xref: /linux/kernel/rcu/tree.c (revision a776c270a0b2fad6715cb714187e4290cadb9237)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * Steal a bit from the bottom of ->dynticks for idle entry/exit
74  * control.  Initially this is for TLB flushing.
75  */
76 #define RCU_DYNTICK_CTRL_MASK 0x1
77 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
78 #ifndef rcu_eqs_special_exit
79 #define rcu_eqs_special_exit() do { } while (0)
80 #endif
81 
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 	.dynticks_nesting = 1,
84 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 static struct rcu_state rcu_state = {
88 	.level = { &rcu_state.node[0] },
89 	.gp_state = RCU_GP_IDLE,
90 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 	.name = RCU_NAME,
93 	.abbr = RCU_ABBR,
94 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98 
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = 1;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
154 
155 /* rcuc/rcub kthread realtime priority */
156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
157 module_param(kthread_prio, int, 0444);
158 
159 /* Delay in jiffies for grace-period initialization delays, debug only. */
160 
161 static int gp_preinit_delay;
162 module_param(gp_preinit_delay, int, 0444);
163 static int gp_init_delay;
164 module_param(gp_init_delay, int, 0444);
165 static int gp_cleanup_delay;
166 module_param(gp_cleanup_delay, int, 0444);
167 
168 /* Retrieve RCU kthreads priority for rcutorture */
169 int rcu_get_gp_kthreads_prio(void)
170 {
171 	return kthread_prio;
172 }
173 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
174 
175 /*
176  * Number of grace periods between delays, normalized by the duration of
177  * the delay.  The longer the delay, the more the grace periods between
178  * each delay.  The reason for this normalization is that it means that,
179  * for non-zero delays, the overall slowdown of grace periods is constant
180  * regardless of the duration of the delay.  This arrangement balances
181  * the need for long delays to increase some race probabilities with the
182  * need for fast grace periods to increase other race probabilities.
183  */
184 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
185 
186 /*
187  * Compute the mask of online CPUs for the specified rcu_node structure.
188  * This will not be stable unless the rcu_node structure's ->lock is
189  * held, but the bit corresponding to the current CPU will be stable
190  * in most contexts.
191  */
192 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
193 {
194 	return READ_ONCE(rnp->qsmaskinitnext);
195 }
196 
197 /*
198  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
199  * permit this function to be invoked without holding the root rcu_node
200  * structure's ->lock, but of course results can be subject to change.
201  */
202 static int rcu_gp_in_progress(void)
203 {
204 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
205 }
206 
207 /*
208  * Return the number of callbacks queued on the specified CPU.
209  * Handles both the nocbs and normal cases.
210  */
211 static long rcu_get_n_cbs_cpu(int cpu)
212 {
213 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
214 
215 	if (rcu_segcblist_is_enabled(&rdp->cblist))
216 		return rcu_segcblist_n_cbs(&rdp->cblist);
217 	return 0;
218 }
219 
220 void rcu_softirq_qs(void)
221 {
222 	rcu_qs();
223 	rcu_preempt_deferred_qs(current);
224 }
225 
226 /*
227  * Record entry into an extended quiescent state.  This is only to be
228  * called when not already in an extended quiescent state.
229  */
230 static void rcu_dynticks_eqs_enter(void)
231 {
232 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
233 	int seq;
234 
235 	/*
236 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
237 	 * critical sections, and we also must force ordering with the
238 	 * next idle sojourn.
239 	 */
240 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
241 	/* Better be in an extended quiescent state! */
242 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
243 		     (seq & RCU_DYNTICK_CTRL_CTR));
244 	/* Better not have special action (TLB flush) pending! */
245 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
246 		     (seq & RCU_DYNTICK_CTRL_MASK));
247 }
248 
249 /*
250  * Record exit from an extended quiescent state.  This is only to be
251  * called from an extended quiescent state.
252  */
253 static void rcu_dynticks_eqs_exit(void)
254 {
255 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
256 	int seq;
257 
258 	/*
259 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
260 	 * and we also must force ordering with the next RCU read-side
261 	 * critical section.
262 	 */
263 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
264 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
265 		     !(seq & RCU_DYNTICK_CTRL_CTR));
266 	if (seq & RCU_DYNTICK_CTRL_MASK) {
267 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
268 		smp_mb__after_atomic(); /* _exit after clearing mask. */
269 		/* Prefer duplicate flushes to losing a flush. */
270 		rcu_eqs_special_exit();
271 	}
272 }
273 
274 /*
275  * Reset the current CPU's ->dynticks counter to indicate that the
276  * newly onlined CPU is no longer in an extended quiescent state.
277  * This will either leave the counter unchanged, or increment it
278  * to the next non-quiescent value.
279  *
280  * The non-atomic test/increment sequence works because the upper bits
281  * of the ->dynticks counter are manipulated only by the corresponding CPU,
282  * or when the corresponding CPU is offline.
283  */
284 static void rcu_dynticks_eqs_online(void)
285 {
286 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
287 
288 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
289 		return;
290 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
291 }
292 
293 /*
294  * Is the current CPU in an extended quiescent state?
295  *
296  * No ordering, as we are sampling CPU-local information.
297  */
298 static bool rcu_dynticks_curr_cpu_in_eqs(void)
299 {
300 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
301 
302 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
303 }
304 
305 /*
306  * Snapshot the ->dynticks counter with full ordering so as to allow
307  * stable comparison of this counter with past and future snapshots.
308  */
309 static int rcu_dynticks_snap(struct rcu_data *rdp)
310 {
311 	int snap = atomic_add_return(0, &rdp->dynticks);
312 
313 	return snap & ~RCU_DYNTICK_CTRL_MASK;
314 }
315 
316 /*
317  * Return true if the snapshot returned from rcu_dynticks_snap()
318  * indicates that RCU is in an extended quiescent state.
319  */
320 static bool rcu_dynticks_in_eqs(int snap)
321 {
322 	return !(snap & RCU_DYNTICK_CTRL_CTR);
323 }
324 
325 /*
326  * Return true if the CPU corresponding to the specified rcu_data
327  * structure has spent some time in an extended quiescent state since
328  * rcu_dynticks_snap() returned the specified snapshot.
329  */
330 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
331 {
332 	return snap != rcu_dynticks_snap(rdp);
333 }
334 
335 /*
336  * Set the special (bottom) bit of the specified CPU so that it
337  * will take special action (such as flushing its TLB) on the
338  * next exit from an extended quiescent state.  Returns true if
339  * the bit was successfully set, or false if the CPU was not in
340  * an extended quiescent state.
341  */
342 bool rcu_eqs_special_set(int cpu)
343 {
344 	int old;
345 	int new;
346 	int new_old;
347 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
348 
349 	new_old = atomic_read(&rdp->dynticks);
350 	do {
351 		old = new_old;
352 		if (old & RCU_DYNTICK_CTRL_CTR)
353 			return false;
354 		new = old | RCU_DYNTICK_CTRL_MASK;
355 		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
356 	} while (new_old != old);
357 	return true;
358 }
359 
360 /*
361  * Let the RCU core know that this CPU has gone through the scheduler,
362  * which is a quiescent state.  This is called when the need for a
363  * quiescent state is urgent, so we burn an atomic operation and full
364  * memory barriers to let the RCU core know about it, regardless of what
365  * this CPU might (or might not) do in the near future.
366  *
367  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
368  *
369  * The caller must have disabled interrupts and must not be idle.
370  */
371 void rcu_momentary_dyntick_idle(void)
372 {
373 	int special;
374 
375 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
376 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
377 				    &this_cpu_ptr(&rcu_data)->dynticks);
378 	/* It is illegal to call this from idle state. */
379 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
380 	rcu_preempt_deferred_qs(current);
381 }
382 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
383 
384 /**
385  * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
386  *
387  * If the current CPU is idle and running at a first-level (not nested)
388  * interrupt from idle, return true.  The caller must have at least
389  * disabled preemption.
390  */
391 static int rcu_is_cpu_rrupt_from_idle(void)
392 {
393 	/* Called only from within the scheduling-clock interrupt */
394 	lockdep_assert_in_irq();
395 
396 	/* Check for counter underflows */
397 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
398 			 "RCU dynticks_nesting counter underflow!");
399 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
400 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
401 
402 	/* Are we at first interrupt nesting level? */
403 	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
404 		return false;
405 
406 	/* Does CPU appear to be idle from an RCU standpoint? */
407 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
408 }
409 
410 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
411 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
412 static long blimit = DEFAULT_RCU_BLIMIT;
413 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
414 static long qhimark = DEFAULT_RCU_QHIMARK;
415 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
416 static long qlowmark = DEFAULT_RCU_QLOMARK;
417 #define DEFAULT_RCU_QOVLD_MULT 2
418 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
419 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
420 static long qovld_calc = -1;	  /* No pre-initialization lock acquisitions! */
421 
422 module_param(blimit, long, 0444);
423 module_param(qhimark, long, 0444);
424 module_param(qlowmark, long, 0444);
425 module_param(qovld, long, 0444);
426 
427 static ulong jiffies_till_first_fqs = ULONG_MAX;
428 static ulong jiffies_till_next_fqs = ULONG_MAX;
429 static bool rcu_kick_kthreads;
430 static int rcu_divisor = 7;
431 module_param(rcu_divisor, int, 0644);
432 
433 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
434 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
435 module_param(rcu_resched_ns, long, 0644);
436 
437 /*
438  * How long the grace period must be before we start recruiting
439  * quiescent-state help from rcu_note_context_switch().
440  */
441 static ulong jiffies_till_sched_qs = ULONG_MAX;
442 module_param(jiffies_till_sched_qs, ulong, 0444);
443 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
444 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
445 
446 /*
447  * Make sure that we give the grace-period kthread time to detect any
448  * idle CPUs before taking active measures to force quiescent states.
449  * However, don't go below 100 milliseconds, adjusted upwards for really
450  * large systems.
451  */
452 static void adjust_jiffies_till_sched_qs(void)
453 {
454 	unsigned long j;
455 
456 	/* If jiffies_till_sched_qs was specified, respect the request. */
457 	if (jiffies_till_sched_qs != ULONG_MAX) {
458 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
459 		return;
460 	}
461 	/* Otherwise, set to third fqs scan, but bound below on large system. */
462 	j = READ_ONCE(jiffies_till_first_fqs) +
463 		      2 * READ_ONCE(jiffies_till_next_fqs);
464 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
465 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
466 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
467 	WRITE_ONCE(jiffies_to_sched_qs, j);
468 }
469 
470 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
471 {
472 	ulong j;
473 	int ret = kstrtoul(val, 0, &j);
474 
475 	if (!ret) {
476 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
477 		adjust_jiffies_till_sched_qs();
478 	}
479 	return ret;
480 }
481 
482 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
483 {
484 	ulong j;
485 	int ret = kstrtoul(val, 0, &j);
486 
487 	if (!ret) {
488 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
489 		adjust_jiffies_till_sched_qs();
490 	}
491 	return ret;
492 }
493 
494 static struct kernel_param_ops first_fqs_jiffies_ops = {
495 	.set = param_set_first_fqs_jiffies,
496 	.get = param_get_ulong,
497 };
498 
499 static struct kernel_param_ops next_fqs_jiffies_ops = {
500 	.set = param_set_next_fqs_jiffies,
501 	.get = param_get_ulong,
502 };
503 
504 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
505 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
506 module_param(rcu_kick_kthreads, bool, 0644);
507 
508 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
509 static int rcu_pending(int user);
510 
511 /*
512  * Return the number of RCU GPs completed thus far for debug & stats.
513  */
514 unsigned long rcu_get_gp_seq(void)
515 {
516 	return READ_ONCE(rcu_state.gp_seq);
517 }
518 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
519 
520 /*
521  * Return the number of RCU expedited batches completed thus far for
522  * debug & stats.  Odd numbers mean that a batch is in progress, even
523  * numbers mean idle.  The value returned will thus be roughly double
524  * the cumulative batches since boot.
525  */
526 unsigned long rcu_exp_batches_completed(void)
527 {
528 	return rcu_state.expedited_sequence;
529 }
530 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
531 
532 /*
533  * Return the root node of the rcu_state structure.
534  */
535 static struct rcu_node *rcu_get_root(void)
536 {
537 	return &rcu_state.node[0];
538 }
539 
540 /*
541  * Send along grace-period-related data for rcutorture diagnostics.
542  */
543 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
544 			    unsigned long *gp_seq)
545 {
546 	switch (test_type) {
547 	case RCU_FLAVOR:
548 		*flags = READ_ONCE(rcu_state.gp_flags);
549 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
550 		break;
551 	default:
552 		break;
553 	}
554 }
555 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
556 
557 /*
558  * Enter an RCU extended quiescent state, which can be either the
559  * idle loop or adaptive-tickless usermode execution.
560  *
561  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
562  * the possibility of usermode upcalls having messed up our count
563  * of interrupt nesting level during the prior busy period.
564  */
565 static void rcu_eqs_enter(bool user)
566 {
567 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
568 
569 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
570 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
571 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
572 		     rdp->dynticks_nesting == 0);
573 	if (rdp->dynticks_nesting != 1) {
574 		rdp->dynticks_nesting--;
575 		return;
576 	}
577 
578 	lockdep_assert_irqs_disabled();
579 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
580 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
581 	rdp = this_cpu_ptr(&rcu_data);
582 	do_nocb_deferred_wakeup(rdp);
583 	rcu_prepare_for_idle();
584 	rcu_preempt_deferred_qs(current);
585 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
586 	rcu_dynticks_eqs_enter();
587 	rcu_dynticks_task_enter();
588 }
589 
590 /**
591  * rcu_idle_enter - inform RCU that current CPU is entering idle
592  *
593  * Enter idle mode, in other words, -leave- the mode in which RCU
594  * read-side critical sections can occur.  (Though RCU read-side
595  * critical sections can occur in irq handlers in idle, a possibility
596  * handled by irq_enter() and irq_exit().)
597  *
598  * If you add or remove a call to rcu_idle_enter(), be sure to test with
599  * CONFIG_RCU_EQS_DEBUG=y.
600  */
601 void rcu_idle_enter(void)
602 {
603 	lockdep_assert_irqs_disabled();
604 	rcu_eqs_enter(false);
605 }
606 
607 #ifdef CONFIG_NO_HZ_FULL
608 /**
609  * rcu_user_enter - inform RCU that we are resuming userspace.
610  *
611  * Enter RCU idle mode right before resuming userspace.  No use of RCU
612  * is permitted between this call and rcu_user_exit(). This way the
613  * CPU doesn't need to maintain the tick for RCU maintenance purposes
614  * when the CPU runs in userspace.
615  *
616  * If you add or remove a call to rcu_user_enter(), be sure to test with
617  * CONFIG_RCU_EQS_DEBUG=y.
618  */
619 void rcu_user_enter(void)
620 {
621 	lockdep_assert_irqs_disabled();
622 	rcu_eqs_enter(true);
623 }
624 #endif /* CONFIG_NO_HZ_FULL */
625 
626 /*
627  * If we are returning from the outermost NMI handler that interrupted an
628  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
629  * to let the RCU grace-period handling know that the CPU is back to
630  * being RCU-idle.
631  *
632  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
633  * with CONFIG_RCU_EQS_DEBUG=y.
634  */
635 static __always_inline void rcu_nmi_exit_common(bool irq)
636 {
637 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
638 
639 	/*
640 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
641 	 * (We are exiting an NMI handler, so RCU better be paying attention
642 	 * to us!)
643 	 */
644 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
645 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
646 
647 	/*
648 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
649 	 * leave it in non-RCU-idle state.
