xref: /linux/kernel/rcu/tree.c (revision 7bc5c428a660d4d1bc95ba54bf4cb6bccf8c3029)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
61 #include <linux/mm.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
64 
65 #include "tree.h"
66 #include "rcu.h"
67 
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72 
73 #ifndef data_race
74 #define data_race(expr)							\
75 	({								\
76 		expr;							\
77 	})
78 #endif
79 #ifndef ASSERT_EXCLUSIVE_WRITER
80 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
81 #endif
82 #ifndef ASSERT_EXCLUSIVE_ACCESS
83 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
84 #endif
85 
86 /* Data structures. */
87 
88 /*
89  * Steal a bit from the bottom of ->dynticks for idle entry/exit
90  * control.  Initially this is for TLB flushing.
91  */
92 #define RCU_DYNTICK_CTRL_MASK 0x1
93 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
94 
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
96 	.dynticks_nesting = 1,
97 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
98 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
99 };
100 static struct rcu_state rcu_state = {
101 	.level = { &rcu_state.node[0] },
102 	.gp_state = RCU_GP_IDLE,
103 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
104 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
105 	.name = RCU_NAME,
106 	.abbr = RCU_ABBR,
107 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
108 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
109 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
110 };
111 
112 /* Dump rcu_node combining tree at boot to verify correct setup. */
113 static bool dump_tree;
114 module_param(dump_tree, bool, 0444);
115 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
116 static bool use_softirq = true;
117 module_param(use_softirq, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact;
120 module_param(rcu_fanout_exact, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123 module_param(rcu_fanout_leaf, int, 0444);
124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 /* Number of rcu_nodes at specified level. */
126 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
159 			      unsigned long gps, unsigned long flags);
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 static void invoke_rcu_core(void);
164 static void rcu_report_exp_rdp(struct rcu_data *rdp);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
167 
168 /* rcuc/rcub kthread realtime priority */
169 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
170 module_param(kthread_prio, int, 0444);
171 
172 /* Delay in jiffies for grace-period initialization delays, debug only. */
173 
174 static int gp_preinit_delay;
175 module_param(gp_preinit_delay, int, 0444);
176 static int gp_init_delay;
177 module_param(gp_init_delay, int, 0444);
178 static int gp_cleanup_delay;
179 module_param(gp_cleanup_delay, int, 0444);
180 
181 /*
182  * This rcu parameter is runtime-read-only. It reflects
183  * a minimum allowed number of objects which can be cached
184  * per-CPU. Object size is equal to one page. This value
185  * can be changed at boot time.
186  */
187 static int rcu_min_cached_objs = 2;
188 module_param(rcu_min_cached_objs, int, 0444);
189 
190 /* Retrieve RCU kthreads priority for rcutorture */
191 int rcu_get_gp_kthreads_prio(void)
192 {
193 	return kthread_prio;
194 }
195 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
196 
197 /*
198  * Number of grace periods between delays, normalized by the duration of
199  * the delay.  The longer the delay, the more the grace periods between
200  * each delay.  The reason for this normalization is that it means that,
201  * for non-zero delays, the overall slowdown of grace periods is constant
202  * regardless of the duration of the delay.  This arrangement balances
203  * the need for long delays to increase some race probabilities with the
204  * need for fast grace periods to increase other race probabilities.
205  */
206 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
207 
208 /*
209  * Compute the mask of online CPUs for the specified rcu_node structure.
210  * This will not be stable unless the rcu_node structure's ->lock is
211  * held, but the bit corresponding to the current CPU will be stable
212  * in most contexts.
213  */
214 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
215 {
216 	return READ_ONCE(rnp->qsmaskinitnext);
217 }
218 
219 /*
220  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
221  * permit this function to be invoked without holding the root rcu_node
222  * structure's ->lock, but of course results can be subject to change.
223  */
224 static int rcu_gp_in_progress(void)
225 {
226 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
227 }
228 
229 /*
230  * Return the number of callbacks queued on the specified CPU.
231  * Handles both the nocbs and normal cases.
232  */
233 static long rcu_get_n_cbs_cpu(int cpu)
234 {
235 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
236 
237 	if (rcu_segcblist_is_enabled(&rdp->cblist))
238 		return rcu_segcblist_n_cbs(&rdp->cblist);
239 	return 0;
240 }
241 
242 void rcu_softirq_qs(void)
243 {
244 	rcu_qs();
245 	rcu_preempt_deferred_qs(current);
246 }
247 
248 /*
249  * Record entry into an extended quiescent state.  This is only to be
250  * called when not already in an extended quiescent state, that is,
251  * RCU is watching prior to the call to this function and is no longer
252  * watching upon return.
253  */
254 static noinstr void rcu_dynticks_eqs_enter(void)
255 {
256 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
257 	int seq;
258 
259 	/*
260 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
261 	 * critical sections, and we also must force ordering with the
262 	 * next idle sojourn.
263 	 */
264 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
265 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
266 	// RCU is no longer watching.  Better be in extended quiescent state!
267 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
268 		     (seq & RCU_DYNTICK_CTRL_CTR));
269 	/* Better not have special action (TLB flush) pending! */
270 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
271 		     (seq & RCU_DYNTICK_CTRL_MASK));
272 }
273 
274 /*
275  * Record exit from an extended quiescent state.  This is only to be
276  * called from an extended quiescent state, that is, RCU is not watching
277  * prior to the call to this function and is watching upon return.
278  */
279 static noinstr void rcu_dynticks_eqs_exit(void)
280 {
281 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
282 	int seq;
283 
284 	/*
285 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
286 	 * and we also must force ordering with the next RCU read-side
287 	 * critical section.
288 	 */
289 	seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 	// RCU is now watching.  Better not be in an extended quiescent state!
291 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
292 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 		     !(seq & RCU_DYNTICK_CTRL_CTR));
294 	if (seq & RCU_DYNTICK_CTRL_MASK) {
295 		arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
296 		smp_mb__after_atomic(); /* _exit after clearing mask. */
297 	}
298 }
299 
300 /*
301  * Reset the current CPU's ->dynticks counter to indicate that the
302  * newly onlined CPU is no longer in an extended quiescent state.
303  * This will either leave the counter unchanged, or increment it
304  * to the next non-quiescent value.
305  *
306  * The non-atomic test/increment sequence works because the upper bits
307  * of the ->dynticks counter are manipulated only by the corresponding CPU,
308  * or when the corresponding CPU is offline.
309  */
310 static void rcu_dynticks_eqs_online(void)
311 {
312 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
313 
314 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
315 		return;
316 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
317 }
318 
319 /*
320  * Is the current CPU in an extended quiescent state?
321  *
322  * No ordering, as we are sampling CPU-local information.
323  */
324 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
325 {
326 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
327 
328 	return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
329 }
330 
331 /*
332  * Snapshot the ->dynticks counter with full ordering so as to allow
333  * stable comparison of this counter with past and future snapshots.
334  */
335 static int rcu_dynticks_snap(struct rcu_data *rdp)
336 {
337 	int snap = atomic_add_return(0, &rdp->dynticks);
338 
339 	return snap & ~RCU_DYNTICK_CTRL_MASK;
340 }
341 
342 /*
343  * Return true if the snapshot returned from rcu_dynticks_snap()
344  * indicates that RCU is in an extended quiescent state.
345  */
346 static bool rcu_dynticks_in_eqs(int snap)
347 {
348 	return !(snap & RCU_DYNTICK_CTRL_CTR);
349 }
350 
351 /*
352  * Return true if the CPU corresponding to the specified rcu_data
353  * structure has spent some time in an extended quiescent state since
354  * rcu_dynticks_snap() returned the specified snapshot.
355  */
356 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
357 {
358 	return snap != rcu_dynticks_snap(rdp);
359 }
360 
361 /*
362  * Return true if the referenced integer is zero while the specified
363  * CPU remains within a single extended quiescent state.
364  */
365 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
366 {
367 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
368 	int snap;
369 
370 	// If not quiescent, force back to earlier extended quiescent state.
371 	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
372 					       RCU_DYNTICK_CTRL_CTR);
373 
374 	smp_rmb(); // Order ->dynticks and *vp reads.
375 	if (READ_ONCE(*vp))
376 		return false;  // Non-zero, so report failure;
377 	smp_rmb(); // Order *vp read and ->dynticks re-read.
378 
379 	// If still in the same extended quiescent state, we are good!
380 	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
381 }
382 
383 /*
384  * Set the special (bottom) bit of the specified CPU so that it
385  * will take special action (such as flushing its TLB) on the
386  * next exit from an extended quiescent state.  Returns true if
387  * the bit was successfully set, or false if the CPU was not in
388  * an extended quiescent state.
389  */
390 bool rcu_eqs_special_set(int cpu)
391 {
392 	int old;
393 	int new;
394 	int new_old;
395 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
396 
397 	new_old = atomic_read(&rdp->dynticks);
398 	do {
399 		old = new_old;
400 		if (old & RCU_DYNTICK_CTRL_CTR)
401 			return false;
402 		new = old | RCU_DYNTICK_CTRL_MASK;
403 		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
404 	} while (new_old != old);
405 	return true;
406 }
407 
408 /*
409  * Let the RCU core know that this CPU has gone through the scheduler,
410  * which is a quiescent state.  This is called when the need for a
411  * quiescent state is urgent, so we burn an atomic operation and full
412  * memory barriers to let the RCU core know about it, regardless of what
413  * this CPU might (or might not) do in the near future.
414  *
415  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
416  *
417  * The caller must have disabled interrupts and must not be idle.
418  */
419 void rcu_momentary_dyntick_idle(void)
420 {
421 	int special;
422 
423 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
424 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
425 				    &this_cpu_ptr(&rcu_data)->dynticks);
426 	/* It is illegal to call this from idle state. */
427 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
428 	rcu_preempt_deferred_qs(current);
429 }
430 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
431 
432 /**
433  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
434  *
435  * If the current CPU is idle and running at a first-level (not nested)
436  * interrupt, or directly, from idle, return true.
437  *
438  * The caller must have at least disabled IRQs.
439  */
440 static int rcu_is_cpu_rrupt_from_idle(void)
441 {
442 	long nesting;
443 
444 	/*
445 	 * Usually called from the tick; but also used from smp_function_call()
446 	 * for expedited grace periods. This latter can result in running from
447 	 * the idle task, instead of an actual IPI.
448 	 */
449 	lockdep_assert_irqs_disabled();
450 
451 	/* Check for counter underflows */
452 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
453 			 "RCU dynticks_nesting counter underflow!");
454 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
455 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
456 
457 	/* Are we at first interrupt nesting level? */
458 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
459 	if (nesting > 1)
460 		return false;
461 
462 	/*
463 	 * If we're not in an interrupt, we must be in the idle task!
464 	 */
465 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
466 
467 	/* Does CPU appear to be idle from an RCU standpoint? */
468 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
469 }
470 
471 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
472 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
473 static long blimit = DEFAULT_RCU_BLIMIT;
474 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
475 static long qhimark = DEFAULT_RCU_QHIMARK;
476 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
477 static long qlowmark = DEFAULT_RCU_QLOMARK;
478 #define DEFAULT_RCU_QOVLD_MULT 2
479 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
480 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
481 static long qovld_calc = -1;	  /* No pre-initialization lock acquisitions! */
482 
483 module_param(blimit, long, 0444);
484 module_param(qhimark, long, 0444);
485 module_param(qlowmark, long, 0444);
486 module_param(qovld, long, 0444);
487 
488 static ulong jiffies_till_first_fqs = ULONG_MAX;
489 static ulong jiffies_till_next_fqs = ULONG_MAX;
490 static bool rcu_kick_kthreads;
491 static int rcu_divisor = 7;
492 module_param(rcu_divisor, int, 0644);
493 
494 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
495 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
496 module_param(rcu_resched_ns, long, 0644);
497 
498 /*
499  * How long the grace period must be before we start recruiting
500  * quiescent-state help from rcu_note_context_switch().
501  */
502 static ulong jiffies_till_sched_qs = ULONG_MAX;
503 module_param(jiffies_till_sched_qs, ulong, 0444);
504 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
505 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
506 
507 /*
508  * Make sure that we give the grace-period kthread time to detect any
509  * idle CPUs before taking active measures to force quiescent states.
510  * However, don't go below 100 milliseconds, adjusted upwards for really
511  * large systems.
512  */
513 static void adjust_jiffies_till_sched_qs(void)
514 {
515 	unsigned long j;
516 
517 	/* If jiffies_till_sched_qs was specified, respect the request. */
518 	if (jiffies_till_sched_qs != ULONG_MAX) {
519 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
520 		return;
521 	}
522 	/* Otherwise, set to third fqs scan, but bound below on large system. */
523 	j = READ_ONCE(jiffies_till_first_fqs) +
524 		      2 * READ_ONCE(jiffies_till_next_fqs);
525 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
526 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
527 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
528 	WRITE_ONCE(jiffies_to_sched_qs, j);
529 }
530 
531 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
532 {
533 	ulong j;
534 	int ret = kstrtoul(val, 0, &j);
535 
536 	if (!ret) {
537 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
538 		adjust_jiffies_till_sched_qs();
539 	}
540 	return ret;
541 }
542 
543 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
544 {
545 	ulong j;
546 	int ret = kstrtoul(val, 0, &j);
547 
548 	if (!ret) {
549 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
550 		adjust_jiffies_till_sched_qs();
551 	}
552 	return ret;
553 }
554 
555 static struct kernel_param_ops first_fqs_jiffies_ops = {
556 	.set = param_set_first_fqs_jiffies,
557 	.get = param_get_ulong,
558 };
559 
560 static struct kernel_param_ops next_fqs_jiffies_ops = {
561 	.set = param_set_next_fqs_jiffies,
562 	.get = param_get_ulong,
563 };
564 
565 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
566 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
567 module_param(rcu_kick_kthreads, bool, 0644);
568 
569 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
570 static int rcu_pending(int user);
571 
572 /*
573  * Return the number of RCU GPs completed thus far for debug & stats.
574  */
575 unsigned long rcu_get_gp_seq(void)
576 {
577 	return READ_ONCE(rcu_state.gp_seq);
578 }
579 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
580 
581 /*
582  * Return the number of RCU expedited batches completed thus far for
583  * debug & stats.  Odd numbers mean that a batch is in progress, even
584  * numbers mean idle.  The value returned will thus be roughly double
585  * the cumulative batches since boot.
586  */
587 unsigned long rcu_exp_batches_completed(void)
588 {
589 	return rcu_state.expedited_sequence;
590 }
591 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
592 
593 /*
594  * Return the root node of the rcu_state structure.
595  */
596 static struct rcu_node *rcu_get_root(void)
597 {
598 	return &rcu_state.node[0];
599 }
600 
601 /*
602  * Send along grace-period-related data for rcutorture diagnostics.
603  */
604 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
605 			    unsigned long *gp_seq)
606 {
607 	switch (test_type) {
608 	case RCU_FLAVOR:
609 		*flags = READ_ONCE(rcu_state.gp_flags);
610 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
611 		break;
612 	default:
613 		break;
614 	}
615 }
616 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
617 
618 /*
619  * Enter an RCU extended quiescent state, which can be either the
620  * idle loop or adaptive-tickless usermode execution.
621  *
622  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
623  * the possibility of usermode upcalls having messed up our count
624  * of interrupt nesting level during the prior busy period.
625  */
626 static noinstr void rcu_eqs_enter(bool user)
627 {
628 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
629 
630 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
631 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
632 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
633 		     rdp->dynticks_nesting == 0);
634 	if (rdp->dynticks_nesting != 1) {
635 		// RCU will still be watching, so just do accounting and leave.
636 		rdp->dynticks_nesting--;
637 		return;
638 	}
639 
640 	lockdep_assert_irqs_disabled();
641 	instrumentation_begin();
642 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
643 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
644 	rdp = this_cpu_ptr(&rcu_data);
645 	do_nocb_deferred_wakeup(rdp);
646 	rcu_prepare_for_idle();
647 	rcu_preempt_deferred_qs(current);
648 
649 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
650 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
651 
652 	instrumentation_end();
653 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
654 	// RCU is watching here ...
655 	rcu_dynticks_eqs_enter();
656 	// ... but is no longer watching here.
657 	rcu_dynticks_task_enter();
658 }
659 
660 /**
661  * rcu_idle_enter - inform RCU that current CPU is entering idle
662  *
663  * Enter idle mode, in other words, -leave- the mode in which RCU
664  * read-side critical sections can occur.  (Though RCU read-side
665  * critical sections can occur in irq handlers in idle, a possibility
666  * handled by irq_enter() and irq_exit().)
667  *
668  * If you add or remove a call to rcu_idle_enter(), be sure to test with
669  * CONFIG_RCU_EQS_DEBUG=y.
670  */
671 void rcu_idle_enter(void)
672 {
673 	lockdep_assert_irqs_disabled();
674 	rcu_eqs_enter(false);
675 }
676 
677 #ifdef CONFIG_NO_HZ_FULL
678 /**
679  * rcu_user_enter - inform RCU that we are resuming userspace.
680  *
681  * Enter RCU idle mode right before resuming userspace.  No use of RCU
682  * is permitted between this call and rcu_user_exit(). This way the
683  * CPU doesn't need to maintain the tick for RCU maintenance purposes
684  * when the CPU runs in userspace.
