1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 80 .gpwrap = true, 81 #ifdef CONFIG_RCU_NOCB_CPU 82 .cblist.flags = SEGCBLIST_RCU_CORE, 83 #endif 84 }; 85 static struct rcu_state rcu_state = { 86 .level = { &rcu_state.node[0] }, 87 .gp_state = RCU_GP_IDLE, 88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 91 .name = RCU_NAME, 92 .abbr = RCU_ABBR, 93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 96 }; 97 98 /* Dump rcu_node combining tree at boot to verify correct setup. */ 99 static bool dump_tree; 100 module_param(dump_tree, bool, 0444); 101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 103 #ifndef CONFIG_PREEMPT_RT 104 module_param(use_softirq, bool, 0444); 105 #endif 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 117 /* 118 * The rcu_scheduler_active variable is initialized to the value 119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 121 * RCU can assume that there is but one task, allowing RCU to (for example) 122 * optimize synchronize_rcu() to a simple barrier(). When this variable 123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 124 * to detect real grace periods. This variable is also used to suppress 125 * boot-time false positives from lockdep-RCU error checking. Finally, it 126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 127 * is fully initialized, including all of its kthreads having been spawned. 128 */ 129 int rcu_scheduler_active __read_mostly; 130 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132 /* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144 static int rcu_scheduler_fully_active __read_mostly; 145 146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 147 unsigned long gps, unsigned long flags); 148 static struct task_struct *rcu_boost_task(struct rcu_node *rnp); 149 static void invoke_rcu_core(void); 150 static void rcu_report_exp_rdp(struct rcu_data *rdp); 151 static void sync_sched_exp_online_cleanup(int cpu); 152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 155 static bool rcu_init_invoked(void); 156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 158 159 /* 160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 161 * real-time priority(enabling/disabling) is controlled by 162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 163 */ 164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 165 module_param(kthread_prio, int, 0444); 166 167 /* Delay in jiffies for grace-period initialization delays, debug only. */ 168 169 static int gp_preinit_delay; 170 module_param(gp_preinit_delay, int, 0444); 171 static int gp_init_delay; 172 module_param(gp_init_delay, int, 0444); 173 static int gp_cleanup_delay; 174 module_param(gp_cleanup_delay, int, 0444); 175 176 // Add delay to rcu_read_unlock() for strict grace periods. 177 static int rcu_unlock_delay; 178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 179 module_param(rcu_unlock_delay, int, 0444); 180 #endif 181 182 /* 183 * This rcu parameter is runtime-read-only. It reflects 184 * a minimum allowed number of objects which can be cached 185 * per-CPU. Object size is equal to one page. This value 186 * can be changed at boot time. 187 */ 188 static int rcu_min_cached_objs = 5; 189 module_param(rcu_min_cached_objs, int, 0444); 190 191 // A page shrinker can ask for pages to be freed to make them 192 // available for other parts of the system. This usually happens 193 // under low memory conditions, and in that case we should also 194 // defer page-cache filling for a short time period. 195 // 196 // The default value is 5 seconds, which is long enough to reduce 197 // interference with the shrinker while it asks other systems to 198 // drain their caches. 199 static int rcu_delay_page_cache_fill_msec = 5000; 200 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 201 202 /* Retrieve RCU kthreads priority for rcutorture */ 203 int rcu_get_gp_kthreads_prio(void) 204 { 205 return kthread_prio; 206 } 207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 208 209 /* 210 * Number of grace periods between delays, normalized by the duration of 211 * the delay. The longer the delay, the more the grace periods between 212 * each delay. The reason for this normalization is that it means that, 213 * for non-zero delays, the overall slowdown of grace periods is constant 214 * regardless of the duration of the delay. This arrangement balances 215 * the need for long delays to increase some race probabilities with the 216 * need for fast grace periods to increase other race probabilities. 217 */ 218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 219 220 /* 221 * Return true if an RCU grace period is in progress. The READ_ONCE()s 222 * permit this function to be invoked without holding the root rcu_node 223 * structure's ->lock, but of course results can be subject to change. 224 */ 225 static int rcu_gp_in_progress(void) 226 { 227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 228 } 229 230 /* 231 * Return the number of callbacks queued on the specified CPU. 232 * Handles both the nocbs and normal cases. 233 */ 234 static long rcu_get_n_cbs_cpu(int cpu) 235 { 236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 237 238 if (rcu_segcblist_is_enabled(&rdp->cblist)) 239 return rcu_segcblist_n_cbs(&rdp->cblist); 240 return 0; 241 } 242 243 void rcu_softirq_qs(void) 244 { 245 rcu_qs(); 246 rcu_preempt_deferred_qs(current); 247 rcu_tasks_qs(current, false); 248 } 249 250 /* 251 * Reset the current CPU's ->dynticks counter to indicate that the 252 * newly onlined CPU is no longer in an extended quiescent state. 253 * This will either leave the counter unchanged, or increment it 254 * to the next non-quiescent value. 255 * 256 * The non-atomic test/increment sequence works because the upper bits 257 * of the ->dynticks counter are manipulated only by the corresponding CPU, 258 * or when the corresponding CPU is offline. 259 */ 260 static void rcu_dynticks_eqs_online(void) 261 { 262 if (ct_dynticks() & RCU_DYNTICKS_IDX) 263 return; 264 ct_state_inc(RCU_DYNTICKS_IDX); 265 } 266 267 /* 268 * Snapshot the ->dynticks counter with full ordering so as to allow 269 * stable comparison of this counter with past and future snapshots. 270 */ 271 static int rcu_dynticks_snap(int cpu) 272 { 273 smp_mb(); // Fundamental RCU ordering guarantee. 274 return ct_dynticks_cpu_acquire(cpu); 275 } 276 277 /* 278 * Return true if the snapshot returned from rcu_dynticks_snap() 279 * indicates that RCU is in an extended quiescent state. 280 */ 281 static bool rcu_dynticks_in_eqs(int snap) 282 { 283 return !(snap & RCU_DYNTICKS_IDX); 284 } 285 286 /* 287 * Return true if the CPU corresponding to the specified rcu_data 288 * structure has spent some time in an extended quiescent state since 289 * rcu_dynticks_snap() returned the specified snapshot. 290 */ 291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 292 { 293 return snap != rcu_dynticks_snap(rdp->cpu); 294 } 295 296 /* 297 * Return true if the referenced integer is zero while the specified 298 * CPU remains within a single extended quiescent state. 299 */ 300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 301 { 302 int snap; 303 304 // If not quiescent, force back to earlier extended quiescent state. 305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 306 smp_rmb(); // Order ->dynticks and *vp reads. 307 if (READ_ONCE(*vp)) 308 return false; // Non-zero, so report failure; 309 smp_rmb(); // Order *vp read and ->dynticks re-read. 310 311 // If still in the same extended quiescent state, we are good! 312 return snap == ct_dynticks_cpu(cpu); 313 } 314 315 /* 316 * Let the RCU core know that this CPU has gone through the scheduler, 317 * which is a quiescent state. This is called when the need for a 318 * quiescent state is urgent, so we burn an atomic operation and full 319 * memory barriers to let the RCU core know about it, regardless of what 320 * this CPU might (or might not) do in the near future. 321 * 322 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 323 * 324 * The caller must have disabled interrupts and must not be idle. 325 */ 326 notrace void rcu_momentary_dyntick_idle(void) 327 { 328 int seq; 329 330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 332 /* It is illegal to call this from idle state. */ 333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 334 rcu_preempt_deferred_qs(current); 335 } 336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 337 338 /** 339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 340 * 341 * If the current CPU is idle and running at a first-level (not nested) 342 * interrupt, or directly, from idle, return true. 343 * 344 * The caller must have at least disabled IRQs. 345 */ 346 static int rcu_is_cpu_rrupt_from_idle(void) 347 { 348 long nesting; 349 350 /* 351 * Usually called from the tick; but also used from smp_function_call() 352 * for expedited grace periods. This latter can result in running from 353 * the idle task, instead of an actual IPI. 354 */ 355 lockdep_assert_irqs_disabled(); 356 357 /* Check for counter underflows */ 358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 359 "RCU dynticks_nesting counter underflow!"); 360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 361 "RCU dynticks_nmi_nesting counter underflow/zero!"); 362 363 /* Are we at first interrupt nesting level? */ 364 nesting = ct_dynticks_nmi_nesting(); 365 if (nesting > 1) 366 return false; 367 368 /* 369 * If we're not in an interrupt, we must be in the idle task! 370 */ 371 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 372 373 /* Does CPU appear to be idle from an RCU standpoint? */ 374 return ct_dynticks_nesting() == 0; 375 } 376 377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 378 // Maximum callbacks per rcu_do_batch ... 379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 380 static long blimit = DEFAULT_RCU_BLIMIT; 381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 382 static long qhimark = DEFAULT_RCU_QHIMARK; 383 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 384 static long qlowmark = DEFAULT_RCU_QLOMARK; 385 #define DEFAULT_RCU_QOVLD_MULT 2 386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 388 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 389 390 module_param(blimit, long, 0444); 391 module_param(qhimark, long, 0444); 392 module_param(qlowmark, long, 0444); 393 module_param(qovld, long, 0444); 394 395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 396 static ulong jiffies_till_next_fqs = ULONG_MAX; 397 static bool rcu_kick_kthreads; 398 static int rcu_divisor = 7; 399 module_param(rcu_divisor, int, 0644); 400 401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 403 module_param(rcu_resched_ns, long, 0644); 404 405 /* 406 * How long the grace period must be before we start recruiting 407 * quiescent-state help from rcu_note_context_switch(). 408 */ 409 static ulong jiffies_till_sched_qs = ULONG_MAX; 410 module_param(jiffies_till_sched_qs, ulong, 0444); 411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 413 414 /* 415 * Make sure that we give the grace-period kthread time to detect any 416 * idle CPUs before taking active measures to force quiescent states. 417 * However, don't go below 100 milliseconds, adjusted upwards for really 418 * large systems. 419 */ 420 static void adjust_jiffies_till_sched_qs(void) 421 { 422 unsigned long j; 423 424 /* If jiffies_till_sched_qs was specified, respect the request. */ 425 if (jiffies_till_sched_qs != ULONG_MAX) { 426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 427 return; 428 } 429 /* Otherwise, set to third fqs scan, but bound below on large system. */ 430 j = READ_ONCE(jiffies_till_first_fqs) + 431 2 * READ_ONCE(jiffies_till_next_fqs); 432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 435 WRITE_ONCE(jiffies_to_sched_qs, j); 436 } 437 438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 439 { 440 ulong j; 441 int ret = kstrtoul(val, 0, &j); 442 443 if (!ret) { 444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 445 adjust_jiffies_till_sched_qs(); 446 } 447 return ret; 448 } 449 450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 451 { 452 ulong j; 453 int ret = kstrtoul(val, 0, &j); 454 455 if (!ret) { 456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 457 adjust_jiffies_till_sched_qs(); 458 } 459 return ret; 460 } 461 462 static const struct kernel_param_ops first_fqs_jiffies_ops = { 463 .set = param_set_first_fqs_jiffies, 464 .get = param_get_ulong, 465 }; 466 467 static const struct kernel_param_ops next_fqs_jiffies_ops = { 468 .set = param_set_next_fqs_jiffies, 469 .get = param_get_ulong, 470 }; 471 472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 474 module_param(rcu_kick_kthreads, bool, 0644); 475 476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 477 static int rcu_pending(int user); 478 479 /* 480 * Return the number of RCU GPs completed thus far for debug & stats. 481 */ 482 unsigned long rcu_get_gp_seq(void) 483 { 484 return READ_ONCE(rcu_state.gp_seq); 485 } 486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 487 488 /* 489 * Return the number of RCU expedited batches completed thus far for 490 * debug & stats. Odd numbers mean that a batch is in progress, even 491 * numbers mean idle. The value returned will thus be roughly double 492 * the cumulative batches since boot. 493 */ 494 unsigned long rcu_exp_batches_completed(void) 495 { 496 return rcu_state.expedited_sequence; 497 } 498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 499 500 /* 501 * Return the root node of the rcu_state structure. 502 */ 503 static struct rcu_node *rcu_get_root(void) 504 { 505 return &rcu_state.node[0]; 506 } 507 508 /* 509 * Send along grace-period-related data for rcutorture diagnostics. 510 */ 511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 512 unsigned long *gp_seq) 513 { 514 switch (test_type) { 515 case RCU_FLAVOR: 516 *flags = READ_ONCE(rcu_state.gp_flags); 517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 518 break; 519 default: 520 break; 521 } 522 } 523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 524 525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 526 /* 527 * An empty function that will trigger a reschedule on 528 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 529 */ 530 static void late_wakeup_func(struct irq_work *work) 531 { 532 } 533 534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 535 IRQ_WORK_INIT(late_wakeup_func); 536 537 /* 538 * If either: 539 * 540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 542 * 543 * In these cases the late RCU wake ups aren't supported in the resched loops and our 544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 545 * get re-enabled again. 546 */ 547 noinstr void rcu_irq_work_resched(void) 548 { 549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 550 551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 552 return; 553 554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 555 return; 556 557 instrumentation_begin(); 558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 559 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 560 } 561 instrumentation_end(); 562 } 563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 564 565 #ifdef CONFIG_PROVE_RCU 566 /** 567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 568 */ 569 void rcu_irq_exit_check_preempt(void) 570 { 571 lockdep_assert_irqs_disabled(); 572 573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 574 "RCU dynticks_nesting counter underflow/zero!"); 575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 576 DYNTICK_IRQ_NONIDLE, 577 "Bad RCU dynticks_nmi_nesting counter\n"); 578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 579 "RCU in extended quiescent state!"); 580 } 581 #endif /* #ifdef CONFIG_PROVE_RCU */ 582 583 #ifdef CONFIG_NO_HZ_FULL 584 /** 585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 586 * 587 * The scheduler tick is not normally enabled when CPUs enter the kernel 588 * from nohz_full userspace execution. After all, nohz_full userspace 589 * execution is an RCU quiescent state and the time executing in the kernel 590 * is quite short. Except of course when it isn't. And it is not hard to 591 * cause a large system to spend tens of seconds or even minutes looping 592 * in the kernel, which can cause a number of problems, include RCU CPU 593 * stall warnings. 594 * 595 * Therefore, if a nohz_full CPU fails to report a quiescent state 596 * in a timely manner, the RCU grace-period kthread sets that CPU's 597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 598 * exception will invoke this function, which will turn on the scheduler 599 * tick, which will enable RCU to detect that CPU's quiescent states, 600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 601 * The tick will be disabled once a quiescent state is reported for 602 * this CPU. 603 * 604 * Of course, in carefully tuned systems, there might never be an 605 * interrupt or exception. In that case, the RCU grace-period kthread 606 * will eventually cause one to happen. However, in less carefully 607 * controlled environments, this function allows RCU to get what it 608 * needs without creating otherwise useless interruptions. 609 */ 610 void __rcu_irq_enter_check_tick(void) 611 { 612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 613 614 // If we're here from NMI there's nothing to do. 615 if (in_nmi()) 616 return; 617 618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 620 621 if (!tick_nohz_full_cpu(rdp->cpu) || 622 !READ_ONCE(rdp->rcu_urgent_qs) || 623 READ_ONCE(rdp->rcu_forced_tick)) { 624 // RCU doesn't need nohz_full help from this CPU, or it is 625 // already getting that help. 626 return; 627 } 628 629 // We get here only when not in an extended quiescent state and 630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 631 // already watching and (2) The fact that we are in an interrupt 632 // handler and that the rcu_node lock is an irq-disabled lock 633 // prevents self-deadlock. So we can safely recheck under the lock. 634 // Note that the nohz_full state currently cannot change. 635 raw_spin_lock_rcu_node(rdp->mynode); 636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 637 // A nohz_full CPU is in the kernel and RCU needs a 638 // quiescent state. Turn on the tick! 639 WRITE_ONCE(rdp->rcu_forced_tick, true); 640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 641 } 642 raw_spin_unlock_rcu_node(rdp->mynode); 643 } 644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 645 #endif /* CONFIG_NO_HZ_FULL */ 646 647 /* 648 * Check to see if any future non-offloaded RCU-related work will need 649 * to be done by the current CPU, even if none need be done immediately, 650 * returning 1 if so. This function is part of the RCU implementation; 651 * it is -not- an exported member of the RCU API. This is used by 652 * the idle-entry code to figure out whether it is safe to disable the 653 * scheduler-clock interrupt. 654 * 655 * Just check whether or not this CPU has non-offloaded RCU callbacks 656 * queued. 657 */ 658 int rcu_needs_cpu(void) 659 { 660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 662 } 663 664 /* 665 * If any sort of urgency was applied to the current CPU (for example, 666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 667 * to get to a quiescent state, disable it. 668 */ 669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 670 { 671 raw_lockdep_assert_held_rcu_node(rdp->mynode); 672 WRITE_ONCE(rdp->rcu_urgent_qs, false); 673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 676 WRITE_ONCE(rdp->rcu_forced_tick, false); 677 } 678 } 679 680 /** 681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 682 * 683 * Return @true if RCU is watching the running CPU and @false otherwise. 684 * An @true return means that this CPU can safely enter RCU read-side 685 * critical sections. 686 * 687 * Although calls to rcu_is_watching() from most parts of the kernel 688 * will return @true, there are important exceptions. For example, if the 689 * current CPU is deep within its idle loop, in kernel entry/exit code, 690 * or offline, rcu_is_watching() will return @false. 691 * 692 * Make notrace because it can be called by the internal functions of 693 * ftrace, and making this notrace removes unnecessary recursion calls. 694 */ 695 notrace bool rcu_is_watching(void) 696 { 697 bool ret; 698 699 preempt_disable_notrace(); 700 ret = !rcu_dynticks_curr_cpu_in_eqs(); 701 preempt_enable_notrace(); 702 return ret; 703 } 704 EXPORT_SYMBOL_GPL(rcu_is_watching); 705 706 /* 707 * If a holdout task is actually running, request an urgent quiescent 708 * state from its CPU. This is unsynchronized, so migrations can cause 709 * the request to go to the wrong CPU. Which is OK, all that will happen 710 * is that the CPU's next context switch will be a bit slower and next 711 * time around this task will generate another request. 712 */ 713 void rcu_request_urgent_qs_task(struct task_struct *t) 714 { 715 int cpu; 716 717 barrier(); 718 cpu = task_cpu(t); 719 if (!task_curr(t)) 720 return; /* This task is not running on that CPU. */ 721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 722 } 723 724 /* 725 * When trying to report a quiescent state on behalf of some other CPU, 726 * it is our responsibility to check for and handle potential overflow 727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 728 * After all, the CPU might be in deep idle state, and thus executing no 729 * code whatsoever. 730 */ 731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 732 { 733 raw_lockdep_assert_held_rcu_node(rnp); 734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 735 rnp->gp_seq)) 736 WRITE_ONCE(rdp->gpwrap, true); 737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 739 } 740 741 /* 742 * Snapshot the specified CPU's dynticks counter so that we can later 743 * credit them with an implicit quiescent state. Return 1 if this CPU 744 * is in dynticks idle mode, which is an extended quiescent state. 745 */ 746 static int dyntick_save_progress_counter(struct rcu_data *rdp) 747 { 748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 751 rcu_gpnum_ovf(rdp->mynode, rdp); 752 return 1; 753 } 754 return 0; 755 } 756 757 /* 758 * Returns positive if the specified CPU has passed through a quiescent state 759 * by virtue of being in or having passed through an dynticks idle state since 760 * the last call to dyntick_save_progress_counter() for this same CPU, or by 761 * virtue of having been offline. 762 * 763 * Returns negative if the specified CPU needs a force resched. 764 * 765 * Returns zero otherwise. 