650 	 */
651 	if (rdp->dynticks_nmi_nesting != 1) {
652 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
653 				  atomic_read(&rdp->dynticks));
654 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
655 			   rdp->dynticks_nmi_nesting - 2);
656 		return;
657 	}
658 
659 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
660 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
661 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
662 
663 	if (irq)
664 		rcu_prepare_for_idle();
665 
666 	rcu_dynticks_eqs_enter();
667 
668 	if (irq)
669 		rcu_dynticks_task_enter();
670 }
671 
672 /**
673  * rcu_nmi_exit - inform RCU of exit from NMI context
674  *
675  * If you add or remove a call to rcu_nmi_exit(), be sure to test
676  * with CONFIG_RCU_EQS_DEBUG=y.
677  */
678 void rcu_nmi_exit(void)
679 {
680 	rcu_nmi_exit_common(false);
681 }
682 
683 /**
684  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
685  *
686  * Exit from an interrupt handler, which might possibly result in entering
687  * idle mode, in other words, leaving the mode in which read-side critical
688  * sections can occur.  The caller must have disabled interrupts.
689  *
690  * This code assumes that the idle loop never does anything that might
691  * result in unbalanced calls to irq_enter() and irq_exit().  If your
692  * architecture's idle loop violates this assumption, RCU will give you what
693  * you deserve, good and hard.  But very infrequently and irreproducibly.
694  *
695  * Use things like work queues to work around this limitation.
696  *
697  * You have been warned.
698  *
699  * If you add or remove a call to rcu_irq_exit(), be sure to test with
700  * CONFIG_RCU_EQS_DEBUG=y.
701  */
702 void rcu_irq_exit(void)
703 {
704 	lockdep_assert_irqs_disabled();
705 	rcu_nmi_exit_common(true);
706 }
707 
708 /*
709  * Wrapper for rcu_irq_exit() where interrupts are enabled.
710  *
711  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
712  * with CONFIG_RCU_EQS_DEBUG=y.
713  */
714 void rcu_irq_exit_irqson(void)
715 {
716 	unsigned long flags;
717 
718 	local_irq_save(flags);
719 	rcu_irq_exit();
720 	local_irq_restore(flags);
721 }
722 
723 /*
724  * Exit an RCU extended quiescent state, which can be either the
725  * idle loop or adaptive-tickless usermode execution.
726  *
727  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
728  * allow for the possibility of usermode upcalls messing up our count of
729  * interrupt nesting level during the busy period that is just now starting.
730  */
731 static void rcu_eqs_exit(bool user)
732 {
733 	struct rcu_data *rdp;
734 	long oldval;
735 
736 	lockdep_assert_irqs_disabled();
737 	rdp = this_cpu_ptr(&rcu_data);
738 	oldval = rdp->dynticks_nesting;
739 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
740 	if (oldval) {
741 		rdp->dynticks_nesting++;
742 		return;
743 	}
744 	rcu_dynticks_task_exit();
745 	rcu_dynticks_eqs_exit();
746 	rcu_cleanup_after_idle();
747 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
748 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
749 	WRITE_ONCE(rdp->dynticks_nesting, 1);
750 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
751 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
752 }
753 
754 /**
755  * rcu_idle_exit - inform RCU that current CPU is leaving idle
756  *
757  * Exit idle mode, in other words, -enter- the mode in which RCU
758  * read-side critical sections can occur.
759  *
760  * If you add or remove a call to rcu_idle_exit(), be sure to test with
761  * CONFIG_RCU_EQS_DEBUG=y.
762  */
763 void rcu_idle_exit(void)
764 {
765 	unsigned long flags;
766 
767 	local_irq_save(flags);
768 	rcu_eqs_exit(false);
769 	local_irq_restore(flags);
770 }
771 
772 #ifdef CONFIG_NO_HZ_FULL
773 /**
774  * rcu_user_exit - inform RCU that we are exiting userspace.
775  *
776  * Exit RCU idle mode while entering the kernel because it can
777  * run a RCU read side critical section anytime.
778  *
779  * If you add or remove a call to rcu_user_exit(), be sure to test with
780  * CONFIG_RCU_EQS_DEBUG=y.
781  */
782 void rcu_user_exit(void)
783 {
784 	rcu_eqs_exit(1);
785 }
786 #endif /* CONFIG_NO_HZ_FULL */
787 
788 /**
789  * rcu_nmi_enter_common - inform RCU of entry to NMI context
790  * @irq: Is this call from rcu_irq_enter?
791  *
792  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
793  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
794  * that the CPU is active.  This implementation permits nested NMIs, as
795  * long as the nesting level does not overflow an int.  (You will probably
796  * run out of stack space first.)
797  *
798  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
799  * with CONFIG_RCU_EQS_DEBUG=y.
800  */
801 static __always_inline void rcu_nmi_enter_common(bool irq)
802 {
803 	long incby = 2;
804 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
805 
806 	/* Complain about underflow. */
807 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
808 
809 	/*
810 	 * If idle from RCU viewpoint, atomically increment ->dynticks
811 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
812 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
813 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
814 	 * to be in the outermost NMI handler that interrupted an RCU-idle
815 	 * period (observation due to Andy Lutomirski).
816 	 */
817 	if (rcu_dynticks_curr_cpu_in_eqs()) {
818 
819 		if (irq)
820 			rcu_dynticks_task_exit();
821 
822 		rcu_dynticks_eqs_exit();
823 
824 		if (irq)
825 			rcu_cleanup_after_idle();
826 
827 		incby = 1;
828 	} else if (tick_nohz_full_cpu(rdp->cpu) &&
829 		   rdp->dynticks_nmi_nesting == DYNTICK_IRQ_NONIDLE &&
830 		   READ_ONCE(rdp->rcu_urgent_qs) &&
831 		   !READ_ONCE(rdp->rcu_forced_tick)) {
832 		raw_spin_lock_rcu_node(rdp->mynode);
833 		// Recheck under lock.
834 		if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
835 			WRITE_ONCE(rdp->rcu_forced_tick, true);
836 			tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
837 		}
838 		raw_spin_unlock_rcu_node(rdp->mynode);
839 	}
840 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
841 			  rdp->dynticks_nmi_nesting,
842 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
843 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
844 		   rdp->dynticks_nmi_nesting + incby);
845 	barrier();
846 }
847 
848 /**
849  * rcu_nmi_enter - inform RCU of entry to NMI context
850  */
851 void rcu_nmi_enter(void)
852 {
853 	rcu_nmi_enter_common(false);
854 }
855 NOKPROBE_SYMBOL(rcu_nmi_enter);
856 
857 /**
858  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
859  *
860  * Enter an interrupt handler, which might possibly result in exiting
861  * idle mode, in other words, entering the mode in which read-side critical
862  * sections can occur.  The caller must have disabled interrupts.
863  *
864  * Note that the Linux kernel is fully capable of entering an interrupt
865  * handler that it never exits, for example when doing upcalls to user mode!
866  * This code assumes that the idle loop never does upcalls to user mode.
867  * If your architecture's idle loop does do upcalls to user mode (or does
868  * anything else that results in unbalanced calls to the irq_enter() and
869  * irq_exit() functions), RCU will give you what you deserve, good and hard.
870  * But very infrequently and irreproducibly.
871  *
872  * Use things like work queues to work around this limitation.
873  *
874  * You have been warned.
875  *
876  * If you add or remove a call to rcu_irq_enter(), be sure to test with
877  * CONFIG_RCU_EQS_DEBUG=y.
878  */
879 void rcu_irq_enter(void)
880 {
881 	lockdep_assert_irqs_disabled();
882 	rcu_nmi_enter_common(true);
883 }
884 
885 /*
886  * Wrapper for rcu_irq_enter() where interrupts are enabled.
887  *
888  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
889  * with CONFIG_RCU_EQS_DEBUG=y.
890  */
891 void rcu_irq_enter_irqson(void)
892 {
893 	unsigned long flags;
894 
895 	local_irq_save(flags);
896 	rcu_irq_enter();
897 	local_irq_restore(flags);
898 }
899 
900 /*
901  * If any sort of urgency was applied to the current CPU (for example,
902  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
903  * to get to a quiescent state, disable it.
904  */
905 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
906 {
907 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
908 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
909 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
910 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
911 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
912 		WRITE_ONCE(rdp->rcu_forced_tick, false);
913 	}
914 }
915 
916 /**
917  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
918  *
919  * Return true if RCU is watching the running CPU, which means that this
920  * CPU can safely enter RCU read-side critical sections.  In other words,
921  * if the current CPU is not in its idle loop or is in an interrupt or
922  * NMI handler, return true.
923  */
924 bool notrace rcu_is_watching(void)
925 {
926 	bool ret;
927 
928 	preempt_disable_notrace();
929 	ret = !rcu_dynticks_curr_cpu_in_eqs();
930 	preempt_enable_notrace();
931 	return ret;
932 }
933 EXPORT_SYMBOL_GPL(rcu_is_watching);
934 
935 /*
936  * If a holdout task is actually running, request an urgent quiescent
937  * state from its CPU.  This is unsynchronized, so migrations can cause
938  * the request to go to the wrong CPU.  Which is OK, all that will happen
939  * is that the CPU's next context switch will be a bit slower and next
940  * time around this task will generate another request.
941  */
942 void rcu_request_urgent_qs_task(struct task_struct *t)
943 {
944 	int cpu;
945 
946 	barrier();
947 	cpu = task_cpu(t);
948 	if (!task_curr(t))
949 		return; /* This task is not running on that CPU. */
950 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
951 }
952 
953 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
954 
955 /*
956  * Is the current CPU online as far as RCU is concerned?
957  *
958  * Disable preemption to avoid false positives that could otherwise
959  * happen due to the current CPU number being sampled, this task being
960  * preempted, its old CPU being taken offline, resuming on some other CPU,
961  * then determining that its old CPU is now offline.
962  *
963  * Disable checking if in an NMI handler because we cannot safely
964  * report errors from NMI handlers anyway.  In addition, it is OK to use
965  * RCU on an offline processor during initial boot, hence the check for
966  * rcu_scheduler_fully_active.
967  */
968 bool rcu_lockdep_current_cpu_online(void)
969 {
970 	struct rcu_data *rdp;
971 	struct rcu_node *rnp;
972 	bool ret = false;
973 
974 	if (in_nmi() || !rcu_scheduler_fully_active)
975 		return true;
976 	preempt_disable();
977 	rdp = this_cpu_ptr(&rcu_data);
978 	rnp = rdp->mynode;
979 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
980 		ret = true;
981 	preempt_enable();
982 	return ret;
983 }
984 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
985 
986 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
987 
988 /*
989  * We are reporting a quiescent state on behalf of some other CPU, so
990  * it is our responsibility to check for and handle potential overflow
991  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
992  * After all, the CPU might be in deep idle state, and thus executing no
993  * code whatsoever.
994  */
995 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
996 {
997 	raw_lockdep_assert_held_rcu_node(rnp);
998 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
999 			 rnp->gp_seq))
1000 		WRITE_ONCE(rdp->gpwrap, true);
1001 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1002 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1003 }
1004 
1005 /*
1006  * Snapshot the specified CPU's dynticks counter so that we can later
1007  * credit them with an implicit quiescent state.  Return 1 if this CPU
1008  * is in dynticks idle mode, which is an extended quiescent state.
1009  */
1010 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1011 {
1012 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1013 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1014 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1015 		rcu_gpnum_ovf(rdp->mynode, rdp);
1016 		return 1;
1017 	}
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Return true if the specified CPU has passed through a quiescent
1023  * state by virtue of being in or having passed through an dynticks
1024  * idle state since the last call to dyntick_save_progress_counter()
1025  * for this same CPU, or by virtue of having been offline.
1026  */
1027 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1028 {
1029 	unsigned long jtsq;
1030 	bool *rnhqp;
1031 	bool *ruqp;
1032 	struct rcu_node *rnp = rdp->mynode;
1033 
1034 	/*
1035 	 * If the CPU passed through or entered a dynticks idle phase with
1036 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1037 	 * already acknowledged the request to pass through a quiescent
1038 	 * state.  Either way, that CPU cannot possibly be in an RCU
1039 	 * read-side critical section that started before the beginning
1040 	 * of the current RCU grace period.
1041 	 */
1042 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1043 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1044 		rcu_gpnum_ovf(rnp, rdp);
1045 		return 1;
1046 	}
1047 
1048 	/* If waiting too long on an offline CPU, complain. */
1049 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1050 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1051 		bool onl;
1052 		struct rcu_node *rnp1;
1053 
1054 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1055 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1056 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1057 			(long)rnp->gp_seq, (long)rnp->completedqs);
1058 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1059 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1060 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1061 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1062 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1063 			__func__, rdp->cpu, ".o"[onl],
1064 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1065 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1066 		return 1; /* Break things loose after complaining. */
1067 	}
1068 
1069 	/*
1070 	 * A CPU running for an extended time within the kernel can
1071 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1072 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1073 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1074 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1075 	 * variable are safe because the assignments are repeated if this
1076 	 * CPU failed to pass through a quiescent state.  This code
1077 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1078 	 * is set way high.
1079 	 */
1080 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1081 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1082 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1083 	if (!READ_ONCE(*rnhqp) &&
1084 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1085 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1086 	     rcu_state.cbovld)) {
1087 		WRITE_ONCE(*rnhqp, true);
1088 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1089 		smp_store_release(ruqp, true);
1090 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1091 		WRITE_ONCE(*ruqp, true);
1092 	}
1093 
1094 	/*
1095 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1096 	 * The above code handles this, but only for straight cond_resched().
1097 	 * And some in-kernel loops check need_resched() before calling
1098 	 * cond_resched(), which defeats the above code for CPUs that are
1099 	 * running in-kernel with scheduling-clock interrupts disabled.
1100 	 * So hit them over the head with the resched_cpu() hammer!
1101 	 */
1102 	if (tick_nohz_full_cpu(rdp->cpu) &&
1103 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1104 	     rcu_state.cbovld)) {
1105 		WRITE_ONCE(*ruqp, true);
1106 		resched_cpu(rdp->cpu);
1107 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1108 	}
1109 
1110 	/*
1111 	 * If more than halfway to RCU CPU stall-warning time, invoke
1112 	 * resched_cpu() more frequently to try to loosen things up a bit.
1113 	 * Also check to see if the CPU is getting hammered with interrupts,
1114 	 * but only once per grace period, just to keep the IPIs down to
1115 	 * a dull roar.
1116 	 */
1117 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1118 		if (time_after(jiffies,
1119 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1120 			resched_cpu(rdp->cpu);
1121 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1122 		}
1123 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1124 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1125 		    (rnp->ffmask & rdp->grpmask)) {
1126 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1127 			rdp->rcu_iw_pending = true;
1128 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1129 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1130 		}
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1137 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1138 			      unsigned long gp_seq_req, const char *s)
1139 {
1140 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1141 				      gp_seq_req, rnp->level,
1142 				      rnp->grplo, rnp->grphi, s);
1143 }
1144 
1145 /*
1146  * rcu_start_this_gp - Request the start of a particular grace period
1147  * @rnp_start: The leaf node of the CPU from which to start.
1148  * @rdp: The rcu_data corresponding to the CPU from which to start.
1149  * @gp_seq_req: The gp_seq of the grace period to start.
1150  *
1151  * Start the specified grace period, as needed to handle newly arrived
1152  * callbacks.  The required future grace periods are recorded in each
1153  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1154  * is reason to awaken the grace-period kthread.
1155  *
1156  * The caller must hold the specified rcu_node structure's ->lock, which
1157  * is why the caller is responsible for waking the grace-period kthread.
1158  *
1159  * Returns true if the GP thread needs to be awakened else false.
