xref: /linux/kernel/rcu/tree.c (revision ad61dd303a0f2439bb104349e2d2ec91a3010ce0)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * In order to export the rcu_state name to the tracing tools, it
74  * needs to be added in the __tracepoint_string section.
75  * This requires defining a separate variable tp_<sname>_varname
76  * that points to the string being used, and this will allow
77  * the tracing userspace tools to be able to decipher the string
78  * address to the matching string.
79  */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89 
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 	.level = { &sname##_state.node[0] }, \
95 	.rda = &sname##_data, \
96 	.call = cr, \
97 	.gp_state = RCU_GP_IDLE, \
98 	.gpnum = 0UL - 300UL, \
99 	.completed = 0UL - 300UL, \
100 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 	.orphan_donetail = &sname##_state.orphan_donelist, \
103 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 	.name = RCU_STATE_NAME(sname), \
105 	.abbr = sabbr, \
106 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
107 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
108 }
109 
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112 
113 static struct rcu_state *const rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115 
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 /* Number of rcu_nodes at specified level. */
127 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly;
131 
132 /*
133  * The rcu_scheduler_active variable is initialized to the value
134  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
136  * RCU can assume that there is but one task, allowing RCU to (for example)
137  * optimize synchronize_rcu() to a simple barrier().  When this variable
138  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139  * to detect real grace periods.  This variable is also used to suppress
140  * boot-time false positives from lockdep-RCU error checking.  Finally, it
141  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142  * is fully initialized, including all of its kthreads having been spawned.
143  */
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146 
147 /*
148  * The rcu_scheduler_fully_active variable transitions from zero to one
149  * during the early_initcall() processing, which is after the scheduler
150  * is capable of creating new tasks.  So RCU processing (for example,
151  * creating tasks for RCU priority boosting) must be delayed until after
152  * rcu_scheduler_fully_active transitions from zero to one.  We also
153  * currently delay invocation of any RCU callbacks until after this point.
154  *
155  * It might later prove better for people registering RCU callbacks during
156  * early boot to take responsibility for these callbacks, but one step at
157  * a time.
158  */
159 static int rcu_scheduler_fully_active __read_mostly;
160 
161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 static void invoke_rcu_core(void);
165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166 static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 			       struct rcu_data *rdp, bool wake);
168 static void sync_sched_exp_online_cleanup(int cpu);
169 
170 /* rcuc/rcub kthread realtime priority */
171 #ifdef CONFIG_RCU_KTHREAD_PRIO
172 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
173 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
174 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
176 module_param(kthread_prio, int, 0644);
177 
178 /* Delay in jiffies for grace-period initialization delays, debug only. */
179 
180 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
181 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
182 module_param(gp_preinit_delay, int, 0644);
183 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184 static const int gp_preinit_delay;
185 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186 
187 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
188 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
189 module_param(gp_init_delay, int, 0644);
190 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191 static const int gp_init_delay;
192 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
193 
194 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
195 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
196 module_param(gp_cleanup_delay, int, 0644);
197 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198 static const int gp_cleanup_delay;
199 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
200 
201 /*
202  * Number of grace periods between delays, normalized by the duration of
203  * the delay.  The longer the the delay, the more the grace periods between
204  * each delay.  The reason for this normalization is that it means that,
205  * for non-zero delays, the overall slowdown of grace periods is constant
206  * regardless of the duration of the delay.  This arrangement balances
207  * the need for long delays to increase some race probabilities with the
208  * need for fast grace periods to increase other race probabilities.
209  */
210 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
211 
212 /*
213  * Track the rcutorture test sequence number and the update version
214  * number within a given test.  The rcutorture_testseq is incremented
215  * on every rcutorture module load and unload, so has an odd value
216  * when a test is running.  The rcutorture_vernum is set to zero
217  * when rcutorture starts and is incremented on each rcutorture update.
218  * These variables enable correlating rcutorture output with the
219  * RCU tracing information.
220  */
221 unsigned long rcutorture_testseq;
222 unsigned long rcutorture_vernum;
223 
224 /*
225  * Compute the mask of online CPUs for the specified rcu_node structure.
226  * This will not be stable unless the rcu_node structure's ->lock is
227  * held, but the bit corresponding to the current CPU will be stable
228  * in most contexts.
229  */
230 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
231 {
232 	return READ_ONCE(rnp->qsmaskinitnext);
233 }
234 
235 /*
236  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
237  * permit this function to be invoked without holding the root rcu_node
238  * structure's ->lock, but of course results can be subject to change.
239  */
240 static int rcu_gp_in_progress(struct rcu_state *rsp)
241 {
242 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
243 }
244 
245 /*
246  * Note a quiescent state.  Because we do not need to know
247  * how many quiescent states passed, just if there was at least
248  * one since the start of the grace period, this just sets a flag.
249  * The caller must have disabled preemption.
250  */
251 void rcu_sched_qs(void)
252 {
253 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
254 		return;
255 	trace_rcu_grace_period(TPS("rcu_sched"),
256 			       __this_cpu_read(rcu_sched_data.gpnum),
257 			       TPS("cpuqs"));
258 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
259 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
260 		return;
261 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
262 	rcu_report_exp_rdp(&rcu_sched_state,
263 			   this_cpu_ptr(&rcu_sched_data), true);
264 }
265 
266 void rcu_bh_qs(void)
267 {
268 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
269 		trace_rcu_grace_period(TPS("rcu_bh"),
270 				       __this_cpu_read(rcu_bh_data.gpnum),
271 				       TPS("cpuqs"));
272 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
273 	}
274 }
275 
276 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
277 
278 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
279 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
280 	.dynticks = ATOMIC_INIT(1),
281 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
282 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
283 	.dynticks_idle = ATOMIC_INIT(1),
284 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
285 };
286 
287 /*
288  * There's a few places, currently just in the tracing infrastructure,
289  * that uses rcu_irq_enter() to make sure RCU is watching. But there's
290  * a small location where that will not even work. In those cases
291  * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
292  * can be called.
293  */
294 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
295 
296 bool rcu_irq_enter_disabled(void)
297 {
298 	return this_cpu_read(disable_rcu_irq_enter);
299 }
300 
301 /*
302  * Record entry into an extended quiescent state.  This is only to be
303  * called when not already in an extended quiescent state.
304  */
305 static void rcu_dynticks_eqs_enter(void)
306 {
307 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
308 	int special;
309 
310 	/*
311 	 * CPUs seeing atomic_inc_return() must see prior RCU read-side
312 	 * critical sections, and we also must force ordering with the
313 	 * next idle sojourn.
314 	 */
315 	special = atomic_inc_return(&rdtp->dynticks);
316 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1);
317 }
318 
319 /*
320  * Record exit from an extended quiescent state.  This is only to be
321  * called from an extended quiescent state.
322  */
323 static void rcu_dynticks_eqs_exit(void)
324 {
325 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
326 	int special;
327 
328 	/*
329 	 * CPUs seeing atomic_inc_return() must see prior idle sojourns,
330 	 * and we also must force ordering with the next RCU read-side
331 	 * critical section.
332 	 */
333 	special = atomic_inc_return(&rdtp->dynticks);
334 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1));
335 }
336 
337 /*
338  * Reset the current CPU's ->dynticks counter to indicate that the
339  * newly onlined CPU is no longer in an extended quiescent state.
340  * This will either leave the counter unchanged, or increment it
341  * to the next non-quiescent value.
342  *
343  * The non-atomic test/increment sequence works because the upper bits
344  * of the ->dynticks counter are manipulated only by the corresponding CPU,
345  * or when the corresponding CPU is offline.
346  */
347 static void rcu_dynticks_eqs_online(void)
348 {
349 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
350 
351 	if (atomic_read(&rdtp->dynticks) & 0x1)
352 		return;
353 	atomic_add(0x1, &rdtp->dynticks);
354 }
355 
356 /*
357  * Is the current CPU in an extended quiescent state?
358  *
359  * No ordering, as we are sampling CPU-local information.
360  */
361 bool rcu_dynticks_curr_cpu_in_eqs(void)
362 {
363 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
364 
365 	return !(atomic_read(&rdtp->dynticks) & 0x1);
366 }
367 
368 /*
369  * Snapshot the ->dynticks counter with full ordering so as to allow
370  * stable comparison of this counter with past and future snapshots.
371  */
372 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
373 {
374 	int snap = atomic_add_return(0, &rdtp->dynticks);
375 
376 	return snap;
377 }
378 
379 /*
380  * Return true if the snapshot returned from rcu_dynticks_snap()
381  * indicates that RCU is in an extended quiescent state.
382  */
383 static bool rcu_dynticks_in_eqs(int snap)
384 {
385 	return !(snap & 0x1);
386 }
387 
388 /*
389  * Return true if the CPU corresponding to the specified rcu_dynticks
390  * structure has spent some time in an extended quiescent state since
391  * rcu_dynticks_snap() returned the specified snapshot.
392  */
393 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
394 {
395 	return snap != rcu_dynticks_snap(rdtp);
396 }
397 
398 /*
399  * Do a double-increment of the ->dynticks counter to emulate a
400  * momentary idle-CPU quiescent state.
401  */
402 static void rcu_dynticks_momentary_idle(void)
403 {
404 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
405 	int special = atomic_add_return(2, &rdtp->dynticks);
406 
407 	/* It is illegal to call this from idle state. */
408 	WARN_ON_ONCE(!(special & 0x1));
409 }
410 
411 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
412 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
413 
414 /*
415  * Let the RCU core know that this CPU has gone through the scheduler,
416  * which is a quiescent state.  This is called when the need for a
417  * quiescent state is urgent, so we burn an atomic operation and full
418  * memory barriers to let the RCU core know about it, regardless of what
419  * this CPU might (or might not) do in the near future.
420  *
421  * We inform the RCU core by emulating a zero-duration dyntick-idle
422  * period, which we in turn do by incrementing the ->dynticks counter
423  * by two.
424  *
425  * The caller must have disabled interrupts.
426  */
427 static void rcu_momentary_dyntick_idle(void)
428 {
429 	struct rcu_data *rdp;
430 	int resched_mask;
431 	struct rcu_state *rsp;
432 
433 	/*
434 	 * Yes, we can lose flag-setting operations.  This is OK, because
435 	 * the flag will be set again after some delay.
436 	 */
437 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
438 	raw_cpu_write(rcu_sched_qs_mask, 0);
439 
440 	/* Find the flavor that needs a quiescent state. */
441 	for_each_rcu_flavor(rsp) {
442 		rdp = raw_cpu_ptr(rsp->rda);
443 		if (!(resched_mask & rsp->flavor_mask))
444 			continue;
445 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
446 		if (READ_ONCE(rdp->mynode->completed) !=
447 		    READ_ONCE(rdp->cond_resched_completed))
448 			continue;
449 
450 		/*
451 		 * Pretend to be momentarily idle for the quiescent state.
452 		 * This allows the grace-period kthread to record the
453 		 * quiescent state, with no need for this CPU to do anything
454 		 * further.
455 		 */
456 		rcu_dynticks_momentary_idle();
457 		break;
458 	}
459 }
460 
461 /*
462  * Note a context switch.  This is a quiescent state for RCU-sched,
463  * and requires special handling for preemptible RCU.
464  * The caller must have disabled interrupts.
465  */
466 void rcu_note_context_switch(void)
467 {
468 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
469 	trace_rcu_utilization(TPS("Start context switch"));
470 	rcu_sched_qs();
471 	rcu_preempt_note_context_switch();
472 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
473 		rcu_momentary_dyntick_idle();
474 	trace_rcu_utilization(TPS("End context switch"));
475 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
476 }
477 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
478 
479 /*
480  * Register a quiescent state for all RCU flavors.  If there is an
481  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
482  * dyntick-idle quiescent state visible to other CPUs (but only for those
483  * RCU flavors in desperate need of a quiescent state, which will normally
484  * be none of them).  Either way, do a lightweight quiescent state for
485  * all RCU flavors.
486  *
487  * The barrier() calls are redundant in the common case when this is
488  * called externally, but just in case this is called from within this
489  * file.
490  *
491  */
492 void rcu_all_qs(void)
493 {
494 	unsigned long flags;
495 
496 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
497 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
498 		local_irq_save(flags);
499 		rcu_momentary_dyntick_idle();
500 		local_irq_restore(flags);
501 	}
502 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
503 		/*
504 		 * Yes, we just checked a per-CPU variable with preemption
505 		 * enabled, so we might be migrated to some other CPU at
506 		 * this point.  That is OK because in that case, the
507 		 * migration will supply the needed quiescent state.
508 		 * We might end up needlessly disabling preemption and
509 		 * invoking rcu_sched_qs() on the destination CPU, but
510 		 * the probability and cost are both quite low, so this
511 		 * should not be a problem in practice.
512 		 */
513 		preempt_disable();
514 		rcu_sched_qs();
515 		preempt_enable();
516 	}
517 	this_cpu_inc(rcu_qs_ctr);
518 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
519 }
520 EXPORT_SYMBOL_GPL(rcu_all_qs);
521 
522 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
523 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
524 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
525 
526 module_param(blimit, long, 0444);
527 module_param(qhimark, long, 0444);
528 module_param(qlowmark, long, 0444);
529 
530 static ulong jiffies_till_first_fqs = ULONG_MAX;
531 static ulong jiffies_till_next_fqs = ULONG_MAX;
532 static bool rcu_kick_kthreads;
533 
534 module_param(jiffies_till_first_fqs, ulong, 0644);
535 module_param(jiffies_till_next_fqs, ulong, 0644);
536 module_param(rcu_kick_kthreads, bool, 0644);
537 
538 /*
539  * How long the grace period must be before we start recruiting
540  * quiescent-state help from rcu_note_context_switch().
541  */
542 static ulong jiffies_till_sched_qs = HZ / 20;
543 module_param(jiffies_till_sched_qs, ulong, 0644);
544 
545 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
546 				  struct rcu_data *rdp);
547 static void force_qs_rnp(struct rcu_state *rsp,
548 			 int (*f)(struct rcu_data *rsp, bool *isidle,
549 				  unsigned long *maxj),
550 			 bool *isidle, unsigned long *maxj);
551 static void force_quiescent_state(struct rcu_state *rsp);
552 static int rcu_pending(void);
553 
554 /*
555  * Return the number of RCU batches started thus far for debug & stats.
556  */
557 unsigned long rcu_batches_started(void)
558 {
559 	return rcu_state_p->gpnum;
560 }
561 EXPORT_SYMBOL_GPL(rcu_batches_started);
562 
563 /*
564  * Return the number of RCU-sched batches started thus far for debug & stats.
565  */
566 unsigned long rcu_batches_started_sched(void)
567 {
568 	return rcu_sched_state.gpnum;
569 }
570 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
571 
572 /*
573  * Return the number of RCU BH batches started thus far for debug & stats.
574  */
575 unsigned long rcu_batches_started_bh(void)
576 {
577 	return rcu_bh_state.gpnum;
578 }
579 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
580 
581 /*
582  * Return the number of RCU batches completed thus far for debug & stats.
583  */
584 unsigned long rcu_batches_completed(void)
585 {
586 	return rcu_state_p->completed;
587 }
588 EXPORT_SYMBOL_GPL(rcu_batches_completed);
589 
590 /*
591  * Return the number of RCU-sched batches completed thus far for debug & stats.
592  */
593 unsigned long rcu_batches_completed_sched(void)
594 {
595 	return rcu_sched_state.completed;
596 }
597 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
598 
599 /*
600  * Return the number of RCU BH batches completed thus far for debug & stats.
601  */
602 unsigned long rcu_batches_completed_bh(void)
603 {
604 	return rcu_bh_state.completed;
605 }
606 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
607 
608 /*
609  * Return the number of RCU expedited batches completed thus far for
610  * debug & stats.  Odd numbers mean that a batch is in progress, even
611  * numbers mean idle.  The value returned will thus be roughly double
612  * the cumulative batches since boot.
613  */
614 unsigned long rcu_exp_batches_completed(void)
615 {
616 	return rcu_state_p->expedited_sequence;
617 }
618 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
619 
620 /*
621  * Return the number of RCU-sched expedited batches completed thus far
622  * for debug & stats.  Similar to rcu_exp_batches_completed().
623  */
624 unsigned long rcu_exp_batches_completed_sched(void)
625 {
626 	return rcu_sched_state.expedited_sequence;
627 }
628 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
629 
630 /*
631  * Force a quiescent state.
632  */
633 void rcu_force_quiescent_state(void)
634 {
635 	force_quiescent_state(rcu_state_p);
636 }
637 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
638 
639 /*
640  * Force a quiescent state for RCU BH.
641  */
642 void rcu_bh_force_quiescent_state(void)
643 {
644 	force_quiescent_state(&rcu_bh_state);
645 }
646 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
647 
648 /*
649  * Force a quiescent state for RCU-sched.
650  */
651 void rcu_sched_force_quiescent_state(void)
652 {
653 	force_quiescent_state(&rcu_sched_state);
654 }
655 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
656 
657 /*
658  * Show the state of the grace-period kthreads.