685  *
686  * If you add or remove a call to rcu_user_enter(), be sure to test with
687  * CONFIG_RCU_EQS_DEBUG=y.
688  */
689 noinstr void rcu_user_enter(void)
690 {
691 	lockdep_assert_irqs_disabled();
692 	rcu_eqs_enter(true);
693 }
694 #endif /* CONFIG_NO_HZ_FULL */
695 
696 /**
697  * rcu_nmi_exit - inform RCU of exit from NMI context
698  *
699  * If we are returning from the outermost NMI handler that interrupted an
700  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
701  * to let the RCU grace-period handling know that the CPU is back to
702  * being RCU-idle.
703  *
704  * If you add or remove a call to rcu_nmi_exit(), be sure to test
705  * with CONFIG_RCU_EQS_DEBUG=y.
706  */
707 noinstr void rcu_nmi_exit(void)
708 {
709 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
710 
711 	instrumentation_begin();
712 	/*
713 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
714 	 * (We are exiting an NMI handler, so RCU better be paying attention
715 	 * to us!)
716 	 */
717 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
718 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
719 
720 	/*
721 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
722 	 * leave it in non-RCU-idle state.
723 	 */
724 	if (rdp->dynticks_nmi_nesting != 1) {
725 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
726 				  atomic_read(&rdp->dynticks));
727 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
728 			   rdp->dynticks_nmi_nesting - 2);
729 		instrumentation_end();
730 		return;
731 	}
732 
733 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
734 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
735 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
736 
737 	if (!in_nmi())
738 		rcu_prepare_for_idle();
739 
740 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
741 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
742 	instrumentation_end();
743 
744 	// RCU is watching here ...
745 	rcu_dynticks_eqs_enter();
746 	// ... but is no longer watching here.
747 
748 	if (!in_nmi())
749 		rcu_dynticks_task_enter();
750 }
751 
752 /**
753  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
754  *
755  * Exit from an interrupt handler, which might possibly result in entering
756  * idle mode, in other words, leaving the mode in which read-side critical
757  * sections can occur.  The caller must have disabled interrupts.
758  *
759  * This code assumes that the idle loop never does anything that might
760  * result in unbalanced calls to irq_enter() and irq_exit().  If your
761  * architecture's idle loop violates this assumption, RCU will give you what
762  * you deserve, good and hard.  But very infrequently and irreproducibly.
763  *
764  * Use things like work queues to work around this limitation.
765  *
766  * You have been warned.
767  *
768  * If you add or remove a call to rcu_irq_exit(), be sure to test with
769  * CONFIG_RCU_EQS_DEBUG=y.
770  */
771 void noinstr rcu_irq_exit(void)
772 {
773 	lockdep_assert_irqs_disabled();
774 	rcu_nmi_exit();
775 }
776 
777 /**
778  * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
779  *			  towards in kernel preemption
780  *
781  * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
782  * from RCU point of view. Invoked from return from interrupt before kernel
783  * preemption.
784  */
785 void rcu_irq_exit_preempt(void)
786 {
787 	lockdep_assert_irqs_disabled();
788 	rcu_nmi_exit();
789 
790 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
791 			 "RCU dynticks_nesting counter underflow/zero!");
792 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
793 			 DYNTICK_IRQ_NONIDLE,
794 			 "Bad RCU  dynticks_nmi_nesting counter\n");
795 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
796 			 "RCU in extended quiescent state!");
797 }
798 
799 #ifdef CONFIG_PROVE_RCU
800 /**
801  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
802  */
803 void rcu_irq_exit_check_preempt(void)
804 {
805 	lockdep_assert_irqs_disabled();
806 
807 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
808 			 "RCU dynticks_nesting counter underflow/zero!");
809 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
810 			 DYNTICK_IRQ_NONIDLE,
811 			 "Bad RCU  dynticks_nmi_nesting counter\n");
812 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
813 			 "RCU in extended quiescent state!");
814 }
815 #endif /* #ifdef CONFIG_PROVE_RCU */
816 
817 /*
818  * Wrapper for rcu_irq_exit() where interrupts are enabled.
819  *
820  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
821  * with CONFIG_RCU_EQS_DEBUG=y.
822  */
823 void rcu_irq_exit_irqson(void)
824 {
825 	unsigned long flags;
826 
827 	local_irq_save(flags);
828 	rcu_irq_exit();
829 	local_irq_restore(flags);
830 }
831 
832 /*
833  * Exit an RCU extended quiescent state, which can be either the
834  * idle loop or adaptive-tickless usermode execution.
835  *
836  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
837  * allow for the possibility of usermode upcalls messing up our count of
838  * interrupt nesting level during the busy period that is just now starting.
839  */
840 static void noinstr rcu_eqs_exit(bool user)
841 {
842 	struct rcu_data *rdp;
843 	long oldval;
844 
845 	lockdep_assert_irqs_disabled();
846 	rdp = this_cpu_ptr(&rcu_data);
847 	oldval = rdp->dynticks_nesting;
848 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
849 	if (oldval) {
850 		// RCU was already watching, so just do accounting and leave.
851 		rdp->dynticks_nesting++;
852 		return;
853 	}
854 	rcu_dynticks_task_exit();
855 	// RCU is not watching here ...
856 	rcu_dynticks_eqs_exit();
857 	// ... but is watching here.
858 	instrumentation_begin();
859 
860 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
861 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
862 
863 	rcu_cleanup_after_idle();
864 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
865 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
866 	WRITE_ONCE(rdp->dynticks_nesting, 1);
867 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
868 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
869 	instrumentation_end();
870 }
871 
872 /**
873  * rcu_idle_exit - inform RCU that current CPU is leaving idle
874  *
875  * Exit idle mode, in other words, -enter- the mode in which RCU
876  * read-side critical sections can occur.
877  *
878  * If you add or remove a call to rcu_idle_exit(), be sure to test with
879  * CONFIG_RCU_EQS_DEBUG=y.
880  */
881 void rcu_idle_exit(void)
882 {
883 	unsigned long flags;
884 
885 	local_irq_save(flags);
886 	rcu_eqs_exit(false);
887 	local_irq_restore(flags);
888 }
889 
890 #ifdef CONFIG_NO_HZ_FULL
891 /**
892  * rcu_user_exit - inform RCU that we are exiting userspace.
893  *
894  * Exit RCU idle mode while entering the kernel because it can
895  * run a RCU read side critical section anytime.
896  *
897  * If you add or remove a call to rcu_user_exit(), be sure to test with
898  * CONFIG_RCU_EQS_DEBUG=y.
899  */
900 void noinstr rcu_user_exit(void)
901 {
902 	rcu_eqs_exit(1);
903 }
904 
905 /**
906  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
907  *
908  * The scheduler tick is not normally enabled when CPUs enter the kernel
909  * from nohz_full userspace execution.  After all, nohz_full userspace
910  * execution is an RCU quiescent state and the time executing in the kernel
911  * is quite short.  Except of course when it isn't.  And it is not hard to
912  * cause a large system to spend tens of seconds or even minutes looping
913  * in the kernel, which can cause a number of problems, include RCU CPU
914  * stall warnings.
915  *
916  * Therefore, if a nohz_full CPU fails to report a quiescent state
917  * in a timely manner, the RCU grace-period kthread sets that CPU's
918  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
919  * exception will invoke this function, which will turn on the scheduler
920  * tick, which will enable RCU to detect that CPU's quiescent states,
921  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
922  * The tick will be disabled once a quiescent state is reported for
923  * this CPU.
924  *
925  * Of course, in carefully tuned systems, there might never be an
926  * interrupt or exception.  In that case, the RCU grace-period kthread
927  * will eventually cause one to happen.  However, in less carefully
928  * controlled environments, this function allows RCU to get what it
929  * needs without creating otherwise useless interruptions.
930  */
931 void __rcu_irq_enter_check_tick(void)
932 {
933 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
934 
935 	 // Enabling the tick is unsafe in NMI handlers.
936 	if (WARN_ON_ONCE(in_nmi()))
937 		return;
938 
939 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
940 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
941 
942 	if (!tick_nohz_full_cpu(rdp->cpu) ||
943 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
944 	    READ_ONCE(rdp->rcu_forced_tick)) {
945 		// RCU doesn't need nohz_full help from this CPU, or it is
946 		// already getting that help.
947 		return;
948 	}
949 
950 	// We get here only when not in an extended quiescent state and
951 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
952 	// already watching and (2) The fact that we are in an interrupt
953 	// handler and that the rcu_node lock is an irq-disabled lock
954 	// prevents self-deadlock.  So we can safely recheck under the lock.
955 	// Note that the nohz_full state currently cannot change.
956 	raw_spin_lock_rcu_node(rdp->mynode);
957 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
958 		// A nohz_full CPU is in the kernel and RCU needs a
959 		// quiescent state.  Turn on the tick!
960 		WRITE_ONCE(rdp->rcu_forced_tick, true);
961 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
962 	}
963 	raw_spin_unlock_rcu_node(rdp->mynode);
964 }
965 #endif /* CONFIG_NO_HZ_FULL */
966 
967 /**
968  * rcu_nmi_enter - inform RCU of entry to NMI context
969  *
970  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
971  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
972  * that the CPU is active.  This implementation permits nested NMIs, as
973  * long as the nesting level does not overflow an int.  (You will probably
974  * run out of stack space first.)
975  *
976  * If you add or remove a call to rcu_nmi_enter(), be sure to test
977  * with CONFIG_RCU_EQS_DEBUG=y.
978  */
979 noinstr void rcu_nmi_enter(void)
980 {
981 	long incby = 2;
982 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
983 
984 	/* Complain about underflow. */
985 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
986 
987 	/*
988 	 * If idle from RCU viewpoint, atomically increment ->dynticks
989 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
990 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
991 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
992 	 * to be in the outermost NMI handler that interrupted an RCU-idle
993 	 * period (observation due to Andy Lutomirski).
994 	 */
995 	if (rcu_dynticks_curr_cpu_in_eqs()) {
996 
997 		if (!in_nmi())
998 			rcu_dynticks_task_exit();
999 
1000 		// RCU is not watching here ...
1001 		rcu_dynticks_eqs_exit();
1002 		// ... but is watching here.
1003 
1004 		if (!in_nmi()) {
1005 			instrumentation_begin();
1006 			rcu_cleanup_after_idle();
1007 			instrumentation_end();
1008 		}
1009 
1010 		instrumentation_begin();
1011 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1012 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1013 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1014 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1015 
1016 		incby = 1;
1017 	} else if (!in_nmi()) {
1018 		instrumentation_begin();
1019 		rcu_irq_enter_check_tick();
1020 		instrumentation_end();
1021 	} else  {
1022 		instrumentation_begin();
1023 	}
1024 
1025 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1026 			  rdp->dynticks_nmi_nesting,
1027 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1028 	instrumentation_end();
1029 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1030 		   rdp->dynticks_nmi_nesting + incby);
1031 	barrier();
1032 }
1033 
1034 /**
1035  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1036  *
1037  * Enter an interrupt handler, which might possibly result in exiting
1038  * idle mode, in other words, entering the mode in which read-side critical
1039  * sections can occur.  The caller must have disabled interrupts.
1040  *
1041  * Note that the Linux kernel is fully capable of entering an interrupt
1042  * handler that it never exits, for example when doing upcalls to user mode!
1043  * This code assumes that the idle loop never does upcalls to user mode.
1044  * If your architecture's idle loop does do upcalls to user mode (or does
1045  * anything else that results in unbalanced calls to the irq_enter() and
1046  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1047  * But very infrequently and irreproducibly.
1048  *
1049  * Use things like work queues to work around this limitation.
1050  *
1051  * You have been warned.
1052  *
1053  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1054  * CONFIG_RCU_EQS_DEBUG=y.
1055  */
1056 noinstr void rcu_irq_enter(void)
1057 {
1058 	lockdep_assert_irqs_disabled();
1059 	rcu_nmi_enter();
1060 }
1061 
1062 /*
1063  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1064  *
1065  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1066  * with CONFIG_RCU_EQS_DEBUG=y.
1067  */
1068 void rcu_irq_enter_irqson(void)
1069 {
1070 	unsigned long flags;
1071 
1072 	local_irq_save(flags);
1073 	rcu_irq_enter();
1074 	local_irq_restore(flags);
1075 }
1076 
1077 /*
1078  * If any sort of urgency was applied to the current CPU (for example,
1079  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1080  * to get to a quiescent state, disable it.
1081  */
1082 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1083 {
1084 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1085 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1086 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1087 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1088 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1089 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1090 	}
1091 }
1092 
1093 noinstr bool __rcu_is_watching(void)
1094 {
1095 	return !rcu_dynticks_curr_cpu_in_eqs();
1096 }
1097 
1098 /**
1099  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1100  *
1101  * Return true if RCU is watching the running CPU, which means that this
1102  * CPU can safely enter RCU read-side critical sections.  In other words,
1103  * if the current CPU is not in its idle loop or is in an interrupt or
1104  * NMI handler, return true.
1105  */
1106 bool rcu_is_watching(void)
1107 {
1108 	bool ret;
1109 
1110 	preempt_disable_notrace();
1111 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1112 	preempt_enable_notrace();
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(rcu_is_watching);
1116 
1117 /*
1118  * If a holdout task is actually running, request an urgent quiescent
1119  * state from its CPU.  This is unsynchronized, so migrations can cause
1120  * the request to go to the wrong CPU.  Which is OK, all that will happen
1121  * is that the CPU's next context switch will be a bit slower and next
1122  * time around this task will generate another request.
1123  */
1124 void rcu_request_urgent_qs_task(struct task_struct *t)
1125 {
1126 	int cpu;
1127 
1128 	barrier();
1129 	cpu = task_cpu(t);
1130 	if (!task_curr(t))
1131 		return; /* This task is not running on that CPU. */
1132 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1133 }
1134 
1135 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1136 
1137 /*
1138  * Is the current CPU online as far as RCU is concerned?
1139  *
1140  * Disable preemption to avoid false positives that could otherwise
1141  * happen due to the current CPU number being sampled, this task being
1142  * preempted, its old CPU being taken offline, resuming on some other CPU,
1143  * then determining that its old CPU is now offline.
1144  *
1145  * Disable checking if in an NMI handler because we cannot safely
1146  * report errors from NMI handlers anyway.  In addition, it is OK to use
1147  * RCU on an offline processor during initial boot, hence the check for
1148  * rcu_scheduler_fully_active.
1149  */
1150 bool rcu_lockdep_current_cpu_online(void)
1151 {
1152 	struct rcu_data *rdp;
1153 	struct rcu_node *rnp;
1154 	bool ret = false;
1155 
1156 	if (in_nmi() || !rcu_scheduler_fully_active)
1157 		return true;
1158 	preempt_disable_notrace();
1159 	rdp = this_cpu_ptr(&rcu_data);
1160 	rnp = rdp->mynode;
1161 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
1162 		ret = true;
1163 	preempt_enable_notrace();
1164 	return ret;
1165 }
1166 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1167 
1168 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1169 
1170 /*
1171  * We are reporting a quiescent state on behalf of some other CPU, so
1172  * it is our responsibility to check for and handle potential overflow
1173  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1174  * After all, the CPU might be in deep idle state, and thus executing no
1175  * code whatsoever.
1176  */
1177 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1178 {
1179 	raw_lockdep_assert_held_rcu_node(rnp);
1180 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1181 			 rnp->gp_seq))
1182 		WRITE_ONCE(rdp->gpwrap, true);
1183 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1184 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1185 }
1186 
1187 /*
1188  * Snapshot the specified CPU's dynticks counter so that we can later
1189  * credit them with an implicit quiescent state.  Return 1 if this CPU
1190  * is in dynticks idle mode, which is an extended quiescent state.
1191  */
1192 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1193 {
1194 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1195 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1196 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1197 		rcu_gpnum_ovf(rdp->mynode, rdp);
1198 		return 1;
1199 	}
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Return true if the specified CPU has passed through a quiescent
1205  * state by virtue of being in or having passed through an dynticks
1206  * idle state since the last call to dyntick_save_progress_counter()
1207  * for this same CPU, or by virtue of having been offline.
1208  */
1209 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1210 {
1211 	unsigned long jtsq;
1212 	bool *rnhqp;
1213 	bool *ruqp;
1214 	struct rcu_node *rnp = rdp->mynode;
1215 
1216 	/*
1217 	 * If the CPU passed through or entered a dynticks idle phase with
1218 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1219 	 * already acknowledged the request to pass through a quiescent
1220 	 * state.  Either way, that CPU cannot possibly be in an RCU
1221 	 * read-side critical section that started before the beginning
1222 	 * of the current RCU grace period.
1223 	 */
1224 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1225 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1226 		rcu_gpnum_ovf(rnp, rdp);
1227 		return 1;
1228 	}
1229 
1230 	/* If waiting too long on an offline CPU, complain. */
1231 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1232 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1233 		bool onl;
1234 		struct rcu_node *rnp1;
1235 
1236 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1237 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1238 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1239 			(long)rnp->gp_seq, (long)rnp->completedqs);
1240 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1241 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1242 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1243 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1244 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1245 			__func__, rdp->cpu, ".o"[onl],
1246 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1247 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1248 		return 1; /* Break things loose after complaining. */
1249 	}
1250 
1251 	/*
1252 	 * A CPU running for an extended time within the kernel can
1253 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1254 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1255 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1256 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1257 	 * variable are safe because the assignments are repeated if this
1258 	 * CPU failed to pass through a quiescent state.  This code
1259 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1260 	 * is set way high.