1160  */
1161 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1162 			      unsigned long gp_seq_req)
1163 {
1164 	bool ret = false;
1165 	struct rcu_node *rnp;
1166 
1167 	/*
1168 	 * Use funnel locking to either acquire the root rcu_node
1169 	 * structure's lock or bail out if the need for this grace period
1170 	 * has already been recorded -- or if that grace period has in
1171 	 * fact already started.  If there is already a grace period in
1172 	 * progress in a non-leaf node, no recording is needed because the
1173 	 * end of the grace period will scan the leaf rcu_node structures.
1174 	 * Note that rnp_start->lock must not be released.
1175 	 */
1176 	raw_lockdep_assert_held_rcu_node(rnp_start);
1177 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1178 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1179 		if (rnp != rnp_start)
1180 			raw_spin_lock_rcu_node(rnp);
1181 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1182 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1183 		    (rnp != rnp_start &&
1184 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1185 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1186 					  TPS("Prestarted"));
1187 			goto unlock_out;
1188 		}
1189 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1190 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1191 			/*
1192 			 * We just marked the leaf or internal node, and a
1193 			 * grace period is in progress, which means that
1194 			 * rcu_gp_cleanup() will see the marking.  Bail to
1195 			 * reduce contention.
1196 			 */
1197 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1198 					  TPS("Startedleaf"));
1199 			goto unlock_out;
1200 		}
1201 		if (rnp != rnp_start && rnp->parent != NULL)
1202 			raw_spin_unlock_rcu_node(rnp);
1203 		if (!rnp->parent)
1204 			break;  /* At root, and perhaps also leaf. */
1205 	}
1206 
1207 	/* If GP already in progress, just leave, otherwise start one. */
1208 	if (rcu_gp_in_progress()) {
1209 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1210 		goto unlock_out;
1211 	}
1212 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1213 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1214 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1215 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1216 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1217 		goto unlock_out;
1218 	}
1219 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1220 	ret = true;  /* Caller must wake GP kthread. */
1221 unlock_out:
1222 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1223 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1224 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1225 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1226 	}
1227 	if (rnp != rnp_start)
1228 		raw_spin_unlock_rcu_node(rnp);
1229 	return ret;
1230 }
1231 
1232 /*
1233  * Clean up any old requests for the just-ended grace period.  Also return
1234  * whether any additional grace periods have been requested.
1235  */
1236 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1237 {
1238 	bool needmore;
1239 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1240 
1241 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1242 	if (!needmore)
1243 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1244 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1245 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1246 	return needmore;
1247 }
1248 
1249 /*
1250  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1251  * interrupt or softirq handler, in which case we just might immediately
1252  * sleep upon return, resulting in a grace-period hang), and don't bother
1253  * awakening when there is nothing for the grace-period kthread to do
1254  * (as in several CPUs raced to awaken, we lost), and finally don't try
1255  * to awaken a kthread that has not yet been created.  If all those checks
1256  * are passed, track some debug information and awaken.
1257  *
1258  * So why do the self-wakeup when in an interrupt or softirq handler
1259  * in the grace-period kthread's context?  Because the kthread might have
1260  * been interrupted just as it was going to sleep, and just after the final
1261  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1262  * is required, and is therefore supplied.
1263  */
1264 static void rcu_gp_kthread_wake(void)
1265 {
1266 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1267 
1268 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1269 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1270 		return;
1271 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1272 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1273 	swake_up_one(&rcu_state.gp_wq);
1274 }
1275 
1276 /*
1277  * If there is room, assign a ->gp_seq number to any callbacks on this
1278  * CPU that have not already been assigned.  Also accelerate any callbacks
1279  * that were previously assigned a ->gp_seq number that has since proven
1280  * to be too conservative, which can happen if callbacks get assigned a
1281  * ->gp_seq number while RCU is idle, but with reference to a non-root
1282  * rcu_node structure.  This function is idempotent, so it does not hurt
1283  * to call it repeatedly.  Returns an flag saying that we should awaken
1284  * the RCU grace-period kthread.
1285  *
1286  * The caller must hold rnp->lock with interrupts disabled.
1287  */
1288 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1289 {
1290 	unsigned long gp_seq_req;
1291 	bool ret = false;
1292 
1293 	rcu_lockdep_assert_cblist_protected(rdp);
1294 	raw_lockdep_assert_held_rcu_node(rnp);
1295 
1296 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1297 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1298 		return false;
1299 
1300 	/*
1301 	 * Callbacks are often registered with incomplete grace-period
1302 	 * information.  Something about the fact that getting exact
1303 	 * information requires acquiring a global lock...  RCU therefore
1304 	 * makes a conservative estimate of the grace period number at which
1305 	 * a given callback will become ready to invoke.	The following
1306 	 * code checks this estimate and improves it when possible, thus
1307 	 * accelerating callback invocation to an earlier grace-period
1308 	 * number.
1309 	 */
1310 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1311 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1312 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1313 
1314 	/* Trace depending on how much we were able to accelerate. */
1315 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1316 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1317 	else
1318 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1324  * rcu_node structure's ->lock be held.  It consults the cached value
1325  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1326  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1327  * while holding the leaf rcu_node structure's ->lock.
1328  */
1329 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1330 					struct rcu_data *rdp)
1331 {
1332 	unsigned long c;
1333 	bool needwake;
1334 
1335 	rcu_lockdep_assert_cblist_protected(rdp);
1336 	c = rcu_seq_snap(&rcu_state.gp_seq);
1337 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1338 		/* Old request still live, so mark recent callbacks. */
1339 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1340 		return;
1341 	}
1342 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1343 	needwake = rcu_accelerate_cbs(rnp, rdp);
1344 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1345 	if (needwake)
1346 		rcu_gp_kthread_wake();
1347 }
1348 
1349 /*
1350  * Move any callbacks whose grace period has completed to the
1351  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1352  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1353  * sublist.  This function is idempotent, so it does not hurt to
1354  * invoke it repeatedly.  As long as it is not invoked -too- often...
1355  * Returns true if the RCU grace-period kthread needs to be awakened.
1356  *
1357  * The caller must hold rnp->lock with interrupts disabled.
1358  */
1359 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1360 {
1361 	rcu_lockdep_assert_cblist_protected(rdp);
1362 	raw_lockdep_assert_held_rcu_node(rnp);
1363 
1364 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1365 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1366 		return false;
1367 
1368 	/*
1369 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1370 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1371 	 */
1372 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1373 
1374 	/* Classify any remaining callbacks. */
1375 	return rcu_accelerate_cbs(rnp, rdp);
1376 }
1377 
1378 /*
1379  * Move and classify callbacks, but only if doing so won't require
1380  * that the RCU grace-period kthread be awakened.
1381  */
1382 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1383 						  struct rcu_data *rdp)
1384 {
1385 	rcu_lockdep_assert_cblist_protected(rdp);
1386 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1387 	    !raw_spin_trylock_rcu_node(rnp))
1388 		return;
1389 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1390 	raw_spin_unlock_rcu_node(rnp);
1391 }
1392 
1393 /*
1394  * Update CPU-local rcu_data state to record the beginnings and ends of
1395  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1396  * structure corresponding to the current CPU, and must have irqs disabled.
1397  * Returns true if the grace-period kthread needs to be awakened.
1398  */
1399 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1400 {
1401 	bool ret = false;
1402 	bool need_qs;
1403 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1404 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1405 
1406 	raw_lockdep_assert_held_rcu_node(rnp);
1407 
1408 	if (rdp->gp_seq == rnp->gp_seq)
1409 		return false; /* Nothing to do. */
1410 
1411 	/* Handle the ends of any preceding grace periods first. */
1412 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1413 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1414 		if (!offloaded)
1415 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1416 		rdp->core_needs_qs = false;
1417 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1418 	} else {
1419 		if (!offloaded)
1420 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1421 		if (rdp->core_needs_qs)
1422 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1423 	}
1424 
1425 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1426 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1427 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1428 		/*
1429 		 * If the current grace period is waiting for this CPU,
1430 		 * set up to detect a quiescent state, otherwise don't
1431 		 * go looking for one.
1432 		 */
1433 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1434 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1435 		rdp->cpu_no_qs.b.norm = need_qs;
1436 		rdp->core_needs_qs = need_qs;
1437 		zero_cpu_stall_ticks(rdp);
1438 	}
1439 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1440 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1441 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1442 	WRITE_ONCE(rdp->gpwrap, false);
1443 	rcu_gpnum_ovf(rnp, rdp);
1444 	return ret;
1445 }
1446 
1447 static void note_gp_changes(struct rcu_data *rdp)
1448 {
1449 	unsigned long flags;
1450 	bool needwake;
1451 	struct rcu_node *rnp;
1452 
1453 	local_irq_save(flags);
1454 	rnp = rdp->mynode;
1455 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1456 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1457 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1458 		local_irq_restore(flags);
1459 		return;
1460 	}
1461 	needwake = __note_gp_changes(rnp, rdp);
1462 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1463 	if (needwake)
1464 		rcu_gp_kthread_wake();
1465 }
1466 
1467 static void rcu_gp_slow(int delay)
1468 {
1469 	if (delay > 0 &&
1470 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1471 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1472 		schedule_timeout_uninterruptible(delay);
1473 }
1474 
1475 /*
1476  * Initialize a new grace period.  Return false if no grace period required.
1477  */
1478 static bool rcu_gp_init(void)
1479 {
1480 	unsigned long flags;
1481 	unsigned long oldmask;
1482 	unsigned long mask;
1483 	struct rcu_data *rdp;
1484 	struct rcu_node *rnp = rcu_get_root();
1485 
1486 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1487 	raw_spin_lock_irq_rcu_node(rnp);
1488 	if (!READ_ONCE(rcu_state.gp_flags)) {
1489 		/* Spurious wakeup, tell caller to go back to sleep.  */
1490 		raw_spin_unlock_irq_rcu_node(rnp);
1491 		return false;
1492 	}
1493 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1494 
1495 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1496 		/*
1497 		 * Grace period already in progress, don't start another.
1498 		 * Not supposed to be able to happen.
1499 		 */
1500 		raw_spin_unlock_irq_rcu_node(rnp);
1501 		return false;
1502 	}
1503 
1504 	/* Advance to a new grace period and initialize state. */
1505 	record_gp_stall_check_time();
1506 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1507 	rcu_seq_start(&rcu_state.gp_seq);
1508 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1509 	raw_spin_unlock_irq_rcu_node(rnp);
1510 
1511 	/*
1512 	 * Apply per-leaf buffered online and offline operations to the
1513 	 * rcu_node tree.  Note that this new grace period need not wait
1514 	 * for subsequent online CPUs, and that quiescent-state forcing
1515 	 * will handle subsequent offline CPUs.
1516 	 */
1517 	rcu_state.gp_state = RCU_GP_ONOFF;
1518 	rcu_for_each_leaf_node(rnp) {
1519 		raw_spin_lock(&rcu_state.ofl_lock);
1520 		raw_spin_lock_irq_rcu_node(rnp);
1521 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1522 		    !rnp->wait_blkd_tasks) {
1523 			/* Nothing to do on this leaf rcu_node structure. */
1524 			raw_spin_unlock_irq_rcu_node(rnp);
1525 			raw_spin_unlock(&rcu_state.ofl_lock);
1526 			continue;
1527 		}
1528 
1529 		/* Record old state, apply changes to ->qsmaskinit field. */
1530 		oldmask = rnp->qsmaskinit;
1531 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1532 
1533 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1534 		if (!oldmask != !rnp->qsmaskinit) {
1535 			if (!oldmask) { /* First online CPU for rcu_node. */
1536 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1537 					rcu_init_new_rnp(rnp);
1538 			} else if (rcu_preempt_has_tasks(rnp)) {
1539 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1540 			} else { /* Last offline CPU and can propagate. */
1541 				rcu_cleanup_dead_rnp(rnp);
1542 			}
1543 		}
1544 
1545 		/*
1546 		 * If all waited-on tasks from prior grace period are
1547 		 * done, and if all this rcu_node structure's CPUs are
1548 		 * still offline, propagate up the rcu_node tree and
1549 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1550 		 * rcu_node structure's CPUs has since come back online,
1551 		 * simply clear ->wait_blkd_tasks.
1552 		 */
1553 		if (rnp->wait_blkd_tasks &&
1554 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1555 			rnp->wait_blkd_tasks = false;
1556 			if (!rnp->qsmaskinit)
1557 				rcu_cleanup_dead_rnp(rnp);
1558 		}
1559 
1560 		raw_spin_unlock_irq_rcu_node(rnp);
1561 		raw_spin_unlock(&rcu_state.ofl_lock);
1562 	}
1563 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1564 
1565 	/*
1566 	 * Set the quiescent-state-needed bits in all the rcu_node
1567 	 * structures for all currently online CPUs in breadth-first
1568 	 * order, starting from the root rcu_node structure, relying on the
1569 	 * layout of the tree within the rcu_state.node[] array.  Note that
1570 	 * other CPUs will access only the leaves of the hierarchy, thus
1571 	 * seeing that no grace period is in progress, at least until the
1572 	 * corresponding leaf node has been initialized.
1573 	 *
1574 	 * The grace period cannot complete until the initialization
1575 	 * process finishes, because this kthread handles both.
1576 	 */
1577 	rcu_state.gp_state = RCU_GP_INIT;
1578 	rcu_for_each_node_breadth_first(rnp) {
1579 		rcu_gp_slow(gp_init_delay);
1580 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1581 		rdp = this_cpu_ptr(&rcu_data);
1582 		rcu_preempt_check_blocked_tasks(rnp);
1583 		rnp->qsmask = rnp->qsmaskinit;
1584 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1585 		if (rnp == rdp->mynode)
1586 			(void)__note_gp_changes(rnp, rdp);
1587 		rcu_preempt_boost_start_gp(rnp);
1588 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1589 					    rnp->level, rnp->grplo,
1590 					    rnp->grphi, rnp->qsmask);
1591 		/* Quiescent states for tasks on any now-offline CPUs. */
1592 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1593 		rnp->rcu_gp_init_mask = mask;
1594 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1595 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1596 		else
1597 			raw_spin_unlock_irq_rcu_node(rnp);
1598 		cond_resched_tasks_rcu_qs();
1599 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1600 	}
1601 
1602 	return true;
1603 }
1604 
1605 /*
1606  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1607  * time.
1608  */
1609 static bool rcu_gp_fqs_check_wake(int *gfp)
1610 {
1611 	struct rcu_node *rnp = rcu_get_root();
1612 
1613 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1614 	*gfp = READ_ONCE(rcu_state.gp_flags);
1615 	if (*gfp & RCU_GP_FLAG_FQS)
1616 		return true;
1617 
1618 	/* The current grace period has completed. */
1619 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1620 		return true;
1621 
1622 	return false;
1623 }
1624 
1625 /*
1626  * Do one round of quiescent-state forcing.
1627  */
1628 static void rcu_gp_fqs(bool first_time)
1629 {
1630 	struct rcu_node *rnp = rcu_get_root();
1631 
1632 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1633 	rcu_state.n_force_qs++;
1634 	if (first_time) {
1635 		/* Collect dyntick-idle snapshots. */
1636 		force_qs_rnp(dyntick_save_progress_counter);
1637 	} else {
1638 		/* Handle dyntick-idle and offline CPUs. */
1639 		force_qs_rnp(rcu_implicit_dynticks_qs);
1640 	}
1641 	/* Clear flag to prevent immediate re-entry. */
1642 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1643 		raw_spin_lock_irq_rcu_node(rnp);
1644 		WRITE_ONCE(rcu_state.gp_flags,
1645 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1646 		raw_spin_unlock_irq_rcu_node(rnp);
1647 	}
1648 }
1649 
1650 /*
1651  * Loop doing repeated quiescent-state forcing until the grace period ends.