659  */
660 void show_rcu_gp_kthreads(void)
661 {
662 	struct rcu_state *rsp;
663 
664 	for_each_rcu_flavor(rsp) {
665 		pr_info("%s: wait state: %d ->state: %#lx\n",
666 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
667 		/* sched_show_task(rsp->gp_kthread); */
668 	}
669 }
670 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
671 
672 /*
673  * Record the number of times rcutorture tests have been initiated and
674  * terminated.  This information allows the debugfs tracing stats to be
675  * correlated to the rcutorture messages, even when the rcutorture module
676  * is being repeatedly loaded and unloaded.  In other words, we cannot
677  * store this state in rcutorture itself.
678  */
679 void rcutorture_record_test_transition(void)
680 {
681 	rcutorture_testseq++;
682 	rcutorture_vernum = 0;
683 }
684 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
685 
686 /*
687  * Send along grace-period-related data for rcutorture diagnostics.
688  */
689 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
690 			    unsigned long *gpnum, unsigned long *completed)
691 {
692 	struct rcu_state *rsp = NULL;
693 
694 	switch (test_type) {
695 	case RCU_FLAVOR:
696 		rsp = rcu_state_p;
697 		break;
698 	case RCU_BH_FLAVOR:
699 		rsp = &rcu_bh_state;
700 		break;
701 	case RCU_SCHED_FLAVOR:
702 		rsp = &rcu_sched_state;
703 		break;
704 	default:
705 		break;
706 	}
707 	if (rsp != NULL) {
708 		*flags = READ_ONCE(rsp->gp_flags);
709 		*gpnum = READ_ONCE(rsp->gpnum);
710 		*completed = READ_ONCE(rsp->completed);
711 		return;
712 	}
713 	*flags = 0;
714 	*gpnum = 0;
715 	*completed = 0;
716 }
717 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
718 
719 /*
720  * Record the number of writer passes through the current rcutorture test.
721  * This is also used to correlate debugfs tracing stats with the rcutorture
722  * messages.
723  */
724 void rcutorture_record_progress(unsigned long vernum)
725 {
726 	rcutorture_vernum++;
727 }
728 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
729 
730 /*
731  * Does the CPU have callbacks ready to be invoked?
732  */
733 static int
734 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
735 {
736 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
737 	       rdp->nxttail[RCU_NEXT_TAIL] != NULL;
738 }
739 
740 /*
741  * Return the root node of the specified rcu_state structure.
742  */
743 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
744 {
745 	return &rsp->node[0];
746 }
747 
748 /*
749  * Is there any need for future grace periods?
750  * Interrupts must be disabled.  If the caller does not hold the root
751  * rnp_node structure's ->lock, the results are advisory only.
752  */
753 static int rcu_future_needs_gp(struct rcu_state *rsp)
754 {
755 	struct rcu_node *rnp = rcu_get_root(rsp);
756 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
757 	int *fp = &rnp->need_future_gp[idx];
758 
759 	return READ_ONCE(*fp);
760 }
761 
762 /*
763  * Does the current CPU require a not-yet-started grace period?
764  * The caller must have disabled interrupts to prevent races with
765  * normal callback registry.
766  */
767 static bool
768 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
769 {
770 	int i;
771 
772 	if (rcu_gp_in_progress(rsp))
773 		return false;  /* No, a grace period is already in progress. */
774 	if (rcu_future_needs_gp(rsp))
775 		return true;  /* Yes, a no-CBs CPU needs one. */
776 	if (!rdp->nxttail[RCU_NEXT_TAIL])
777 		return false;  /* No, this is a no-CBs (or offline) CPU. */
778 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
779 		return true;  /* Yes, CPU has newly registered callbacks. */
780 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
781 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
782 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
783 				 rdp->nxtcompleted[i]))
784 			return true;  /* Yes, CBs for future grace period. */
785 	return false; /* No grace period needed. */
786 }
787 
788 /*
789  * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
790  *
791  * Enter idle, doing appropriate accounting.  The caller must have
792  * disabled interrupts.
793  */
794 static void rcu_eqs_enter_common(bool user)
795 {
796 	struct rcu_state *rsp;
797 	struct rcu_data *rdp;
798 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
799 
800 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
801 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
802 	    !user && !is_idle_task(current)) {
803 		struct task_struct *idle __maybe_unused =
804 			idle_task(smp_processor_id());
805 
806 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
807 		rcu_ftrace_dump(DUMP_ORIG);
808 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
809 			  current->pid, current->comm,
810 			  idle->pid, idle->comm); /* must be idle task! */
811 	}
812 	for_each_rcu_flavor(rsp) {
813 		rdp = this_cpu_ptr(rsp->rda);
814 		do_nocb_deferred_wakeup(rdp);
815 	}
816 	rcu_prepare_for_idle();
817 	__this_cpu_inc(disable_rcu_irq_enter);
818 	rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
819 	rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
820 	__this_cpu_dec(disable_rcu_irq_enter);
821 	rcu_dynticks_task_enter();
822 
823 	/*
824 	 * It is illegal to enter an extended quiescent state while
825 	 * in an RCU read-side critical section.
826 	 */
827 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
828 			 "Illegal idle entry in RCU read-side critical section.");
829 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
830 			 "Illegal idle entry in RCU-bh read-side critical section.");
831 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
832 			 "Illegal idle entry in RCU-sched read-side critical section.");
833 }
834 
835 /*
836  * Enter an RCU extended quiescent state, which can be either the
837  * idle loop or adaptive-tickless usermode execution.
838  */
839 static void rcu_eqs_enter(bool user)
840 {
841 	struct rcu_dynticks *rdtp;
842 
843 	rdtp = this_cpu_ptr(&rcu_dynticks);
844 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
845 		     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
846 	if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
847 		rcu_eqs_enter_common(user);
848 	else
849 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
850 }
851 
852 /**
853  * rcu_idle_enter - inform RCU that current CPU is entering idle
854  *
855  * Enter idle mode, in other words, -leave- the mode in which RCU
856  * read-side critical sections can occur.  (Though RCU read-side
857  * critical sections can occur in irq handlers in idle, a possibility
858  * handled by irq_enter() and irq_exit().)
859  *
860  * We crowbar the ->dynticks_nesting field to zero to allow for
861  * the possibility of usermode upcalls having messed up our count
862  * of interrupt nesting level during the prior busy period.
863  */
864 void rcu_idle_enter(void)
865 {
866 	unsigned long flags;
867 
868 	local_irq_save(flags);
869 	rcu_eqs_enter(false);
870 	rcu_sysidle_enter(0);
871 	local_irq_restore(flags);
872 }
873 EXPORT_SYMBOL_GPL(rcu_idle_enter);
874 
875 #ifdef CONFIG_NO_HZ_FULL
876 /**
877  * rcu_user_enter - inform RCU that we are resuming userspace.
878  *
879  * Enter RCU idle mode right before resuming userspace.  No use of RCU
880  * is permitted between this call and rcu_user_exit(). This way the
881  * CPU doesn't need to maintain the tick for RCU maintenance purposes
882  * when the CPU runs in userspace.
883  */
884 void rcu_user_enter(void)
885 {
886 	rcu_eqs_enter(1);
887 }
888 #endif /* CONFIG_NO_HZ_FULL */
889 
890 /**
891  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
892  *
893  * Exit from an interrupt handler, which might possibly result in entering
894  * idle mode, in other words, leaving the mode in which read-side critical
895  * sections can occur.  The caller must have disabled interrupts.
896  *
897  * This code assumes that the idle loop never does anything that might
898  * result in unbalanced calls to irq_enter() and irq_exit().  If your
899  * architecture violates this assumption, RCU will give you what you
900  * deserve, good and hard.  But very infrequently and irreproducibly.
901  *
902  * Use things like work queues to work around this limitation.
903  *
904  * You have been warned.
905  */
906 void rcu_irq_exit(void)
907 {
908 	struct rcu_dynticks *rdtp;
909 
910 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
911 	rdtp = this_cpu_ptr(&rcu_dynticks);
912 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
913 		     rdtp->dynticks_nesting < 1);
914 	if (rdtp->dynticks_nesting <= 1) {
915 		rcu_eqs_enter_common(true);
916 	} else {
917 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
918 		rdtp->dynticks_nesting--;
919 	}
920 	rcu_sysidle_enter(1);
921 }
922 
923 /*
924  * Wrapper for rcu_irq_exit() where interrupts are enabled.
925  */
926 void rcu_irq_exit_irqson(void)
927 {
928 	unsigned long flags;
929 
930 	local_irq_save(flags);
931 	rcu_irq_exit();
932 	local_irq_restore(flags);
933 }
934 
935 /*
936  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
937  *
938  * If the new value of the ->dynticks_nesting counter was previously zero,
939  * we really have exited idle, and must do the appropriate accounting.
940  * The caller must have disabled interrupts.
941  */
942 static void rcu_eqs_exit_common(long long oldval, int user)
943 {
944 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
945 
946 	rcu_dynticks_task_exit();
947 	rcu_dynticks_eqs_exit();
948 	rcu_cleanup_after_idle();
949 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
950 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
951 	    !user && !is_idle_task(current)) {
952 		struct task_struct *idle __maybe_unused =
953 			idle_task(smp_processor_id());
954 
955 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
956 				  oldval, rdtp->dynticks_nesting);
957 		rcu_ftrace_dump(DUMP_ORIG);
958 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
959 			  current->pid, current->comm,
960 			  idle->pid, idle->comm); /* must be idle task! */
961 	}
962 }
963 
964 /*
965  * Exit an RCU extended quiescent state, which can be either the
966  * idle loop or adaptive-tickless usermode execution.
967  */
968 static void rcu_eqs_exit(bool user)
969 {
970 	struct rcu_dynticks *rdtp;
971 	long long oldval;
972 
973 	rdtp = this_cpu_ptr(&rcu_dynticks);
974 	oldval = rdtp->dynticks_nesting;
975 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
976 	if (oldval & DYNTICK_TASK_NEST_MASK) {
977 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
978 	} else {
979 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
980 		rcu_eqs_exit_common(oldval, user);
981 	}
982 }
983 
984 /**
985  * rcu_idle_exit - inform RCU that current CPU is leaving idle
986  *
987  * Exit idle mode, in other words, -enter- the mode in which RCU
988  * read-side critical sections can occur.
989  *
990  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
991  * allow for the possibility of usermode upcalls messing up our count
992  * of interrupt nesting level during the busy period that is just
993  * now starting.
994  */
995 void rcu_idle_exit(void)
996 {
997 	unsigned long flags;
998 
999 	local_irq_save(flags);
1000 	rcu_eqs_exit(false);
1001 	rcu_sysidle_exit(0);
1002 	local_irq_restore(flags);
1003 }
1004 EXPORT_SYMBOL_GPL(rcu_idle_exit);
1005 
1006 #ifdef CONFIG_NO_HZ_FULL
1007 /**
1008  * rcu_user_exit - inform RCU that we are exiting userspace.
1009  *
1010  * Exit RCU idle mode while entering the kernel because it can
1011  * run a RCU read side critical section anytime.
1012  */
1013 void rcu_user_exit(void)
1014 {
1015 	rcu_eqs_exit(1);
1016 }
1017 #endif /* CONFIG_NO_HZ_FULL */
1018 
1019 /**
1020  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1021  *
1022  * Enter an interrupt handler, which might possibly result in exiting
1023  * idle mode, in other words, entering the mode in which read-side critical
1024  * sections can occur.  The caller must have disabled interrupts.
1025  *
1026  * Note that the Linux kernel is fully capable of entering an interrupt
1027  * handler that it never exits, for example when doing upcalls to
1028  * user mode!  This code assumes that the idle loop never does upcalls to
1029  * user mode.  If your architecture does do upcalls from the idle loop (or
1030  * does anything else that results in unbalanced calls to the irq_enter()
1031  * and irq_exit() functions), RCU will give you what you deserve, good
1032  * and hard.  But very infrequently and irreproducibly.
1033  *
1034  * Use things like work queues to work around this limitation.
1035  *
1036  * You have been warned.
1037  */
1038 void rcu_irq_enter(void)
1039 {
1040 	struct rcu_dynticks *rdtp;
1041 	long long oldval;
1042 
1043 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1044 	rdtp = this_cpu_ptr(&rcu_dynticks);
1045 	oldval = rdtp->dynticks_nesting;
1046 	rdtp->dynticks_nesting++;
1047 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1048 		     rdtp->dynticks_nesting == 0);
1049 	if (oldval)
1050 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1051 	else
1052 		rcu_eqs_exit_common(oldval, true);
1053 	rcu_sysidle_exit(1);
1054 }
1055 
1056 /*
1057  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1058  */
1059 void rcu_irq_enter_irqson(void)
1060 {
1061 	unsigned long flags;
1062 
1063 	local_irq_save(flags);
1064 	rcu_irq_enter();
1065 	local_irq_restore(flags);
1066 }
1067 
1068 /**
1069  * rcu_nmi_enter - inform RCU of entry to NMI context
1070  *
1071  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1072  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1073  * that the CPU is active.  This implementation permits nested NMIs, as
1074  * long as the nesting level does not overflow an int.  (You will probably
1075  * run out of stack space first.)
1076  */
1077 void rcu_nmi_enter(void)
1078 {
1079 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1080 	int incby = 2;
1081 
1082 	/* Complain about underflow. */
1083 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1084 
1085 	/*
1086 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1087 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1088 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1089 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1090 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1091 	 * period (observation due to Andy Lutomirski).
1092 	 */
1093 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1094 		rcu_dynticks_eqs_exit();
1095 		incby = 1;
1096 	}
1097 	rdtp->dynticks_nmi_nesting += incby;
1098 	barrier();
1099 }
1100 
1101 /**
1102  * rcu_nmi_exit - inform RCU of exit from NMI context
1103  *
1104  * If we are returning from the outermost NMI handler that interrupted an
1105  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1106  * to let the RCU grace-period handling know that the CPU is back to
1107  * being RCU-idle.
1108  */
1109 void rcu_nmi_exit(void)
1110 {
1111 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1112 
1113 	/*
1114 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1115 	 * (We are exiting an NMI handler, so RCU better be paying attention
1116 	 * to us!)
1117 	 */
1118 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1119 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1120 
1121 	/*
1122 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1123 	 * leave it in non-RCU-idle state.
1124 	 */
1125 	if (rdtp->dynticks_nmi_nesting != 1) {
1126 		rdtp->dynticks_nmi_nesting -= 2;
1127 		return;
1128 	}
1129 
1130 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1131 	rdtp->dynticks_nmi_nesting = 0;
1132 	rcu_dynticks_eqs_enter();
1133 }
1134 
1135 /**
1136  * __rcu_is_watching - are RCU read-side critical sections safe?
1137  *
1138  * Return true if RCU is watching the running CPU, which means that
1139  * this CPU can safely enter RCU read-side critical sections.  Unlike
1140  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1141  * least disabled preemption.
1142  */
1143 bool notrace __rcu_is_watching(void)
1144 {
1145 	return !rcu_dynticks_curr_cpu_in_eqs();
1146 }
1147 
1148 /**
1149  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1150  *
1151  * If the current CPU is in its idle loop and is neither in an interrupt
1152  * or NMI handler, return true.
1153  */
1154 bool notrace rcu_is_watching(void)
1155 {
1156 	bool ret;
1157 
1158 	preempt_disable_notrace();
1159 	ret = __rcu_is_watching();
1160 	preempt_enable_notrace();
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL_GPL(rcu_is_watching);
1164 
1165 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1166 
1167 /*
1168  * Is the current CPU online?  Disable preemption to avoid false positives
1169  * that could otherwise happen due to the current CPU number being sampled,
1170  * this task being preempted, its old CPU being taken offline, resuming
1171  * on some other CPU, then determining that its old CPU is now offline.
1172  * It is OK to use RCU on an offline processor during initial boot, hence
1173  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1174  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1175  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1176  * offline to continue to use RCU for one jiffy after marking itself
1177  * offline in the cpu_online_mask.  This leniency is necessary given the
1178  * non-atomic nature of the online and offline processing, for example,
1179  * the fact that a CPU enters the scheduler after completing the teardown
1180  * of the CPU.
1181  *
1182  * This is also why RCU internally marks CPUs online during in the
1183  * preparation phase and offline after the CPU has been taken down.
1184  *
1185  * Disable checking if in an NMI handler because we cannot safely report
1186  * errors from NMI handlers anyway.
1187  */
1188 bool rcu_lockdep_current_cpu_online(void)
1189 {
1190 	struct rcu_data *rdp;
1191 	struct rcu_node *rnp;
1192 	bool ret;
1193 
1194 	if (in_nmi())
1195 		return true;
1196 	preempt_disable();
1197 	rdp = this_cpu_ptr(&rcu_sched_data);
1198 	rnp = rdp->mynode;
1199 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1200 	      !rcu_scheduler_fully_active;
1201 	preempt_enable();
1202 	return ret;
1203 }
1204 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1205 
1206 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1207 
1208 /**
1209  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1210  *
1211  * If the current CPU is idle or running at a first-level (not nested)
1212  * interrupt from idle, return true.  The caller must have at least
1213  * disabled preemption.