1261 	 */
1262 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1263 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1264 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1265 	if (!READ_ONCE(*rnhqp) &&
1266 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1267 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1268 	     rcu_state.cbovld)) {
1269 		WRITE_ONCE(*rnhqp, true);
1270 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1271 		smp_store_release(ruqp, true);
1272 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1273 		WRITE_ONCE(*ruqp, true);
1274 	}
1275 
1276 	/*
1277 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1278 	 * The above code handles this, but only for straight cond_resched().
1279 	 * And some in-kernel loops check need_resched() before calling
1280 	 * cond_resched(), which defeats the above code for CPUs that are
1281 	 * running in-kernel with scheduling-clock interrupts disabled.
1282 	 * So hit them over the head with the resched_cpu() hammer!
1283 	 */
1284 	if (tick_nohz_full_cpu(rdp->cpu) &&
1285 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1286 	     rcu_state.cbovld)) {
1287 		WRITE_ONCE(*ruqp, true);
1288 		resched_cpu(rdp->cpu);
1289 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1290 	}
1291 
1292 	/*
1293 	 * If more than halfway to RCU CPU stall-warning time, invoke
1294 	 * resched_cpu() more frequently to try to loosen things up a bit.
1295 	 * Also check to see if the CPU is getting hammered with interrupts,
1296 	 * but only once per grace period, just to keep the IPIs down to
1297 	 * a dull roar.
1298 	 */
1299 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1300 		if (time_after(jiffies,
1301 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1302 			resched_cpu(rdp->cpu);
1303 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1304 		}
1305 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1306 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1307 		    (rnp->ffmask & rdp->grpmask)) {
1308 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1309 			atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1310 			rdp->rcu_iw_pending = true;
1311 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1312 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1313 		}
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1320 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1321 			      unsigned long gp_seq_req, const char *s)
1322 {
1323 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1324 				      gp_seq_req, rnp->level,
1325 				      rnp->grplo, rnp->grphi, s);
1326 }
1327 
1328 /*
1329  * rcu_start_this_gp - Request the start of a particular grace period
1330  * @rnp_start: The leaf node of the CPU from which to start.
1331  * @rdp: The rcu_data corresponding to the CPU from which to start.
1332  * @gp_seq_req: The gp_seq of the grace period to start.
1333  *
1334  * Start the specified grace period, as needed to handle newly arrived
1335  * callbacks.  The required future grace periods are recorded in each
1336  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1337  * is reason to awaken the grace-period kthread.
1338  *
1339  * The caller must hold the specified rcu_node structure's ->lock, which
1340  * is why the caller is responsible for waking the grace-period kthread.
1341  *
1342  * Returns true if the GP thread needs to be awakened else false.
1343  */
1344 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1345 			      unsigned long gp_seq_req)
1346 {
1347 	bool ret = false;
1348 	struct rcu_node *rnp;
1349 
1350 	/*
1351 	 * Use funnel locking to either acquire the root rcu_node
1352 	 * structure's lock or bail out if the need for this grace period
1353 	 * has already been recorded -- or if that grace period has in
1354 	 * fact already started.  If there is already a grace period in
1355 	 * progress in a non-leaf node, no recording is needed because the
1356 	 * end of the grace period will scan the leaf rcu_node structures.
1357 	 * Note that rnp_start->lock must not be released.
1358 	 */
1359 	raw_lockdep_assert_held_rcu_node(rnp_start);
1360 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1361 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1362 		if (rnp != rnp_start)
1363 			raw_spin_lock_rcu_node(rnp);
1364 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1365 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1366 		    (rnp != rnp_start &&
1367 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1368 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1369 					  TPS("Prestarted"));
1370 			goto unlock_out;
1371 		}
1372 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1373 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1374 			/*
1375 			 * We just marked the leaf or internal node, and a
1376 			 * grace period is in progress, which means that
1377 			 * rcu_gp_cleanup() will see the marking.  Bail to
1378 			 * reduce contention.
1379 			 */
1380 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1381 					  TPS("Startedleaf"));
1382 			goto unlock_out;
1383 		}
1384 		if (rnp != rnp_start && rnp->parent != NULL)
1385 			raw_spin_unlock_rcu_node(rnp);
1386 		if (!rnp->parent)
1387 			break;  /* At root, and perhaps also leaf. */
1388 	}
1389 
1390 	/* If GP already in progress, just leave, otherwise start one. */
1391 	if (rcu_gp_in_progress()) {
1392 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1393 		goto unlock_out;
1394 	}
1395 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1396 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1397 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1398 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1399 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1400 		goto unlock_out;
1401 	}
1402 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1403 	ret = true;  /* Caller must wake GP kthread. */
1404 unlock_out:
1405 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1406 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1407 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1408 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1409 	}
1410 	if (rnp != rnp_start)
1411 		raw_spin_unlock_rcu_node(rnp);
1412 	return ret;
1413 }
1414 
1415 /*
1416  * Clean up any old requests for the just-ended grace period.  Also return
1417  * whether any additional grace periods have been requested.
1418  */
1419 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1420 {
1421 	bool needmore;
1422 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1423 
1424 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1425 	if (!needmore)
1426 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1427 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1428 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1429 	return needmore;
1430 }
1431 
1432 /*
1433  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1434  * interrupt or softirq handler, in which case we just might immediately
1435  * sleep upon return, resulting in a grace-period hang), and don't bother
1436  * awakening when there is nothing for the grace-period kthread to do
1437  * (as in several CPUs raced to awaken, we lost), and finally don't try
1438  * to awaken a kthread that has not yet been created.  If all those checks
1439  * are passed, track some debug information and awaken.
1440  *
1441  * So why do the self-wakeup when in an interrupt or softirq handler
1442  * in the grace-period kthread's context?  Because the kthread might have
1443  * been interrupted just as it was going to sleep, and just after the final
1444  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1445  * is required, and is therefore supplied.
1446  */
1447 static void rcu_gp_kthread_wake(void)
1448 {
1449 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1450 
1451 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1452 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1453 		return;
1454 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1455 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1456 	swake_up_one(&rcu_state.gp_wq);
1457 }
1458 
1459 /*
1460  * If there is room, assign a ->gp_seq number to any callbacks on this
1461  * CPU that have not already been assigned.  Also accelerate any callbacks
1462  * that were previously assigned a ->gp_seq number that has since proven
1463  * to be too conservative, which can happen if callbacks get assigned a
1464  * ->gp_seq number while RCU is idle, but with reference to a non-root
1465  * rcu_node structure.  This function is idempotent, so it does not hurt
1466  * to call it repeatedly.  Returns an flag saying that we should awaken
1467  * the RCU grace-period kthread.
1468  *
1469  * The caller must hold rnp->lock with interrupts disabled.
1470  */
1471 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1472 {
1473 	unsigned long gp_seq_req;
1474 	bool ret = false;
1475 
1476 	rcu_lockdep_assert_cblist_protected(rdp);
1477 	raw_lockdep_assert_held_rcu_node(rnp);
1478 
1479 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1480 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1481 		return false;
1482 
1483 	/*
1484 	 * Callbacks are often registered with incomplete grace-period
1485 	 * information.  Something about the fact that getting exact
1486 	 * information requires acquiring a global lock...  RCU therefore
1487 	 * makes a conservative estimate of the grace period number at which
1488 	 * a given callback will become ready to invoke.	The following
1489 	 * code checks this estimate and improves it when possible, thus
1490 	 * accelerating callback invocation to an earlier grace-period
1491 	 * number.
1492 	 */
1493 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1494 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1495 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1496 
1497 	/* Trace depending on how much we were able to accelerate. */
1498 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1499 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1500 	else
1501 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1502 	return ret;
1503 }
1504 
1505 /*
1506  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1507  * rcu_node structure's ->lock be held.  It consults the cached value
1508  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1509  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1510  * while holding the leaf rcu_node structure's ->lock.
1511  */
1512 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1513 					struct rcu_data *rdp)
1514 {
1515 	unsigned long c;
1516 	bool needwake;
1517 
1518 	rcu_lockdep_assert_cblist_protected(rdp);
1519 	c = rcu_seq_snap(&rcu_state.gp_seq);
1520 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1521 		/* Old request still live, so mark recent callbacks. */
1522 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1523 		return;
1524 	}
1525 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1526 	needwake = rcu_accelerate_cbs(rnp, rdp);
1527 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1528 	if (needwake)
1529 		rcu_gp_kthread_wake();
1530 }
1531 
1532 /*
1533  * Move any callbacks whose grace period has completed to the
1534  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1535  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1536  * sublist.  This function is idempotent, so it does not hurt to
1537  * invoke it repeatedly.  As long as it is not invoked -too- often...
1538  * Returns true if the RCU grace-period kthread needs to be awakened.
1539  *
1540  * The caller must hold rnp->lock with interrupts disabled.
1541  */
1542 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1543 {
1544 	rcu_lockdep_assert_cblist_protected(rdp);
1545 	raw_lockdep_assert_held_rcu_node(rnp);
1546 
1547 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1548 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1549 		return false;
1550 
1551 	/*
1552 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1553 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1554 	 */
1555 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1556 
1557 	/* Classify any remaining callbacks. */
1558 	return rcu_accelerate_cbs(rnp, rdp);
1559 }
1560 
1561 /*
1562  * Move and classify callbacks, but only if doing so won't require
1563  * that the RCU grace-period kthread be awakened.
1564  */
1565 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1566 						  struct rcu_data *rdp)
1567 {
1568 	rcu_lockdep_assert_cblist_protected(rdp);
1569 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1570 	    !raw_spin_trylock_rcu_node(rnp))
1571 		return;
1572 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1573 	raw_spin_unlock_rcu_node(rnp);
1574 }
1575 
1576 /*
1577  * Update CPU-local rcu_data state to record the beginnings and ends of
1578  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1579  * structure corresponding to the current CPU, and must have irqs disabled.
1580  * Returns true if the grace-period kthread needs to be awakened.
1581  */
1582 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1583 {
1584 	bool ret = false;
1585 	bool need_qs;
1586 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1587 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1588 
1589 	raw_lockdep_assert_held_rcu_node(rnp);
1590 
1591 	if (rdp->gp_seq == rnp->gp_seq)
1592 		return false; /* Nothing to do. */
1593 
1594 	/* Handle the ends of any preceding grace periods first. */
1595 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1596 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1597 		if (!offloaded)
1598 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1599 		rdp->core_needs_qs = false;
1600 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1601 	} else {
1602 		if (!offloaded)
1603 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1604 		if (rdp->core_needs_qs)
1605 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1606 	}
1607 
1608 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1609 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1610 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1611 		/*
1612 		 * If the current grace period is waiting for this CPU,
1613 		 * set up to detect a quiescent state, otherwise don't
1614 		 * go looking for one.
1615 		 */
1616 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1617 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1618 		rdp->cpu_no_qs.b.norm = need_qs;
1619 		rdp->core_needs_qs = need_qs;
1620 		zero_cpu_stall_ticks(rdp);
1621 	}
1622 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1623 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1624 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1625 	WRITE_ONCE(rdp->gpwrap, false);
1626 	rcu_gpnum_ovf(rnp, rdp);
1627 	return ret;
1628 }
1629 
1630 static void note_gp_changes(struct rcu_data *rdp)
1631 {
1632 	unsigned long flags;
1633 	bool needwake;
1634 	struct rcu_node *rnp;
1635 
1636 	local_irq_save(flags);
1637 	rnp = rdp->mynode;
1638 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1639 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1640 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1641 		local_irq_restore(flags);
1642 		return;
1643 	}
1644 	needwake = __note_gp_changes(rnp, rdp);
1645 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1646 	if (needwake)
1647 		rcu_gp_kthread_wake();
1648 }
1649 
1650 static void rcu_gp_slow(int delay)
1651 {
1652 	if (delay > 0 &&
1653 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1654 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1655 		schedule_timeout_idle(delay);
1656 }
1657 
1658 static unsigned long sleep_duration;
1659 
1660 /* Allow rcutorture to stall the grace-period kthread. */
1661 void rcu_gp_set_torture_wait(int duration)
1662 {
1663 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1664 		WRITE_ONCE(sleep_duration, duration);
1665 }
1666 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1667 
1668 /* Actually implement the aforementioned wait. */
1669 static void rcu_gp_torture_wait(void)
1670 {
1671 	unsigned long duration;
1672 
1673 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1674 		return;
1675 	duration = xchg(&sleep_duration, 0UL);
1676 	if (duration > 0) {
1677 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1678 		schedule_timeout_idle(duration);
1679 		pr_alert("%s: Wait complete\n", __func__);
1680 	}
1681 }
1682 
1683 /*
1684  * Initialize a new grace period.  Return false if no grace period required.
1685  */
1686 static bool rcu_gp_init(void)
1687 {
1688 	unsigned long flags;
1689 	unsigned long oldmask;
1690 	unsigned long mask;
1691 	struct rcu_data *rdp;
1692 	struct rcu_node *rnp = rcu_get_root();
1693 
1694 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695 	raw_spin_lock_irq_rcu_node(rnp);
1696 	if (!READ_ONCE(rcu_state.gp_flags)) {
1697 		/* Spurious wakeup, tell caller to go back to sleep.  */
1698 		raw_spin_unlock_irq_rcu_node(rnp);
1699 		return false;
1700 	}
1701 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1702 
1703 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1704 		/*
1705 		 * Grace period already in progress, don't start another.
1706 		 * Not supposed to be able to happen.
1707 		 */
1708 		raw_spin_unlock_irq_rcu_node(rnp);
1709 		return false;
1710 	}
1711 
1712 	/* Advance to a new grace period and initialize state. */
1713 	record_gp_stall_check_time();
1714 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1715 	rcu_seq_start(&rcu_state.gp_seq);
1716 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1717 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1718 	raw_spin_unlock_irq_rcu_node(rnp);
1719 
1720 	/*
1721 	 * Apply per-leaf buffered online and offline operations to the
1722 	 * rcu_node tree.  Note that this new grace period need not wait
1723 	 * for subsequent online CPUs, and that quiescent-state forcing
1724 	 * will handle subsequent offline CPUs.
1725 	 */
1726 	rcu_state.gp_state = RCU_GP_ONOFF;
1727 	rcu_for_each_leaf_node(rnp) {
1728 		raw_spin_lock(&rcu_state.ofl_lock);
1729 		raw_spin_lock_irq_rcu_node(rnp);
1730 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1731 		    !rnp->wait_blkd_tasks) {
1732 			/* Nothing to do on this leaf rcu_node structure. */
1733 			raw_spin_unlock_irq_rcu_node(rnp);
1734 			raw_spin_unlock(&rcu_state.ofl_lock);
1735 			continue;
1736 		}
1737 
1738 		/* Record old state, apply changes to ->qsmaskinit field. */
1739 		oldmask = rnp->qsmaskinit;
1740 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1741 
1742 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1743 		if (!oldmask != !rnp->qsmaskinit) {
1744 			if (!oldmask) { /* First online CPU for rcu_node. */
1745 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1746 					rcu_init_new_rnp(rnp);
1747 			} else if (rcu_preempt_has_tasks(rnp)) {
1748 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1749 			} else { /* Last offline CPU and can propagate. */
1750 				rcu_cleanup_dead_rnp(rnp);
1751 			}
1752 		}
1753 
1754 		/*
1755 		 * If all waited-on tasks from prior grace period are
1756 		 * done, and if all this rcu_node structure's CPUs are
1757 		 * still offline, propagate up the rcu_node tree and
1758 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1759 		 * rcu_node structure's CPUs has since come back online,
1760 		 * simply clear ->wait_blkd_tasks.
1761 		 */
1762 		if (rnp->wait_blkd_tasks &&
1763 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1764 			rnp->wait_blkd_tasks = false;
1765 			if (!rnp->qsmaskinit)
1766 				rcu_cleanup_dead_rnp(rnp);
1767 		}
1768 
1769 		raw_spin_unlock_irq_rcu_node(rnp);
1770 		raw_spin_unlock(&rcu_state.ofl_lock);
1771 	}
1772 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1773 
1774 	/*
1775 	 * Set the quiescent-state-needed bits in all the rcu_node
1776 	 * structures for all currently online CPUs in breadth-first
1777 	 * order, starting from the root rcu_node structure, relying on the
1778 	 * layout of the tree within the rcu_state.node[] array.  Note that
1779 	 * other CPUs will access only the leaves of the hierarchy, thus
1780 	 * seeing that no grace period is in progress, at least until the
1781 	 * corresponding leaf node has been initialized.
1782 	 *
1783 	 * The grace period cannot complete until the initialization
1784 	 * process finishes, because this kthread handles both.