1652  */
1653 static void rcu_gp_fqs_loop(void)
1654 {
1655 	bool first_gp_fqs;
1656 	int gf;
1657 	unsigned long j;
1658 	int ret;
1659 	struct rcu_node *rnp = rcu_get_root();
1660 
1661 	first_gp_fqs = true;
1662 	j = READ_ONCE(jiffies_till_first_fqs);
1663 	ret = 0;
1664 	for (;;) {
1665 		if (!ret) {
1666 			rcu_state.jiffies_force_qs = jiffies + j;
1667 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1668 				   jiffies + (j ? 3 * j : 2));
1669 		}
1670 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1671 				       TPS("fqswait"));
1672 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1673 		ret = swait_event_idle_timeout_exclusive(
1674 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1675 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1676 		/* Locking provides needed memory barriers. */
1677 		/* If grace period done, leave loop. */
1678 		if (!READ_ONCE(rnp->qsmask) &&
1679 		    !rcu_preempt_blocked_readers_cgp(rnp))
1680 			break;
1681 		/* If time for quiescent-state forcing, do it. */
1682 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1683 		    (gf & RCU_GP_FLAG_FQS)) {
1684 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1685 					       TPS("fqsstart"));
1686 			rcu_gp_fqs(first_gp_fqs);
1687 			first_gp_fqs = false;
1688 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1689 					       TPS("fqsend"));
1690 			cond_resched_tasks_rcu_qs();
1691 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1692 			ret = 0; /* Force full wait till next FQS. */
1693 			j = READ_ONCE(jiffies_till_next_fqs);
1694 		} else {
1695 			/* Deal with stray signal. */
1696 			cond_resched_tasks_rcu_qs();
1697 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1698 			WARN_ON(signal_pending(current));
1699 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1700 					       TPS("fqswaitsig"));
1701 			ret = 1; /* Keep old FQS timing. */
1702 			j = jiffies;
1703 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1704 				j = 1;
1705 			else
1706 				j = rcu_state.jiffies_force_qs - j;
1707 		}
1708 	}
1709 }
1710 
1711 /*
1712  * Clean up after the old grace period.
1713  */
1714 static void rcu_gp_cleanup(void)
1715 {
1716 	int cpu;
1717 	bool needgp = false;
1718 	unsigned long gp_duration;
1719 	unsigned long new_gp_seq;
1720 	bool offloaded;
1721 	struct rcu_data *rdp;
1722 	struct rcu_node *rnp = rcu_get_root();
1723 	struct swait_queue_head *sq;
1724 
1725 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1726 	raw_spin_lock_irq_rcu_node(rnp);
1727 	rcu_state.gp_end = jiffies;
1728 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1729 	if (gp_duration > rcu_state.gp_max)
1730 		rcu_state.gp_max = gp_duration;
1731 
1732 	/*
1733 	 * We know the grace period is complete, but to everyone else
1734 	 * it appears to still be ongoing.  But it is also the case
1735 	 * that to everyone else it looks like there is nothing that
1736 	 * they can do to advance the grace period.  It is therefore
1737 	 * safe for us to drop the lock in order to mark the grace
1738 	 * period as completed in all of the rcu_node structures.
1739 	 */
1740 	raw_spin_unlock_irq_rcu_node(rnp);
1741 
1742 	/*
1743 	 * Propagate new ->gp_seq value to rcu_node structures so that
1744 	 * other CPUs don't have to wait until the start of the next grace
1745 	 * period to process their callbacks.  This also avoids some nasty
1746 	 * RCU grace-period initialization races by forcing the end of
1747 	 * the current grace period to be completely recorded in all of
1748 	 * the rcu_node structures before the beginning of the next grace
1749 	 * period is recorded in any of the rcu_node structures.
1750 	 */
1751 	new_gp_seq = rcu_state.gp_seq;
1752 	rcu_seq_end(&new_gp_seq);
1753 	rcu_for_each_node_breadth_first(rnp) {
1754 		raw_spin_lock_irq_rcu_node(rnp);
1755 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1756 			dump_blkd_tasks(rnp, 10);
1757 		WARN_ON_ONCE(rnp->qsmask);
1758 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1759 		rdp = this_cpu_ptr(&rcu_data);
1760 		if (rnp == rdp->mynode)
1761 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1762 		/* smp_mb() provided by prior unlock-lock pair. */
1763 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1764 		// Reset overload indication for CPUs no longer overloaded
1765 		if (rcu_is_leaf_node(rnp))
1766 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1767 				rdp = per_cpu_ptr(&rcu_data, cpu);
1768 				check_cb_ovld_locked(rdp, rnp);
1769 			}
1770 		sq = rcu_nocb_gp_get(rnp);
1771 		raw_spin_unlock_irq_rcu_node(rnp);
1772 		rcu_nocb_gp_cleanup(sq);
1773 		cond_resched_tasks_rcu_qs();
1774 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1775 		rcu_gp_slow(gp_cleanup_delay);
1776 	}
1777 	rnp = rcu_get_root();
1778 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1779 
1780 	/* Declare grace period done, trace first to use old GP number. */
1781 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1782 	rcu_seq_end(&rcu_state.gp_seq);
1783 	rcu_state.gp_state = RCU_GP_IDLE;
1784 	/* Check for GP requests since above loop. */
1785 	rdp = this_cpu_ptr(&rcu_data);
1786 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1787 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1788 				  TPS("CleanupMore"));
1789 		needgp = true;
1790 	}
1791 	/* Advance CBs to reduce false positives below. */
1792 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1793 		    rcu_segcblist_is_offloaded(&rdp->cblist);
1794 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1795 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1796 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1797 		trace_rcu_grace_period(rcu_state.name,
1798 				       rcu_state.gp_seq,
1799 				       TPS("newreq"));
1800 	} else {
1801 		WRITE_ONCE(rcu_state.gp_flags,
1802 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1803 	}
1804 	raw_spin_unlock_irq_rcu_node(rnp);
1805 }
1806 
1807 /*
1808  * Body of kthread that handles grace periods.
1809  */
1810 static int __noreturn rcu_gp_kthread(void *unused)
1811 {
1812 	rcu_bind_gp_kthread();
1813 	for (;;) {
1814 
1815 		/* Handle grace-period start. */
1816 		for (;;) {
1817 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1818 					       TPS("reqwait"));
1819 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1820 			swait_event_idle_exclusive(rcu_state.gp_wq,
1821 					 READ_ONCE(rcu_state.gp_flags) &
1822 					 RCU_GP_FLAG_INIT);
1823 			rcu_state.gp_state = RCU_GP_DONE_GPS;
1824 			/* Locking provides needed memory barrier. */
1825 			if (rcu_gp_init())
1826 				break;
1827 			cond_resched_tasks_rcu_qs();
1828 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1829 			WARN_ON(signal_pending(current));
1830 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1831 					       TPS("reqwaitsig"));
1832 		}
1833 
1834 		/* Handle quiescent-state forcing. */
1835 		rcu_gp_fqs_loop();
1836 
1837 		/* Handle grace-period end. */
1838 		rcu_state.gp_state = RCU_GP_CLEANUP;
1839 		rcu_gp_cleanup();
1840 		rcu_state.gp_state = RCU_GP_CLEANED;
1841 	}
1842 }
1843 
1844 /*
1845  * Report a full set of quiescent states to the rcu_state data structure.
1846  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1847  * another grace period is required.  Whether we wake the grace-period
1848  * kthread or it awakens itself for the next round of quiescent-state
1849  * forcing, that kthread will clean up after the just-completed grace
1850  * period.  Note that the caller must hold rnp->lock, which is released
1851  * before return.
1852  */
1853 static void rcu_report_qs_rsp(unsigned long flags)
1854 	__releases(rcu_get_root()->lock)
1855 {
1856 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1857 	WARN_ON_ONCE(!rcu_gp_in_progress());
1858 	WRITE_ONCE(rcu_state.gp_flags,
1859 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1860 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1861 	rcu_gp_kthread_wake();
1862 }
1863 
1864 /*
1865  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1866  * Allows quiescent states for a group of CPUs to be reported at one go
1867  * to the specified rcu_node structure, though all the CPUs in the group
1868  * must be represented by the same rcu_node structure (which need not be a
1869  * leaf rcu_node structure, though it often will be).  The gps parameter
1870  * is the grace-period snapshot, which means that the quiescent states
1871  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1872  * must be held upon entry, and it is released before return.
1873  *
1874  * As a special case, if mask is zero, the bit-already-cleared check is
1875  * disabled.  This allows propagating quiescent state due to resumed tasks
1876  * during grace-period initialization.
1877  */
1878 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1879 			      unsigned long gps, unsigned long flags)
1880 	__releases(rnp->lock)
1881 {
1882 	unsigned long oldmask = 0;
1883 	struct rcu_node *rnp_c;
1884 
1885 	raw_lockdep_assert_held_rcu_node(rnp);
1886 
1887 	/* Walk up the rcu_node hierarchy. */
1888 	for (;;) {
1889 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1890 
1891 			/*
1892 			 * Our bit has already been cleared, or the
1893 			 * relevant grace period is already over, so done.
1894 			 */
1895 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1896 			return;
1897 		}
1898 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1899 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1900 			     rcu_preempt_blocked_readers_cgp(rnp));
1901 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1902 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1903 						 mask, rnp->qsmask, rnp->level,
1904 						 rnp->grplo, rnp->grphi,
1905 						 !!rnp->gp_tasks);
1906 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1907 
1908 			/* Other bits still set at this level, so done. */
1909 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1910 			return;
1911 		}
1912 		rnp->completedqs = rnp->gp_seq;
1913 		mask = rnp->grpmask;
1914 		if (rnp->parent == NULL) {
1915 
1916 			/* No more levels.  Exit loop holding root lock. */
1917 
1918 			break;
1919 		}
1920 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1921 		rnp_c = rnp;
1922 		rnp = rnp->parent;
1923 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1924 		oldmask = READ_ONCE(rnp_c->qsmask);
1925 	}
1926 
1927 	/*
1928 	 * Get here if we are the last CPU to pass through a quiescent
1929 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1930 	 * to clean up and start the next grace period if one is needed.
1931 	 */
1932 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1933 }
1934 
1935 /*
1936  * Record a quiescent state for all tasks that were previously queued
1937  * on the specified rcu_node structure and that were blocking the current
1938  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1939  * irqs disabled, and this lock is released upon return, but irqs remain
1940  * disabled.
1941  */
1942 static void __maybe_unused
1943 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1944 	__releases(rnp->lock)
1945 {
1946 	unsigned long gps;
1947 	unsigned long mask;
1948 	struct rcu_node *rnp_p;
1949 
1950 	raw_lockdep_assert_held_rcu_node(rnp);
1951 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1952 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1953 	    rnp->qsmask != 0) {
1954 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1955 		return;  /* Still need more quiescent states! */
1956 	}
1957 
1958 	rnp->completedqs = rnp->gp_seq;
1959 	rnp_p = rnp->parent;
1960 	if (rnp_p == NULL) {
1961 		/*
1962 		 * Only one rcu_node structure in the tree, so don't
1963 		 * try to report up to its nonexistent parent!
1964 		 */
1965 		rcu_report_qs_rsp(flags);
1966 		return;
1967 	}
1968 
1969 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1970 	gps = rnp->gp_seq;
1971 	mask = rnp->grpmask;
1972 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1973 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1974 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1975 }
1976 
1977 /*
1978  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1979  * structure.  This must be called from the specified CPU.
1980  */
1981 static void
1982 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1983 {
1984 	unsigned long flags;
1985 	unsigned long mask;
1986 	bool needwake = false;
1987 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1988 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1989 	struct rcu_node *rnp;
1990 
1991 	rnp = rdp->mynode;
1992 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1993 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1994 	    rdp->gpwrap) {
1995 
1996 		/*
1997 		 * The grace period in which this quiescent state was
1998 		 * recorded has ended, so don't report it upwards.
1999 		 * We will instead need a new quiescent state that lies
2000 		 * within the current grace period.
2001 		 */
2002 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2003 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2004 		return;
2005 	}
2006 	mask = rdp->grpmask;
2007 	if (rdp->cpu == smp_processor_id())
2008 		rdp->core_needs_qs = false;
2009 	if ((rnp->qsmask & mask) == 0) {
2010 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2011 	} else {
2012 		/*
2013 		 * This GP can't end until cpu checks in, so all of our
2014 		 * callbacks can be processed during the next GP.
2015 		 */
2016 		if (!offloaded)
2017 			needwake = rcu_accelerate_cbs(rnp, rdp);
2018 
2019 		rcu_disable_urgency_upon_qs(rdp);
2020 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2021 		/* ^^^ Released rnp->lock */
2022 		if (needwake)
2023 			rcu_gp_kthread_wake();
2024 	}
2025 }
2026 
2027 /*
2028  * Check to see if there is a new grace period of which this CPU
2029  * is not yet aware, and if so, set up local rcu_data state for it.
2030  * Otherwise, see if this CPU has just passed through its first
2031  * quiescent state for this grace period, and record that fact if so.
2032  */
2033 static void
2034 rcu_check_quiescent_state(struct rcu_data *rdp)
2035 {
2036 	/* Check for grace-period ends and beginnings. */
2037 	note_gp_changes(rdp);
2038 
2039 	/*
2040 	 * Does this CPU still need to do its part for current grace period?
2041 	 * If no, return and let the other CPUs do their part as well.
2042 	 */
2043 	if (!rdp->core_needs_qs)
2044 		return;
2045 
2046 	/*
2047 	 * Was there a quiescent state since the beginning of the grace
2048 	 * period? If no, then exit and wait for the next call.
2049 	 */
2050 	if (rdp->cpu_no_qs.b.norm)
2051 		return;
2052 
2053 	/*
2054 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2055 	 * judge of that).
2056 	 */
2057 	rcu_report_qs_rdp(rdp->cpu, rdp);
2058 }
2059 
2060 /*
2061  * Near the end of the offline process.  Trace the fact that this CPU
2062  * is going offline.
2063  */
2064 int rcutree_dying_cpu(unsigned int cpu)
2065 {
2066 	bool blkd;
2067 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2068 	struct rcu_node *rnp = rdp->mynode;
2069 
2070 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2071 		return 0;
2072 
2073 	blkd = !!(rnp->qsmask & rdp->grpmask);
2074 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2075 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2076 	return 0;
2077 }
2078 
2079 /*
2080  * All CPUs for the specified rcu_node structure have gone offline,
2081  * and all tasks that were preempted within an RCU read-side critical
2082  * section while running on one of those CPUs have since exited their RCU
2083  * read-side critical section.  Some other CPU is reporting this fact with
2084  * the specified rcu_node structure's ->lock held and interrupts disabled.
2085  * This function therefore goes up the tree of rcu_node structures,
2086  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2087  * the leaf rcu_node structure's ->qsmaskinit field has already been
2088  * updated.
2089  *
2090  * This function does check that the specified rcu_node structure has
2091  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2092  * prematurely.  That said, invoking it after the fact will cost you
2093  * a needless lock acquisition.  So once it has done its work, don't
2094  * invoke it again.
2095  */
2096 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2097 {
2098 	long mask;
2099 	struct rcu_node *rnp = rnp_leaf;
2100 
2101 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2102 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2103 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2104 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2105 		return;
2106 	for (;;) {
2107 		mask = rnp->grpmask;
2108 		rnp = rnp->parent;
2109 		if (!rnp)
2110 			break;
2111 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2112 		rnp->qsmaskinit &= ~mask;
2113 		/* Between grace periods, so better already be zero! */
2114 		WARN_ON_ONCE(rnp->qsmask);
2115 		if (rnp->qsmaskinit) {
2116 			raw_spin_unlock_rcu_node(rnp);
2117 			/* irqs remain disabled. */
2118 			return;
2119 		}
2120 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2121 	}
2122 }
2123 
2124 /*
2125  * The CPU has been completely removed, and some other CPU is reporting
2126  * this fact from process context.  Do the remainder of the cleanup.