766 */ 767 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 768 { 769 unsigned long jtsq; 770 int ret = 0; 771 struct rcu_node *rnp = rdp->mynode; 772 773 /* 774 * If the CPU passed through or entered a dynticks idle phase with 775 * no active irq/NMI handlers, then we can safely pretend that the CPU 776 * already acknowledged the request to pass through a quiescent 777 * state. Either way, that CPU cannot possibly be in an RCU 778 * read-side critical section that started before the beginning 779 * of the current RCU grace period. 780 */ 781 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 782 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 783 rcu_gpnum_ovf(rnp, rdp); 784 return 1; 785 } 786 787 /* 788 * Complain if a CPU that is considered to be offline from RCU's 789 * perspective has not yet reported a quiescent state. After all, 790 * the offline CPU should have reported a quiescent state during 791 * the CPU-offline process, or, failing that, by rcu_gp_init() 792 * if it ran concurrently with either the CPU going offline or the 793 * last task on a leaf rcu_node structure exiting its RCU read-side 794 * critical section while all CPUs corresponding to that structure 795 * are offline. This added warning detects bugs in any of these 796 * code paths. 797 * 798 * The rcu_node structure's ->lock is held here, which excludes 799 * the relevant portions the CPU-hotplug code, the grace-period 800 * initialization code, and the rcu_read_unlock() code paths. 801 * 802 * For more detail, please refer to the "Hotplug CPU" section 803 * of RCU's Requirements documentation. 804 */ 805 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 806 struct rcu_node *rnp1; 807 808 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 809 __func__, rnp->grplo, rnp->grphi, rnp->level, 810 (long)rnp->gp_seq, (long)rnp->completedqs); 811 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 812 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 813 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 814 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 815 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 816 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 817 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 818 return 1; /* Break things loose after complaining. */ 819 } 820 821 /* 822 * A CPU running for an extended time within the kernel can 823 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 824 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 825 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 826 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 827 * variable are safe because the assignments are repeated if this 828 * CPU failed to pass through a quiescent state. This code 829 * also checks .jiffies_resched in case jiffies_to_sched_qs 830 * is set way high. 831 */ 832 jtsq = READ_ONCE(jiffies_to_sched_qs); 833 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 834 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 835 time_after(jiffies, rcu_state.jiffies_resched) || 836 rcu_state.cbovld)) { 837 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 838 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 839 smp_store_release(&rdp->rcu_urgent_qs, true); 840 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 841 WRITE_ONCE(rdp->rcu_urgent_qs, true); 842 } 843 844 /* 845 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 846 * The above code handles this, but only for straight cond_resched(). 847 * And some in-kernel loops check need_resched() before calling 848 * cond_resched(), which defeats the above code for CPUs that are 849 * running in-kernel with scheduling-clock interrupts disabled. 850 * So hit them over the head with the resched_cpu() hammer! 851 */ 852 if (tick_nohz_full_cpu(rdp->cpu) && 853 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 854 rcu_state.cbovld)) { 855 WRITE_ONCE(rdp->rcu_urgent_qs, true); 856 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 857 ret = -1; 858 } 859 860 /* 861 * If more than halfway to RCU CPU stall-warning time, invoke 862 * resched_cpu() more frequently to try to loosen things up a bit. 863 * Also check to see if the CPU is getting hammered with interrupts, 864 * but only once per grace period, just to keep the IPIs down to 865 * a dull roar. 866 */ 867 if (time_after(jiffies, rcu_state.jiffies_resched)) { 868 if (time_after(jiffies, 869 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 870 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 871 ret = -1; 872 } 873 if (IS_ENABLED(CONFIG_IRQ_WORK) && 874 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 875 (rnp->ffmask & rdp->grpmask)) { 876 rdp->rcu_iw_pending = true; 877 rdp->rcu_iw_gp_seq = rnp->gp_seq; 878 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 879 } 880 881 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 882 int cpu = rdp->cpu; 883 struct rcu_snap_record *rsrp; 884 struct kernel_cpustat *kcsp; 885 886 kcsp = &kcpustat_cpu(cpu); 887 888 rsrp = &rdp->snap_record; 889 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 890 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 891 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 892 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 893 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 894 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 895 rsrp->jiffies = jiffies; 896 rsrp->gp_seq = rdp->gp_seq; 897 } 898 } 899 900 return ret; 901 } 902 903 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 904 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 905 unsigned long gp_seq_req, const char *s) 906 { 907 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 908 gp_seq_req, rnp->level, 909 rnp->grplo, rnp->grphi, s); 910 } 911 912 /* 913 * rcu_start_this_gp - Request the start of a particular grace period 914 * @rnp_start: The leaf node of the CPU from which to start. 915 * @rdp: The rcu_data corresponding to the CPU from which to start. 916 * @gp_seq_req: The gp_seq of the grace period to start. 917 * 918 * Start the specified grace period, as needed to handle newly arrived 919 * callbacks. The required future grace periods are recorded in each 920 * rcu_node structure's ->gp_seq_needed field. Returns true if there 921 * is reason to awaken the grace-period kthread. 922 * 923 * The caller must hold the specified rcu_node structure's ->lock, which 924 * is why the caller is responsible for waking the grace-period kthread. 925 * 926 * Returns true if the GP thread needs to be awakened else false. 927 */ 928 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 929 unsigned long gp_seq_req) 930 { 931 bool ret = false; 932 struct rcu_node *rnp; 933 934 /* 935 * Use funnel locking to either acquire the root rcu_node 936 * structure's lock or bail out if the need for this grace period 937 * has already been recorded -- or if that grace period has in 938 * fact already started. If there is already a grace period in 939 * progress in a non-leaf node, no recording is needed because the 940 * end of the grace period will scan the leaf rcu_node structures. 941 * Note that rnp_start->lock must not be released. 942 */ 943 raw_lockdep_assert_held_rcu_node(rnp_start); 944 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 945 for (rnp = rnp_start; 1; rnp = rnp->parent) { 946 if (rnp != rnp_start) 947 raw_spin_lock_rcu_node(rnp); 948 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 949 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 950 (rnp != rnp_start && 951 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 952 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 953 TPS("Prestarted")); 954 goto unlock_out; 955 } 956 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 957 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 958 /* 959 * We just marked the leaf or internal node, and a 960 * grace period is in progress, which means that 961 * rcu_gp_cleanup() will see the marking. Bail to 962 * reduce contention. 963 */ 964 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 965 TPS("Startedleaf")); 966 goto unlock_out; 967 } 968 if (rnp != rnp_start && rnp->parent != NULL) 969 raw_spin_unlock_rcu_node(rnp); 970 if (!rnp->parent) 971 break; /* At root, and perhaps also leaf. */ 972 } 973 974 /* If GP already in progress, just leave, otherwise start one. */ 975 if (rcu_gp_in_progress()) { 976 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 977 goto unlock_out; 978 } 979 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 980 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 981 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 982 if (!READ_ONCE(rcu_state.gp_kthread)) { 983 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 984 goto unlock_out; 985 } 986 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 987 ret = true; /* Caller must wake GP kthread. */ 988 unlock_out: 989 /* Push furthest requested GP to leaf node and rcu_data structure. */ 990 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 991 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 992 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 993 } 994 if (rnp != rnp_start) 995 raw_spin_unlock_rcu_node(rnp); 996 return ret; 997 } 998 999 /* 1000 * Clean up any old requests for the just-ended grace period. Also return 1001 * whether any additional grace periods have been requested. 1002 */ 1003 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1004 { 1005 bool needmore; 1006 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1007 1008 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1009 if (!needmore) 1010 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1011 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1012 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1013 return needmore; 1014 } 1015 1016 static void swake_up_one_online_ipi(void *arg) 1017 { 1018 struct swait_queue_head *wqh = arg; 1019 1020 swake_up_one(wqh); 1021 } 1022 1023 static void swake_up_one_online(struct swait_queue_head *wqh) 1024 { 1025 int cpu = get_cpu(); 1026 1027 /* 1028 * If called from rcutree_report_cpu_starting(), wake up 1029 * is dangerous that late in the CPU-down hotplug process. The 1030 * scheduler might queue an ignored hrtimer. Defer the wake up 1031 * to an online CPU instead. 1032 */ 1033 if (unlikely(cpu_is_offline(cpu))) { 1034 int target; 1035 1036 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU), 1037 cpu_online_mask); 1038 1039 smp_call_function_single(target, swake_up_one_online_ipi, 1040 wqh, 0); 1041 put_cpu(); 1042 } else { 1043 put_cpu(); 1044 swake_up_one(wqh); 1045 } 1046 } 1047 1048 /* 1049 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1050 * interrupt or softirq handler, in which case we just might immediately 1051 * sleep upon return, resulting in a grace-period hang), and don't bother 1052 * awakening when there is nothing for the grace-period kthread to do 1053 * (as in several CPUs raced to awaken, we lost), and finally don't try 1054 * to awaken a kthread that has not yet been created. If all those checks 1055 * are passed, track some debug information and awaken. 1056 * 1057 * So why do the self-wakeup when in an interrupt or softirq handler 1058 * in the grace-period kthread's context? Because the kthread might have 1059 * been interrupted just as it was going to sleep, and just after the final 1060 * pre-sleep check of the awaken condition. In this case, a wakeup really 1061 * is required, and is therefore supplied. 1062 */ 1063 static void rcu_gp_kthread_wake(void) 1064 { 1065 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1066 1067 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1068 !READ_ONCE(rcu_state.gp_flags) || !t) 1069 return; 1070 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1071 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1072 swake_up_one_online(&rcu_state.gp_wq); 1073 } 1074 1075 /* 1076 * If there is room, assign a ->gp_seq number to any callbacks on this 1077 * CPU that have not already been assigned. Also accelerate any callbacks 1078 * that were previously assigned a ->gp_seq number that has since proven 1079 * to be too conservative, which can happen if callbacks get assigned a 1080 * ->gp_seq number while RCU is idle, but with reference to a non-root 1081 * rcu_node structure. This function is idempotent, so it does not hurt 1082 * to call it repeatedly. Returns an flag saying that we should awaken 1083 * the RCU grace-period kthread. 1084 * 1085 * The caller must hold rnp->lock with interrupts disabled. 1086 */ 1087 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1088 { 1089 unsigned long gp_seq_req; 1090 bool ret = false; 1091 1092 rcu_lockdep_assert_cblist_protected(rdp); 1093 raw_lockdep_assert_held_rcu_node(rnp); 1094 1095 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1096 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1097 return false; 1098 1099 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1100 1101 /* 1102 * Callbacks are often registered with incomplete grace-period 1103 * information. Something about the fact that getting exact 1104 * information requires acquiring a global lock... RCU therefore 1105 * makes a conservative estimate of the grace period number at which 1106 * a given callback will become ready to invoke. The following 1107 * code checks this estimate and improves it when possible, thus 1108 * accelerating callback invocation to an earlier grace-period 1109 * number. 1110 */ 1111 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1112 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1113 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1114 1115 /* Trace depending on how much we were able to accelerate. */ 1116 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1117 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1118 else 1119 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1120 1121 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1122 1123 return ret; 1124 } 1125 1126 /* 1127 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1128 * rcu_node structure's ->lock be held. It consults the cached value 1129 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1130 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1131 * while holding the leaf rcu_node structure's ->lock. 1132 */ 1133 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1134 struct rcu_data *rdp) 1135 { 1136 unsigned long c; 1137 bool needwake; 1138 1139 rcu_lockdep_assert_cblist_protected(rdp); 1140 c = rcu_seq_snap(&rcu_state.gp_seq); 1141 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1142 /* Old request still live, so mark recent callbacks. */ 1143 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1144 return; 1145 } 1146 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1147 needwake = rcu_accelerate_cbs(rnp, rdp); 1148 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1149 if (needwake) 1150 rcu_gp_kthread_wake(); 1151 } 1152 1153 /* 1154 * Move any callbacks whose grace period has completed to the 1155 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1156 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1157 * sublist. This function is idempotent, so it does not hurt to 1158 * invoke it repeatedly. As long as it is not invoked -too- often... 1159 * Returns true if the RCU grace-period kthread needs to be awakened. 1160 * 1161 * The caller must hold rnp->lock with interrupts disabled. 1162 */ 1163 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1164 { 1165 rcu_lockdep_assert_cblist_protected(rdp); 1166 raw_lockdep_assert_held_rcu_node(rnp); 1167 1168 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1169 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1170 return false; 1171 1172 /* 1173 * Find all callbacks whose ->gp_seq numbers indicate that they 1174 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1175 */ 1176 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1177 1178 /* Classify any remaining callbacks. */ 1179 return rcu_accelerate_cbs(rnp, rdp); 1180 } 1181 1182 /* 1183 * Move and classify callbacks, but only if doing so won't require 1184 * that the RCU grace-period kthread be awakened. 1185 */ 1186 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1187 struct rcu_data *rdp) 1188 { 1189 rcu_lockdep_assert_cblist_protected(rdp); 1190 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1191 return; 1192 // The grace period cannot end while we hold the rcu_node lock. 1193 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1194 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1195 raw_spin_unlock_rcu_node(rnp); 1196 } 1197 1198 /* 1199 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1200 * quiescent state. This is intended to be invoked when the CPU notices 1201 * a new grace period. 1202 */ 1203 static void rcu_strict_gp_check_qs(void) 1204 { 1205 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1206 rcu_read_lock(); 1207 rcu_read_unlock(); 1208 } 1209 } 1210 1211 /* 1212 * Update CPU-local rcu_data state to record the beginnings and ends of 1213 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1214 * structure corresponding to the current CPU, and must have irqs disabled. 1215 * Returns true if the grace-period kthread needs to be awakened. 1216 */ 1217 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1218 { 1219 bool ret = false; 1220 bool need_qs; 1221 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1222 1223 raw_lockdep_assert_held_rcu_node(rnp); 1224 1225 if (rdp->gp_seq == rnp->gp_seq) 1226 return false; /* Nothing to do. */ 1227 1228 /* Handle the ends of any preceding grace periods first. */ 1229 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1230 unlikely(READ_ONCE(rdp->gpwrap))) { 1231 if (!offloaded) 1232 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1233 rdp->core_needs_qs = false; 1234 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1235 } else { 1236 if (!offloaded) 1237 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1238 if (rdp->core_needs_qs) 1239 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1240 } 1241 1242 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1243 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1244 unlikely(READ_ONCE(rdp->gpwrap))) { 1245 /* 1246 * If the current grace period is waiting for this CPU, 1247 * set up to detect a quiescent state, otherwise don't 1248 * go looking for one. 1249 */ 1250 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1251 need_qs = !!(rnp->qsmask & rdp->grpmask); 1252 rdp->cpu_no_qs.b.norm = need_qs; 1253 rdp->core_needs_qs = need_qs; 1254 zero_cpu_stall_ticks(rdp); 1255 } 1256 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1257 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1258 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1259 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1260 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1261 WRITE_ONCE(rdp->gpwrap, false); 1262 rcu_gpnum_ovf(rnp, rdp); 1263 return ret; 1264 } 1265 1266 static void note_gp_changes(struct rcu_data *rdp) 1267 { 1268 unsigned long flags; 1269 bool needwake; 1270 struct rcu_node *rnp; 1271 1272 local_irq_save(flags); 1273 rnp = rdp->mynode; 1274 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1275 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1276 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1277 local_irq_restore(flags); 1278 return; 1279 } 1280 needwake = __note_gp_changes(rnp, rdp); 1281 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1282 rcu_strict_gp_check_qs(); 1283 if (needwake) 1284 rcu_gp_kthread_wake(); 1285 } 1286 1287 static atomic_t *rcu_gp_slow_suppress; 1288 1289 /* Register a counter to suppress debugging grace-period delays. */ 1290 void rcu_gp_slow_register(atomic_t *rgssp) 1291 { 1292 WARN_ON_ONCE(rcu_gp_slow_suppress); 1293 1294 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1295 } 1296 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1297 1298 /* Unregister a counter, with NULL for not caring which. */ 1299 void rcu_gp_slow_unregister(atomic_t *rgssp) 1300 { 1301 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); 1302 1303 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1304 } 1305 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1306 1307 static bool rcu_gp_slow_is_suppressed(void) 1308 { 1309 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1310 1311 return rgssp && atomic_read(rgssp); 1312 } 1313 1314 static void rcu_gp_slow(int delay) 1315 { 1316 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1317 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1318 schedule_timeout_idle(delay); 1319 } 1320 1321 static unsigned long sleep_duration; 1322 1323 /* Allow rcutorture to stall the grace-period kthread. */ 1324 void rcu_gp_set_torture_wait(int duration) 1325 { 1326 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1327 WRITE_ONCE(sleep_duration, duration); 1328 } 1329 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1330 1331 /* Actually implement the aforementioned wait. */ 1332 static void rcu_gp_torture_wait(void) 1333 { 1334 unsigned long duration; 1335 1336 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1337 return; 1338 duration = xchg(&sleep_duration, 0UL); 1339 if (duration > 0) { 1340 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1341 schedule_timeout_idle(duration); 1342 pr_alert("%s: Wait complete\n", __func__); 1343 } 1344 } 1345 1346 /* 1347 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1348 * processing. 1349 */ 1350 static void rcu_strict_gp_boundary(void *unused) 1351 { 1352 invoke_rcu_core(); 1353 } 1354 1355 // Make the polled API aware of the beginning of a grace period. 1356 static void rcu_poll_gp_seq_start(unsigned long *snap) 1357 { 1358 struct rcu_node *rnp = rcu_get_root(); 1359 1360 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1361 raw_lockdep_assert_held_rcu_node(rnp); 1362 1363 // If RCU was idle, note beginning of GP. 1364 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1365 rcu_seq_start(&rcu_state.gp_seq_polled); 1366 1367 // Either way, record current state. 1368 *snap = rcu_state.gp_seq_polled; 1369 } 1370 1371 // Make the polled API aware of the end of a grace period. 1372 static void rcu_poll_gp_seq_end(unsigned long *snap) 1373 { 1374 struct rcu_node *rnp = rcu_get_root(); 1375 1376 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1377 raw_lockdep_assert_held_rcu_node(rnp); 1378 1379 // If the previously noted GP is still in effect, record the 1380 // end of that GP. Either way, zero counter to avoid counter-wrap 1381 // problems. 