1785 	 */
1786 	rcu_state.gp_state = RCU_GP_INIT;
1787 	rcu_for_each_node_breadth_first(rnp) {
1788 		rcu_gp_slow(gp_init_delay);
1789 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1790 		rdp = this_cpu_ptr(&rcu_data);
1791 		rcu_preempt_check_blocked_tasks(rnp);
1792 		rnp->qsmask = rnp->qsmaskinit;
1793 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1794 		if (rnp == rdp->mynode)
1795 			(void)__note_gp_changes(rnp, rdp);
1796 		rcu_preempt_boost_start_gp(rnp);
1797 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1798 					    rnp->level, rnp->grplo,
1799 					    rnp->grphi, rnp->qsmask);
1800 		/* Quiescent states for tasks on any now-offline CPUs. */
1801 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1802 		rnp->rcu_gp_init_mask = mask;
1803 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1804 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1805 		else
1806 			raw_spin_unlock_irq_rcu_node(rnp);
1807 		cond_resched_tasks_rcu_qs();
1808 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1809 	}
1810 
1811 	return true;
1812 }
1813 
1814 /*
1815  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1816  * time.
1817  */
1818 static bool rcu_gp_fqs_check_wake(int *gfp)
1819 {
1820 	struct rcu_node *rnp = rcu_get_root();
1821 
1822 	// If under overload conditions, force an immediate FQS scan.
1823 	if (*gfp & RCU_GP_FLAG_OVLD)
1824 		return true;
1825 
1826 	// Someone like call_rcu() requested a force-quiescent-state scan.
1827 	*gfp = READ_ONCE(rcu_state.gp_flags);
1828 	if (*gfp & RCU_GP_FLAG_FQS)
1829 		return true;
1830 
1831 	// The current grace period has completed.
1832 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1833 		return true;
1834 
1835 	return false;
1836 }
1837 
1838 /*
1839  * Do one round of quiescent-state forcing.
1840  */
1841 static void rcu_gp_fqs(bool first_time)
1842 {
1843 	struct rcu_node *rnp = rcu_get_root();
1844 
1845 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1846 	rcu_state.n_force_qs++;
1847 	if (first_time) {
1848 		/* Collect dyntick-idle snapshots. */
1849 		force_qs_rnp(dyntick_save_progress_counter);
1850 	} else {
1851 		/* Handle dyntick-idle and offline CPUs. */
1852 		force_qs_rnp(rcu_implicit_dynticks_qs);
1853 	}
1854 	/* Clear flag to prevent immediate re-entry. */
1855 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1856 		raw_spin_lock_irq_rcu_node(rnp);
1857 		WRITE_ONCE(rcu_state.gp_flags,
1858 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1859 		raw_spin_unlock_irq_rcu_node(rnp);
1860 	}
1861 }
1862 
1863 /*
1864  * Loop doing repeated quiescent-state forcing until the grace period ends.
1865  */
1866 static void rcu_gp_fqs_loop(void)
1867 {
1868 	bool first_gp_fqs;
1869 	int gf = 0;
1870 	unsigned long j;
1871 	int ret;
1872 	struct rcu_node *rnp = rcu_get_root();
1873 
1874 	first_gp_fqs = true;
1875 	j = READ_ONCE(jiffies_till_first_fqs);
1876 	if (rcu_state.cbovld)
1877 		gf = RCU_GP_FLAG_OVLD;
1878 	ret = 0;
1879 	for (;;) {
1880 		if (!ret) {
1881 			rcu_state.jiffies_force_qs = jiffies + j;
1882 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1883 				   jiffies + (j ? 3 * j : 2));
1884 		}
1885 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1886 				       TPS("fqswait"));
1887 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1888 		ret = swait_event_idle_timeout_exclusive(
1889 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1890 		rcu_gp_torture_wait();
1891 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1892 		/* Locking provides needed memory barriers. */
1893 		/* If grace period done, leave loop. */
1894 		if (!READ_ONCE(rnp->qsmask) &&
1895 		    !rcu_preempt_blocked_readers_cgp(rnp))
1896 			break;
1897 		/* If time for quiescent-state forcing, do it. */
1898 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1899 		    (gf & RCU_GP_FLAG_FQS)) {
1900 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1901 					       TPS("fqsstart"));
1902 			rcu_gp_fqs(first_gp_fqs);
1903 			gf = 0;
1904 			if (first_gp_fqs) {
1905 				first_gp_fqs = false;
1906 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1907 			}
1908 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1909 					       TPS("fqsend"));
1910 			cond_resched_tasks_rcu_qs();
1911 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1912 			ret = 0; /* Force full wait till next FQS. */
1913 			j = READ_ONCE(jiffies_till_next_fqs);
1914 		} else {
1915 			/* Deal with stray signal. */
1916 			cond_resched_tasks_rcu_qs();
1917 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1918 			WARN_ON(signal_pending(current));
1919 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1920 					       TPS("fqswaitsig"));
1921 			ret = 1; /* Keep old FQS timing. */
1922 			j = jiffies;
1923 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1924 				j = 1;
1925 			else
1926 				j = rcu_state.jiffies_force_qs - j;
1927 			gf = 0;
1928 		}
1929 	}
1930 }
1931 
1932 /*
1933  * Clean up after the old grace period.
1934  */
1935 static void rcu_gp_cleanup(void)
1936 {
1937 	int cpu;
1938 	bool needgp = false;
1939 	unsigned long gp_duration;
1940 	unsigned long new_gp_seq;
1941 	bool offloaded;
1942 	struct rcu_data *rdp;
1943 	struct rcu_node *rnp = rcu_get_root();
1944 	struct swait_queue_head *sq;
1945 
1946 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1947 	raw_spin_lock_irq_rcu_node(rnp);
1948 	rcu_state.gp_end = jiffies;
1949 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1950 	if (gp_duration > rcu_state.gp_max)
1951 		rcu_state.gp_max = gp_duration;
1952 
1953 	/*
1954 	 * We know the grace period is complete, but to everyone else
1955 	 * it appears to still be ongoing.  But it is also the case
1956 	 * that to everyone else it looks like there is nothing that
1957 	 * they can do to advance the grace period.  It is therefore
1958 	 * safe for us to drop the lock in order to mark the grace
1959 	 * period as completed in all of the rcu_node structures.
1960 	 */
1961 	raw_spin_unlock_irq_rcu_node(rnp);
1962 
1963 	/*
1964 	 * Propagate new ->gp_seq value to rcu_node structures so that
1965 	 * other CPUs don't have to wait until the start of the next grace
1966 	 * period to process their callbacks.  This also avoids some nasty
1967 	 * RCU grace-period initialization races by forcing the end of
1968 	 * the current grace period to be completely recorded in all of
1969 	 * the rcu_node structures before the beginning of the next grace
1970 	 * period is recorded in any of the rcu_node structures.
1971 	 */
1972 	new_gp_seq = rcu_state.gp_seq;
1973 	rcu_seq_end(&new_gp_seq);
1974 	rcu_for_each_node_breadth_first(rnp) {
1975 		raw_spin_lock_irq_rcu_node(rnp);
1976 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1977 			dump_blkd_tasks(rnp, 10);
1978 		WARN_ON_ONCE(rnp->qsmask);
1979 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1980 		rdp = this_cpu_ptr(&rcu_data);
1981 		if (rnp == rdp->mynode)
1982 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1983 		/* smp_mb() provided by prior unlock-lock pair. */
1984 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1985 		// Reset overload indication for CPUs no longer overloaded
1986 		if (rcu_is_leaf_node(rnp))
1987 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1988 				rdp = per_cpu_ptr(&rcu_data, cpu);
1989 				check_cb_ovld_locked(rdp, rnp);
1990 			}
1991 		sq = rcu_nocb_gp_get(rnp);
1992 		raw_spin_unlock_irq_rcu_node(rnp);
1993 		rcu_nocb_gp_cleanup(sq);
1994 		cond_resched_tasks_rcu_qs();
1995 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1996 		rcu_gp_slow(gp_cleanup_delay);
1997 	}
1998 	rnp = rcu_get_root();
1999 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2000 
2001 	/* Declare grace period done, trace first to use old GP number. */
2002 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2003 	rcu_seq_end(&rcu_state.gp_seq);
2004 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2005 	rcu_state.gp_state = RCU_GP_IDLE;
2006 	/* Check for GP requests since above loop. */
2007 	rdp = this_cpu_ptr(&rcu_data);
2008 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2009 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2010 				  TPS("CleanupMore"));
2011 		needgp = true;
2012 	}
2013 	/* Advance CBs to reduce false positives below. */
2014 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2015 		    rcu_segcblist_is_offloaded(&rdp->cblist);
2016 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2017 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2018 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2019 		trace_rcu_grace_period(rcu_state.name,
2020 				       rcu_state.gp_seq,
2021 				       TPS("newreq"));
2022 	} else {
2023 		WRITE_ONCE(rcu_state.gp_flags,
2024 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2025 	}
2026 	raw_spin_unlock_irq_rcu_node(rnp);
2027 }
2028 
2029 /*
2030  * Body of kthread that handles grace periods.
2031  */
2032 static int __noreturn rcu_gp_kthread(void *unused)
2033 {
2034 	rcu_bind_gp_kthread();
2035 	for (;;) {
2036 
2037 		/* Handle grace-period start. */
2038 		for (;;) {
2039 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2040 					       TPS("reqwait"));
2041 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
2042 			swait_event_idle_exclusive(rcu_state.gp_wq,
2043 					 READ_ONCE(rcu_state.gp_flags) &
2044 					 RCU_GP_FLAG_INIT);
2045 			rcu_gp_torture_wait();
2046 			rcu_state.gp_state = RCU_GP_DONE_GPS;
2047 			/* Locking provides needed memory barrier. */
2048 			if (rcu_gp_init())
2049 				break;
2050 			cond_resched_tasks_rcu_qs();
2051 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2052 			WARN_ON(signal_pending(current));
2053 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2054 					       TPS("reqwaitsig"));
2055 		}
2056 
2057 		/* Handle quiescent-state forcing. */
2058 		rcu_gp_fqs_loop();
2059 
2060 		/* Handle grace-period end. */
2061 		rcu_state.gp_state = RCU_GP_CLEANUP;
2062 		rcu_gp_cleanup();
2063 		rcu_state.gp_state = RCU_GP_CLEANED;
2064 	}
2065 }
2066 
2067 /*
2068  * Report a full set of quiescent states to the rcu_state data structure.
2069  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2070  * another grace period is required.  Whether we wake the grace-period
2071  * kthread or it awakens itself for the next round of quiescent-state
2072  * forcing, that kthread will clean up after the just-completed grace
2073  * period.  Note that the caller must hold rnp->lock, which is released
2074  * before return.
2075  */
2076 static void rcu_report_qs_rsp(unsigned long flags)
2077 	__releases(rcu_get_root()->lock)
2078 {
2079 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2080 	WARN_ON_ONCE(!rcu_gp_in_progress());
2081 	WRITE_ONCE(rcu_state.gp_flags,
2082 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2083 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2084 	rcu_gp_kthread_wake();
2085 }
2086 
2087 /*
2088  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2089  * Allows quiescent states for a group of CPUs to be reported at one go
2090  * to the specified rcu_node structure, though all the CPUs in the group
2091  * must be represented by the same rcu_node structure (which need not be a
2092  * leaf rcu_node structure, though it often will be).  The gps parameter
2093  * is the grace-period snapshot, which means that the quiescent states
2094  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2095  * must be held upon entry, and it is released before return.
2096  *
2097  * As a special case, if mask is zero, the bit-already-cleared check is
2098  * disabled.  This allows propagating quiescent state due to resumed tasks
2099  * during grace-period initialization.
2100  */
2101 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2102 			      unsigned long gps, unsigned long flags)
2103 	__releases(rnp->lock)
2104 {
2105 	unsigned long oldmask = 0;
2106 	struct rcu_node *rnp_c;
2107 
2108 	raw_lockdep_assert_held_rcu_node(rnp);
2109 
2110 	/* Walk up the rcu_node hierarchy. */
2111 	for (;;) {
2112 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2113 
2114 			/*
2115 			 * Our bit has already been cleared, or the
2116 			 * relevant grace period is already over, so done.
2117 			 */
2118 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2119 			return;
2120 		}
2121 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2122 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2123 			     rcu_preempt_blocked_readers_cgp(rnp));
2124 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2125 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2126 						 mask, rnp->qsmask, rnp->level,
2127 						 rnp->grplo, rnp->grphi,
2128 						 !!rnp->gp_tasks);
2129 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2130 
2131 			/* Other bits still set at this level, so done. */
2132 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2133 			return;
2134 		}
2135 		rnp->completedqs = rnp->gp_seq;
2136 		mask = rnp->grpmask;
2137 		if (rnp->parent == NULL) {
2138 
2139 			/* No more levels.  Exit loop holding root lock. */
2140 
2141 			break;
2142 		}
2143 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2144 		rnp_c = rnp;
2145 		rnp = rnp->parent;
2146 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2147 		oldmask = READ_ONCE(rnp_c->qsmask);
2148 	}
2149 
2150 	/*
2151 	 * Get here if we are the last CPU to pass through a quiescent
2152 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2153 	 * to clean up and start the next grace period if one is needed.
2154 	 */
2155 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2156 }
2157 
2158 /*
2159  * Record a quiescent state for all tasks that were previously queued
2160  * on the specified rcu_node structure and that were blocking the current
2161  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2162  * irqs disabled, and this lock is released upon return, but irqs remain
2163  * disabled.
2164  */
2165 static void __maybe_unused
2166 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2167 	__releases(rnp->lock)
2168 {
2169 	unsigned long gps;
2170 	unsigned long mask;
2171 	struct rcu_node *rnp_p;
2172 
2173 	raw_lockdep_assert_held_rcu_node(rnp);
2174 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2175 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2176 	    rnp->qsmask != 0) {
2177 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2178 		return;  /* Still need more quiescent states! */
2179 	}
2180 
2181 	rnp->completedqs = rnp->gp_seq;
2182 	rnp_p = rnp->parent;
2183 	if (rnp_p == NULL) {
2184 		/*
2185 		 * Only one rcu_node structure in the tree, so don't
2186 		 * try to report up to its nonexistent parent!
2187 		 */
2188 		rcu_report_qs_rsp(flags);
2189 		return;
2190 	}
2191 
2192 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2193 	gps = rnp->gp_seq;
2194 	mask = rnp->grpmask;
2195 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2196 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2197 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2198 }
2199 
2200 /*
2201  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2202  * structure.  This must be called from the specified CPU.
2203  */
2204 static void
2205 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2206 {
2207 	unsigned long flags;
2208 	unsigned long mask;
2209 	bool needwake = false;
2210 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2211 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2212 	struct rcu_node *rnp;
2213 
2214 	rnp = rdp->mynode;
2215 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2216 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2217 	    rdp->gpwrap) {
2218 
2219 		/*
2220 		 * The grace period in which this quiescent state was
2221 		 * recorded has ended, so don't report it upwards.
2222 		 * We will instead need a new quiescent state that lies
2223 		 * within the current grace period.
2224 		 */
2225 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2226 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2227 		return;
2228 	}
2229 	mask = rdp->grpmask;
2230 	if (rdp->cpu == smp_processor_id())
2231 		rdp->core_needs_qs = false;
2232 	if ((rnp->qsmask & mask) == 0) {
2233 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2234 	} else {
2235 		/*
2236 		 * This GP can't end until cpu checks in, so all of our
2237 		 * callbacks can be processed during the next GP.
2238 		 */
2239 		if (!offloaded)
2240 			needwake = rcu_accelerate_cbs(rnp, rdp);
2241 
2242 		rcu_disable_urgency_upon_qs(rdp);
2243 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2244 		/* ^^^ Released rnp->lock */
2245 		if (needwake)
2246 			rcu_gp_kthread_wake();
2247 	}
2248 }
2249 
2250 /*
2251  * Check to see if there is a new grace period of which this CPU
2252  * is not yet aware, and if so, set up local rcu_data state for it.
2253  * Otherwise, see if this CPU has just passed through its first
2254  * quiescent state for this grace period, and record that fact if so.
2255  */
2256 static void
2257 rcu_check_quiescent_state(struct rcu_data *rdp)
2258 {
2259 	/* Check for grace-period ends and beginnings. */
2260 	note_gp_changes(rdp);
2261 
2262 	/*
2263 	 * Does this CPU still need to do its part for current grace period?
2264 	 * If no, return and let the other CPUs do their part as well.
2265 	 */
2266 	if (!rdp->core_needs_qs)
2267 		return;
2268 
2269 	/*
2270 	 * Was there a quiescent state since the beginning of the grace
2271 	 * period? If no, then exit and wait for the next call.
2272 	 */
2273 	if (rdp->cpu_no_qs.b.norm)
2274 		return;
2275 
2276 	/*
2277 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2278 	 * judge of that).
2279 	 */
2280 	rcu_report_qs_rdp(rdp->cpu, rdp);
2281 }
2282 
2283 /*
2284  * Near the end of the offline process.  Trace the fact that this CPU
2285  * is going offline.