1214  */
1215 static int rcu_is_cpu_rrupt_from_idle(void)
1216 {
1217 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1218 }
1219 
1220 /*
1221  * Snapshot the specified CPU's dynticks counter so that we can later
1222  * credit them with an implicit quiescent state.  Return 1 if this CPU
1223  * is in dynticks idle mode, which is an extended quiescent state.
1224  */
1225 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1226 					 bool *isidle, unsigned long *maxj)
1227 {
1228 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1229 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1230 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1231 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1232 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1233 				 rdp->mynode->gpnum))
1234 			WRITE_ONCE(rdp->gpwrap, true);
1235 		return 1;
1236 	}
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Return true if the specified CPU has passed through a quiescent
1242  * state by virtue of being in or having passed through an dynticks
1243  * idle state since the last call to dyntick_save_progress_counter()
1244  * for this same CPU, or by virtue of having been offline.
1245  */
1246 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1247 				    bool *isidle, unsigned long *maxj)
1248 {
1249 	unsigned long jtsq;
1250 	int *rcrmp;
1251 	unsigned long rjtsc;
1252 	struct rcu_node *rnp;
1253 
1254 	/*
1255 	 * If the CPU passed through or entered a dynticks idle phase with
1256 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1257 	 * already acknowledged the request to pass through a quiescent
1258 	 * state.  Either way, that CPU cannot possibly be in an RCU
1259 	 * read-side critical section that started before the beginning
1260 	 * of the current RCU grace period.
1261 	 */
1262 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1263 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1264 		rdp->dynticks_fqs++;
1265 		return 1;
1266 	}
1267 
1268 	/* Compute and saturate jiffies_till_sched_qs. */
1269 	jtsq = jiffies_till_sched_qs;
1270 	rjtsc = rcu_jiffies_till_stall_check();
1271 	if (jtsq > rjtsc / 2) {
1272 		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1273 		jtsq = rjtsc / 2;
1274 	} else if (jtsq < 1) {
1275 		WRITE_ONCE(jiffies_till_sched_qs, 1);
1276 		jtsq = 1;
1277 	}
1278 
1279 	/*
1280 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1281 	 * beginning of the grace period?  For this to be the case,
1282 	 * the CPU has to have noticed the current grace period.  This
1283 	 * might not be the case for nohz_full CPUs looping in the kernel.
1284 	 */
1285 	rnp = rdp->mynode;
1286 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1287 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) &&
1288 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1289 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1290 		return 1;
1291 	}
1292 
1293 	/* Check for the CPU being offline. */
1294 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1295 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1296 		rdp->offline_fqs++;
1297 		return 1;
1298 	}
1299 
1300 	/*
1301 	 * A CPU running for an extended time within the kernel can
1302 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1303 	 * even context-switching back and forth between a pair of
1304 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1305 	 * So if the grace period is old enough, make the CPU pay attention.
1306 	 * Note that the unsynchronized assignments to the per-CPU
1307 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1308 	 * bits can be lost, but they will be set again on the next
1309 	 * force-quiescent-state pass.  So lost bit sets do not result
1310 	 * in incorrect behavior, merely in a grace period lasting
1311 	 * a few jiffies longer than it might otherwise.  Because
1312 	 * there are at most four threads involved, and because the
1313 	 * updates are only once every few jiffies, the probability of
1314 	 * lossage (and thus of slight grace-period extension) is
1315 	 * quite low.
1316 	 *
1317 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1318 	 * is set too high, we override with half of the RCU CPU stall
1319 	 * warning delay.
1320 	 */
1321 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1322 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1323 	    time_after(jiffies, rdp->rsp->jiffies_resched)) {
1324 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1325 			WRITE_ONCE(rdp->cond_resched_completed,
1326 				   READ_ONCE(rdp->mynode->completed));
1327 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1328 			WRITE_ONCE(*rcrmp,
1329 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1330 		}
1331 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1332 	}
1333 
1334 	/*
1335 	 * If more than halfway to RCU CPU stall-warning time, do
1336 	 * a resched_cpu() to try to loosen things up a bit.
1337 	 */
1338 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1339 		resched_cpu(rdp->cpu);
1340 
1341 	return 0;
1342 }
1343 
1344 static void record_gp_stall_check_time(struct rcu_state *rsp)
1345 {
1346 	unsigned long j = jiffies;
1347 	unsigned long j1;
1348 
1349 	rsp->gp_start = j;
1350 	smp_wmb(); /* Record start time before stall time. */
1351 	j1 = rcu_jiffies_till_stall_check();
1352 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1353 	rsp->jiffies_resched = j + j1 / 2;
1354 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1355 }
1356 
1357 /*
1358  * Convert a ->gp_state value to a character string.
1359  */
1360 static const char *gp_state_getname(short gs)
1361 {
1362 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1363 		return "???";
1364 	return gp_state_names[gs];
1365 }
1366 
1367 /*
1368  * Complain about starvation of grace-period kthread.
1369  */
1370 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1371 {
1372 	unsigned long gpa;
1373 	unsigned long j;
1374 
1375 	j = jiffies;
1376 	gpa = READ_ONCE(rsp->gp_activity);
1377 	if (j - gpa > 2 * HZ) {
1378 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1379 		       rsp->name, j - gpa,
1380 		       rsp->gpnum, rsp->completed,
1381 		       rsp->gp_flags,
1382 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1383 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1384 		if (rsp->gp_kthread) {
1385 			sched_show_task(rsp->gp_kthread);
1386 			wake_up_process(rsp->gp_kthread);
1387 		}
1388 	}
1389 }
1390 
1391 /*
1392  * Dump stacks of all tasks running on stalled CPUs.  First try using
1393  * NMIs, but fall back to manual remote stack tracing on architectures
1394  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1395  * traces are more accurate because they are printed by the target CPU.
1396  */
1397 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1398 {
1399 	int cpu;
1400 	unsigned long flags;
1401 	struct rcu_node *rnp;
1402 
1403 	rcu_for_each_leaf_node(rsp, rnp) {
1404 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1405 		for_each_leaf_node_possible_cpu(rnp, cpu)
1406 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1407 				if (!trigger_single_cpu_backtrace(cpu))
1408 					dump_cpu_task(cpu);
1409 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1410 	}
1411 }
1412 
1413 /*
1414  * If too much time has passed in the current grace period, and if
1415  * so configured, go kick the relevant kthreads.
1416  */
1417 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1418 {
1419 	unsigned long j;
1420 
1421 	if (!rcu_kick_kthreads)
1422 		return;
1423 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1424 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1425 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1426 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1427 		rcu_ftrace_dump(DUMP_ALL);
1428 		wake_up_process(rsp->gp_kthread);
1429 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1430 	}
1431 }
1432 
1433 static inline void panic_on_rcu_stall(void)
1434 {
1435 	if (sysctl_panic_on_rcu_stall)
1436 		panic("RCU Stall\n");
1437 }
1438 
1439 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1440 {
1441 	int cpu;
1442 	long delta;
1443 	unsigned long flags;
1444 	unsigned long gpa;
1445 	unsigned long j;
1446 	int ndetected = 0;
1447 	struct rcu_node *rnp = rcu_get_root(rsp);
1448 	long totqlen = 0;
1449 
1450 	/* Kick and suppress, if so configured. */
1451 	rcu_stall_kick_kthreads(rsp);
1452 	if (rcu_cpu_stall_suppress)
1453 		return;
1454 
1455 	/* Only let one CPU complain about others per time interval. */
1456 
1457 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1458 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1459 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1460 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1461 		return;
1462 	}
1463 	WRITE_ONCE(rsp->jiffies_stall,
1464 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1465 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1466 
1467 	/*
1468 	 * OK, time to rat on our buddy...
1469 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1470 	 * RCU CPU stall warnings.
1471 	 */
1472 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1473 	       rsp->name);
1474 	print_cpu_stall_info_begin();
1475 	rcu_for_each_leaf_node(rsp, rnp) {
1476 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1477 		ndetected += rcu_print_task_stall(rnp);
1478 		if (rnp->qsmask != 0) {
1479 			for_each_leaf_node_possible_cpu(rnp, cpu)
1480 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1481 					print_cpu_stall_info(rsp, cpu);
1482 					ndetected++;
1483 				}
1484 		}
1485 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1486 	}
1487 
1488 	print_cpu_stall_info_end();
1489 	for_each_possible_cpu(cpu)
1490 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1491 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1492 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1493 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1494 	if (ndetected) {
1495 		rcu_dump_cpu_stacks(rsp);
1496 
1497 		/* Complain about tasks blocking the grace period. */
1498 		rcu_print_detail_task_stall(rsp);
1499 	} else {
1500 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1501 		    READ_ONCE(rsp->completed) == gpnum) {
1502 			pr_err("INFO: Stall ended before state dump start\n");
1503 		} else {
1504 			j = jiffies;
1505 			gpa = READ_ONCE(rsp->gp_activity);
1506 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1507 			       rsp->name, j - gpa, j, gpa,
1508 			       jiffies_till_next_fqs,
1509 			       rcu_get_root(rsp)->qsmask);
1510 			/* In this case, the current CPU might be at fault. */
1511 			sched_show_task(current);
1512 		}
1513 	}
1514 
1515 	rcu_check_gp_kthread_starvation(rsp);
1516 
1517 	panic_on_rcu_stall();
1518 
1519 	force_quiescent_state(rsp);  /* Kick them all. */
1520 }
1521 
1522 static void print_cpu_stall(struct rcu_state *rsp)
1523 {
1524 	int cpu;
1525 	unsigned long flags;
1526 	struct rcu_node *rnp = rcu_get_root(rsp);
1527 	long totqlen = 0;
1528 
1529 	/* Kick and suppress, if so configured. */
1530 	rcu_stall_kick_kthreads(rsp);
1531 	if (rcu_cpu_stall_suppress)
1532 		return;
1533 
1534 	/*
1535 	 * OK, time to rat on ourselves...
1536 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1537 	 * RCU CPU stall warnings.
1538 	 */
1539 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1540 	print_cpu_stall_info_begin();
1541 	print_cpu_stall_info(rsp, smp_processor_id());
1542 	print_cpu_stall_info_end();
1543 	for_each_possible_cpu(cpu)
1544 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1545 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1546 		jiffies - rsp->gp_start,
1547 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1548 
1549 	rcu_check_gp_kthread_starvation(rsp);
1550 
1551 	rcu_dump_cpu_stacks(rsp);
1552 
1553 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1554 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1555 		WRITE_ONCE(rsp->jiffies_stall,
1556 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1557 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1558 
1559 	panic_on_rcu_stall();
1560 
1561 	/*
1562 	 * Attempt to revive the RCU machinery by forcing a context switch.
1563 	 *
1564 	 * A context switch would normally allow the RCU state machine to make
1565 	 * progress and it could be we're stuck in kernel space without context
1566 	 * switches for an entirely unreasonable amount of time.
1567 	 */
1568 	resched_cpu(smp_processor_id());
1569 }
1570 
1571 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1572 {
1573 	unsigned long completed;
1574 	unsigned long gpnum;
1575 	unsigned long gps;
1576 	unsigned long j;
1577 	unsigned long js;
1578 	struct rcu_node *rnp;
1579 
1580 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1581 	    !rcu_gp_in_progress(rsp))
1582 		return;
1583 	rcu_stall_kick_kthreads(rsp);
1584 	j = jiffies;
1585 
1586 	/*
1587 	 * Lots of memory barriers to reject false positives.
1588 	 *
1589 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1590 	 * then rsp->gp_start, and finally rsp->completed.  These values
1591 	 * are updated in the opposite order with memory barriers (or
1592 	 * equivalent) during grace-period initialization and cleanup.
1593 	 * Now, a false positive can occur if we get an new value of
1594 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1595 	 * the memory barriers, the only way that this can happen is if one
1596 	 * grace period ends and another starts between these two fetches.
1597 	 * Detect this by comparing rsp->completed with the previous fetch
1598 	 * from rsp->gpnum.
1599 	 *
1600 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1601 	 * and rsp->gp_start suffice to forestall false positives.
1602 	 */
1603 	gpnum = READ_ONCE(rsp->gpnum);
1604 	smp_rmb(); /* Pick up ->gpnum first... */
1605 	js = READ_ONCE(rsp->jiffies_stall);
1606 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1607 	gps = READ_ONCE(rsp->gp_start);
1608 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1609 	completed = READ_ONCE(rsp->completed);
1610 	if (ULONG_CMP_GE(completed, gpnum) ||
1611 	    ULONG_CMP_LT(j, js) ||
1612 	    ULONG_CMP_GE(gps, js))
1613 		return; /* No stall or GP completed since entering function. */
1614 	rnp = rdp->mynode;
1615 	if (rcu_gp_in_progress(rsp) &&
1616 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1617 
1618 		/* We haven't checked in, so go dump stack. */
1619 		print_cpu_stall(rsp);
1620 
1621 	} else if (rcu_gp_in_progress(rsp) &&
1622 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1623 
1624 		/* They had a few time units to dump stack, so complain. */
1625 		print_other_cpu_stall(rsp, gpnum);
1626 	}
1627 }
1628 
1629 /**
1630  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1631  *
1632  * Set the stall-warning timeout way off into the future, thus preventing
1633  * any RCU CPU stall-warning messages from appearing in the current set of
1634  * RCU grace periods.
1635  *
1636  * The caller must disable hard irqs.
1637  */
1638 void rcu_cpu_stall_reset(void)
1639 {
1640 	struct rcu_state *rsp;
1641 
1642 	for_each_rcu_flavor(rsp)
1643 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1644 }
1645 
1646 /*
1647  * Initialize the specified rcu_data structure's default callback list
1648  * to empty.  The default callback list is the one that is not used by
1649  * no-callbacks CPUs.
1650  */
1651 static void init_default_callback_list(struct rcu_data *rdp)
1652 {
1653 	int i;
1654 
1655 	rdp->nxtlist = NULL;
1656 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1657 		rdp->nxttail[i] = &rdp->nxtlist;
1658 }
1659 
1660 /*
1661  * Initialize the specified rcu_data structure's callback list to empty.
1662  */
1663 static void init_callback_list(struct rcu_data *rdp)
1664 {
1665 	if (init_nocb_callback_list(rdp))
1666 		return;
1667 	init_default_callback_list(rdp);
1668 }
1669 
1670 /*
1671  * Determine the value that ->completed will have at the end of the
1672  * next subsequent grace period.  This is used to tag callbacks so that
1673  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1674  * been dyntick-idle for an extended period with callbacks under the
1675  * influence of RCU_FAST_NO_HZ.
1676  *
1677  * The caller must hold rnp->lock with interrupts disabled.
1678  */
1679 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1680 				       struct rcu_node *rnp)
1681 {
1682 	/*
1683 	 * If RCU is idle, we just wait for the next grace period.
1684 	 * But we can only be sure that RCU is idle if we are looking
1685 	 * at the root rcu_node structure -- otherwise, a new grace
1686 	 * period might have started, but just not yet gotten around
1687 	 * to initializing the current non-root rcu_node structure.
1688 	 */
1689 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1690 		return rnp->completed + 1;
1691 
1692 	/*
1693 	 * Otherwise, wait for a possible partial grace period and
1694 	 * then the subsequent full grace period.
1695 	 */
1696 	return rnp->completed + 2;
1697 }
1698 
1699 /*
1700  * Trace-event helper function for rcu_start_future_gp() and
1701  * rcu_nocb_wait_gp().
1702  */
1703 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1704 				unsigned long c, const char *s)
1705 {
1706 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1707 				      rnp->completed, c, rnp->level,
1708 				      rnp->grplo, rnp->grphi, s);
1709 }
1710 
1711 /*
1712  * Start some future grace period, as needed to handle newly arrived
1713  * callbacks.  The required future grace periods are recorded in each
1714  * rcu_node structure's ->need_future_gp field.  Returns true if there
1715  * is reason to awaken the grace-period kthread.
1716  *
1717  * The caller must hold the specified rcu_node structure's ->lock.
1718  */
1719 static bool __maybe_unused
1720 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1721 		    unsigned long *c_out)
1722 {
1723 	unsigned long c;
1724 	int i;
1725 	bool ret = false;
1726 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1727 
1728 	/*
1729 	 * Pick up grace-period number for new callbacks.  If this
1730 	 * grace period is already marked as needed, return to the caller.
1731 	 */
1732 	c = rcu_cbs_completed(rdp->rsp, rnp);
1733 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1734 	if (rnp->need_future_gp[c & 0x1]) {
1735 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1736 		goto out;
1737 	}
1738 
1739 	/*
1740 	 * If either this rcu_node structure or the root rcu_node structure
1741 	 * believe that a grace period is in progress, then we must wait
1742 	 * for the one following, which is in "c".  Because our request
1743 	 * will be noticed at the end of the current grace period, we don't
1744 	 * need to explicitly start one.  We only do the lockless check
1745 	 * of rnp_root's fields if the current rcu_node structure thinks
1746 	 * there is no grace period in flight, and because we hold rnp->lock,
1747 	 * the only possible change is when rnp_root's two fields are
1748 	 * equal, in which case rnp_root->gpnum might be concurrently
1749 	 * incremented.  But that is OK, as it will just result in our
1750 	 * doing some extra useless work.