1382 if (*snap && *snap == rcu_state.gp_seq_polled) { 1383 rcu_seq_end(&rcu_state.gp_seq_polled); 1384 rcu_state.gp_seq_polled_snap = 0; 1385 rcu_state.gp_seq_polled_exp_snap = 0; 1386 } else { 1387 *snap = 0; 1388 } 1389 } 1390 1391 // Make the polled API aware of the beginning of a grace period, but 1392 // where caller does not hold the root rcu_node structure's lock. 1393 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1394 { 1395 unsigned long flags; 1396 struct rcu_node *rnp = rcu_get_root(); 1397 1398 if (rcu_init_invoked()) { 1399 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1400 lockdep_assert_irqs_enabled(); 1401 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1402 } 1403 rcu_poll_gp_seq_start(snap); 1404 if (rcu_init_invoked()) 1405 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1406 } 1407 1408 // Make the polled API aware of the end of a grace period, but where 1409 // caller does not hold the root rcu_node structure's lock. 1410 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1411 { 1412 unsigned long flags; 1413 struct rcu_node *rnp = rcu_get_root(); 1414 1415 if (rcu_init_invoked()) { 1416 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1417 lockdep_assert_irqs_enabled(); 1418 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1419 } 1420 rcu_poll_gp_seq_end(snap); 1421 if (rcu_init_invoked()) 1422 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1423 } 1424 1425 /* 1426 * Initialize a new grace period. Return false if no grace period required. 1427 */ 1428 static noinline_for_stack bool rcu_gp_init(void) 1429 { 1430 unsigned long flags; 1431 unsigned long oldmask; 1432 unsigned long mask; 1433 struct rcu_data *rdp; 1434 struct rcu_node *rnp = rcu_get_root(); 1435 1436 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1437 raw_spin_lock_irq_rcu_node(rnp); 1438 if (!READ_ONCE(rcu_state.gp_flags)) { 1439 /* Spurious wakeup, tell caller to go back to sleep. */ 1440 raw_spin_unlock_irq_rcu_node(rnp); 1441 return false; 1442 } 1443 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1444 1445 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1446 /* 1447 * Grace period already in progress, don't start another. 1448 * Not supposed to be able to happen. 1449 */ 1450 raw_spin_unlock_irq_rcu_node(rnp); 1451 return false; 1452 } 1453 1454 /* Advance to a new grace period and initialize state. */ 1455 record_gp_stall_check_time(); 1456 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1457 rcu_seq_start(&rcu_state.gp_seq); 1458 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1459 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1460 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1461 raw_spin_unlock_irq_rcu_node(rnp); 1462 1463 /* 1464 * Apply per-leaf buffered online and offline operations to 1465 * the rcu_node tree. Note that this new grace period need not 1466 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1467 * offlining path, when combined with checks in this function, 1468 * will handle CPUs that are currently going offline or that will 1469 * go offline later. Please also refer to "Hotplug CPU" section 1470 * of RCU's Requirements documentation. 1471 */ 1472 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1473 /* Exclude CPU hotplug operations. */ 1474 rcu_for_each_leaf_node(rnp) { 1475 local_irq_save(flags); 1476 arch_spin_lock(&rcu_state.ofl_lock); 1477 raw_spin_lock_rcu_node(rnp); 1478 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1479 !rnp->wait_blkd_tasks) { 1480 /* Nothing to do on this leaf rcu_node structure. */ 1481 raw_spin_unlock_rcu_node(rnp); 1482 arch_spin_unlock(&rcu_state.ofl_lock); 1483 local_irq_restore(flags); 1484 continue; 1485 } 1486 1487 /* Record old state, apply changes to ->qsmaskinit field. */ 1488 oldmask = rnp->qsmaskinit; 1489 rnp->qsmaskinit = rnp->qsmaskinitnext; 1490 1491 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1492 if (!oldmask != !rnp->qsmaskinit) { 1493 if (!oldmask) { /* First online CPU for rcu_node. */ 1494 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1495 rcu_init_new_rnp(rnp); 1496 } else if (rcu_preempt_has_tasks(rnp)) { 1497 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1498 } else { /* Last offline CPU and can propagate. */ 1499 rcu_cleanup_dead_rnp(rnp); 1500 } 1501 } 1502 1503 /* 1504 * If all waited-on tasks from prior grace period are 1505 * done, and if all this rcu_node structure's CPUs are 1506 * still offline, propagate up the rcu_node tree and 1507 * clear ->wait_blkd_tasks. Otherwise, if one of this 1508 * rcu_node structure's CPUs has since come back online, 1509 * simply clear ->wait_blkd_tasks. 1510 */ 1511 if (rnp->wait_blkd_tasks && 1512 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1513 rnp->wait_blkd_tasks = false; 1514 if (!rnp->qsmaskinit) 1515 rcu_cleanup_dead_rnp(rnp); 1516 } 1517 1518 raw_spin_unlock_rcu_node(rnp); 1519 arch_spin_unlock(&rcu_state.ofl_lock); 1520 local_irq_restore(flags); 1521 } 1522 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1523 1524 /* 1525 * Set the quiescent-state-needed bits in all the rcu_node 1526 * structures for all currently online CPUs in breadth-first 1527 * order, starting from the root rcu_node structure, relying on the 1528 * layout of the tree within the rcu_state.node[] array. Note that 1529 * other CPUs will access only the leaves of the hierarchy, thus 1530 * seeing that no grace period is in progress, at least until the 1531 * corresponding leaf node has been initialized. 1532 * 1533 * The grace period cannot complete until the initialization 1534 * process finishes, because this kthread handles both. 1535 */ 1536 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1537 rcu_for_each_node_breadth_first(rnp) { 1538 rcu_gp_slow(gp_init_delay); 1539 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1540 rdp = this_cpu_ptr(&rcu_data); 1541 rcu_preempt_check_blocked_tasks(rnp); 1542 rnp->qsmask = rnp->qsmaskinit; 1543 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1544 if (rnp == rdp->mynode) 1545 (void)__note_gp_changes(rnp, rdp); 1546 rcu_preempt_boost_start_gp(rnp); 1547 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1548 rnp->level, rnp->grplo, 1549 rnp->grphi, rnp->qsmask); 1550 /* Quiescent states for tasks on any now-offline CPUs. */ 1551 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1552 rnp->rcu_gp_init_mask = mask; 1553 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1554 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1555 else 1556 raw_spin_unlock_irq_rcu_node(rnp); 1557 cond_resched_tasks_rcu_qs(); 1558 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1559 } 1560 1561 // If strict, make all CPUs aware of new grace period. 1562 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1563 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1564 1565 return true; 1566 } 1567 1568 /* 1569 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1570 * time. 1571 */ 1572 static bool rcu_gp_fqs_check_wake(int *gfp) 1573 { 1574 struct rcu_node *rnp = rcu_get_root(); 1575 1576 // If under overload conditions, force an immediate FQS scan. 1577 if (*gfp & RCU_GP_FLAG_OVLD) 1578 return true; 1579 1580 // Someone like call_rcu() requested a force-quiescent-state scan. 1581 *gfp = READ_ONCE(rcu_state.gp_flags); 1582 if (*gfp & RCU_GP_FLAG_FQS) 1583 return true; 1584 1585 // The current grace period has completed. 1586 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1587 return true; 1588 1589 return false; 1590 } 1591 1592 /* 1593 * Do one round of quiescent-state forcing. 1594 */ 1595 static void rcu_gp_fqs(bool first_time) 1596 { 1597 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1598 struct rcu_node *rnp = rcu_get_root(); 1599 1600 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1601 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1602 1603 WARN_ON_ONCE(nr_fqs > 3); 1604 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1605 if (nr_fqs) { 1606 if (nr_fqs == 1) { 1607 WRITE_ONCE(rcu_state.jiffies_stall, 1608 jiffies + rcu_jiffies_till_stall_check()); 1609 } 1610 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1611 } 1612 1613 if (first_time) { 1614 /* Collect dyntick-idle snapshots. */ 1615 force_qs_rnp(dyntick_save_progress_counter); 1616 } else { 1617 /* Handle dyntick-idle and offline CPUs. */ 1618 force_qs_rnp(rcu_implicit_dynticks_qs); 1619 } 1620 /* Clear flag to prevent immediate re-entry. */ 1621 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1622 raw_spin_lock_irq_rcu_node(rnp); 1623 WRITE_ONCE(rcu_state.gp_flags, 1624 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1625 raw_spin_unlock_irq_rcu_node(rnp); 1626 } 1627 } 1628 1629 /* 1630 * Loop doing repeated quiescent-state forcing until the grace period ends. 1631 */ 1632 static noinline_for_stack void rcu_gp_fqs_loop(void) 1633 { 1634 bool first_gp_fqs = true; 1635 int gf = 0; 1636 unsigned long j; 1637 int ret; 1638 struct rcu_node *rnp = rcu_get_root(); 1639 1640 j = READ_ONCE(jiffies_till_first_fqs); 1641 if (rcu_state.cbovld) 1642 gf = RCU_GP_FLAG_OVLD; 1643 ret = 0; 1644 for (;;) { 1645 if (rcu_state.cbovld) { 1646 j = (j + 2) / 3; 1647 if (j <= 0) 1648 j = 1; 1649 } 1650 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1651 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1652 /* 1653 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1654 * update; required for stall checks. 1655 */ 1656 smp_wmb(); 1657 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1658 jiffies + (j ? 3 * j : 2)); 1659 } 1660 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1661 TPS("fqswait")); 1662 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1663 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1664 rcu_gp_fqs_check_wake(&gf), j); 1665 rcu_gp_torture_wait(); 1666 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1667 /* Locking provides needed memory barriers. */ 1668 /* 1669 * Exit the loop if the root rcu_node structure indicates that the grace period 1670 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1671 * is required only for single-node rcu_node trees because readers blocking 1672 * the current grace period are queued only on leaf rcu_node structures. 1673 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1674 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1675 * the corresponding leaf nodes have passed through their quiescent state. 1676 */ 1677 if (!READ_ONCE(rnp->qsmask) && 1678 !rcu_preempt_blocked_readers_cgp(rnp)) 1679 break; 1680 /* If time for quiescent-state forcing, do it. */ 1681 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1682 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1683 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1684 TPS("fqsstart")); 1685 rcu_gp_fqs(first_gp_fqs); 1686 gf = 0; 1687 if (first_gp_fqs) { 1688 first_gp_fqs = false; 1689 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1690 } 1691 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1692 TPS("fqsend")); 1693 cond_resched_tasks_rcu_qs(); 1694 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1695 ret = 0; /* Force full wait till next FQS. */ 1696 j = READ_ONCE(jiffies_till_next_fqs); 1697 } else { 1698 /* Deal with stray signal. */ 1699 cond_resched_tasks_rcu_qs(); 1700 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1701 WARN_ON(signal_pending(current)); 1702 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1703 TPS("fqswaitsig")); 1704 ret = 1; /* Keep old FQS timing. */ 1705 j = jiffies; 1706 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1707 j = 1; 1708 else 1709 j = rcu_state.jiffies_force_qs - j; 1710 gf = 0; 1711 } 1712 } 1713 } 1714 1715 /* 1716 * Clean up after the old grace period. 1717 */ 1718 static noinline void rcu_gp_cleanup(void) 1719 { 1720 int cpu; 1721 bool needgp = false; 1722 unsigned long gp_duration; 1723 unsigned long new_gp_seq; 1724 bool offloaded; 1725 struct rcu_data *rdp; 1726 struct rcu_node *rnp = rcu_get_root(); 1727 struct swait_queue_head *sq; 1728 1729 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1730 raw_spin_lock_irq_rcu_node(rnp); 1731 rcu_state.gp_end = jiffies; 1732 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1733 if (gp_duration > rcu_state.gp_max) 1734 rcu_state.gp_max = gp_duration; 1735 1736 /* 1737 * We know the grace period is complete, but to everyone else 1738 * it appears to still be ongoing. But it is also the case 1739 * that to everyone else it looks like there is nothing that 1740 * they can do to advance the grace period. It is therefore 1741 * safe for us to drop the lock in order to mark the grace 1742 * period as completed in all of the rcu_node structures. 1743 */ 1744 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1745 raw_spin_unlock_irq_rcu_node(rnp); 1746 1747 /* 1748 * Propagate new ->gp_seq value to rcu_node structures so that 1749 * other CPUs don't have to wait until the start of the next grace 1750 * period to process their callbacks. This also avoids some nasty 1751 * RCU grace-period initialization races by forcing the end of 1752 * the current grace period to be completely recorded in all of 1753 * the rcu_node structures before the beginning of the next grace 1754 * period is recorded in any of the rcu_node structures. 1755 */ 1756 new_gp_seq = rcu_state.gp_seq; 1757 rcu_seq_end(&new_gp_seq); 1758 rcu_for_each_node_breadth_first(rnp) { 1759 raw_spin_lock_irq_rcu_node(rnp); 1760 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1761 dump_blkd_tasks(rnp, 10); 1762 WARN_ON_ONCE(rnp->qsmask); 1763 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1764 if (!rnp->parent) 1765 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1766 rdp = this_cpu_ptr(&rcu_data); 1767 if (rnp == rdp->mynode) 1768 needgp = __note_gp_changes(rnp, rdp) || needgp; 1769 /* smp_mb() provided by prior unlock-lock pair. */ 1770 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1771 // Reset overload indication for CPUs no longer overloaded 1772 if (rcu_is_leaf_node(rnp)) 1773 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1774 rdp = per_cpu_ptr(&rcu_data, cpu); 1775 check_cb_ovld_locked(rdp, rnp); 1776 } 1777 sq = rcu_nocb_gp_get(rnp); 1778 raw_spin_unlock_irq_rcu_node(rnp); 1779 rcu_nocb_gp_cleanup(sq); 1780 cond_resched_tasks_rcu_qs(); 1781 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1782 rcu_gp_slow(gp_cleanup_delay); 1783 } 1784 rnp = rcu_get_root(); 1785 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1786 1787 /* Declare grace period done, trace first to use old GP number. */ 1788 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1789 rcu_seq_end(&rcu_state.gp_seq); 1790 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1791 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1792 /* Check for GP requests since above loop. */ 1793 rdp = this_cpu_ptr(&rcu_data); 1794 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1795 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1796 TPS("CleanupMore")); 1797 needgp = true; 1798 } 1799 /* Advance CBs to reduce false positives below. */ 1800 offloaded = rcu_rdp_is_offloaded(rdp); 1801 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1802 1803 // We get here if a grace period was needed (“needgp”) 1804 // and the above call to rcu_accelerate_cbs() did not set 1805 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1806 // the need for another grace period). The purpose 1807 // of the “offloaded” check is to avoid invoking 1808 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1809 // hold the ->nocb_lock needed to safely access an offloaded 1810 // ->cblist. We do not want to acquire that lock because 1811 // it can be heavily contended during callback floods. 1812 1813 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1814 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1815 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1816 } else { 1817 1818 // We get here either if there is no need for an 1819 // additional grace period or if rcu_accelerate_cbs() has 1820 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1821 // So all we need to do is to clear all of the other 1822 // ->gp_flags bits. 1823 1824 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1825 } 1826 raw_spin_unlock_irq_rcu_node(rnp); 1827 1828 // If strict, make all CPUs aware of the end of the old grace period. 1829 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1830 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1831 } 1832 1833 /* 1834 * Body of kthread that handles grace periods. 1835 */ 1836 static int __noreturn rcu_gp_kthread(void *unused) 1837 { 1838 rcu_bind_gp_kthread(); 1839 for (;;) { 1840 1841 /* Handle grace-period start. */ 1842 for (;;) { 1843 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1844 TPS("reqwait")); 1845 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1846 swait_event_idle_exclusive(rcu_state.gp_wq, 1847 READ_ONCE(rcu_state.gp_flags) & 1848 RCU_GP_FLAG_INIT); 1849 rcu_gp_torture_wait(); 1850 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1851 /* Locking provides needed memory barrier. */ 1852 if (rcu_gp_init()) 1853 break; 1854 cond_resched_tasks_rcu_qs(); 1855 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1856 WARN_ON(signal_pending(current)); 1857 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1858 TPS("reqwaitsig")); 1859 } 1860 1861 /* Handle quiescent-state forcing. */ 1862 rcu_gp_fqs_loop(); 1863 1864 /* Handle grace-period end. */ 1865 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1866 rcu_gp_cleanup(); 1867 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1868 } 1869 } 1870 1871 /* 1872 * Report a full set of quiescent states to the rcu_state data structure. 1873 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1874 * another grace period is required. Whether we wake the grace-period 1875 * kthread or it awakens itself for the next round of quiescent-state 1876 * forcing, that kthread will clean up after the just-completed grace 1877 * period. Note that the caller must hold rnp->lock, which is released 1878 * before return. 1879 */ 1880 static void rcu_report_qs_rsp(unsigned long flags) 1881 __releases(rcu_get_root()->lock) 1882 { 1883 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1884 WARN_ON_ONCE(!rcu_gp_in_progress()); 1885 WRITE_ONCE(rcu_state.gp_flags, 1886 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1887 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1888 rcu_gp_kthread_wake(); 1889 } 1890 1891 /* 1892 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1893 * Allows quiescent states for a group of CPUs to be reported at one go 1894 * to the specified rcu_node structure, though all the CPUs in the group 1895 * must be represented by the same rcu_node structure (which need not be a 1896 * leaf rcu_node structure, though it often will be). The gps parameter 1897 * is the grace-period snapshot, which means that the quiescent states 1898 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1899 * must be held upon entry, and it is released before return. 1900 * 1901 * As a special case, if mask is zero, the bit-already-cleared check is 1902 * disabled. This allows propagating quiescent state due to resumed tasks 1903 * during grace-period initialization. 1904 */ 1905 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1906 unsigned long gps, unsigned long flags) 1907 __releases(rnp->lock) 1908 { 1909 unsigned long oldmask = 0; 1910 struct rcu_node *rnp_c; 1911 1912 raw_lockdep_assert_held_rcu_node(rnp); 1913 1914 /* Walk up the rcu_node hierarchy. */ 1915 for (;;) { 1916 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1917 1918 /* 1919 * Our bit has already been cleared, or the 1920 * relevant grace period is already over, so done. 1921 */ 1922 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1923 return; 1924 } 1925 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1926 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1927 rcu_preempt_blocked_readers_cgp(rnp)); 1928 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1929 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1930 mask, rnp->qsmask, rnp->level, 1931 rnp->grplo, rnp->grphi, 1932 !!rnp->gp_tasks); 1933 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1934 1935 /* Other bits still set at this level, so done. */ 1936 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1937 return; 1938 } 1939 rnp->completedqs = rnp->gp_seq; 1940 mask = rnp->grpmask; 1941 if (rnp->parent == NULL) { 1942 1943 /* No more levels. Exit loop holding root lock. */ 1944 1945 break; 1946 } 1947 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1948 rnp_c = rnp; 1949 rnp = rnp->parent; 1950 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1951 oldmask = READ_ONCE(rnp_c->qsmask); 1952 } 1953 1954 /* 1955 * Get here if we are the last CPU to pass through a quiescent 1956 * state for this grace period. Invoke rcu_report_qs_rsp() 1957 * to clean up and start the next grace period if one is needed. 1958 */ 1959 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1960 } 1961 1962 /* 1963 * Record a quiescent state for all tasks that were previously queued 1964 * on the specified rcu_node structure and that were blocking the current 1965 * RCU grace period. The caller must hold the corresponding rnp->lock with 1966 * irqs disabled, and this lock is released upon return, but irqs remain 1967 * disabled. 1968 */ 1969 static void __maybe_unused 1970 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1971 __releases(rnp->lock) 1972 { 1973 unsigned long gps; 1974 unsigned long mask; 1975 struct rcu_node *rnp_p; 1976 1977 raw_lockdep_assert_held_rcu_node(rnp); 1978 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1979 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1980 rnp->qsmask != 0) { 1981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1982 return; /* Still need more quiescent states! */ 1983 } 1984 1985 rnp->completedqs = rnp->gp_seq; 1986 rnp_p = rnp->parent; 1987 if (rnp_p == NULL) { 1988 /* 1989 * Only one rcu_node structure in the tree, so don't 1990 * try to report up to its nonexistent parent! 1991 */ 1992 rcu_report_qs_rsp(flags); 1993 return; 1994 } 1995 1996 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1997 gps = rnp->gp_seq; 1998 mask = rnp->grpmask; 1999 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2000 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2001 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2002 } 2003 2004 /* 2005 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2006 * structure. This must be called from the specified CPU. 2007 */ 2008 static void 2009 rcu_report_qs_rdp(struct rcu_data *rdp) 2010 { 2011 unsigned long flags; 2012 unsigned long mask; 2013 bool needacc = false; 2014 struct rcu_node *rnp; 2015 2016 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2017 rnp = rdp->mynode; 2018 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2019 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2020 rdp->gpwrap) { 2021 2022 /* 2023 * The grace period in which this quiescent state was 2024 * recorded has ended, so don't report it upwards. 