2286  */
2287 int rcutree_dying_cpu(unsigned int cpu)
2288 {
2289 	bool blkd;
2290 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2291 	struct rcu_node *rnp = rdp->mynode;
2292 
2293 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2294 		return 0;
2295 
2296 	blkd = !!(rnp->qsmask & rdp->grpmask);
2297 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2298 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2299 	return 0;
2300 }
2301 
2302 /*
2303  * All CPUs for the specified rcu_node structure have gone offline,
2304  * and all tasks that were preempted within an RCU read-side critical
2305  * section while running on one of those CPUs have since exited their RCU
2306  * read-side critical section.  Some other CPU is reporting this fact with
2307  * the specified rcu_node structure's ->lock held and interrupts disabled.
2308  * This function therefore goes up the tree of rcu_node structures,
2309  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2310  * the leaf rcu_node structure's ->qsmaskinit field has already been
2311  * updated.
2312  *
2313  * This function does check that the specified rcu_node structure has
2314  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2315  * prematurely.  That said, invoking it after the fact will cost you
2316  * a needless lock acquisition.  So once it has done its work, don't
2317  * invoke it again.
2318  */
2319 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2320 {
2321 	long mask;
2322 	struct rcu_node *rnp = rnp_leaf;
2323 
2324 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2325 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2326 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2327 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2328 		return;
2329 	for (;;) {
2330 		mask = rnp->grpmask;
2331 		rnp = rnp->parent;
2332 		if (!rnp)
2333 			break;
2334 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2335 		rnp->qsmaskinit &= ~mask;
2336 		/* Between grace periods, so better already be zero! */
2337 		WARN_ON_ONCE(rnp->qsmask);
2338 		if (rnp->qsmaskinit) {
2339 			raw_spin_unlock_rcu_node(rnp);
2340 			/* irqs remain disabled. */
2341 			return;
2342 		}
2343 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2344 	}
2345 }
2346 
2347 /*
2348  * The CPU has been completely removed, and some other CPU is reporting
2349  * this fact from process context.  Do the remainder of the cleanup.
2350  * There can only be one CPU hotplug operation at a time, so no need for
2351  * explicit locking.
2352  */
2353 int rcutree_dead_cpu(unsigned int cpu)
2354 {
2355 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2356 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2357 
2358 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2359 		return 0;
2360 
2361 	/* Adjust any no-longer-needed kthreads. */
2362 	rcu_boost_kthread_setaffinity(rnp, -1);
2363 	/* Do any needed no-CB deferred wakeups from this CPU. */
2364 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2365 
2366 	// Stop-machine done, so allow nohz_full to disable tick.
2367 	tick_dep_clear(TICK_DEP_BIT_RCU);
2368 	return 0;
2369 }
2370 
2371 /*
2372  * Invoke any RCU callbacks that have made it to the end of their grace
2373  * period.  Thottle as specified by rdp->blimit.
2374  */
2375 static void rcu_do_batch(struct rcu_data *rdp)
2376 {
2377 	unsigned long flags;
2378 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2379 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2380 	struct rcu_head *rhp;
2381 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2382 	long bl, count;
2383 	long pending, tlimit = 0;
2384 
2385 	/* If no callbacks are ready, just return. */
2386 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2387 		trace_rcu_batch_start(rcu_state.name,
2388 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2389 		trace_rcu_batch_end(rcu_state.name, 0,
2390 				    !rcu_segcblist_empty(&rdp->cblist),
2391 				    need_resched(), is_idle_task(current),
2392 				    rcu_is_callbacks_kthread());
2393 		return;
2394 	}
2395 
2396 	/*
2397 	 * Extract the list of ready callbacks, disabling to prevent
2398 	 * races with call_rcu() from interrupt handlers.  Leave the
2399 	 * callback counts, as rcu_barrier() needs to be conservative.
2400 	 */
2401 	local_irq_save(flags);
2402 	rcu_nocb_lock(rdp);
2403 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2404 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2405 	bl = max(rdp->blimit, pending >> rcu_divisor);
2406 	if (unlikely(bl > 100))
2407 		tlimit = local_clock() + rcu_resched_ns;
2408 	trace_rcu_batch_start(rcu_state.name,
2409 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2410 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2411 	if (offloaded)
2412 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2413 	rcu_nocb_unlock_irqrestore(rdp, flags);
2414 
2415 	/* Invoke callbacks. */
2416 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2417 	rhp = rcu_cblist_dequeue(&rcl);
2418 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2419 		rcu_callback_t f;
2420 
2421 		debug_rcu_head_unqueue(rhp);
2422 
2423 		rcu_lock_acquire(&rcu_callback_map);
2424 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2425 
2426 		f = rhp->func;
2427 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2428 		f(rhp);
2429 
2430 		rcu_lock_release(&rcu_callback_map);
2431 
2432 		/*
2433 		 * Stop only if limit reached and CPU has something to do.
2434 		 * Note: The rcl structure counts down from zero.
2435 		 */
2436 		if (-rcl.len >= bl && !offloaded &&
2437 		    (need_resched() ||
2438 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2439 			break;
2440 		if (unlikely(tlimit)) {
2441 			/* only call local_clock() every 32 callbacks */
2442 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2443 				continue;
2444 			/* Exceeded the time limit, so leave. */
2445 			break;
2446 		}
2447 		if (offloaded) {
2448 			WARN_ON_ONCE(in_serving_softirq());
2449 			local_bh_enable();
2450 			lockdep_assert_irqs_enabled();
2451 			cond_resched_tasks_rcu_qs();
2452 			lockdep_assert_irqs_enabled();
2453 			local_bh_disable();
2454 		}
2455 	}
2456 
2457 	local_irq_save(flags);
2458 	rcu_nocb_lock(rdp);
2459 	count = -rcl.len;
2460 	rdp->n_cbs_invoked += count;
2461 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2462 			    is_idle_task(current), rcu_is_callbacks_kthread());
2463 
2464 	/* Update counts and requeue any remaining callbacks. */
2465 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2466 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2467 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2468 
2469 	/* Reinstate batch limit if we have worked down the excess. */
2470 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2471 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2472 		rdp->blimit = blimit;
2473 
2474 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2475 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2476 		rdp->qlen_last_fqs_check = 0;
2477 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2478 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2479 		rdp->qlen_last_fqs_check = count;
2480 
2481 	/*
2482 	 * The following usually indicates a double call_rcu().  To track
2483 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2484 	 */
2485 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2486 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2487 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2488 
2489 	rcu_nocb_unlock_irqrestore(rdp, flags);
2490 
2491 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2492 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2493 		invoke_rcu_core();
2494 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2495 }
2496 
2497 /*
2498  * This function is invoked from each scheduling-clock interrupt,
2499  * and checks to see if this CPU is in a non-context-switch quiescent
2500  * state, for example, user mode or idle loop.  It also schedules RCU
2501  * core processing.  If the current grace period has gone on too long,
2502  * it will ask the scheduler to manufacture a context switch for the sole
2503  * purpose of providing a providing the needed quiescent state.
2504  */
2505 void rcu_sched_clock_irq(int user)
2506 {
2507 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2508 	raw_cpu_inc(rcu_data.ticks_this_gp);
2509 	/* The load-acquire pairs with the store-release setting to true. */
2510 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2511 		/* Idle and userspace execution already are quiescent states. */
2512 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2513 			set_tsk_need_resched(current);
2514 			set_preempt_need_resched();
2515 		}
2516 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2517 	}
2518 	rcu_flavor_sched_clock_irq(user);
2519 	if (rcu_pending(user))
2520 		invoke_rcu_core();
2521 
2522 	trace_rcu_utilization(TPS("End scheduler-tick"));
2523 }
2524 
2525 /*
2526  * Scan the leaf rcu_node structures.  For each structure on which all
2527  * CPUs have reported a quiescent state and on which there are tasks
2528  * blocking the current grace period, initiate RCU priority boosting.
2529  * Otherwise, invoke the specified function to check dyntick state for
2530  * each CPU that has not yet reported a quiescent state.
2531  */
2532 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2533 {
2534 	int cpu;
2535 	unsigned long flags;
2536 	unsigned long mask;
2537 	struct rcu_data *rdp;
2538 	struct rcu_node *rnp;
2539 
2540 	rcu_state.cbovld = rcu_state.cbovldnext;
2541 	rcu_state.cbovldnext = false;
2542 	rcu_for_each_leaf_node(rnp) {
2543 		cond_resched_tasks_rcu_qs();
2544 		mask = 0;
2545 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2546 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2547 		if (rnp->qsmask == 0) {
2548 			if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2549 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2550 				/*
2551 				 * No point in scanning bits because they
2552 				 * are all zero.  But we might need to
2553 				 * priority-boost blocked readers.
2554 				 */
2555 				rcu_initiate_boost(rnp, flags);
2556 				/* rcu_initiate_boost() releases rnp->lock */
2557 				continue;
2558 			}
2559 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2560 			continue;
2561 		}
2562 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2563 			rdp = per_cpu_ptr(&rcu_data, cpu);
2564 			if (f(rdp)) {
2565 				mask |= rdp->grpmask;
2566 				rcu_disable_urgency_upon_qs(rdp);
2567 			}
2568 		}
2569 		if (mask != 0) {
2570 			/* Idle/offline CPUs, report (releases rnp->lock). */
2571 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2572 		} else {
2573 			/* Nothing to do here, so just drop the lock. */
2574 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2575 		}
2576 	}
2577 }
2578 
2579 /*
2580  * Force quiescent states on reluctant CPUs, and also detect which
2581  * CPUs are in dyntick-idle mode.
2582  */
2583 void rcu_force_quiescent_state(void)
2584 {
2585 	unsigned long flags;
2586 	bool ret;
2587 	struct rcu_node *rnp;
2588 	struct rcu_node *rnp_old = NULL;
2589 
2590 	/* Funnel through hierarchy to reduce memory contention. */
2591 	rnp = __this_cpu_read(rcu_data.mynode);
2592 	for (; rnp != NULL; rnp = rnp->parent) {
2593 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2594 		       !raw_spin_trylock(&rnp->fqslock);
2595 		if (rnp_old != NULL)
2596 			raw_spin_unlock(&rnp_old->fqslock);
2597 		if (ret)
2598 			return;
2599 		rnp_old = rnp;
2600 	}
2601 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2602 
2603 	/* Reached the root of the rcu_node tree, acquire lock. */
2604 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2605 	raw_spin_unlock(&rnp_old->fqslock);
2606 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2607 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2608 		return;  /* Someone beat us to it. */
2609 	}
2610 	WRITE_ONCE(rcu_state.gp_flags,
2611 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2612 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2613 	rcu_gp_kthread_wake();
2614 }
2615 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2616 
2617 /* Perform RCU core processing work for the current CPU.  */
2618 static __latent_entropy void rcu_core(void)
2619 {
2620 	unsigned long flags;
2621 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2622 	struct rcu_node *rnp = rdp->mynode;
2623 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2624 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2625 
2626 	if (cpu_is_offline(smp_processor_id()))
2627 		return;
2628 	trace_rcu_utilization(TPS("Start RCU core"));
2629 	WARN_ON_ONCE(!rdp->beenonline);
2630 
2631 	/* Report any deferred quiescent states if preemption enabled. */
2632 	if (!(preempt_count() & PREEMPT_MASK)) {
2633 		rcu_preempt_deferred_qs(current);
2634 	} else if (rcu_preempt_need_deferred_qs(current)) {
2635 		set_tsk_need_resched(current);
2636 		set_preempt_need_resched();
2637 	}
2638 
2639 	/* Update RCU state based on any recent quiescent states. */
2640 	rcu_check_quiescent_state(rdp);
2641 
2642 	/* No grace period and unregistered callbacks? */
2643 	if (!rcu_gp_in_progress() &&
2644 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2645 		local_irq_save(flags);
2646 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2647 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2648 		local_irq_restore(flags);
2649 	}
2650 
2651 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2652 
2653 	/* If there are callbacks ready, invoke them. */
2654 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2655 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2656 		rcu_do_batch(rdp);
2657 
2658 	/* Do any needed deferred wakeups of rcuo kthreads. */
2659 	do_nocb_deferred_wakeup(rdp);
2660 	trace_rcu_utilization(TPS("End RCU core"));
2661 }
2662 
2663 static void rcu_core_si(struct softirq_action *h)
2664 {
2665 	rcu_core();
2666 }
2667 
2668 static void rcu_wake_cond(struct task_struct *t, int status)
2669 {
2670 	/*
2671 	 * If the thread is yielding, only wake it when this
2672 	 * is invoked from idle
2673 	 */
2674 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2675 		wake_up_process(t);
2676 }
2677 
2678 static void invoke_rcu_core_kthread(void)
2679 {
2680 	struct task_struct *t;
2681 	unsigned long flags;
2682 
2683 	local_irq_save(flags);
2684 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2685 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2686 	if (t != NULL && t != current)
2687 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2688 	local_irq_restore(flags);
2689 }
2690 
2691 /*
2692  * Wake up this CPU's rcuc kthread to do RCU core processing.
2693  */
2694 static void invoke_rcu_core(void)
2695 {
2696 	if (!cpu_online(smp_processor_id()))
2697 		return;
2698 	if (use_softirq)
2699 		raise_softirq(RCU_SOFTIRQ);
2700 	else
2701 		invoke_rcu_core_kthread();
2702 }
2703 
2704 static void rcu_cpu_kthread_park(unsigned int cpu)
2705 {
2706 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2707 }
2708 
2709 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2710 {
2711 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2712 }
2713 
2714 /*
2715  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2716  * the RCU softirq used in configurations of RCU that do not support RCU
2717  * priority boosting.
2718  */
2719 static void rcu_cpu_kthread(unsigned int cpu)
2720 {
2721 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2722 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2723 	int spincnt;
2724 
2725 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2726 	for (spincnt = 0; spincnt < 10; spincnt++) {
2727 		local_bh_disable();
2728 		*statusp = RCU_KTHREAD_RUNNING;
2729 		local_irq_disable();
2730 		work = *workp;
2731 		*workp = 0;
2732 		local_irq_enable();
2733 		if (work)
2734 			rcu_core();
2735 		local_bh_enable();
2736 		if (*workp == 0) {
2737 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2738 			*statusp = RCU_KTHREAD_WAITING;
2739 			return;
2740 		}
2741 	}
2742 	*statusp = RCU_KTHREAD_YIELDING;
2743 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2744 	schedule_timeout_idle(2);
2745 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2746 	*statusp = RCU_KTHREAD_WAITING;
2747 }
2748 
2749 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2750 	.store			= &rcu_data.rcu_cpu_kthread_task,
2751 	.thread_should_run	= rcu_cpu_kthread_should_run,
2752 	.thread_fn		= rcu_cpu_kthread,
2753 	.thread_comm		= "rcuc/%u",
2754 	.setup			= rcu_cpu_kthread_setup,
2755 	.park			= rcu_cpu_kthread_park,
2756 };
2757 
2758 /*
2759  * Spawn per-CPU RCU core processing kthreads.
2760  */
2761 static int __init rcu_spawn_core_kthreads(void)
2762 {
2763 	int cpu;
2764 
2765 	for_each_possible_cpu(cpu)
2766 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2767 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2768 		return 0;
2769 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2770 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2771 	return 0;
2772 }
2773 early_initcall(rcu_spawn_core_kthreads);
2774 
2775 /*
2776  * Handle any core-RCU processing required by a call_rcu() invocation.
2777  */
2778 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2779 			    unsigned long flags)
2780 {
2781 	/*
2782 	 * If called from an extended quiescent state, invoke the RCU
2783 	 * core in order to force a re-evaluation of RCU's idleness.
2784 	 */
2785 	if (!rcu_is_watching())
2786 		invoke_rcu_core();
2787 
2788 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2789 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2790 		return;
2791 
2792 	/*
2793 	 * Force the grace period if too many callbacks or too long waiting.
2794 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2795 	 * if some other CPU has recently done so.  Also, don't bother
2796 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2797 	 * is the only one waiting for a grace period to complete.
2798 	 */
2799 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2800 		     rdp->qlen_last_fqs_check + qhimark)) {
2801 
2802 		/* Are we ignoring a completed grace period? */
2803 		note_gp_changes(rdp);
2804 
2805 		/* Start a new grace period if one not already started. */
2806 		if (!rcu_gp_in_progress()) {
2807 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2808 		} else {
2809 			/* Give the grace period a kick. */
2810 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2811 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2812 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2813 				rcu_force_quiescent_state();
2814 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2815 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2816 		}
2817 	}
2818 }
2819 
2820 /*
2821  * RCU callback function to leak a callback.
2822  */
2823 static void rcu_leak_callback(struct rcu_head *rhp)
2824 {
2825 }
2826 
2827 /*
2828  * Check and if necessary update the leaf rcu_node structure's
2829  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2830  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2831  * structure's ->lock.
2832  */
2833 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2834 {
2835 	raw_lockdep_assert_held_rcu_node(rnp);
2836 	if (qovld_calc <= 0)
2837 		return; // Early boot and wildcard value set.
2838 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2839 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2840 	else
2841 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2842 }
2843 
2844 /*
2845  * Check and if necessary update the leaf rcu_node structure's
2846  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2847  * number of queued RCU callbacks.  No locks need be held, but the
2848  * caller must have disabled interrupts.
2849  *
2850  * Note that this function ignores the possibility that there are a lot
2851  * of callbacks all of which have already seen the end of their respective
2852  * grace periods.  This omission is due to the need for no-CBs CPUs to
2853  * be holding ->nocb_lock to do this check, which is too heavy for a
2854  * common-case operation.