2127  * There can only be one CPU hotplug operation at a time, so no need for
2128  * explicit locking.
2129  */
2130 int rcutree_dead_cpu(unsigned int cpu)
2131 {
2132 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2133 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2134 
2135 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2136 		return 0;
2137 
2138 	/* Adjust any no-longer-needed kthreads. */
2139 	rcu_boost_kthread_setaffinity(rnp, -1);
2140 	/* Do any needed no-CB deferred wakeups from this CPU. */
2141 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2142 
2143 	// Stop-machine done, so allow nohz_full to disable tick.
2144 	tick_dep_clear(TICK_DEP_BIT_RCU);
2145 	return 0;
2146 }
2147 
2148 /*
2149  * Invoke any RCU callbacks that have made it to the end of their grace
2150  * period.  Thottle as specified by rdp->blimit.
2151  */
2152 static void rcu_do_batch(struct rcu_data *rdp)
2153 {
2154 	unsigned long flags;
2155 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2156 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2157 	struct rcu_head *rhp;
2158 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2159 	long bl, count;
2160 	long pending, tlimit = 0;
2161 
2162 	/* If no callbacks are ready, just return. */
2163 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2164 		trace_rcu_batch_start(rcu_state.name,
2165 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2166 		trace_rcu_batch_end(rcu_state.name, 0,
2167 				    !rcu_segcblist_empty(&rdp->cblist),
2168 				    need_resched(), is_idle_task(current),
2169 				    rcu_is_callbacks_kthread());
2170 		return;
2171 	}
2172 
2173 	/*
2174 	 * Extract the list of ready callbacks, disabling to prevent
2175 	 * races with call_rcu() from interrupt handlers.  Leave the
2176 	 * callback counts, as rcu_barrier() needs to be conservative.
2177 	 */
2178 	local_irq_save(flags);
2179 	rcu_nocb_lock(rdp);
2180 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2181 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2182 	bl = max(rdp->blimit, pending >> rcu_divisor);
2183 	if (unlikely(bl > 100))
2184 		tlimit = local_clock() + rcu_resched_ns;
2185 	trace_rcu_batch_start(rcu_state.name,
2186 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2187 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2188 	if (offloaded)
2189 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2190 	rcu_nocb_unlock_irqrestore(rdp, flags);
2191 
2192 	/* Invoke callbacks. */
2193 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2194 	rhp = rcu_cblist_dequeue(&rcl);
2195 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2196 		rcu_callback_t f;
2197 
2198 		debug_rcu_head_unqueue(rhp);
2199 
2200 		rcu_lock_acquire(&rcu_callback_map);
2201 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2202 
2203 		f = rhp->func;
2204 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2205 		f(rhp);
2206 
2207 		rcu_lock_release(&rcu_callback_map);
2208 
2209 		/*
2210 		 * Stop only if limit reached and CPU has something to do.
2211 		 * Note: The rcl structure counts down from zero.
2212 		 */
2213 		if (-rcl.len >= bl && !offloaded &&
2214 		    (need_resched() ||
2215 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2216 			break;
2217 		if (unlikely(tlimit)) {
2218 			/* only call local_clock() every 32 callbacks */
2219 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2220 				continue;
2221 			/* Exceeded the time limit, so leave. */
2222 			break;
2223 		}
2224 		if (offloaded) {
2225 			WARN_ON_ONCE(in_serving_softirq());
2226 			local_bh_enable();
2227 			lockdep_assert_irqs_enabled();
2228 			cond_resched_tasks_rcu_qs();
2229 			lockdep_assert_irqs_enabled();
2230 			local_bh_disable();
2231 		}
2232 	}
2233 
2234 	local_irq_save(flags);
2235 	rcu_nocb_lock(rdp);
2236 	count = -rcl.len;
2237 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2238 			    is_idle_task(current), rcu_is_callbacks_kthread());
2239 
2240 	/* Update counts and requeue any remaining callbacks. */
2241 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2242 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2243 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2244 
2245 	/* Reinstate batch limit if we have worked down the excess. */
2246 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2247 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2248 		rdp->blimit = blimit;
2249 
2250 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2251 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2252 		rdp->qlen_last_fqs_check = 0;
2253 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2254 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2255 		rdp->qlen_last_fqs_check = count;
2256 
2257 	/*
2258 	 * The following usually indicates a double call_rcu().  To track
2259 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2260 	 */
2261 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2262 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2263 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2264 
2265 	rcu_nocb_unlock_irqrestore(rdp, flags);
2266 
2267 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2268 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2269 		invoke_rcu_core();
2270 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2271 }
2272 
2273 /*
2274  * This function is invoked from each scheduling-clock interrupt,
2275  * and checks to see if this CPU is in a non-context-switch quiescent
2276  * state, for example, user mode or idle loop.  It also schedules RCU
2277  * core processing.  If the current grace period has gone on too long,
2278  * it will ask the scheduler to manufacture a context switch for the sole
2279  * purpose of providing a providing the needed quiescent state.
2280  */
2281 void rcu_sched_clock_irq(int user)
2282 {
2283 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2284 	raw_cpu_inc(rcu_data.ticks_this_gp);
2285 	/* The load-acquire pairs with the store-release setting to true. */
2286 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2287 		/* Idle and userspace execution already are quiescent states. */
2288 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2289 			set_tsk_need_resched(current);
2290 			set_preempt_need_resched();
2291 		}
2292 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2293 	}
2294 	rcu_flavor_sched_clock_irq(user);
2295 	if (rcu_pending(user))
2296 		invoke_rcu_core();
2297 
2298 	trace_rcu_utilization(TPS("End scheduler-tick"));
2299 }
2300 
2301 /*
2302  * Scan the leaf rcu_node structures.  For each structure on which all
2303  * CPUs have reported a quiescent state and on which there are tasks
2304  * blocking the current grace period, initiate RCU priority boosting.
2305  * Otherwise, invoke the specified function to check dyntick state for
2306  * each CPU that has not yet reported a quiescent state.
2307  */
2308 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2309 {
2310 	int cpu;
2311 	unsigned long flags;
2312 	unsigned long mask;
2313 	struct rcu_data *rdp;
2314 	struct rcu_node *rnp;
2315 
2316 	rcu_state.cbovld = rcu_state.cbovldnext;
2317 	rcu_state.cbovldnext = false;
2318 	rcu_for_each_leaf_node(rnp) {
2319 		cond_resched_tasks_rcu_qs();
2320 		mask = 0;
2321 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2322 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2323 		if (rnp->qsmask == 0) {
2324 			if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2325 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2326 				/*
2327 				 * No point in scanning bits because they
2328 				 * are all zero.  But we might need to
2329 				 * priority-boost blocked readers.
2330 				 */
2331 				rcu_initiate_boost(rnp, flags);
2332 				/* rcu_initiate_boost() releases rnp->lock */
2333 				continue;
2334 			}
2335 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2336 			continue;
2337 		}
2338 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2339 			rdp = per_cpu_ptr(&rcu_data, cpu);
2340 			if (f(rdp)) {
2341 				mask |= rdp->grpmask;
2342 				rcu_disable_urgency_upon_qs(rdp);
2343 			}
2344 		}
2345 		if (mask != 0) {
2346 			/* Idle/offline CPUs, report (releases rnp->lock). */
2347 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2348 		} else {
2349 			/* Nothing to do here, so just drop the lock. */
2350 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2351 		}
2352 	}
2353 }
2354 
2355 /*
2356  * Force quiescent states on reluctant CPUs, and also detect which
2357  * CPUs are in dyntick-idle mode.
2358  */
2359 void rcu_force_quiescent_state(void)
2360 {
2361 	unsigned long flags;
2362 	bool ret;
2363 	struct rcu_node *rnp;
2364 	struct rcu_node *rnp_old = NULL;
2365 
2366 	/* Funnel through hierarchy to reduce memory contention. */
2367 	rnp = __this_cpu_read(rcu_data.mynode);
2368 	for (; rnp != NULL; rnp = rnp->parent) {
2369 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2370 		       !raw_spin_trylock(&rnp->fqslock);
2371 		if (rnp_old != NULL)
2372 			raw_spin_unlock(&rnp_old->fqslock);
2373 		if (ret)
2374 			return;
2375 		rnp_old = rnp;
2376 	}
2377 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2378 
2379 	/* Reached the root of the rcu_node tree, acquire lock. */
2380 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2381 	raw_spin_unlock(&rnp_old->fqslock);
2382 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2383 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2384 		return;  /* Someone beat us to it. */
2385 	}
2386 	WRITE_ONCE(rcu_state.gp_flags,
2387 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2388 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2389 	rcu_gp_kthread_wake();
2390 }
2391 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2392 
2393 /* Perform RCU core processing work for the current CPU.  */
2394 static __latent_entropy void rcu_core(void)
2395 {
2396 	unsigned long flags;
2397 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2398 	struct rcu_node *rnp = rdp->mynode;
2399 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2400 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2401 
2402 	if (cpu_is_offline(smp_processor_id()))
2403 		return;
2404 	trace_rcu_utilization(TPS("Start RCU core"));
2405 	WARN_ON_ONCE(!rdp->beenonline);
2406 
2407 	/* Report any deferred quiescent states if preemption enabled. */
2408 	if (!(preempt_count() & PREEMPT_MASK)) {
2409 		rcu_preempt_deferred_qs(current);
2410 	} else if (rcu_preempt_need_deferred_qs(current)) {
2411 		set_tsk_need_resched(current);
2412 		set_preempt_need_resched();
2413 	}
2414 
2415 	/* Update RCU state based on any recent quiescent states. */
2416 	rcu_check_quiescent_state(rdp);
2417 
2418 	/* No grace period and unregistered callbacks? */
2419 	if (!rcu_gp_in_progress() &&
2420 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2421 		local_irq_save(flags);
2422 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2423 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2424 		local_irq_restore(flags);
2425 	}
2426 
2427 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2428 
2429 	/* If there are callbacks ready, invoke them. */
2430 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2431 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2432 		rcu_do_batch(rdp);
2433 
2434 	/* Do any needed deferred wakeups of rcuo kthreads. */
2435 	do_nocb_deferred_wakeup(rdp);
2436 	trace_rcu_utilization(TPS("End RCU core"));
2437 }
2438 
2439 static void rcu_core_si(struct softirq_action *h)
2440 {
2441 	rcu_core();
2442 }
2443 
2444 static void rcu_wake_cond(struct task_struct *t, int status)
2445 {
2446 	/*
2447 	 * If the thread is yielding, only wake it when this
2448 	 * is invoked from idle
2449 	 */
2450 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2451 		wake_up_process(t);
2452 }
2453 
2454 static void invoke_rcu_core_kthread(void)
2455 {
2456 	struct task_struct *t;
2457 	unsigned long flags;
2458 
2459 	local_irq_save(flags);
2460 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2461 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2462 	if (t != NULL && t != current)
2463 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2464 	local_irq_restore(flags);
2465 }
2466 
2467 /*
2468  * Wake up this CPU's rcuc kthread to do RCU core processing.
2469  */
2470 static void invoke_rcu_core(void)
2471 {
2472 	if (!cpu_online(smp_processor_id()))
2473 		return;
2474 	if (use_softirq)
2475 		raise_softirq(RCU_SOFTIRQ);
2476 	else
2477 		invoke_rcu_core_kthread();
2478 }
2479 
2480 static void rcu_cpu_kthread_park(unsigned int cpu)
2481 {
2482 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2483 }
2484 
2485 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2486 {
2487 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2488 }
2489 
2490 /*
2491  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2492  * the RCU softirq used in configurations of RCU that do not support RCU
2493  * priority boosting.
2494  */
2495 static void rcu_cpu_kthread(unsigned int cpu)
2496 {
2497 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2498 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2499 	int spincnt;
2500 
2501 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2502 	for (spincnt = 0; spincnt < 10; spincnt++) {
2503 		local_bh_disable();
2504 		*statusp = RCU_KTHREAD_RUNNING;
2505 		local_irq_disable();
2506 		work = *workp;
2507 		*workp = 0;
2508 		local_irq_enable();
2509 		if (work)
2510 			rcu_core();
2511 		local_bh_enable();
2512 		if (*workp == 0) {
2513 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2514 			*statusp = RCU_KTHREAD_WAITING;
2515 			return;
2516 		}
2517 	}
2518 	*statusp = RCU_KTHREAD_YIELDING;
2519 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2520 	schedule_timeout_interruptible(2);
2521 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2522 	*statusp = RCU_KTHREAD_WAITING;
2523 }
2524 
2525 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2526 	.store			= &rcu_data.rcu_cpu_kthread_task,
2527 	.thread_should_run	= rcu_cpu_kthread_should_run,
2528 	.thread_fn		= rcu_cpu_kthread,
2529 	.thread_comm		= "rcuc/%u",
2530 	.setup			= rcu_cpu_kthread_setup,
2531 	.park			= rcu_cpu_kthread_park,
2532 };
2533 
2534 /*
2535  * Spawn per-CPU RCU core processing kthreads.
2536  */
2537 static int __init rcu_spawn_core_kthreads(void)
2538 {
2539 	int cpu;
2540 
2541 	for_each_possible_cpu(cpu)
2542 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2543 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2544 		return 0;
2545 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2546 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2547 	return 0;
2548 }
2549 early_initcall(rcu_spawn_core_kthreads);
2550 
2551 /*
2552  * Handle any core-RCU processing required by a call_rcu() invocation.
2553  */
2554 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2555 			    unsigned long flags)
2556 {
2557 	/*
2558 	 * If called from an extended quiescent state, invoke the RCU
2559 	 * core in order to force a re-evaluation of RCU's idleness.
2560 	 */
2561 	if (!rcu_is_watching())
2562 		invoke_rcu_core();
2563 
2564 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2565 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2566 		return;
2567 
2568 	/*
2569 	 * Force the grace period if too many callbacks or too long waiting.
2570 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2571 	 * if some other CPU has recently done so.  Also, don't bother
2572 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2573 	 * is the only one waiting for a grace period to complete.
2574 	 */
2575 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2576 		     rdp->qlen_last_fqs_check + qhimark)) {
2577 
2578 		/* Are we ignoring a completed grace period? */
2579 		note_gp_changes(rdp);
2580 
2581 		/* Start a new grace period if one not already started. */
2582 		if (!rcu_gp_in_progress()) {
2583 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2584 		} else {
2585 			/* Give the grace period a kick. */
2586 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2587 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2588 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2589 				rcu_force_quiescent_state();
2590 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2591 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2592 		}
2593 	}
2594 }
2595 
2596 /*
2597  * RCU callback function to leak a callback.
2598  */
2599 static void rcu_leak_callback(struct rcu_head *rhp)
2600 {
2601 }
2602 
2603 /*
2604  * Check and if necessary update the leaf rcu_node structure's
2605  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2606  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2607  * structure's ->lock.
2608  */
2609 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2610 {
2611 	raw_lockdep_assert_held_rcu_node(rnp);
2612 	if (qovld_calc <= 0)
2613 		return; // Early boot and wildcard value set.
2614 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2615 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2616 	else
2617 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2618 }
2619 
2620 /*
2621  * Check and if necessary update the leaf rcu_node structure's
2622  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2623  * number of queued RCU callbacks.  No locks need be held, but the
2624  * caller must have disabled interrupts.
2625  *
2626  * Note that this function ignores the possibility that there are a lot
2627  * of callbacks all of which have already seen the end of their respective
2628  * grace periods.  This omission is due to the need for no-CBs CPUs to
2629  * be holding ->nocb_lock to do this check, which is too heavy for a
2630  * common-case operation.
2631  */
2632 static void check_cb_ovld(struct rcu_data *rdp)
2633 {
2634 	struct rcu_node *const rnp = rdp->mynode;
2635 
2636 	if (qovld_calc <= 0 ||
2637 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2638 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2639 		return; // Early boot wildcard value or already set correctly.