1751 	 */
1752 	if (rnp->gpnum != rnp->completed ||
1753 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1754 		rnp->need_future_gp[c & 0x1]++;
1755 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1756 		goto out;
1757 	}
1758 
1759 	/*
1760 	 * There might be no grace period in progress.  If we don't already
1761 	 * hold it, acquire the root rcu_node structure's lock in order to
1762 	 * start one (if needed).
1763 	 */
1764 	if (rnp != rnp_root)
1765 		raw_spin_lock_rcu_node(rnp_root);
1766 
1767 	/*
1768 	 * Get a new grace-period number.  If there really is no grace
1769 	 * period in progress, it will be smaller than the one we obtained
1770 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1771 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1772 	 */
1773 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1774 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1775 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1776 			rdp->nxtcompleted[i] = c;
1777 
1778 	/*
1779 	 * If the needed for the required grace period is already
1780 	 * recorded, trace and leave.
1781 	 */
1782 	if (rnp_root->need_future_gp[c & 0x1]) {
1783 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1784 		goto unlock_out;
1785 	}
1786 
1787 	/* Record the need for the future grace period. */
1788 	rnp_root->need_future_gp[c & 0x1]++;
1789 
1790 	/* If a grace period is not already in progress, start one. */
1791 	if (rnp_root->gpnum != rnp_root->completed) {
1792 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1793 	} else {
1794 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1795 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1796 	}
1797 unlock_out:
1798 	if (rnp != rnp_root)
1799 		raw_spin_unlock_rcu_node(rnp_root);
1800 out:
1801 	if (c_out != NULL)
1802 		*c_out = c;
1803 	return ret;
1804 }
1805 
1806 /*
1807  * Clean up any old requests for the just-ended grace period.  Also return
1808  * whether any additional grace periods have been requested.  Also invoke
1809  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1810  * waiting for this grace period to complete.
1811  */
1812 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1813 {
1814 	int c = rnp->completed;
1815 	int needmore;
1816 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1817 
1818 	rnp->need_future_gp[c & 0x1] = 0;
1819 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1820 	trace_rcu_future_gp(rnp, rdp, c,
1821 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1822 	return needmore;
1823 }
1824 
1825 /*
1826  * Awaken the grace-period kthread for the specified flavor of RCU.
1827  * Don't do a self-awaken, and don't bother awakening when there is
1828  * nothing for the grace-period kthread to do (as in several CPUs
1829  * raced to awaken, and we lost), and finally don't try to awaken
1830  * a kthread that has not yet been created.
1831  */
1832 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1833 {
1834 	if (current == rsp->gp_kthread ||
1835 	    !READ_ONCE(rsp->gp_flags) ||
1836 	    !rsp->gp_kthread)
1837 		return;
1838 	swake_up(&rsp->gp_wq);
1839 }
1840 
1841 /*
1842  * If there is room, assign a ->completed number to any callbacks on
1843  * this CPU that have not already been assigned.  Also accelerate any
1844  * callbacks that were previously assigned a ->completed number that has
1845  * since proven to be too conservative, which can happen if callbacks get
1846  * assigned a ->completed number while RCU is idle, but with reference to
1847  * a non-root rcu_node structure.  This function is idempotent, so it does
1848  * not hurt to call it repeatedly.  Returns an flag saying that we should
1849  * awaken the RCU grace-period kthread.
1850  *
1851  * The caller must hold rnp->lock with interrupts disabled.
1852  */
1853 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1854 			       struct rcu_data *rdp)
1855 {
1856 	unsigned long c;
1857 	int i;
1858 	bool ret;
1859 
1860 	/* If the CPU has no callbacks, nothing to do. */
1861 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1862 		return false;
1863 
1864 	/*
1865 	 * Starting from the sublist containing the callbacks most
1866 	 * recently assigned a ->completed number and working down, find the
1867 	 * first sublist that is not assignable to an upcoming grace period.
1868 	 * Such a sublist has something in it (first two tests) and has
1869 	 * a ->completed number assigned that will complete sooner than
1870 	 * the ->completed number for newly arrived callbacks (last test).
1871 	 *
1872 	 * The key point is that any later sublist can be assigned the
1873 	 * same ->completed number as the newly arrived callbacks, which
1874 	 * means that the callbacks in any of these later sublist can be
1875 	 * grouped into a single sublist, whether or not they have already
1876 	 * been assigned a ->completed number.
1877 	 */
1878 	c = rcu_cbs_completed(rsp, rnp);
1879 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1880 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1881 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1882 			break;
1883 
1884 	/*
1885 	 * If there are no sublist for unassigned callbacks, leave.
1886 	 * At the same time, advance "i" one sublist, so that "i" will
1887 	 * index into the sublist where all the remaining callbacks should
1888 	 * be grouped into.
1889 	 */
1890 	if (++i >= RCU_NEXT_TAIL)
1891 		return false;
1892 
1893 	/*
1894 	 * Assign all subsequent callbacks' ->completed number to the next
1895 	 * full grace period and group them all in the sublist initially
1896 	 * indexed by "i".
1897 	 */
1898 	for (; i <= RCU_NEXT_TAIL; i++) {
1899 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1900 		rdp->nxtcompleted[i] = c;
1901 	}
1902 	/* Record any needed additional grace periods. */
1903 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1904 
1905 	/* Trace depending on how much we were able to accelerate. */
1906 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1907 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1908 	else
1909 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1910 	return ret;
1911 }
1912 
1913 /*
1914  * Move any callbacks whose grace period has completed to the
1915  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1916  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1917  * sublist.  This function is idempotent, so it does not hurt to
1918  * invoke it repeatedly.  As long as it is not invoked -too- often...
1919  * Returns true if the RCU grace-period kthread needs to be awakened.
1920  *
1921  * The caller must hold rnp->lock with interrupts disabled.
1922  */
1923 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1924 			    struct rcu_data *rdp)
1925 {
1926 	int i, j;
1927 
1928 	/* If the CPU has no callbacks, nothing to do. */
1929 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1930 		return false;
1931 
1932 	/*
1933 	 * Find all callbacks whose ->completed numbers indicate that they
1934 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1935 	 */
1936 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1937 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1938 			break;
1939 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1940 	}
1941 	/* Clean up any sublist tail pointers that were misordered above. */
1942 	for (j = RCU_WAIT_TAIL; j < i; j++)
1943 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1944 
1945 	/* Copy down callbacks to fill in empty sublists. */
1946 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1947 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1948 			break;
1949 		rdp->nxttail[j] = rdp->nxttail[i];
1950 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1951 	}
1952 
1953 	/* Classify any remaining callbacks. */
1954 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1955 }
1956 
1957 /*
1958  * Update CPU-local rcu_data state to record the beginnings and ends of
1959  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1960  * structure corresponding to the current CPU, and must have irqs disabled.
1961  * Returns true if the grace-period kthread needs to be awakened.
1962  */
1963 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1964 			      struct rcu_data *rdp)
1965 {
1966 	bool ret;
1967 	bool need_gp;
1968 
1969 	/* Handle the ends of any preceding grace periods first. */
1970 	if (rdp->completed == rnp->completed &&
1971 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1972 
1973 		/* No grace period end, so just accelerate recent callbacks. */
1974 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1975 
1976 	} else {
1977 
1978 		/* Advance callbacks. */
1979 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1980 
1981 		/* Remember that we saw this grace-period completion. */
1982 		rdp->completed = rnp->completed;
1983 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1984 	}
1985 
1986 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1987 		/*
1988 		 * If the current grace period is waiting for this CPU,
1989 		 * set up to detect a quiescent state, otherwise don't
1990 		 * go looking for one.
1991 		 */
1992 		rdp->gpnum = rnp->gpnum;
1993 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1994 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1995 		rdp->cpu_no_qs.b.norm = need_gp;
1996 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1997 		rdp->core_needs_qs = need_gp;
1998 		zero_cpu_stall_ticks(rdp);
1999 		WRITE_ONCE(rdp->gpwrap, false);
2000 	}
2001 	return ret;
2002 }
2003 
2004 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
2005 {
2006 	unsigned long flags;
2007 	bool needwake;
2008 	struct rcu_node *rnp;
2009 
2010 	local_irq_save(flags);
2011 	rnp = rdp->mynode;
2012 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
2013 	     rdp->completed == READ_ONCE(rnp->completed) &&
2014 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2015 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2016 		local_irq_restore(flags);
2017 		return;
2018 	}
2019 	needwake = __note_gp_changes(rsp, rnp, rdp);
2020 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2021 	if (needwake)
2022 		rcu_gp_kthread_wake(rsp);
2023 }
2024 
2025 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2026 {
2027 	if (delay > 0 &&
2028 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2029 		schedule_timeout_uninterruptible(delay);
2030 }
2031 
2032 /*
2033  * Initialize a new grace period.  Return false if no grace period required.
2034  */
2035 static bool rcu_gp_init(struct rcu_state *rsp)
2036 {
2037 	unsigned long oldmask;
2038 	struct rcu_data *rdp;
2039 	struct rcu_node *rnp = rcu_get_root(rsp);
2040 
2041 	WRITE_ONCE(rsp->gp_activity, jiffies);
2042 	raw_spin_lock_irq_rcu_node(rnp);
2043 	if (!READ_ONCE(rsp->gp_flags)) {
2044 		/* Spurious wakeup, tell caller to go back to sleep.  */
2045 		raw_spin_unlock_irq_rcu_node(rnp);
2046 		return false;
2047 	}
2048 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2049 
2050 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2051 		/*
2052 		 * Grace period already in progress, don't start another.
2053 		 * Not supposed to be able to happen.
2054 		 */
2055 		raw_spin_unlock_irq_rcu_node(rnp);
2056 		return false;
2057 	}
2058 
2059 	/* Advance to a new grace period and initialize state. */
2060 	record_gp_stall_check_time(rsp);
2061 	/* Record GP times before starting GP, hence smp_store_release(). */
2062 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2063 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2064 	raw_spin_unlock_irq_rcu_node(rnp);
2065 
2066 	/*
2067 	 * Apply per-leaf buffered online and offline operations to the
2068 	 * rcu_node tree.  Note that this new grace period need not wait
2069 	 * for subsequent online CPUs, and that quiescent-state forcing
2070 	 * will handle subsequent offline CPUs.
2071 	 */
2072 	rcu_for_each_leaf_node(rsp, rnp) {
2073 		rcu_gp_slow(rsp, gp_preinit_delay);
2074 		raw_spin_lock_irq_rcu_node(rnp);
2075 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2076 		    !rnp->wait_blkd_tasks) {
2077 			/* Nothing to do on this leaf rcu_node structure. */
2078 			raw_spin_unlock_irq_rcu_node(rnp);
2079 			continue;
2080 		}
2081 
2082 		/* Record old state, apply changes to ->qsmaskinit field. */
2083 		oldmask = rnp->qsmaskinit;
2084 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2085 
2086 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2087 		if (!oldmask != !rnp->qsmaskinit) {
2088 			if (!oldmask) /* First online CPU for this rcu_node. */
2089 				rcu_init_new_rnp(rnp);
2090 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2091 				rnp->wait_blkd_tasks = true;
2092 			else /* Last offline CPU and can propagate. */
2093 				rcu_cleanup_dead_rnp(rnp);
2094 		}
2095 
2096 		/*
2097 		 * If all waited-on tasks from prior grace period are
2098 		 * done, and if all this rcu_node structure's CPUs are
2099 		 * still offline, propagate up the rcu_node tree and
2100 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2101 		 * rcu_node structure's CPUs has since come back online,
2102 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2103 		 * checks for this, so just call it unconditionally).
2104 		 */
2105 		if (rnp->wait_blkd_tasks &&
2106 		    (!rcu_preempt_has_tasks(rnp) ||
2107 		     rnp->qsmaskinit)) {
2108 			rnp->wait_blkd_tasks = false;
2109 			rcu_cleanup_dead_rnp(rnp);
2110 		}
2111 
2112 		raw_spin_unlock_irq_rcu_node(rnp);
2113 	}
2114 
2115 	/*
2116 	 * Set the quiescent-state-needed bits in all the rcu_node
2117 	 * structures for all currently online CPUs in breadth-first order,
2118 	 * starting from the root rcu_node structure, relying on the layout
2119 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2120 	 * will access only the leaves of the hierarchy, thus seeing that no
2121 	 * grace period is in progress, at least until the corresponding
2122 	 * leaf node has been initialized.
2123 	 *
2124 	 * The grace period cannot complete until the initialization
2125 	 * process finishes, because this kthread handles both.
2126 	 */
2127 	rcu_for_each_node_breadth_first(rsp, rnp) {
2128 		rcu_gp_slow(rsp, gp_init_delay);
2129 		raw_spin_lock_irq_rcu_node(rnp);
2130 		rdp = this_cpu_ptr(rsp->rda);
2131 		rcu_preempt_check_blocked_tasks(rnp);
2132 		rnp->qsmask = rnp->qsmaskinit;
2133 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2134 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2135 			WRITE_ONCE(rnp->completed, rsp->completed);
2136 		if (rnp == rdp->mynode)
2137 			(void)__note_gp_changes(rsp, rnp, rdp);
2138 		rcu_preempt_boost_start_gp(rnp);
2139 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2140 					    rnp->level, rnp->grplo,
2141 					    rnp->grphi, rnp->qsmask);
2142 		raw_spin_unlock_irq_rcu_node(rnp);
2143 		cond_resched_rcu_qs();
2144 		WRITE_ONCE(rsp->gp_activity, jiffies);
2145 	}
2146 
2147 	return true;
2148 }
2149 
2150 /*
2151  * Helper function for wait_event_interruptible_timeout() wakeup
2152  * at force-quiescent-state time.
2153  */
2154 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2155 {
2156 	struct rcu_node *rnp = rcu_get_root(rsp);
2157 
2158 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2159 	*gfp = READ_ONCE(rsp->gp_flags);
2160 	if (*gfp & RCU_GP_FLAG_FQS)
2161 		return true;
2162 
2163 	/* The current grace period has completed. */
2164 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2165 		return true;
2166 
2167 	return false;
2168 }
2169 
2170 /*
2171  * Do one round of quiescent-state forcing.
2172  */
2173 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2174 {
2175 	bool isidle = false;
2176 	unsigned long maxj;
2177 	struct rcu_node *rnp = rcu_get_root(rsp);
2178 
2179 	WRITE_ONCE(rsp->gp_activity, jiffies);
2180 	rsp->n_force_qs++;
2181 	if (first_time) {
2182 		/* Collect dyntick-idle snapshots. */
2183 		if (is_sysidle_rcu_state(rsp)) {
2184 			isidle = true;
2185 			maxj = jiffies - ULONG_MAX / 4;
2186 		}
2187 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2188 			     &isidle, &maxj);
2189 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2190 	} else {
2191 		/* Handle dyntick-idle and offline CPUs. */
2192 		isidle = true;
2193 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2194 	}
2195 	/* Clear flag to prevent immediate re-entry. */
2196 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2197 		raw_spin_lock_irq_rcu_node(rnp);
2198 		WRITE_ONCE(rsp->gp_flags,
2199 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2200 		raw_spin_unlock_irq_rcu_node(rnp);
2201 	}
2202 }
2203 
2204 /*
2205  * Clean up after the old grace period.
2206  */
2207 static void rcu_gp_cleanup(struct rcu_state *rsp)
2208 {
2209 	unsigned long gp_duration;
2210 	bool needgp = false;
2211 	int nocb = 0;
2212 	struct rcu_data *rdp;
2213 	struct rcu_node *rnp = rcu_get_root(rsp);
2214 	struct swait_queue_head *sq;
2215 
2216 	WRITE_ONCE(rsp->gp_activity, jiffies);
2217 	raw_spin_lock_irq_rcu_node(rnp);
2218 	gp_duration = jiffies - rsp->gp_start;
2219 	if (gp_duration > rsp->gp_max)
2220 		rsp->gp_max = gp_duration;
2221 
2222 	/*
2223 	 * We know the grace period is complete, but to everyone else
2224 	 * it appears to still be ongoing.  But it is also the case
2225 	 * that to everyone else it looks like there is nothing that
2226 	 * they can do to advance the grace period.  It is therefore
2227 	 * safe for us to drop the lock in order to mark the grace
2228 	 * period as completed in all of the rcu_node structures.
2229 	 */
2230 	raw_spin_unlock_irq_rcu_node(rnp);
2231 
2232 	/*
2233 	 * Propagate new ->completed value to rcu_node structures so
2234 	 * that other CPUs don't have to wait until the start of the next
2235 	 * grace period to process their callbacks.  This also avoids
2236 	 * some nasty RCU grace-period initialization races by forcing
2237 	 * the end of the current grace period to be completely recorded in
2238 	 * all of the rcu_node structures before the beginning of the next
2239 	 * grace period is recorded in any of the rcu_node structures.
