1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/random.h> 47 #include <linux/trace_events.h> 48 #include <linux/suspend.h> 49 #include <linux/ftrace.h> 50 #include <linux/tick.h> 51 #include <linux/sysrq.h> 52 #include <linux/kprobes.h> 53 #include <linux/gfp.h> 54 #include <linux/oom.h> 55 #include <linux/smpboot.h> 56 #include <linux/jiffies.h> 57 #include <linux/slab.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/sched/clock.h> 60 #include <linux/vmalloc.h> 61 #include <linux/mm.h> 62 #include <linux/kasan.h> 63 #include "../time/tick-internal.h" 64 65 #include "tree.h" 66 #include "rcu.h" 67 68 #ifdef MODULE_PARAM_PREFIX 69 #undef MODULE_PARAM_PREFIX 70 #endif 71 #define MODULE_PARAM_PREFIX "rcutree." 72 73 /* Data structures. */ 74 75 /* 76 * Steal a bit from the bottom of ->dynticks for idle entry/exit 77 * control. Initially this is for TLB flushing. 78 */ 79 #define RCU_DYNTICK_CTRL_MASK 0x1 80 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 81 82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 83 .dynticks_nesting = 1, 84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 86 #ifdef CONFIG_RCU_NOCB_CPU 87 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY, 88 #endif 89 }; 90 static struct rcu_state rcu_state = { 91 .level = { &rcu_state.node[0] }, 92 .gp_state = RCU_GP_IDLE, 93 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 94 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 95 .name = RCU_NAME, 96 .abbr = RCU_ABBR, 97 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 98 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 99 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 100 }; 101 102 /* Dump rcu_node combining tree at boot to verify correct setup. */ 103 static bool dump_tree; 104 module_param(dump_tree, bool, 0444); 105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 107 #ifndef CONFIG_PREEMPT_RT 108 module_param(use_softirq, bool, 0444); 109 #endif 110 /* Control rcu_node-tree auto-balancing at boot time. */ 111 static bool rcu_fanout_exact; 112 module_param(rcu_fanout_exact, bool, 0444); 113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 115 module_param(rcu_fanout_leaf, int, 0444); 116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 117 /* Number of rcu_nodes at specified level. */ 118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 120 121 /* 122 * The rcu_scheduler_active variable is initialized to the value 123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 124 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 125 * RCU can assume that there is but one task, allowing RCU to (for example) 126 * optimize synchronize_rcu() to a simple barrier(). When this variable 127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 128 * to detect real grace periods. This variable is also used to suppress 129 * boot-time false positives from lockdep-RCU error checking. Finally, it 130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 131 * is fully initialized, including all of its kthreads having been spawned. 132 */ 133 int rcu_scheduler_active __read_mostly; 134 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 135 136 /* 137 * The rcu_scheduler_fully_active variable transitions from zero to one 138 * during the early_initcall() processing, which is after the scheduler 139 * is capable of creating new tasks. So RCU processing (for example, 140 * creating tasks for RCU priority boosting) must be delayed until after 141 * rcu_scheduler_fully_active transitions from zero to one. We also 142 * currently delay invocation of any RCU callbacks until after this point. 143 * 144 * It might later prove better for people registering RCU callbacks during 145 * early boot to take responsibility for these callbacks, but one step at 146 * a time. 147 */ 148 static int rcu_scheduler_fully_active __read_mostly; 149 150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 151 unsigned long gps, unsigned long flags); 152 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 153 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 154 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 155 static void invoke_rcu_core(void); 156 static void rcu_report_exp_rdp(struct rcu_data *rdp); 157 static void sync_sched_exp_online_cleanup(int cpu); 158 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 159 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 160 161 /* rcuc/rcub kthread realtime priority */ 162 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 163 module_param(kthread_prio, int, 0444); 164 165 /* Delay in jiffies for grace-period initialization delays, debug only. */ 166 167 static int gp_preinit_delay; 168 module_param(gp_preinit_delay, int, 0444); 169 static int gp_init_delay; 170 module_param(gp_init_delay, int, 0444); 171 static int gp_cleanup_delay; 172 module_param(gp_cleanup_delay, int, 0444); 173 174 // Add delay to rcu_read_unlock() for strict grace periods. 175 static int rcu_unlock_delay; 176 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 177 module_param(rcu_unlock_delay, int, 0444); 178 #endif 179 180 /* 181 * This rcu parameter is runtime-read-only. It reflects 182 * a minimum allowed number of objects which can be cached 183 * per-CPU. Object size is equal to one page. This value 184 * can be changed at boot time. 185 */ 186 static int rcu_min_cached_objs = 5; 187 module_param(rcu_min_cached_objs, int, 0444); 188 189 /* Retrieve RCU kthreads priority for rcutorture */ 190 int rcu_get_gp_kthreads_prio(void) 191 { 192 return kthread_prio; 193 } 194 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 195 196 /* 197 * Number of grace periods between delays, normalized by the duration of 198 * the delay. The longer the delay, the more the grace periods between 199 * each delay. The reason for this normalization is that it means that, 200 * for non-zero delays, the overall slowdown of grace periods is constant 201 * regardless of the duration of the delay. This arrangement balances 202 * the need for long delays to increase some race probabilities with the 203 * need for fast grace periods to increase other race probabilities. 204 */ 205 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 206 207 /* 208 * Compute the mask of online CPUs for the specified rcu_node structure. 209 * This will not be stable unless the rcu_node structure's ->lock is 210 * held, but the bit corresponding to the current CPU will be stable 211 * in most contexts. 212 */ 213 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 214 { 215 return READ_ONCE(rnp->qsmaskinitnext); 216 } 217 218 /* 219 * Return true if an RCU grace period is in progress. The READ_ONCE()s 220 * permit this function to be invoked without holding the root rcu_node 221 * structure's ->lock, but of course results can be subject to change. 222 */ 223 static int rcu_gp_in_progress(void) 224 { 225 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 226 } 227 228 /* 229 * Return the number of callbacks queued on the specified CPU. 230 * Handles both the nocbs and normal cases. 231 */ 232 static long rcu_get_n_cbs_cpu(int cpu) 233 { 234 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 235 236 if (rcu_segcblist_is_enabled(&rdp->cblist)) 237 return rcu_segcblist_n_cbs(&rdp->cblist); 238 return 0; 239 } 240 241 void rcu_softirq_qs(void) 242 { 243 rcu_qs(); 244 rcu_preempt_deferred_qs(current); 245 } 246 247 /* 248 * Record entry into an extended quiescent state. This is only to be 249 * called when not already in an extended quiescent state, that is, 250 * RCU is watching prior to the call to this function and is no longer 251 * watching upon return. 252 */ 253 static noinstr void rcu_dynticks_eqs_enter(void) 254 { 255 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 256 int seq; 257 258 /* 259 * CPUs seeing atomic_add_return() must see prior RCU read-side 260 * critical sections, and we also must force ordering with the 261 * next idle sojourn. 262 */ 263 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 264 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 265 // RCU is no longer watching. Better be in extended quiescent state! 266 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 267 (seq & RCU_DYNTICK_CTRL_CTR)); 268 /* Better not have special action (TLB flush) pending! */ 269 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 270 (seq & RCU_DYNTICK_CTRL_MASK)); 271 } 272 273 /* 274 * Record exit from an extended quiescent state. This is only to be 275 * called from an extended quiescent state, that is, RCU is not watching 276 * prior to the call to this function and is watching upon return. 277 */ 278 static noinstr void rcu_dynticks_eqs_exit(void) 279 { 280 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 281 int seq; 282 283 /* 284 * CPUs seeing atomic_add_return() must see prior idle sojourns, 285 * and we also must force ordering with the next RCU read-side 286 * critical section. 287 */ 288 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 289 // RCU is now watching. Better not be in an extended quiescent state! 290 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 291 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 292 !(seq & RCU_DYNTICK_CTRL_CTR)); 293 if (seq & RCU_DYNTICK_CTRL_MASK) { 294 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 295 smp_mb__after_atomic(); /* _exit after clearing mask. */ 296 } 297 } 298 299 /* 300 * Reset the current CPU's ->dynticks counter to indicate that the 301 * newly onlined CPU is no longer in an extended quiescent state. 302 * This will either leave the counter unchanged, or increment it 303 * to the next non-quiescent value. 304 * 305 * The non-atomic test/increment sequence works because the upper bits 306 * of the ->dynticks counter are manipulated only by the corresponding CPU, 307 * or when the corresponding CPU is offline. 308 */ 309 static void rcu_dynticks_eqs_online(void) 310 { 311 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 312 313 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 314 return; 315 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 316 } 317 318 /* 319 * Is the current CPU in an extended quiescent state? 320 * 321 * No ordering, as we are sampling CPU-local information. 322 */ 323 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 324 { 325 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 326 327 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 328 } 329 330 /* 331 * Snapshot the ->dynticks counter with full ordering so as to allow 332 * stable comparison of this counter with past and future snapshots. 333 */ 334 static int rcu_dynticks_snap(struct rcu_data *rdp) 335 { 336 int snap = atomic_add_return(0, &rdp->dynticks); 337 338 return snap & ~RCU_DYNTICK_CTRL_MASK; 339 } 340 341 /* 342 * Return true if the snapshot returned from rcu_dynticks_snap() 343 * indicates that RCU is in an extended quiescent state. 344 */ 345 static bool rcu_dynticks_in_eqs(int snap) 346 { 347 return !(snap & RCU_DYNTICK_CTRL_CTR); 348 } 349 350 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 351 bool rcu_is_idle_cpu(int cpu) 352 { 353 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 354 355 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)); 356 } 357 358 /* 359 * Return true if the CPU corresponding to the specified rcu_data 360 * structure has spent some time in an extended quiescent state since 361 * rcu_dynticks_snap() returned the specified snapshot. 362 */ 363 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 364 { 365 return snap != rcu_dynticks_snap(rdp); 366 } 367 368 /* 369 * Return true if the referenced integer is zero while the specified 370 * CPU remains within a single extended quiescent state. 371 */ 372 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 373 { 374 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 375 int snap; 376 377 // If not quiescent, force back to earlier extended quiescent state. 378 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK | 379 RCU_DYNTICK_CTRL_CTR); 380 381 smp_rmb(); // Order ->dynticks and *vp reads. 382 if (READ_ONCE(*vp)) 383 return false; // Non-zero, so report failure; 384 smp_rmb(); // Order *vp read and ->dynticks re-read. 385 386 // If still in the same extended quiescent state, we are good! 387 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK); 388 } 389 390 /* 391 * Set the special (bottom) bit of the specified CPU so that it 392 * will take special action (such as flushing its TLB) on the 393 * next exit from an extended quiescent state. Returns true if 394 * the bit was successfully set, or false if the CPU was not in 395 * an extended quiescent state. 396 */ 397 bool rcu_eqs_special_set(int cpu) 398 { 399 int old; 400 int new; 401 int new_old; 402 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 403 404 new_old = atomic_read(&rdp->dynticks); 405 do { 406 old = new_old; 407 if (old & RCU_DYNTICK_CTRL_CTR) 408 return false; 409 new = old | RCU_DYNTICK_CTRL_MASK; 410 new_old = atomic_cmpxchg(&rdp->dynticks, old, new); 411 } while (new_old != old); 412 return true; 413 } 414 415 /* 416 * Let the RCU core know that this CPU has gone through the scheduler, 417 * which is a quiescent state. This is called when the need for a 418 * quiescent state is urgent, so we burn an atomic operation and full 419 * memory barriers to let the RCU core know about it, regardless of what 420 * this CPU might (or might not) do in the near future. 421 * 422 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 423 * 424 * The caller must have disabled interrupts and must not be idle. 425 */ 426 notrace void rcu_momentary_dyntick_idle(void) 427 { 428 int special; 429 430 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 431 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 432 &this_cpu_ptr(&rcu_data)->dynticks); 433 /* It is illegal to call this from idle state. */ 434 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 435 rcu_preempt_deferred_qs(current); 436 } 437 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 438 439 /** 440 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 441 * 442 * If the current CPU is idle and running at a first-level (not nested) 443 * interrupt, or directly, from idle, return true. 444 * 445 * The caller must have at least disabled IRQs. 446 */ 447 static int rcu_is_cpu_rrupt_from_idle(void) 448 { 449 long nesting; 450 451 /* 452 * Usually called from the tick; but also used from smp_function_call() 453 * for expedited grace periods. This latter can result in running from 454 * the idle task, instead of an actual IPI. 455 */ 456 lockdep_assert_irqs_disabled(); 457 458 /* Check for counter underflows */ 459 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 460 "RCU dynticks_nesting counter underflow!"); 461 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 462 "RCU dynticks_nmi_nesting counter underflow/zero!"); 463 464 /* Are we at first interrupt nesting level? */ 465 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 466 if (nesting > 1) 467 return false; 468 469 /* 470 * If we're not in an interrupt, we must be in the idle task! 471 */ 472 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 473 474 /* Does CPU appear to be idle from an RCU standpoint? */ 475 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 476 } 477 478 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 479 // Maximum callbacks per rcu_do_batch ... 480 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 481 static long blimit = DEFAULT_RCU_BLIMIT; 482 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 483 static long qhimark = DEFAULT_RCU_QHIMARK; 484 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 485 static long qlowmark = DEFAULT_RCU_QLOMARK; 486 #define DEFAULT_RCU_QOVLD_MULT 2 487 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 488 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 489 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 490 491 module_param(blimit, long, 0444); 492 module_param(qhimark, long, 0444); 493 module_param(qlowmark, long, 0444); 494 module_param(qovld, long, 0444); 495 496 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 497 static ulong jiffies_till_next_fqs = ULONG_MAX; 498 static bool rcu_kick_kthreads; 499 static int rcu_divisor = 7; 500 module_param(rcu_divisor, int, 0644); 501 502 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 503 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 504 module_param(rcu_resched_ns, long, 0644); 505 506 /* 507 * How long the grace period must be before we start recruiting 508 * quiescent-state help from rcu_note_context_switch(). 509 */ 510 static ulong jiffies_till_sched_qs = ULONG_MAX; 511 module_param(jiffies_till_sched_qs, ulong, 0444); 512 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 513 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 514 515 /* 516 * Make sure that we give the grace-period kthread time to detect any 517 * idle CPUs before taking active measures to force quiescent states. 518 * However, don't go below 100 milliseconds, adjusted upwards for really 519 * large systems. 520 */ 521 static void adjust_jiffies_till_sched_qs(void) 522 { 523 unsigned long j; 524 525 /* If jiffies_till_sched_qs was specified, respect the request. */ 526 if (jiffies_till_sched_qs != ULONG_MAX) { 527 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 528 return; 529 } 530 /* Otherwise, set to third fqs scan, but bound below on large system. */ 531 j = READ_ONCE(jiffies_till_first_fqs) + 532 2 * READ_ONCE(jiffies_till_next_fqs); 533 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 534 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 535 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 536 WRITE_ONCE(jiffies_to_sched_qs, j); 537 } 538 539 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 540 { 541 ulong j; 542 int ret = kstrtoul(val, 0, &j); 543 544 if (!ret) { 545 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 546 adjust_jiffies_till_sched_qs(); 547 } 548 return ret; 549 } 550 551 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 552 { 553 ulong j; 554 int ret = kstrtoul(val, 0, &j); 555 556 if (!ret) { 557 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 558 adjust_jiffies_till_sched_qs(); 559 } 560 return ret; 561 } 562 563 static const struct kernel_param_ops first_fqs_jiffies_ops = { 564 .set = param_set_first_fqs_jiffies, 565 .get = param_get_ulong, 566 }; 567 568 static const struct kernel_param_ops next_fqs_jiffies_ops = { 569 .set = param_set_next_fqs_jiffies, 570 .get = param_get_ulong, 571 }; 572 573 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 574 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 575 module_param(rcu_kick_kthreads, bool, 0644); 576 577 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 578 static int rcu_pending(int user); 579 580 /* 581 * Return the number of RCU GPs completed thus far for debug & stats. 582 */ 583 unsigned long rcu_get_gp_seq(void) 584 { 585 return READ_ONCE(rcu_state.gp_seq); 586 } 587 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 588 589 /* 590 * Return the number of RCU expedited batches completed thus far for 591 * debug & stats. Odd numbers mean that a batch is in progress, even 592 * numbers mean idle. The value returned will thus be roughly double 593 * the cumulative batches since boot. 594 */ 595 unsigned long rcu_exp_batches_completed(void) 596 { 597 return rcu_state.expedited_sequence; 598 } 599 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 600 601 /* 602 * Return the root node of the rcu_state structure. 603 */ 604 static struct rcu_node *rcu_get_root(void) 605 { 606 return &rcu_state.node[0]; 607 } 608 609 /* 610 * Send along grace-period-related data for rcutorture diagnostics. 611 */ 612 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 613 unsigned long *gp_seq) 614 { 615 switch (test_type) { 616 case RCU_FLAVOR: 617 *flags = READ_ONCE(rcu_state.gp_flags); 618 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 619 break; 620 default: 621 break; 622 } 623 } 624 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 625 626 /* 627 * Enter an RCU extended quiescent state, which can be either the 628 * idle loop or adaptive-tickless usermode execution. 629 * 630 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 631 * the possibility of usermode upcalls having messed up our count 632 * of interrupt nesting level during the prior busy period. 