053 5054 rcu_delay_page_cache_fill_msec = 5055 clamp(rcu_delay_page_cache_fill_msec, 0, 5056 (int) (100 * MSEC_PER_SEC)); 5057 5058 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 5059 rcu_delay_page_cache_fill_msec); 5060 } 5061 5062 for_each_possible_cpu(cpu) { 5063 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 5064 5065 for (i = 0; i < KFREE_N_BATCHES; i++) { 5066 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 5067 krcp->krw_arr[i].krcp = krcp; 5068 5069 for (j = 0; j < FREE_N_CHANNELS; j++) 5070 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 5071 } 5072 5073 for (i = 0; i < FREE_N_CHANNELS; i++) 5074 INIT_LIST_HEAD(&krcp->bulk_head[i]); 5075 5076 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 5077 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 5078 krcp->initialized = true; 5079 } 5080 5081 kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree"); 5082 if (!kfree_rcu_shrinker) { 5083 pr_err("Failed to allocate kfree_rcu() shrinker!\n"); 5084 return; 5085 } 5086 5087 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; 5088 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; 5089 5090 shrinker_register(kfree_rcu_shrinker); 5091 } 5092 5093 void __init rcu_init(void) 5094 { 5095 int cpu = smp_processor_id(); 5096 5097 rcu_early_boot_tests(); 5098 5099 kfree_rcu_batch_init(); 5100 rcu_bootup_announce(); 5101 sanitize_kthread_prio(); 5102 rcu_init_geometry(); 5103 rcu_init_one(); 5104 if (dump_tree) 5105 rcu_dump_rcu_node_tree(); 5106 if (use_softirq) 5107 open_softirq(RCU_SOFTIRQ, rcu_core_si); 5108 5109 /* 5110 * We don't need protection against CPU-hotplug here because 5111 * this is called early in boot, before either interrupts 5112 * or the scheduler are operational. 5113 */ 5114 pm_notifier(rcu_pm_notify, 0); 5115 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 5116 rcutree_prepare_cpu(cpu); 5117 rcutree_report_cpu_starting(cpu); 5118 rcutree_online_cpu(cpu); 5119 5120 /* Create workqueue for Tree SRCU and for expedited GPs. */ 5121 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 5122 WARN_ON(!rcu_gp_wq); 5123 rcu_alloc_par_gp_wq(); 5124 5125 /* Fill in default value for rcutree.qovld boot parameter. */ 5126 /* -After- the rcu_node ->lock fields are initialized! */ 5127 if (qovld < 0) 5128 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5129 else 5130 qovld_calc = qovld; 5131 5132 // Kick-start in case any polled grace periods started early. 5133 (void)start_poll_synchronize_rcu_expedited(); 5134 5135 rcu_test_sync_prims(); 5136 } 5137 5138 #include "tree_stall.h" 5139 #include "tree_exp.h" 5140 #include "tree_nocb.h" 5141 #include "tree_plugin.h" 5142