2855  */
2856 static void check_cb_ovld(struct rcu_data *rdp)
2857 {
2858 	struct rcu_node *const rnp = rdp->mynode;
2859 
2860 	if (qovld_calc <= 0 ||
2861 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2862 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2863 		return; // Early boot wildcard value or already set correctly.
2864 	raw_spin_lock_rcu_node(rnp);
2865 	check_cb_ovld_locked(rdp, rnp);
2866 	raw_spin_unlock_rcu_node(rnp);
2867 }
2868 
2869 /* Helper function for call_rcu() and friends.  */
2870 static void
2871 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2872 {
2873 	unsigned long flags;
2874 	struct rcu_data *rdp;
2875 	bool was_alldone;
2876 
2877 	/* Misaligned rcu_head! */
2878 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2879 
2880 	if (debug_rcu_head_queue(head)) {
2881 		/*
2882 		 * Probable double call_rcu(), so leak the callback.
2883 		 * Use rcu:rcu_callback trace event to find the previous
2884 		 * time callback was passed to __call_rcu().
2885 		 */
2886 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2887 			  head, head->func);
2888 		WRITE_ONCE(head->func, rcu_leak_callback);
2889 		return;
2890 	}
2891 	head->func = func;
2892 	head->next = NULL;
2893 	local_irq_save(flags);
2894 	kasan_record_aux_stack(head);
2895 	rdp = this_cpu_ptr(&rcu_data);
2896 
2897 	/* Add the callback to our list. */
2898 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2899 		// This can trigger due to call_rcu() from offline CPU:
2900 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2901 		WARN_ON_ONCE(!rcu_is_watching());
2902 		// Very early boot, before rcu_init().  Initialize if needed
2903 		// and then drop through to queue the callback.
2904 		if (rcu_segcblist_empty(&rdp->cblist))
2905 			rcu_segcblist_init(&rdp->cblist);
2906 	}
2907 
2908 	check_cb_ovld(rdp);
2909 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2910 		return; // Enqueued onto ->nocb_bypass, so just leave.
2911 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2912 	rcu_segcblist_enqueue(&rdp->cblist, head);
2913 	if (__is_kvfree_rcu_offset((unsigned long)func))
2914 		trace_rcu_kvfree_callback(rcu_state.name, head,
2915 					 (unsigned long)func,
2916 					 rcu_segcblist_n_cbs(&rdp->cblist));
2917 	else
2918 		trace_rcu_callback(rcu_state.name, head,
2919 				   rcu_segcblist_n_cbs(&rdp->cblist));
2920 
2921 	/* Go handle any RCU core processing required. */
2922 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2923 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2924 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2925 	} else {
2926 		__call_rcu_core(rdp, head, flags);
2927 		local_irq_restore(flags);
2928 	}
2929 }
2930 
2931 /**
2932  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2933  * @head: structure to be used for queueing the RCU updates.
2934  * @func: actual callback function to be invoked after the grace period
2935  *
2936  * The callback function will be invoked some time after a full grace
2937  * period elapses, in other words after all pre-existing RCU read-side
2938  * critical sections have completed.  However, the callback function
2939  * might well execute concurrently with RCU read-side critical sections
2940  * that started after call_rcu() was invoked.  RCU read-side critical
2941  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2942  * may be nested.  In addition, regions of code across which interrupts,
2943  * preemption, or softirqs have been disabled also serve as RCU read-side
2944  * critical sections.  This includes hardware interrupt handlers, softirq
2945  * handlers, and NMI handlers.
2946  *
2947  * Note that all CPUs must agree that the grace period extended beyond
2948  * all pre-existing RCU read-side critical section.  On systems with more
2949  * than one CPU, this means that when "func()" is invoked, each CPU is
2950  * guaranteed to have executed a full memory barrier since the end of its
2951  * last RCU read-side critical section whose beginning preceded the call
2952  * to call_rcu().  It also means that each CPU executing an RCU read-side
2953  * critical section that continues beyond the start of "func()" must have
2954  * executed a memory barrier after the call_rcu() but before the beginning
2955  * of that RCU read-side critical section.  Note that these guarantees
2956  * include CPUs that are offline, idle, or executing in user mode, as
2957  * well as CPUs that are executing in the kernel.
2958  *
2959  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2960  * resulting RCU callback function "func()", then both CPU A and CPU B are
2961  * guaranteed to execute a full memory barrier during the time interval
2962  * between the call to call_rcu() and the invocation of "func()" -- even
2963  * if CPU A and CPU B are the same CPU (but again only if the system has
2964  * more than one CPU).
2965  */
2966 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2967 {
2968 	__call_rcu(head, func);
2969 }
2970 EXPORT_SYMBOL_GPL(call_rcu);
2971 
2972 
2973 /* Maximum number of jiffies to wait before draining a batch. */
2974 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2975 #define KFREE_N_BATCHES 2
2976 #define FREE_N_CHANNELS 2
2977 
2978 /**
2979  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2980  * @nr_records: Number of active pointers in the array
2981  * @next: Next bulk object in the block chain
2982  * @records: Array of the kvfree_rcu() pointers
2983  */
2984 struct kvfree_rcu_bulk_data {
2985 	unsigned long nr_records;
2986 	struct kvfree_rcu_bulk_data *next;
2987 	void *records[];
2988 };
2989 
2990 /*
2991  * This macro defines how many entries the "records" array
2992  * will contain. It is based on the fact that the size of
2993  * kvfree_rcu_bulk_data structure becomes exactly one page.
2994  */
2995 #define KVFREE_BULK_MAX_ENTR \
2996 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2997 
2998 /**
2999  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3000  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3001  * @head_free: List of kfree_rcu() objects waiting for a grace period
3002  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3003  * @krcp: Pointer to @kfree_rcu_cpu structure
3004  */
3005 
3006 struct kfree_rcu_cpu_work {
3007 	struct rcu_work rcu_work;
3008 	struct rcu_head *head_free;
3009 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3010 	struct kfree_rcu_cpu *krcp;
3011 };
3012 
3013 /**
3014  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3015  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3016  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3017  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3018  * @lock: Synchronize access to this structure
3019  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3020  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3021  * @initialized: The @rcu_work fields have been initialized
3022  * @count: Number of objects for which GP not started
3023  *
3024  * This is a per-CPU structure.  The reason that it is not included in
3025  * the rcu_data structure is to permit this code to be extracted from
3026  * the RCU files.  Such extraction could allow further optimization of
3027  * the interactions with the slab allocators.
3028  */
3029 struct kfree_rcu_cpu {
3030 	struct rcu_head *head;
3031 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3032 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3033 	raw_spinlock_t lock;
3034 	struct delayed_work monitor_work;
3035 	bool monitor_todo;
3036 	bool initialized;
3037 	int count;
3038 
3039 	/*
3040 	 * A simple cache list that contains objects for
3041 	 * reuse purpose. In order to save some per-cpu
3042 	 * space the list is singular. Even though it is
3043 	 * lockless an access has to be protected by the
3044 	 * per-cpu lock.
3045 	 */
3046 	struct llist_head bkvcache;
3047 	int nr_bkv_objs;
3048 };
3049 
3050 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3051 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3052 };
3053 
3054 static __always_inline void
3055 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3056 {
3057 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3058 	int i;
3059 
3060 	for (i = 0; i < bhead->nr_records; i++)
3061 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3062 #endif
3063 }
3064 
3065 static inline struct kfree_rcu_cpu *
3066 krc_this_cpu_lock(unsigned long *flags)
3067 {
3068 	struct kfree_rcu_cpu *krcp;
3069 
3070 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3071 	krcp = this_cpu_ptr(&krc);
3072 	raw_spin_lock(&krcp->lock);
3073 
3074 	return krcp;
3075 }
3076 
3077 static inline void
3078 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3079 {
3080 	raw_spin_unlock(&krcp->lock);
3081 	local_irq_restore(flags);
3082 }
3083 
3084 static inline struct kvfree_rcu_bulk_data *
3085 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3086 {
3087 	if (!krcp->nr_bkv_objs)
3088 		return NULL;
3089 
3090 	krcp->nr_bkv_objs--;
3091 	return (struct kvfree_rcu_bulk_data *)
3092 		llist_del_first(&krcp->bkvcache);
3093 }
3094 
3095 static inline bool
3096 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3097 	struct kvfree_rcu_bulk_data *bnode)
3098 {
3099 	// Check the limit.
3100 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3101 		return false;
3102 
3103 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3104 	krcp->nr_bkv_objs++;
3105 	return true;
3106 
3107 }
3108 
3109 /*
3110  * This function is invoked in workqueue context after a grace period.
3111  * It frees all the objects queued on ->bhead_free or ->head_free.
3112  */
3113 static void kfree_rcu_work(struct work_struct *work)
3114 {
3115 	unsigned long flags;
3116 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3117 	struct rcu_head *head, *next;
3118 	struct kfree_rcu_cpu *krcp;
3119 	struct kfree_rcu_cpu_work *krwp;
3120 	int i, j;
3121 
3122 	krwp = container_of(to_rcu_work(work),
3123 			    struct kfree_rcu_cpu_work, rcu_work);
3124 	krcp = krwp->krcp;
3125 
3126 	raw_spin_lock_irqsave(&krcp->lock, flags);
3127 	// Channels 1 and 2.
3128 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3129 		bkvhead[i] = krwp->bkvhead_free[i];
3130 		krwp->bkvhead_free[i] = NULL;
3131 	}
3132 
3133 	// Channel 3.
3134 	head = krwp->head_free;
3135 	krwp->head_free = NULL;
3136 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3137 
3138 	// Handle two first channels.
3139 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3140 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3141 			bnext = bkvhead[i]->next;
3142 			debug_rcu_bhead_unqueue(bkvhead[i]);
3143 
3144 			rcu_lock_acquire(&rcu_callback_map);
3145 			if (i == 0) { // kmalloc() / kfree().
3146 				trace_rcu_invoke_kfree_bulk_callback(
3147 					rcu_state.name, bkvhead[i]->nr_records,
3148 					bkvhead[i]->records);
3149 
3150 				kfree_bulk(bkvhead[i]->nr_records,
3151 					bkvhead[i]->records);
3152 			} else { // vmalloc() / vfree().
3153 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3154 					trace_rcu_invoke_kvfree_callback(
3155 						rcu_state.name,
3156 						bkvhead[i]->records[j], 0);
3157 
3158 					vfree(bkvhead[i]->records[j]);
3159 				}
3160 			}
3161 			rcu_lock_release(&rcu_callback_map);
3162 
3163 			krcp = krc_this_cpu_lock(&flags);
3164 			if (put_cached_bnode(krcp, bkvhead[i]))
3165 				bkvhead[i] = NULL;
3166 			krc_this_cpu_unlock(krcp, flags);
3167 
3168 			if (bkvhead[i])
3169 				free_page((unsigned long) bkvhead[i]);
3170 
3171 			cond_resched_tasks_rcu_qs();
3172 		}
3173 	}
3174 
3175 	/*
3176 	 * Emergency case only. It can happen under low memory
3177 	 * condition when an allocation gets failed, so the "bulk"
3178 	 * path can not be temporary maintained.
3179 	 */
3180 	for (; head; head = next) {
3181 		unsigned long offset = (unsigned long)head->func;
3182 		void *ptr = (void *)head - offset;
3183 
3184 		next = head->next;
3185 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3186 		rcu_lock_acquire(&rcu_callback_map);
3187 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3188 
3189 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3190 			kvfree(ptr);
3191 
3192 		rcu_lock_release(&rcu_callback_map);
3193 		cond_resched_tasks_rcu_qs();
3194 	}
3195 }
3196 
3197 /*
3198  * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3199  *
3200  * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3201  * timeout has been reached.
3202  */
3203 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3204 {
3205 	struct kfree_rcu_cpu_work *krwp;
3206 	bool repeat = false;
3207 	int i, j;
3208 
3209 	lockdep_assert_held(&krcp->lock);
3210 
3211 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3212 		krwp = &(krcp->krw_arr[i]);
3213 
3214 		/*
3215 		 * Try to detach bkvhead or head and attach it over any
3216 		 * available corresponding free channel. It can be that
3217 		 * a previous RCU batch is in progress, it means that
3218 		 * immediately to queue another one is not possible so
3219 		 * return false to tell caller to retry.
3220 		 */
3221 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3222 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3223 				(krcp->head && !krwp->head_free)) {
3224 			// Channel 1 corresponds to SLAB ptrs.
3225 			// Channel 2 corresponds to vmalloc ptrs.
3226 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3227 				if (!krwp->bkvhead_free[j]) {
3228 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3229 					krcp->bkvhead[j] = NULL;
3230 				}
3231 			}
3232 
3233 			// Channel 3 corresponds to emergency path.
3234 			if (!krwp->head_free) {
3235 				krwp->head_free = krcp->head;
3236 				krcp->head = NULL;
3237 			}
3238 
3239 			WRITE_ONCE(krcp->count, 0);
3240 
3241 			/*
3242 			 * One work is per one batch, so there are three
3243 			 * "free channels", the batch can handle. It can
3244 			 * be that the work is in the pending state when
3245 			 * channels have been detached following by each
3246 			 * other.
3247 			 */
3248 			queue_rcu_work(system_wq, &krwp->rcu_work);
3249 		}
3250 
3251 		// Repeat if any "free" corresponding channel is still busy.
3252 		if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3253 			repeat = true;
3254 	}
3255 
3256 	return !repeat;
3257 }
3258 
3259 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3260 					  unsigned long flags)
3261 {
3262 	// Attempt to start a new batch.
3263 	krcp->monitor_todo = false;
3264 	if (queue_kfree_rcu_work(krcp)) {
3265 		// Success! Our job is done here.
3266 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3267 		return;
3268 	}
3269 
3270 	// Previous RCU batch still in progress, try again later.
3271 	krcp->monitor_todo = true;
3272 	schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3273 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3274 }
3275 
3276 /*
3277  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3278  * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3279  */
3280 static void kfree_rcu_monitor(struct work_struct *work)
3281 {
3282 	unsigned long flags;
3283 	struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3284 						 monitor_work.work);
3285 
3286 	raw_spin_lock_irqsave(&krcp->lock, flags);
3287 	if (krcp->monitor_todo)
3288 		kfree_rcu_drain_unlock(krcp, flags);
3289 	else
3290 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3291 }
3292 
3293 static inline bool
3294 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr)
3295 {
3296 	struct kvfree_rcu_bulk_data *bnode;
3297 	int idx;
3298 
3299 	if (unlikely(!krcp->initialized))
3300 		return false;
3301 
3302 	lockdep_assert_held(&krcp->lock);
3303 	idx = !!is_vmalloc_addr(ptr);
3304 
3305 	/* Check if a new block is required. */
3306 	if (!krcp->bkvhead[idx] ||
3307 			krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3308 		bnode = get_cached_bnode(krcp);
3309 		if (!bnode) {
3310 			/*
3311 			 * To keep this path working on raw non-preemptible
3312 			 * sections, prevent the optional entry into the
3313 			 * allocator as it uses sleeping locks. In fact, even
3314 			 * if the caller of kfree_rcu() is preemptible, this
3315 			 * path still is not, as krcp->lock is a raw spinlock.
3316 			 * With additional page pre-allocation in the works,
3317 			 * hitting this return is going to be much less likely.
3318 			 */
3319 			if (IS_ENABLED(CONFIG_PREEMPT_RT))
3320 				return false;
3321 
3322 			/*
3323 			 * NOTE: For one argument of kvfree_rcu() we can
3324 			 * drop the lock and get the page in sleepable
3325 			 * context. That would allow to maintain an array
3326 			 * for the CONFIG_PREEMPT_RT as well if no cached
3327 			 * pages are available.
3328 			 */
3329 			bnode = (struct kvfree_rcu_bulk_data *)
3330 				__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
3331 		}
3332 
3333 		/* Switch to emergency path. */
3334 		if (unlikely(!bnode))
3335 			return false;
3336 
3337 		/* Initialize the new block. */
3338 		bnode->nr_records = 0;
3339 		bnode->next = krcp->bkvhead[idx];
3340 
3341 		/* Attach it to the head. */
3342 		krcp->bkvhead[idx] = bnode;
3343 	}
3344 
3345 	/* Finally insert. */
3346 	krcp->bkvhead[idx]->records
3347 		[krcp->bkvhead[idx]->nr_records++] = ptr;
3348 
3349 	return true;
3350 }
3351 
3352 /*
3353  * Queue a request for lazy invocation of appropriate free routine after a
3354  * grace period. Please note there are three paths are maintained, two are the
3355  * main ones that use array of pointers interface and third one is emergency
3356  * one, that is used only when the main path can not be maintained temporary,
3357  * due to memory pressure.
3358  *
3359  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3360  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3361  * be free'd in workqueue context. This allows us to: batch requests together to
3362  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3363  */
3364 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3365 {
3366 	unsigned long flags;
3367 	struct kfree_rcu_cpu *krcp;
3368 	bool success;
3369 	void *ptr;
3370 
3371 	if (head) {
3372 		ptr = (void *) head - (unsigned long) func;
3373 	} else {
3374 		/*
3375 		 * Please note there is a limitation for the head-less
3376 		 * variant, that is why there is a clear rule for such
3377 		 * objects: it can be used from might_sleep() context
3378 		 * only. For other places please embed an rcu_head to
3379 		 * your data.