2025 * We will instead need a new quiescent state that lies 2026 * within the current grace period. 2027 */ 2028 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2029 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2030 return; 2031 } 2032 mask = rdp->grpmask; 2033 rdp->core_needs_qs = false; 2034 if ((rnp->qsmask & mask) == 0) { 2035 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2036 } else { 2037 /* 2038 * This GP can't end until cpu checks in, so all of our 2039 * callbacks can be processed during the next GP. 2040 * 2041 * NOCB kthreads have their own way to deal with that... 2042 */ 2043 if (!rcu_rdp_is_offloaded(rdp)) { 2044 /* 2045 * The current GP has not yet ended, so it 2046 * should not be possible for rcu_accelerate_cbs() 2047 * to return true. So complain, but don't awaken. 2048 */ 2049 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2050 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2051 /* 2052 * ...but NOCB kthreads may miss or delay callbacks acceleration 2053 * if in the middle of a (de-)offloading process. 2054 */ 2055 needacc = true; 2056 } 2057 2058 rcu_disable_urgency_upon_qs(rdp); 2059 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2060 /* ^^^ Released rnp->lock */ 2061 2062 if (needacc) { 2063 rcu_nocb_lock_irqsave(rdp, flags); 2064 rcu_accelerate_cbs_unlocked(rnp, rdp); 2065 rcu_nocb_unlock_irqrestore(rdp, flags); 2066 } 2067 } 2068 } 2069 2070 /* 2071 * Check to see if there is a new grace period of which this CPU 2072 * is not yet aware, and if so, set up local rcu_data state for it. 2073 * Otherwise, see if this CPU has just passed through its first 2074 * quiescent state for this grace period, and record that fact if so. 2075 */ 2076 static void 2077 rcu_check_quiescent_state(struct rcu_data *rdp) 2078 { 2079 /* Check for grace-period ends and beginnings. */ 2080 note_gp_changes(rdp); 2081 2082 /* 2083 * Does this CPU still need to do its part for current grace period? 2084 * If no, return and let the other CPUs do their part as well. 2085 */ 2086 if (!rdp->core_needs_qs) 2087 return; 2088 2089 /* 2090 * Was there a quiescent state since the beginning of the grace 2091 * period? If no, then exit and wait for the next call. 2092 */ 2093 if (rdp->cpu_no_qs.b.norm) 2094 return; 2095 2096 /* 2097 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2098 * judge of that). 2099 */ 2100 rcu_report_qs_rdp(rdp); 2101 } 2102 2103 /* Return true if callback-invocation time limit exceeded. */ 2104 static bool rcu_do_batch_check_time(long count, long tlimit, 2105 bool jlimit_check, unsigned long jlimit) 2106 { 2107 // Invoke local_clock() only once per 32 consecutive callbacks. 2108 return unlikely(tlimit) && 2109 (!likely(count & 31) || 2110 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2111 jlimit_check && time_after(jiffies, jlimit))) && 2112 local_clock() >= tlimit; 2113 } 2114 2115 /* 2116 * Invoke any RCU callbacks that have made it to the end of their grace 2117 * period. Throttle as specified by rdp->blimit. 2118 */ 2119 static void rcu_do_batch(struct rcu_data *rdp) 2120 { 2121 long bl; 2122 long count = 0; 2123 int div; 2124 bool __maybe_unused empty; 2125 unsigned long flags; 2126 unsigned long jlimit; 2127 bool jlimit_check = false; 2128 long pending; 2129 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2130 struct rcu_head *rhp; 2131 long tlimit = 0; 2132 2133 /* If no callbacks are ready, just return. */ 2134 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2135 trace_rcu_batch_start(rcu_state.name, 2136 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2137 trace_rcu_batch_end(rcu_state.name, 0, 2138 !rcu_segcblist_empty(&rdp->cblist), 2139 need_resched(), is_idle_task(current), 2140 rcu_is_callbacks_kthread(rdp)); 2141 return; 2142 } 2143 2144 /* 2145 * Extract the list of ready callbacks, disabling IRQs to prevent 2146 * races with call_rcu() from interrupt handlers. Leave the 2147 * callback counts, as rcu_barrier() needs to be conservative. 2148 * 2149 * Callbacks execution is fully ordered against preceding grace period 2150 * completion (materialized by rnp->gp_seq update) thanks to the 2151 * smp_mb__after_unlock_lock() upon node locking required for callbacks 2152 * advancing. In NOCB mode this ordering is then further relayed through 2153 * the nocb locking that protects both callbacks advancing and extraction. 2154 */ 2155 rcu_nocb_lock_irqsave(rdp, flags); 2156 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2157 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2158 div = READ_ONCE(rcu_divisor); 2159 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2160 bl = max(rdp->blimit, pending >> div); 2161 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2162 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2163 const long npj = NSEC_PER_SEC / HZ; 2164 long rrn = READ_ONCE(rcu_resched_ns); 2165 2166 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2167 tlimit = local_clock() + rrn; 2168 jlimit = jiffies + (rrn + npj + 1) / npj; 2169 jlimit_check = true; 2170 } 2171 trace_rcu_batch_start(rcu_state.name, 2172 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2173 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2174 if (rcu_rdp_is_offloaded(rdp)) 2175 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2176 2177 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2178 rcu_nocb_unlock_irqrestore(rdp, flags); 2179 2180 /* Invoke callbacks. */ 2181 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2182 rhp = rcu_cblist_dequeue(&rcl); 2183 2184 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2185 rcu_callback_t f; 2186 2187 count++; 2188 debug_rcu_head_unqueue(rhp); 2189 2190 rcu_lock_acquire(&rcu_callback_map); 2191 trace_rcu_invoke_callback(rcu_state.name, rhp); 2192 2193 f = rhp->func; 2194 debug_rcu_head_callback(rhp); 2195 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2196 f(rhp); 2197 2198 rcu_lock_release(&rcu_callback_map); 2199 2200 /* 2201 * Stop only if limit reached and CPU has something to do. 2202 */ 2203 if (in_serving_softirq()) { 2204 if (count >= bl && (need_resched() || !is_idle_task(current))) 2205 break; 2206 /* 2207 * Make sure we don't spend too much time here and deprive other 2208 * softirq vectors of CPU cycles. 2209 */ 2210 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2211 break; 2212 } else { 2213 // In rcuc/rcuoc context, so no worries about 2214 // depriving other softirq vectors of CPU cycles. 2215 local_bh_enable(); 2216 lockdep_assert_irqs_enabled(); 2217 cond_resched_tasks_rcu_qs(); 2218 lockdep_assert_irqs_enabled(); 2219 local_bh_disable(); 2220 // But rcuc kthreads can delay quiescent-state 2221 // reporting, so check time limits for them. 2222 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2223 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2224 rdp->rcu_cpu_has_work = 1; 2225 break; 2226 } 2227 } 2228 } 2229 2230 rcu_nocb_lock_irqsave(rdp, flags); 2231 rdp->n_cbs_invoked += count; 2232 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2233 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2234 2235 /* Update counts and requeue any remaining callbacks. */ 2236 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2237 rcu_segcblist_add_len(&rdp->cblist, -count); 2238 2239 /* Reinstate batch limit if we have worked down the excess. */ 2240 count = rcu_segcblist_n_cbs(&rdp->cblist); 2241 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2242 rdp->blimit = blimit; 2243 2244 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2245 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2246 rdp->qlen_last_fqs_check = 0; 2247 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2248 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2249 rdp->qlen_last_fqs_check = count; 2250 2251 /* 2252 * The following usually indicates a double call_rcu(). To track 2253 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2254 */ 2255 empty = rcu_segcblist_empty(&rdp->cblist); 2256 WARN_ON_ONCE(count == 0 && !empty); 2257 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2258 count != 0 && empty); 2259 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2260 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2261 2262 rcu_nocb_unlock_irqrestore(rdp, flags); 2263 2264 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2265 } 2266 2267 /* 2268 * This function is invoked from each scheduling-clock interrupt, 2269 * and checks to see if this CPU is in a non-context-switch quiescent 2270 * state, for example, user mode or idle loop. It also schedules RCU 2271 * core processing. If the current grace period has gone on too long, 2272 * it will ask the scheduler to manufacture a context switch for the sole 2273 * purpose of providing the needed quiescent state. 2274 */ 2275 void rcu_sched_clock_irq(int user) 2276 { 2277 unsigned long j; 2278 2279 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2280 j = jiffies; 2281 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2282 __this_cpu_write(rcu_data.last_sched_clock, j); 2283 } 2284 trace_rcu_utilization(TPS("Start scheduler-tick")); 2285 lockdep_assert_irqs_disabled(); 2286 raw_cpu_inc(rcu_data.ticks_this_gp); 2287 /* The load-acquire pairs with the store-release setting to true. */ 2288 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2289 /* Idle and userspace execution already are quiescent states. */ 2290 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2291 set_tsk_need_resched(current); 2292 set_preempt_need_resched(); 2293 } 2294 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2295 } 2296 rcu_flavor_sched_clock_irq(user); 2297 if (rcu_pending(user)) 2298 invoke_rcu_core(); 2299 if (user || rcu_is_cpu_rrupt_from_idle()) 2300 rcu_note_voluntary_context_switch(current); 2301 lockdep_assert_irqs_disabled(); 2302 2303 trace_rcu_utilization(TPS("End scheduler-tick")); 2304 } 2305 2306 /* 2307 * Scan the leaf rcu_node structures. For each structure on which all 2308 * CPUs have reported a quiescent state and on which there are tasks 2309 * blocking the current grace period, initiate RCU priority boosting. 2310 * Otherwise, invoke the specified function to check dyntick state for 2311 * each CPU that has not yet reported a quiescent state. 2312 */ 2313 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2314 { 2315 int cpu; 2316 unsigned long flags; 2317 struct rcu_node *rnp; 2318 2319 rcu_state.cbovld = rcu_state.cbovldnext; 2320 rcu_state.cbovldnext = false; 2321 rcu_for_each_leaf_node(rnp) { 2322 unsigned long mask = 0; 2323 unsigned long rsmask = 0; 2324 2325 cond_resched_tasks_rcu_qs(); 2326 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2327 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2328 if (rnp->qsmask == 0) { 2329 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2330 /* 2331 * No point in scanning bits because they 2332 * are all zero. But we might need to 2333 * priority-boost blocked readers. 2334 */ 2335 rcu_initiate_boost(rnp, flags); 2336 /* rcu_initiate_boost() releases rnp->lock */ 2337 continue; 2338 } 2339 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2340 continue; 2341 } 2342 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2343 struct rcu_data *rdp; 2344 int ret; 2345 2346 rdp = per_cpu_ptr(&rcu_data, cpu); 2347 ret = f(rdp); 2348 if (ret > 0) { 2349 mask |= rdp->grpmask; 2350 rcu_disable_urgency_upon_qs(rdp); 2351 } 2352 if (ret < 0) 2353 rsmask |= rdp->grpmask; 2354 } 2355 if (mask != 0) { 2356 /* Idle/offline CPUs, report (releases rnp->lock). */ 2357 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2358 } else { 2359 /* Nothing to do here, so just drop the lock. */ 2360 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2361 } 2362 2363 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) 2364 resched_cpu(cpu); 2365 } 2366 } 2367 2368 /* 2369 * Force quiescent states on reluctant CPUs, and also detect which 2370 * CPUs are in dyntick-idle mode. 2371 */ 2372 void rcu_force_quiescent_state(void) 2373 { 2374 unsigned long flags; 2375 bool ret; 2376 struct rcu_node *rnp; 2377 struct rcu_node *rnp_old = NULL; 2378 2379 if (!rcu_gp_in_progress()) 2380 return; 2381 /* Funnel through hierarchy to reduce memory contention. */ 2382 rnp = raw_cpu_read(rcu_data.mynode); 2383 for (; rnp != NULL; rnp = rnp->parent) { 2384 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2385 !raw_spin_trylock(&rnp->fqslock); 2386 if (rnp_old != NULL) 2387 raw_spin_unlock(&rnp_old->fqslock); 2388 if (ret) 2389 return; 2390 rnp_old = rnp; 2391 } 2392 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2393 2394 /* Reached the root of the rcu_node tree, acquire lock. */ 2395 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2396 raw_spin_unlock(&rnp_old->fqslock); 2397 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2398 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2399 return; /* Someone beat us to it. */ 2400 } 2401 WRITE_ONCE(rcu_state.gp_flags, 2402 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2403 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2404 rcu_gp_kthread_wake(); 2405 } 2406 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2407 2408 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2409 // grace periods. 2410 static void strict_work_handler(struct work_struct *work) 2411 { 2412 rcu_read_lock(); 2413 rcu_read_unlock(); 2414 } 2415 2416 /* Perform RCU core processing work for the current CPU. */ 2417 static __latent_entropy void rcu_core(void) 2418 { 2419 unsigned long flags; 2420 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2421 struct rcu_node *rnp = rdp->mynode; 2422 /* 2423 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2424 * Therefore this function can race with concurrent NOCB (de-)offloading 2425 * on this CPU and the below condition must be considered volatile. 2426 * However if we race with: 2427 * 2428 * _ Offloading: In the worst case we accelerate or process callbacks 2429 * concurrently with NOCB kthreads. We are guaranteed to 2430 * call rcu_nocb_lock() if that happens. 2431 * 2432 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2433 * processing. This is fine because the early stage 2434 * of deoffloading invokes rcu_core() after setting 2435 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2436 * what could have been dismissed without the need to wait 2437 * for the next rcu_pending() check in the next jiffy. 2438 */ 2439 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2440 2441 if (cpu_is_offline(smp_processor_id())) 2442 return; 2443 trace_rcu_utilization(TPS("Start RCU core")); 2444 WARN_ON_ONCE(!rdp->beenonline); 2445 2446 /* Report any deferred quiescent states if preemption enabled. */ 2447 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2448 rcu_preempt_deferred_qs(current); 2449 } else if (rcu_preempt_need_deferred_qs(current)) { 2450 set_tsk_need_resched(current); 2451 set_preempt_need_resched(); 2452 } 2453 2454 /* Update RCU state based on any recent quiescent states. */ 2455 rcu_check_quiescent_state(rdp); 2456 2457 /* No grace period and unregistered callbacks? */ 2458 if (!rcu_gp_in_progress() && 2459 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2460 rcu_nocb_lock_irqsave(rdp, flags); 2461 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2462 rcu_accelerate_cbs_unlocked(rnp, rdp); 2463 rcu_nocb_unlock_irqrestore(rdp, flags); 2464 } 2465 2466 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2467 2468 /* If there are callbacks ready, invoke them. */ 2469 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2470 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2471 rcu_do_batch(rdp); 2472 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2473 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2474 invoke_rcu_core(); 2475 } 2476 2477 /* Do any needed deferred wakeups of rcuo kthreads. */ 2478 do_nocb_deferred_wakeup(rdp); 2479 trace_rcu_utilization(TPS("End RCU core")); 2480 2481 // If strict GPs, schedule an RCU reader in a clean environment. 2482 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2483 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2484 } 2485 2486 static void rcu_core_si(struct softirq_action *h) 2487 { 2488 rcu_core(); 2489 } 2490 2491 static void rcu_wake_cond(struct task_struct *t, int status) 2492 { 2493 /* 2494 * If the thread is yielding, only wake it when this 2495 * is invoked from idle 2496 */ 2497 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2498 wake_up_process(t); 2499 } 2500 2501 static void invoke_rcu_core_kthread(void) 2502 { 2503 struct task_struct *t; 2504 unsigned long flags; 2505 2506 local_irq_save(flags); 2507 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2508 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2509 if (t != NULL && t != current) 2510 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2511 local_irq_restore(flags); 2512 } 2513 2514 /* 2515 * Wake up this CPU's rcuc kthread to do RCU core processing. 2516 */ 2517 static void invoke_rcu_core(void) 2518 { 2519 if (!cpu_online(smp_processor_id())) 2520 return; 2521 if (use_softirq) 2522 raise_softirq(RCU_SOFTIRQ); 2523 else 2524 invoke_rcu_core_kthread(); 2525 } 2526 2527 static void rcu_cpu_kthread_park(unsigned int cpu) 2528 { 2529 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2530 } 2531 2532 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2533 { 2534 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2535 } 2536 2537 /* 2538 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2539 * the RCU softirq used in configurations of RCU that do not support RCU 2540 * priority boosting. 2541 */ 2542 static void rcu_cpu_kthread(unsigned int cpu) 2543 { 2544 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2545 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2546 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2547 int spincnt; 2548 2549 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2550 for (spincnt = 0; spincnt < 10; spincnt++) { 2551 WRITE_ONCE(*j, jiffies); 2552 local_bh_disable(); 2553 *statusp = RCU_KTHREAD_RUNNING; 2554 local_irq_disable(); 2555 work = *workp; 2556 WRITE_ONCE(*workp, 0); 2557 local_irq_enable(); 2558 if (work) 2559 rcu_core(); 2560 local_bh_enable(); 2561 if (!READ_ONCE(*workp)) { 2562 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2563 *statusp = RCU_KTHREAD_WAITING; 2564 return; 2565 } 2566 } 2567 *statusp = RCU_KTHREAD_YIELDING; 2568 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2569 schedule_timeout_idle(2); 2570 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2571 *statusp = RCU_KTHREAD_WAITING; 2572 WRITE_ONCE(*j, jiffies); 2573 } 2574 2575 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2576 .store = &rcu_data.rcu_cpu_kthread_task, 2577 .thread_should_run = rcu_cpu_kthread_should_run, 2578 .thread_fn = rcu_cpu_kthread, 2579 .thread_comm = "rcuc/%u", 2580 .setup = rcu_cpu_kthread_setup, 2581 .park = rcu_cpu_kthread_park, 2582 }; 2583 2584 /* 2585 * Spawn per-CPU RCU core processing kthreads. 2586 */ 2587 static int __init rcu_spawn_core_kthreads(void) 2588 { 2589 int cpu; 2590 2591 for_each_possible_cpu(cpu) 2592 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2593 if (use_softirq) 2594 return 0; 2595 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2596 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2597 return 0; 2598 } 2599 2600 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func) 2601 { 2602 rcu_segcblist_enqueue(&rdp->cblist, head); 2603 if (__is_kvfree_rcu_offset((unsigned long)func)) 2604 trace_rcu_kvfree_callback(rcu_state.name, head, 2605 (unsigned long)func, 2606 rcu_segcblist_n_cbs(&rdp->cblist)); 2607 else 2608 trace_rcu_callback(rcu_state.name, head, 2609 rcu_segcblist_n_cbs(&rdp->cblist)); 2610 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2611 } 2612 2613 /* 2614 * Handle any core-RCU processing required by a call_rcu() invocation. 2615 */ 2616 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2617 rcu_callback_t func, unsigned long flags) 2618 { 2619 rcutree_enqueue(rdp, head, func); 2620 /* 2621 * If called from an extended quiescent state, invoke the RCU 2622 * core in order to force a re-evaluation of RCU's idleness. 2623 */ 2624 if (!rcu_is_watching()) 2625 invoke_rcu_core(); 2626 2627 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2628 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2629 return; 2630 2631 /* 2632 * Force the grace period if too many callbacks or too long waiting. 2633 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2634 * if some other CPU has recently done so. Also, don't bother 2635 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2636 * is the only one waiting for a grace period to complete. 2637 */ 2638 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2639 rdp->qlen_last_fqs_check + qhimark)) { 2640 2641 /* Are we ignoring a completed grace period? */ 2642 note_gp_changes(rdp); 2643 2644 /* Start a new grace period if one not already started. */ 2645 if (!rcu_gp_in_progress()) { 2646 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2647 } else { 2648 /* Give the grace period a kick. */ 2649 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2650 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2651 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2652 rcu_force_quiescent_state(); 2653 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2654 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2655 } 2656 } 2657 } 2658 2659 /* 2660 * RCU callback function to leak a callback. 2661 */ 2662 static void rcu_leak_callback(struct rcu_head *rhp) 2663 { 2664 } 2665 2666 /* 2667 * Check and if necessary update the leaf rcu_node structure's 2668 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2669 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2670 * structure's ->lock. 2671 */ 2672 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2673 { 2674 raw_lockdep_assert_held_rcu_node(rnp); 2675 if (qovld_calc <= 0) 2676 return; // Early boot and wildcard value set. 2677 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2678 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2679 else 2680 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2681 } 2682 2683 /* 2684 * Check and if necessary update the leaf rcu_node structure's 2685 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2686 * number of queued RCU callbacks. No locks need be held, but the 2687 * caller must have disabled interrupts. 