2640 	raw_spin_lock_rcu_node(rnp);
2641 	check_cb_ovld_locked(rdp, rnp);
2642 	raw_spin_unlock_rcu_node(rnp);
2643 }
2644 
2645 /* Helper function for call_rcu() and friends.  */
2646 static void
2647 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2648 {
2649 	unsigned long flags;
2650 	struct rcu_data *rdp;
2651 	bool was_alldone;
2652 
2653 	/* Misaligned rcu_head! */
2654 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2655 
2656 	if (debug_rcu_head_queue(head)) {
2657 		/*
2658 		 * Probable double call_rcu(), so leak the callback.
2659 		 * Use rcu:rcu_callback trace event to find the previous
2660 		 * time callback was passed to __call_rcu().
2661 		 */
2662 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2663 			  head, head->func);
2664 		WRITE_ONCE(head->func, rcu_leak_callback);
2665 		return;
2666 	}
2667 	head->func = func;
2668 	head->next = NULL;
2669 	local_irq_save(flags);
2670 	rdp = this_cpu_ptr(&rcu_data);
2671 
2672 	/* Add the callback to our list. */
2673 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2674 		// This can trigger due to call_rcu() from offline CPU:
2675 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2676 		WARN_ON_ONCE(!rcu_is_watching());
2677 		// Very early boot, before rcu_init().  Initialize if needed
2678 		// and then drop through to queue the callback.
2679 		if (rcu_segcblist_empty(&rdp->cblist))
2680 			rcu_segcblist_init(&rdp->cblist);
2681 	}
2682 
2683 	check_cb_ovld(rdp);
2684 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2685 		return; // Enqueued onto ->nocb_bypass, so just leave.
2686 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2687 	rcu_segcblist_enqueue(&rdp->cblist, head);
2688 	if (__is_kfree_rcu_offset((unsigned long)func))
2689 		trace_rcu_kfree_callback(rcu_state.name, head,
2690 					 (unsigned long)func,
2691 					 rcu_segcblist_n_cbs(&rdp->cblist));
2692 	else
2693 		trace_rcu_callback(rcu_state.name, head,
2694 				   rcu_segcblist_n_cbs(&rdp->cblist));
2695 
2696 	/* Go handle any RCU core processing required. */
2697 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2698 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2699 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2700 	} else {
2701 		__call_rcu_core(rdp, head, flags);
2702 		local_irq_restore(flags);
2703 	}
2704 }
2705 
2706 /**
2707  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2708  * @head: structure to be used for queueing the RCU updates.
2709  * @func: actual callback function to be invoked after the grace period
2710  *
2711  * The callback function will be invoked some time after a full grace
2712  * period elapses, in other words after all pre-existing RCU read-side
2713  * critical sections have completed.  However, the callback function
2714  * might well execute concurrently with RCU read-side critical sections
2715  * that started after call_rcu() was invoked.  RCU read-side critical
2716  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2717  * may be nested.  In addition, regions of code across which interrupts,
2718  * preemption, or softirqs have been disabled also serve as RCU read-side
2719  * critical sections.  This includes hardware interrupt handlers, softirq
2720  * handlers, and NMI handlers.
2721  *
2722  * Note that all CPUs must agree that the grace period extended beyond
2723  * all pre-existing RCU read-side critical section.  On systems with more
2724  * than one CPU, this means that when "func()" is invoked, each CPU is
2725  * guaranteed to have executed a full memory barrier since the end of its
2726  * last RCU read-side critical section whose beginning preceded the call
2727  * to call_rcu().  It also means that each CPU executing an RCU read-side
2728  * critical section that continues beyond the start of "func()" must have
2729  * executed a memory barrier after the call_rcu() but before the beginning
2730  * of that RCU read-side critical section.  Note that these guarantees
2731  * include CPUs that are offline, idle, or executing in user mode, as
2732  * well as CPUs that are executing in the kernel.
2733  *
2734  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2735  * resulting RCU callback function "func()", then both CPU A and CPU B are
2736  * guaranteed to execute a full memory barrier during the time interval
2737  * between the call to call_rcu() and the invocation of "func()" -- even
2738  * if CPU A and CPU B are the same CPU (but again only if the system has
2739  * more than one CPU).
2740  */
2741 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2742 {
2743 	__call_rcu(head, func);
2744 }
2745 EXPORT_SYMBOL_GPL(call_rcu);
2746 
2747 
2748 /* Maximum number of jiffies to wait before draining a batch. */
2749 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2750 #define KFREE_N_BATCHES 2
2751 
2752 /*
2753  * This macro defines how many entries the "records" array
2754  * will contain. It is based on the fact that the size of
2755  * kfree_rcu_bulk_data structure becomes exactly one page.
2756  */
2757 #define KFREE_BULK_MAX_ENTR ((PAGE_SIZE / sizeof(void *)) - 3)
2758 
2759 /**
2760  * struct kfree_rcu_bulk_data - single block to store kfree_rcu() pointers
2761  * @nr_records: Number of active pointers in the array
2762  * @records: Array of the kfree_rcu() pointers
2763  * @next: Next bulk object in the block chain
2764  * @head_free_debug: For debug, when CONFIG_DEBUG_OBJECTS_RCU_HEAD is set
2765  */
2766 struct kfree_rcu_bulk_data {
2767 	unsigned long nr_records;
2768 	void *records[KFREE_BULK_MAX_ENTR];
2769 	struct kfree_rcu_bulk_data *next;
2770 	struct rcu_head *head_free_debug;
2771 };
2772 
2773 /**
2774  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2775  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2776  * @head_free: List of kfree_rcu() objects waiting for a grace period
2777  * @bhead_free: Bulk-List of kfree_rcu() objects waiting for a grace period
2778  * @krcp: Pointer to @kfree_rcu_cpu structure
2779  */
2780 
2781 struct kfree_rcu_cpu_work {
2782 	struct rcu_work rcu_work;
2783 	struct rcu_head *head_free;
2784 	struct kfree_rcu_bulk_data *bhead_free;
2785 	struct kfree_rcu_cpu *krcp;
2786 };
2787 
2788 /**
2789  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2790  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2791  * @bhead: Bulk-List of kfree_rcu() objects not yet waiting for a grace period
2792  * @bcached: Keeps at most one object for later reuse when build chain blocks
2793  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2794  * @lock: Synchronize access to this structure
2795  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2796  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
2797  * @initialized: The @lock and @rcu_work fields have been initialized
2798  *
2799  * This is a per-CPU structure.  The reason that it is not included in
2800  * the rcu_data structure is to permit this code to be extracted from
2801  * the RCU files.  Such extraction could allow further optimization of
2802  * the interactions with the slab allocators.
2803  */
2804 struct kfree_rcu_cpu {
2805 	struct rcu_head *head;
2806 	struct kfree_rcu_bulk_data *bhead;
2807 	struct kfree_rcu_bulk_data *bcached;
2808 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2809 	spinlock_t lock;
2810 	struct delayed_work monitor_work;
2811 	bool monitor_todo;
2812 	bool initialized;
2813 };
2814 
2815 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc);
2816 
2817 static __always_inline void
2818 debug_rcu_head_unqueue_bulk(struct rcu_head *head)
2819 {
2820 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2821 	for (; head; head = head->next)
2822 		debug_rcu_head_unqueue(head);
2823 #endif
2824 }
2825 
2826 /*
2827  * This function is invoked in workqueue context after a grace period.
2828  * It frees all the objects queued on ->bhead_free or ->head_free.
2829  */
2830 static void kfree_rcu_work(struct work_struct *work)
2831 {
2832 	unsigned long flags;
2833 	struct rcu_head *head, *next;
2834 	struct kfree_rcu_bulk_data *bhead, *bnext;
2835 	struct kfree_rcu_cpu *krcp;
2836 	struct kfree_rcu_cpu_work *krwp;
2837 
2838 	krwp = container_of(to_rcu_work(work),
2839 			    struct kfree_rcu_cpu_work, rcu_work);
2840 	krcp = krwp->krcp;
2841 	spin_lock_irqsave(&krcp->lock, flags);
2842 	head = krwp->head_free;
2843 	krwp->head_free = NULL;
2844 	bhead = krwp->bhead_free;
2845 	krwp->bhead_free = NULL;
2846 	spin_unlock_irqrestore(&krcp->lock, flags);
2847 
2848 	/* "bhead" is now private, so traverse locklessly. */
2849 	for (; bhead; bhead = bnext) {
2850 		bnext = bhead->next;
2851 
2852 		debug_rcu_head_unqueue_bulk(bhead->head_free_debug);
2853 
2854 		rcu_lock_acquire(&rcu_callback_map);
2855 		trace_rcu_invoke_kfree_bulk_callback(rcu_state.name,
2856 			bhead->nr_records, bhead->records);
2857 
2858 		kfree_bulk(bhead->nr_records, bhead->records);
2859 		rcu_lock_release(&rcu_callback_map);
2860 
2861 		if (cmpxchg(&krcp->bcached, NULL, bhead))
2862 			free_page((unsigned long) bhead);
2863 
2864 		cond_resched_tasks_rcu_qs();
2865 	}
2866 
2867 	/*
2868 	 * Emergency case only. It can happen under low memory
2869 	 * condition when an allocation gets failed, so the "bulk"
2870 	 * path can not be temporary maintained.
2871 	 */
2872 	for (; head; head = next) {
2873 		unsigned long offset = (unsigned long)head->func;
2874 
2875 		next = head->next;
2876 		debug_rcu_head_unqueue(head);
2877 		rcu_lock_acquire(&rcu_callback_map);
2878 		trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset);
2879 
2880 		if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset)))
2881 			kfree((void *)head - offset);
2882 
2883 		rcu_lock_release(&rcu_callback_map);
2884 		cond_resched_tasks_rcu_qs();
2885 	}
2886 }
2887 
2888 /*
2889  * Schedule the kfree batch RCU work to run in workqueue context after a GP.
2890  *
2891  * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
2892  * timeout has been reached.
2893  */
2894 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
2895 {
2896 	struct kfree_rcu_cpu_work *krwp;
2897 	bool queued = false;
2898 	int i;
2899 
2900 	lockdep_assert_held(&krcp->lock);
2901 
2902 	for (i = 0; i < KFREE_N_BATCHES; i++) {
2903 		krwp = &(krcp->krw_arr[i]);
2904 
2905 		/*
2906 		 * Try to detach bhead or head and attach it over any
2907 		 * available corresponding free channel. It can be that
2908 		 * a previous RCU batch is in progress, it means that
2909 		 * immediately to queue another one is not possible so
2910 		 * return false to tell caller to retry.
2911 		 */
2912 		if ((krcp->bhead && !krwp->bhead_free) ||
2913 				(krcp->head && !krwp->head_free)) {
2914 			/* Channel 1. */
2915 			if (!krwp->bhead_free) {
2916 				krwp->bhead_free = krcp->bhead;
2917 				krcp->bhead = NULL;
2918 			}
2919 
2920 			/* Channel 2. */
2921 			if (!krwp->head_free) {
2922 				krwp->head_free = krcp->head;
2923 				krcp->head = NULL;
2924 			}
2925 
2926 			/*
2927 			 * One work is per one batch, so there are two "free channels",
2928 			 * "bhead_free" and "head_free" the batch can handle. It can be
2929 			 * that the work is in the pending state when two channels have
2930 			 * been detached following each other, one by one.
2931 			 */
2932 			queue_rcu_work(system_wq, &krwp->rcu_work);
2933 			queued = true;
2934 		}
2935 	}
2936 
2937 	return queued;
2938 }
2939 
2940 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
2941 					  unsigned long flags)
2942 {
2943 	// Attempt to start a new batch.
2944 	krcp->monitor_todo = false;
2945 	if (queue_kfree_rcu_work(krcp)) {
2946 		// Success! Our job is done here.
2947 		spin_unlock_irqrestore(&krcp->lock, flags);
2948 		return;
2949 	}
2950 
2951 	// Previous RCU batch still in progress, try again later.
2952 	krcp->monitor_todo = true;
2953 	schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
2954 	spin_unlock_irqrestore(&krcp->lock, flags);
2955 }
2956 
2957 /*
2958  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
2959  * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
2960  */
2961 static void kfree_rcu_monitor(struct work_struct *work)
2962 {
2963 	unsigned long flags;
2964 	struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
2965 						 monitor_work.work);
2966 
2967 	spin_lock_irqsave(&krcp->lock, flags);
2968 	if (krcp->monitor_todo)
2969 		kfree_rcu_drain_unlock(krcp, flags);
2970 	else
2971 		spin_unlock_irqrestore(&krcp->lock, flags);
2972 }
2973 
2974 static inline bool
2975 kfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp,
2976 	struct rcu_head *head, rcu_callback_t func)
2977 {
2978 	struct kfree_rcu_bulk_data *bnode;
2979 
2980 	if (unlikely(!krcp->initialized))
2981 		return false;
2982 
2983 	lockdep_assert_held(&krcp->lock);
2984 
2985 	/* Check if a new block is required. */
2986 	if (!krcp->bhead ||
2987 			krcp->bhead->nr_records == KFREE_BULK_MAX_ENTR) {
2988 		bnode = xchg(&krcp->bcached, NULL);
2989 		if (!bnode) {
2990 			WARN_ON_ONCE(sizeof(struct kfree_rcu_bulk_data) > PAGE_SIZE);
2991 
2992 			bnode = (struct kfree_rcu_bulk_data *)
2993 				__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
2994 		}
2995 
2996 		/* Switch to emergency path. */
2997 		if (unlikely(!bnode))
2998 			return false;
2999 
3000 		/* Initialize the new block. */
3001 		bnode->nr_records = 0;
3002 		bnode->next = krcp->bhead;
3003 		bnode->head_free_debug = NULL;
3004 
3005 		/* Attach it to the head. */
3006 		krcp->bhead = bnode;
3007 	}
3008 
3009 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3010 	head->func = func;
3011 	head->next = krcp->bhead->head_free_debug;
3012 	krcp->bhead->head_free_debug = head;
3013 #endif
3014 
3015 	/* Finally insert. */
3016 	krcp->bhead->records[krcp->bhead->nr_records++] =
3017 		(void *) head - (unsigned long) func;
3018 
3019 	return true;
3020 }
3021 
3022 /*
3023  * Queue a request for lazy invocation of kfree_bulk()/kfree() after a grace
3024  * period. Please note there are two paths are maintained, one is the main one
3025  * that uses kfree_bulk() interface and second one is emergency one, that is
3026  * used only when the main path can not be maintained temporary, due to memory
3027  * pressure.
3028  *
3029  * Each kfree_call_rcu() request is added to a batch. The batch will be drained
3030  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3031  * be free'd in workqueue context. This allows us to: batch requests together to
3032  * reduce the number of grace periods during heavy kfree_rcu() load.
3033  */
3034 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3035 {
3036 	unsigned long flags;
3037 	struct kfree_rcu_cpu *krcp;
3038 
3039 	local_irq_save(flags);	// For safely calling this_cpu_ptr().
3040 	krcp = this_cpu_ptr(&krc);
3041 	if (krcp->initialized)
3042 		spin_lock(&krcp->lock);
3043 
3044 	// Queue the object but don't yet schedule the batch.
3045 	if (debug_rcu_head_queue(head)) {
3046 		// Probable double kfree_rcu(), just leak.
3047 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3048 			  __func__, head);
3049 		goto unlock_return;
3050 	}
3051 
3052 	/*
3053 	 * Under high memory pressure GFP_NOWAIT can fail,
3054 	 * in that case the emergency path is maintained.