633 */ 634 static noinstr void rcu_eqs_enter(bool user) 635 { 636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 637 638 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 639 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 640 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 641 rdp->dynticks_nesting == 0); 642 if (rdp->dynticks_nesting != 1) { 643 // RCU will still be watching, so just do accounting and leave. 644 rdp->dynticks_nesting--; 645 return; 646 } 647 648 lockdep_assert_irqs_disabled(); 649 instrumentation_begin(); 650 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 651 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 652 rcu_prepare_for_idle(); 653 rcu_preempt_deferred_qs(current); 654 655 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 656 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 657 658 instrumentation_end(); 659 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 660 // RCU is watching here ... 661 rcu_dynticks_eqs_enter(); 662 // ... but is no longer watching here. 663 rcu_dynticks_task_enter(); 664 } 665 666 /** 667 * rcu_idle_enter - inform RCU that current CPU is entering idle 668 * 669 * Enter idle mode, in other words, -leave- the mode in which RCU 670 * read-side critical sections can occur. (Though RCU read-side 671 * critical sections can occur in irq handlers in idle, a possibility 672 * handled by irq_enter() and irq_exit().) 673 * 674 * If you add or remove a call to rcu_idle_enter(), be sure to test with 675 * CONFIG_RCU_EQS_DEBUG=y. 676 */ 677 void rcu_idle_enter(void) 678 { 679 lockdep_assert_irqs_disabled(); 680 rcu_eqs_enter(false); 681 } 682 EXPORT_SYMBOL_GPL(rcu_idle_enter); 683 684 #ifdef CONFIG_NO_HZ_FULL 685 686 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK) 687 /* 688 * An empty function that will trigger a reschedule on 689 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 690 */ 691 static void late_wakeup_func(struct irq_work *work) 692 { 693 } 694 695 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 696 IRQ_WORK_INIT(late_wakeup_func); 697 698 /* 699 * If either: 700 * 701 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 702 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 703 * 704 * In these cases the late RCU wake ups aren't supported in the resched loops and our 705 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 706 * get re-enabled again. 707 */ 708 noinstr static void rcu_irq_work_resched(void) 709 { 710 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 711 712 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 713 return; 714 715 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 716 return; 717 718 instrumentation_begin(); 719 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 720 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 721 } 722 instrumentation_end(); 723 } 724 725 #else 726 static inline void rcu_irq_work_resched(void) { } 727 #endif 728 729 /** 730 * rcu_user_enter - inform RCU that we are resuming userspace. 731 * 732 * Enter RCU idle mode right before resuming userspace. No use of RCU 733 * is permitted between this call and rcu_user_exit(). This way the 734 * CPU doesn't need to maintain the tick for RCU maintenance purposes 735 * when the CPU runs in userspace. 736 * 737 * If you add or remove a call to rcu_user_enter(), be sure to test with 738 * CONFIG_RCU_EQS_DEBUG=y. 739 */ 740 noinstr void rcu_user_enter(void) 741 { 742 lockdep_assert_irqs_disabled(); 743 744 /* 745 * Other than generic entry implementation, we may be past the last 746 * rescheduling opportunity in the entry code. Trigger a self IPI 747 * that will fire and reschedule once we resume in user/guest mode. 748 */ 749 rcu_irq_work_resched(); 750 rcu_eqs_enter(true); 751 } 752 753 #endif /* CONFIG_NO_HZ_FULL */ 754 755 /** 756 * rcu_nmi_exit - inform RCU of exit from NMI context 757 * 758 * If we are returning from the outermost NMI handler that interrupted an 759 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 760 * to let the RCU grace-period handling know that the CPU is back to 761 * being RCU-idle. 762 * 763 * If you add or remove a call to rcu_nmi_exit(), be sure to test 764 * with CONFIG_RCU_EQS_DEBUG=y. 765 */ 766 noinstr void rcu_nmi_exit(void) 767 { 768 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 769 770 instrumentation_begin(); 771 /* 772 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 773 * (We are exiting an NMI handler, so RCU better be paying attention 774 * to us!) 775 */ 776 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 777 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 778 779 /* 780 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 781 * leave it in non-RCU-idle state. 782 */ 783 if (rdp->dynticks_nmi_nesting != 1) { 784 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 785 atomic_read(&rdp->dynticks)); 786 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 787 rdp->dynticks_nmi_nesting - 2); 788 instrumentation_end(); 789 return; 790 } 791 792 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 793 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 794 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 795 796 if (!in_nmi()) 797 rcu_prepare_for_idle(); 798 799 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 800 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 801 instrumentation_end(); 802 803 // RCU is watching here ... 804 rcu_dynticks_eqs_enter(); 805 // ... but is no longer watching here. 806 807 if (!in_nmi()) 808 rcu_dynticks_task_enter(); 809 } 810 811 /** 812 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 813 * 814 * Exit from an interrupt handler, which might possibly result in entering 815 * idle mode, in other words, leaving the mode in which read-side critical 816 * sections can occur. The caller must have disabled interrupts. 817 * 818 * This code assumes that the idle loop never does anything that might 819 * result in unbalanced calls to irq_enter() and irq_exit(). If your 820 * architecture's idle loop violates this assumption, RCU will give you what 821 * you deserve, good and hard. But very infrequently and irreproducibly. 822 * 823 * Use things like work queues to work around this limitation. 824 * 825 * You have been warned. 826 * 827 * If you add or remove a call to rcu_irq_exit(), be sure to test with 828 * CONFIG_RCU_EQS_DEBUG=y. 829 */ 830 void noinstr rcu_irq_exit(void) 831 { 832 lockdep_assert_irqs_disabled(); 833 rcu_nmi_exit(); 834 } 835 836 /** 837 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq 838 * towards in kernel preemption 839 * 840 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe 841 * from RCU point of view. Invoked from return from interrupt before kernel 842 * preemption. 843 */ 844 void rcu_irq_exit_preempt(void) 845 { 846 lockdep_assert_irqs_disabled(); 847 rcu_nmi_exit(); 848 849 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 850 "RCU dynticks_nesting counter underflow/zero!"); 851 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 852 DYNTICK_IRQ_NONIDLE, 853 "Bad RCU dynticks_nmi_nesting counter\n"); 854 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 855 "RCU in extended quiescent state!"); 856 } 857 858 #ifdef CONFIG_PROVE_RCU 859 /** 860 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 861 */ 862 void rcu_irq_exit_check_preempt(void) 863 { 864 lockdep_assert_irqs_disabled(); 865 866 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 867 "RCU dynticks_nesting counter underflow/zero!"); 868 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 869 DYNTICK_IRQ_NONIDLE, 870 "Bad RCU dynticks_nmi_nesting counter\n"); 871 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 872 "RCU in extended quiescent state!"); 873 } 874 #endif /* #ifdef CONFIG_PROVE_RCU */ 875 876 /* 877 * Wrapper for rcu_irq_exit() where interrupts are enabled. 878 * 879 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 880 * with CONFIG_RCU_EQS_DEBUG=y. 881 */ 882 void rcu_irq_exit_irqson(void) 883 { 884 unsigned long flags; 885 886 local_irq_save(flags); 887 rcu_irq_exit(); 888 local_irq_restore(flags); 889 } 890 891 /* 892 * Exit an RCU extended quiescent state, which can be either the 893 * idle loop or adaptive-tickless usermode execution. 894 * 895 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 896 * allow for the possibility of usermode upcalls messing up our count of 897 * interrupt nesting level during the busy period that is just now starting. 898 */ 899 static void noinstr rcu_eqs_exit(bool user) 900 { 901 struct rcu_data *rdp; 902 long oldval; 903 904 lockdep_assert_irqs_disabled(); 905 rdp = this_cpu_ptr(&rcu_data); 906 oldval = rdp->dynticks_nesting; 907 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 908 if (oldval) { 909 // RCU was already watching, so just do accounting and leave. 910 rdp->dynticks_nesting++; 911 return; 912 } 913 rcu_dynticks_task_exit(); 914 // RCU is not watching here ... 915 rcu_dynticks_eqs_exit(); 916 // ... but is watching here. 917 instrumentation_begin(); 918 919 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 920 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 921 922 rcu_cleanup_after_idle(); 923 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 924 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 925 WRITE_ONCE(rdp->dynticks_nesting, 1); 926 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 927 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 928 instrumentation_end(); 929 } 930 931 /** 932 * rcu_idle_exit - inform RCU that current CPU is leaving idle 933 * 934 * Exit idle mode, in other words, -enter- the mode in which RCU 935 * read-side critical sections can occur. 936 * 937 * If you add or remove a call to rcu_idle_exit(), be sure to test with 938 * CONFIG_RCU_EQS_DEBUG=y. 939 */ 940 void rcu_idle_exit(void) 941 { 942 unsigned long flags; 943 944 local_irq_save(flags); 945 rcu_eqs_exit(false); 946 local_irq_restore(flags); 947 } 948 EXPORT_SYMBOL_GPL(rcu_idle_exit); 949 950 #ifdef CONFIG_NO_HZ_FULL 951 /** 952 * rcu_user_exit - inform RCU that we are exiting userspace. 953 * 954 * Exit RCU idle mode while entering the kernel because it can 955 * run a RCU read side critical section anytime. 956 * 957 * If you add or remove a call to rcu_user_exit(), be sure to test with 958 * CONFIG_RCU_EQS_DEBUG=y. 959 */ 960 void noinstr rcu_user_exit(void) 961 { 962 rcu_eqs_exit(1); 963 } 964 965 /** 966 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 967 * 968 * The scheduler tick is not normally enabled when CPUs enter the kernel 969 * from nohz_full userspace execution. After all, nohz_full userspace 970 * execution is an RCU quiescent state and the time executing in the kernel 971 * is quite short. Except of course when it isn't. And it is not hard to 972 * cause a large system to spend tens of seconds or even minutes looping 973 * in the kernel, which can cause a number of problems, include RCU CPU 974 * stall warnings. 975 * 976 * Therefore, if a nohz_full CPU fails to report a quiescent state 977 * in a timely manner, the RCU grace-period kthread sets that CPU's 978 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 979 * exception will invoke this function, which will turn on the scheduler 980 * tick, which will enable RCU to detect that CPU's quiescent states, 981 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 982 * The tick will be disabled once a quiescent state is reported for 983 * this CPU. 984 * 985 * Of course, in carefully tuned systems, there might never be an 986 * interrupt or exception. In that case, the RCU grace-period kthread 987 * will eventually cause one to happen. However, in less carefully 988 * controlled environments, this function allows RCU to get what it 989 * needs without creating otherwise useless interruptions. 990 */ 991 void __rcu_irq_enter_check_tick(void) 992 { 993 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 994 995 // If we're here from NMI there's nothing to do. 996 if (in_nmi()) 997 return; 998 999 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 1000 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 1001 1002 if (!tick_nohz_full_cpu(rdp->cpu) || 1003 !READ_ONCE(rdp->rcu_urgent_qs) || 1004 READ_ONCE(rdp->rcu_forced_tick)) { 1005 // RCU doesn't need nohz_full help from this CPU, or it is 1006 // already getting that help. 1007 return; 1008 } 1009 1010 // We get here only when not in an extended quiescent state and 1011 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 1012 // already watching and (2) The fact that we are in an interrupt 1013 // handler and that the rcu_node lock is an irq-disabled lock 1014 // prevents self-deadlock. So we can safely recheck under the lock. 1015 // Note that the nohz_full state currently cannot change. 1016 raw_spin_lock_rcu_node(rdp->mynode); 1017 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 1018 // A nohz_full CPU is in the kernel and RCU needs a 1019 // quiescent state. Turn on the tick! 1020 WRITE_ONCE(rdp->rcu_forced_tick, true); 1021 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1022 } 1023 raw_spin_unlock_rcu_node(rdp->mynode); 1024 } 1025 #endif /* CONFIG_NO_HZ_FULL */ 1026 1027 /** 1028 * rcu_nmi_enter - inform RCU of entry to NMI context 1029 * 1030 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 1031 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 1032 * that the CPU is active. This implementation permits nested NMIs, as 1033 * long as the nesting level does not overflow an int. (You will probably 1034 * run out of stack space first.) 1035 * 1036 * If you add or remove a call to rcu_nmi_enter(), be sure to test 1037 * with CONFIG_RCU_EQS_DEBUG=y. 1038 */ 1039 noinstr void rcu_nmi_enter(void) 1040 { 1041 long incby = 2; 1042 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1043 1044 /* Complain about underflow. */ 1045 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 1046 1047 /* 1048 * If idle from RCU viewpoint, atomically increment ->dynticks 1049 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1050 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1051 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1052 * to be in the outermost NMI handler that interrupted an RCU-idle 1053 * period (observation due to Andy Lutomirski). 1054 */ 1055 if (rcu_dynticks_curr_cpu_in_eqs()) { 1056 1057 if (!in_nmi()) 1058 rcu_dynticks_task_exit(); 1059 1060 // RCU is not watching here ... 1061 rcu_dynticks_eqs_exit(); 1062 // ... but is watching here. 1063 1064 if (!in_nmi()) { 1065 instrumentation_begin(); 1066 rcu_cleanup_after_idle(); 1067 instrumentation_end(); 1068 } 1069 1070 instrumentation_begin(); 1071 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 1072 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks)); 1073 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 1074 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 1075 1076 incby = 1; 1077 } else if (!in_nmi()) { 1078 instrumentation_begin(); 1079 rcu_irq_enter_check_tick(); 1080 } else { 1081 instrumentation_begin(); 1082 } 1083 1084 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1085 rdp->dynticks_nmi_nesting, 1086 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 1087 instrumentation_end(); 1088 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1089 rdp->dynticks_nmi_nesting + incby); 1090 barrier(); 1091 } 1092 1093 /** 1094 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1095 * 1096 * Enter an interrupt handler, which might possibly result in exiting 1097 * idle mode, in other words, entering the mode in which read-side critical 1098 * sections can occur. The caller must have disabled interrupts. 1099 * 1100 * Note that the Linux kernel is fully capable of entering an interrupt 1101 * handler that it never exits, for example when doing upcalls to user mode! 1102 * This code assumes that the idle loop never does upcalls to user mode. 1103 * If your architecture's idle loop does do upcalls to user mode (or does 1104 * anything else that results in unbalanced calls to the irq_enter() and 1105 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1106 * But very infrequently and irreproducibly. 1107 * 1108 * Use things like work queues to work around this limitation. 1109 * 1110 * You have been warned. 1111 * 1112 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1113 * CONFIG_RCU_EQS_DEBUG=y. 1114 */ 1115 noinstr void rcu_irq_enter(void) 1116 { 1117 lockdep_assert_irqs_disabled(); 1118 rcu_nmi_enter(); 1119 } 1120 1121 /* 1122 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1123 * 1124 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1125 * with CONFIG_RCU_EQS_DEBUG=y. 1126 */ 1127 void rcu_irq_enter_irqson(void) 1128 { 1129 unsigned long flags; 1130 1131 local_irq_save(flags); 1132 rcu_irq_enter(); 1133 local_irq_restore(flags); 1134 } 1135 1136 /* 1137 * If any sort of urgency was applied to the current CPU (for example, 1138 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1139 * to get to a quiescent state, disable it. 1140 */ 1141 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1142 { 1143 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1144 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1145 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1146 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1147 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1148 WRITE_ONCE(rdp->rcu_forced_tick, false); 1149 } 1150 } 1151 1152 /** 1153 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1154 * 1155 * Return true if RCU is watching the running CPU, which means that this 1156 * CPU can safely enter RCU read-side critical sections. In other words, 1157 * if the current CPU is not in its idle loop or is in an interrupt or 1158 * NMI handler, return true. 1159 * 1160 * Make notrace because it can be called by the internal functions of 1161 * ftrace, and making this notrace removes unnecessary recursion calls. 1162 */ 1163 notrace bool rcu_is_watching(void) 1164 { 1165 bool ret; 1166 1167 preempt_disable_notrace(); 1168 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1169 preempt_enable_notrace(); 1170 return ret; 1171 } 1172 EXPORT_SYMBOL_GPL(rcu_is_watching); 1173 1174 /* 1175 * If a holdout task is actually running, request an urgent quiescent 1176 * state from its CPU. This is unsynchronized, so migrations can cause 1177 * the request to go to the wrong CPU. Which is OK, all that will happen 1178 * is that the CPU's next context switch will be a bit slower and next 1179 * time around this task will generate another request. 1180 */ 1181 void rcu_request_urgent_qs_task(struct task_struct *t) 1182 { 1183 int cpu; 1184 1185 barrier(); 1186 cpu = task_cpu(t); 1187 if (!task_curr(t)) 1188 return; /* This task is not running on that CPU. */ 1189 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1190 } 1191 1192 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1193 1194 /* 1195 * Is the current CPU online as far as RCU is concerned? 1196 * 1197 * Disable preemption to avoid false positives that could otherwise 1198 * happen due to the current CPU number being sampled, this task being 1199 * preempted, its old CPU being taken offline, resuming on some other CPU, 1200 * then determining that its old CPU is now offline. 1201 * 1202 * Disable checking if in an NMI handler because we cannot safely 1203 * report errors from NMI handlers anyway. In addition, it is OK to use 1204 * RCU on an offline processor during initial boot, hence the check for 1205 * rcu_scheduler_fully_active. 1206 */ 1207 bool rcu_lockdep_current_cpu_online(void) 1208 { 1209 struct rcu_data *rdp; 1210 struct rcu_node *rnp; 1211 bool ret = false; 1212 1213 if (in_nmi() || !rcu_scheduler_fully_active) 1214 return true; 1215 preempt_disable_notrace(); 1216 rdp = this_cpu_ptr(&rcu_data); 1217 rnp = rdp->mynode; 1218 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1) 1219 ret = true; 1220 preempt_enable_notrace(); 1221 return ret; 1222 } 1223 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1224 1225 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1226 1227 /* 1228 * We are reporting a quiescent state on behalf of some other CPU, so 1229 * it is our responsibility to check for and handle potential overflow 1230 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1231 * After all, the CPU might be in deep idle state, and thus executing no 1232 * code whatsoever. 1233 */ 1234 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1235 { 1236 raw_lockdep_assert_held_rcu_node(rnp); 1237 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1238 rnp->gp_seq)) 1239 WRITE_ONCE(rdp->gpwrap, true); 1240 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1241 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1242 } 1243 1244 /* 1245 * Snapshot the specified CPU's dynticks counter so that we can later 1246 * credit them with an implicit quiescent state. Return 1 if this CPU 1247 * is in dynticks idle mode, which is an extended quiescent state. 