2240 	 */
2241 	rcu_for_each_node_breadth_first(rsp, rnp) {
2242 		raw_spin_lock_irq_rcu_node(rnp);
2243 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2244 		WARN_ON_ONCE(rnp->qsmask);
2245 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2246 		rdp = this_cpu_ptr(rsp->rda);
2247 		if (rnp == rdp->mynode)
2248 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2249 		/* smp_mb() provided by prior unlock-lock pair. */
2250 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2251 		sq = rcu_nocb_gp_get(rnp);
2252 		raw_spin_unlock_irq_rcu_node(rnp);
2253 		rcu_nocb_gp_cleanup(sq);
2254 		cond_resched_rcu_qs();
2255 		WRITE_ONCE(rsp->gp_activity, jiffies);
2256 		rcu_gp_slow(rsp, gp_cleanup_delay);
2257 	}
2258 	rnp = rcu_get_root(rsp);
2259 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2260 	rcu_nocb_gp_set(rnp, nocb);
2261 
2262 	/* Declare grace period done. */
2263 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2264 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2265 	rsp->gp_state = RCU_GP_IDLE;
2266 	rdp = this_cpu_ptr(rsp->rda);
2267 	/* Advance CBs to reduce false positives below. */
2268 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2269 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2270 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2271 		trace_rcu_grace_period(rsp->name,
2272 				       READ_ONCE(rsp->gpnum),
2273 				       TPS("newreq"));
2274 	}
2275 	raw_spin_unlock_irq_rcu_node(rnp);
2276 }
2277 
2278 /*
2279  * Body of kthread that handles grace periods.
2280  */
2281 static int __noreturn rcu_gp_kthread(void *arg)
2282 {
2283 	bool first_gp_fqs;
2284 	int gf;
2285 	unsigned long j;
2286 	int ret;
2287 	struct rcu_state *rsp = arg;
2288 	struct rcu_node *rnp = rcu_get_root(rsp);
2289 
2290 	rcu_bind_gp_kthread();
2291 	for (;;) {
2292 
2293 		/* Handle grace-period start. */
2294 		for (;;) {
2295 			trace_rcu_grace_period(rsp->name,
2296 					       READ_ONCE(rsp->gpnum),
2297 					       TPS("reqwait"));
2298 			rsp->gp_state = RCU_GP_WAIT_GPS;
2299 			swait_event_interruptible(rsp->gp_wq,
2300 						 READ_ONCE(rsp->gp_flags) &
2301 						 RCU_GP_FLAG_INIT);
2302 			rsp->gp_state = RCU_GP_DONE_GPS;
2303 			/* Locking provides needed memory barrier. */
2304 			if (rcu_gp_init(rsp))
2305 				break;
2306 			cond_resched_rcu_qs();
2307 			WRITE_ONCE(rsp->gp_activity, jiffies);
2308 			WARN_ON(signal_pending(current));
2309 			trace_rcu_grace_period(rsp->name,
2310 					       READ_ONCE(rsp->gpnum),
2311 					       TPS("reqwaitsig"));
2312 		}
2313 
2314 		/* Handle quiescent-state forcing. */
2315 		first_gp_fqs = true;
2316 		j = jiffies_till_first_fqs;
2317 		if (j > HZ) {
2318 			j = HZ;
2319 			jiffies_till_first_fqs = HZ;
2320 		}
2321 		ret = 0;
2322 		for (;;) {
2323 			if (!ret) {
2324 				rsp->jiffies_force_qs = jiffies + j;
2325 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2326 					   jiffies + 3 * j);
2327 			}
2328 			trace_rcu_grace_period(rsp->name,
2329 					       READ_ONCE(rsp->gpnum),
2330 					       TPS("fqswait"));
2331 			rsp->gp_state = RCU_GP_WAIT_FQS;
2332 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2333 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2334 			rsp->gp_state = RCU_GP_DOING_FQS;
2335 			/* Locking provides needed memory barriers. */
2336 			/* If grace period done, leave loop. */
2337 			if (!READ_ONCE(rnp->qsmask) &&
2338 			    !rcu_preempt_blocked_readers_cgp(rnp))
2339 				break;
2340 			/* If time for quiescent-state forcing, do it. */
2341 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2342 			    (gf & RCU_GP_FLAG_FQS)) {
2343 				trace_rcu_grace_period(rsp->name,
2344 						       READ_ONCE(rsp->gpnum),
2345 						       TPS("fqsstart"));
2346 				rcu_gp_fqs(rsp, first_gp_fqs);
2347 				first_gp_fqs = false;
2348 				trace_rcu_grace_period(rsp->name,
2349 						       READ_ONCE(rsp->gpnum),
2350 						       TPS("fqsend"));
2351 				cond_resched_rcu_qs();
2352 				WRITE_ONCE(rsp->gp_activity, jiffies);
2353 				ret = 0; /* Force full wait till next FQS. */
2354 				j = jiffies_till_next_fqs;
2355 				if (j > HZ) {
2356 					j = HZ;
2357 					jiffies_till_next_fqs = HZ;
2358 				} else if (j < 1) {
2359 					j = 1;
2360 					jiffies_till_next_fqs = 1;
2361 				}
2362 			} else {
2363 				/* Deal with stray signal. */
2364 				cond_resched_rcu_qs();
2365 				WRITE_ONCE(rsp->gp_activity, jiffies);
2366 				WARN_ON(signal_pending(current));
2367 				trace_rcu_grace_period(rsp->name,
2368 						       READ_ONCE(rsp->gpnum),
2369 						       TPS("fqswaitsig"));
2370 				ret = 1; /* Keep old FQS timing. */
2371 				j = jiffies;
2372 				if (time_after(jiffies, rsp->jiffies_force_qs))
2373 					j = 1;
2374 				else
2375 					j = rsp->jiffies_force_qs - j;
2376 			}
2377 		}
2378 
2379 		/* Handle grace-period end. */
2380 		rsp->gp_state = RCU_GP_CLEANUP;
2381 		rcu_gp_cleanup(rsp);
2382 		rsp->gp_state = RCU_GP_CLEANED;
2383 	}
2384 }
2385 
2386 /*
2387  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2388  * in preparation for detecting the next grace period.  The caller must hold
2389  * the root node's ->lock and hard irqs must be disabled.
2390  *
2391  * Note that it is legal for a dying CPU (which is marked as offline) to
2392  * invoke this function.  This can happen when the dying CPU reports its
2393  * quiescent state.
2394  *
2395  * Returns true if the grace-period kthread must be awakened.
2396  */
2397 static bool
2398 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2399 		      struct rcu_data *rdp)
2400 {
2401 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2402 		/*
2403 		 * Either we have not yet spawned the grace-period
2404 		 * task, this CPU does not need another grace period,
2405 		 * or a grace period is already in progress.
2406 		 * Either way, don't start a new grace period.
2407 		 */
2408 		return false;
2409 	}
2410 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2411 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2412 			       TPS("newreq"));
2413 
2414 	/*
2415 	 * We can't do wakeups while holding the rnp->lock, as that
2416 	 * could cause possible deadlocks with the rq->lock. Defer
2417 	 * the wakeup to our caller.
2418 	 */
2419 	return true;
2420 }
2421 
2422 /*
2423  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2424  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2425  * is invoked indirectly from rcu_advance_cbs(), which would result in
2426  * endless recursion -- or would do so if it wasn't for the self-deadlock
2427  * that is encountered beforehand.
2428  *
2429  * Returns true if the grace-period kthread needs to be awakened.
2430  */
2431 static bool rcu_start_gp(struct rcu_state *rsp)
2432 {
2433 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2434 	struct rcu_node *rnp = rcu_get_root(rsp);
2435 	bool ret = false;
2436 
2437 	/*
2438 	 * If there is no grace period in progress right now, any
2439 	 * callbacks we have up to this point will be satisfied by the
2440 	 * next grace period.  Also, advancing the callbacks reduces the
2441 	 * probability of false positives from cpu_needs_another_gp()
2442 	 * resulting in pointless grace periods.  So, advance callbacks
2443 	 * then start the grace period!
2444 	 */
2445 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2446 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2447 	return ret;
2448 }
2449 
2450 /*
2451  * Report a full set of quiescent states to the specified rcu_state data
2452  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2453  * kthread if another grace period is required.  Whether we wake
2454  * the grace-period kthread or it awakens itself for the next round
2455  * of quiescent-state forcing, that kthread will clean up after the
2456  * just-completed grace period.  Note that the caller must hold rnp->lock,
2457  * which is released before return.
2458  */
2459 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2460 	__releases(rcu_get_root(rsp)->lock)
2461 {
2462 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2463 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2464 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2465 	rcu_gp_kthread_wake(rsp);
2466 }
2467 
2468 /*
2469  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2470  * Allows quiescent states for a group of CPUs to be reported at one go
2471  * to the specified rcu_node structure, though all the CPUs in the group
2472  * must be represented by the same rcu_node structure (which need not be a
2473  * leaf rcu_node structure, though it often will be).  The gps parameter
2474  * is the grace-period snapshot, which means that the quiescent states
2475  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2476  * must be held upon entry, and it is released before return.
2477  */
2478 static void
2479 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2480 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2481 	__releases(rnp->lock)
2482 {
2483 	unsigned long oldmask = 0;
2484 	struct rcu_node *rnp_c;
2485 
2486 	/* Walk up the rcu_node hierarchy. */
2487 	for (;;) {
2488 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2489 
2490 			/*
2491 			 * Our bit has already been cleared, or the
2492 			 * relevant grace period is already over, so done.
2493 			 */
2494 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2495 			return;
2496 		}
2497 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2498 		rnp->qsmask &= ~mask;
2499 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2500 						 mask, rnp->qsmask, rnp->level,
2501 						 rnp->grplo, rnp->grphi,
2502 						 !!rnp->gp_tasks);
2503 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2504 
2505 			/* Other bits still set at this level, so done. */
2506 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2507 			return;
2508 		}
2509 		mask = rnp->grpmask;
2510 		if (rnp->parent == NULL) {
2511 
2512 			/* No more levels.  Exit loop holding root lock. */
2513 
2514 			break;
2515 		}
2516 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2517 		rnp_c = rnp;
2518 		rnp = rnp->parent;
2519 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2520 		oldmask = rnp_c->qsmask;
2521 	}
2522 
2523 	/*
2524 	 * Get here if we are the last CPU to pass through a quiescent
2525 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2526 	 * to clean up and start the next grace period if one is needed.
2527 	 */
2528 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2529 }
2530 
2531 /*
2532  * Record a quiescent state for all tasks that were previously queued
2533  * on the specified rcu_node structure and that were blocking the current
2534  * RCU grace period.  The caller must hold the specified rnp->lock with
2535  * irqs disabled, and this lock is released upon return, but irqs remain
2536  * disabled.
2537  */
2538 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2539 				      struct rcu_node *rnp, unsigned long flags)
2540 	__releases(rnp->lock)
2541 {
2542 	unsigned long gps;
2543 	unsigned long mask;
2544 	struct rcu_node *rnp_p;
2545 
2546 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2547 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2548 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2549 		return;  /* Still need more quiescent states! */
2550 	}
2551 
2552 	rnp_p = rnp->parent;
2553 	if (rnp_p == NULL) {
2554 		/*
2555 		 * Only one rcu_node structure in the tree, so don't
2556 		 * try to report up to its nonexistent parent!
2557 		 */
2558 		rcu_report_qs_rsp(rsp, flags);
2559 		return;
2560 	}
2561 
2562 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2563 	gps = rnp->gpnum;
2564 	mask = rnp->grpmask;
2565 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2566 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2567 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2568 }
2569 
2570 /*
2571  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2572  * structure.  This must be called from the specified CPU.
2573  */
2574 static void
2575 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2576 {
2577 	unsigned long flags;
2578 	unsigned long mask;
2579 	bool needwake;
2580 	struct rcu_node *rnp;
2581 
2582 	rnp = rdp->mynode;
2583 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2584 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2585 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2586 
2587 		/*
2588 		 * The grace period in which this quiescent state was
2589 		 * recorded has ended, so don't report it upwards.
2590 		 * We will instead need a new quiescent state that lies
2591 		 * within the current grace period.
2592 		 */
2593 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2594 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2595 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2596 		return;
2597 	}
2598 	mask = rdp->grpmask;
2599 	if ((rnp->qsmask & mask) == 0) {
2600 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2601 	} else {
2602 		rdp->core_needs_qs = false;
2603 
2604 		/*
2605 		 * This GP can't end until cpu checks in, so all of our
2606 		 * callbacks can be processed during the next GP.
2607 		 */
2608 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2609 
2610 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2611 		/* ^^^ Released rnp->lock */
2612 		if (needwake)
2613 			rcu_gp_kthread_wake(rsp);
2614 	}
2615 }
2616 
2617 /*
2618  * Check to see if there is a new grace period of which this CPU
2619  * is not yet aware, and if so, set up local rcu_data state for it.
2620  * Otherwise, see if this CPU has just passed through its first
2621  * quiescent state for this grace period, and record that fact if so.
2622  */
2623 static void
2624 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2625 {
2626 	/* Check for grace-period ends and beginnings. */
2627 	note_gp_changes(rsp, rdp);
2628 
2629 	/*
2630 	 * Does this CPU still need to do its part for current grace period?
2631 	 * If no, return and let the other CPUs do their part as well.
2632 	 */
2633 	if (!rdp->core_needs_qs)
2634 		return;
2635 
2636 	/*
2637 	 * Was there a quiescent state since the beginning of the grace
2638 	 * period? If no, then exit and wait for the next call.
2639 	 */
2640 	if (rdp->cpu_no_qs.b.norm)
2641 		return;
2642 
2643 	/*
2644 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2645 	 * judge of that).
2646 	 */
2647 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2648 }
2649 
2650 /*
2651  * Send the specified CPU's RCU callbacks to the orphanage.  The
2652  * specified CPU must be offline, and the caller must hold the
2653  * ->orphan_lock.
2654  */
2655 static void
2656 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2657 			  struct rcu_node *rnp, struct rcu_data *rdp)
2658 {
2659 	/* No-CBs CPUs do not have orphanable callbacks. */
2660 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2661 		return;
2662 
2663 	/*
2664 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2665 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2666 	 * cannot be running now.  Thus no memory barrier is required.
2667 	 */
2668 	if (rdp->nxtlist != NULL) {
2669 		rsp->qlen_lazy += rdp->qlen_lazy;
2670 		rsp->qlen += rdp->qlen;
2671 		rdp->n_cbs_orphaned += rdp->qlen;
2672 		rdp->qlen_lazy = 0;
2673 		WRITE_ONCE(rdp->qlen, 0);
2674 	}
2675 
2676 	/*
2677 	 * Next, move those callbacks still needing a grace period to
2678 	 * the orphanage, where some other CPU will pick them up.
2679 	 * Some of the callbacks might have gone partway through a grace
2680 	 * period, but that is too bad.  They get to start over because we
2681 	 * cannot assume that grace periods are synchronized across CPUs.
2682 	 * We don't bother updating the ->nxttail[] array yet, instead
2683 	 * we just reset the whole thing later on.
2684 	 */
2685 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2686 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2687 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2688 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2689 	}
2690 
2691 	/*
2692 	 * Then move the ready-to-invoke callbacks to the orphanage,
2693 	 * where some other CPU will pick them up.  These will not be
2694 	 * required to pass though another grace period: They are done.
2695 	 */
2696 	if (rdp->nxtlist != NULL) {
2697 		*rsp->orphan_donetail = rdp->nxtlist;
2698 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2699 	}
2700 
2701 	/*
2702 	 * Finally, initialize the rcu_data structure's list to empty and
2703 	 * disallow further callbacks on this CPU.
2704 	 */
2705 	init_callback_list(rdp);
2706 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2707 }
2708 
2709 /*
2710  * Adopt the RCU callbacks from the specified rcu_state structure's
2711  * orphanage.  The caller must hold the ->orphan_lock.
2712  */
2713 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2714 {
2715 	int i;
2716 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2717 
2718 	/* No-CBs CPUs are handled specially. */
2719 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2720 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2721 		return;
2722 
2723 	/* Do the accounting first. */
2724 	rdp->qlen_lazy += rsp->qlen_lazy;
2725 	rdp->qlen += rsp->qlen;
2726 	rdp->n_cbs_adopted += rsp->qlen;
2727 	if (rsp->qlen_lazy != rsp->qlen)
2728 		rcu_idle_count_callbacks_posted();
2729 	rsp->qlen_lazy = 0;
2730 	rsp->qlen = 0;
2731 
2732 	/*
2733 	 * We do not need a memory barrier here because the only way we
2734 	 * can get here if there is an rcu_barrier() in flight is if
2735 	 * we are the task doing the rcu_barrier().