2688 * 2689 * Note that this function ignores the possibility that there are a lot 2690 * of callbacks all of which have already seen the end of their respective 2691 * grace periods. This omission is due to the need for no-CBs CPUs to 2692 * be holding ->nocb_lock to do this check, which is too heavy for a 2693 * common-case operation. 2694 */ 2695 static void check_cb_ovld(struct rcu_data *rdp) 2696 { 2697 struct rcu_node *const rnp = rdp->mynode; 2698 2699 if (qovld_calc <= 0 || 2700 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2701 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2702 return; // Early boot wildcard value or already set correctly. 2703 raw_spin_lock_rcu_node(rnp); 2704 check_cb_ovld_locked(rdp, rnp); 2705 raw_spin_unlock_rcu_node(rnp); 2706 } 2707 2708 static void 2709 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2710 { 2711 static atomic_t doublefrees; 2712 unsigned long flags; 2713 bool lazy; 2714 struct rcu_data *rdp; 2715 2716 /* Misaligned rcu_head! */ 2717 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2718 2719 if (debug_rcu_head_queue(head)) { 2720 /* 2721 * Probable double call_rcu(), so leak the callback. 2722 * Use rcu:rcu_callback trace event to find the previous 2723 * time callback was passed to call_rcu(). 2724 */ 2725 if (atomic_inc_return(&doublefrees) < 4) { 2726 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2727 mem_dump_obj(head); 2728 } 2729 WRITE_ONCE(head->func, rcu_leak_callback); 2730 return; 2731 } 2732 head->func = func; 2733 head->next = NULL; 2734 kasan_record_aux_stack_noalloc(head); 2735 local_irq_save(flags); 2736 rdp = this_cpu_ptr(&rcu_data); 2737 lazy = lazy_in && !rcu_async_should_hurry(); 2738 2739 /* Add the callback to our list. */ 2740 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2741 // This can trigger due to call_rcu() from offline CPU: 2742 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2743 WARN_ON_ONCE(!rcu_is_watching()); 2744 // Very early boot, before rcu_init(). Initialize if needed 2745 // and then drop through to queue the callback. 2746 if (rcu_segcblist_empty(&rdp->cblist)) 2747 rcu_segcblist_init(&rdp->cblist); 2748 } 2749 2750 check_cb_ovld(rdp); 2751 2752 if (unlikely(rcu_rdp_is_offloaded(rdp))) 2753 call_rcu_nocb(rdp, head, func, flags, lazy); 2754 else 2755 call_rcu_core(rdp, head, func, flags); 2756 local_irq_restore(flags); 2757 } 2758 2759 #ifdef CONFIG_RCU_LAZY 2760 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF); 2761 module_param(enable_rcu_lazy, bool, 0444); 2762 2763 /** 2764 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2765 * flush all lazy callbacks (including the new one) to the main ->cblist while 2766 * doing so. 2767 * 2768 * @head: structure to be used for queueing the RCU updates. 2769 * @func: actual callback function to be invoked after the grace period 2770 * 2771 * The callback function will be invoked some time after a full grace 2772 * period elapses, in other words after all pre-existing RCU read-side 2773 * critical sections have completed. 2774 * 2775 * Use this API instead of call_rcu() if you don't want the callback to be 2776 * invoked after very long periods of time, which can happen on systems without 2777 * memory pressure and on systems which are lightly loaded or mostly idle. 2778 * This function will cause callbacks to be invoked sooner than later at the 2779 * expense of extra power. Other than that, this function is identical to, and 2780 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2781 * ordering and other functionality. 2782 */ 2783 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2784 { 2785 __call_rcu_common(head, func, false); 2786 } 2787 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2788 #else 2789 #define enable_rcu_lazy false 2790 #endif 2791 2792 /** 2793 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2794 * By default the callbacks are 'lazy' and are kept hidden from the main 2795 * ->cblist to prevent starting of grace periods too soon. 2796 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2797 * 2798 * @head: structure to be used for queueing the RCU updates. 2799 * @func: actual callback function to be invoked after the grace period 2800 * 2801 * The callback function will be invoked some time after a full grace 2802 * period elapses, in other words after all pre-existing RCU read-side 2803 * critical sections have completed. However, the callback function 2804 * might well execute concurrently with RCU read-side critical sections 2805 * that started after call_rcu() was invoked. 2806 * 2807 * RCU read-side critical sections are delimited by rcu_read_lock() 2808 * and rcu_read_unlock(), and may be nested. In addition, but only in 2809 * v5.0 and later, regions of code across which interrupts, preemption, 2810 * or softirqs have been disabled also serve as RCU read-side critical 2811 * sections. This includes hardware interrupt handlers, softirq handlers, 2812 * and NMI handlers. 2813 * 2814 * Note that all CPUs must agree that the grace period extended beyond 2815 * all pre-existing RCU read-side critical section. On systems with more 2816 * than one CPU, this means that when "func()" is invoked, each CPU is 2817 * guaranteed to have executed a full memory barrier since the end of its 2818 * last RCU read-side critical section whose beginning preceded the call 2819 * to call_rcu(). It also means that each CPU executing an RCU read-side 2820 * critical section that continues beyond the start of "func()" must have 2821 * executed a memory barrier after the call_rcu() but before the beginning 2822 * of that RCU read-side critical section. Note that these guarantees 2823 * include CPUs that are offline, idle, or executing in user mode, as 2824 * well as CPUs that are executing in the kernel. 2825 * 2826 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2827 * resulting RCU callback function "func()", then both CPU A and CPU B are 2828 * guaranteed to execute a full memory barrier during the time interval 2829 * between the call to call_rcu() and the invocation of "func()" -- even 2830 * if CPU A and CPU B are the same CPU (but again only if the system has 2831 * more than one CPU). 2832 * 2833 * Implementation of these memory-ordering guarantees is described here: 2834 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2835 */ 2836 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2837 { 2838 __call_rcu_common(head, func, enable_rcu_lazy); 2839 } 2840 EXPORT_SYMBOL_GPL(call_rcu); 2841 2842 /* Maximum number of jiffies to wait before draining a batch. */ 2843 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2844 #define KFREE_N_BATCHES 2 2845 #define FREE_N_CHANNELS 2 2846 2847 /** 2848 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2849 * @list: List node. All blocks are linked between each other 2850 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2851 * @nr_records: Number of active pointers in the array 2852 * @records: Array of the kvfree_rcu() pointers 2853 */ 2854 struct kvfree_rcu_bulk_data { 2855 struct list_head list; 2856 struct rcu_gp_oldstate gp_snap; 2857 unsigned long nr_records; 2858 void *records[]; 2859 }; 2860 2861 /* 2862 * This macro defines how many entries the "records" array 2863 * will contain. It is based on the fact that the size of 2864 * kvfree_rcu_bulk_data structure becomes exactly one page. 2865 */ 2866 #define KVFREE_BULK_MAX_ENTR \ 2867 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2868 2869 /** 2870 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2871 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2872 * @head_free: List of kfree_rcu() objects waiting for a grace period 2873 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 2874 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2875 * @krcp: Pointer to @kfree_rcu_cpu structure 2876 */ 2877 2878 struct kfree_rcu_cpu_work { 2879 struct rcu_work rcu_work; 2880 struct rcu_head *head_free; 2881 struct rcu_gp_oldstate head_free_gp_snap; 2882 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2883 struct kfree_rcu_cpu *krcp; 2884 }; 2885 2886 /** 2887 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2888 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2889 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2890 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2891 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2892 * @lock: Synchronize access to this structure 2893 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2894 * @initialized: The @rcu_work fields have been initialized 2895 * @head_count: Number of objects in rcu_head singular list 2896 * @bulk_count: Number of objects in bulk-list 2897 * @bkvcache: 2898 * A simple cache list that contains objects for reuse purpose. 2899 * In order to save some per-cpu space the list is singular. 2900 * Even though it is lockless an access has to be protected by the 2901 * per-cpu lock. 2902 * @page_cache_work: A work to refill the cache when it is empty 2903 * @backoff_page_cache_fill: Delay cache refills 2904 * @work_in_progress: Indicates that page_cache_work is running 2905 * @hrtimer: A hrtimer for scheduling a page_cache_work 2906 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2907 * 2908 * This is a per-CPU structure. The reason that it is not included in 2909 * the rcu_data structure is to permit this code to be extracted from 2910 * the RCU files. Such extraction could allow further optimization of 2911 * the interactions with the slab allocators. 2912 */ 2913 struct kfree_rcu_cpu { 2914 // Objects queued on a linked list 2915 // through their rcu_head structures. 2916 struct rcu_head *head; 2917 unsigned long head_gp_snap; 2918 atomic_t head_count; 2919 2920 // Objects queued on a bulk-list. 2921 struct list_head bulk_head[FREE_N_CHANNELS]; 2922 atomic_t bulk_count[FREE_N_CHANNELS]; 2923 2924 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2925 raw_spinlock_t lock; 2926 struct delayed_work monitor_work; 2927 bool initialized; 2928 2929 struct delayed_work page_cache_work; 2930 atomic_t backoff_page_cache_fill; 2931 atomic_t work_in_progress; 2932 struct hrtimer hrtimer; 2933 2934 struct llist_head bkvcache; 2935 int nr_bkv_objs; 2936 }; 2937 2938 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2939 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2940 }; 2941 2942 static __always_inline void 2943 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2944 { 2945 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2946 int i; 2947 2948 for (i = 0; i < bhead->nr_records; i++) 2949 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2950 #endif 2951 } 2952 2953 static inline struct kfree_rcu_cpu * 2954 krc_this_cpu_lock(unsigned long *flags) 2955 { 2956 struct kfree_rcu_cpu *krcp; 2957 2958 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2959 krcp = this_cpu_ptr(&krc); 2960 raw_spin_lock(&krcp->lock); 2961 2962 return krcp; 2963 } 2964 2965 static inline void 2966 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2967 { 2968 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2969 } 2970 2971 static inline struct kvfree_rcu_bulk_data * 2972 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2973 { 2974 if (!krcp->nr_bkv_objs) 2975 return NULL; 2976 2977 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2978 return (struct kvfree_rcu_bulk_data *) 2979 llist_del_first(&krcp->bkvcache); 2980 } 2981 2982 static inline bool 2983 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2984 struct kvfree_rcu_bulk_data *bnode) 2985 { 2986 // Check the limit. 2987 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2988 return false; 2989 2990 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2991 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2992 return true; 2993 } 2994 2995 static int 2996 drain_page_cache(struct kfree_rcu_cpu *krcp) 2997 { 2998 unsigned long flags; 2999 struct llist_node *page_list, *pos, *n; 3000 int freed = 0; 3001 3002 if (!rcu_min_cached_objs) 3003 return 0; 3004 3005 raw_spin_lock_irqsave(&krcp->lock, flags); 3006 page_list = llist_del_all(&krcp->bkvcache); 3007 WRITE_ONCE(krcp->nr_bkv_objs, 0); 3008 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3009 3010 llist_for_each_safe(pos, n, page_list) { 3011 free_page((unsigned long)pos); 3012 freed++; 3013 } 3014 3015 return freed; 3016 } 3017 3018 static void 3019 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 3020 struct kvfree_rcu_bulk_data *bnode, int idx) 3021 { 3022 unsigned long flags; 3023 int i; 3024 3025 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 3026 debug_rcu_bhead_unqueue(bnode); 3027 rcu_lock_acquire(&rcu_callback_map); 3028 if (idx == 0) { // kmalloc() / kfree(). 3029 trace_rcu_invoke_kfree_bulk_callback( 3030 rcu_state.name, bnode->nr_records, 3031 bnode->records); 3032 3033 kfree_bulk(bnode->nr_records, bnode->records); 3034 } else { // vmalloc() / vfree(). 3035 for (i = 0; i < bnode->nr_records; i++) { 3036 trace_rcu_invoke_kvfree_callback( 3037 rcu_state.name, bnode->records[i], 0); 3038 3039 vfree(bnode->records[i]); 3040 } 3041 } 3042 rcu_lock_release(&rcu_callback_map); 3043 } 3044 3045 raw_spin_lock_irqsave(&krcp->lock, flags); 3046 if (put_cached_bnode(krcp, bnode)) 3047 bnode = NULL; 3048 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3049 3050 if (bnode) 3051 free_page((unsigned long) bnode); 3052 3053 cond_resched_tasks_rcu_qs(); 3054 } 3055 3056 static void 3057 kvfree_rcu_list(struct rcu_head *head) 3058 { 3059 struct rcu_head *next; 3060 3061 for (; head; head = next) { 3062 void *ptr = (void *) head->func; 3063 unsigned long offset = (void *) head - ptr; 3064 3065 next = head->next; 3066 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3067 rcu_lock_acquire(&rcu_callback_map); 3068 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3069 3070 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3071 kvfree(ptr); 3072 3073 rcu_lock_release(&rcu_callback_map); 3074 cond_resched_tasks_rcu_qs(); 3075 } 3076 } 3077 3078 /* 3079 * This function is invoked in workqueue context after a grace period. 3080 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3081 */ 3082 static void kfree_rcu_work(struct work_struct *work) 3083 { 3084 unsigned long flags; 3085 struct kvfree_rcu_bulk_data *bnode, *n; 3086 struct list_head bulk_head[FREE_N_CHANNELS]; 3087 struct rcu_head *head; 3088 struct kfree_rcu_cpu *krcp; 3089 struct kfree_rcu_cpu_work *krwp; 3090 struct rcu_gp_oldstate head_gp_snap; 3091 int i; 3092 3093 krwp = container_of(to_rcu_work(work), 3094 struct kfree_rcu_cpu_work, rcu_work); 3095 krcp = krwp->krcp; 3096 3097 raw_spin_lock_irqsave(&krcp->lock, flags); 3098 // Channels 1 and 2. 3099 for (i = 0; i < FREE_N_CHANNELS; i++) 3100 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3101 3102 // Channel 3. 3103 head = krwp->head_free; 3104 krwp->head_free = NULL; 3105 head_gp_snap = krwp->head_free_gp_snap; 3106 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3107 3108 // Handle the first two channels. 3109 for (i = 0; i < FREE_N_CHANNELS; i++) { 3110 // Start from the tail page, so a GP is likely passed for it. 3111 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3112 kvfree_rcu_bulk(krcp, bnode, i); 3113 } 3114 3115 /* 3116 * This is used when the "bulk" path can not be used for the 3117 * double-argument of kvfree_rcu(). This happens when the 3118 * page-cache is empty, which means that objects are instead 3119 * queued on a linked list through their rcu_head structures. 3120 * This list is named "Channel 3". 3121 */ 3122 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3123 kvfree_rcu_list(head); 3124 } 3125 3126 static bool 3127 need_offload_krc(struct kfree_rcu_cpu *krcp) 3128 { 3129 int i; 3130 3131 for (i = 0; i < FREE_N_CHANNELS; i++) 3132 if (!list_empty(&krcp->bulk_head[i])) 3133 return true; 3134 3135 return !!READ_ONCE(krcp->head); 3136 } 3137 3138 static bool 3139 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3140 { 3141 int i; 3142 3143 for (i = 0; i < FREE_N_CHANNELS; i++) 3144 if (!list_empty(&krwp->bulk_head_free[i])) 3145 return true; 3146 3147 return !!krwp->head_free; 3148 } 3149 3150 static int krc_count(struct kfree_rcu_cpu *krcp) 3151 { 3152 int sum = atomic_read(&krcp->head_count); 3153 int i; 3154 3155 for (i = 0; i < FREE_N_CHANNELS; i++) 3156 sum += atomic_read(&krcp->bulk_count[i]); 3157 3158 return sum; 3159 } 3160 3161 static void 3162 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3163 { 3164 long delay, delay_left; 3165 3166 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3167 if (delayed_work_pending(&krcp->monitor_work)) { 3168 delay_left = krcp->monitor_work.timer.expires - jiffies; 3169 if (delay < delay_left) 3170 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3171 return; 3172 } 3173 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3174 } 3175 3176 static void 3177 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3178 { 3179 struct list_head bulk_ready[FREE_N_CHANNELS]; 3180 struct kvfree_rcu_bulk_data *bnode, *n; 3181 struct rcu_head *head_ready = NULL; 3182 unsigned long flags; 3183 int i; 3184 3185 raw_spin_lock_irqsave(&krcp->lock, flags); 3186 for (i = 0; i < FREE_N_CHANNELS; i++) { 3187 INIT_LIST_HEAD(&bulk_ready[i]); 3188 3189 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3190 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3191 break; 3192 3193 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3194 list_move(&bnode->list, &bulk_ready[i]); 3195 } 3196 } 3197 3198 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3199 head_ready = krcp->head; 3200 atomic_set(&krcp->head_count, 0); 3201 WRITE_ONCE(krcp->head, NULL); 3202 } 3203 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3204 3205 for (i = 0; i < FREE_N_CHANNELS; i++) { 3206 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3207 kvfree_rcu_bulk(krcp, bnode, i); 3208 } 3209 3210 if (head_ready) 3211 kvfree_rcu_list(head_ready); 3212 } 3213 3214 /* 3215 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3216 */ 3217 static void kfree_rcu_monitor(struct work_struct *work) 3218 { 3219 struct kfree_rcu_cpu *krcp = container_of(work, 3220 struct kfree_rcu_cpu, monitor_work.work); 3221 unsigned long flags; 3222 int i, j; 3223 3224 // Drain ready for reclaim. 3225 kvfree_rcu_drain_ready(krcp); 3226 3227 raw_spin_lock_irqsave(&krcp->lock, flags); 3228 3229 // Attempt to start a new batch. 3230 for (i = 0; i < KFREE_N_BATCHES; i++) { 3231 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3232 3233 // Try to detach bulk_head or head and attach it, only when 3234 // all channels are free. Any channel is not free means at krwp 3235 // there is on-going rcu work to handle krwp's free business. 3236 if (need_wait_for_krwp_work(krwp)) 3237 continue; 3238 3239 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3240 if (need_offload_krc(krcp)) { 3241 // Channel 1 corresponds to the SLAB-pointer bulk path. 3242 // Channel 2 corresponds to vmalloc-pointer bulk path. 3243 for (j = 0; j < FREE_N_CHANNELS; j++) { 3244 if (list_empty(&krwp->bulk_head_free[j])) { 3245 atomic_set(&krcp->bulk_count[j], 0); 3246 list_replace_init(&krcp->bulk_head[j], 3247 &krwp->bulk_head_free[j]); 3248 } 3249 } 3250 3251 // Channel 3 corresponds to both SLAB and vmalloc 3252 // objects queued on the linked list. 3253 if (!krwp->head_free) { 3254 krwp->head_free = krcp->head; 3255 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3256 atomic_set(&krcp->head_count, 0); 3257 WRITE_ONCE(krcp->head, NULL); 3258 } 3259 3260 // One work is per one batch, so there are three 3261 // "free channels", the batch can handle. It can 3262 // be that the work is in the pending state when 3263 // channels have been detached following by each 3264 // other. 3265 queue_rcu_work(system_wq, &krwp->rcu_work); 3266 } 3267 } 3268 3269 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3270 3271 // If there is nothing to detach, it means that our job is 3272 // successfully done here. In case of having at least one 3273 // of the channels that is still busy we should rearm the 3274 // work to repeat an attempt. Because previous batches are 3275 // still in progress. 3276 if (need_offload_krc(krcp)) 3277 schedule_delayed_monitor_work(krcp); 3278 } 3279 3280 static enum hrtimer_restart 3281 schedule_page_work_fn(struct hrtimer *t) 3282 { 3283 struct kfree_rcu_cpu *krcp = 3284 container_of(t, struct kfree_rcu_cpu, hrtimer); 3285 3286 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3287 return HRTIMER_NORESTART; 3288 } 3289 3290 static void fill_page_cache_func(struct work_struct *work) 3291 { 3292 struct kvfree_rcu_bulk_data *bnode; 3293 struct kfree_rcu_cpu *krcp = 3294 container_of(work, struct kfree_rcu_cpu, 3295 page_cache_work.work); 3296 unsigned long flags; 3297 int nr_pages; 3298 bool pushed; 3299 int i; 3300 3301 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3302 1 : rcu_min_cached_objs; 3303 3304 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3305 bnode = (struct kvfree_rcu_bulk_data *) 3306 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3307 3308 if (!bnode) 3309 break; 3310 3311 raw_spin_lock_irqsave(&krcp->lock, flags); 3312 pushed = put_cached_bnode(krcp, bnode); 3313 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3314 3315 if (!pushed) { 3316 free_page((unsigned long) bnode); 3317 break; 3318 } 3319 } 3320 3321 atomic_set(&krcp->work_in_progress, 0); 3322 atomic_set(&krcp->backoff_page_cache_fill, 0); 3323 } 3324 3325 static void 3326 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3327 { 3328 // If cache disabled, bail out. 3329 if (!rcu_min_cached_objs) 3330 return; 3331 3332 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3333 !atomic_xchg(&krcp->work_in_progress, 1)) { 3334 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3335 queue_delayed_work(system_wq, 3336 &krcp->page_cache_work, 3337 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3338 } else { 3339 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3340 krcp->hrtimer.function = schedule_page_work_fn; 3341 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3342 } 3343 } 3344 } 3345 3346 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3347 // state specified by flags. If can_alloc is true, the caller must 3348 // be schedulable and not be holding any locks or mutexes that might be 3349 // acquired by the memory allocator or anything that it might invoke. 3350 // Returns true if ptr was successfully recorded, else the caller must 3351 // use a fallback. 3352 static inline bool 3353 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3354 unsigned long *flags, void *ptr, bool can_alloc) 3355 { 3356 struct kvfree_rcu_bulk_data *bnode; 3357 int idx; 3358 3359 *krcp = krc_this_cpu_lock(flags); 3360 if (unlikely(!