1248 */ 1249 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1250 { 1251 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1252 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1253 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1254 rcu_gpnum_ovf(rdp->mynode, rdp); 1255 return 1; 1256 } 1257 return 0; 1258 } 1259 1260 /* 1261 * Return true if the specified CPU has passed through a quiescent 1262 * state by virtue of being in or having passed through an dynticks 1263 * idle state since the last call to dyntick_save_progress_counter() 1264 * for this same CPU, or by virtue of having been offline. 1265 */ 1266 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1267 { 1268 unsigned long jtsq; 1269 bool *rnhqp; 1270 bool *ruqp; 1271 struct rcu_node *rnp = rdp->mynode; 1272 1273 /* 1274 * If the CPU passed through or entered a dynticks idle phase with 1275 * no active irq/NMI handlers, then we can safely pretend that the CPU 1276 * already acknowledged the request to pass through a quiescent 1277 * state. Either way, that CPU cannot possibly be in an RCU 1278 * read-side critical section that started before the beginning 1279 * of the current RCU grace period. 1280 */ 1281 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1282 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1283 rcu_gpnum_ovf(rnp, rdp); 1284 return 1; 1285 } 1286 1287 /* 1288 * Complain if a CPU that is considered to be offline from RCU's 1289 * perspective has not yet reported a quiescent state. After all, 1290 * the offline CPU should have reported a quiescent state during 1291 * the CPU-offline process, or, failing that, by rcu_gp_init() 1292 * if it ran concurrently with either the CPU going offline or the 1293 * last task on a leaf rcu_node structure exiting its RCU read-side 1294 * critical section while all CPUs corresponding to that structure 1295 * are offline. This added warning detects bugs in any of these 1296 * code paths. 1297 * 1298 * The rcu_node structure's ->lock is held here, which excludes 1299 * the relevant portions the CPU-hotplug code, the grace-period 1300 * initialization code, and the rcu_read_unlock() code paths. 1301 * 1302 * For more detail, please refer to the "Hotplug CPU" section 1303 * of RCU's Requirements documentation. 1304 */ 1305 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) { 1306 bool onl; 1307 struct rcu_node *rnp1; 1308 1309 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1310 __func__, rnp->grplo, rnp->grphi, rnp->level, 1311 (long)rnp->gp_seq, (long)rnp->completedqs); 1312 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1313 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1314 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1315 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1316 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1317 __func__, rdp->cpu, ".o"[onl], 1318 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1319 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1320 return 1; /* Break things loose after complaining. */ 1321 } 1322 1323 /* 1324 * A CPU running for an extended time within the kernel can 1325 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1326 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1327 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1328 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1329 * variable are safe because the assignments are repeated if this 1330 * CPU failed to pass through a quiescent state. This code 1331 * also checks .jiffies_resched in case jiffies_to_sched_qs 1332 * is set way high. 1333 */ 1334 jtsq = READ_ONCE(jiffies_to_sched_qs); 1335 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1336 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1337 if (!READ_ONCE(*rnhqp) && 1338 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1339 time_after(jiffies, rcu_state.jiffies_resched) || 1340 rcu_state.cbovld)) { 1341 WRITE_ONCE(*rnhqp, true); 1342 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1343 smp_store_release(ruqp, true); 1344 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1345 WRITE_ONCE(*ruqp, true); 1346 } 1347 1348 /* 1349 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1350 * The above code handles this, but only for straight cond_resched(). 1351 * And some in-kernel loops check need_resched() before calling 1352 * cond_resched(), which defeats the above code for CPUs that are 1353 * running in-kernel with scheduling-clock interrupts disabled. 1354 * So hit them over the head with the resched_cpu() hammer! 1355 */ 1356 if (tick_nohz_full_cpu(rdp->cpu) && 1357 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1358 rcu_state.cbovld)) { 1359 WRITE_ONCE(*ruqp, true); 1360 resched_cpu(rdp->cpu); 1361 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1362 } 1363 1364 /* 1365 * If more than halfway to RCU CPU stall-warning time, invoke 1366 * resched_cpu() more frequently to try to loosen things up a bit. 1367 * Also check to see if the CPU is getting hammered with interrupts, 1368 * but only once per grace period, just to keep the IPIs down to 1369 * a dull roar. 1370 */ 1371 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1372 if (time_after(jiffies, 1373 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1374 resched_cpu(rdp->cpu); 1375 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1376 } 1377 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1378 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1379 (rnp->ffmask & rdp->grpmask)) { 1380 rdp->rcu_iw_pending = true; 1381 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1382 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1383 } 1384 } 1385 1386 return 0; 1387 } 1388 1389 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1390 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1391 unsigned long gp_seq_req, const char *s) 1392 { 1393 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1394 gp_seq_req, rnp->level, 1395 rnp->grplo, rnp->grphi, s); 1396 } 1397 1398 /* 1399 * rcu_start_this_gp - Request the start of a particular grace period 1400 * @rnp_start: The leaf node of the CPU from which to start. 1401 * @rdp: The rcu_data corresponding to the CPU from which to start. 1402 * @gp_seq_req: The gp_seq of the grace period to start. 1403 * 1404 * Start the specified grace period, as needed to handle newly arrived 1405 * callbacks. The required future grace periods are recorded in each 1406 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1407 * is reason to awaken the grace-period kthread. 1408 * 1409 * The caller must hold the specified rcu_node structure's ->lock, which 1410 * is why the caller is responsible for waking the grace-period kthread. 1411 * 1412 * Returns true if the GP thread needs to be awakened else false. 1413 */ 1414 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1415 unsigned long gp_seq_req) 1416 { 1417 bool ret = false; 1418 struct rcu_node *rnp; 1419 1420 /* 1421 * Use funnel locking to either acquire the root rcu_node 1422 * structure's lock or bail out if the need for this grace period 1423 * has already been recorded -- or if that grace period has in 1424 * fact already started. If there is already a grace period in 1425 * progress in a non-leaf node, no recording is needed because the 1426 * end of the grace period will scan the leaf rcu_node structures. 1427 * Note that rnp_start->lock must not be released. 1428 */ 1429 raw_lockdep_assert_held_rcu_node(rnp_start); 1430 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1431 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1432 if (rnp != rnp_start) 1433 raw_spin_lock_rcu_node(rnp); 1434 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1435 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1436 (rnp != rnp_start && 1437 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1438 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1439 TPS("Prestarted")); 1440 goto unlock_out; 1441 } 1442 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1443 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1444 /* 1445 * We just marked the leaf or internal node, and a 1446 * grace period is in progress, which means that 1447 * rcu_gp_cleanup() will see the marking. Bail to 1448 * reduce contention. 1449 */ 1450 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1451 TPS("Startedleaf")); 1452 goto unlock_out; 1453 } 1454 if (rnp != rnp_start && rnp->parent != NULL) 1455 raw_spin_unlock_rcu_node(rnp); 1456 if (!rnp->parent) 1457 break; /* At root, and perhaps also leaf. */ 1458 } 1459 1460 /* If GP already in progress, just leave, otherwise start one. */ 1461 if (rcu_gp_in_progress()) { 1462 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1463 goto unlock_out; 1464 } 1465 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1466 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1467 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1468 if (!READ_ONCE(rcu_state.gp_kthread)) { 1469 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1470 goto unlock_out; 1471 } 1472 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1473 ret = true; /* Caller must wake GP kthread. */ 1474 unlock_out: 1475 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1476 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1477 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1478 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1479 } 1480 if (rnp != rnp_start) 1481 raw_spin_unlock_rcu_node(rnp); 1482 return ret; 1483 } 1484 1485 /* 1486 * Clean up any old requests for the just-ended grace period. Also return 1487 * whether any additional grace periods have been requested. 1488 */ 1489 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1490 { 1491 bool needmore; 1492 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1493 1494 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1495 if (!needmore) 1496 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1497 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1498 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1499 return needmore; 1500 } 1501 1502 /* 1503 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1504 * interrupt or softirq handler, in which case we just might immediately 1505 * sleep upon return, resulting in a grace-period hang), and don't bother 1506 * awakening when there is nothing for the grace-period kthread to do 1507 * (as in several CPUs raced to awaken, we lost), and finally don't try 1508 * to awaken a kthread that has not yet been created. If all those checks 1509 * are passed, track some debug information and awaken. 1510 * 1511 * So why do the self-wakeup when in an interrupt or softirq handler 1512 * in the grace-period kthread's context? Because the kthread might have 1513 * been interrupted just as it was going to sleep, and just after the final 1514 * pre-sleep check of the awaken condition. In this case, a wakeup really 1515 * is required, and is therefore supplied. 1516 */ 1517 static void rcu_gp_kthread_wake(void) 1518 { 1519 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1520 1521 if ((current == t && !in_irq() && !in_serving_softirq()) || 1522 !READ_ONCE(rcu_state.gp_flags) || !t) 1523 return; 1524 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1525 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1526 swake_up_one(&rcu_state.gp_wq); 1527 } 1528 1529 /* 1530 * If there is room, assign a ->gp_seq number to any callbacks on this 1531 * CPU that have not already been assigned. Also accelerate any callbacks 1532 * that were previously assigned a ->gp_seq number that has since proven 1533 * to be too conservative, which can happen if callbacks get assigned a 1534 * ->gp_seq number while RCU is idle, but with reference to a non-root 1535 * rcu_node structure. This function is idempotent, so it does not hurt 1536 * to call it repeatedly. Returns an flag saying that we should awaken 1537 * the RCU grace-period kthread. 1538 * 1539 * The caller must hold rnp->lock with interrupts disabled. 1540 */ 1541 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1542 { 1543 unsigned long gp_seq_req; 1544 bool ret = false; 1545 1546 rcu_lockdep_assert_cblist_protected(rdp); 1547 raw_lockdep_assert_held_rcu_node(rnp); 1548 1549 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1550 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1551 return false; 1552 1553 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1554 1555 /* 1556 * Callbacks are often registered with incomplete grace-period 1557 * information. Something about the fact that getting exact 1558 * information requires acquiring a global lock... RCU therefore 1559 * makes a conservative estimate of the grace period number at which 1560 * a given callback will become ready to invoke. The following 1561 * code checks this estimate and improves it when possible, thus 1562 * accelerating callback invocation to an earlier grace-period 1563 * number. 1564 */ 1565 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1566 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1567 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1568 1569 /* Trace depending on how much we were able to accelerate. */ 1570 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1571 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1572 else 1573 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1574 1575 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1576 1577 return ret; 1578 } 1579 1580 /* 1581 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1582 * rcu_node structure's ->lock be held. It consults the cached value 1583 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1584 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1585 * while holding the leaf rcu_node structure's ->lock. 1586 */ 1587 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1588 struct rcu_data *rdp) 1589 { 1590 unsigned long c; 1591 bool needwake; 1592 1593 rcu_lockdep_assert_cblist_protected(rdp); 1594 c = rcu_seq_snap(&rcu_state.gp_seq); 1595 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1596 /* Old request still live, so mark recent callbacks. */ 1597 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1598 return; 1599 } 1600 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1601 needwake = rcu_accelerate_cbs(rnp, rdp); 1602 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1603 if (needwake) 1604 rcu_gp_kthread_wake(); 1605 } 1606 1607 /* 1608 * Move any callbacks whose grace period has completed to the 1609 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1610 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1611 * sublist. This function is idempotent, so it does not hurt to 1612 * invoke it repeatedly. As long as it is not invoked -too- often... 1613 * Returns true if the RCU grace-period kthread needs to be awakened. 1614 * 1615 * The caller must hold rnp->lock with interrupts disabled. 1616 */ 1617 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1618 { 1619 rcu_lockdep_assert_cblist_protected(rdp); 1620 raw_lockdep_assert_held_rcu_node(rnp); 1621 1622 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1623 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1624 return false; 1625 1626 /* 1627 * Find all callbacks whose ->gp_seq numbers indicate that they 1628 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1629 */ 1630 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1631 1632 /* Classify any remaining callbacks. */ 1633 return rcu_accelerate_cbs(rnp, rdp); 1634 } 1635 1636 /* 1637 * Move and classify callbacks, but only if doing so won't require 1638 * that the RCU grace-period kthread be awakened. 1639 */ 1640 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1641 struct rcu_data *rdp) 1642 { 1643 rcu_lockdep_assert_cblist_protected(rdp); 1644 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1645 !raw_spin_trylock_rcu_node(rnp)) 1646 return; 1647 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1648 raw_spin_unlock_rcu_node(rnp); 1649 } 1650 1651 /* 1652 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1653 * quiescent state. This is intended to be invoked when the CPU notices 1654 * a new grace period. 1655 */ 1656 static void rcu_strict_gp_check_qs(void) 1657 { 1658 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1659 rcu_read_lock(); 1660 rcu_read_unlock(); 1661 } 1662 } 1663 1664 /* 1665 * Update CPU-local rcu_data state to record the beginnings and ends of 1666 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1667 * structure corresponding to the current CPU, and must have irqs disabled. 1668 * Returns true if the grace-period kthread needs to be awakened. 1669 */ 1670 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1671 { 1672 bool ret = false; 1673 bool need_qs; 1674 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1675 1676 raw_lockdep_assert_held_rcu_node(rnp); 1677 1678 if (rdp->gp_seq == rnp->gp_seq) 1679 return false; /* Nothing to do. */ 1680 1681 /* Handle the ends of any preceding grace periods first. */ 1682 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1683 unlikely(READ_ONCE(rdp->gpwrap))) { 1684 if (!offloaded) 1685 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1686 rdp->core_needs_qs = false; 1687 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1688 } else { 1689 if (!offloaded) 1690 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1691 if (rdp->core_needs_qs) 1692 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1693 } 1694 1695 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1696 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1697 unlikely(READ_ONCE(rdp->gpwrap))) { 1698 /* 1699 * If the current grace period is waiting for this CPU, 1700 * set up to detect a quiescent state, otherwise don't 1701 * go looking for one. 1702 */ 1703 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1704 need_qs = !!(rnp->qsmask & rdp->grpmask); 1705 rdp->cpu_no_qs.b.norm = need_qs; 1706 rdp->core_needs_qs = need_qs; 1707 zero_cpu_stall_ticks(rdp); 1708 } 1709 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1710 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1711 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1712 WRITE_ONCE(rdp->gpwrap, false); 1713 rcu_gpnum_ovf(rnp, rdp); 1714 return ret; 1715 } 1716 1717 static void note_gp_changes(struct rcu_data *rdp) 1718 { 1719 unsigned long flags; 1720 bool needwake; 1721 struct rcu_node *rnp; 1722 1723 local_irq_save(flags); 1724 rnp = rdp->mynode; 1725 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1726 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1727 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1728 local_irq_restore(flags); 1729 return; 1730 } 1731 needwake = __note_gp_changes(rnp, rdp); 1732 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1733 rcu_strict_gp_check_qs(); 1734 if (needwake) 1735 rcu_gp_kthread_wake(); 1736 } 1737 1738 static void rcu_gp_slow(int delay) 1739 { 1740 if (delay > 0 && 1741 !(rcu_seq_ctr(rcu_state.gp_seq) % 1742 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1743 schedule_timeout_idle(delay); 1744 } 1745 1746 static unsigned long sleep_duration; 1747 1748 /* Allow rcutorture to stall the grace-period kthread. */ 1749 void rcu_gp_set_torture_wait(int duration) 1750 { 1751 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1752 WRITE_ONCE(sleep_duration, duration); 1753 } 1754 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1755 1756 /* Actually implement the aforementioned wait. */ 1757 static void rcu_gp_torture_wait(void) 1758 { 1759 unsigned long duration; 1760 1761 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1762 return; 1763 duration = xchg(&sleep_duration, 0UL); 1764 if (duration > 0) { 1765 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1766 schedule_timeout_idle(duration); 1767 pr_alert("%s: Wait complete\n", __func__); 1768 } 1769 } 1770 1771 /* 1772 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1773 * processing. 1774 */ 1775 static void rcu_strict_gp_boundary(void *unused) 1776 { 1777 invoke_rcu_core(); 1778 } 1779 1780 /* 1781 * Initialize a new grace period. Return false if no grace period required. 