2736 	 */
2737 
2738 	/* First adopt the ready-to-invoke callbacks. */
2739 	if (rsp->orphan_donelist != NULL) {
2740 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2741 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2742 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2743 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2744 				rdp->nxttail[i] = rsp->orphan_donetail;
2745 		rsp->orphan_donelist = NULL;
2746 		rsp->orphan_donetail = &rsp->orphan_donelist;
2747 	}
2748 
2749 	/* And then adopt the callbacks that still need a grace period. */
2750 	if (rsp->orphan_nxtlist != NULL) {
2751 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2752 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2753 		rsp->orphan_nxtlist = NULL;
2754 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2755 	}
2756 }
2757 
2758 /*
2759  * Trace the fact that this CPU is going offline.
2760  */
2761 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2762 {
2763 	RCU_TRACE(unsigned long mask);
2764 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2765 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2766 
2767 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2768 		return;
2769 
2770 	RCU_TRACE(mask = rdp->grpmask);
2771 	trace_rcu_grace_period(rsp->name,
2772 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2773 			       TPS("cpuofl"));
2774 }
2775 
2776 /*
2777  * All CPUs for the specified rcu_node structure have gone offline,
2778  * and all tasks that were preempted within an RCU read-side critical
2779  * section while running on one of those CPUs have since exited their RCU
2780  * read-side critical section.  Some other CPU is reporting this fact with
2781  * the specified rcu_node structure's ->lock held and interrupts disabled.
2782  * This function therefore goes up the tree of rcu_node structures,
2783  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2784  * the leaf rcu_node structure's ->qsmaskinit field has already been
2785  * updated
2786  *
2787  * This function does check that the specified rcu_node structure has
2788  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2789  * prematurely.  That said, invoking it after the fact will cost you
2790  * a needless lock acquisition.  So once it has done its work, don't
2791  * invoke it again.
2792  */
2793 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2794 {
2795 	long mask;
2796 	struct rcu_node *rnp = rnp_leaf;
2797 
2798 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2799 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2800 		return;
2801 	for (;;) {
2802 		mask = rnp->grpmask;
2803 		rnp = rnp->parent;
2804 		if (!rnp)
2805 			break;
2806 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2807 		rnp->qsmaskinit &= ~mask;
2808 		rnp->qsmask &= ~mask;
2809 		if (rnp->qsmaskinit) {
2810 			raw_spin_unlock_rcu_node(rnp);
2811 			/* irqs remain disabled. */
2812 			return;
2813 		}
2814 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2815 	}
2816 }
2817 
2818 /*
2819  * The CPU has been completely removed, and some other CPU is reporting
2820  * this fact from process context.  Do the remainder of the cleanup,
2821  * including orphaning the outgoing CPU's RCU callbacks, and also
2822  * adopting them.  There can only be one CPU hotplug operation at a time,
2823  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2824  */
2825 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2826 {
2827 	unsigned long flags;
2828 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2829 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2830 
2831 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2832 		return;
2833 
2834 	/* Adjust any no-longer-needed kthreads. */
2835 	rcu_boost_kthread_setaffinity(rnp, -1);
2836 
2837 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2838 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2839 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2840 	rcu_adopt_orphan_cbs(rsp, flags);
2841 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2842 
2843 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2844 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2845 		  cpu, rdp->qlen, rdp->nxtlist);
2846 }
2847 
2848 /*
2849  * Invoke any RCU callbacks that have made it to the end of their grace
2850  * period.  Thottle as specified by rdp->blimit.
2851  */
2852 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2853 {
2854 	unsigned long flags;
2855 	struct rcu_head *next, *list, **tail;
2856 	long bl, count, count_lazy;
2857 	int i;
2858 
2859 	/* If no callbacks are ready, just return. */
2860 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2861 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2862 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2863 				    need_resched(), is_idle_task(current),
2864 				    rcu_is_callbacks_kthread());
2865 		return;
2866 	}
2867 
2868 	/*
2869 	 * Extract the list of ready callbacks, disabling to prevent
2870 	 * races with call_rcu() from interrupt handlers.
2871 	 */
2872 	local_irq_save(flags);
2873 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2874 	bl = rdp->blimit;
2875 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2876 	list = rdp->nxtlist;
2877 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2878 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2879 	tail = rdp->nxttail[RCU_DONE_TAIL];
2880 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2881 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2882 			rdp->nxttail[i] = &rdp->nxtlist;
2883 	local_irq_restore(flags);
2884 
2885 	/* Invoke callbacks. */
2886 	count = count_lazy = 0;
2887 	while (list) {
2888 		next = list->next;
2889 		prefetch(next);
2890 		debug_rcu_head_unqueue(list);
2891 		if (__rcu_reclaim(rsp->name, list))
2892 			count_lazy++;
2893 		list = next;
2894 		/* Stop only if limit reached and CPU has something to do. */
2895 		if (++count >= bl &&
2896 		    (need_resched() ||
2897 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2898 			break;
2899 	}
2900 
2901 	local_irq_save(flags);
2902 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2903 			    is_idle_task(current),
2904 			    rcu_is_callbacks_kthread());
2905 
2906 	/* Update count, and requeue any remaining callbacks. */
2907 	if (list != NULL) {
2908 		*tail = rdp->nxtlist;
2909 		rdp->nxtlist = list;
2910 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2911 			if (&rdp->nxtlist == rdp->nxttail[i])
2912 				rdp->nxttail[i] = tail;
2913 			else
2914 				break;
2915 	}
2916 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2917 	rdp->qlen_lazy -= count_lazy;
2918 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2919 	rdp->n_cbs_invoked += count;
2920 
2921 	/* Reinstate batch limit if we have worked down the excess. */
2922 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2923 		rdp->blimit = blimit;
2924 
2925 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2926 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2927 		rdp->qlen_last_fqs_check = 0;
2928 		rdp->n_force_qs_snap = rsp->n_force_qs;
2929 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2930 		rdp->qlen_last_fqs_check = rdp->qlen;
2931 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2932 
2933 	local_irq_restore(flags);
2934 
2935 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2936 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2937 		invoke_rcu_core();
2938 }
2939 
2940 /*
2941  * Check to see if this CPU is in a non-context-switch quiescent state
2942  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2943  * Also schedule RCU core processing.
2944  *
2945  * This function must be called from hardirq context.  It is normally
2946  * invoked from the scheduling-clock interrupt.
2947  */
2948 void rcu_check_callbacks(int user)
2949 {
2950 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2951 	increment_cpu_stall_ticks();
2952 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2953 
2954 		/*
2955 		 * Get here if this CPU took its interrupt from user
2956 		 * mode or from the idle loop, and if this is not a
2957 		 * nested interrupt.  In this case, the CPU is in
2958 		 * a quiescent state, so note it.
2959 		 *
2960 		 * No memory barrier is required here because both
2961 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2962 		 * variables that other CPUs neither access nor modify,
2963 		 * at least not while the corresponding CPU is online.
2964 		 */
2965 
2966 		rcu_sched_qs();
2967 		rcu_bh_qs();
2968 
2969 	} else if (!in_softirq()) {
2970 
2971 		/*
2972 		 * Get here if this CPU did not take its interrupt from
2973 		 * softirq, in other words, if it is not interrupting
2974 		 * a rcu_bh read-side critical section.  This is an _bh
2975 		 * critical section, so note it.
2976 		 */
2977 
2978 		rcu_bh_qs();
2979 	}
2980 	rcu_preempt_check_callbacks();
2981 	if (rcu_pending())
2982 		invoke_rcu_core();
2983 	if (user)
2984 		rcu_note_voluntary_context_switch(current);
2985 	trace_rcu_utilization(TPS("End scheduler-tick"));
2986 }
2987 
2988 /*
2989  * Scan the leaf rcu_node structures, processing dyntick state for any that
2990  * have not yet encountered a quiescent state, using the function specified.
2991  * Also initiate boosting for any threads blocked on the root rcu_node.
2992  *
2993  * The caller must have suppressed start of new grace periods.
2994  */
2995 static void force_qs_rnp(struct rcu_state *rsp,
2996 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2997 				  unsigned long *maxj),
2998 			 bool *isidle, unsigned long *maxj)
2999 {
3000 	int cpu;
3001 	unsigned long flags;
3002 	unsigned long mask;
3003 	struct rcu_node *rnp;
3004 
3005 	rcu_for_each_leaf_node(rsp, rnp) {
3006 		cond_resched_rcu_qs();
3007 		mask = 0;
3008 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3009 		if (rnp->qsmask == 0) {
3010 			if (rcu_state_p == &rcu_sched_state ||
3011 			    rsp != rcu_state_p ||
3012 			    rcu_preempt_blocked_readers_cgp(rnp)) {
3013 				/*
3014 				 * No point in scanning bits because they
3015 				 * are all zero.  But we might need to
3016 				 * priority-boost blocked readers.
3017 				 */
3018 				rcu_initiate_boost(rnp, flags);
3019 				/* rcu_initiate_boost() releases rnp->lock */
3020 				continue;
3021 			}
3022 			if (rnp->parent &&
3023 			    (rnp->parent->qsmask & rnp->grpmask)) {
3024 				/*
3025 				 * Race between grace-period
3026 				 * initialization and task exiting RCU
3027 				 * read-side critical section: Report.
3028 				 */
3029 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
3030 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
3031 				continue;
3032 			}
3033 		}
3034 		for_each_leaf_node_possible_cpu(rnp, cpu) {
3035 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
3036 			if ((rnp->qsmask & bit) != 0) {
3037 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
3038 					mask |= bit;
3039 			}
3040 		}
3041 		if (mask != 0) {
3042 			/* Idle/offline CPUs, report (releases rnp->lock. */
3043 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
3044 		} else {
3045 			/* Nothing to do here, so just drop the lock. */
3046 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3047 		}
3048 	}
3049 }
3050 
3051 /*
3052  * Force quiescent states on reluctant CPUs, and also detect which
3053  * CPUs are in dyntick-idle mode.
3054  */
3055 static void force_quiescent_state(struct rcu_state *rsp)
3056 {
3057 	unsigned long flags;
3058 	bool ret;
3059 	struct rcu_node *rnp;
3060 	struct rcu_node *rnp_old = NULL;
3061 
3062 	/* Funnel through hierarchy to reduce memory contention. */
3063 	rnp = __this_cpu_read(rsp->rda->mynode);
3064 	for (; rnp != NULL; rnp = rnp->parent) {
3065 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
3066 		      !raw_spin_trylock(&rnp->fqslock);
3067 		if (rnp_old != NULL)
3068 			raw_spin_unlock(&rnp_old->fqslock);
3069 		if (ret) {
3070 			rsp->n_force_qs_lh++;
3071 			return;
3072 		}
3073 		rnp_old = rnp;
3074 	}
3075 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
3076 
3077 	/* Reached the root of the rcu_node tree, acquire lock. */
3078 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3079 	raw_spin_unlock(&rnp_old->fqslock);
3080 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3081 		rsp->n_force_qs_lh++;
3082 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3083 		return;  /* Someone beat us to it. */
3084 	}
3085 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
3086 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3087 	rcu_gp_kthread_wake(rsp);
3088 }
3089 
3090 /*
3091  * This does the RCU core processing work for the specified rcu_state
3092  * and rcu_data structures.  This may be called only from the CPU to
3093  * whom the rdp belongs.
3094  */
3095 static void
3096 __rcu_process_callbacks(struct rcu_state *rsp)
3097 {
3098 	unsigned long flags;
3099 	bool needwake;
3100 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3101 
3102 	WARN_ON_ONCE(rdp->beenonline == 0);
3103 
3104 	/* Update RCU state based on any recent quiescent states. */
3105 	rcu_check_quiescent_state(rsp, rdp);
3106 
3107 	/* Does this CPU require a not-yet-started grace period? */
3108 	local_irq_save(flags);
3109 	if (cpu_needs_another_gp(rsp, rdp)) {
3110 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3111 		needwake = rcu_start_gp(rsp);
3112 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3113 		if (needwake)
3114 			rcu_gp_kthread_wake(rsp);
3115 	} else {
3116 		local_irq_restore(flags);
3117 	}
3118 
3119 	/* If there are callbacks ready, invoke them. */
3120 	if (cpu_has_callbacks_ready_to_invoke(rdp))
3121 		invoke_rcu_callbacks(rsp, rdp);
3122 
3123 	/* Do any needed deferred wakeups of rcuo kthreads. */
3124 	do_nocb_deferred_wakeup(rdp);
3125 }
3126 
3127 /*
3128  * Do RCU core processing for the current CPU.
3129  */
3130 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3131 {
3132 	struct rcu_state *rsp;
3133 
3134 	if (cpu_is_offline(smp_processor_id()))
3135 		return;
3136 	trace_rcu_utilization(TPS("Start RCU core"));
3137 	for_each_rcu_flavor(rsp)
3138 		__rcu_process_callbacks(rsp);
3139 	trace_rcu_utilization(TPS("End RCU core"));
3140 }
3141 
3142 /*
3143  * Schedule RCU callback invocation.  If the specified type of RCU
3144  * does not support RCU priority boosting, just do a direct call,
3145  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3146  * are running on the current CPU with softirqs disabled, the
3147  * rcu_cpu_kthread_task cannot disappear out from under us.
3148  */
3149 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3150 {
3151 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3152 		return;
3153 	if (likely(!rsp->boost)) {
3154 		rcu_do_batch(rsp, rdp);
3155 		return;
3156 	}
3157 	invoke_rcu_callbacks_kthread();
3158 }
3159 
3160 static void invoke_rcu_core(void)
3161 {
3162 	if (cpu_online(smp_processor_id()))
3163 		raise_softirq(RCU_SOFTIRQ);
3164 }
3165 
3166 /*
3167  * Handle any core-RCU processing required by a call_rcu() invocation.
3168  */
3169 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3170 			    struct rcu_head *head, unsigned long flags)
3171 {
3172 	bool needwake;
3173 
3174 	/*
3175 	 * If called from an extended quiescent state, invoke the RCU
3176 	 * core in order to force a re-evaluation of RCU's idleness.
3177 	 */
3178 	if (!rcu_is_watching())
3179 		invoke_rcu_core();
3180 
3181 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3182 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3183 		return;
3184 
3185 	/*
3186 	 * Force the grace period if too many callbacks or too long waiting.
3187 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3188 	 * if some other CPU has recently done so.  Also, don't bother
3189 	 * invoking force_quiescent_state() if the newly enqueued callback
3190 	 * is the only one waiting for a grace period to complete.
3191 	 */
3192 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3193 
3194 		/* Are we ignoring a completed grace period? */
3195 		note_gp_changes(rsp, rdp);
3196 
3197 		/* Start a new grace period if one not already started. */
3198 		if (!rcu_gp_in_progress(rsp)) {
3199 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3200 
3201 			raw_spin_lock_rcu_node(rnp_root);
3202 			needwake = rcu_start_gp(rsp);
3203 			raw_spin_unlock_rcu_node(rnp_root);
3204 			if (needwake)
3205 				rcu_gp_kthread_wake(rsp);
3206 		} else {
3207 			/* Give the grace period a kick. */
3208 			rdp->blimit = LONG_MAX;
3209 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3210 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3211 				force_quiescent_state(rsp);
3212 			rdp->n_force_qs_snap = rsp->n_force_qs;
3213 			rdp->qlen_last_fqs_check = rdp->qlen;
3214 		}
3215 	}
3216 }
3217 
3218 /*
3219  * RCU callback function to leak a callback.
3220  */
3221 static void rcu_leak_callback(struct rcu_head *rhp)
3222 {
3223 }
3224 
3225 /*
3226  * Helper function for call_rcu() and friends.  The cpu argument will
3227  * normally be -1, indicating "currently running CPU".  It may specify
3228  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3229  * is expected to specify a CPU.
3230  */
3231 static void
3232 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3233 	   struct rcu_state *rsp, int cpu, bool lazy)
3234 {
3235 	unsigned long flags;
3236 	struct rcu_data *rdp;
3237 
3238 	/* Misaligned rcu_head! */
3239 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3240 
3241 	if (debug_rcu_head_queue(head)) {
3242 		/* Probable double call_rcu(), so leak the callback. */
3243 		WRITE_ONCE(head->func, rcu_leak_callback);
3244 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3245 		return;
3246 	}
3247 	head->func = func;
3248 	head->next = NULL;
3249 	local_irq_save(flags);
3250 	rdp = this_cpu_ptr(rsp->rda);
3251 
3252 	/* Add the callback to our list. */
3253 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3254 		int offline;
3255 
3256 		if (cpu != -1)
3257 			rdp = per_cpu_ptr(rsp->rda, cpu);
3258 		if (likely(rdp->mynode)) {
3259 			/* Post-boot, so this should be for a no-CBs CPU. */
3260 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3261 			WARN_ON_ONCE(offline);
3262 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3263 			local_irq_restore(flags);
3264 			return;
3265 		}
3266 		/*
3267 		 * Very early boot, before rcu_init().  Initialize if needed
3268 		 * and then drop through to queue the callback.