3055 	 */
3056 	if (unlikely(!kfree_call_rcu_add_ptr_to_bulk(krcp, head, func))) {
3057 		head->func = func;
3058 		head->next = krcp->head;
3059 		krcp->head = head;
3060 	}
3061 
3062 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3063 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3064 	    !krcp->monitor_todo) {
3065 		krcp->monitor_todo = true;
3066 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3067 	}
3068 
3069 unlock_return:
3070 	if (krcp->initialized)
3071 		spin_unlock(&krcp->lock);
3072 	local_irq_restore(flags);
3073 }
3074 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3075 
3076 void __init kfree_rcu_scheduler_running(void)
3077 {
3078 	int cpu;
3079 	unsigned long flags;
3080 
3081 	for_each_online_cpu(cpu) {
3082 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3083 
3084 		spin_lock_irqsave(&krcp->lock, flags);
3085 		if (!krcp->head || krcp->monitor_todo) {
3086 			spin_unlock_irqrestore(&krcp->lock, flags);
3087 			continue;
3088 		}
3089 		krcp->monitor_todo = true;
3090 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3091 					 KFREE_DRAIN_JIFFIES);
3092 		spin_unlock_irqrestore(&krcp->lock, flags);
3093 	}
3094 }
3095 
3096 /*
3097  * During early boot, any blocking grace-period wait automatically
3098  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3099  *
3100  * Howevr, because a context switch is a grace period for !PREEMPTION, any
3101  * blocking grace-period wait automatically implies a grace period if
3102  * there is only one CPU online at any point time during execution of
3103  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3104  * occasionally incorrectly indicate that there are multiple CPUs online
3105  * when there was in fact only one the whole time, as this just adds some
3106  * overhead: RCU still operates correctly.
3107  */
3108 static int rcu_blocking_is_gp(void)
3109 {
3110 	int ret;
3111 
3112 	if (IS_ENABLED(CONFIG_PREEMPTION))
3113 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3114 	might_sleep();  /* Check for RCU read-side critical section. */
3115 	preempt_disable();
3116 	ret = num_online_cpus() <= 1;
3117 	preempt_enable();
3118 	return ret;
3119 }
3120 
3121 /**
3122  * synchronize_rcu - wait until a grace period has elapsed.
3123  *
3124  * Control will return to the caller some time after a full grace
3125  * period has elapsed, in other words after all currently executing RCU
3126  * read-side critical sections have completed.  Note, however, that
3127  * upon return from synchronize_rcu(), the caller might well be executing
3128  * concurrently with new RCU read-side critical sections that began while
3129  * synchronize_rcu() was waiting.  RCU read-side critical sections are
3130  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3131  * In addition, regions of code across which interrupts, preemption, or
3132  * softirqs have been disabled also serve as RCU read-side critical
3133  * sections.  This includes hardware interrupt handlers, softirq handlers,
3134  * and NMI handlers.
3135  *
3136  * Note that this guarantee implies further memory-ordering guarantees.
3137  * On systems with more than one CPU, when synchronize_rcu() returns,
3138  * each CPU is guaranteed to have executed a full memory barrier since
3139  * the end of its last RCU read-side critical section whose beginning
3140  * preceded the call to synchronize_rcu().  In addition, each CPU having
3141  * an RCU read-side critical section that extends beyond the return from
3142  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3143  * after the beginning of synchronize_rcu() and before the beginning of
3144  * that RCU read-side critical section.  Note that these guarantees include
3145  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3146  * that are executing in the kernel.
3147  *
3148  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3149  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3150  * to have executed a full memory barrier during the execution of
3151  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3152  * again only if the system has more than one CPU).
3153  */
3154 void synchronize_rcu(void)
3155 {
3156 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3157 			 lock_is_held(&rcu_lock_map) ||
3158 			 lock_is_held(&rcu_sched_lock_map),
3159 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3160 	if (rcu_blocking_is_gp())
3161 		return;
3162 	if (rcu_gp_is_expedited())
3163 		synchronize_rcu_expedited();
3164 	else
3165 		wait_rcu_gp(call_rcu);
3166 }
3167 EXPORT_SYMBOL_GPL(synchronize_rcu);
3168 
3169 /**
3170  * get_state_synchronize_rcu - Snapshot current RCU state
3171  *
3172  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3173  * to determine whether or not a full grace period has elapsed in the
3174  * meantime.
3175  */
3176 unsigned long get_state_synchronize_rcu(void)
3177 {
3178 	/*
3179 	 * Any prior manipulation of RCU-protected data must happen
3180 	 * before the load from ->gp_seq.
3181 	 */
3182 	smp_mb();  /* ^^^ */
3183 	return rcu_seq_snap(&rcu_state.gp_seq);
3184 }
3185 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3186 
3187 /**
3188  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3189  *
3190  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3191  *
3192  * If a full RCU grace period has elapsed since the earlier call to
3193  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3194  * synchronize_rcu() to wait for a full grace period.
3195  *
3196  * Yes, this function does not take counter wrap into account.  But
3197  * counter wrap is harmless.  If the counter wraps, we have waited for
3198  * more than 2 billion grace periods (and way more on a 64-bit system!),
3199  * so waiting for one additional grace period should be just fine.
3200  */
3201 void cond_synchronize_rcu(unsigned long oldstate)
3202 {
3203 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3204 		synchronize_rcu();
3205 	else
3206 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3207 }
3208 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3209 
3210 /*
3211  * Check to see if there is any immediate RCU-related work to be done by
3212  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3213  * in order of increasing expense: checks that can be carried out against
3214  * CPU-local state are performed first.  However, we must check for CPU
3215  * stalls first, else we might not get a chance.
3216  */
3217 static int rcu_pending(int user)
3218 {
3219 	bool gp_in_progress;
3220 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3221 	struct rcu_node *rnp = rdp->mynode;
3222 
3223 	/* Check for CPU stalls, if enabled. */
3224 	check_cpu_stall(rdp);
3225 
3226 	/* Does this CPU need a deferred NOCB wakeup? */
3227 	if (rcu_nocb_need_deferred_wakeup(rdp))
3228 		return 1;
3229 
3230 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3231 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3232 		return 0;
3233 
3234 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3235 	gp_in_progress = rcu_gp_in_progress();
3236 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3237 		return 1;
3238 
3239 	/* Does this CPU have callbacks ready to invoke? */
3240 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3241 		return 1;
3242 
3243 	/* Has RCU gone idle with this CPU needing another grace period? */
3244 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3245 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3246 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3247 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3248 		return 1;
3249 
3250 	/* Have RCU grace period completed or started?  */
3251 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3252 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3253 		return 1;
3254 
3255 	/* nothing to do */
3256 	return 0;
3257 }
3258 
3259 /*
3260  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3261  * the compiler is expected to optimize this away.
3262  */
3263 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3264 {
3265 	trace_rcu_barrier(rcu_state.name, s, cpu,
3266 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3267 }
3268 
3269 /*
3270  * RCU callback function for rcu_barrier().  If we are last, wake
3271  * up the task executing rcu_barrier().
3272  *
3273  * Note that the value of rcu_state.barrier_sequence must be captured
3274  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3275  * other CPUs might count the value down to zero before this CPU gets
3276  * around to invoking rcu_barrier_trace(), which might result in bogus
3277  * data from the next instance of rcu_barrier().
3278  */
3279 static void rcu_barrier_callback(struct rcu_head *rhp)
3280 {
3281 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3282 
3283 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3284 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3285 		complete(&rcu_state.barrier_completion);
3286 	} else {
3287 		rcu_barrier_trace(TPS("CB"), -1, s);
3288 	}
3289 }
3290 
3291 /*
3292  * Called with preemption disabled, and from cross-cpu IRQ context.
3293  */
3294 static void rcu_barrier_func(void *cpu_in)
3295 {
3296 	uintptr_t cpu = (uintptr_t)cpu_in;
3297 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3298 
3299 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3300 	rdp->barrier_head.func = rcu_barrier_callback;
3301 	debug_rcu_head_queue(&rdp->barrier_head);
3302 	rcu_nocb_lock(rdp);
3303 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3304 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3305 		atomic_inc(&rcu_state.barrier_cpu_count);
3306 	} else {
3307 		debug_rcu_head_unqueue(&rdp->barrier_head);
3308 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3309 				  rcu_state.barrier_sequence);
3310 	}
3311 	rcu_nocb_unlock(rdp);
3312 }
3313 
3314 /**
3315  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3316  *
3317  * Note that this primitive does not necessarily wait for an RCU grace period
3318  * to complete.  For example, if there are no RCU callbacks queued anywhere
3319  * in the system, then rcu_barrier() is within its rights to return
3320  * immediately, without waiting for anything, much less an RCU grace period.
3321  */
3322 void rcu_barrier(void)
3323 {
3324 	uintptr_t cpu;
3325 	struct rcu_data *rdp;
3326 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3327 
3328 	rcu_barrier_trace(TPS("Begin"), -1, s);
3329 
3330 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3331 	mutex_lock(&rcu_state.barrier_mutex);
3332 
3333 	/* Did someone else do our work for us? */
3334 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3335 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3336 				  rcu_state.barrier_sequence);
3337 		smp_mb(); /* caller's subsequent code after above check. */
3338 		mutex_unlock(&rcu_state.barrier_mutex);
3339 		return;
3340 	}
3341 
3342 	/* Mark the start of the barrier operation. */
3343 	rcu_seq_start(&rcu_state.barrier_sequence);
3344 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3345 
3346 	/*
3347 	 * Initialize the count to two rather than to zero in order
3348 	 * to avoid a too-soon return to zero in case of an immediate
3349 	 * invocation of the just-enqueued callback (or preemption of
3350 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3351 	 * offline non-offloaded CPU has callbacks queued.
3352 	 */
3353 	init_completion(&rcu_state.barrier_completion);
3354 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3355 	get_online_cpus();
3356 
3357 	/*
3358 	 * Force each CPU with callbacks to register a new callback.
3359 	 * When that callback is invoked, we will know that all of the
3360 	 * corresponding CPU's preceding callbacks have been invoked.
3361 	 */
3362 	for_each_possible_cpu(cpu) {
3363 		rdp = per_cpu_ptr(&rcu_data, cpu);
3364 		if (cpu_is_offline(cpu) &&
3365 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
3366 			continue;
3367 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3368 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3369 					  rcu_state.barrier_sequence);
3370 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3371 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3372 			   cpu_is_offline(cpu)) {
3373 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3374 					  rcu_state.barrier_sequence);
3375 			local_irq_disable();
3376 			rcu_barrier_func((void *)cpu);
3377 			local_irq_enable();
3378 		} else if (cpu_is_offline(cpu)) {
3379 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3380 					  rcu_state.barrier_sequence);
3381 		} else {
3382 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3383 					  rcu_state.barrier_sequence);
3384 		}
3385 	}
3386 	put_online_cpus();
3387 
3388 	/*
3389 	 * Now that we have an rcu_barrier_callback() callback on each
3390 	 * CPU, and thus each counted, remove the initial count.
3391 	 */
3392 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3393 		complete(&rcu_state.barrier_completion);
3394 
3395 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3396 	wait_for_completion(&rcu_state.barrier_completion);
3397 
3398 	/* Mark the end of the barrier operation. */
3399 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3400 	rcu_seq_end(&rcu_state.barrier_sequence);
3401 
3402 	/* Other rcu_barrier() invocations can now safely proceed. */
3403 	mutex_unlock(&rcu_state.barrier_mutex);
3404 }
3405 EXPORT_SYMBOL_GPL(rcu_barrier);
3406 
3407 /*
3408  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3409  * first CPU in a given leaf rcu_node structure coming online.  The caller
3410  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3411  * disabled.
3412  */
3413 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3414 {
3415 	long mask;
3416 	long oldmask;
3417 	struct rcu_node *rnp = rnp_leaf;
3418 
3419 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3420 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3421 	for (;;) {
3422 		mask = rnp->grpmask;
3423 		rnp = rnp->parent;
3424 		if (rnp == NULL)
3425 			return;
3426 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3427 		oldmask = rnp->qsmaskinit;
3428 		rnp->qsmaskinit |= mask;
3429 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3430 		if (oldmask)
3431 			return;
3432 	}
3433 }
3434 
3435 /*
3436  * Do boot-time initialization of a CPU's per-CPU RCU data.
3437  */
3438 static void __init
3439 rcu_boot_init_percpu_data(int cpu)
3440 {
3441 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3442 
3443 	/* Set up local state, ensuring consistent view of global state. */
3444 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3445 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3446 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3447 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3448 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3449 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3450 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3451 	rdp->cpu = cpu;
3452 	rcu_boot_init_nocb_percpu_data(rdp);
3453 }
3454 
3455 /*
3456  * Invoked early in the CPU-online process, when pretty much all services
3457  * are available.  The incoming CPU is not present.
3458  *
3459  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3460  * offline event can be happening at a given time.  Note also that we can
3461  * accept some slop in the rsp->gp_seq access due to the fact that this
3462  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3463  * And any offloaded callbacks are being numbered elsewhere.
3464  */
3465 int rcutree_prepare_cpu(unsigned int cpu)
3466 {
3467 	unsigned long flags;
3468 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3469 	struct rcu_node *rnp = rcu_get_root();
3470 
3471 	/* Set up local state, ensuring consistent view of global state. */
3472 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3473 	rdp->qlen_last_fqs_check = 0;
3474 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3475 	rdp->blimit = blimit;
3476 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3477 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3478 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3479 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3480 	rcu_dynticks_eqs_online();
3481 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3482 
3483 	/*
3484 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3485 	 * propagation up the rcu_node tree will happen at the beginning
3486 	 * of the next grace period.
3487 	 */
3488 	rnp = rdp->mynode;
3489 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3490 	rdp->beenonline = true;	 /* We have now been online. */
3491 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3492 	rdp->gp_seq_needed = rdp->gp_seq;
3493 	rdp->cpu_no_qs.b.norm = true;
3494 	rdp->core_needs_qs = false;
3495 	rdp->rcu_iw_pending = false;
3496 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3497 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3498 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3499 	rcu_prepare_kthreads(cpu);
3500 	rcu_spawn_cpu_nocb_kthread(cpu);
3501 
3502 	return 0;
3503 }
3504 
3505 /*
3506  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3507  */
3508 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3509 {
3510 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3511 
3512 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3513 }
3514 
3515 /*
3516  * Near the end of the CPU-online process.  Pretty much all services
3517  * enabled, and the CPU is now very much alive.
3518  */
3519 int rcutree_online_cpu(unsigned int cpu)
3520 {
3521 	unsigned long flags;
3522 	struct rcu_data *rdp;
3523 	struct rcu_node *rnp;
3524 
3525 	rdp = per_cpu_ptr(&rcu_data, cpu);
3526 	rnp = rdp->mynode;
3527 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3528 	rnp->ffmask |= rdp->grpmask;
3529 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3530 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3531 		return 0; /* Too early in boot for scheduler work. */
3532 	sync_sched_exp_online_cleanup(cpu);
3533 	rcutree_affinity_setting(cpu, -1);
3534 
3535 	// Stop-machine done, so allow nohz_full to disable tick.
3536 	tick_dep_clear(TICK_DEP_BIT_RCU);
3537 	return 0;
3538 }
3539 
3540 /*
3541  * Near the beginning of the process.  The CPU is still very much alive
3542  * with pretty much all services enabled.