1782 */ 1783 static bool rcu_gp_init(void) 1784 { 1785 unsigned long firstseq; 1786 unsigned long flags; 1787 unsigned long oldmask; 1788 unsigned long mask; 1789 struct rcu_data *rdp; 1790 struct rcu_node *rnp = rcu_get_root(); 1791 1792 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1793 raw_spin_lock_irq_rcu_node(rnp); 1794 if (!READ_ONCE(rcu_state.gp_flags)) { 1795 /* Spurious wakeup, tell caller to go back to sleep. */ 1796 raw_spin_unlock_irq_rcu_node(rnp); 1797 return false; 1798 } 1799 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1800 1801 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1802 /* 1803 * Grace period already in progress, don't start another. 1804 * Not supposed to be able to happen. 1805 */ 1806 raw_spin_unlock_irq_rcu_node(rnp); 1807 return false; 1808 } 1809 1810 /* Advance to a new grace period and initialize state. */ 1811 record_gp_stall_check_time(); 1812 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1813 rcu_seq_start(&rcu_state.gp_seq); 1814 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1815 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1816 raw_spin_unlock_irq_rcu_node(rnp); 1817 1818 /* 1819 * Apply per-leaf buffered online and offline operations to 1820 * the rcu_node tree. Note that this new grace period need not 1821 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1822 * offlining path, when combined with checks in this function, 1823 * will handle CPUs that are currently going offline or that will 1824 * go offline later. Please also refer to "Hotplug CPU" section 1825 * of RCU's Requirements documentation. 1826 */ 1827 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1828 rcu_for_each_leaf_node(rnp) { 1829 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values. 1830 firstseq = READ_ONCE(rnp->ofl_seq); 1831 if (firstseq & 0x1) 1832 while (firstseq == READ_ONCE(rnp->ofl_seq)) 1833 schedule_timeout_idle(1); // Can't wake unless RCU is watching. 1834 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values. 1835 raw_spin_lock(&rcu_state.ofl_lock); 1836 raw_spin_lock_irq_rcu_node(rnp); 1837 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1838 !rnp->wait_blkd_tasks) { 1839 /* Nothing to do on this leaf rcu_node structure. */ 1840 raw_spin_unlock_irq_rcu_node(rnp); 1841 raw_spin_unlock(&rcu_state.ofl_lock); 1842 continue; 1843 } 1844 1845 /* Record old state, apply changes to ->qsmaskinit field. */ 1846 oldmask = rnp->qsmaskinit; 1847 rnp->qsmaskinit = rnp->qsmaskinitnext; 1848 1849 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1850 if (!oldmask != !rnp->qsmaskinit) { 1851 if (!oldmask) { /* First online CPU for rcu_node. */ 1852 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1853 rcu_init_new_rnp(rnp); 1854 } else if (rcu_preempt_has_tasks(rnp)) { 1855 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1856 } else { /* Last offline CPU and can propagate. */ 1857 rcu_cleanup_dead_rnp(rnp); 1858 } 1859 } 1860 1861 /* 1862 * If all waited-on tasks from prior grace period are 1863 * done, and if all this rcu_node structure's CPUs are 1864 * still offline, propagate up the rcu_node tree and 1865 * clear ->wait_blkd_tasks. Otherwise, if one of this 1866 * rcu_node structure's CPUs has since come back online, 1867 * simply clear ->wait_blkd_tasks. 1868 */ 1869 if (rnp->wait_blkd_tasks && 1870 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1871 rnp->wait_blkd_tasks = false; 1872 if (!rnp->qsmaskinit) 1873 rcu_cleanup_dead_rnp(rnp); 1874 } 1875 1876 raw_spin_unlock_irq_rcu_node(rnp); 1877 raw_spin_unlock(&rcu_state.ofl_lock); 1878 } 1879 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1880 1881 /* 1882 * Set the quiescent-state-needed bits in all the rcu_node 1883 * structures for all currently online CPUs in breadth-first 1884 * order, starting from the root rcu_node structure, relying on the 1885 * layout of the tree within the rcu_state.node[] array. Note that 1886 * other CPUs will access only the leaves of the hierarchy, thus 1887 * seeing that no grace period is in progress, at least until the 1888 * corresponding leaf node has been initialized. 1889 * 1890 * The grace period cannot complete until the initialization 1891 * process finishes, because this kthread handles both. 1892 */ 1893 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1894 rcu_for_each_node_breadth_first(rnp) { 1895 rcu_gp_slow(gp_init_delay); 1896 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1897 rdp = this_cpu_ptr(&rcu_data); 1898 rcu_preempt_check_blocked_tasks(rnp); 1899 rnp->qsmask = rnp->qsmaskinit; 1900 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1901 if (rnp == rdp->mynode) 1902 (void)__note_gp_changes(rnp, rdp); 1903 rcu_preempt_boost_start_gp(rnp); 1904 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1905 rnp->level, rnp->grplo, 1906 rnp->grphi, rnp->qsmask); 1907 /* Quiescent states for tasks on any now-offline CPUs. */ 1908 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1909 rnp->rcu_gp_init_mask = mask; 1910 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1911 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1912 else 1913 raw_spin_unlock_irq_rcu_node(rnp); 1914 cond_resched_tasks_rcu_qs(); 1915 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1916 } 1917 1918 // If strict, make all CPUs aware of new grace period. 1919 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1920 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1921 1922 return true; 1923 } 1924 1925 /* 1926 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1927 * time. 1928 */ 1929 static bool rcu_gp_fqs_check_wake(int *gfp) 1930 { 1931 struct rcu_node *rnp = rcu_get_root(); 1932 1933 // If under overload conditions, force an immediate FQS scan. 1934 if (*gfp & RCU_GP_FLAG_OVLD) 1935 return true; 1936 1937 // Someone like call_rcu() requested a force-quiescent-state scan. 1938 *gfp = READ_ONCE(rcu_state.gp_flags); 1939 if (*gfp & RCU_GP_FLAG_FQS) 1940 return true; 1941 1942 // The current grace period has completed. 1943 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1944 return true; 1945 1946 return false; 1947 } 1948 1949 /* 1950 * Do one round of quiescent-state forcing. 1951 */ 1952 static void rcu_gp_fqs(bool first_time) 1953 { 1954 struct rcu_node *rnp = rcu_get_root(); 1955 1956 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1957 rcu_state.n_force_qs++; 1958 if (first_time) { 1959 /* Collect dyntick-idle snapshots. */ 1960 force_qs_rnp(dyntick_save_progress_counter); 1961 } else { 1962 /* Handle dyntick-idle and offline CPUs. */ 1963 force_qs_rnp(rcu_implicit_dynticks_qs); 1964 } 1965 /* Clear flag to prevent immediate re-entry. */ 1966 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1967 raw_spin_lock_irq_rcu_node(rnp); 1968 WRITE_ONCE(rcu_state.gp_flags, 1969 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1970 raw_spin_unlock_irq_rcu_node(rnp); 1971 } 1972 } 1973 1974 /* 1975 * Loop doing repeated quiescent-state forcing until the grace period ends. 1976 */ 1977 static void rcu_gp_fqs_loop(void) 1978 { 1979 bool first_gp_fqs; 1980 int gf = 0; 1981 unsigned long j; 1982 int ret; 1983 struct rcu_node *rnp = rcu_get_root(); 1984 1985 first_gp_fqs = true; 1986 j = READ_ONCE(jiffies_till_first_fqs); 1987 if (rcu_state.cbovld) 1988 gf = RCU_GP_FLAG_OVLD; 1989 ret = 0; 1990 for (;;) { 1991 if (!ret) { 1992 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1993 /* 1994 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1995 * update; required for stall checks. 1996 */ 1997 smp_wmb(); 1998 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1999 jiffies + (j ? 3 * j : 2)); 2000 } 2001 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2002 TPS("fqswait")); 2003 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 2004 ret = swait_event_idle_timeout_exclusive( 2005 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 2006 rcu_gp_torture_wait(); 2007 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2008 /* Locking provides needed memory barriers. */ 2009 /* If grace period done, leave loop. */ 2010 if (!READ_ONCE(rnp->qsmask) && 2011 !rcu_preempt_blocked_readers_cgp(rnp)) 2012 break; 2013 /* If time for quiescent-state forcing, do it. */ 2014 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2015 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2016 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2017 TPS("fqsstart")); 2018 rcu_gp_fqs(first_gp_fqs); 2019 gf = 0; 2020 if (first_gp_fqs) { 2021 first_gp_fqs = false; 2022 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2023 } 2024 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2025 TPS("fqsend")); 2026 cond_resched_tasks_rcu_qs(); 2027 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2028 ret = 0; /* Force full wait till next FQS. */ 2029 j = READ_ONCE(jiffies_till_next_fqs); 2030 } else { 2031 /* Deal with stray signal. */ 2032 cond_resched_tasks_rcu_qs(); 2033 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2034 WARN_ON(signal_pending(current)); 2035 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2036 TPS("fqswaitsig")); 2037 ret = 1; /* Keep old FQS timing. */ 2038 j = jiffies; 2039 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2040 j = 1; 2041 else 2042 j = rcu_state.jiffies_force_qs - j; 2043 gf = 0; 2044 } 2045 } 2046 } 2047 2048 /* 2049 * Clean up after the old grace period. 2050 */ 2051 static void rcu_gp_cleanup(void) 2052 { 2053 int cpu; 2054 bool needgp = false; 2055 unsigned long gp_duration; 2056 unsigned long new_gp_seq; 2057 bool offloaded; 2058 struct rcu_data *rdp; 2059 struct rcu_node *rnp = rcu_get_root(); 2060 struct swait_queue_head *sq; 2061 2062 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2063 raw_spin_lock_irq_rcu_node(rnp); 2064 rcu_state.gp_end = jiffies; 2065 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2066 if (gp_duration > rcu_state.gp_max) 2067 rcu_state.gp_max = gp_duration; 2068 2069 /* 2070 * We know the grace period is complete, but to everyone else 2071 * it appears to still be ongoing. But it is also the case 2072 * that to everyone else it looks like there is nothing that 2073 * they can do to advance the grace period. It is therefore 2074 * safe for us to drop the lock in order to mark the grace 2075 * period as completed in all of the rcu_node structures. 2076 */ 2077 raw_spin_unlock_irq_rcu_node(rnp); 2078 2079 /* 2080 * Propagate new ->gp_seq value to rcu_node structures so that 2081 * other CPUs don't have to wait until the start of the next grace 2082 * period to process their callbacks. This also avoids some nasty 2083 * RCU grace-period initialization races by forcing the end of 2084 * the current grace period to be completely recorded in all of 2085 * the rcu_node structures before the beginning of the next grace 2086 * period is recorded in any of the rcu_node structures. 2087 */ 2088 new_gp_seq = rcu_state.gp_seq; 2089 rcu_seq_end(&new_gp_seq); 2090 rcu_for_each_node_breadth_first(rnp) { 2091 raw_spin_lock_irq_rcu_node(rnp); 2092 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2093 dump_blkd_tasks(rnp, 10); 2094 WARN_ON_ONCE(rnp->qsmask); 2095 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2096 rdp = this_cpu_ptr(&rcu_data); 2097 if (rnp == rdp->mynode) 2098 needgp = __note_gp_changes(rnp, rdp) || needgp; 2099 /* smp_mb() provided by prior unlock-lock pair. */ 2100 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2101 // Reset overload indication for CPUs no longer overloaded 2102 if (rcu_is_leaf_node(rnp)) 2103 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2104 rdp = per_cpu_ptr(&rcu_data, cpu); 2105 check_cb_ovld_locked(rdp, rnp); 2106 } 2107 sq = rcu_nocb_gp_get(rnp); 2108 raw_spin_unlock_irq_rcu_node(rnp); 2109 rcu_nocb_gp_cleanup(sq); 2110 cond_resched_tasks_rcu_qs(); 2111 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2112 rcu_gp_slow(gp_cleanup_delay); 2113 } 2114 rnp = rcu_get_root(); 2115 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2116 2117 /* Declare grace period done, trace first to use old GP number. */ 2118 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2119 rcu_seq_end(&rcu_state.gp_seq); 2120 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2121 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2122 /* Check for GP requests since above loop. */ 2123 rdp = this_cpu_ptr(&rcu_data); 2124 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2125 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2126 TPS("CleanupMore")); 2127 needgp = true; 2128 } 2129 /* Advance CBs to reduce false positives below. */ 2130 offloaded = rcu_rdp_is_offloaded(rdp); 2131 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2132 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2133 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2134 trace_rcu_grace_period(rcu_state.name, 2135 rcu_state.gp_seq, 2136 TPS("newreq")); 2137 } else { 2138 WRITE_ONCE(rcu_state.gp_flags, 2139 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2140 } 2141 raw_spin_unlock_irq_rcu_node(rnp); 2142 2143 // If strict, make all CPUs aware of the end of the old grace period. 2144 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2145 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2146 } 2147 2148 /* 2149 * Body of kthread that handles grace periods. 2150 */ 2151 static int __noreturn rcu_gp_kthread(void *unused) 2152 { 2153 rcu_bind_gp_kthread(); 2154 for (;;) { 2155 2156 /* Handle grace-period start. */ 2157 for (;;) { 2158 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2159 TPS("reqwait")); 2160 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2161 swait_event_idle_exclusive(rcu_state.gp_wq, 2162 READ_ONCE(rcu_state.gp_flags) & 2163 RCU_GP_FLAG_INIT); 2164 rcu_gp_torture_wait(); 2165 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2166 /* Locking provides needed memory barrier. */ 2167 if (rcu_gp_init()) 2168 break; 2169 cond_resched_tasks_rcu_qs(); 2170 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2171 WARN_ON(signal_pending(current)); 2172 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2173 TPS("reqwaitsig")); 2174 } 2175 2176 /* Handle quiescent-state forcing. */ 2177 rcu_gp_fqs_loop(); 2178 2179 /* Handle grace-period end. */ 2180 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2181 rcu_gp_cleanup(); 2182 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2183 } 2184 } 2185 2186 /* 2187 * Report a full set of quiescent states to the rcu_state data structure. 2188 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2189 * another grace period is required. Whether we wake the grace-period 2190 * kthread or it awakens itself for the next round of quiescent-state 2191 * forcing, that kthread will clean up after the just-completed grace 2192 * period. Note that the caller must hold rnp->lock, which is released 2193 * before return. 2194 */ 2195 static void rcu_report_qs_rsp(unsigned long flags) 2196 __releases(rcu_get_root()->lock) 2197 { 2198 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2199 WARN_ON_ONCE(!rcu_gp_in_progress()); 2200 WRITE_ONCE(rcu_state.gp_flags, 2201 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2202 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2203 rcu_gp_kthread_wake(); 2204 } 2205 2206 /* 2207 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2208 * Allows quiescent states for a group of CPUs to be reported at one go 2209 * to the specified rcu_node structure, though all the CPUs in the group 2210 * must be represented by the same rcu_node structure (which need not be a 2211 * leaf rcu_node structure, though it often will be). The gps parameter 2212 * is the grace-period snapshot, which means that the quiescent states 2213 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2214 * must be held upon entry, and it is released before return. 2215 * 2216 * As a special case, if mask is zero, the bit-already-cleared check is 2217 * disabled. This allows propagating quiescent state due to resumed tasks 2218 * during grace-period initialization. 2219 */ 2220 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2221 unsigned long gps, unsigned long flags) 2222 __releases(rnp->lock) 2223 { 2224 unsigned long oldmask = 0; 2225 struct rcu_node *rnp_c; 2226 2227 raw_lockdep_assert_held_rcu_node(rnp); 2228 2229 /* Walk up the rcu_node hierarchy. */ 2230 for (;;) { 2231 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2232 2233 /* 2234 * Our bit has already been cleared, or the 2235 * relevant grace period is already over, so done. 2236 */ 2237 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2238 return; 2239 } 2240 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2241 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2242 rcu_preempt_blocked_readers_cgp(rnp)); 2243 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2244 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2245 mask, rnp->qsmask, rnp->level, 2246 rnp->grplo, rnp->grphi, 2247 !!rnp->gp_tasks); 2248 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2249 2250 /* Other bits still set at this level, so done. */ 2251 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2252 return; 2253 } 2254 rnp->completedqs = rnp->gp_seq; 2255 mask = rnp->grpmask; 2256 if (rnp->parent == NULL) { 2257 2258 /* No more levels. Exit loop holding root lock. */ 2259 2260 break; 2261 } 2262 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2263 rnp_c = rnp; 2264 rnp = rnp->parent; 2265 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2266 oldmask = READ_ONCE(rnp_c->qsmask); 2267 } 2268 2269 /* 2270 * Get here if we are the last CPU to pass through a quiescent 2271 * state for this grace period. Invoke rcu_report_qs_rsp() 2272 * to clean up and start the next grace period if one is needed. 2273 */ 2274 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2275 } 2276 2277 /* 2278 * Record a quiescent state for all tasks that were previously queued 2279 * on the specified rcu_node structure and that were blocking the current 2280 * RCU grace period. The caller must hold the corresponding rnp->lock with 2281 * irqs disabled, and this lock is released upon return, but irqs remain 2282 * disabled. 2283 */ 2284 static void __maybe_unused 2285 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2286 __releases(rnp->lock) 2287 { 2288 unsigned long gps; 2289 unsigned long mask; 2290 struct rcu_node *rnp_p; 2291 2292 raw_lockdep_assert_held_rcu_node(rnp); 2293 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2294 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2295 rnp->qsmask != 0) { 2296 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2297 return; /* Still need more quiescent states! */ 2298 } 2299 2300 rnp->completedqs = rnp->gp_seq; 2301 rnp_p = rnp->parent; 2302 if (rnp_p == NULL) { 2303 /* 2304 * Only one rcu_node structure in the tree, so don't 2305 * try to report up to its nonexistent parent! 2306 */ 2307 rcu_report_qs_rsp(flags); 2308 return; 2309 } 2310 2311 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2312 gps = rnp->gp_seq; 2313 mask = rnp->grpmask; 2314 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2315 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2316 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2317 } 2318 2319 /* 2320 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2321 * structure. This must be called from the specified CPU. 2322 */ 2323 static void 2324 rcu_report_qs_rdp(struct rcu_data *rdp) 2325 { 2326 unsigned long flags; 2327 unsigned long mask; 2328 bool needwake = false; 2329 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2330 struct rcu_node *rnp; 2331 2332 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2333 rnp = rdp->mynode; 2334 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2335 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2336 rdp->gpwrap) { 2337 2338 /* 2339 * The grace period in which this quiescent state was 2340 * recorded has ended, so don't report it upwards. 2341 * We will instead need a new quiescent state that lies 2342 * within the current grace period. 2343 */ 2344 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2345 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2346 return; 2347 } 2348 mask = rdp->grpmask; 2349 rdp->core_needs_qs = false; 2350 if ((rnp->qsmask & mask) == 0) { 2351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2352 } else { 2353 /* 2354 * This GP can't end until cpu checks in, so all of our 2355 * callbacks can be processed during the next GP. 2356 */ 2357 if (!offloaded) 2358 needwake = rcu_accelerate_cbs(rnp, rdp); 2359 2360 rcu_disable_urgency_upon_qs(rdp); 2361 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2362 /* ^^^ Released rnp->lock */ 2363 if (needwake) 2364 rcu_gp_kthread_wake(); 2365 } 2366 } 2367 2368 /* 2369 * Check to see if there is a new grace period of which this CPU 2370 * is not yet aware, and if so, set up local rcu_data state for it. 2371 * Otherwise, see if this CPU has just passed through its first 2372 * quiescent state for this grace period, and record that fact if so. 2373 */ 2374 static void 2375 rcu_check_quiescent_state(struct rcu_data *rdp) 2376 { 2377 /* Check for grace-period ends and beginnings. */ 2378 note_gp_changes(rdp); 2379 2380 /* 2381 * Does this CPU still need to do its part for current grace period? 