xref: /linux/kernel/rcu/tree.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
63 #include <linux/mm.h>
64 #include <linux/kasan.h>
65 #include "../time/tick-internal.h"
66 
67 #include "tree.h"
68 #include "rcu.h"
69 
70 #ifdef MODULE_PARAM_PREFIX
71 #undef MODULE_PARAM_PREFIX
72 #endif
73 #define MODULE_PARAM_PREFIX "rcutree."
74 
75 /* Data structures. */
76 
77 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
78 	.dynticks_nesting = 1,
79 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
80 	.dynticks = ATOMIC_INIT(1),
81 #ifdef CONFIG_RCU_NOCB_CPU
82 	.cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 	.level = { &rcu_state.node[0] },
87 	.gp_state = RCU_GP_IDLE,
88 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 
117 /*
118  * The rcu_scheduler_active variable is initialized to the value
119  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121  * RCU can assume that there is but one task, allowing RCU to (for example)
122  * optimize synchronize_rcu() to a simple barrier().  When this variable
123  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124  * to detect real grace periods.  This variable is also used to suppress
125  * boot-time false positives from lockdep-RCU error checking.  Finally, it
126  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127  * is fully initialized, including all of its kthreads having been spawned.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 			      unsigned long gps, unsigned long flags);
148 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
150 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
151 static void invoke_rcu_core(void);
152 static void rcu_report_exp_rdp(struct rcu_data *rdp);
153 static void sync_sched_exp_online_cleanup(int cpu);
154 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
155 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
156 
157 /* rcuc/rcub/rcuop kthread realtime priority */
158 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
159 module_param(kthread_prio, int, 0444);
160 
161 /* Delay in jiffies for grace-period initialization delays, debug only. */
162 
163 static int gp_preinit_delay;
164 module_param(gp_preinit_delay, int, 0444);
165 static int gp_init_delay;
166 module_param(gp_init_delay, int, 0444);
167 static int gp_cleanup_delay;
168 module_param(gp_cleanup_delay, int, 0444);
169 
170 // Add delay to rcu_read_unlock() for strict grace periods.
171 static int rcu_unlock_delay;
172 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
173 module_param(rcu_unlock_delay, int, 0444);
174 #endif
175 
176 /*
177  * This rcu parameter is runtime-read-only. It reflects
178  * a minimum allowed number of objects which can be cached
179  * per-CPU. Object size is equal to one page. This value
180  * can be changed at boot time.
181  */
182 static int rcu_min_cached_objs = 5;
183 module_param(rcu_min_cached_objs, int, 0444);
184 
185 // A page shrinker can ask for pages to be freed to make them
186 // available for other parts of the system. This usually happens
187 // under low memory conditions, and in that case we should also
188 // defer page-cache filling for a short time period.
189 //
190 // The default value is 5 seconds, which is long enough to reduce
191 // interference with the shrinker while it asks other systems to
192 // drain their caches.
193 static int rcu_delay_page_cache_fill_msec = 5000;
194 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
195 
196 /* Retrieve RCU kthreads priority for rcutorture */
197 int rcu_get_gp_kthreads_prio(void)
198 {
199 	return kthread_prio;
200 }
201 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
202 
203 /*
204  * Number of grace periods between delays, normalized by the duration of
205  * the delay.  The longer the delay, the more the grace periods between
206  * each delay.  The reason for this normalization is that it means that,
207  * for non-zero delays, the overall slowdown of grace periods is constant
208  * regardless of the duration of the delay.  This arrangement balances
209  * the need for long delays to increase some race probabilities with the
210  * need for fast grace periods to increase other race probabilities.
211  */
212 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
213 
214 /*
215  * Compute the mask of online CPUs for the specified rcu_node structure.
216  * This will not be stable unless the rcu_node structure's ->lock is
217  * held, but the bit corresponding to the current CPU will be stable
218  * in most contexts.
219  */
220 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
221 {
222 	return READ_ONCE(rnp->qsmaskinitnext);
223 }
224 
225 /*
226  * Is the CPU corresponding to the specified rcu_data structure online
227  * from RCU's perspective?  This perspective is given by that structure's
228  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
229  */
230 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
231 {
232 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
233 }
234 
235 /*
236  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
237  * permit this function to be invoked without holding the root rcu_node
238  * structure's ->lock, but of course results can be subject to change.
239  */
240 static int rcu_gp_in_progress(void)
241 {
242 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
243 }
244 
245 /*
246  * Return the number of callbacks queued on the specified CPU.
247  * Handles both the nocbs and normal cases.
248  */
249 static long rcu_get_n_cbs_cpu(int cpu)
250 {
251 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
252 
253 	if (rcu_segcblist_is_enabled(&rdp->cblist))
254 		return rcu_segcblist_n_cbs(&rdp->cblist);
255 	return 0;
256 }
257 
258 void rcu_softirq_qs(void)
259 {
260 	rcu_qs();
261 	rcu_preempt_deferred_qs(current);
262 	rcu_tasks_qs(current, false);
263 }
264 
265 /*
266  * Increment the current CPU's rcu_data structure's ->dynticks field
267  * with ordering.  Return the new value.
268  */
269 static noinline noinstr unsigned long rcu_dynticks_inc(int incby)
270 {
271 	return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks));
272 }
273 
274 /*
275  * Record entry into an extended quiescent state.  This is only to be
276  * called when not already in an extended quiescent state, that is,
277  * RCU is watching prior to the call to this function and is no longer
278  * watching upon return.
279  */
280 static noinstr void rcu_dynticks_eqs_enter(void)
281 {
282 	int seq;
283 
284 	/*
285 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
286 	 * critical sections, and we also must force ordering with the
287 	 * next idle sojourn.