(*krcp)->initialized)) 3361 return false; 3362 3363 idx = !!is_vmalloc_addr(ptr); 3364 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3365 struct kvfree_rcu_bulk_data, list); 3366 3367 /* Check if a new block is required. */ 3368 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3369 bnode = get_cached_bnode(*krcp); 3370 if (!bnode && can_alloc) { 3371 krc_this_cpu_unlock(*krcp, *flags); 3372 3373 // __GFP_NORETRY - allows a light-weight direct reclaim 3374 // what is OK from minimizing of fallback hitting point of 3375 // view. Apart of that it forbids any OOM invoking what is 3376 // also beneficial since we are about to release memory soon. 3377 // 3378 // __GFP_NOMEMALLOC - prevents from consuming of all the 3379 // memory reserves. Please note we have a fallback path. 3380 // 3381 // __GFP_NOWARN - it is supposed that an allocation can 3382 // be failed under low memory or high memory pressure 3383 // scenarios. 3384 bnode = (struct kvfree_rcu_bulk_data *) 3385 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3386 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3387 } 3388 3389 if (!bnode) 3390 return false; 3391 3392 // Initialize the new block and attach it. 3393 bnode->nr_records = 0; 3394 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3395 } 3396 3397 // Finally insert and update the GP for this page. 3398 bnode->records[bnode->nr_records++] = ptr; 3399 get_state_synchronize_rcu_full(&bnode->gp_snap); 3400 atomic_inc(&(*krcp)->bulk_count[idx]); 3401 3402 return true; 3403 } 3404 3405 /* 3406 * Queue a request for lazy invocation of the appropriate free routine 3407 * after a grace period. Please note that three paths are maintained, 3408 * two for the common case using arrays of pointers and a third one that 3409 * is used only when the main paths cannot be used, for example, due to 3410 * memory pressure. 3411 * 3412 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3413 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3414 * be free'd in workqueue context. This allows us to: batch requests together to 3415 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3416 */ 3417 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3418 { 3419 unsigned long flags; 3420 struct kfree_rcu_cpu *krcp; 3421 bool success; 3422 3423 /* 3424 * Please note there is a limitation for the head-less 3425 * variant, that is why there is a clear rule for such 3426 * objects: it can be used from might_sleep() context 3427 * only. For other places please embed an rcu_head to 3428 * your data. 3429 */ 3430 if (!head) 3431 might_sleep(); 3432 3433 // Queue the object but don't yet schedule the batch. 3434 if (debug_rcu_head_queue(ptr)) { 3435 // Probable double kfree_rcu(), just leak. 3436 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3437 __func__, head); 3438 3439 // Mark as success and leave. 3440 return; 3441 } 3442 3443 kasan_record_aux_stack_noalloc(ptr); 3444 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3445 if (!success) { 3446 run_page_cache_worker(krcp); 3447 3448 if (head == NULL) 3449 // Inline if kvfree_rcu(one_arg) call. 3450 goto unlock_return; 3451 3452 head->func = ptr; 3453 head->next = krcp->head; 3454 WRITE_ONCE(krcp->head, head); 3455 atomic_inc(&krcp->head_count); 3456 3457 // Take a snapshot for this krcp. 3458 krcp->head_gp_snap = get_state_synchronize_rcu(); 3459 success = true; 3460 } 3461 3462 /* 3463 * The kvfree_rcu() caller considers the pointer freed at this point 3464 * and likely removes any references to it. Since the actual slab 3465 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore 3466 * this object (no scanning or false positives reporting). 3467 */ 3468 kmemleak_ignore(ptr); 3469 3470 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3471 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3472 schedule_delayed_monitor_work(krcp); 3473 3474 unlock_return: 3475 krc_this_cpu_unlock(krcp, flags); 3476 3477 /* 3478 * Inline kvfree() after synchronize_rcu(). We can do 3479 * it from might_sleep() context only, so the current 3480 * CPU can pass the QS state. 3481 */ 3482 if (!success) { 3483 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3484 synchronize_rcu(); 3485 kvfree(ptr); 3486 } 3487 } 3488 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3489 3490 static unsigned long 3491 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3492 { 3493 int cpu; 3494 unsigned long count = 0; 3495 3496 /* Snapshot count of all CPUs */ 3497 for_each_possible_cpu(cpu) { 3498 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3499 3500 count += krc_count(krcp); 3501 count += READ_ONCE(krcp->nr_bkv_objs); 3502 atomic_set(&krcp->backoff_page_cache_fill, 1); 3503 } 3504 3505 return count == 0 ? SHRINK_EMPTY : count; 3506 } 3507 3508 static unsigned long 3509 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3510 { 3511 int cpu, freed = 0; 3512 3513 for_each_possible_cpu(cpu) { 3514 int count; 3515 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3516 3517 count = krc_count(krcp); 3518 count += drain_page_cache(krcp); 3519 kfree_rcu_monitor(&krcp->monitor_work.work); 3520 3521 sc->nr_to_scan -= count; 3522 freed += count; 3523 3524 if (sc->nr_to_scan <= 0) 3525 break; 3526 } 3527 3528 return freed == 0 ? SHRINK_STOP : freed; 3529 } 3530 3531 void __init kfree_rcu_scheduler_running(void) 3532 { 3533 int cpu; 3534 3535 for_each_possible_cpu(cpu) { 3536 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3537 3538 if (need_offload_krc(krcp)) 3539 schedule_delayed_monitor_work(krcp); 3540 } 3541 } 3542 3543 /* 3544 * During early boot, any blocking grace-period wait automatically 3545 * implies a grace period. 3546 * 3547 * Later on, this could in theory be the case for kernels built with 3548 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3549 * is not a common case. Furthermore, this optimization would cause 3550 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3551 * grace-period optimization is ignored once the scheduler is running. 3552 */ 3553 static int rcu_blocking_is_gp(void) 3554 { 3555 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3556 might_sleep(); 3557 return false; 3558 } 3559 return true; 3560 } 3561 3562 /** 3563 * synchronize_rcu - wait until a grace period has elapsed. 3564 * 3565 * Control will return to the caller some time after a full grace 3566 * period has elapsed, in other words after all currently executing RCU 3567 * read-side critical sections have completed. Note, however, that 3568 * upon return from synchronize_rcu(), the caller might well be executing 3569 * concurrently with new RCU read-side critical sections that began while 3570 * synchronize_rcu() was waiting. 3571 * 3572 * RCU read-side critical sections are delimited by rcu_read_lock() 3573 * and rcu_read_unlock(), and may be nested. In addition, but only in 3574 * v5.0 and later, regions of code across which interrupts, preemption, 3575 * or softirqs have been disabled also serve as RCU read-side critical 3576 * sections. This includes hardware interrupt handlers, softirq handlers, 3577 * and NMI handlers. 3578 * 3579 * Note that this guarantee implies further memory-ordering guarantees. 3580 * On systems with more than one CPU, when synchronize_rcu() returns, 3581 * each CPU is guaranteed to have executed a full memory barrier since 3582 * the end of its last RCU read-side critical section whose beginning 3583 * preceded the call to synchronize_rcu(). In addition, each CPU having 3584 * an RCU read-side critical section that extends beyond the return from 3585 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3586 * after the beginning of synchronize_rcu() and before the beginning of 3587 * that RCU read-side critical section. Note that these guarantees include 3588 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3589 * that are executing in the kernel. 3590 * 3591 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3592 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3593 * to have executed a full memory barrier during the execution of 3594 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3595 * again only if the system has more than one CPU). 3596 * 3597 * Implementation of these memory-ordering guarantees is described here: 3598 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3599 */ 3600 void synchronize_rcu(void) 3601 { 3602 unsigned long flags; 3603 struct rcu_node *rnp; 3604 3605 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3606 lock_is_held(&rcu_lock_map) || 3607 lock_is_held(&rcu_sched_lock_map), 3608 "Illegal synchronize_rcu() in RCU read-side critical section"); 3609 if (!rcu_blocking_is_gp()) { 3610 if (rcu_gp_is_expedited()) 3611 synchronize_rcu_expedited(); 3612 else 3613 wait_rcu_gp(call_rcu_hurry); 3614 return; 3615 } 3616 3617 // Context allows vacuous grace periods. 3618 // Note well that this code runs with !PREEMPT && !SMP. 3619 // In addition, all code that advances grace periods runs at 3620 // process level. Therefore, this normal GP overlaps with other 3621 // normal GPs only by being fully nested within them, which allows 3622 // reuse of ->gp_seq_polled_snap. 3623 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3624 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3625 3626 // Update the normal grace-period counters to record 3627 // this grace period, but only those used by the boot CPU. 3628 // The rcu_scheduler_starting() will take care of the rest of 3629 // these counters. 3630 local_irq_save(flags); 3631 WARN_ON_ONCE(num_online_cpus() > 1); 3632 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3633 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3634 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3635 local_irq_restore(flags); 3636 } 3637 EXPORT_SYMBOL_GPL(synchronize_rcu); 3638 3639 /** 3640 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3641 * @rgosp: Place to put state cookie 3642 * 3643 * Stores into @rgosp a value that will always be treated by functions 3644 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3645 * has already completed. 3646 */ 3647 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3648 { 3649 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3650 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3651 } 3652 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3653 3654 /** 3655 * get_state_synchronize_rcu - Snapshot current RCU state 3656 * 3657 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3658 * or poll_state_synchronize_rcu() to determine whether or not a full 3659 * grace period has elapsed in the meantime. 3660 */ 3661 unsigned long get_state_synchronize_rcu(void) 3662 { 3663 /* 3664 * Any prior manipulation of RCU-protected data must happen 3665 * before the load from ->gp_seq. 3666 */ 3667 smp_mb(); /* ^^^ */ 3668 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3669 } 3670 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3671 3672 /** 3673 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3674 * @rgosp: location to place combined normal/expedited grace-period state 3675 * 3676 * Places the normal and expedited grace-period states in @rgosp. This 3677 * state value can be passed to a later call to cond_synchronize_rcu_full() 3678 * or poll_state_synchronize_rcu_full() to determine whether or not a 3679 * grace period (whether normal or expedited) has elapsed in the meantime. 3680 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3681 * long, but is guaranteed to see all grace periods. In contrast, the 3682 * combined state occupies less memory, but can sometimes fail to take 3683 * grace periods into account. 3684 * 3685 * This does not guarantee that the needed grace period will actually 3686 * start. 3687 */ 3688 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3689 { 3690 struct rcu_node *rnp = rcu_get_root(); 3691 3692 /* 3693 * Any prior manipulation of RCU-protected data must happen 3694 * before the loads from ->gp_seq and ->expedited_sequence. 3695 */ 3696 smp_mb(); /* ^^^ */ 3697 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3698 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3699 } 3700 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3701 3702 /* 3703 * Helper function for start_poll_synchronize_rcu() and 3704 * start_poll_synchronize_rcu_full(). 3705 */ 3706 static void start_poll_synchronize_rcu_common(void) 3707 { 3708 unsigned long flags; 3709 bool needwake; 3710 struct rcu_data *rdp; 3711 struct rcu_node *rnp; 3712 3713 lockdep_assert_irqs_enabled(); 3714 local_irq_save(flags); 3715 rdp = this_cpu_ptr(&rcu_data); 3716 rnp = rdp->mynode; 3717 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3718 // Note it is possible for a grace period to have elapsed between 3719 // the above call to get_state_synchronize_rcu() and the below call 3720 // to rcu_seq_snap. This is OK, the worst that happens is that we 3721 // get a grace period that no one needed. These accesses are ordered 3722 // by smp_mb(), and we are accessing them in the opposite order 3723 // from which they are updated at grace-period start, as required. 3724 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3725 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3726 if (needwake) 3727 rcu_gp_kthread_wake(); 3728 } 3729 3730 /** 3731 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3732 * 3733 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3734 * or poll_state_synchronize_rcu() to determine whether or not a full 3735 * grace period has elapsed in the meantime. If the needed grace period 3736 * is not already slated to start, notifies RCU core of the need for that 3737 * grace period. 3738 * 3739 * Interrupts must be enabled for the case where it is necessary to awaken 3740 * the grace-period kthread. 3741 */ 3742 unsigned long start_poll_synchronize_rcu(void) 3743 { 3744 unsigned long gp_seq = get_state_synchronize_rcu(); 3745 3746 start_poll_synchronize_rcu_common(); 3747 return gp_seq; 3748 } 3749 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3750 3751 /** 3752 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3753 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3754 * 3755 * Places the normal and expedited grace-period states in *@rgos. This 3756 * state value can be passed to a later call to cond_synchronize_rcu_full() 3757 * or poll_state_synchronize_rcu_full() to determine whether or not a 3758 * grace period (whether normal or expedited) has elapsed in the meantime. 3759 * If the needed grace period is not already slated to start, notifies 3760 * RCU core of the need for that grace period. 3761 * 3762 * Interrupts must be enabled for the case where it is necessary to awaken 3763 * the grace-period kthread. 3764 */ 3765 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3766 { 3767 get_state_synchronize_rcu_full(rgosp); 3768 3769 start_poll_synchronize_rcu_common(); 3770 } 3771 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3772 3773 /** 3774 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3775 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3776 * 3777 * If a full RCU grace period has elapsed since the earlier call from 3778 * which @oldstate was obtained, return @true, otherwise return @false. 3779 * If @false is returned, it is the caller's responsibility to invoke this 3780 * function later on until it does return @true. Alternatively, the caller 3781 * can explicitly wait for a grace period, for example, by passing @oldstate 3782 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3783 * on the one hand or by directly invoking either synchronize_rcu() or 3784 * synchronize_rcu_expedited() on the other. 3785 * 3786 * Yes, this function does not take counter wrap into account. 3787 * But counter wrap is harmless. If the counter wraps, we have waited for 3788 * more than a billion grace periods (and way more on a 64-bit system!). 3789 * Those needing to keep old state values for very long time periods 3790 * (many hours even on 32-bit systems) should check them occasionally and 3791 * either refresh them or set a flag indicating that the grace period has 3792 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3793 * to get a guaranteed-completed grace-period state. 3794 * 3795 * In addition, because oldstate compresses the grace-period state for 3796 * both normal and expedited grace periods into a single unsigned long, 3797 * it can miss a grace period when synchronize_rcu() runs concurrently 3798 * with synchronize_rcu_expedited(). If this is unacceptable, please 3799 * instead use the _full() variant of these polling APIs. 3800 * 3801 * This function provides the same memory-ordering guarantees that 3802 * would be provided by a synchronize_rcu() that was invoked at the call 3803 * to the function that provided @oldstate, and that returned at the end 3804 * of this function. 3805 */ 3806 bool poll_state_synchronize_rcu(unsigned long oldstate) 3807 { 3808 if (oldstate == RCU_GET_STATE_COMPLETED || 3809 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3810 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3811 return true; 3812 } 3813 return false; 3814 } 3815 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3816 3817 /** 3818 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3819 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3820 * 3821 * If a full RCU grace period has elapsed since the earlier call from 3822 * which *rgosp was obtained, return @true, otherwise return @false. 3823 * If @false is returned, it is the caller's responsibility to invoke this 3824 * function later on until it does return @true. Alternatively, the caller 3825 * can explicitly wait for a grace period, for example, by passing @rgosp 3826 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3827 * 3828 * Yes, this function does not take counter wrap into account. 3829 * But counter wrap is harmless. If the counter wraps, we have waited 3830 * for more than a billion grace periods (and way more on a 64-bit 3831 * system!). Those needing to keep rcu_gp_oldstate values for very 3832 * long time periods (many hours even on 32-bit systems) should check 3833 * them occasionally and either refresh them or set a flag indicating 3834 * that the grace period has completed. Alternatively, they can use 3835 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3836 * grace-period state. 3837 * 3838 * This function provides the same memory-ordering guarantees that would 3839 * be provided by a synchronize_rcu() that was invoked at the call to 3840 * the function that provided @rgosp, and that returned at the end of this 3841 * function. And this guarantee requires that the root rcu_node structure's 3842 * ->gp_seq field be checked instead of that of the rcu_state structure. 3843 * The problem is that the just-ending grace-period's callbacks can be 3844 * invoked between the time that the root rcu_node structure's ->gp_seq 3845 * field is updated and the time that the rcu_state structure's ->gp_seq 3846 * field is updated. Therefore, if a single synchronize_rcu() is to 3847 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3848 * then the root rcu_node structure is the one that needs to be polled. 3849 */ 3850 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3851 { 3852 struct rcu_node *rnp = rcu_get_root(); 3853 3854 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3855 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3856 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3857 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3858 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3859 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3860 return true; 3861 } 3862 return false; 3863 } 3864 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3865 3866 /** 3867 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3868 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3869 * 3870 * If a full RCU grace period has elapsed since the earlier call to 3871 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3872 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3873 * 3874 * Yes, this function does not take counter wrap into account. 3875 * But counter wrap is harmless. If the counter wraps, we have waited for 3876 * more than 2 billion grace periods (and way more on a 64-bit system!), 3877 * so waiting for a couple of additional grace periods should be just fine. 3878 * 3879 * This function provides the same memory-ordering guarantees that 3880 * would be provided by a synchronize_rcu() that was invoked at the call 3881 * to the function that provided @oldstate and that returned at the end 3882 * of this function. 3883 */ 3884 void cond_synchronize_rcu(unsigned long oldstate) 3885 { 3886 if (!poll_state_synchronize_rcu(oldstate)) 3887 synchronize_rcu(); 3888 } 3889 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3890 3891 /** 3892 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3893 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3894 * 3895 * If a full RCU grace period has elapsed since the call to 3896 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3897 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3898 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3899 * for a full grace period. 3900 * 3901 * Yes, this function does not take counter wrap into account. 3902 * But counter wrap is harmless. If the counter wraps, we have waited for 3903 * more than 2 billion grace periods (and way more on a 64-bit system!), 3904 * so waiting for a couple of additional grace periods should be just fine. 3905 * 3906 * This function provides the same memory-ordering guarantees that 3907 * would be provided by a synchronize_rcu() that was invoked at the call 3908 * to the function that provided @rgosp and that returned at the end of 3909 * this function. 3910 */ 3911 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3912 { 3913 if (!poll_state_synchronize_rcu_full(rgosp)) 3914 synchronize_rcu(); 3915 } 3916 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3917 3918 /* 3919 * Check to see if there is any immediate RCU-related work to be done by 3920 * the current CPU, returning 1 if so and zero otherwise. The checks are 3921 * in order of increasing expense: checks that can be carried out against 3922 * CPU-local state are performed first. However, we must check for CPU 3923 * stalls first, else we might not get a chance. 