3380 		 */
3381 		might_sleep();
3382 		ptr = (unsigned long *) func;
3383 	}
3384 
3385 	krcp = krc_this_cpu_lock(&flags);
3386 
3387 	// Queue the object but don't yet schedule the batch.
3388 	if (debug_rcu_head_queue(ptr)) {
3389 		// Probable double kfree_rcu(), just leak.
3390 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3391 			  __func__, head);
3392 
3393 		// Mark as success and leave.
3394 		success = true;
3395 		goto unlock_return;
3396 	}
3397 
3398 	/*
3399 	 * Under high memory pressure GFP_NOWAIT can fail,
3400 	 * in that case the emergency path is maintained.
3401 	 */
3402 	success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr);
3403 	if (!success) {
3404 		if (head == NULL)
3405 			// Inline if kvfree_rcu(one_arg) call.
3406 			goto unlock_return;
3407 
3408 		head->func = func;
3409 		head->next = krcp->head;
3410 		krcp->head = head;
3411 		success = true;
3412 	}
3413 
3414 	WRITE_ONCE(krcp->count, krcp->count + 1);
3415 
3416 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3417 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3418 	    !krcp->monitor_todo) {
3419 		krcp->monitor_todo = true;
3420 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3421 	}
3422 
3423 unlock_return:
3424 	krc_this_cpu_unlock(krcp, flags);
3425 
3426 	/*
3427 	 * Inline kvfree() after synchronize_rcu(). We can do
3428 	 * it from might_sleep() context only, so the current
3429 	 * CPU can pass the QS state.
3430 	 */
3431 	if (!success) {
3432 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3433 		synchronize_rcu();
3434 		kvfree(ptr);
3435 	}
3436 }
3437 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3438 
3439 static unsigned long
3440 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3441 {
3442 	int cpu;
3443 	unsigned long count = 0;
3444 
3445 	/* Snapshot count of all CPUs */
3446 	for_each_online_cpu(cpu) {
3447 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3448 
3449 		count += READ_ONCE(krcp->count);
3450 	}
3451 
3452 	return count;
3453 }
3454 
3455 static unsigned long
3456 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3457 {
3458 	int cpu, freed = 0;
3459 	unsigned long flags;
3460 
3461 	for_each_online_cpu(cpu) {
3462 		int count;
3463 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3464 
3465 		count = krcp->count;
3466 		raw_spin_lock_irqsave(&krcp->lock, flags);
3467 		if (krcp->monitor_todo)
3468 			kfree_rcu_drain_unlock(krcp, flags);
3469 		else
3470 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3471 
3472 		sc->nr_to_scan -= count;
3473 		freed += count;
3474 
3475 		if (sc->nr_to_scan <= 0)
3476 			break;
3477 	}
3478 
3479 	return freed == 0 ? SHRINK_STOP : freed;
3480 }
3481 
3482 static struct shrinker kfree_rcu_shrinker = {
3483 	.count_objects = kfree_rcu_shrink_count,
3484 	.scan_objects = kfree_rcu_shrink_scan,
3485 	.batch = 0,
3486 	.seeks = DEFAULT_SEEKS,
3487 };
3488 
3489 void __init kfree_rcu_scheduler_running(void)
3490 {
3491 	int cpu;
3492 	unsigned long flags;
3493 
3494 	for_each_online_cpu(cpu) {
3495 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3496 
3497 		raw_spin_lock_irqsave(&krcp->lock, flags);
3498 		if (!krcp->head || krcp->monitor_todo) {
3499 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3500 			continue;
3501 		}
3502 		krcp->monitor_todo = true;
3503 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3504 					 KFREE_DRAIN_JIFFIES);
3505 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3506 	}
3507 }
3508 
3509 /*
3510  * During early boot, any blocking grace-period wait automatically
3511  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3512  *
3513  * Howevr, because a context switch is a grace period for !PREEMPTION, any
3514  * blocking grace-period wait automatically implies a grace period if
3515  * there is only one CPU online at any point time during execution of
3516  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3517  * occasionally incorrectly indicate that there are multiple CPUs online
3518  * when there was in fact only one the whole time, as this just adds some
3519  * overhead: RCU still operates correctly.
3520  */
3521 static int rcu_blocking_is_gp(void)
3522 {
3523 	int ret;
3524 
3525 	if (IS_ENABLED(CONFIG_PREEMPTION))
3526 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3527 	might_sleep();  /* Check for RCU read-side critical section. */
3528 	preempt_disable();
3529 	ret = num_online_cpus() <= 1;
3530 	preempt_enable();
3531 	return ret;
3532 }
3533 
3534 /**
3535  * synchronize_rcu - wait until a grace period has elapsed.
3536  *
3537  * Control will return to the caller some time after a full grace
3538  * period has elapsed, in other words after all currently executing RCU
3539  * read-side critical sections have completed.  Note, however, that
3540  * upon return from synchronize_rcu(), the caller might well be executing
3541  * concurrently with new RCU read-side critical sections that began while
3542  * synchronize_rcu() was waiting.  RCU read-side critical sections are
3543  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3544  * In addition, regions of code across which interrupts, preemption, or
3545  * softirqs have been disabled also serve as RCU read-side critical
3546  * sections.  This includes hardware interrupt handlers, softirq handlers,
3547  * and NMI handlers.
3548  *
3549  * Note that this guarantee implies further memory-ordering guarantees.
3550  * On systems with more than one CPU, when synchronize_rcu() returns,
3551  * each CPU is guaranteed to have executed a full memory barrier since
3552  * the end of its last RCU read-side critical section whose beginning
3553  * preceded the call to synchronize_rcu().  In addition, each CPU having
3554  * an RCU read-side critical section that extends beyond the return from
3555  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3556  * after the beginning of synchronize_rcu() and before the beginning of
3557  * that RCU read-side critical section.  Note that these guarantees include
3558  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3559  * that are executing in the kernel.
3560  *
3561  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3562  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3563  * to have executed a full memory barrier during the execution of
3564  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3565  * again only if the system has more than one CPU).
3566  */
3567 void synchronize_rcu(void)
3568 {
3569 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3570 			 lock_is_held(&rcu_lock_map) ||
3571 			 lock_is_held(&rcu_sched_lock_map),
3572 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3573 	if (rcu_blocking_is_gp())
3574 		return;
3575 	if (rcu_gp_is_expedited())
3576 		synchronize_rcu_expedited();
3577 	else
3578 		wait_rcu_gp(call_rcu);
3579 }
3580 EXPORT_SYMBOL_GPL(synchronize_rcu);
3581 
3582 /**
3583  * get_state_synchronize_rcu - Snapshot current RCU state
3584  *
3585  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3586  * to determine whether or not a full grace period has elapsed in the
3587  * meantime.
3588  */
3589 unsigned long get_state_synchronize_rcu(void)
3590 {
3591 	/*
3592 	 * Any prior manipulation of RCU-protected data must happen
3593 	 * before the load from ->gp_seq.
3594 	 */
3595 	smp_mb();  /* ^^^ */
3596 	return rcu_seq_snap(&rcu_state.gp_seq);
3597 }
3598 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3599 
3600 /**
3601  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3602  *
3603  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3604  *
3605  * If a full RCU grace period has elapsed since the earlier call to
3606  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3607  * synchronize_rcu() to wait for a full grace period.
3608  *
3609  * Yes, this function does not take counter wrap into account.  But
3610  * counter wrap is harmless.  If the counter wraps, we have waited for
3611  * more than 2 billion grace periods (and way more on a 64-bit system!),
3612  * so waiting for one additional grace period should be just fine.
3613  */
3614 void cond_synchronize_rcu(unsigned long oldstate)
3615 {
3616 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3617 		synchronize_rcu();
3618 	else
3619 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3620 }
3621 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3622 
3623 /*
3624  * Check to see if there is any immediate RCU-related work to be done by
3625  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3626  * in order of increasing expense: checks that can be carried out against
3627  * CPU-local state are performed first.  However, we must check for CPU
3628  * stalls first, else we might not get a chance.
3629  */
3630 static int rcu_pending(int user)
3631 {
3632 	bool gp_in_progress;
3633 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3634 	struct rcu_node *rnp = rdp->mynode;
3635 
3636 	/* Check for CPU stalls, if enabled. */
3637 	check_cpu_stall(rdp);
3638 
3639 	/* Does this CPU need a deferred NOCB wakeup? */
3640 	if (rcu_nocb_need_deferred_wakeup(rdp))
3641 		return 1;
3642 
3643 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3644 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3645 		return 0;
3646 
3647 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3648 	gp_in_progress = rcu_gp_in_progress();
3649 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3650 		return 1;
3651 
3652 	/* Does this CPU have callbacks ready to invoke? */
3653 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3654 		return 1;
3655 
3656 	/* Has RCU gone idle with this CPU needing another grace period? */
3657 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3658 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3659 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3660 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3661 		return 1;
3662 
3663 	/* Have RCU grace period completed or started?  */
3664 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3665 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3666 		return 1;
3667 
3668 	/* nothing to do */
3669 	return 0;
3670 }
3671 
3672 /*
3673  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3674  * the compiler is expected to optimize this away.
3675  */
3676 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3677 {
3678 	trace_rcu_barrier(rcu_state.name, s, cpu,
3679 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3680 }
3681 
3682 /*
3683  * RCU callback function for rcu_barrier().  If we are last, wake
3684  * up the task executing rcu_barrier().
3685  *
3686  * Note that the value of rcu_state.barrier_sequence must be captured
3687  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3688  * other CPUs might count the value down to zero before this CPU gets
3689  * around to invoking rcu_barrier_trace(), which might result in bogus
3690  * data from the next instance of rcu_barrier().
3691  */
3692 static void rcu_barrier_callback(struct rcu_head *rhp)
3693 {
3694 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3695 
3696 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3697 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3698 		complete(&rcu_state.barrier_completion);
3699 	} else {
3700 		rcu_barrier_trace(TPS("CB"), -1, s);
3701 	}
3702 }
3703 
3704 /*
3705  * Called with preemption disabled, and from cross-cpu IRQ context.
3706  */
3707 static void rcu_barrier_func(void *cpu_in)
3708 {
3709 	uintptr_t cpu = (uintptr_t)cpu_in;
3710 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3711 
3712 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3713 	rdp->barrier_head.func = rcu_barrier_callback;
3714 	debug_rcu_head_queue(&rdp->barrier_head);
3715 	rcu_nocb_lock(rdp);
3716 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3717 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3718 		atomic_inc(&rcu_state.barrier_cpu_count);
3719 	} else {
3720 		debug_rcu_head_unqueue(&rdp->barrier_head);
3721 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3722 				  rcu_state.barrier_sequence);
3723 	}
3724 	rcu_nocb_unlock(rdp);
3725 }
3726 
3727 /**
3728  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3729  *
3730  * Note that this primitive does not necessarily wait for an RCU grace period
3731  * to complete.  For example, if there are no RCU callbacks queued anywhere
3732  * in the system, then rcu_barrier() is within its rights to return
3733  * immediately, without waiting for anything, much less an RCU grace period.
3734  */
3735 void rcu_barrier(void)
3736 {
3737 	uintptr_t cpu;
3738 	struct rcu_data *rdp;
3739 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3740 
3741 	rcu_barrier_trace(TPS("Begin"), -1, s);
3742 
3743 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3744 	mutex_lock(&rcu_state.barrier_mutex);
3745 
3746 	/* Did someone else do our work for us? */
3747 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3748 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3749 				  rcu_state.barrier_sequence);
3750 		smp_mb(); /* caller's subsequent code after above check. */
3751 		mutex_unlock(&rcu_state.barrier_mutex);
3752 		return;
3753 	}
3754 
3755 	/* Mark the start of the barrier operation. */
3756 	rcu_seq_start(&rcu_state.barrier_sequence);
3757 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3758 
3759 	/*
3760 	 * Initialize the count to two rather than to zero in order
3761 	 * to avoid a too-soon return to zero in case of an immediate
3762 	 * invocation of the just-enqueued callback (or preemption of
3763 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3764 	 * offline non-offloaded CPU has callbacks queued.
3765 	 */
3766 	init_completion(&rcu_state.barrier_completion);
3767 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3768 	get_online_cpus();
3769 
3770 	/*
3771 	 * Force each CPU with callbacks to register a new callback.
3772 	 * When that callback is invoked, we will know that all of the
3773 	 * corresponding CPU's preceding callbacks have been invoked.
3774 	 */
3775 	for_each_possible_cpu(cpu) {
3776 		rdp = per_cpu_ptr(&rcu_data, cpu);
3777 		if (cpu_is_offline(cpu) &&
3778 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
3779 			continue;
3780 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3781 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3782 					  rcu_state.barrier_sequence);
3783 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3784 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3785 			   cpu_is_offline(cpu)) {
3786 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3787 					  rcu_state.barrier_sequence);
3788 			local_irq_disable();
3789 			rcu_barrier_func((void *)cpu);
3790 			local_irq_enable();
3791 		} else if (cpu_is_offline(cpu)) {
3792 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3793 					  rcu_state.barrier_sequence);
3794 		} else {
3795 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3796 					  rcu_state.barrier_sequence);
3797 		}
3798 	}
3799 	put_online_cpus();
3800 
3801 	/*
3802 	 * Now that we have an rcu_barrier_callback() callback on each
3803 	 * CPU, and thus each counted, remove the initial count.
3804 	 */
3805 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3806 		complete(&rcu_state.barrier_completion);
3807 
3808 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3809 	wait_for_completion(&rcu_state.barrier_completion);
3810 
3811 	/* Mark the end of the barrier operation. */
3812 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3813 	rcu_seq_end(&rcu_state.barrier_sequence);
3814 
3815 	/* Other rcu_barrier() invocations can now safely proceed. */
3816 	mutex_unlock(&rcu_state.barrier_mutex);
3817 }
3818 EXPORT_SYMBOL_GPL(rcu_barrier);
3819 
3820 /*
3821  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3822  * first CPU in a given leaf rcu_node structure coming online.  The caller
3823  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3824  * disabled.
3825  */
3826 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3827 {
3828 	long mask;
3829 	long oldmask;
3830 	struct rcu_node *rnp = rnp_leaf;
3831 
3832 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3833 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3834 	for (;;) {
3835 		mask = rnp->grpmask;
3836 		rnp = rnp->parent;
3837 		if (rnp == NULL)
3838 			return;
3839 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3840 		oldmask = rnp->qsmaskinit;
3841 		rnp->qsmaskinit |= mask;
3842 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3843 		if (oldmask)
3844 			return;
3845 	}
3846 }
3847 
3848 /*
3849  * Do boot-time initialization of a CPU's per-CPU RCU data.
3850  */
3851 static void __init
3852 rcu_boot_init_percpu_data(int cpu)
3853 {
3854 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3855 
3856 	/* Set up local state, ensuring consistent view of global state. */
3857 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3858 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3859 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3860 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3861 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3862 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3863 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3864 	rdp->cpu = cpu;
3865 	rcu_boot_init_nocb_percpu_data(rdp);
3866 }
3867 
3868 /*
3869  * Invoked early in the CPU-online process, when pretty much all services
3870  * are available.  The incoming CPU is not present.
3871  *
3872  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3873  * offline event can be happening at a given time.  Note also that we can
3874  * accept some slop in the rsp->gp_seq access due to the fact that this
3875  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3876  * And any offloaded callbacks are being numbered elsewhere.
3877  */
3878 int rcutree_prepare_cpu(unsigned int cpu)
3879 {
3880 	unsigned long flags;
3881 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3882 	struct rcu_node *rnp = rcu_get_root();
3883 
3884 	/* Set up local state, ensuring consistent view of global state. */
3885 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3886 	rdp->qlen_last_fqs_check = 0;
3887 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3888 	rdp->blimit = blimit;
3889 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3890 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3891 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3892 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3893 	rcu_dynticks_eqs_online();
3894 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3895 
3896 	/*
3897 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3898 	 * propagation up the rcu_node tree will happen at the beginning
3899 	 * of the next grace period.
3900 	 */
3901 	rnp = rdp->mynode;
3902 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3903 	rdp->beenonline = true;	 /* We have now been online. */
3904 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3905 	rdp->gp_seq_needed = rdp->gp_seq;
3906 	rdp->cpu_no_qs.b.norm = true;
3907 	rdp->core_needs_qs = false;
3908 	rdp->rcu_iw_pending = false;
3909 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3910 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3911 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3912 	rcu_prepare_kthreads(cpu);
3913 	rcu_spawn_cpu_nocb_kthread(cpu);
3914 
3915 	return 0;
3916 }
3917 
3918 /*
3919  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3920  */
3921 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3922 {
3923 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3924 
3925 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3926 }
3927 
3928 /*
3929  * Near the end of the CPU-online process.  Pretty much all services
3930  * enabled, and the CPU is now very much alive.