3543  */
3544 int rcutree_offline_cpu(unsigned int cpu)
3545 {
3546 	unsigned long flags;
3547 	struct rcu_data *rdp;
3548 	struct rcu_node *rnp;
3549 
3550 	rdp = per_cpu_ptr(&rcu_data, cpu);
3551 	rnp = rdp->mynode;
3552 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3553 	rnp->ffmask &= ~rdp->grpmask;
3554 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3555 
3556 	rcutree_affinity_setting(cpu, cpu);
3557 
3558 	// nohz_full CPUs need the tick for stop-machine to work quickly
3559 	tick_dep_set(TICK_DEP_BIT_RCU);
3560 	return 0;
3561 }
3562 
3563 static DEFINE_PER_CPU(int, rcu_cpu_started);
3564 
3565 /*
3566  * Mark the specified CPU as being online so that subsequent grace periods
3567  * (both expedited and normal) will wait on it.  Note that this means that
3568  * incoming CPUs are not allowed to use RCU read-side critical sections
3569  * until this function is called.  Failing to observe this restriction
3570  * will result in lockdep splats.
3571  *
3572  * Note that this function is special in that it is invoked directly
3573  * from the incoming CPU rather than from the cpuhp_step mechanism.
3574  * This is because this function must be invoked at a precise location.
3575  */
3576 void rcu_cpu_starting(unsigned int cpu)
3577 {
3578 	unsigned long flags;
3579 	unsigned long mask;
3580 	int nbits;
3581 	unsigned long oldmask;
3582 	struct rcu_data *rdp;
3583 	struct rcu_node *rnp;
3584 
3585 	if (per_cpu(rcu_cpu_started, cpu))
3586 		return;
3587 
3588 	per_cpu(rcu_cpu_started, cpu) = 1;
3589 
3590 	rdp = per_cpu_ptr(&rcu_data, cpu);
3591 	rnp = rdp->mynode;
3592 	mask = rdp->grpmask;
3593 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3594 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
3595 	oldmask = rnp->expmaskinitnext;
3596 	rnp->expmaskinitnext |= mask;
3597 	oldmask ^= rnp->expmaskinitnext;
3598 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3599 	/* Allow lockless access for expedited grace periods. */
3600 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3601 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3602 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3603 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3604 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3605 		rcu_disable_urgency_upon_qs(rdp);
3606 		/* Report QS -after- changing ->qsmaskinitnext! */
3607 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3608 	} else {
3609 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3610 	}
3611 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3612 }
3613 
3614 #ifdef CONFIG_HOTPLUG_CPU
3615 /*
3616  * The outgoing function has no further need of RCU, so remove it from
3617  * the rcu_node tree's ->qsmaskinitnext bit masks.
3618  *
3619  * Note that this function is special in that it is invoked directly
3620  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3621  * This is because this function must be invoked at a precise location.
3622  */
3623 void rcu_report_dead(unsigned int cpu)
3624 {
3625 	unsigned long flags;
3626 	unsigned long mask;
3627 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3628 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3629 
3630 	/* QS for any half-done expedited grace period. */
3631 	preempt_disable();
3632 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3633 	preempt_enable();
3634 	rcu_preempt_deferred_qs(current);
3635 
3636 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3637 	mask = rdp->grpmask;
3638 	raw_spin_lock(&rcu_state.ofl_lock);
3639 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3640 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3641 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3642 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3643 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3644 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3645 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3646 	}
3647 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
3648 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3649 	raw_spin_unlock(&rcu_state.ofl_lock);
3650 
3651 	per_cpu(rcu_cpu_started, cpu) = 0;
3652 }
3653 
3654 /*
3655  * The outgoing CPU has just passed through the dying-idle state, and we
3656  * are being invoked from the CPU that was IPIed to continue the offline
3657  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3658  */
3659 void rcutree_migrate_callbacks(int cpu)
3660 {
3661 	unsigned long flags;
3662 	struct rcu_data *my_rdp;
3663 	struct rcu_node *my_rnp;
3664 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3665 	bool needwake;
3666 
3667 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3668 	    rcu_segcblist_empty(&rdp->cblist))
3669 		return;  /* No callbacks to migrate. */
3670 
3671 	local_irq_save(flags);
3672 	my_rdp = this_cpu_ptr(&rcu_data);
3673 	my_rnp = my_rdp->mynode;
3674 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3675 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3676 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3677 	/* Leverage recent GPs and set GP for new callbacks. */
3678 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3679 		   rcu_advance_cbs(my_rnp, my_rdp);
3680 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3681 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3682 	rcu_segcblist_disable(&rdp->cblist);
3683 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3684 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3685 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3686 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3687 		__call_rcu_nocb_wake(my_rdp, true, flags);
3688 	} else {
3689 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3690 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3691 	}
3692 	if (needwake)
3693 		rcu_gp_kthread_wake();
3694 	lockdep_assert_irqs_enabled();
3695 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3696 		  !rcu_segcblist_empty(&rdp->cblist),
3697 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3698 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3699 		  rcu_segcblist_first_cb(&rdp->cblist));
3700 }
3701 #endif
3702 
3703 /*
3704  * On non-huge systems, use expedited RCU grace periods to make suspend
3705  * and hibernation run faster.
3706  */
3707 static int rcu_pm_notify(struct notifier_block *self,
3708 			 unsigned long action, void *hcpu)
3709 {
3710 	switch (action) {
3711 	case PM_HIBERNATION_PREPARE:
3712 	case PM_SUSPEND_PREPARE:
3713 		rcu_expedite_gp();
3714 		break;
3715 	case PM_POST_HIBERNATION:
3716 	case PM_POST_SUSPEND:
3717 		rcu_unexpedite_gp();
3718 		break;
3719 	default:
3720 		break;
3721 	}
3722 	return NOTIFY_OK;
3723 }
3724 
3725 /*
3726  * Spawn the kthreads that handle RCU's grace periods.
3727  */
3728 static int __init rcu_spawn_gp_kthread(void)
3729 {
3730 	unsigned long flags;
3731 	int kthread_prio_in = kthread_prio;
3732 	struct rcu_node *rnp;
3733 	struct sched_param sp;
3734 	struct task_struct *t;
3735 
3736 	/* Force priority into range. */
3737 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3738 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3739 		kthread_prio = 2;
3740 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3741 		kthread_prio = 1;
3742 	else if (kthread_prio < 0)
3743 		kthread_prio = 0;
3744 	else if (kthread_prio > 99)
3745 		kthread_prio = 99;
3746 
3747 	if (kthread_prio != kthread_prio_in)
3748 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3749 			 kthread_prio, kthread_prio_in);
3750 
3751 	rcu_scheduler_fully_active = 1;
3752 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3753 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3754 		return 0;
3755 	if (kthread_prio) {
3756 		sp.sched_priority = kthread_prio;
3757 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3758 	}
3759 	rnp = rcu_get_root();
3760 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3761 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
3762 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
3763 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
3764 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
3765 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3766 	wake_up_process(t);
3767 	rcu_spawn_nocb_kthreads();
3768 	rcu_spawn_boost_kthreads();
3769 	return 0;
3770 }
3771 early_initcall(rcu_spawn_gp_kthread);
3772 
3773 /*
3774  * This function is invoked towards the end of the scheduler's
3775  * initialization process.  Before this is called, the idle task might
3776  * contain synchronous grace-period primitives (during which time, this idle
3777  * task is booting the system, and such primitives are no-ops).  After this
3778  * function is called, any synchronous grace-period primitives are run as
3779  * expedited, with the requesting task driving the grace period forward.
3780  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3781  * runtime RCU functionality.
3782  */
3783 void rcu_scheduler_starting(void)
3784 {
3785 	WARN_ON(num_online_cpus() != 1);
3786 	WARN_ON(nr_context_switches() > 0);
3787 	rcu_test_sync_prims();
3788 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3789 	rcu_test_sync_prims();
3790 }
3791 
3792 /*
3793  * Helper function for rcu_init() that initializes the rcu_state structure.
3794  */
3795 static void __init rcu_init_one(void)
3796 {
3797 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3798 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3799 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3800 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3801 
3802 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3803 	int cpustride = 1;
3804 	int i;
3805 	int j;
3806 	struct rcu_node *rnp;
3807 
3808 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3809 
3810 	/* Silence gcc 4.8 false positive about array index out of range. */
3811 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3812 		panic("rcu_init_one: rcu_num_lvls out of range");
3813 
3814 	/* Initialize the level-tracking arrays. */
3815 
3816 	for (i = 1; i < rcu_num_lvls; i++)
3817 		rcu_state.level[i] =
3818 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3819 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3820 
3821 	/* Initialize the elements themselves, starting from the leaves. */
3822 
3823 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3824 		cpustride *= levelspread[i];
3825 		rnp = rcu_state.level[i];
3826 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3827 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3828 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3829 						   &rcu_node_class[i], buf[i]);
3830 			raw_spin_lock_init(&rnp->fqslock);
3831 			lockdep_set_class_and_name(&rnp->fqslock,
3832 						   &rcu_fqs_class[i], fqs[i]);
3833 			rnp->gp_seq = rcu_state.gp_seq;
3834 			rnp->gp_seq_needed = rcu_state.gp_seq;
3835 			rnp->completedqs = rcu_state.gp_seq;
3836 			rnp->qsmask = 0;
3837 			rnp->qsmaskinit = 0;
3838 			rnp->grplo = j * cpustride;
3839 			rnp->grphi = (j + 1) * cpustride - 1;
3840 			if (rnp->grphi >= nr_cpu_ids)
3841 				rnp->grphi = nr_cpu_ids - 1;
3842 			if (i == 0) {
3843 				rnp->grpnum = 0;
3844 				rnp->grpmask = 0;
3845 				rnp->parent = NULL;
3846 			} else {
3847 				rnp->grpnum = j % levelspread[i - 1];
3848 				rnp->grpmask = BIT(rnp->grpnum);
3849 				rnp->parent = rcu_state.level[i - 1] +
3850 					      j / levelspread[i - 1];
3851 			}
3852 			rnp->level = i;
3853 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3854 			rcu_init_one_nocb(rnp);
3855 			init_waitqueue_head(&rnp->exp_wq[0]);
3856 			init_waitqueue_head(&rnp->exp_wq[1]);
3857 			init_waitqueue_head(&rnp->exp_wq[2]);
3858 			init_waitqueue_head(&rnp->exp_wq[3]);
3859 			spin_lock_init(&rnp->exp_lock);
3860 		}
3861 	}
3862 
3863 	init_swait_queue_head(&rcu_state.gp_wq);
3864 	init_swait_queue_head(&rcu_state.expedited_wq);
3865 	rnp = rcu_first_leaf_node();
3866 	for_each_possible_cpu(i) {
3867 		while (i > rnp->grphi)
3868 			rnp++;
3869 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3870 		rcu_boot_init_percpu_data(i);
3871 	}
3872 }
3873 
3874 /*
3875  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3876  * replace the definitions in tree.h because those are needed to size
3877  * the ->node array in the rcu_state structure.
3878  */
3879 static void __init rcu_init_geometry(void)
3880 {
3881 	ulong d;
3882 	int i;
3883 	int rcu_capacity[RCU_NUM_LVLS];
3884 
3885 	/*
3886 	 * Initialize any unspecified boot parameters.
3887 	 * The default values of jiffies_till_first_fqs and
3888 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3889 	 * value, which is a function of HZ, then adding one for each
3890 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3891 	 */
3892 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3893 	if (jiffies_till_first_fqs == ULONG_MAX)
3894 		jiffies_till_first_fqs = d;
3895 	if (jiffies_till_next_fqs == ULONG_MAX)
3896 		jiffies_till_next_fqs = d;
3897 	adjust_jiffies_till_sched_qs();
3898 
3899 	/* If the compile-time values are accurate, just leave. */
3900 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3901 	    nr_cpu_ids == NR_CPUS)
3902 		return;
3903 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3904 		rcu_fanout_leaf, nr_cpu_ids);
3905 
3906 	/*
3907 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3908 	 * and cannot exceed the number of bits in the rcu_node masks.
3909 	 * Complain and fall back to the compile-time values if this
3910 	 * limit is exceeded.
3911 	 */
3912 	if (rcu_fanout_leaf < 2 ||
3913 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3914 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3915 		WARN_ON(1);
3916 		return;
3917 	}
3918 
3919 	/*
3920 	 * Compute number of nodes that can be handled an rcu_node tree
3921 	 * with the given number of levels.
3922 	 */
3923 	rcu_capacity[0] = rcu_fanout_leaf;
3924 	for (i = 1; i < RCU_NUM_LVLS; i++)
3925 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3926 
3927 	/*
3928 	 * The tree must be able to accommodate the configured number of CPUs.
3929 	 * If this limit is exceeded, fall back to the compile-time values.
3930 	 */
3931 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3932 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3933 		WARN_ON(1);
3934 		return;
3935 	}
3936 
3937 	/* Calculate the number of levels in the tree. */
3938 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3939 	}
3940 	rcu_num_lvls = i + 1;
3941 
3942 	/* Calculate the number of rcu_nodes at each level of the tree. */
3943 	for (i = 0; i < rcu_num_lvls; i++) {
3944 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3945 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3946 	}
3947 
3948 	/* Calculate the total number of rcu_node structures. */
3949 	rcu_num_nodes = 0;
3950 	for (i = 0; i < rcu_num_lvls; i++)
3951 		rcu_num_nodes += num_rcu_lvl[i];
3952 }
3953 
3954 /*
3955  * Dump out the structure of the rcu_node combining tree associated
3956  * with the rcu_state structure.
3957  */
3958 static void __init rcu_dump_rcu_node_tree(void)
3959 {
3960 	int level = 0;
3961 	struct rcu_node *rnp;
3962 
3963 	pr_info("rcu_node tree layout dump\n");
3964 	pr_info(" ");
3965 	rcu_for_each_node_breadth_first(rnp) {
3966 		if (rnp->level != level) {
3967 			pr_cont("\n");
3968 			pr_info(" ");
3969 			level = rnp->level;
3970 		}
3971 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3972 	}
3973 	pr_cont("\n");
3974 }
3975 
3976 struct workqueue_struct *rcu_gp_wq;
3977 struct workqueue_struct *rcu_par_gp_wq;
3978 
3979 static void __init kfree_rcu_batch_init(void)
3980 {
3981 	int cpu;
3982 	int i;
3983 
3984 	for_each_possible_cpu(cpu) {
3985 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3986 
3987 		spin_lock_init(&krcp->lock);
3988 		for (i = 0; i < KFREE_N_BATCHES; i++) {
3989 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
3990 			krcp->krw_arr[i].krcp = krcp;
3991 		}
3992 
3993 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
3994 		krcp->initialized = true;
3995 	}
3996 }
3997 
3998 void __init rcu_init(void)
3999 {
4000 	int cpu;
4001 
4002 	rcu_early_boot_tests();
4003 
4004 	kfree_rcu_batch_init();
4005 	rcu_bootup_announce();
4006 	rcu_init_geometry();
4007 	rcu_init_one();
4008 	if (dump_tree)
4009 		rcu_dump_rcu_node_tree();
4010 	if (use_softirq)
4011 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4012 
4013 	/*
4014 	 * We don't need protection against CPU-hotplug here because
4015 	 * this is called early in boot, before either interrupts
4016 	 * or the scheduler are operational.
4017 	 */
4018 	pm_notifier(rcu_pm_notify, 0);
4019 	for_each_online_cpu(cpu) {
4020 		rcutree_prepare_cpu(cpu);
4021 		rcu_cpu_starting(cpu);
4022 		rcutree_online_cpu(cpu);
4023 	}
4024 
4025 	/* Create workqueue for expedited GPs and for Tree SRCU. */
4026 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4027 	WARN_ON(!rcu_gp_wq);
4028 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4029 	WARN_ON(!rcu_par_gp_wq);
4030 	srcu_init();
4031 
4032 	/* Fill in default value for rcutree.qovld boot parameter. */
4033 	/* -After- the rcu_node ->lock fields are initialized! */
4034 	if (qovld < 0)
4035 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4036 	else
4037 		qovld_calc = qovld;
4038 }
4039 
4040 #include "tree_stall.h"
4041 #include "tree_exp.h"
4042 #include "tree_plugin.h"
4043