2382 * If no, return and let the other CPUs do their part as well. 2383 */ 2384 if (!rdp->core_needs_qs) 2385 return; 2386 2387 /* 2388 * Was there a quiescent state since the beginning of the grace 2389 * period? If no, then exit and wait for the next call. 2390 */ 2391 if (rdp->cpu_no_qs.b.norm) 2392 return; 2393 2394 /* 2395 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2396 * judge of that). 2397 */ 2398 rcu_report_qs_rdp(rdp); 2399 } 2400 2401 /* 2402 * Near the end of the offline process. Trace the fact that this CPU 2403 * is going offline. 2404 */ 2405 int rcutree_dying_cpu(unsigned int cpu) 2406 { 2407 bool blkd; 2408 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2409 struct rcu_node *rnp = rdp->mynode; 2410 2411 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2412 return 0; 2413 2414 blkd = !!(rnp->qsmask & rdp->grpmask); 2415 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2416 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2417 return 0; 2418 } 2419 2420 /* 2421 * All CPUs for the specified rcu_node structure have gone offline, 2422 * and all tasks that were preempted within an RCU read-side critical 2423 * section while running on one of those CPUs have since exited their RCU 2424 * read-side critical section. Some other CPU is reporting this fact with 2425 * the specified rcu_node structure's ->lock held and interrupts disabled. 2426 * This function therefore goes up the tree of rcu_node structures, 2427 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2428 * the leaf rcu_node structure's ->qsmaskinit field has already been 2429 * updated. 2430 * 2431 * This function does check that the specified rcu_node structure has 2432 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2433 * prematurely. That said, invoking it after the fact will cost you 2434 * a needless lock acquisition. So once it has done its work, don't 2435 * invoke it again. 2436 */ 2437 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2438 { 2439 long mask; 2440 struct rcu_node *rnp = rnp_leaf; 2441 2442 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2443 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2444 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2445 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2446 return; 2447 for (;;) { 2448 mask = rnp->grpmask; 2449 rnp = rnp->parent; 2450 if (!rnp) 2451 break; 2452 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2453 rnp->qsmaskinit &= ~mask; 2454 /* Between grace periods, so better already be zero! */ 2455 WARN_ON_ONCE(rnp->qsmask); 2456 if (rnp->qsmaskinit) { 2457 raw_spin_unlock_rcu_node(rnp); 2458 /* irqs remain disabled. */ 2459 return; 2460 } 2461 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2462 } 2463 } 2464 2465 /* 2466 * The CPU has been completely removed, and some other CPU is reporting 2467 * this fact from process context. Do the remainder of the cleanup. 2468 * There can only be one CPU hotplug operation at a time, so no need for 2469 * explicit locking. 2470 */ 2471 int rcutree_dead_cpu(unsigned int cpu) 2472 { 2473 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2474 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2475 2476 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2477 return 0; 2478 2479 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2480 /* Adjust any no-longer-needed kthreads. */ 2481 rcu_boost_kthread_setaffinity(rnp, -1); 2482 /* Do any needed no-CB deferred wakeups from this CPU. */ 2483 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2484 2485 // Stop-machine done, so allow nohz_full to disable tick. 2486 tick_dep_clear(TICK_DEP_BIT_RCU); 2487 return 0; 2488 } 2489 2490 /* 2491 * Invoke any RCU callbacks that have made it to the end of their grace 2492 * period. Thottle as specified by rdp->blimit. 2493 */ 2494 static void rcu_do_batch(struct rcu_data *rdp) 2495 { 2496 int div; 2497 bool __maybe_unused empty; 2498 unsigned long flags; 2499 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2500 struct rcu_head *rhp; 2501 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2502 long bl, count = 0; 2503 long pending, tlimit = 0; 2504 2505 /* If no callbacks are ready, just return. */ 2506 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2507 trace_rcu_batch_start(rcu_state.name, 2508 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2509 trace_rcu_batch_end(rcu_state.name, 0, 2510 !rcu_segcblist_empty(&rdp->cblist), 2511 need_resched(), is_idle_task(current), 2512 rcu_is_callbacks_kthread()); 2513 return; 2514 } 2515 2516 /* 2517 * Extract the list of ready callbacks, disabling to prevent 2518 * races with call_rcu() from interrupt handlers. Leave the 2519 * callback counts, as rcu_barrier() needs to be conservative. 2520 */ 2521 local_irq_save(flags); 2522 rcu_nocb_lock(rdp); 2523 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2524 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2525 div = READ_ONCE(rcu_divisor); 2526 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2527 bl = max(rdp->blimit, pending >> div); 2528 if (unlikely(bl > 100)) { 2529 long rrn = READ_ONCE(rcu_resched_ns); 2530 2531 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2532 tlimit = local_clock() + rrn; 2533 } 2534 trace_rcu_batch_start(rcu_state.name, 2535 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2536 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2537 if (offloaded) 2538 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2539 2540 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2541 rcu_nocb_unlock_irqrestore(rdp, flags); 2542 2543 /* Invoke callbacks. */ 2544 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2545 rhp = rcu_cblist_dequeue(&rcl); 2546 2547 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2548 rcu_callback_t f; 2549 2550 count++; 2551 debug_rcu_head_unqueue(rhp); 2552 2553 rcu_lock_acquire(&rcu_callback_map); 2554 trace_rcu_invoke_callback(rcu_state.name, rhp); 2555 2556 f = rhp->func; 2557 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2558 f(rhp); 2559 2560 rcu_lock_release(&rcu_callback_map); 2561 2562 /* 2563 * Stop only if limit reached and CPU has something to do. 2564 */ 2565 if (count >= bl && !offloaded && 2566 (need_resched() || 2567 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2568 break; 2569 if (unlikely(tlimit)) { 2570 /* only call local_clock() every 32 callbacks */ 2571 if (likely((count & 31) || local_clock() < tlimit)) 2572 continue; 2573 /* Exceeded the time limit, so leave. */ 2574 break; 2575 } 2576 if (!in_serving_softirq()) { 2577 local_bh_enable(); 2578 lockdep_assert_irqs_enabled(); 2579 cond_resched_tasks_rcu_qs(); 2580 lockdep_assert_irqs_enabled(); 2581 local_bh_disable(); 2582 } 2583 } 2584 2585 local_irq_save(flags); 2586 rcu_nocb_lock(rdp); 2587 rdp->n_cbs_invoked += count; 2588 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2589 is_idle_task(current), rcu_is_callbacks_kthread()); 2590 2591 /* Update counts and requeue any remaining callbacks. */ 2592 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2593 rcu_segcblist_add_len(&rdp->cblist, -count); 2594 2595 /* Reinstate batch limit if we have worked down the excess. */ 2596 count = rcu_segcblist_n_cbs(&rdp->cblist); 2597 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2598 rdp->blimit = blimit; 2599 2600 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2601 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2602 rdp->qlen_last_fqs_check = 0; 2603 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2604 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2605 rdp->qlen_last_fqs_check = count; 2606 2607 /* 2608 * The following usually indicates a double call_rcu(). To track 2609 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2610 */ 2611 empty = rcu_segcblist_empty(&rdp->cblist); 2612 WARN_ON_ONCE(count == 0 && !empty); 2613 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2614 count != 0 && empty); 2615 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2616 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2617 2618 rcu_nocb_unlock_irqrestore(rdp, flags); 2619 2620 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2621 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2622 invoke_rcu_core(); 2623 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2624 } 2625 2626 /* 2627 * This function is invoked from each scheduling-clock interrupt, 2628 * and checks to see if this CPU is in a non-context-switch quiescent 2629 * state, for example, user mode or idle loop. It also schedules RCU 2630 * core processing. If the current grace period has gone on too long, 2631 * it will ask the scheduler to manufacture a context switch for the sole 2632 * purpose of providing a providing the needed quiescent state. 2633 */ 2634 void rcu_sched_clock_irq(int user) 2635 { 2636 trace_rcu_utilization(TPS("Start scheduler-tick")); 2637 lockdep_assert_irqs_disabled(); 2638 raw_cpu_inc(rcu_data.ticks_this_gp); 2639 /* The load-acquire pairs with the store-release setting to true. */ 2640 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2641 /* Idle and userspace execution already are quiescent states. */ 2642 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2643 set_tsk_need_resched(current); 2644 set_preempt_need_resched(); 2645 } 2646 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2647 } 2648 rcu_flavor_sched_clock_irq(user); 2649 if (rcu_pending(user)) 2650 invoke_rcu_core(); 2651 lockdep_assert_irqs_disabled(); 2652 2653 trace_rcu_utilization(TPS("End scheduler-tick")); 2654 } 2655 2656 /* 2657 * Scan the leaf rcu_node structures. For each structure on which all 2658 * CPUs have reported a quiescent state and on which there are tasks 2659 * blocking the current grace period, initiate RCU priority boosting. 2660 * Otherwise, invoke the specified function to check dyntick state for 2661 * each CPU that has not yet reported a quiescent state. 2662 */ 2663 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2664 { 2665 int cpu; 2666 unsigned long flags; 2667 unsigned long mask; 2668 struct rcu_data *rdp; 2669 struct rcu_node *rnp; 2670 2671 rcu_state.cbovld = rcu_state.cbovldnext; 2672 rcu_state.cbovldnext = false; 2673 rcu_for_each_leaf_node(rnp) { 2674 cond_resched_tasks_rcu_qs(); 2675 mask = 0; 2676 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2677 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2678 if (rnp->qsmask == 0) { 2679 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2680 /* 2681 * No point in scanning bits because they 2682 * are all zero. But we might need to 2683 * priority-boost blocked readers. 2684 */ 2685 rcu_initiate_boost(rnp, flags); 2686 /* rcu_initiate_boost() releases rnp->lock */ 2687 continue; 2688 } 2689 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2690 continue; 2691 } 2692 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2693 rdp = per_cpu_ptr(&rcu_data, cpu); 2694 if (f(rdp)) { 2695 mask |= rdp->grpmask; 2696 rcu_disable_urgency_upon_qs(rdp); 2697 } 2698 } 2699 if (mask != 0) { 2700 /* Idle/offline CPUs, report (releases rnp->lock). */ 2701 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2702 } else { 2703 /* Nothing to do here, so just drop the lock. */ 2704 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2705 } 2706 } 2707 } 2708 2709 /* 2710 * Force quiescent states on reluctant CPUs, and also detect which 2711 * CPUs are in dyntick-idle mode. 2712 */ 2713 void rcu_force_quiescent_state(void) 2714 { 2715 unsigned long flags; 2716 bool ret; 2717 struct rcu_node *rnp; 2718 struct rcu_node *rnp_old = NULL; 2719 2720 /* Funnel through hierarchy to reduce memory contention. */ 2721 rnp = __this_cpu_read(rcu_data.mynode); 2722 for (; rnp != NULL; rnp = rnp->parent) { 2723 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2724 !raw_spin_trylock(&rnp->fqslock); 2725 if (rnp_old != NULL) 2726 raw_spin_unlock(&rnp_old->fqslock); 2727 if (ret) 2728 return; 2729 rnp_old = rnp; 2730 } 2731 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2732 2733 /* Reached the root of the rcu_node tree, acquire lock. */ 2734 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2735 raw_spin_unlock(&rnp_old->fqslock); 2736 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2737 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2738 return; /* Someone beat us to it. */ 2739 } 2740 WRITE_ONCE(rcu_state.gp_flags, 2741 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2742 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2743 rcu_gp_kthread_wake(); 2744 } 2745 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2746 2747 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2748 // grace periods. 2749 static void strict_work_handler(struct work_struct *work) 2750 { 2751 rcu_read_lock(); 2752 rcu_read_unlock(); 2753 } 2754 2755 /* Perform RCU core processing work for the current CPU. */ 2756 static __latent_entropy void rcu_core(void) 2757 { 2758 unsigned long flags; 2759 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2760 struct rcu_node *rnp = rdp->mynode; 2761 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2762 2763 if (cpu_is_offline(smp_processor_id())) 2764 return; 2765 trace_rcu_utilization(TPS("Start RCU core")); 2766 WARN_ON_ONCE(!rdp->beenonline); 2767 2768 /* Report any deferred quiescent states if preemption enabled. */ 2769 if (!(preempt_count() & PREEMPT_MASK)) { 2770 rcu_preempt_deferred_qs(current); 2771 } else if (rcu_preempt_need_deferred_qs(current)) { 2772 set_tsk_need_resched(current); 2773 set_preempt_need_resched(); 2774 } 2775 2776 /* Update RCU state based on any recent quiescent states. */ 2777 rcu_check_quiescent_state(rdp); 2778 2779 /* No grace period and unregistered callbacks? */ 2780 if (!rcu_gp_in_progress() && 2781 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2782 rcu_nocb_lock_irqsave(rdp, flags); 2783 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2784 rcu_accelerate_cbs_unlocked(rnp, rdp); 2785 rcu_nocb_unlock_irqrestore(rdp, flags); 2786 } 2787 2788 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2789 2790 /* If there are callbacks ready, invoke them. */ 2791 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2792 likely(READ_ONCE(rcu_scheduler_fully_active))) 2793 rcu_do_batch(rdp); 2794 2795 /* Do any needed deferred wakeups of rcuo kthreads. */ 2796 do_nocb_deferred_wakeup(rdp); 2797 trace_rcu_utilization(TPS("End RCU core")); 2798 2799 // If strict GPs, schedule an RCU reader in a clean environment. 2800 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2801 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2802 } 2803 2804 static void rcu_core_si(struct softirq_action *h) 2805 { 2806 rcu_core(); 2807 } 2808 2809 static void rcu_wake_cond(struct task_struct *t, int status) 2810 { 2811 /* 2812 * If the thread is yielding, only wake it when this 2813 * is invoked from idle 2814 */ 2815 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2816 wake_up_process(t); 2817 } 2818 2819 static void invoke_rcu_core_kthread(void) 2820 { 2821 struct task_struct *t; 2822 unsigned long flags; 2823 2824 local_irq_save(flags); 2825 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2826 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2827 if (t != NULL && t != current) 2828 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2829 local_irq_restore(flags); 2830 } 2831 2832 /* 2833 * Wake up this CPU's rcuc kthread to do RCU core processing. 2834 */ 2835 static void invoke_rcu_core(void) 2836 { 2837 if (!cpu_online(smp_processor_id())) 2838 return; 2839 if (use_softirq) 2840 raise_softirq(RCU_SOFTIRQ); 2841 else 2842 invoke_rcu_core_kthread(); 2843 } 2844 2845 static void rcu_cpu_kthread_park(unsigned int cpu) 2846 { 2847 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2848 } 2849 2850 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2851 { 2852 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2853 } 2854 2855 /* 2856 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2857 * the RCU softirq used in configurations of RCU that do not support RCU 2858 * priority boosting. 2859 */ 2860 static void rcu_cpu_kthread(unsigned int cpu) 2861 { 2862 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2863 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2864 int spincnt; 2865 2866 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2867 for (spincnt = 0; spincnt < 10; spincnt++) { 2868 local_bh_disable(); 2869 *statusp = RCU_KTHREAD_RUNNING; 2870 local_irq_disable(); 2871 work = *workp; 2872 *workp = 0; 2873 local_irq_enable(); 2874 if (work) 2875 rcu_core(); 2876 local_bh_enable(); 2877 if (*workp == 0) { 2878 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2879 *statusp = RCU_KTHREAD_WAITING; 2880 return; 2881 } 2882 } 2883 *statusp = RCU_KTHREAD_YIELDING; 2884 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2885 schedule_timeout_idle(2); 2886 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2887 *statusp = RCU_KTHREAD_WAITING; 2888 } 2889 2890 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2891 .store = &rcu_data.rcu_cpu_kthread_task, 2892 .thread_should_run = rcu_cpu_kthread_should_run, 2893 .thread_fn = rcu_cpu_kthread, 2894 .thread_comm = "rcuc/%u", 2895 .setup = rcu_cpu_kthread_setup, 2896 .park = rcu_cpu_kthread_park, 2897 }; 2898 2899 /* 2900 * Spawn per-CPU RCU core processing kthreads. 2901 */ 2902 static int __init rcu_spawn_core_kthreads(void) 2903 { 2904 int cpu; 2905 2906 for_each_possible_cpu(cpu) 2907 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2908 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2909 return 0; 2910 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2911 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2912 return 0; 2913 } 2914 early_initcall(rcu_spawn_core_kthreads); 2915 2916 /* 2917 * Handle any core-RCU processing required by a call_rcu() invocation. 2918 */ 2919 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2920 unsigned long flags) 2921 { 2922 /* 2923 * If called from an extended quiescent state, invoke the RCU 2924 * core in order to force a re-evaluation of RCU's idleness. 2925 */ 2926 if (!rcu_is_watching()) 2927 invoke_rcu_core(); 2928 2929 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2930 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2931 return; 2932 2933 /* 2934 * Force the grace period if too many callbacks or too long waiting. 2935 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2936 * if some other CPU has recently done so. Also, don't bother 2937 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2938 * is the only one waiting for a grace period to complete. 2939 */ 2940 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2941 rdp->qlen_last_fqs_check + qhimark)) { 2942 2943 /* Are we ignoring a completed grace period? */ 2944 note_gp_changes(rdp); 2945 2946 /* Start a new grace period if one not already started. */ 2947 if (!rcu_gp_in_progress()) { 2948 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2949 } else { 2950 /* Give the grace period a kick. */ 2951 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2952 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2953 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2954 rcu_force_quiescent_state(); 2955 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2956 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2957 } 2958 } 2959 } 2960 2961 /* 2962 * RCU callback function to leak a callback. 2963 */ 2964 static void rcu_leak_callback(struct rcu_head *rhp) 2965 { 2966 } 2967 2968 /* 2969 * Check and if necessary update the leaf rcu_node structure's 2970 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2971 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2972 * structure's ->lock. 2973 */ 2974 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2975 { 2976 raw_lockdep_assert_held_rcu_node(rnp); 2977 if (qovld_calc <= 0) 2978 return; // Early boot and wildcard value set. 2979 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2980 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2981 else 2982 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2983 } 2984 2985 /* 2986 * Check and if necessary update the leaf rcu_node structure's 2987 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2988 * number of queued RCU callbacks. No locks need be held, but the 2989 * caller must have disabled interrupts. 