3269 		 */
3270 		BUG_ON(cpu != -1);
3271 		WARN_ON_ONCE(!rcu_is_watching());
3272 		if (!likely(rdp->nxtlist))
3273 			init_default_callback_list(rdp);
3274 	}
3275 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3276 	if (lazy)
3277 		rdp->qlen_lazy++;
3278 	else
3279 		rcu_idle_count_callbacks_posted();
3280 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3281 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3282 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3283 
3284 	if (__is_kfree_rcu_offset((unsigned long)func))
3285 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3286 					 rdp->qlen_lazy, rdp->qlen);
3287 	else
3288 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3289 
3290 	/* Go handle any RCU core processing required. */
3291 	__call_rcu_core(rsp, rdp, head, flags);
3292 	local_irq_restore(flags);
3293 }
3294 
3295 /*
3296  * Queue an RCU-sched callback for invocation after a grace period.
3297  */
3298 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3299 {
3300 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3301 }
3302 EXPORT_SYMBOL_GPL(call_rcu_sched);
3303 
3304 /*
3305  * Queue an RCU callback for invocation after a quicker grace period.
3306  */
3307 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3308 {
3309 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3310 }
3311 EXPORT_SYMBOL_GPL(call_rcu_bh);
3312 
3313 /*
3314  * Queue an RCU callback for lazy invocation after a grace period.
3315  * This will likely be later named something like "call_rcu_lazy()",
3316  * but this change will require some way of tagging the lazy RCU
3317  * callbacks in the list of pending callbacks. Until then, this
3318  * function may only be called from __kfree_rcu().
3319  */
3320 void kfree_call_rcu(struct rcu_head *head,
3321 		    rcu_callback_t func)
3322 {
3323 	__call_rcu(head, func, rcu_state_p, -1, 1);
3324 }
3325 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3326 
3327 /*
3328  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3329  * any blocking grace-period wait automatically implies a grace period
3330  * if there is only one CPU online at any point time during execution
3331  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3332  * occasionally incorrectly indicate that there are multiple CPUs online
3333  * when there was in fact only one the whole time, as this just adds
3334  * some overhead: RCU still operates correctly.
3335  */
3336 static inline int rcu_blocking_is_gp(void)
3337 {
3338 	int ret;
3339 
3340 	might_sleep();  /* Check for RCU read-side critical section. */
3341 	preempt_disable();
3342 	ret = num_online_cpus() <= 1;
3343 	preempt_enable();
3344 	return ret;
3345 }
3346 
3347 /**
3348  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3349  *
3350  * Control will return to the caller some time after a full rcu-sched
3351  * grace period has elapsed, in other words after all currently executing
3352  * rcu-sched read-side critical sections have completed.   These read-side
3353  * critical sections are delimited by rcu_read_lock_sched() and
3354  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3355  * local_irq_disable(), and so on may be used in place of
3356  * rcu_read_lock_sched().
3357  *
3358  * This means that all preempt_disable code sequences, including NMI and
3359  * non-threaded hardware-interrupt handlers, in progress on entry will
3360  * have completed before this primitive returns.  However, this does not
3361  * guarantee that softirq handlers will have completed, since in some
3362  * kernels, these handlers can run in process context, and can block.
3363  *
3364  * Note that this guarantee implies further memory-ordering guarantees.
3365  * On systems with more than one CPU, when synchronize_sched() returns,
3366  * each CPU is guaranteed to have executed a full memory barrier since the
3367  * end of its last RCU-sched read-side critical section whose beginning
3368  * preceded the call to synchronize_sched().  In addition, each CPU having
3369  * an RCU read-side critical section that extends beyond the return from
3370  * synchronize_sched() is guaranteed to have executed a full memory barrier
3371  * after the beginning of synchronize_sched() and before the beginning of
3372  * that RCU read-side critical section.  Note that these guarantees include
3373  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3374  * that are executing in the kernel.
3375  *
3376  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3377  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3378  * to have executed a full memory barrier during the execution of
3379  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3380  * again only if the system has more than one CPU).
3381  *
3382  * This primitive provides the guarantees made by the (now removed)
3383  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3384  * guarantees that rcu_read_lock() sections will have completed.
3385  * In "classic RCU", these two guarantees happen to be one and
3386  * the same, but can differ in realtime RCU implementations.
3387  */
3388 void synchronize_sched(void)
3389 {
3390 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3391 			 lock_is_held(&rcu_lock_map) ||
3392 			 lock_is_held(&rcu_sched_lock_map),
3393 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3394 	if (rcu_blocking_is_gp())
3395 		return;
3396 	if (rcu_gp_is_expedited())
3397 		synchronize_sched_expedited();
3398 	else
3399 		wait_rcu_gp(call_rcu_sched);
3400 }
3401 EXPORT_SYMBOL_GPL(synchronize_sched);
3402 
3403 /**
3404  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3405  *
3406  * Control will return to the caller some time after a full rcu_bh grace
3407  * period has elapsed, in other words after all currently executing rcu_bh
3408  * read-side critical sections have completed.  RCU read-side critical
3409  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3410  * and may be nested.
3411  *
3412  * See the description of synchronize_sched() for more detailed information
3413  * on memory ordering guarantees.
3414  */
3415 void synchronize_rcu_bh(void)
3416 {
3417 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3418 			 lock_is_held(&rcu_lock_map) ||
3419 			 lock_is_held(&rcu_sched_lock_map),
3420 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3421 	if (rcu_blocking_is_gp())
3422 		return;
3423 	if (rcu_gp_is_expedited())
3424 		synchronize_rcu_bh_expedited();
3425 	else
3426 		wait_rcu_gp(call_rcu_bh);
3427 }
3428 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3429 
3430 /**
3431  * get_state_synchronize_rcu - Snapshot current RCU state
3432  *
3433  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3434  * to determine whether or not a full grace period has elapsed in the
3435  * meantime.
3436  */
3437 unsigned long get_state_synchronize_rcu(void)
3438 {
3439 	/*
3440 	 * Any prior manipulation of RCU-protected data must happen
3441 	 * before the load from ->gpnum.
3442 	 */
3443 	smp_mb();  /* ^^^ */
3444 
3445 	/*
3446 	 * Make sure this load happens before the purportedly
3447 	 * time-consuming work between get_state_synchronize_rcu()
3448 	 * and cond_synchronize_rcu().
3449 	 */
3450 	return smp_load_acquire(&rcu_state_p->gpnum);
3451 }
3452 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3453 
3454 /**
3455  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3456  *
3457  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3458  *
3459  * If a full RCU grace period has elapsed since the earlier call to
3460  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3461  * synchronize_rcu() to wait for a full grace period.
3462  *
3463  * Yes, this function does not take counter wrap into account.  But
3464  * counter wrap is harmless.  If the counter wraps, we have waited for
3465  * more than 2 billion grace periods (and way more on a 64-bit system!),
3466  * so waiting for one additional grace period should be just fine.
3467  */
3468 void cond_synchronize_rcu(unsigned long oldstate)
3469 {
3470 	unsigned long newstate;
3471 
3472 	/*
3473 	 * Ensure that this load happens before any RCU-destructive
3474 	 * actions the caller might carry out after we return.
3475 	 */
3476 	newstate = smp_load_acquire(&rcu_state_p->completed);
3477 	if (ULONG_CMP_GE(oldstate, newstate))
3478 		synchronize_rcu();
3479 }
3480 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3481 
3482 /**
3483  * get_state_synchronize_sched - Snapshot current RCU-sched state
3484  *
3485  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3486  * to determine whether or not a full grace period has elapsed in the
3487  * meantime.
3488  */
3489 unsigned long get_state_synchronize_sched(void)
3490 {
3491 	/*
3492 	 * Any prior manipulation of RCU-protected data must happen
3493 	 * before the load from ->gpnum.
3494 	 */
3495 	smp_mb();  /* ^^^ */
3496 
3497 	/*
3498 	 * Make sure this load happens before the purportedly
3499 	 * time-consuming work between get_state_synchronize_sched()
3500 	 * and cond_synchronize_sched().
3501 	 */
3502 	return smp_load_acquire(&rcu_sched_state.gpnum);
3503 }
3504 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3505 
3506 /**
3507  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3508  *
3509  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3510  *
3511  * If a full RCU-sched grace period has elapsed since the earlier call to
3512  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3513  * synchronize_sched() to wait for a full grace period.
3514  *
3515  * Yes, this function does not take counter wrap into account.  But
3516  * counter wrap is harmless.  If the counter wraps, we have waited for
3517  * more than 2 billion grace periods (and way more on a 64-bit system!),
3518  * so waiting for one additional grace period should be just fine.
3519  */
3520 void cond_synchronize_sched(unsigned long oldstate)
3521 {
3522 	unsigned long newstate;
3523 
3524 	/*
3525 	 * Ensure that this load happens before any RCU-destructive
3526 	 * actions the caller might carry out after we return.
3527 	 */
3528 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3529 	if (ULONG_CMP_GE(oldstate, newstate))
3530 		synchronize_sched();
3531 }
3532 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3533 
3534 /* Adjust sequence number for start of update-side operation. */
3535 static void rcu_seq_start(unsigned long *sp)
3536 {
3537 	WRITE_ONCE(*sp, *sp + 1);
3538 	smp_mb(); /* Ensure update-side operation after counter increment. */
3539 	WARN_ON_ONCE(!(*sp & 0x1));
3540 }
3541 
3542 /* Adjust sequence number for end of update-side operation. */
3543 static void rcu_seq_end(unsigned long *sp)
3544 {
3545 	smp_mb(); /* Ensure update-side operation before counter increment. */
3546 	WRITE_ONCE(*sp, *sp + 1);
3547 	WARN_ON_ONCE(*sp & 0x1);
3548 }
3549 
3550 /* Take a snapshot of the update side's sequence number. */
3551 static unsigned long rcu_seq_snap(unsigned long *sp)
3552 {
3553 	unsigned long s;
3554 
3555 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3556 	smp_mb(); /* Above access must not bleed into critical section. */
3557 	return s;
3558 }
3559 
3560 /*
3561  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3562  * full update-side operation has occurred.
3563  */
3564 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3565 {
3566 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3567 }
3568 
3569 /*
3570  * Check to see if there is any immediate RCU-related work to be done
3571  * by the current CPU, for the specified type of RCU, returning 1 if so.
3572  * The checks are in order of increasing expense: checks that can be
3573  * carried out against CPU-local state are performed first.  However,
3574  * we must check for CPU stalls first, else we might not get a chance.
3575  */
3576 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3577 {
3578 	struct rcu_node *rnp = rdp->mynode;
3579 
3580 	rdp->n_rcu_pending++;
3581 
3582 	/* Check for CPU stalls, if enabled. */
3583 	check_cpu_stall(rsp, rdp);
3584 
3585 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3586 	if (rcu_nohz_full_cpu(rsp))
3587 		return 0;
3588 
3589 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3590 	if (rcu_scheduler_fully_active &&
3591 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3592 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3593 		rdp->n_rp_core_needs_qs++;
3594 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3595 		rdp->n_rp_report_qs++;
3596 		return 1;
3597 	}
3598 
3599 	/* Does this CPU have callbacks ready to invoke? */
3600 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3601 		rdp->n_rp_cb_ready++;
3602 		return 1;
3603 	}
3604 
3605 	/* Has RCU gone idle with this CPU needing another grace period? */
3606 	if (cpu_needs_another_gp(rsp, rdp)) {
3607 		rdp->n_rp_cpu_needs_gp++;
3608 		return 1;
3609 	}
3610 
3611 	/* Has another RCU grace period completed?  */
3612 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3613 		rdp->n_rp_gp_completed++;
3614 		return 1;
3615 	}
3616 
3617 	/* Has a new RCU grace period started? */
3618 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3619 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3620 		rdp->n_rp_gp_started++;
3621 		return 1;
3622 	}
3623 
3624 	/* Does this CPU need a deferred NOCB wakeup? */
3625 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3626 		rdp->n_rp_nocb_defer_wakeup++;
3627 		return 1;
3628 	}
3629 
3630 	/* nothing to do */
3631 	rdp->n_rp_need_nothing++;
3632 	return 0;
3633 }
3634 
3635 /*
3636  * Check to see if there is any immediate RCU-related work to be done
3637  * by the current CPU, returning 1 if so.  This function is part of the
3638  * RCU implementation; it is -not- an exported member of the RCU API.
3639  */
3640 static int rcu_pending(void)
3641 {
3642 	struct rcu_state *rsp;
3643 
3644 	for_each_rcu_flavor(rsp)
3645 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3646 			return 1;
3647 	return 0;
3648 }
3649 
3650 /*
3651  * Return true if the specified CPU has any callback.  If all_lazy is
3652  * non-NULL, store an indication of whether all callbacks are lazy.
3653  * (If there are no callbacks, all of them are deemed to be lazy.)
3654  */
3655 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3656 {
3657 	bool al = true;
3658 	bool hc = false;
3659 	struct rcu_data *rdp;
3660 	struct rcu_state *rsp;
3661 
3662 	for_each_rcu_flavor(rsp) {
3663 		rdp = this_cpu_ptr(rsp->rda);
3664 		if (!rdp->nxtlist)
3665 			continue;
3666 		hc = true;
3667 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3668 			al = false;
3669 			break;
3670 		}
3671 	}
3672 	if (all_lazy)
3673 		*all_lazy = al;
3674 	return hc;
3675 }
3676 
3677 /*
3678  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3679  * the compiler is expected to optimize this away.
3680  */
3681 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3682 			       int cpu, unsigned long done)
3683 {
3684 	trace_rcu_barrier(rsp->name, s, cpu,
3685 			  atomic_read(&rsp->barrier_cpu_count), done);
3686 }
3687 
3688 /*
3689  * RCU callback function for _rcu_barrier().  If we are last, wake
3690  * up the task executing _rcu_barrier().
3691  */
3692 static void rcu_barrier_callback(struct rcu_head *rhp)
3693 {
3694 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3695 	struct rcu_state *rsp = rdp->rsp;
3696 
3697 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3698 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3699 		complete(&rsp->barrier_completion);
3700 	} else {
3701 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3702 	}
3703 }
3704 
3705 /*
3706  * Called with preemption disabled, and from cross-cpu IRQ context.
3707  */
3708 static void rcu_barrier_func(void *type)
3709 {
3710 	struct rcu_state *rsp = type;
3711 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3712 
3713 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3714 	atomic_inc(&rsp->barrier_cpu_count);
3715 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3716 }
3717 
3718 /*
3719  * Orchestrate the specified type of RCU barrier, waiting for all
3720  * RCU callbacks of the specified type to complete.
3721  */
3722 static void _rcu_barrier(struct rcu_state *rsp)
3723 {
3724 	int cpu;
3725 	struct rcu_data *rdp;
3726 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3727 
3728 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3729 
3730 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3731 	mutex_lock(&rsp->barrier_mutex);
3732 
3733 	/* Did someone else do our work for us? */
3734 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3735 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3736 		smp_mb(); /* caller's subsequent code after above check. */
3737 		mutex_unlock(&rsp->barrier_mutex);
3738 		return;
3739 	}
3740 
3741 	/* Mark the start of the barrier operation. */
3742 	rcu_seq_start(&rsp->barrier_sequence);
3743 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3744 
3745 	/*
3746 	 * Initialize the count to one rather than to zero in order to
3747 	 * avoid a too-soon return to zero in case of a short grace period
3748 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3749 	 * to ensure that no offline CPU has callbacks queued.
3750 	 */
3751 	init_completion(&rsp->barrier_completion);
3752 	atomic_set(&rsp->barrier_cpu_count, 1);
3753 	get_online_cpus();
3754 
3755 	/*
3756 	 * Force each CPU with callbacks to register a new callback.
3757 	 * When that callback is invoked, we will know that all of the
3758 	 * corresponding CPU's preceding callbacks have been invoked.
3759 	 */
3760 	for_each_possible_cpu(cpu) {
3761 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3762 			continue;
3763 		rdp = per_cpu_ptr(rsp->rda, cpu);
3764 		if (rcu_is_nocb_cpu(cpu)) {
3765 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3766 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3767 						   rsp->barrier_sequence);
3768 			} else {
3769 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3770 						   rsp->barrier_sequence);
3771 				smp_mb__before_atomic();
3772 				atomic_inc(&rsp->barrier_cpu_count);
3773 				__call_rcu(&rdp->barrier_head,
3774 					   rcu_barrier_callback, rsp, cpu, 0);
3775 			}
3776 		} else if (READ_ONCE(rdp->qlen)) {
3777 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3778 					   rsp->barrier_sequence);
3779 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3780 		} else {
3781 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3782 					   rsp->barrier_sequence);
3783 		}
3784 	}
3785 	put_online_cpus();
3786 
3787 	/*
3788 	 * Now that we have an rcu_barrier_callback() callback on each
3789 	 * CPU, and thus each counted, remove the initial count.