3924 */ 3925 static int rcu_pending(int user) 3926 { 3927 bool gp_in_progress; 3928 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3929 struct rcu_node *rnp = rdp->mynode; 3930 3931 lockdep_assert_irqs_disabled(); 3932 3933 /* Check for CPU stalls, if enabled. */ 3934 check_cpu_stall(rdp); 3935 3936 /* Does this CPU need a deferred NOCB wakeup? */ 3937 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3938 return 1; 3939 3940 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3941 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3942 return 0; 3943 3944 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3945 gp_in_progress = rcu_gp_in_progress(); 3946 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3947 return 1; 3948 3949 /* Does this CPU have callbacks ready to invoke? */ 3950 if (!rcu_rdp_is_offloaded(rdp) && 3951 rcu_segcblist_ready_cbs(&rdp->cblist)) 3952 return 1; 3953 3954 /* Has RCU gone idle with this CPU needing another grace period? */ 3955 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3956 !rcu_rdp_is_offloaded(rdp) && 3957 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3958 return 1; 3959 3960 /* Have RCU grace period completed or started? */ 3961 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3962 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3963 return 1; 3964 3965 /* nothing to do */ 3966 return 0; 3967 } 3968 3969 /* 3970 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3971 * the compiler is expected to optimize this away. 3972 */ 3973 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3974 { 3975 trace_rcu_barrier(rcu_state.name, s, cpu, 3976 atomic_read(&rcu_state.barrier_cpu_count), done); 3977 } 3978 3979 /* 3980 * RCU callback function for rcu_barrier(). If we are last, wake 3981 * up the task executing rcu_barrier(). 3982 * 3983 * Note that the value of rcu_state.barrier_sequence must be captured 3984 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3985 * other CPUs might count the value down to zero before this CPU gets 3986 * around to invoking rcu_barrier_trace(), which might result in bogus 3987 * data from the next instance of rcu_barrier(). 3988 */ 3989 static void rcu_barrier_callback(struct rcu_head *rhp) 3990 { 3991 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3992 3993 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3994 rcu_barrier_trace(TPS("LastCB"), -1, s); 3995 complete(&rcu_state.barrier_completion); 3996 } else { 3997 rcu_barrier_trace(TPS("CB"), -1, s); 3998 } 3999 } 4000 4001 /* 4002 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 4003 */ 4004 static void rcu_barrier_entrain(struct rcu_data *rdp) 4005 { 4006 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 4007 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 4008 bool wake_nocb = false; 4009 bool was_alldone = false; 4010 4011 lockdep_assert_held(&rcu_state.barrier_lock); 4012 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 4013 return; 4014 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 4015 rdp->barrier_head.func = rcu_barrier_callback; 4016 debug_rcu_head_queue(&rdp->barrier_head); 4017 rcu_nocb_lock(rdp); 4018 /* 4019 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 4020 * queue. This way we don't wait for bypass timer that can reach seconds 4021 * if it's fully lazy. 4022 */ 4023 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 4024 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 4025 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 4026 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 4027 atomic_inc(&rcu_state.barrier_cpu_count); 4028 } else { 4029 debug_rcu_head_unqueue(&rdp->barrier_head); 4030 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 4031 } 4032 rcu_nocb_unlock(rdp); 4033 if (wake_nocb) 4034 wake_nocb_gp(rdp, false); 4035 smp_store_release(&rdp->barrier_seq_snap, gseq); 4036 } 4037 4038 /* 4039 * Called with preemption disabled, and from cross-cpu IRQ context. 4040 */ 4041 static void rcu_barrier_handler(void *cpu_in) 4042 { 4043 uintptr_t cpu = (uintptr_t)cpu_in; 4044 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4045 4046 lockdep_assert_irqs_disabled(); 4047 WARN_ON_ONCE(cpu != rdp->cpu); 4048 WARN_ON_ONCE(cpu != smp_processor_id()); 4049 raw_spin_lock(&rcu_state.barrier_lock); 4050 rcu_barrier_entrain(rdp); 4051 raw_spin_unlock(&rcu_state.barrier_lock); 4052 } 4053 4054 /** 4055 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4056 * 4057 * Note that this primitive does not necessarily wait for an RCU grace period 4058 * to complete. For example, if there are no RCU callbacks queued anywhere 4059 * in the system, then rcu_barrier() is within its rights to return 4060 * immediately, without waiting for anything, much less an RCU grace period. 4061 */ 4062 void rcu_barrier(void) 4063 { 4064 uintptr_t cpu; 4065 unsigned long flags; 4066 unsigned long gseq; 4067 struct rcu_data *rdp; 4068 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4069 4070 rcu_barrier_trace(TPS("Begin"), -1, s); 4071 4072 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4073 mutex_lock(&rcu_state.barrier_mutex); 4074 4075 /* Did someone else do our work for us? */ 4076 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4077 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4078 smp_mb(); /* caller's subsequent code after above check. */ 4079 mutex_unlock(&rcu_state.barrier_mutex); 4080 return; 4081 } 4082 4083 /* Mark the start of the barrier operation. */ 4084 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4085 rcu_seq_start(&rcu_state.barrier_sequence); 4086 gseq = rcu_state.barrier_sequence; 4087 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4088 4089 /* 4090 * Initialize the count to two rather than to zero in order 4091 * to avoid a too-soon return to zero in case of an immediate 4092 * invocation of the just-enqueued callback (or preemption of 4093 * this task). Exclude CPU-hotplug operations to ensure that no 4094 * offline non-offloaded CPU has callbacks queued. 4095 */ 4096 init_completion(&rcu_state.barrier_completion); 4097 atomic_set(&rcu_state.barrier_cpu_count, 2); 4098 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4099 4100 /* 4101 * Force each CPU with callbacks to register a new callback. 4102 * When that callback is invoked, we will know that all of the 4103 * corresponding CPU's preceding callbacks have been invoked. 4104 */ 4105 for_each_possible_cpu(cpu) { 4106 rdp = per_cpu_ptr(&rcu_data, cpu); 4107 retry: 4108 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4109 continue; 4110 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4111 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4112 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4113 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4114 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4115 continue; 4116 } 4117 if (!rcu_rdp_cpu_online(rdp)) { 4118 rcu_barrier_entrain(rdp); 4119 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4120 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4121 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4122 continue; 4123 } 4124 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4125 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4126 schedule_timeout_uninterruptible(1); 4127 goto retry; 4128 } 4129 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4130 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4131 } 4132 4133 /* 4134 * Now that we have an rcu_barrier_callback() callback on each 4135 * CPU, and thus each counted, remove the initial count. 4136 */ 4137 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4138 complete(&rcu_state.barrier_completion); 4139 4140 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4141 wait_for_completion(&rcu_state.barrier_completion); 4142 4143 /* Mark the end of the barrier operation. */ 4144 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4145 rcu_seq_end(&rcu_state.barrier_sequence); 4146 gseq = rcu_state.barrier_sequence; 4147 for_each_possible_cpu(cpu) { 4148 rdp = per_cpu_ptr(&rcu_data, cpu); 4149 4150 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4151 } 4152 4153 /* Other rcu_barrier() invocations can now safely proceed. */ 4154 mutex_unlock(&rcu_state.barrier_mutex); 4155 } 4156 EXPORT_SYMBOL_GPL(rcu_barrier); 4157 4158 static unsigned long rcu_barrier_last_throttle; 4159 4160 /** 4161 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second 4162 * 4163 * This can be thought of as guard rails around rcu_barrier() that 4164 * permits unrestricted userspace use, at least assuming the hardware's 4165 * try_cmpxchg() is robust. There will be at most one call per second to 4166 * rcu_barrier() system-wide from use of this function, which means that 4167 * callers might needlessly wait a second or three. 4168 * 4169 * This is intended for use by test suites to avoid OOM by flushing RCU 4170 * callbacks from the previous test before starting the next. See the 4171 * rcutree.do_rcu_barrier module parameter for more information. 4172 * 4173 * Why not simply make rcu_barrier() more scalable? That might be 4174 * the eventual endpoint, but let's keep it simple for the time being. 4175 * Note that the module parameter infrastructure serializes calls to a 4176 * given .set() function, but should concurrent .set() invocation ever be 4177 * possible, we are ready! 4178 */ 4179 static void rcu_barrier_throttled(void) 4180 { 4181 unsigned long j = jiffies; 4182 unsigned long old = READ_ONCE(rcu_barrier_last_throttle); 4183 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4184 4185 while (time_in_range(j, old, old + HZ / 16) || 4186 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { 4187 schedule_timeout_idle(HZ / 16); 4188 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4189 smp_mb(); /* caller's subsequent code after above check. */ 4190 return; 4191 } 4192 j = jiffies; 4193 old = READ_ONCE(rcu_barrier_last_throttle); 4194 } 4195 rcu_barrier(); 4196 } 4197 4198 /* 4199 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier 4200 * request arrives. We insist on a true value to allow for possible 4201 * future expansion. 4202 */ 4203 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) 4204 { 4205 bool b; 4206 int ret; 4207 4208 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) 4209 return -EAGAIN; 4210 ret = kstrtobool(val, &b); 4211 if (!ret && b) { 4212 atomic_inc((atomic_t *)kp->arg); 4213 rcu_barrier_throttled(); 4214 atomic_dec((atomic_t *)kp->arg); 4215 } 4216 return ret; 4217 } 4218 4219 /* 4220 * Output the number of outstanding rcutree.do_rcu_barrier requests. 4221 */ 4222 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) 4223 { 4224 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); 4225 } 4226 4227 static const struct kernel_param_ops do_rcu_barrier_ops = { 4228 .set = param_set_do_rcu_barrier, 4229 .get = param_get_do_rcu_barrier, 4230 }; 4231 static atomic_t do_rcu_barrier; 4232 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); 4233 4234 /* 4235 * Compute the mask of online CPUs for the specified rcu_node structure. 4236 * This will not be stable unless the rcu_node structure's ->lock is 4237 * held, but the bit corresponding to the current CPU will be stable 4238 * in most contexts. 4239 */ 4240 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4241 { 4242 return READ_ONCE(rnp->qsmaskinitnext); 4243 } 4244 4245 /* 4246 * Is the CPU corresponding to the specified rcu_data structure online 4247 * from RCU's perspective? This perspective is given by that structure's 4248 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4249 */ 4250 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4251 { 4252 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4253 } 4254 4255 bool rcu_cpu_online(int cpu) 4256 { 4257 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4258 4259 return rcu_rdp_cpu_online(rdp); 4260 } 4261 4262 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4263 4264 /* 4265 * Is the current CPU online as far as RCU is concerned? 4266 * 4267 * Disable preemption to avoid false positives that could otherwise 4268 * happen due to the current CPU number being sampled, this task being 4269 * preempted, its old CPU being taken offline, resuming on some other CPU, 4270 * then determining that its old CPU is now offline. 4271 * 4272 * Disable checking if in an NMI handler because we cannot safely 4273 * report errors from NMI handlers anyway. In addition, it is OK to use 4274 * RCU on an offline processor during initial boot, hence the check for 4275 * rcu_scheduler_fully_active. 4276 */ 4277 bool rcu_lockdep_current_cpu_online(void) 4278 { 4279 struct rcu_data *rdp; 4280 bool ret = false; 4281 4282 if (in_nmi() || !rcu_scheduler_fully_active) 4283 return true; 4284 preempt_disable_notrace(); 4285 rdp = this_cpu_ptr(&rcu_data); 4286 /* 4287 * Strictly, we care here about the case where the current CPU is 4288 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask 4289 * not being up to date. So arch_spin_is_locked() might have a 4290 * false positive if it's held by some *other* CPU, but that's 4291 * OK because that just means a false *negative* on the warning. 4292 */ 4293 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4294 ret = true; 4295 preempt_enable_notrace(); 4296 return ret; 4297 } 4298 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4299 4300 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4301 4302 // Has rcu_init() been invoked? This is used (for example) to determine 4303 // whether spinlocks may be acquired safely. 4304 static bool rcu_init_invoked(void) 4305 { 4306 return !!rcu_state.n_online_cpus; 4307 } 4308 4309 /* 4310 * All CPUs for the specified rcu_node structure have gone offline, 4311 * and all tasks that were preempted within an RCU read-side critical 4312 * section while running on one of those CPUs have since exited their RCU 4313 * read-side critical section. Some other CPU is reporting this fact with 4314 * the specified rcu_node structure's ->lock held and interrupts disabled. 4315 * This function therefore goes up the tree of rcu_node structures, 4316 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4317 * the leaf rcu_node structure's ->qsmaskinit field has already been 4318 * updated. 4319 * 4320 * This function does check that the specified rcu_node structure has 4321 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4322 * prematurely. That said, invoking it after the fact will cost you 4323 * a needless lock acquisition. So once it has done its work, don't 4324 * invoke it again. 4325 */ 4326 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4327 { 4328 long mask; 4329 struct rcu_node *rnp = rnp_leaf; 4330 4331 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4332 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4333 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4334 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4335 return; 4336 for (;;) { 4337 mask = rnp->grpmask; 4338 rnp = rnp->parent; 4339 if (!rnp) 4340 break; 4341 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4342 rnp->qsmaskinit &= ~mask; 4343 /* Between grace periods, so better already be zero! */ 4344 WARN_ON_ONCE(rnp->qsmask); 4345 if (rnp->qsmaskinit) { 4346 raw_spin_unlock_rcu_node(rnp); 4347 /* irqs remain disabled. */ 4348 return; 4349 } 4350 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4351 } 4352 } 4353 4354 /* 4355 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4356 * first CPU in a given leaf rcu_node structure coming online. The caller 4357 * must hold the corresponding leaf rcu_node ->lock with interrupts 4358 * disabled. 4359 */ 4360 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4361 { 4362 long mask; 4363 long oldmask; 4364 struct rcu_node *rnp = rnp_leaf; 4365 4366 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4367 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4368 for (;;) { 4369 mask = rnp->grpmask; 4370 rnp = rnp->parent; 4371 if (rnp == NULL) 4372 return; 4373 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4374 oldmask = rnp->qsmaskinit; 4375 rnp->qsmaskinit |= mask; 4376 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4377 if (oldmask) 4378 return; 4379 } 4380 } 4381 4382 /* 4383 * Do boot-time initialization of a CPU's per-CPU RCU data. 4384 */ 4385 static void __init 4386 rcu_boot_init_percpu_data(int cpu) 4387 { 4388 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4389 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4390 4391 /* Set up local state, ensuring consistent view of global state. */ 4392 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4393 INIT_WORK(&rdp->strict_work, strict_work_handler); 4394 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4395 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4396 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4397 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4398 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4399 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4400 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4401 rdp->last_sched_clock = jiffies; 4402 rdp->cpu = cpu; 4403 rcu_boot_init_nocb_percpu_data(rdp); 4404 } 4405 4406 struct kthread_worker *rcu_exp_gp_kworker; 4407 4408 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp) 4409 { 4410 struct kthread_worker *kworker; 4411 const char *name = "rcu_exp_par_gp_kthread_worker/%d"; 4412 struct sched_param param = { .sched_priority = kthread_prio }; 4413 int rnp_index = rnp - rcu_get_root(); 4414 4415 if (rnp->exp_kworker) 4416 return; 4417 4418 kworker = kthread_create_worker(0, name, rnp_index); 4419 if (IS_ERR_OR_NULL(kworker)) { 4420 pr_err("Failed to create par gp kworker on %d/%d\n", 4421 rnp->grplo, rnp->grphi); 4422 return; 4423 } 4424 WRITE_ONCE(rnp->exp_kworker, kworker); 4425 4426 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4427 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m); 4428 } 4429 4430 static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp) 4431 { 4432 struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker); 4433 4434 if (!kworker) 4435 return NULL; 4436 4437 return kworker->task; 4438 } 4439 4440 static void __init rcu_start_exp_gp_kworker(void) 4441 { 4442 const char *name = "rcu_exp_gp_kthread_worker"; 4443 struct sched_param param = { .sched_priority = kthread_prio }; 4444 4445 rcu_exp_gp_kworker = kthread_create_worker(0, name); 4446 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4447 pr_err("Failed to create %s!\n", name); 4448 rcu_exp_gp_kworker = NULL; 4449 return; 4450 } 4451 4452 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) 4453 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4454 } 4455 4456 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp) 4457 { 4458 if (rcu_scheduler_fully_active) { 4459 mutex_lock(&rnp->kthread_mutex); 4460 rcu_spawn_one_boost_kthread(rnp); 4461 rcu_spawn_exp_par_gp_kworker(rnp); 4462 mutex_unlock(&rnp->kthread_mutex); 4463 } 4464 } 4465 4466 /* 4467 * Invoked early in the CPU-online process, when pretty much all services 4468 * are available. The incoming CPU is not present. 4469 * 4470 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4471 * offline event can be happening at a given time. Note also that we can 4472 * accept some slop in the rsp->gp_seq access due to the fact that this 4473 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4474 * And any offloaded callbacks are being numbered elsewhere. 4475 */ 4476 int rcutree_prepare_cpu(unsigned int cpu) 4477 { 4478 unsigned long flags; 4479 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4480 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4481 struct rcu_node *rnp = rcu_get_root(); 4482 4483 /* Set up local state, ensuring consistent view of global state. */ 4484 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4485 rdp->qlen_last_fqs_check = 0; 4486 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4487 rdp->blimit = blimit; 4488 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4489 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4490 4491 /* 4492 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4493 * (re-)initialized. 4494 */ 4495 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4496 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4497 4498 /* 4499 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4500 * propagation up the rcu_node tree will happen at the beginning 4501 * of the next grace period. 4502 */ 4503 rnp = rdp->mynode; 4504 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4505 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4506 rdp->gp_seq_needed = rdp->gp_seq; 4507 rdp->cpu_no_qs.b.norm = true; 4508 rdp->core_needs_qs = false; 4509 rdp->rcu_iw_pending = false; 4510 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4511 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4512 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4513 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4514 rcu_spawn_rnp_kthreads(rnp); 4515 rcu_spawn_cpu_nocb_kthread(cpu); 4516 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4517 4518 return 0; 4519 } 4520 4521 /* 4522 * Update kthreads affinity during CPU-hotplug changes. 4523 * 4524 * Set the per-rcu_node kthread's affinity to cover all CPUs that are 4525 * served by the rcu_node in question. The CPU hotplug lock is still 4526 * held, so the value of rnp->qsmaskinit will be stable. 4527 * 4528 * We don't include outgoingcpu in the affinity set, use -1 if there is 4529 * no outgoing CPU. If there are no CPUs left in the affinity set, 4530 * this function allows the kthread to execute on any CPU. 4531 * 4532 * Any future concurrent calls are serialized via ->kthread_mutex. 4533 */ 4534 static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu) 4535 { 4536 cpumask_var_t cm; 4537 unsigned long mask; 4538 struct rcu_data *rdp; 4539 struct rcu_node *rnp; 4540 struct task_struct *task_boost, *task_exp; 4541 4542 rdp = per_cpu_ptr(&rcu_data, cpu); 4543 rnp = rdp->mynode; 4544 4545 task_boost = rcu_boost_task(rnp); 4546 task_exp = rcu_exp_par_gp_task(rnp); 4547 4548 /* 4549 * If CPU is the boot one, those tasks are created later from early 4550 * initcall since kthreadd must be created first. 4551 */ 4552 if (!task_boost && !task_exp) 4553 return; 4554 4555 if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) 4556 return; 4557 4558 mutex_lock(&rnp->kthread_mutex); 4559 mask = rcu_rnp_online_cpus(rnp); 4560 for_each_leaf_node_possible_cpu(rnp, cpu) 4561 if ((mask & leaf_node_cpu_bit(rnp, cpu)) && 4562 cpu != outgoingcpu) 4563 cpumask_set_cpu(cpu, cm); 4564 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU)); 4565 if (cpumask_empty(cm)) { 4566 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU)); 4567 if (outgoingcpu >= 0) 4568 cpumask_clear_cpu(outgoingcpu, cm); 4569 } 4570 4571 if (task_exp) 4572 set_cpus_allowed_ptr(task_exp, cm); 4573 4574 if (task_boost) 4575 set_cpus_allowed_ptr(task_boost, cm); 4576 4577 mutex_unlock(&rnp->kthread_mutex); 4578 4579 free_cpumask_var(cm); 4580 } 4581 4582 /* 4583 * Has the specified (known valid) CPU ever been fully online? 