2990 * 2991 * Note that this function ignores the possibility that there are a lot 2992 * of callbacks all of which have already seen the end of their respective 2993 * grace periods. This omission is due to the need for no-CBs CPUs to 2994 * be holding ->nocb_lock to do this check, which is too heavy for a 2995 * common-case operation. 2996 */ 2997 static void check_cb_ovld(struct rcu_data *rdp) 2998 { 2999 struct rcu_node *const rnp = rdp->mynode; 3000 3001 if (qovld_calc <= 0 || 3002 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3003 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3004 return; // Early boot wildcard value or already set correctly. 3005 raw_spin_lock_rcu_node(rnp); 3006 check_cb_ovld_locked(rdp, rnp); 3007 raw_spin_unlock_rcu_node(rnp); 3008 } 3009 3010 /* Helper function for call_rcu() and friends. */ 3011 static void 3012 __call_rcu(struct rcu_head *head, rcu_callback_t func) 3013 { 3014 static atomic_t doublefrees; 3015 unsigned long flags; 3016 struct rcu_data *rdp; 3017 bool was_alldone; 3018 3019 /* Misaligned rcu_head! */ 3020 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3021 3022 if (debug_rcu_head_queue(head)) { 3023 /* 3024 * Probable double call_rcu(), so leak the callback. 3025 * Use rcu:rcu_callback trace event to find the previous 3026 * time callback was passed to __call_rcu(). 3027 */ 3028 if (atomic_inc_return(&doublefrees) < 4) { 3029 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3030 mem_dump_obj(head); 3031 } 3032 WRITE_ONCE(head->func, rcu_leak_callback); 3033 return; 3034 } 3035 head->func = func; 3036 head->next = NULL; 3037 local_irq_save(flags); 3038 kasan_record_aux_stack(head); 3039 rdp = this_cpu_ptr(&rcu_data); 3040 3041 /* Add the callback to our list. */ 3042 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3043 // This can trigger due to call_rcu() from offline CPU: 3044 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3045 WARN_ON_ONCE(!rcu_is_watching()); 3046 // Very early boot, before rcu_init(). Initialize if needed 3047 // and then drop through to queue the callback. 3048 if (rcu_segcblist_empty(&rdp->cblist)) 3049 rcu_segcblist_init(&rdp->cblist); 3050 } 3051 3052 check_cb_ovld(rdp); 3053 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 3054 return; // Enqueued onto ->nocb_bypass, so just leave. 3055 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 3056 rcu_segcblist_enqueue(&rdp->cblist, head); 3057 if (__is_kvfree_rcu_offset((unsigned long)func)) 3058 trace_rcu_kvfree_callback(rcu_state.name, head, 3059 (unsigned long)func, 3060 rcu_segcblist_n_cbs(&rdp->cblist)); 3061 else 3062 trace_rcu_callback(rcu_state.name, head, 3063 rcu_segcblist_n_cbs(&rdp->cblist)); 3064 3065 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 3066 3067 /* Go handle any RCU core processing required. */ 3068 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 3069 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 3070 } else { 3071 __call_rcu_core(rdp, head, flags); 3072 local_irq_restore(flags); 3073 } 3074 } 3075 3076 /** 3077 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3078 * @head: structure to be used for queueing the RCU updates. 3079 * @func: actual callback function to be invoked after the grace period 3080 * 3081 * The callback function will be invoked some time after a full grace 3082 * period elapses, in other words after all pre-existing RCU read-side 3083 * critical sections have completed. However, the callback function 3084 * might well execute concurrently with RCU read-side critical sections 3085 * that started after call_rcu() was invoked. RCU read-side critical 3086 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 3087 * may be nested. In addition, regions of code across which interrupts, 3088 * preemption, or softirqs have been disabled also serve as RCU read-side 3089 * critical sections. This includes hardware interrupt handlers, softirq 3090 * handlers, and NMI handlers. 3091 * 3092 * Note that all CPUs must agree that the grace period extended beyond 3093 * all pre-existing RCU read-side critical section. On systems with more 3094 * than one CPU, this means that when "func()" is invoked, each CPU is 3095 * guaranteed to have executed a full memory barrier since the end of its 3096 * last RCU read-side critical section whose beginning preceded the call 3097 * to call_rcu(). It also means that each CPU executing an RCU read-side 3098 * critical section that continues beyond the start of "func()" must have 3099 * executed a memory barrier after the call_rcu() but before the beginning 3100 * of that RCU read-side critical section. Note that these guarantees 3101 * include CPUs that are offline, idle, or executing in user mode, as 3102 * well as CPUs that are executing in the kernel. 3103 * 3104 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3105 * resulting RCU callback function "func()", then both CPU A and CPU B are 3106 * guaranteed to execute a full memory barrier during the time interval 3107 * between the call to call_rcu() and the invocation of "func()" -- even 3108 * if CPU A and CPU B are the same CPU (but again only if the system has 3109 * more than one CPU). 3110 */ 3111 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3112 { 3113 __call_rcu(head, func); 3114 } 3115 EXPORT_SYMBOL_GPL(call_rcu); 3116 3117 3118 /* Maximum number of jiffies to wait before draining a batch. */ 3119 #define KFREE_DRAIN_JIFFIES (HZ / 50) 3120 #define KFREE_N_BATCHES 2 3121 #define FREE_N_CHANNELS 2 3122 3123 /** 3124 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3125 * @nr_records: Number of active pointers in the array 3126 * @next: Next bulk object in the block chain 3127 * @records: Array of the kvfree_rcu() pointers 3128 */ 3129 struct kvfree_rcu_bulk_data { 3130 unsigned long nr_records; 3131 struct kvfree_rcu_bulk_data *next; 3132 void *records[]; 3133 }; 3134 3135 /* 3136 * This macro defines how many entries the "records" array 3137 * will contain. It is based on the fact that the size of 3138 * kvfree_rcu_bulk_data structure becomes exactly one page. 3139 */ 3140 #define KVFREE_BULK_MAX_ENTR \ 3141 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3142 3143 /** 3144 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3145 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3146 * @head_free: List of kfree_rcu() objects waiting for a grace period 3147 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3148 * @krcp: Pointer to @kfree_rcu_cpu structure 3149 */ 3150 3151 struct kfree_rcu_cpu_work { 3152 struct rcu_work rcu_work; 3153 struct rcu_head *head_free; 3154 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 3155 struct kfree_rcu_cpu *krcp; 3156 }; 3157 3158 /** 3159 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3160 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3161 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3162 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3163 * @lock: Synchronize access to this structure 3164 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3165 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 3166 * @initialized: The @rcu_work fields have been initialized 3167 * @count: Number of objects for which GP not started 3168 * @bkvcache: 3169 * A simple cache list that contains objects for reuse purpose. 3170 * In order to save some per-cpu space the list is singular. 3171 * Even though it is lockless an access has to be protected by the 3172 * per-cpu lock. 3173 * @page_cache_work: A work to refill the cache when it is empty 3174 * @work_in_progress: Indicates that page_cache_work is running 3175 * @hrtimer: A hrtimer for scheduling a page_cache_work 3176 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3177 * 3178 * This is a per-CPU structure. The reason that it is not included in 3179 * the rcu_data structure is to permit this code to be extracted from 3180 * the RCU files. Such extraction could allow further optimization of 3181 * the interactions with the slab allocators. 3182 */ 3183 struct kfree_rcu_cpu { 3184 struct rcu_head *head; 3185 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 3186 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3187 raw_spinlock_t lock; 3188 struct delayed_work monitor_work; 3189 bool monitor_todo; 3190 bool initialized; 3191 int count; 3192 3193 struct work_struct page_cache_work; 3194 atomic_t work_in_progress; 3195 struct hrtimer hrtimer; 3196 3197 struct llist_head bkvcache; 3198 int nr_bkv_objs; 3199 }; 3200 3201 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3202 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3203 }; 3204 3205 static __always_inline void 3206 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3207 { 3208 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3209 int i; 3210 3211 for (i = 0; i < bhead->nr_records; i++) 3212 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3213 #endif 3214 } 3215 3216 static inline struct kfree_rcu_cpu * 3217 krc_this_cpu_lock(unsigned long *flags) 3218 { 3219 struct kfree_rcu_cpu *krcp; 3220 3221 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3222 krcp = this_cpu_ptr(&krc); 3223 raw_spin_lock(&krcp->lock); 3224 3225 return krcp; 3226 } 3227 3228 static inline void 3229 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3230 { 3231 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3232 } 3233 3234 static inline struct kvfree_rcu_bulk_data * 3235 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3236 { 3237 if (!krcp->nr_bkv_objs) 3238 return NULL; 3239 3240 krcp->nr_bkv_objs--; 3241 return (struct kvfree_rcu_bulk_data *) 3242 llist_del_first(&krcp->bkvcache); 3243 } 3244 3245 static inline bool 3246 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3247 struct kvfree_rcu_bulk_data *bnode) 3248 { 3249 // Check the limit. 3250 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3251 return false; 3252 3253 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3254 krcp->nr_bkv_objs++; 3255 return true; 3256 3257 } 3258 3259 /* 3260 * This function is invoked in workqueue context after a grace period. 3261 * It frees all the objects queued on ->bhead_free or ->head_free. 3262 */ 3263 static void kfree_rcu_work(struct work_struct *work) 3264 { 3265 unsigned long flags; 3266 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3267 struct rcu_head *head, *next; 3268 struct kfree_rcu_cpu *krcp; 3269 struct kfree_rcu_cpu_work *krwp; 3270 int i, j; 3271 3272 krwp = container_of(to_rcu_work(work), 3273 struct kfree_rcu_cpu_work, rcu_work); 3274 krcp = krwp->krcp; 3275 3276 raw_spin_lock_irqsave(&krcp->lock, flags); 3277 // Channels 1 and 2. 3278 for (i = 0; i < FREE_N_CHANNELS; i++) { 3279 bkvhead[i] = krwp->bkvhead_free[i]; 3280 krwp->bkvhead_free[i] = NULL; 3281 } 3282 3283 // Channel 3. 3284 head = krwp->head_free; 3285 krwp->head_free = NULL; 3286 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3287 3288 // Handle two first channels. 3289 for (i = 0; i < FREE_N_CHANNELS; i++) { 3290 for (; bkvhead[i]; bkvhead[i] = bnext) { 3291 bnext = bkvhead[i]->next; 3292 debug_rcu_bhead_unqueue(bkvhead[i]); 3293 3294 rcu_lock_acquire(&rcu_callback_map); 3295 if (i == 0) { // kmalloc() / kfree(). 3296 trace_rcu_invoke_kfree_bulk_callback( 3297 rcu_state.name, bkvhead[i]->nr_records, 3298 bkvhead[i]->records); 3299 3300 kfree_bulk(bkvhead[i]->nr_records, 3301 bkvhead[i]->records); 3302 } else { // vmalloc() / vfree(). 3303 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3304 trace_rcu_invoke_kvfree_callback( 3305 rcu_state.name, 3306 bkvhead[i]->records[j], 0); 3307 3308 vfree(bkvhead[i]->records[j]); 3309 } 3310 } 3311 rcu_lock_release(&rcu_callback_map); 3312 3313 raw_spin_lock_irqsave(&krcp->lock, flags); 3314 if (put_cached_bnode(krcp, bkvhead[i])) 3315 bkvhead[i] = NULL; 3316 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3317 3318 if (bkvhead[i]) 3319 free_page((unsigned long) bkvhead[i]); 3320 3321 cond_resched_tasks_rcu_qs(); 3322 } 3323 } 3324 3325 /* 3326 * Emergency case only. It can happen under low memory 3327 * condition when an allocation gets failed, so the "bulk" 3328 * path can not be temporary maintained. 3329 */ 3330 for (; head; head = next) { 3331 unsigned long offset = (unsigned long)head->func; 3332 void *ptr = (void *)head - offset; 3333 3334 next = head->next; 3335 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3336 rcu_lock_acquire(&rcu_callback_map); 3337 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3338 3339 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3340 kvfree(ptr); 3341 3342 rcu_lock_release(&rcu_callback_map); 3343 cond_resched_tasks_rcu_qs(); 3344 } 3345 } 3346 3347 /* 3348 * Schedule the kfree batch RCU work to run in workqueue context after a GP. 3349 * 3350 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES 3351 * timeout has been reached. 3352 */ 3353 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp) 3354 { 3355 struct kfree_rcu_cpu_work *krwp; 3356 bool repeat = false; 3357 int i, j; 3358 3359 lockdep_assert_held(&krcp->lock); 3360 3361 for (i = 0; i < KFREE_N_BATCHES; i++) { 3362 krwp = &(krcp->krw_arr[i]); 3363 3364 /* 3365 * Try to detach bkvhead or head and attach it over any 3366 * available corresponding free channel. It can be that 3367 * a previous RCU batch is in progress, it means that 3368 * immediately to queue another one is not possible so 3369 * return false to tell caller to retry. 3370 */ 3371 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3372 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3373 (krcp->head && !krwp->head_free)) { 3374 // Channel 1 corresponds to SLAB ptrs. 3375 // Channel 2 corresponds to vmalloc ptrs. 3376 for (j = 0; j < FREE_N_CHANNELS; j++) { 3377 if (!krwp->bkvhead_free[j]) { 3378 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3379 krcp->bkvhead[j] = NULL; 3380 } 3381 } 3382 3383 // Channel 3 corresponds to emergency path. 3384 if (!krwp->head_free) { 3385 krwp->head_free = krcp->head; 3386 krcp->head = NULL; 3387 } 3388 3389 WRITE_ONCE(krcp->count, 0); 3390 3391 /* 3392 * One work is per one batch, so there are three 3393 * "free channels", the batch can handle. It can 3394 * be that the work is in the pending state when 3395 * channels have been detached following by each 3396 * other. 3397 */ 3398 queue_rcu_work(system_wq, &krwp->rcu_work); 3399 } 3400 3401 // Repeat if any "free" corresponding channel is still busy. 3402 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head) 3403 repeat = true; 3404 } 3405 3406 return !repeat; 3407 } 3408 3409 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp, 3410 unsigned long flags) 3411 { 3412 // Attempt to start a new batch. 3413 krcp->monitor_todo = false; 3414 if (queue_kfree_rcu_work(krcp)) { 3415 // Success! Our job is done here. 3416 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3417 return; 3418 } 3419 3420 // Previous RCU batch still in progress, try again later. 3421 krcp->monitor_todo = true; 3422 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3423 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3424 } 3425 3426 /* 3427 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3428 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch. 3429 */ 3430 static void kfree_rcu_monitor(struct work_struct *work) 3431 { 3432 unsigned long flags; 3433 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, 3434 monitor_work.work); 3435 3436 raw_spin_lock_irqsave(&krcp->lock, flags); 3437 if (krcp->monitor_todo) 3438 kfree_rcu_drain_unlock(krcp, flags); 3439 else 3440 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3441 } 3442 3443 static enum hrtimer_restart 3444 schedule_page_work_fn(struct hrtimer *t) 3445 { 3446 struct kfree_rcu_cpu *krcp = 3447 container_of(t, struct kfree_rcu_cpu, hrtimer); 3448 3449 queue_work(system_highpri_wq, &krcp->page_cache_work); 3450 return HRTIMER_NORESTART; 3451 } 3452 3453 static void fill_page_cache_func(struct work_struct *work) 3454 { 3455 struct kvfree_rcu_bulk_data *bnode; 3456 struct kfree_rcu_cpu *krcp = 3457 container_of(work, struct kfree_rcu_cpu, 3458 page_cache_work); 3459 unsigned long flags; 3460 bool pushed; 3461 int i; 3462 3463 for (i = 0; i < rcu_min_cached_objs; i++) { 3464 bnode = (struct kvfree_rcu_bulk_data *) 3465 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3466 3467 if (bnode) { 3468 raw_spin_lock_irqsave(&krcp->lock, flags); 3469 pushed = put_cached_bnode(krcp, bnode); 3470 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3471 3472 if (!pushed) { 3473 free_page((unsigned long) bnode); 3474 break; 3475 } 3476 } 3477 } 3478 3479 atomic_set(&krcp->work_in_progress, 0); 3480 } 3481 3482 static void 3483 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3484 { 3485 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3486 !atomic_xchg(&krcp->work_in_progress, 1)) { 3487 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, 3488 HRTIMER_MODE_REL); 3489 krcp->hrtimer.function = schedule_page_work_fn; 3490 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3491 } 3492 } 3493 3494 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3495 // state specified by flags. If can_alloc is true, the caller must 3496 // be schedulable and not be holding any locks or mutexes that might be 3497 // acquired by the memory allocator or anything that it might invoke. 3498 // Returns true if ptr was successfully recorded, else the caller must 3499 // use a fallback. 3500 static inline bool 3501 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3502 unsigned long *flags, void *ptr, bool can_alloc) 3503 { 3504 struct kvfree_rcu_bulk_data *bnode; 3505 int idx; 3506 3507 *krcp = krc_this_cpu_lock(flags); 3508 if (unlikely(!(*krcp)->initialized)) 3509 return false; 3510 3511 idx = !!is_vmalloc_addr(ptr); 3512 3513 /* Check if a new block is required. */ 3514 if (!(*krcp)->bkvhead[idx] || 3515 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3516 bnode = get_cached_bnode(*krcp); 3517 if (!bnode && can_alloc) { 3518 krc_this_cpu_unlock(*krcp, *flags); 3519 3520 // __GFP_NORETRY - allows a light-weight direct reclaim 3521 // what is OK from minimizing of fallback hitting point of 3522 // view. Apart of that it forbids any OOM invoking what is 3523 // also beneficial since we are about to release memory soon. 3524 // 3525 // __GFP_NOMEMALLOC - prevents from consuming of all the 3526 // memory reserves. Please note we have a fallback path. 3527 // 3528 // __GFP_NOWARN - it is supposed that an allocation can 3529 // be failed under low memory or high memory pressure 3530 // scenarios. 3531 bnode = (struct kvfree_rcu_bulk_data *) 3532 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3533 *krcp = krc_this_cpu_lock(flags); 3534 } 3535 3536 if (!bnode) 3537 return false; 3538 3539 /* Initialize the new block. */ 3540 bnode->nr_records = 0; 3541 bnode->next = (*krcp)->bkvhead[idx]; 3542 3543 /* Attach it to the head. */ 3544 (*krcp)->bkvhead[idx] = bnode; 3545 } 3546 3547 /* Finally insert. */ 3548 (*krcp)->bkvhead[idx]->records 3549 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3550 3551 return true; 3552 } 3553 3554 /* 3555 * Queue a request for lazy invocation of appropriate free routine after a 3556 * grace period. Please note there are three paths are maintained, two are the 3557 * main ones that use array of pointers interface and third one is emergency 3558 * one, that is used only when the main path can not be maintained temporary, 3559 * due to memory pressure. 3560 * 3561 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3562 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3563 * be free'd in workqueue context. This allows us to: batch requests together to 3564 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3565 */ 3566 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3567 { 3568 unsigned long flags; 3569 struct kfree_rcu_cpu *krcp; 3570 bool success; 3571 void *ptr; 3572 3573 if (head) { 3574 ptr = (void *) head - (unsigned long) func; 3575 } else { 3576 /* 3577 * Please note there is a limitation for the head-less 3578 * variant, that is why there is a clear rule for such 3579 * objects: it can be used from might_sleep() context 3580 * only. For other places please embed an rcu_head to 3581 * your data. 3582 */ 3583 might_sleep(); 3584 ptr = (unsigned long *) func; 3585 } 3586 3587 // Queue the object but don't yet schedule the batch. 