3790 	 */
3791 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3792 		complete(&rsp->barrier_completion);
3793 
3794 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3795 	wait_for_completion(&rsp->barrier_completion);
3796 
3797 	/* Mark the end of the barrier operation. */
3798 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3799 	rcu_seq_end(&rsp->barrier_sequence);
3800 
3801 	/* Other rcu_barrier() invocations can now safely proceed. */
3802 	mutex_unlock(&rsp->barrier_mutex);
3803 }
3804 
3805 /**
3806  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3807  */
3808 void rcu_barrier_bh(void)
3809 {
3810 	_rcu_barrier(&rcu_bh_state);
3811 }
3812 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3813 
3814 /**
3815  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3816  */
3817 void rcu_barrier_sched(void)
3818 {
3819 	_rcu_barrier(&rcu_sched_state);
3820 }
3821 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3822 
3823 /*
3824  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3825  * first CPU in a given leaf rcu_node structure coming online.  The caller
3826  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3827  * disabled.
3828  */
3829 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3830 {
3831 	long mask;
3832 	struct rcu_node *rnp = rnp_leaf;
3833 
3834 	for (;;) {
3835 		mask = rnp->grpmask;
3836 		rnp = rnp->parent;
3837 		if (rnp == NULL)
3838 			return;
3839 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3840 		rnp->qsmaskinit |= mask;
3841 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3842 	}
3843 }
3844 
3845 /*
3846  * Do boot-time initialization of a CPU's per-CPU RCU data.
3847  */
3848 static void __init
3849 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3850 {
3851 	unsigned long flags;
3852 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3853 	struct rcu_node *rnp = rcu_get_root(rsp);
3854 
3855 	/* Set up local state, ensuring consistent view of global state. */
3856 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3857 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3858 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3859 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3860 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3861 	rdp->cpu = cpu;
3862 	rdp->rsp = rsp;
3863 	rcu_boot_init_nocb_percpu_data(rdp);
3864 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3865 }
3866 
3867 /*
3868  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3869  * offline event can be happening at a given time.  Note also that we
3870  * can accept some slop in the rsp->completed access due to the fact
3871  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3872  */
3873 static void
3874 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3875 {
3876 	unsigned long flags;
3877 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3878 	struct rcu_node *rnp = rcu_get_root(rsp);
3879 
3880 	/* Set up local state, ensuring consistent view of global state. */
3881 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3882 	rdp->qlen_last_fqs_check = 0;
3883 	rdp->n_force_qs_snap = rsp->n_force_qs;
3884 	rdp->blimit = blimit;
3885 	if (!rdp->nxtlist)
3886 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3887 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3888 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3889 	rcu_dynticks_eqs_online();
3890 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3891 
3892 	/*
3893 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3894 	 * propagation up the rcu_node tree will happen at the beginning
3895 	 * of the next grace period.
3896 	 */
3897 	rnp = rdp->mynode;
3898 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3899 	if (!rdp->beenonline)
3900 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3901 	rdp->beenonline = true;	 /* We have now been online. */
3902 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3903 	rdp->completed = rnp->completed;
3904 	rdp->cpu_no_qs.b.norm = true;
3905 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3906 	rdp->core_needs_qs = false;
3907 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3908 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3909 }
3910 
3911 int rcutree_prepare_cpu(unsigned int cpu)
3912 {
3913 	struct rcu_state *rsp;
3914 
3915 	for_each_rcu_flavor(rsp)
3916 		rcu_init_percpu_data(cpu, rsp);
3917 
3918 	rcu_prepare_kthreads(cpu);
3919 	rcu_spawn_all_nocb_kthreads(cpu);
3920 
3921 	return 0;
3922 }
3923 
3924 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3925 {
3926 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3927 
3928 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3929 }
3930 
3931 int rcutree_online_cpu(unsigned int cpu)
3932 {
3933 	sync_sched_exp_online_cleanup(cpu);
3934 	rcutree_affinity_setting(cpu, -1);
3935 	return 0;
3936 }
3937 
3938 int rcutree_offline_cpu(unsigned int cpu)
3939 {
3940 	rcutree_affinity_setting(cpu, cpu);
3941 	return 0;
3942 }
3943 
3944 
3945 int rcutree_dying_cpu(unsigned int cpu)
3946 {
3947 	struct rcu_state *rsp;
3948 
3949 	for_each_rcu_flavor(rsp)
3950 		rcu_cleanup_dying_cpu(rsp);
3951 	return 0;
3952 }
3953 
3954 int rcutree_dead_cpu(unsigned int cpu)
3955 {
3956 	struct rcu_state *rsp;
3957 
3958 	for_each_rcu_flavor(rsp) {
3959 		rcu_cleanup_dead_cpu(cpu, rsp);
3960 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3961 	}
3962 	return 0;
3963 }
3964 
3965 /*
3966  * Mark the specified CPU as being online so that subsequent grace periods
3967  * (both expedited and normal) will wait on it.  Note that this means that
3968  * incoming CPUs are not allowed to use RCU read-side critical sections
3969  * until this function is called.  Failing to observe this restriction
3970  * will result in lockdep splats.
3971  */
3972 void rcu_cpu_starting(unsigned int cpu)
3973 {
3974 	unsigned long flags;
3975 	unsigned long mask;
3976 	struct rcu_data *rdp;
3977 	struct rcu_node *rnp;
3978 	struct rcu_state *rsp;
3979 
3980 	for_each_rcu_flavor(rsp) {
3981 		rdp = per_cpu_ptr(rsp->rda, cpu);
3982 		rnp = rdp->mynode;
3983 		mask = rdp->grpmask;
3984 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3985 		rnp->qsmaskinitnext |= mask;
3986 		rnp->expmaskinitnext |= mask;
3987 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3988 	}
3989 }
3990 
3991 #ifdef CONFIG_HOTPLUG_CPU
3992 /*
3993  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3994  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3995  * bit masks.
3996  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3997  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3998  * bit masks.
3999  */
4000 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4001 {
4002 	unsigned long flags;
4003 	unsigned long mask;
4004 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4005 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4006 
4007 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4008 	mask = rdp->grpmask;
4009 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4010 	rnp->qsmaskinitnext &= ~mask;
4011 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4012 }
4013 
4014 void rcu_report_dead(unsigned int cpu)
4015 {
4016 	struct rcu_state *rsp;
4017 
4018 	/* QS for any half-done expedited RCU-sched GP. */
4019 	preempt_disable();
4020 	rcu_report_exp_rdp(&rcu_sched_state,
4021 			   this_cpu_ptr(rcu_sched_state.rda), true);
4022 	preempt_enable();
4023 	for_each_rcu_flavor(rsp)
4024 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
4025 }
4026 #endif
4027 
4028 static int rcu_pm_notify(struct notifier_block *self,
4029 			 unsigned long action, void *hcpu)
4030 {
4031 	switch (action) {
4032 	case PM_HIBERNATION_PREPARE:
4033 	case PM_SUSPEND_PREPARE:
4034 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4035 			rcu_expedite_gp();
4036 		break;
4037 	case PM_POST_HIBERNATION:
4038 	case PM_POST_SUSPEND:
4039 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4040 			rcu_unexpedite_gp();
4041 		break;
4042 	default:
4043 		break;
4044 	}
4045 	return NOTIFY_OK;
4046 }
4047 
4048 /*
4049  * Spawn the kthreads that handle each RCU flavor's grace periods.
4050  */
4051 static int __init rcu_spawn_gp_kthread(void)
4052 {
4053 	unsigned long flags;
4054 	int kthread_prio_in = kthread_prio;
4055 	struct rcu_node *rnp;
4056 	struct rcu_state *rsp;
4057 	struct sched_param sp;
4058 	struct task_struct *t;
4059 
4060 	/* Force priority into range. */
4061 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4062 		kthread_prio = 1;
4063 	else if (kthread_prio < 0)
4064 		kthread_prio = 0;
4065 	else if (kthread_prio > 99)
4066 		kthread_prio = 99;
4067 	if (kthread_prio != kthread_prio_in)
4068 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4069 			 kthread_prio, kthread_prio_in);
4070 
4071 	rcu_scheduler_fully_active = 1;
4072 	for_each_rcu_flavor(rsp) {
4073 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4074 		BUG_ON(IS_ERR(t));
4075 		rnp = rcu_get_root(rsp);
4076 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4077 		rsp->gp_kthread = t;
4078 		if (kthread_prio) {
4079 			sp.sched_priority = kthread_prio;
4080 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4081 		}
4082 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4083 		wake_up_process(t);
4084 	}
4085 	rcu_spawn_nocb_kthreads();
4086 	rcu_spawn_boost_kthreads();
4087 	return 0;
4088 }
4089 early_initcall(rcu_spawn_gp_kthread);
4090 
4091 /*
4092  * This function is invoked towards the end of the scheduler's
4093  * initialization process.  Before this is called, the idle task might
4094  * contain synchronous grace-period primitives (during which time, this idle
4095  * task is booting the system, and such primitives are no-ops).  After this
4096  * function is called, any synchronous grace-period primitives are run as
4097  * expedited, with the requesting task driving the grace period forward.
4098  * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4099  * runtime RCU functionality.
4100  */
4101 void rcu_scheduler_starting(void)
4102 {
4103 	WARN_ON(num_online_cpus() != 1);
4104 	WARN_ON(nr_context_switches() > 0);
4105 	rcu_test_sync_prims();
4106 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4107 	rcu_test_sync_prims();
4108 }
4109 
4110 /*
4111  * Compute the per-level fanout, either using the exact fanout specified
4112  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4113  */
4114 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4115 {
4116 	int i;
4117 
4118 	if (rcu_fanout_exact) {
4119 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4120 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4121 			levelspread[i] = RCU_FANOUT;
4122 	} else {
4123 		int ccur;
4124 		int cprv;
4125 
4126 		cprv = nr_cpu_ids;
4127 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4128 			ccur = levelcnt[i];
4129 			levelspread[i] = (cprv + ccur - 1) / ccur;
4130 			cprv = ccur;
4131 		}
4132 	}
4133 }
4134 
4135 /*
4136  * Helper function for rcu_init() that initializes one rcu_state structure.
4137  */
4138 static void __init rcu_init_one(struct rcu_state *rsp)
4139 {
4140 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4141 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4142 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4143 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4144 	static u8 fl_mask = 0x1;
4145 
4146 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4147 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4148 	int cpustride = 1;
4149 	int i;
4150 	int j;
4151 	struct rcu_node *rnp;
4152 
4153 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4154 
4155 	/* Silence gcc 4.8 false positive about array index out of range. */
4156 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4157 		panic("rcu_init_one: rcu_num_lvls out of range");
4158 
4159 	/* Initialize the level-tracking arrays. */
4160 
4161 	for (i = 0; i < rcu_num_lvls; i++)
4162 		levelcnt[i] = num_rcu_lvl[i];
4163 	for (i = 1; i < rcu_num_lvls; i++)
4164 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4165 	rcu_init_levelspread(levelspread, levelcnt);
4166 	rsp->flavor_mask = fl_mask;
4167 	fl_mask <<= 1;
4168 
4169 	/* Initialize the elements themselves, starting from the leaves. */
4170 
4171 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4172 		cpustride *= levelspread[i];
4173 		rnp = rsp->level[i];
4174 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4175 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4176 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4177 						   &rcu_node_class[i], buf[i]);
4178 			raw_spin_lock_init(&rnp->fqslock);
4179 			lockdep_set_class_and_name(&rnp->fqslock,
4180 						   &rcu_fqs_class[i], fqs[i]);
4181 			rnp->gpnum = rsp->gpnum;
4182 			rnp->completed = rsp->completed;
4183 			rnp->qsmask = 0;
4184 			rnp->qsmaskinit = 0;
4185 			rnp->grplo = j * cpustride;
4186 			rnp->grphi = (j + 1) * cpustride - 1;
4187 			if (rnp->grphi >= nr_cpu_ids)
4188 				rnp->grphi = nr_cpu_ids - 1;
4189 			if (i == 0) {
4190 				rnp->grpnum = 0;
4191 				rnp->grpmask = 0;
4192 				rnp->parent = NULL;
4193 			} else {
4194 				rnp->grpnum = j % levelspread[i - 1];
4195 				rnp->grpmask = 1UL << rnp->grpnum;
4196 				rnp->parent = rsp->level[i - 1] +
4197 					      j / levelspread[i - 1];
4198 			}
4199 			rnp->level = i;
4200 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4201 			rcu_init_one_nocb(rnp);
4202 			init_waitqueue_head(&rnp->exp_wq[0]);
4203 			init_waitqueue_head(&rnp->exp_wq[1]);
4204 			init_waitqueue_head(&rnp->exp_wq[2]);
4205 			init_waitqueue_head(&rnp->exp_wq[3]);
4206 			spin_lock_init(&rnp->exp_lock);
4207 		}
4208 	}
4209 
4210 	init_swait_queue_head(&rsp->gp_wq);
4211 	init_swait_queue_head(&rsp->expedited_wq);
4212 	rnp = rsp->level[rcu_num_lvls - 1];
4213 	for_each_possible_cpu(i) {
4214 		while (i > rnp->grphi)
4215 			rnp++;
4216 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4217 		rcu_boot_init_percpu_data(i, rsp);
4218 	}
4219 	list_add(&rsp->flavors, &rcu_struct_flavors);
4220 }
4221 
4222 /*
4223  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4224  * replace the definitions in tree.h because those are needed to size
4225  * the ->node array in the rcu_state structure.
4226  */
4227 static void __init rcu_init_geometry(void)
4228 {
4229 	ulong d;
4230 	int i;
4231 	int rcu_capacity[RCU_NUM_LVLS];
4232 
4233 	/*
4234 	 * Initialize any unspecified boot parameters.
4235 	 * The default values of jiffies_till_first_fqs and
4236 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4237 	 * value, which is a function of HZ, then adding one for each
4238 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4239 	 */
4240 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4241 	if (jiffies_till_first_fqs == ULONG_MAX)
4242 		jiffies_till_first_fqs = d;
4243 	if (jiffies_till_next_fqs == ULONG_MAX)
4244 		jiffies_till_next_fqs = d;
4245 
4246 	/* If the compile-time values are accurate, just leave. */
4247 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4248 	    nr_cpu_ids == NR_CPUS)
4249 		return;
4250 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4251 		rcu_fanout_leaf, nr_cpu_ids);
4252 
4253 	/*
4254 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4255 	 * and cannot exceed the number of bits in the rcu_node masks.
4256 	 * Complain and fall back to the compile-time values if this
4257 	 * limit is exceeded.
4258 	 */
4259 	if (rcu_fanout_leaf < 2 ||
4260 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4261 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4262 		WARN_ON(1);
4263 		return;
4264 	}
4265 
4266 	/*
4267 	 * Compute number of nodes that can be handled an rcu_node tree
4268 	 * with the given number of levels.
4269 	 */
4270 	rcu_capacity[0] = rcu_fanout_leaf;
4271 	for (i = 1; i < RCU_NUM_LVLS; i++)
4272 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4273 
4274 	/*
4275 	 * The tree must be able to accommodate the configured number of CPUs.
4276 	 * If this limit is exceeded, fall back to the compile-time values.
4277 	 */
4278 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4279 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4280 		WARN_ON(1);
4281 		return;
4282 	}
4283 
4284 	/* Calculate the number of levels in the tree. */
4285 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4286 	}
4287 	rcu_num_lvls = i + 1;
4288 
4289 	/* Calculate the number of rcu_nodes at each level of the tree. */
4290 	for (i = 0; i < rcu_num_lvls; i++) {
4291 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4292 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4293 	}
4294 
4295 	/* Calculate the total number of rcu_node structures. */
4296 	rcu_num_nodes = 0;
4297 	for (i = 0; i < rcu_num_lvls; i++)
4298 		rcu_num_nodes += num_rcu_lvl[i];
4299 }
4300 
4301 /*
4302  * Dump out the structure of the rcu_node combining tree associated
4303  * with the rcu_state structure referenced by rsp.
4304  */
4305 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4306 {
4307 	int level = 0;
4308 	struct rcu_node *rnp;
4309 
4310 	pr_info("rcu_node tree layout dump\n");
4311 	pr_info(" ");
4312 	rcu_for_each_node_breadth_first(rsp, rnp) {
4313 		if (rnp->level != level) {
4314 			pr_cont("\n");
4315 			pr_info(" ");
4316 			level = rnp->level;
4317 		}
4318 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4319 	}
4320 	pr_cont("\n");
4321 }
4322 
4323 void __init rcu_init(void)
4324 {
4325 	int cpu;
4326 
4327 	rcu_early_boot_tests();
4328 
4329 	rcu_bootup_announce();
4330 	rcu_init_geometry();
4331 	rcu_init_one(&rcu_bh_state);
4332 	rcu_init_one(&rcu_sched_state);
4333 	if (dump_tree)
4334 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4335 	__rcu_init_preempt();
4336 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4337 
4338 	/*
4339 	 * We don't need protection against CPU-hotplug here because
4340 	 * this is called early in boot, before either interrupts
4341 	 * or the scheduler are operational.
4342 	 */
4343 	pm_notifier(rcu_pm_notify, 0);
4344 	for_each_online_cpu(cpu) {
4345 		rcutree_prepare_cpu(cpu);
4346 		rcu_cpu_starting(cpu);
4347 	}
4348 }
4349 
4350 #include "tree_exp.h"
4351 #include "tree_plugin.h"
4352