4584 */ 4585 bool rcu_cpu_beenfullyonline(int cpu) 4586 { 4587 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4588 4589 return smp_load_acquire(&rdp->beenonline); 4590 } 4591 4592 /* 4593 * Near the end of the CPU-online process. Pretty much all services 4594 * enabled, and the CPU is now very much alive. 4595 */ 4596 int rcutree_online_cpu(unsigned int cpu) 4597 { 4598 unsigned long flags; 4599 struct rcu_data *rdp; 4600 struct rcu_node *rnp; 4601 4602 rdp = per_cpu_ptr(&rcu_data, cpu); 4603 rnp = rdp->mynode; 4604 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4605 rnp->ffmask |= rdp->grpmask; 4606 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4607 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4608 return 0; /* Too early in boot for scheduler work. */ 4609 sync_sched_exp_online_cleanup(cpu); 4610 rcutree_affinity_setting(cpu, -1); 4611 4612 // Stop-machine done, so allow nohz_full to disable tick. 4613 tick_dep_clear(TICK_DEP_BIT_RCU); 4614 return 0; 4615 } 4616 4617 /* 4618 * Mark the specified CPU as being online so that subsequent grace periods 4619 * (both expedited and normal) will wait on it. Note that this means that 4620 * incoming CPUs are not allowed to use RCU read-side critical sections 4621 * until this function is called. Failing to observe this restriction 4622 * will result in lockdep splats. 4623 * 4624 * Note that this function is special in that it is invoked directly 4625 * from the incoming CPU rather than from the cpuhp_step mechanism. 4626 * This is because this function must be invoked at a precise location. 4627 * This incoming CPU must not have enabled interrupts yet. 4628 * 4629 * This mirrors the effects of rcutree_report_cpu_dead(). 4630 */ 4631 void rcutree_report_cpu_starting(unsigned int cpu) 4632 { 4633 unsigned long mask; 4634 struct rcu_data *rdp; 4635 struct rcu_node *rnp; 4636 bool newcpu; 4637 4638 lockdep_assert_irqs_disabled(); 4639 rdp = per_cpu_ptr(&rcu_data, cpu); 4640 if (rdp->cpu_started) 4641 return; 4642 rdp->cpu_started = true; 4643 4644 rnp = rdp->mynode; 4645 mask = rdp->grpmask; 4646 arch_spin_lock(&rcu_state.ofl_lock); 4647 rcu_dynticks_eqs_online(); 4648 raw_spin_lock(&rcu_state.barrier_lock); 4649 raw_spin_lock_rcu_node(rnp); 4650 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4651 raw_spin_unlock(&rcu_state.barrier_lock); 4652 newcpu = !(rnp->expmaskinitnext & mask); 4653 rnp->expmaskinitnext |= mask; 4654 /* Allow lockless access for expedited grace periods. */ 4655 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4656 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4657 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4658 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4659 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4660 4661 /* An incoming CPU should never be blocking a grace period. */ 4662 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4663 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4664 unsigned long flags; 4665 4666 local_irq_save(flags); 4667 rcu_disable_urgency_upon_qs(rdp); 4668 /* Report QS -after- changing ->qsmaskinitnext! */ 4669 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4670 } else { 4671 raw_spin_unlock_rcu_node(rnp); 4672 } 4673 arch_spin_unlock(&rcu_state.ofl_lock); 4674 smp_store_release(&rdp->beenonline, true); 4675 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4676 } 4677 4678 /* 4679 * The outgoing function has no further need of RCU, so remove it from 4680 * the rcu_node tree's ->qsmaskinitnext bit masks. 4681 * 4682 * Note that this function is special in that it is invoked directly 4683 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4684 * This is because this function must be invoked at a precise location. 4685 * 4686 * This mirrors the effect of rcutree_report_cpu_starting(). 4687 */ 4688 void rcutree_report_cpu_dead(void) 4689 { 4690 unsigned long flags; 4691 unsigned long mask; 4692 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4693 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4694 4695 /* 4696 * IRQS must be disabled from now on and until the CPU dies, or an interrupt 4697 * may introduce a new READ-side while it is actually off the QS masks. 4698 */ 4699 lockdep_assert_irqs_disabled(); 4700 // Do any dangling deferred wakeups. 4701 do_nocb_deferred_wakeup(rdp); 4702 4703 rcu_preempt_deferred_qs(current); 4704 4705 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4706 mask = rdp->grpmask; 4707 arch_spin_lock(&rcu_state.ofl_lock); 4708 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4709 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4710 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4711 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4712 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4713 rcu_disable_urgency_upon_qs(rdp); 4714 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4715 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4716 } 4717 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4718 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4719 arch_spin_unlock(&rcu_state.ofl_lock); 4720 rdp->cpu_started = false; 4721 } 4722 4723 #ifdef CONFIG_HOTPLUG_CPU 4724 /* 4725 * The outgoing CPU has just passed through the dying-idle state, and we 4726 * are being invoked from the CPU that was IPIed to continue the offline 4727 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4728 */ 4729 void rcutree_migrate_callbacks(int cpu) 4730 { 4731 unsigned long flags; 4732 struct rcu_data *my_rdp; 4733 struct rcu_node *my_rnp; 4734 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4735 bool needwake; 4736 4737 if (rcu_rdp_is_offloaded(rdp) || 4738 rcu_segcblist_empty(&rdp->cblist)) 4739 return; /* No callbacks to migrate. */ 4740 4741 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4742 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4743 rcu_barrier_entrain(rdp); 4744 my_rdp = this_cpu_ptr(&rcu_data); 4745 my_rnp = my_rdp->mynode; 4746 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4747 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4748 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4749 /* Leverage recent GPs and set GP for new callbacks. */ 4750 needwake = rcu_advance_cbs(my_rnp, rdp) || 4751 rcu_advance_cbs(my_rnp, my_rdp); 4752 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4753 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4754 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4755 rcu_segcblist_disable(&rdp->cblist); 4756 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4757 check_cb_ovld_locked(my_rdp, my_rnp); 4758 if (rcu_rdp_is_offloaded(my_rdp)) { 4759 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4760 __call_rcu_nocb_wake(my_rdp, true, flags); 4761 } else { 4762 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4763 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4764 } 4765 local_irq_restore(flags); 4766 if (needwake) 4767 rcu_gp_kthread_wake(); 4768 lockdep_assert_irqs_enabled(); 4769 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4770 !rcu_segcblist_empty(&rdp->cblist), 4771 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4772 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4773 rcu_segcblist_first_cb(&rdp->cblist)); 4774 } 4775 4776 /* 4777 * The CPU has been completely removed, and some other CPU is reporting 4778 * this fact from process context. Do the remainder of the cleanup. 4779 * There can only be one CPU hotplug operation at a time, so no need for 4780 * explicit locking. 4781 */ 4782 int rcutree_dead_cpu(unsigned int cpu) 4783 { 4784 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4785 // Stop-machine done, so allow nohz_full to disable tick. 4786 tick_dep_clear(TICK_DEP_BIT_RCU); 4787 return 0; 4788 } 4789 4790 /* 4791 * Near the end of the offline process. Trace the fact that this CPU 4792 * is going offline. 4793 */ 4794 int rcutree_dying_cpu(unsigned int cpu) 4795 { 4796 bool blkd; 4797 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4798 struct rcu_node *rnp = rdp->mynode; 4799 4800 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4801 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4802 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4803 return 0; 4804 } 4805 4806 /* 4807 * Near the beginning of the process. The CPU is still very much alive 4808 * with pretty much all services enabled. 4809 */ 4810 int rcutree_offline_cpu(unsigned int cpu) 4811 { 4812 unsigned long flags; 4813 struct rcu_data *rdp; 4814 struct rcu_node *rnp; 4815 4816 rdp = per_cpu_ptr(&rcu_data, cpu); 4817 rnp = rdp->mynode; 4818 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4819 rnp->ffmask &= ~rdp->grpmask; 4820 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4821 4822 rcutree_affinity_setting(cpu, cpu); 4823 4824 // nohz_full CPUs need the tick for stop-machine to work quickly 4825 tick_dep_set(TICK_DEP_BIT_RCU); 4826 return 0; 4827 } 4828 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 4829 4830 /* 4831 * On non-huge systems, use expedited RCU grace periods to make suspend 4832 * and hibernation run faster. 4833 */ 4834 static int rcu_pm_notify(struct notifier_block *self, 4835 unsigned long action, void *hcpu) 4836 { 4837 switch (action) { 4838 case PM_HIBERNATION_PREPARE: 4839 case PM_SUSPEND_PREPARE: 4840 rcu_async_hurry(); 4841 rcu_expedite_gp(); 4842 break; 4843 case PM_POST_HIBERNATION: 4844 case PM_POST_SUSPEND: 4845 rcu_unexpedite_gp(); 4846 rcu_async_relax(); 4847 break; 4848 default: 4849 break; 4850 } 4851 return NOTIFY_OK; 4852 } 4853 4854 /* 4855 * Spawn the kthreads that handle RCU's grace periods. 4856 */ 4857 static int __init rcu_spawn_gp_kthread(void) 4858 { 4859 unsigned long flags; 4860 struct rcu_node *rnp; 4861 struct sched_param sp; 4862 struct task_struct *t; 4863 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4864 4865 rcu_scheduler_fully_active = 1; 4866 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4867 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4868 return 0; 4869 if (kthread_prio) { 4870 sp.sched_priority = kthread_prio; 4871 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4872 } 4873 rnp = rcu_get_root(); 4874 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4875 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4876 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4877 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4878 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4879 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4880 wake_up_process(t); 4881 /* This is a pre-SMP initcall, we expect a single CPU */ 4882 WARN_ON(num_online_cpus() > 1); 4883 /* 4884 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4885 * due to rcu_scheduler_fully_active. 4886 */ 4887 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4888 rcu_spawn_rnp_kthreads(rdp->mynode); 4889 rcu_spawn_core_kthreads(); 4890 /* Create kthread worker for expedited GPs */ 4891 rcu_start_exp_gp_kworker(); 4892 return 0; 4893 } 4894 early_initcall(rcu_spawn_gp_kthread); 4895 4896 /* 4897 * This function is invoked towards the end of the scheduler's 4898 * initialization process. Before this is called, the idle task might 4899 * contain synchronous grace-period primitives (during which time, this idle 4900 * task is booting the system, and such primitives are no-ops). After this 4901 * function is called, any synchronous grace-period primitives are run as 4902 * expedited, with the requesting task driving the grace period forward. 4903 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4904 * runtime RCU functionality. 4905 */ 4906 void rcu_scheduler_starting(void) 4907 { 4908 unsigned long flags; 4909 struct rcu_node *rnp; 4910 4911 WARN_ON(num_online_cpus() != 1); 4912 WARN_ON(nr_context_switches() > 0); 4913 rcu_test_sync_prims(); 4914 4915 // Fix up the ->gp_seq counters. 4916 local_irq_save(flags); 4917 rcu_for_each_node_breadth_first(rnp) 4918 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4919 local_irq_restore(flags); 4920 4921 // Switch out of early boot mode. 4922 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4923 rcu_test_sync_prims(); 4924 } 4925 4926 /* 4927 * Helper function for rcu_init() that initializes the rcu_state structure. 4928 */ 4929 static void __init rcu_init_one(void) 4930 { 4931 static const char * const buf[] = RCU_NODE_NAME_INIT; 4932 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4933 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4934 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4935 4936 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4937 int cpustride = 1; 4938 int i; 4939 int j; 4940 struct rcu_node *rnp; 4941 4942 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4943 4944 /* Silence gcc 4.8 false positive about array index out of range. */ 4945 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4946 panic("rcu_init_one: rcu_num_lvls out of range"); 4947 4948 /* Initialize the level-tracking arrays. */ 4949 4950 for (i = 1; i < rcu_num_lvls; i++) 4951 rcu_state.level[i] = 4952 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4953 rcu_init_levelspread(levelspread, num_rcu_lvl); 4954 4955 /* Initialize the elements themselves, starting from the leaves. */ 4956 4957 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4958 cpustride *= levelspread[i]; 4959 rnp = rcu_state.level[i]; 4960 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4961 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4962 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4963 &rcu_node_class[i], buf[i]); 4964 raw_spin_lock_init(&rnp->fqslock); 4965 lockdep_set_class_and_name(&rnp->fqslock, 4966 &rcu_fqs_class[i], fqs[i]); 4967 rnp->gp_seq = rcu_state.gp_seq; 4968 rnp->gp_seq_needed = rcu_state.gp_seq; 4969 rnp->completedqs = rcu_state.gp_seq; 4970 rnp->qsmask = 0; 4971 rnp->qsmaskinit = 0; 4972 rnp->grplo = j * cpustride; 4973 rnp->grphi = (j + 1) * cpustride - 1; 4974 if (rnp->grphi >= nr_cpu_ids) 4975 rnp->grphi = nr_cpu_ids - 1; 4976 if (i == 0) { 4977 rnp->grpnum = 0; 4978 rnp->grpmask = 0; 4979 rnp->parent = NULL; 4980 } else { 4981 rnp->grpnum = j % levelspread[i - 1]; 4982 rnp->grpmask = BIT(rnp->grpnum); 4983 rnp->parent = rcu_state.level[i - 1] + 4984 j / levelspread[i - 1]; 4985 } 4986 rnp->level = i; 4987 INIT_LIST_HEAD(&rnp->blkd_tasks); 4988 rcu_init_one_nocb(rnp); 4989 init_waitqueue_head(&rnp->exp_wq[0]); 4990 init_waitqueue_head(&rnp->exp_wq[1]); 4991 init_waitqueue_head(&rnp->exp_wq[2]); 4992 init_waitqueue_head(&rnp->exp_wq[3]); 4993 spin_lock_init(&rnp->exp_lock); 4994 mutex_init(&rnp->kthread_mutex); 4995 raw_spin_lock_init(&rnp->exp_poll_lock); 4996 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4997 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4998 } 4999 } 5000 5001 init_swait_queue_head(&rcu_state.gp_wq); 5002 init_swait_queue_head(&rcu_state.expedited_wq); 5003 rnp = rcu_first_leaf_node(); 5004 for_each_possible_cpu(i) { 5005 while (i > rnp->grphi) 5006 rnp++; 5007 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 5008 rcu_boot_init_percpu_data(i); 5009 } 5010 } 5011 5012 /* 5013 * Force priority from the kernel command-line into range. 5014 */ 5015 static void __init sanitize_kthread_prio(void) 5016 { 5017 int kthread_prio_in = kthread_prio; 5018 5019 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 5020 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 5021 kthread_prio = 2; 5022 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 5023 kthread_prio = 1; 5024 else if (kthread_prio < 0) 5025 kthread_prio = 0; 5026 else if (kthread_prio > 99) 5027 kthread_prio = 99; 5028 5029 if (kthread_prio != kthread_prio_in) 5030 pr_alert("%s: Limited prio to %d from %d\n", 5031 __func__, kthread_prio, kthread_prio_in); 5032 } 5033 5034 /* 5035 * Compute the rcu_node tree geometry from kernel parameters. This cannot 5036 * replace the definitions in tree.h because those are needed to size 5037 * the ->node array in the rcu_state structure. 5038 */ 5039 void rcu_init_geometry(void) 5040 { 5041 ulong d; 5042 int i; 5043 static unsigned long old_nr_cpu_ids; 5044 int rcu_capacity[RCU_NUM_LVLS]; 5045 static bool initialized; 5046 5047 if (initialized) { 5048 /* 5049 * Warn if setup_nr_cpu_ids() had not yet been invoked, 5050 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 5051 */ 5052 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 5053 return; 5054 } 5055 5056 old_nr_cpu_ids = nr_cpu_ids; 5057 initialized = true; 5058 5059 /* 5060 * Initialize any unspecified boot parameters. 5061 * The default values of jiffies_till_first_fqs and 5062 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 5063 * value, which is a function of HZ, then adding one for each 5064 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 5065 */ 5066 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 5067 if (jiffies_till_first_fqs == ULONG_MAX) 5068 jiffies_till_first_fqs = d; 5069 if (jiffies_till_next_fqs == ULONG_MAX) 5070 jiffies_till_next_fqs = d; 5071 adjust_jiffies_till_sched_qs(); 5072 5073 /* If the compile-time values are accurate, just leave. */ 5074 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 5075 nr_cpu_ids == NR_CPUS) 5076 return; 5077 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 5078 rcu_fanout_leaf, nr_cpu_ids); 5079 5080 /* 5081 * The boot-time rcu_fanout_leaf parameter must be at least two 5082 * and cannot exceed the number of bits in the rcu_node masks. 5083 * Complain and fall back to the compile-time values if this 5084 * limit is exceeded. 5085 */ 5086 if (rcu_fanout_leaf < 2 || 5087 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 5088 rcu_fanout_leaf = RCU_FANOUT_LEAF; 5089 WARN_ON(1); 5090 return; 5091 } 5092 5093 /* 5094 * Compute number of nodes that can be handled an rcu_node tree 5095 * with the given number of levels. 5096 */ 5097 rcu_capacity[0] = rcu_fanout_leaf; 5098 for (i = 1; i < RCU_NUM_LVLS; i++) 5099 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 5100 5101 /* 5102 * The tree must be able to accommodate the configured number of CPUs. 5103 * If this limit is exceeded, fall back to the compile-time values. 5104 */ 5105 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 5106 rcu_fanout_leaf = RCU_FANOUT_LEAF; 5107 WARN_ON(1); 5108 return; 5109 } 5110 5111 /* Calculate the number of levels in the tree. */ 5112 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 5113 } 5114 rcu_num_lvls = i + 1; 5115 5116 /* Calculate the number of rcu_nodes at each level of the tree. */ 5117 for (i = 0; i < rcu_num_lvls; i++) { 5118 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 5119 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 5120 } 5121 5122 /* Calculate the total number of rcu_node structures. */ 5123 rcu_num_nodes = 0; 5124 for (i = 0; i < rcu_num_lvls; i++) 5125 rcu_num_nodes += num_rcu_lvl[i]; 5126 } 5127 5128 /* 5129 * Dump out the structure of the rcu_node combining tree associated 5130 * with the rcu_state structure. 5131 */ 5132 static void __init rcu_dump_rcu_node_tree(void) 5133 { 5134 int level = 0; 5135 struct rcu_node *rnp; 5136 5137 pr_info("rcu_node tree layout dump\n"); 5138 pr_info(" "); 5139 rcu_for_each_node_breadth_first(rnp) { 5140 if (rnp->level != level) { 5141 pr_cont("\n"); 5142 pr_info(" "); 5143 level = rnp->level; 5144 } 5145 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 5146 } 5147 pr_cont("\n"); 5148 } 5149 5150 struct workqueue_struct *rcu_gp_wq; 5151 5152 static void __init kfree_rcu_batch_init(void) 5153 { 5154 int cpu; 5155 int i, j; 5156 struct shrinker *kfree_rcu_shrinker; 5157 5158 /* Clamp it to [0:100] seconds interval. */ 5159 if (rcu_delay_page_cache_fill_msec < 0 || 5160 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 5161 5162 rcu_delay_page_cache_fill_msec = 5163 clamp(rcu_delay_page_cache_fill_msec, 0, 5164 (int) (100 * MSEC_PER_SEC)); 5165 5166 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 5167 rcu_delay_page_cache_fill_msec); 5168 } 5169 5170 for_each_possible_cpu(cpu) { 5171 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 5172 5173 for (i = 0; i < KFREE_N_BATCHES; i++) { 5174 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 5175 krcp->krw_arr[i].krcp = krcp; 5176 5177 for (j = 0; j < FREE_N_CHANNELS; j++) 5178 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 5179 } 5180 5181 for (i = 0; i < FREE_N_CHANNELS; i++) 5182 INIT_LIST_HEAD(&krcp->bulk_head[i]); 5183 5184 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 5185 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 5186 krcp->initialized = true; 5187 } 5188 5189 kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree"); 5190 if (!kfree_rcu_shrinker) { 5191 pr_err("Failed to allocate kfree_rcu() shrinker!\n"); 5192 return; 5193 } 5194 5195 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; 5196 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; 5197 5198 shrinker_register(kfree_rcu_shrinker); 5199 } 5200 5201 void __init rcu_init(void) 5202 { 5203 int cpu = smp_processor_id(); 5204 5205 rcu_early_boot_tests(); 5206 5207 kfree_rcu_batch_init(); 5208 rcu_bootup_announce(); 5209 sanitize_kthread_prio(); 5210 rcu_init_geometry(); 5211 rcu_init_one(); 5212 if (dump_tree) 5213 rcu_dump_rcu_node_tree(); 5214 if (use_softirq) 5215 open_softirq(RCU_SOFTIRQ, rcu_core_si); 5216 5217 /* 5218 * We don't need protection against CPU-hotplug here because 5219 * this is called early in boot, before either interrupts 5220 * or the scheduler are operational. 5221 */ 5222 pm_notifier(rcu_pm_notify, 0); 5223 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 5224 rcutree_prepare_cpu(cpu); 5225 rcutree_report_cpu_starting(cpu); 5226 rcutree_online_cpu(cpu); 5227 5228 /* Create workqueue for Tree SRCU and for expedited GPs. */ 5229 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 5230 WARN_ON(!rcu_gp_wq); 5231 5232 /* Fill in default value for rcutree.qovld boot parameter. */ 5233 /* -After- the rcu_node ->lock fields are initialized! */ 5234 if (qovld < 0) 5235 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5236 else 5237 qovld_calc = qovld; 5238 5239 // Kick-start in case any polled grace periods started early. 5240 (void)start_poll_synchronize_rcu_expedited(); 5241 5242 rcu_test_sync_prims(); 5243 5244 tasks_cblist_init_generic(); 5245 } 5246 5247 #include "tree_stall.h" 5248 #include "tree_exp.h" 5249 #include "tree_nocb.h" 5250 #include "tree_plugin.h" 5251