3588 if (debug_rcu_head_queue(ptr)) { 3589 // Probable double kfree_rcu(), just leak. 3590 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3591 __func__, head); 3592 3593 // Mark as success and leave. 3594 return; 3595 } 3596 3597 kasan_record_aux_stack(ptr); 3598 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3599 if (!success) { 3600 run_page_cache_worker(krcp); 3601 3602 if (head == NULL) 3603 // Inline if kvfree_rcu(one_arg) call. 3604 goto unlock_return; 3605 3606 head->func = func; 3607 head->next = krcp->head; 3608 krcp->head = head; 3609 success = true; 3610 } 3611 3612 WRITE_ONCE(krcp->count, krcp->count + 1); 3613 3614 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3615 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3616 !krcp->monitor_todo) { 3617 krcp->monitor_todo = true; 3618 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3619 } 3620 3621 unlock_return: 3622 krc_this_cpu_unlock(krcp, flags); 3623 3624 /* 3625 * Inline kvfree() after synchronize_rcu(). We can do 3626 * it from might_sleep() context only, so the current 3627 * CPU can pass the QS state. 3628 */ 3629 if (!success) { 3630 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3631 synchronize_rcu(); 3632 kvfree(ptr); 3633 } 3634 } 3635 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3636 3637 static unsigned long 3638 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3639 { 3640 int cpu; 3641 unsigned long count = 0; 3642 3643 /* Snapshot count of all CPUs */ 3644 for_each_possible_cpu(cpu) { 3645 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3646 3647 count += READ_ONCE(krcp->count); 3648 } 3649 3650 return count; 3651 } 3652 3653 static unsigned long 3654 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3655 { 3656 int cpu, freed = 0; 3657 unsigned long flags; 3658 3659 for_each_possible_cpu(cpu) { 3660 int count; 3661 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3662 3663 count = krcp->count; 3664 raw_spin_lock_irqsave(&krcp->lock, flags); 3665 if (krcp->monitor_todo) 3666 kfree_rcu_drain_unlock(krcp, flags); 3667 else 3668 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3669 3670 sc->nr_to_scan -= count; 3671 freed += count; 3672 3673 if (sc->nr_to_scan <= 0) 3674 break; 3675 } 3676 3677 return freed == 0 ? SHRINK_STOP : freed; 3678 } 3679 3680 static struct shrinker kfree_rcu_shrinker = { 3681 .count_objects = kfree_rcu_shrink_count, 3682 .scan_objects = kfree_rcu_shrink_scan, 3683 .batch = 0, 3684 .seeks = DEFAULT_SEEKS, 3685 }; 3686 3687 void __init kfree_rcu_scheduler_running(void) 3688 { 3689 int cpu; 3690 unsigned long flags; 3691 3692 for_each_possible_cpu(cpu) { 3693 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3694 3695 raw_spin_lock_irqsave(&krcp->lock, flags); 3696 if (!krcp->head || krcp->monitor_todo) { 3697 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3698 continue; 3699 } 3700 krcp->monitor_todo = true; 3701 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3702 KFREE_DRAIN_JIFFIES); 3703 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3704 } 3705 } 3706 3707 /* 3708 * During early boot, any blocking grace-period wait automatically 3709 * implies a grace period. Later on, this is never the case for PREEMPTION. 3710 * 3711 * However, because a context switch is a grace period for !PREEMPTION, any 3712 * blocking grace-period wait automatically implies a grace period if 3713 * there is only one CPU online at any point time during execution of 3714 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3715 * occasionally incorrectly indicate that there are multiple CPUs online 3716 * when there was in fact only one the whole time, as this just adds some 3717 * overhead: RCU still operates correctly. 3718 */ 3719 static int rcu_blocking_is_gp(void) 3720 { 3721 int ret; 3722 3723 if (IS_ENABLED(CONFIG_PREEMPTION)) 3724 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3725 might_sleep(); /* Check for RCU read-side critical section. */ 3726 preempt_disable(); 3727 /* 3728 * If the rcu_state.n_online_cpus counter is equal to one, 3729 * there is only one CPU, and that CPU sees all prior accesses 3730 * made by any CPU that was online at the time of its access. 3731 * Furthermore, if this counter is equal to one, its value cannot 3732 * change until after the preempt_enable() below. 3733 * 3734 * Furthermore, if rcu_state.n_online_cpus is equal to one here, 3735 * all later CPUs (both this one and any that come online later 3736 * on) are guaranteed to see all accesses prior to this point 3737 * in the code, without the need for additional memory barriers. 3738 * Those memory barriers are provided by CPU-hotplug code. 3739 */ 3740 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; 3741 preempt_enable(); 3742 return ret; 3743 } 3744 3745 /** 3746 * synchronize_rcu - wait until a grace period has elapsed. 3747 * 3748 * Control will return to the caller some time after a full grace 3749 * period has elapsed, in other words after all currently executing RCU 3750 * read-side critical sections have completed. Note, however, that 3751 * upon return from synchronize_rcu(), the caller might well be executing 3752 * concurrently with new RCU read-side critical sections that began while 3753 * synchronize_rcu() was waiting. RCU read-side critical sections are 3754 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 3755 * In addition, regions of code across which interrupts, preemption, or 3756 * softirqs have been disabled also serve as RCU read-side critical 3757 * sections. This includes hardware interrupt handlers, softirq handlers, 3758 * and NMI handlers. 3759 * 3760 * Note that this guarantee implies further memory-ordering guarantees. 3761 * On systems with more than one CPU, when synchronize_rcu() returns, 3762 * each CPU is guaranteed to have executed a full memory barrier since 3763 * the end of its last RCU read-side critical section whose beginning 3764 * preceded the call to synchronize_rcu(). In addition, each CPU having 3765 * an RCU read-side critical section that extends beyond the return from 3766 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3767 * after the beginning of synchronize_rcu() and before the beginning of 3768 * that RCU read-side critical section. Note that these guarantees include 3769 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3770 * that are executing in the kernel. 3771 * 3772 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3773 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3774 * to have executed a full memory barrier during the execution of 3775 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3776 * again only if the system has more than one CPU). 3777 */ 3778 void synchronize_rcu(void) 3779 { 3780 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3781 lock_is_held(&rcu_lock_map) || 3782 lock_is_held(&rcu_sched_lock_map), 3783 "Illegal synchronize_rcu() in RCU read-side critical section"); 3784 if (rcu_blocking_is_gp()) 3785 return; // Context allows vacuous grace periods. 3786 if (rcu_gp_is_expedited()) 3787 synchronize_rcu_expedited(); 3788 else 3789 wait_rcu_gp(call_rcu); 3790 } 3791 EXPORT_SYMBOL_GPL(synchronize_rcu); 3792 3793 /** 3794 * get_state_synchronize_rcu - Snapshot current RCU state 3795 * 3796 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3797 * or poll_state_synchronize_rcu() to determine whether or not a full 3798 * grace period has elapsed in the meantime. 3799 */ 3800 unsigned long get_state_synchronize_rcu(void) 3801 { 3802 /* 3803 * Any prior manipulation of RCU-protected data must happen 3804 * before the load from ->gp_seq. 3805 */ 3806 smp_mb(); /* ^^^ */ 3807 return rcu_seq_snap(&rcu_state.gp_seq); 3808 } 3809 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3810 3811 /** 3812 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3813 * 3814 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3815 * or poll_state_synchronize_rcu() to determine whether or not a full 3816 * grace period has elapsed in the meantime. If the needed grace period 3817 * is not already slated to start, notifies RCU core of the need for that 3818 * grace period. 3819 * 3820 * Interrupts must be enabled for the case where it is necessary to awaken 3821 * the grace-period kthread. 3822 */ 3823 unsigned long start_poll_synchronize_rcu(void) 3824 { 3825 unsigned long flags; 3826 unsigned long gp_seq = get_state_synchronize_rcu(); 3827 bool needwake; 3828 struct rcu_data *rdp; 3829 struct rcu_node *rnp; 3830 3831 lockdep_assert_irqs_enabled(); 3832 local_irq_save(flags); 3833 rdp = this_cpu_ptr(&rcu_data); 3834 rnp = rdp->mynode; 3835 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3836 needwake = rcu_start_this_gp(rnp, rdp, gp_seq); 3837 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3838 if (needwake) 3839 rcu_gp_kthread_wake(); 3840 return gp_seq; 3841 } 3842 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3843 3844 /** 3845 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period 3846 * 3847 * @oldstate: return from call to get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3848 * 3849 * If a full RCU grace period has elapsed since the earlier call from 3850 * which oldstate was obtained, return @true, otherwise return @false. 3851 * If @false is returned, it is the caller's responsibilty to invoke this 3852 * function later on until it does return @true. Alternatively, the caller 3853 * can explicitly wait for a grace period, for example, by passing @oldstate 3854 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3855 * 3856 * Yes, this function does not take counter wrap into account. 3857 * But counter wrap is harmless. If the counter wraps, we have waited for 3858 * more than 2 billion grace periods (and way more on a 64-bit system!). 3859 * Those needing to keep oldstate values for very long time periods 3860 * (many hours even on 32-bit systems) should check them occasionally 3861 * and either refresh them or set a flag indicating that the grace period 3862 * has completed. 3863 */ 3864 bool poll_state_synchronize_rcu(unsigned long oldstate) 3865 { 3866 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) { 3867 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3868 return true; 3869 } 3870 return false; 3871 } 3872 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3873 3874 /** 3875 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3876 * 3877 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3878 * 3879 * If a full RCU grace period has elapsed since the earlier call to 3880 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3881 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3882 * 3883 * Yes, this function does not take counter wrap into account. But 3884 * counter wrap is harmless. If the counter wraps, we have waited for 3885 * more than 2 billion grace periods (and way more on a 64-bit system!), 3886 * so waiting for one additional grace period should be just fine. 3887 */ 3888 void cond_synchronize_rcu(unsigned long oldstate) 3889 { 3890 if (!poll_state_synchronize_rcu(oldstate)) 3891 synchronize_rcu(); 3892 } 3893 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3894 3895 /* 3896 * Check to see if there is any immediate RCU-related work to be done by 3897 * the current CPU, returning 1 if so and zero otherwise. The checks are 3898 * in order of increasing expense: checks that can be carried out against 3899 * CPU-local state are performed first. However, we must check for CPU 3900 * stalls first, else we might not get a chance. 3901 */ 3902 static int rcu_pending(int user) 3903 { 3904 bool gp_in_progress; 3905 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3906 struct rcu_node *rnp = rdp->mynode; 3907 3908 lockdep_assert_irqs_disabled(); 3909 3910 /* Check for CPU stalls, if enabled. */ 3911 check_cpu_stall(rdp); 3912 3913 /* Does this CPU need a deferred NOCB wakeup? */ 3914 if (rcu_nocb_need_deferred_wakeup(rdp)) 3915 return 1; 3916 3917 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3918 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3919 return 0; 3920 3921 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3922 gp_in_progress = rcu_gp_in_progress(); 3923 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3924 return 1; 3925 3926 /* Does this CPU have callbacks ready to invoke? */ 3927 if (!rcu_rdp_is_offloaded(rdp) && 3928 rcu_segcblist_ready_cbs(&rdp->cblist)) 3929 return 1; 3930 3931 /* Has RCU gone idle with this CPU needing another grace period? */ 3932 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3933 !rcu_rdp_is_offloaded(rdp) && 3934 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3935 return 1; 3936 3937 /* Have RCU grace period completed or started? */ 3938 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3939 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3940 return 1; 3941 3942 /* nothing to do */ 3943 return 0; 3944 } 3945 3946 /* 3947 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3948 * the compiler is expected to optimize this away. 3949 */ 3950 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3951 { 3952 trace_rcu_barrier(rcu_state.name, s, cpu, 3953 atomic_read(&rcu_state.barrier_cpu_count), done); 3954 } 3955 3956 /* 3957 * RCU callback function for rcu_barrier(). If we are last, wake 3958 * up the task executing rcu_barrier(). 3959 * 3960 * Note that the value of rcu_state.barrier_sequence must be captured 3961 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3962 * other CPUs might count the value down to zero before this CPU gets 3963 * around to invoking rcu_barrier_trace(), which might result in bogus 3964 * data from the next instance of rcu_barrier(). 3965 */ 3966 static void rcu_barrier_callback(struct rcu_head *rhp) 3967 { 3968 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3969 3970 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3971 rcu_barrier_trace(TPS("LastCB"), -1, s); 3972 complete(&rcu_state.barrier_completion); 3973 } else { 3974 rcu_barrier_trace(TPS("CB"), -1, s); 3975 } 3976 } 3977 3978 /* 3979 * Called with preemption disabled, and from cross-cpu IRQ context. 3980 */ 3981 static void rcu_barrier_func(void *cpu_in) 3982 { 3983 uintptr_t cpu = (uintptr_t)cpu_in; 3984 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3985 3986 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3987 rdp->barrier_head.func = rcu_barrier_callback; 3988 debug_rcu_head_queue(&rdp->barrier_head); 3989 rcu_nocb_lock(rdp); 3990 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3991 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3992 atomic_inc(&rcu_state.barrier_cpu_count); 3993 } else { 3994 debug_rcu_head_unqueue(&rdp->barrier_head); 3995 rcu_barrier_trace(TPS("IRQNQ"), -1, 3996 rcu_state.barrier_sequence); 3997 } 3998 rcu_nocb_unlock(rdp); 3999 } 4000 4001 /** 4002 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4003 * 4004 * Note that this primitive does not necessarily wait for an RCU grace period 4005 * to complete. For example, if there are no RCU callbacks queued anywhere 4006 * in the system, then rcu_barrier() is within its rights to return 4007 * immediately, without waiting for anything, much less an RCU grace period. 4008 */ 4009 void rcu_barrier(void) 4010 { 4011 uintptr_t cpu; 4012 struct rcu_data *rdp; 4013 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4014 4015 rcu_barrier_trace(TPS("Begin"), -1, s); 4016 4017 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4018 mutex_lock(&rcu_state.barrier_mutex); 4019 4020 /* Did someone else do our work for us? */ 4021 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4022 rcu_barrier_trace(TPS("EarlyExit"), -1, 4023 rcu_state.barrier_sequence); 4024 smp_mb(); /* caller's subsequent code after above check. */ 4025 mutex_unlock(&rcu_state.barrier_mutex); 4026 return; 4027 } 4028 4029 /* Mark the start of the barrier operation. */ 4030 rcu_seq_start(&rcu_state.barrier_sequence); 4031 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4032 4033 /* 4034 * Initialize the count to two rather than to zero in order 4035 * to avoid a too-soon return to zero in case of an immediate 4036 * invocation of the just-enqueued callback (or preemption of 4037 * this task). Exclude CPU-hotplug operations to ensure that no 4038 * offline non-offloaded CPU has callbacks queued. 4039 */ 4040 init_completion(&rcu_state.barrier_completion); 4041 atomic_set(&rcu_state.barrier_cpu_count, 2); 4042 get_online_cpus(); 4043 4044 /* 4045 * Force each CPU with callbacks to register a new callback. 4046 * When that callback is invoked, we will know that all of the 4047 * corresponding CPU's preceding callbacks have been invoked. 4048 */ 4049 for_each_possible_cpu(cpu) { 4050 rdp = per_cpu_ptr(&rcu_data, cpu); 4051 if (cpu_is_offline(cpu) && 4052 !rcu_rdp_is_offloaded(rdp)) 4053 continue; 4054 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 4055 rcu_barrier_trace(TPS("OnlineQ"), cpu, 4056 rcu_state.barrier_sequence); 4057 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 4058 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 4059 cpu_is_offline(cpu)) { 4060 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 4061 rcu_state.barrier_sequence); 4062 local_irq_disable(); 4063 rcu_barrier_func((void *)cpu); 4064 local_irq_enable(); 4065 } else if (cpu_is_offline(cpu)) { 4066 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 4067 rcu_state.barrier_sequence); 4068 } else { 4069 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 4070 rcu_state.barrier_sequence); 4071 } 4072 } 4073 put_online_cpus(); 4074 4075 /* 4076 * Now that we have an rcu_barrier_callback() callback on each 4077 * CPU, and thus each counted, remove the initial count. 4078 */ 4079 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4080 complete(&rcu_state.barrier_completion); 4081 4082 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4083 wait_for_completion(&rcu_state.barrier_completion); 4084 4085 /* Mark the end of the barrier operation. */ 4086 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4087 rcu_seq_end(&rcu_state.barrier_sequence); 4088 4089 /* Other rcu_barrier() invocations can now safely proceed. */ 4090 mutex_unlock(&rcu_state.barrier_mutex); 4091 } 4092 EXPORT_SYMBOL_GPL(rcu_barrier); 4093 4094 /* 4095 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4096 * first CPU in a given leaf rcu_node structure coming online. The caller 4097 * must hold the corresponding leaf rcu_node ->lock with interrrupts 4098 * disabled. 4099 */ 4100 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4101 { 4102 long mask; 4103 long oldmask; 4104 struct rcu_node *rnp = rnp_leaf; 4105 4106 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4107 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4108 for (;;) { 4109 mask = rnp->grpmask; 4110 rnp = rnp->parent; 4111 if (rnp == NULL) 4112 return; 4113 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4114 oldmask = rnp->qsmaskinit; 4115 rnp->qsmaskinit |= mask; 4116 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4117 if (oldmask) 4118 return; 4119 } 4120 } 4121 4122 /* 4123 * Do boot-time initialization of a CPU's per-CPU RCU data. 4124 */ 4125 static void __init 4126 rcu_boot_init_percpu_data(int cpu) 4127 { 4128 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4129 4130 /* Set up local state, ensuring consistent view of global state. */ 4131 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4132 INIT_WORK(&rdp->strict_work, strict_work_handler); 4133 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 4134 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 4135 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4136 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4137 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4138 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4139 rdp->cpu = cpu; 4140 rcu_boot_init_nocb_percpu_data(rdp); 4141 } 4142 4143 /* 4144 * Invoked early in the CPU-online process, when pretty much all services 4145 * are available. The incoming CPU is not present. 4146 * 4147 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4148 * offline event can be happening at a given time. Note also that we can 4149 * accept some slop in the rsp->gp_seq access due to the fact that this 4150 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4151 * And any offloaded callbacks are being numbered elsewhere. 