3931  */
3932 int rcutree_online_cpu(unsigned int cpu)
3933 {
3934 	unsigned long flags;
3935 	struct rcu_data *rdp;
3936 	struct rcu_node *rnp;
3937 
3938 	rdp = per_cpu_ptr(&rcu_data, cpu);
3939 	rnp = rdp->mynode;
3940 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3941 	rnp->ffmask |= rdp->grpmask;
3942 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3943 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3944 		return 0; /* Too early in boot for scheduler work. */
3945 	sync_sched_exp_online_cleanup(cpu);
3946 	rcutree_affinity_setting(cpu, -1);
3947 
3948 	// Stop-machine done, so allow nohz_full to disable tick.
3949 	tick_dep_clear(TICK_DEP_BIT_RCU);
3950 	return 0;
3951 }
3952 
3953 /*
3954  * Near the beginning of the process.  The CPU is still very much alive
3955  * with pretty much all services enabled.
3956  */
3957 int rcutree_offline_cpu(unsigned int cpu)
3958 {
3959 	unsigned long flags;
3960 	struct rcu_data *rdp;
3961 	struct rcu_node *rnp;
3962 
3963 	rdp = per_cpu_ptr(&rcu_data, cpu);
3964 	rnp = rdp->mynode;
3965 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3966 	rnp->ffmask &= ~rdp->grpmask;
3967 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3968 
3969 	rcutree_affinity_setting(cpu, cpu);
3970 
3971 	// nohz_full CPUs need the tick for stop-machine to work quickly
3972 	tick_dep_set(TICK_DEP_BIT_RCU);
3973 	return 0;
3974 }
3975 
3976 static DEFINE_PER_CPU(int, rcu_cpu_started);
3977 
3978 /*
3979  * Mark the specified CPU as being online so that subsequent grace periods
3980  * (both expedited and normal) will wait on it.  Note that this means that
3981  * incoming CPUs are not allowed to use RCU read-side critical sections
3982  * until this function is called.  Failing to observe this restriction
3983  * will result in lockdep splats.
3984  *
3985  * Note that this function is special in that it is invoked directly
3986  * from the incoming CPU rather than from the cpuhp_step mechanism.
3987  * This is because this function must be invoked at a precise location.
3988  */
3989 void rcu_cpu_starting(unsigned int cpu)
3990 {
3991 	unsigned long flags;
3992 	unsigned long mask;
3993 	struct rcu_data *rdp;
3994 	struct rcu_node *rnp;
3995 	bool newcpu;
3996 
3997 	if (per_cpu(rcu_cpu_started, cpu))
3998 		return;
3999 
4000 	per_cpu(rcu_cpu_started, cpu) = 1;
4001 
4002 	rdp = per_cpu_ptr(&rcu_data, cpu);
4003 	rnp = rdp->mynode;
4004 	mask = rdp->grpmask;
4005 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4006 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4007 	newcpu = !(rnp->expmaskinitnext & mask);
4008 	rnp->expmaskinitnext |= mask;
4009 	/* Allow lockless access for expedited grace periods. */
4010 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4011 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4012 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4013 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4014 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4015 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
4016 		rcu_disable_urgency_upon_qs(rdp);
4017 		/* Report QS -after- changing ->qsmaskinitnext! */
4018 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4019 	} else {
4020 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4021 	}
4022 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4023 }
4024 
4025 #ifdef CONFIG_HOTPLUG_CPU
4026 /*
4027  * The outgoing function has no further need of RCU, so remove it from
4028  * the rcu_node tree's ->qsmaskinitnext bit masks.
4029  *
4030  * Note that this function is special in that it is invoked directly
4031  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4032  * This is because this function must be invoked at a precise location.
4033  */
4034 void rcu_report_dead(unsigned int cpu)
4035 {
4036 	unsigned long flags;
4037 	unsigned long mask;
4038 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4039 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4040 
4041 	/* QS for any half-done expedited grace period. */
4042 	preempt_disable();
4043 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4044 	preempt_enable();
4045 	rcu_preempt_deferred_qs(current);
4046 
4047 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4048 	mask = rdp->grpmask;
4049 	raw_spin_lock(&rcu_state.ofl_lock);
4050 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4051 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4052 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4053 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4054 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4055 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4056 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4057 	}
4058 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4059 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4060 	raw_spin_unlock(&rcu_state.ofl_lock);
4061 
4062 	per_cpu(rcu_cpu_started, cpu) = 0;
4063 }
4064 
4065 /*
4066  * The outgoing CPU has just passed through the dying-idle state, and we
4067  * are being invoked from the CPU that was IPIed to continue the offline
4068  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4069  */
4070 void rcutree_migrate_callbacks(int cpu)
4071 {
4072 	unsigned long flags;
4073 	struct rcu_data *my_rdp;
4074 	struct rcu_node *my_rnp;
4075 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4076 	bool needwake;
4077 
4078 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
4079 	    rcu_segcblist_empty(&rdp->cblist))
4080 		return;  /* No callbacks to migrate. */
4081 
4082 	local_irq_save(flags);
4083 	my_rdp = this_cpu_ptr(&rcu_data);
4084 	my_rnp = my_rdp->mynode;
4085 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4086 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4087 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4088 	/* Leverage recent GPs and set GP for new callbacks. */
4089 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4090 		   rcu_advance_cbs(my_rnp, my_rdp);
4091 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4092 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4093 	rcu_segcblist_disable(&rdp->cblist);
4094 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4095 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4096 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
4097 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4098 		__call_rcu_nocb_wake(my_rdp, true, flags);
4099 	} else {
4100 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4101 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4102 	}
4103 	if (needwake)
4104 		rcu_gp_kthread_wake();
4105 	lockdep_assert_irqs_enabled();
4106 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4107 		  !rcu_segcblist_empty(&rdp->cblist),
4108 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4109 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4110 		  rcu_segcblist_first_cb(&rdp->cblist));
4111 }
4112 #endif
4113 
4114 /*
4115  * On non-huge systems, use expedited RCU grace periods to make suspend
4116  * and hibernation run faster.
4117  */
4118 static int rcu_pm_notify(struct notifier_block *self,
4119 			 unsigned long action, void *hcpu)
4120 {
4121 	switch (action) {
4122 	case PM_HIBERNATION_PREPARE:
4123 	case PM_SUSPEND_PREPARE:
4124 		rcu_expedite_gp();
4125 		break;
4126 	case PM_POST_HIBERNATION:
4127 	case PM_POST_SUSPEND:
4128 		rcu_unexpedite_gp();
4129 		break;
4130 	default:
4131 		break;
4132 	}
4133 	return NOTIFY_OK;
4134 }
4135 
4136 /*
4137  * Spawn the kthreads that handle RCU's grace periods.
4138  */
4139 static int __init rcu_spawn_gp_kthread(void)
4140 {
4141 	unsigned long flags;
4142 	int kthread_prio_in = kthread_prio;
4143 	struct rcu_node *rnp;
4144 	struct sched_param sp;
4145 	struct task_struct *t;
4146 
4147 	/* Force priority into range. */
4148 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4149 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4150 		kthread_prio = 2;
4151 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4152 		kthread_prio = 1;
4153 	else if (kthread_prio < 0)
4154 		kthread_prio = 0;
4155 	else if (kthread_prio > 99)
4156 		kthread_prio = 99;
4157 
4158 	if (kthread_prio != kthread_prio_in)
4159 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4160 			 kthread_prio, kthread_prio_in);
4161 
4162 	rcu_scheduler_fully_active = 1;
4163 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4164 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4165 		return 0;
4166 	if (kthread_prio) {
4167 		sp.sched_priority = kthread_prio;
4168 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4169 	}
4170 	rnp = rcu_get_root();
4171 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4172 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4173 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4174 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4175 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4176 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4177 	wake_up_process(t);
4178 	rcu_spawn_nocb_kthreads();
4179 	rcu_spawn_boost_kthreads();
4180 	return 0;
4181 }
4182 early_initcall(rcu_spawn_gp_kthread);
4183 
4184 /*
4185  * This function is invoked towards the end of the scheduler's
4186  * initialization process.  Before this is called, the idle task might
4187  * contain synchronous grace-period primitives (during which time, this idle
4188  * task is booting the system, and such primitives are no-ops).  After this
4189  * function is called, any synchronous grace-period primitives are run as
4190  * expedited, with the requesting task driving the grace period forward.
4191  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4192  * runtime RCU functionality.
4193  */
4194 void rcu_scheduler_starting(void)
4195 {
4196 	WARN_ON(num_online_cpus() != 1);
4197 	WARN_ON(nr_context_switches() > 0);
4198 	rcu_test_sync_prims();
4199 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4200 	rcu_test_sync_prims();
4201 }
4202 
4203 /*
4204  * Helper function for rcu_init() that initializes the rcu_state structure.
4205  */
4206 static void __init rcu_init_one(void)
4207 {
4208 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4209 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4210 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4211 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4212 
4213 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4214 	int cpustride = 1;
4215 	int i;
4216 	int j;
4217 	struct rcu_node *rnp;
4218 
4219 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4220 
4221 	/* Silence gcc 4.8 false positive about array index out of range. */
4222 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4223 		panic("rcu_init_one: rcu_num_lvls out of range");
4224 
4225 	/* Initialize the level-tracking arrays. */
4226 
4227 	for (i = 1; i < rcu_num_lvls; i++)
4228 		rcu_state.level[i] =
4229 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4230 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4231 
4232 	/* Initialize the elements themselves, starting from the leaves. */
4233 
4234 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4235 		cpustride *= levelspread[i];
4236 		rnp = rcu_state.level[i];
4237 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4238 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4239 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4240 						   &rcu_node_class[i], buf[i]);
4241 			raw_spin_lock_init(&rnp->fqslock);
4242 			lockdep_set_class_and_name(&rnp->fqslock,
4243 						   &rcu_fqs_class[i], fqs[i]);
4244 			rnp->gp_seq = rcu_state.gp_seq;
4245 			rnp->gp_seq_needed = rcu_state.gp_seq;
4246 			rnp->completedqs = rcu_state.gp_seq;
4247 			rnp->qsmask = 0;
4248 			rnp->qsmaskinit = 0;
4249 			rnp->grplo = j * cpustride;
4250 			rnp->grphi = (j + 1) * cpustride - 1;
4251 			if (rnp->grphi >= nr_cpu_ids)
4252 				rnp->grphi = nr_cpu_ids - 1;
4253 			if (i == 0) {
4254 				rnp->grpnum = 0;
4255 				rnp->grpmask = 0;
4256 				rnp->parent = NULL;
4257 			} else {
4258 				rnp->grpnum = j % levelspread[i - 1];
4259 				rnp->grpmask = BIT(rnp->grpnum);
4260 				rnp->parent = rcu_state.level[i - 1] +
4261 					      j / levelspread[i - 1];
4262 			}
4263 			rnp->level = i;
4264 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4265 			rcu_init_one_nocb(rnp);
4266 			init_waitqueue_head(&rnp->exp_wq[0]);
4267 			init_waitqueue_head(&rnp->exp_wq[1]);
4268 			init_waitqueue_head(&rnp->exp_wq[2]);
4269 			init_waitqueue_head(&rnp->exp_wq[3]);
4270 			spin_lock_init(&rnp->exp_lock);
4271 		}
4272 	}
4273 
4274 	init_swait_queue_head(&rcu_state.gp_wq);
4275 	init_swait_queue_head(&rcu_state.expedited_wq);
4276 	rnp = rcu_first_leaf_node();
4277 	for_each_possible_cpu(i) {
4278 		while (i > rnp->grphi)
4279 			rnp++;
4280 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4281 		rcu_boot_init_percpu_data(i);
4282 	}
4283 }
4284 
4285 /*
4286  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4287  * replace the definitions in tree.h because those are needed to size
4288  * the ->node array in the rcu_state structure.
4289  */
4290 static void __init rcu_init_geometry(void)
4291 {
4292 	ulong d;
4293 	int i;
4294 	int rcu_capacity[RCU_NUM_LVLS];
4295 
4296 	/*
4297 	 * Initialize any unspecified boot parameters.
4298 	 * The default values of jiffies_till_first_fqs and
4299 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4300 	 * value, which is a function of HZ, then adding one for each
4301 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4302 	 */
4303 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4304 	if (jiffies_till_first_fqs == ULONG_MAX)
4305 		jiffies_till_first_fqs = d;
4306 	if (jiffies_till_next_fqs == ULONG_MAX)
4307 		jiffies_till_next_fqs = d;
4308 	adjust_jiffies_till_sched_qs();
4309 
4310 	/* If the compile-time values are accurate, just leave. */
4311 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4312 	    nr_cpu_ids == NR_CPUS)
4313 		return;
4314 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4315 		rcu_fanout_leaf, nr_cpu_ids);
4316 
4317 	/*
4318 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4319 	 * and cannot exceed the number of bits in the rcu_node masks.
4320 	 * Complain and fall back to the compile-time values if this
4321 	 * limit is exceeded.
4322 	 */
4323 	if (rcu_fanout_leaf < 2 ||
4324 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4325 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4326 		WARN_ON(1);
4327 		return;
4328 	}
4329 
4330 	/*
4331 	 * Compute number of nodes that can be handled an rcu_node tree
4332 	 * with the given number of levels.
4333 	 */
4334 	rcu_capacity[0] = rcu_fanout_leaf;
4335 	for (i = 1; i < RCU_NUM_LVLS; i++)
4336 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4337 
4338 	/*
4339 	 * The tree must be able to accommodate the configured number of CPUs.
4340 	 * If this limit is exceeded, fall back to the compile-time values.
4341 	 */
4342 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4343 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4344 		WARN_ON(1);
4345 		return;
4346 	}
4347 
4348 	/* Calculate the number of levels in the tree. */
4349 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4350 	}
4351 	rcu_num_lvls = i + 1;
4352 
4353 	/* Calculate the number of rcu_nodes at each level of the tree. */
4354 	for (i = 0; i < rcu_num_lvls; i++) {
4355 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4356 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4357 	}
4358 
4359 	/* Calculate the total number of rcu_node structures. */
4360 	rcu_num_nodes = 0;
4361 	for (i = 0; i < rcu_num_lvls; i++)
4362 		rcu_num_nodes += num_rcu_lvl[i];
4363 }
4364 
4365 /*
4366  * Dump out the structure of the rcu_node combining tree associated
4367  * with the rcu_state structure.
4368  */
4369 static void __init rcu_dump_rcu_node_tree(void)
4370 {
4371 	int level = 0;
4372 	struct rcu_node *rnp;
4373 
4374 	pr_info("rcu_node tree layout dump\n");
4375 	pr_info(" ");
4376 	rcu_for_each_node_breadth_first(rnp) {
4377 		if (rnp->level != level) {
4378 			pr_cont("\n");
4379 			pr_info(" ");
4380 			level = rnp->level;
4381 		}
4382 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4383 	}
4384 	pr_cont("\n");
4385 }
4386 
4387 struct workqueue_struct *rcu_gp_wq;
4388 struct workqueue_struct *rcu_par_gp_wq;
4389 
4390 static void __init kfree_rcu_batch_init(void)
4391 {
4392 	int cpu;
4393 	int i;
4394 
4395 	for_each_possible_cpu(cpu) {
4396 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4397 		struct kvfree_rcu_bulk_data *bnode;
4398 
4399 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4400 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4401 			krcp->krw_arr[i].krcp = krcp;
4402 		}
4403 
4404 		for (i = 0; i < rcu_min_cached_objs; i++) {
4405 			bnode = (struct kvfree_rcu_bulk_data *)
4406 				__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
4407 
4408 			if (bnode)
4409 				put_cached_bnode(krcp, bnode);
4410 			else
4411 				pr_err("Failed to preallocate for %d CPU!\n", cpu);
4412 		}
4413 
4414 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4415 		krcp->initialized = true;
4416 	}
4417 	if (register_shrinker(&kfree_rcu_shrinker))
4418 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4419 }
4420 
4421 void __init rcu_init(void)
4422 {
4423 	int cpu;
4424 
4425 	rcu_early_boot_tests();
4426 
4427 	kfree_rcu_batch_init();
4428 	rcu_bootup_announce();
4429 	rcu_init_geometry();
4430 	rcu_init_one();
4431 	if (dump_tree)
4432 		rcu_dump_rcu_node_tree();
4433 	if (use_softirq)
4434 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4435 
4436 	/*
4437 	 * We don't need protection against CPU-hotplug here because
4438 	 * this is called early in boot, before either interrupts
4439 	 * or the scheduler are operational.
4440 	 */
4441 	pm_notifier(rcu_pm_notify, 0);
4442 	for_each_online_cpu(cpu) {
4443 		rcutree_prepare_cpu(cpu);
4444 		rcu_cpu_starting(cpu);
4445 		rcutree_online_cpu(cpu);
4446 	}
4447 
4448 	/* Create workqueue for expedited GPs and for Tree SRCU. */
4449 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4450 	WARN_ON(!rcu_gp_wq);
4451 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4452 	WARN_ON(!rcu_par_gp_wq);
4453 	srcu_init();
4454 
4455 	/* Fill in default value for rcutree.qovld boot parameter. */
4456 	/* -After- the rcu_node ->lock fields are initialized! */
4457 	if (qovld < 0)
4458 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4459 	else
4460 		qovld_calc = qovld;
4461 }
4462 
4463 #include "tree_stall.h"
4464 #include "tree_exp.h"
4465 #include "tree_plugin.h"
4466