4152 */ 4153 int rcutree_prepare_cpu(unsigned int cpu) 4154 { 4155 unsigned long flags; 4156 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4157 struct rcu_node *rnp = rcu_get_root(); 4158 4159 /* Set up local state, ensuring consistent view of global state. */ 4160 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4161 rdp->qlen_last_fqs_check = 0; 4162 rdp->n_force_qs_snap = rcu_state.n_force_qs; 4163 rdp->blimit = blimit; 4164 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4165 rcu_dynticks_eqs_online(); 4166 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4167 4168 /* 4169 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4170 * (re-)initialized. 4171 */ 4172 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4173 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4174 4175 /* 4176 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4177 * propagation up the rcu_node tree will happen at the beginning 4178 * of the next grace period. 4179 */ 4180 rnp = rdp->mynode; 4181 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4182 rdp->beenonline = true; /* We have now been online. */ 4183 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4184 rdp->gp_seq_needed = rdp->gp_seq; 4185 rdp->cpu_no_qs.b.norm = true; 4186 rdp->core_needs_qs = false; 4187 rdp->rcu_iw_pending = false; 4188 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4189 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4190 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4191 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4192 rcu_prepare_kthreads(cpu); 4193 rcu_spawn_cpu_nocb_kthread(cpu); 4194 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4195 4196 return 0; 4197 } 4198 4199 /* 4200 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4201 */ 4202 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4203 { 4204 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4205 4206 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4207 } 4208 4209 /* 4210 * Near the end of the CPU-online process. Pretty much all services 4211 * enabled, and the CPU is now very much alive. 4212 */ 4213 int rcutree_online_cpu(unsigned int cpu) 4214 { 4215 unsigned long flags; 4216 struct rcu_data *rdp; 4217 struct rcu_node *rnp; 4218 4219 rdp = per_cpu_ptr(&rcu_data, cpu); 4220 rnp = rdp->mynode; 4221 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4222 rnp->ffmask |= rdp->grpmask; 4223 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4224 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4225 return 0; /* Too early in boot for scheduler work. */ 4226 sync_sched_exp_online_cleanup(cpu); 4227 rcutree_affinity_setting(cpu, -1); 4228 4229 // Stop-machine done, so allow nohz_full to disable tick. 4230 tick_dep_clear(TICK_DEP_BIT_RCU); 4231 return 0; 4232 } 4233 4234 /* 4235 * Near the beginning of the process. The CPU is still very much alive 4236 * with pretty much all services enabled. 4237 */ 4238 int rcutree_offline_cpu(unsigned int cpu) 4239 { 4240 unsigned long flags; 4241 struct rcu_data *rdp; 4242 struct rcu_node *rnp; 4243 4244 rdp = per_cpu_ptr(&rcu_data, cpu); 4245 rnp = rdp->mynode; 4246 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4247 rnp->ffmask &= ~rdp->grpmask; 4248 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4249 4250 rcutree_affinity_setting(cpu, cpu); 4251 4252 // nohz_full CPUs need the tick for stop-machine to work quickly 4253 tick_dep_set(TICK_DEP_BIT_RCU); 4254 return 0; 4255 } 4256 4257 /* 4258 * Mark the specified CPU as being online so that subsequent grace periods 4259 * (both expedited and normal) will wait on it. Note that this means that 4260 * incoming CPUs are not allowed to use RCU read-side critical sections 4261 * until this function is called. Failing to observe this restriction 4262 * will result in lockdep splats. 4263 * 4264 * Note that this function is special in that it is invoked directly 4265 * from the incoming CPU rather than from the cpuhp_step mechanism. 4266 * This is because this function must be invoked at a precise location. 4267 */ 4268 void rcu_cpu_starting(unsigned int cpu) 4269 { 4270 unsigned long flags; 4271 unsigned long mask; 4272 struct rcu_data *rdp; 4273 struct rcu_node *rnp; 4274 bool newcpu; 4275 4276 rdp = per_cpu_ptr(&rcu_data, cpu); 4277 if (rdp->cpu_started) 4278 return; 4279 rdp->cpu_started = true; 4280 4281 rnp = rdp->mynode; 4282 mask = rdp->grpmask; 4283 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4284 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4285 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4286 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4287 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4288 newcpu = !(rnp->expmaskinitnext & mask); 4289 rnp->expmaskinitnext |= mask; 4290 /* Allow lockless access for expedited grace periods. */ 4291 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4292 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4293 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4294 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4295 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4296 4297 /* An incoming CPU should never be blocking a grace period. */ 4298 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4299 rcu_disable_urgency_upon_qs(rdp); 4300 /* Report QS -after- changing ->qsmaskinitnext! */ 4301 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4302 } else { 4303 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4304 } 4305 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4306 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4307 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4308 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4309 } 4310 4311 /* 4312 * The outgoing function has no further need of RCU, so remove it from 4313 * the rcu_node tree's ->qsmaskinitnext bit masks. 4314 * 4315 * Note that this function is special in that it is invoked directly 4316 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4317 * This is because this function must be invoked at a precise location. 4318 */ 4319 void rcu_report_dead(unsigned int cpu) 4320 { 4321 unsigned long flags; 4322 unsigned long mask; 4323 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4324 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4325 4326 // Do any dangling deferred wakeups. 4327 do_nocb_deferred_wakeup(rdp); 4328 4329 /* QS for any half-done expedited grace period. */ 4330 preempt_disable(); 4331 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 4332 preempt_enable(); 4333 rcu_preempt_deferred_qs(current); 4334 4335 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4336 mask = rdp->grpmask; 4337 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4338 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4339 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4340 raw_spin_lock(&rcu_state.ofl_lock); 4341 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4342 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4343 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4344 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4345 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4346 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4347 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4348 } 4349 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4350 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4351 raw_spin_unlock(&rcu_state.ofl_lock); 4352 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4353 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4354 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4355 4356 rdp->cpu_started = false; 4357 } 4358 4359 #ifdef CONFIG_HOTPLUG_CPU 4360 /* 4361 * The outgoing CPU has just passed through the dying-idle state, and we 4362 * are being invoked from the CPU that was IPIed to continue the offline 4363 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4364 */ 4365 void rcutree_migrate_callbacks(int cpu) 4366 { 4367 unsigned long flags; 4368 struct rcu_data *my_rdp; 4369 struct rcu_node *my_rnp; 4370 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4371 bool needwake; 4372 4373 if (rcu_rdp_is_offloaded(rdp) || 4374 rcu_segcblist_empty(&rdp->cblist)) 4375 return; /* No callbacks to migrate. */ 4376 4377 local_irq_save(flags); 4378 my_rdp = this_cpu_ptr(&rcu_data); 4379 my_rnp = my_rdp->mynode; 4380 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4381 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4382 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4383 /* Leverage recent GPs and set GP for new callbacks. */ 4384 needwake = rcu_advance_cbs(my_rnp, rdp) || 4385 rcu_advance_cbs(my_rnp, my_rdp); 4386 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4387 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4388 rcu_segcblist_disable(&rdp->cblist); 4389 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 4390 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4391 if (rcu_rdp_is_offloaded(my_rdp)) { 4392 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4393 __call_rcu_nocb_wake(my_rdp, true, flags); 4394 } else { 4395 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4396 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4397 } 4398 if (needwake) 4399 rcu_gp_kthread_wake(); 4400 lockdep_assert_irqs_enabled(); 4401 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4402 !rcu_segcblist_empty(&rdp->cblist), 4403 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4404 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4405 rcu_segcblist_first_cb(&rdp->cblist)); 4406 } 4407 #endif 4408 4409 /* 4410 * On non-huge systems, use expedited RCU grace periods to make suspend 4411 * and hibernation run faster. 4412 */ 4413 static int rcu_pm_notify(struct notifier_block *self, 4414 unsigned long action, void *hcpu) 4415 { 4416 switch (action) { 4417 case PM_HIBERNATION_PREPARE: 4418 case PM_SUSPEND_PREPARE: 4419 rcu_expedite_gp(); 4420 break; 4421 case PM_POST_HIBERNATION: 4422 case PM_POST_SUSPEND: 4423 rcu_unexpedite_gp(); 4424 break; 4425 default: 4426 break; 4427 } 4428 return NOTIFY_OK; 4429 } 4430 4431 /* 4432 * Spawn the kthreads that handle RCU's grace periods. 4433 */ 4434 static int __init rcu_spawn_gp_kthread(void) 4435 { 4436 unsigned long flags; 4437 int kthread_prio_in = kthread_prio; 4438 struct rcu_node *rnp; 4439 struct sched_param sp; 4440 struct task_struct *t; 4441 4442 /* Force priority into range. */ 4443 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4444 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4445 kthread_prio = 2; 4446 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4447 kthread_prio = 1; 4448 else if (kthread_prio < 0) 4449 kthread_prio = 0; 4450 else if (kthread_prio > 99) 4451 kthread_prio = 99; 4452 4453 if (kthread_prio != kthread_prio_in) 4454 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4455 kthread_prio, kthread_prio_in); 4456 4457 rcu_scheduler_fully_active = 1; 4458 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4459 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4460 return 0; 4461 if (kthread_prio) { 4462 sp.sched_priority = kthread_prio; 4463 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4464 } 4465 rnp = rcu_get_root(); 4466 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4467 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4468 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4469 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4470 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4471 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4472 wake_up_process(t); 4473 rcu_spawn_nocb_kthreads(); 4474 rcu_spawn_boost_kthreads(); 4475 return 0; 4476 } 4477 early_initcall(rcu_spawn_gp_kthread); 4478 4479 /* 4480 * This function is invoked towards the end of the scheduler's 4481 * initialization process. Before this is called, the idle task might 4482 * contain synchronous grace-period primitives (during which time, this idle 4483 * task is booting the system, and such primitives are no-ops). After this 4484 * function is called, any synchronous grace-period primitives are run as 4485 * expedited, with the requesting task driving the grace period forward. 4486 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4487 * runtime RCU functionality. 4488 */ 4489 void rcu_scheduler_starting(void) 4490 { 4491 WARN_ON(num_online_cpus() != 1); 4492 WARN_ON(nr_context_switches() > 0); 4493 rcu_test_sync_prims(); 4494 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4495 rcu_test_sync_prims(); 4496 } 4497 4498 /* 4499 * Helper function for rcu_init() that initializes the rcu_state structure. 4500 */ 4501 static void __init rcu_init_one(void) 4502 { 4503 static const char * const buf[] = RCU_NODE_NAME_INIT; 4504 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4505 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4506 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4507 4508 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4509 int cpustride = 1; 4510 int i; 4511 int j; 4512 struct rcu_node *rnp; 4513 4514 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4515 4516 /* Silence gcc 4.8 false positive about array index out of range. */ 4517 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4518 panic("rcu_init_one: rcu_num_lvls out of range"); 4519 4520 /* Initialize the level-tracking arrays. */ 4521 4522 for (i = 1; i < rcu_num_lvls; i++) 4523 rcu_state.level[i] = 4524 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4525 rcu_init_levelspread(levelspread, num_rcu_lvl); 4526 4527 /* Initialize the elements themselves, starting from the leaves. */ 4528 4529 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4530 cpustride *= levelspread[i]; 4531 rnp = rcu_state.level[i]; 4532 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4533 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4534 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4535 &rcu_node_class[i], buf[i]); 4536 raw_spin_lock_init(&rnp->fqslock); 4537 lockdep_set_class_and_name(&rnp->fqslock, 4538 &rcu_fqs_class[i], fqs[i]); 4539 rnp->gp_seq = rcu_state.gp_seq; 4540 rnp->gp_seq_needed = rcu_state.gp_seq; 4541 rnp->completedqs = rcu_state.gp_seq; 4542 rnp->qsmask = 0; 4543 rnp->qsmaskinit = 0; 4544 rnp->grplo = j * cpustride; 4545 rnp->grphi = (j + 1) * cpustride - 1; 4546 if (rnp->grphi >= nr_cpu_ids) 4547 rnp->grphi = nr_cpu_ids - 1; 4548 if (i == 0) { 4549 rnp->grpnum = 0; 4550 rnp->grpmask = 0; 4551 rnp->parent = NULL; 4552 } else { 4553 rnp->grpnum = j % levelspread[i - 1]; 4554 rnp->grpmask = BIT(rnp->grpnum); 4555 rnp->parent = rcu_state.level[i - 1] + 4556 j / levelspread[i - 1]; 4557 } 4558 rnp->level = i; 4559 INIT_LIST_HEAD(&rnp->blkd_tasks); 4560 rcu_init_one_nocb(rnp); 4561 init_waitqueue_head(&rnp->exp_wq[0]); 4562 init_waitqueue_head(&rnp->exp_wq[1]); 4563 init_waitqueue_head(&rnp->exp_wq[2]); 4564 init_waitqueue_head(&rnp->exp_wq[3]); 4565 spin_lock_init(&rnp->exp_lock); 4566 } 4567 } 4568 4569 init_swait_queue_head(&rcu_state.gp_wq); 4570 init_swait_queue_head(&rcu_state.expedited_wq); 4571 rnp = rcu_first_leaf_node(); 4572 for_each_possible_cpu(i) { 4573 while (i > rnp->grphi) 4574 rnp++; 4575 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4576 rcu_boot_init_percpu_data(i); 4577 } 4578 } 4579 4580 /* 4581 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4582 * replace the definitions in tree.h because those are needed to size 4583 * the ->node array in the rcu_state structure. 4584 */ 4585 static void __init rcu_init_geometry(void) 4586 { 4587 ulong d; 4588 int i; 4589 int rcu_capacity[RCU_NUM_LVLS]; 4590 4591 /* 4592 * Initialize any unspecified boot parameters. 4593 * The default values of jiffies_till_first_fqs and 4594 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4595 * value, which is a function of HZ, then adding one for each 4596 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4597 */ 4598 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4599 if (jiffies_till_first_fqs == ULONG_MAX) 4600 jiffies_till_first_fqs = d; 4601 if (jiffies_till_next_fqs == ULONG_MAX) 4602 jiffies_till_next_fqs = d; 4603 adjust_jiffies_till_sched_qs(); 4604 4605 /* If the compile-time values are accurate, just leave. */ 4606 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4607 nr_cpu_ids == NR_CPUS) 4608 return; 4609 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4610 rcu_fanout_leaf, nr_cpu_ids); 4611 4612 /* 4613 * The boot-time rcu_fanout_leaf parameter must be at least two 4614 * and cannot exceed the number of bits in the rcu_node masks. 4615 * Complain and fall back to the compile-time values if this 4616 * limit is exceeded. 4617 */ 4618 if (rcu_fanout_leaf < 2 || 4619 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4620 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4621 WARN_ON(1); 4622 return; 4623 } 4624 4625 /* 4626 * Compute number of nodes that can be handled an rcu_node tree 4627 * with the given number of levels. 4628 */ 4629 rcu_capacity[0] = rcu_fanout_leaf; 4630 for (i = 1; i < RCU_NUM_LVLS; i++) 4631 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4632 4633 /* 4634 * The tree must be able to accommodate the configured number of CPUs. 4635 * If this limit is exceeded, fall back to the compile-time values. 4636 */ 4637 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4638 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4639 WARN_ON(1); 4640 return; 4641 } 4642 4643 /* Calculate the number of levels in the tree. */ 4644 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4645 } 4646 rcu_num_lvls = i + 1; 4647 4648 /* Calculate the number of rcu_nodes at each level of the tree. */ 4649 for (i = 0; i < rcu_num_lvls; i++) { 4650 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4651 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4652 } 4653 4654 /* Calculate the total number of rcu_node structures. */ 4655 rcu_num_nodes = 0; 4656 for (i = 0; i < rcu_num_lvls; i++) 4657 rcu_num_nodes += num_rcu_lvl[i]; 4658 } 4659 4660 /* 4661 * Dump out the structure of the rcu_node combining tree associated 4662 * with the rcu_state structure. 4663 */ 4664 static void __init rcu_dump_rcu_node_tree(void) 4665 { 4666 int level = 0; 4667 struct rcu_node *rnp; 4668 4669 pr_info("rcu_node tree layout dump\n"); 4670 pr_info(" "); 4671 rcu_for_each_node_breadth_first(rnp) { 4672 if (rnp->level != level) { 4673 pr_cont("\n"); 4674 pr_info(" "); 4675 level = rnp->level; 4676 } 4677 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4678 } 4679 pr_cont("\n"); 4680 } 4681 4682 struct workqueue_struct *rcu_gp_wq; 4683 struct workqueue_struct *rcu_par_gp_wq; 4684 4685 static void __init kfree_rcu_batch_init(void) 4686 { 4687 int cpu; 4688 int i; 4689 4690 for_each_possible_cpu(cpu) { 4691 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4692 4693 for (i = 0; i < KFREE_N_BATCHES; i++) { 4694 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4695 krcp->krw_arr[i].krcp = krcp; 4696 } 4697 4698 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4699 INIT_WORK(&krcp->page_cache_work, fill_page_cache_func); 4700 krcp->initialized = true; 4701 } 4702 if (register_shrinker(&kfree_rcu_shrinker)) 4703 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4704 } 4705 4706 void __init rcu_init(void) 4707 { 4708 int cpu; 4709 4710 rcu_early_boot_tests(); 4711 4712 kfree_rcu_batch_init(); 4713 rcu_bootup_announce(); 4714 rcu_init_geometry(); 4715 rcu_init_one(); 4716 if (dump_tree) 4717 rcu_dump_rcu_node_tree(); 4718 if (use_softirq) 4719 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4720 4721 /* 4722 * We don't need protection against CPU-hotplug here because 4723 * this is called early in boot, before either interrupts 4724 * or the scheduler are operational. 4725 */ 4726 pm_notifier(rcu_pm_notify, 0); 4727 for_each_online_cpu(cpu) { 4728 rcutree_prepare_cpu(cpu); 4729 rcu_cpu_starting(cpu); 4730 rcutree_online_cpu(cpu); 4731 } 4732 4733 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4734 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4735 WARN_ON(!rcu_gp_wq); 4736 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4737 WARN_ON(!rcu_par_gp_wq); 4738 srcu_init(); 4739 4740 /* Fill in default value for rcutree.qovld boot parameter. */ 4741 /* -After- the rcu_node ->lock fields are initialized! */ 4742 if (qovld < 0) 4743 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4744 else 4745 qovld_calc = qovld; 4746 } 4747 4748 #include "tree_stall.h" 4749 #include "tree_exp.h" 4750 #include "tree_plugin.h" 4751