288 	 */
289 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
290 	seq = rcu_dynticks_inc(1);
291 	// RCU is no longer watching.  Better be in extended quiescent state!
292 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1));
293 }
294 
295 /*
296  * Record exit from an extended quiescent state.  This is only to be
297  * called from an extended quiescent state, that is, RCU is not watching
298  * prior to the call to this function and is watching upon return.
299  */
300 static noinstr void rcu_dynticks_eqs_exit(void)
301 {
302 	int seq;
303 
304 	/*
305 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
306 	 * and we also must force ordering with the next RCU read-side
307 	 * critical section.
308 	 */
309 	seq = rcu_dynticks_inc(1);
310 	// RCU is now watching.  Better not be in an extended quiescent state!
311 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
312 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1));
313 }
314 
315 /*
316  * Reset the current CPU's ->dynticks counter to indicate that the
317  * newly onlined CPU is no longer in an extended quiescent state.
318  * This will either leave the counter unchanged, or increment it
319  * to the next non-quiescent value.
320  *
321  * The non-atomic test/increment sequence works because the upper bits
322  * of the ->dynticks counter are manipulated only by the corresponding CPU,
323  * or when the corresponding CPU is offline.
324  */
325 static void rcu_dynticks_eqs_online(void)
326 {
327 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
328 
329 	if (atomic_read(&rdp->dynticks) & 0x1)
330 		return;
331 	rcu_dynticks_inc(1);
332 }
333 
334 /*
335  * Is the current CPU in an extended quiescent state?
336  *
337  * No ordering, as we are sampling CPU-local information.
338  */
339 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
340 {
341 	return !(arch_atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1);
342 }
343 
344 /*
345  * Snapshot the ->dynticks counter with full ordering so as to allow
346  * stable comparison of this counter with past and future snapshots.
347  */
348 static int rcu_dynticks_snap(struct rcu_data *rdp)
349 {
350 	smp_mb();  // Fundamental RCU ordering guarantee.
351 	return atomic_read_acquire(&rdp->dynticks);
352 }
353 
354 /*
355  * Return true if the snapshot returned from rcu_dynticks_snap()
356  * indicates that RCU is in an extended quiescent state.
357  */
358 static bool rcu_dynticks_in_eqs(int snap)
359 {
360 	return !(snap & 0x1);
361 }
362 
363 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
364 bool rcu_is_idle_cpu(int cpu)
365 {
366 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
367 
368 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
369 }
370 
371 /*
372  * Return true if the CPU corresponding to the specified rcu_data
373  * structure has spent some time in an extended quiescent state since
374  * rcu_dynticks_snap() returned the specified snapshot.
375  */
376 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
377 {
378 	return snap != rcu_dynticks_snap(rdp);
379 }
380 
381 /*
382  * Return true if the referenced integer is zero while the specified
383  * CPU remains within a single extended quiescent state.
384  */
385 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
386 {
387 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
388 	int snap;
389 
390 	// If not quiescent, force back to earlier extended quiescent state.
391 	snap = atomic_read(&rdp->dynticks) & ~0x1;
392 
393 	smp_rmb(); // Order ->dynticks and *vp reads.
394 	if (READ_ONCE(*vp))
395 		return false;  // Non-zero, so report failure;
396 	smp_rmb(); // Order *vp read and ->dynticks re-read.
397 
398 	// If still in the same extended quiescent state, we are good!
399 	return snap == atomic_read(&rdp->dynticks);
400 }
401 
402 /*
403  * Let the RCU core know that this CPU has gone through the scheduler,
404  * which is a quiescent state.  This is called when the need for a
405  * quiescent state is urgent, so we burn an atomic operation and full
406  * memory barriers to let the RCU core know about it, regardless of what
407  * this CPU might (or might not) do in the near future.
408  *
409  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
410  *
411  * The caller must have disabled interrupts and must not be idle.
412  */
413 notrace void rcu_momentary_dyntick_idle(void)
414 {
415 	int seq;
416 
417 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
418 	seq = rcu_dynticks_inc(2);
419 	/* It is illegal to call this from idle state. */
420 	WARN_ON_ONCE(!(seq & 0x1));
421 	rcu_preempt_deferred_qs(current);
422 }
423 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
424 
425 /**
426  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
427  *
428  * If the current CPU is idle and running at a first-level (not nested)
429  * interrupt, or directly, from idle, return true.
430  *
431  * The caller must have at least disabled IRQs.
432  */
433 static int rcu_is_cpu_rrupt_from_idle(void)
434 {
435 	long nesting;
436 
437 	/*
438 	 * Usually called from the tick; but also used from smp_function_call()
439 	 * for expedited grace periods. This latter can result in running from
440 	 * the idle task, instead of an actual IPI.
441 	 */
442 	lockdep_assert_irqs_disabled();
443 
444 	/* Check for counter underflows */
445 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
446 			 "RCU dynticks_nesting counter underflow!");
447 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
448 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
449 
450 	/* Are we at first interrupt nesting level? */
451 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
452 	if (nesting > 1)
453 		return false;
454 
455 	/*
456 	 * If we're not in an interrupt, we must be in the idle task!
457 	 */
458 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
459 
460 	/* Does CPU appear to be idle from an RCU standpoint? */
461 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
462 }
463 
464 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
465 				// Maximum callbacks per rcu_do_batch ...
466 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
467 static long blimit = DEFAULT_RCU_BLIMIT;
468 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
469 static long qhimark = DEFAULT_RCU_QHIMARK;
470 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
471 static long qlowmark = DEFAULT_RCU_QLOMARK;
472 #define DEFAULT_RCU_QOVLD_MULT 2
473 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
474 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
475 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
476 
477 module_param(blimit, long, 0444);
478 module_param(qhimark, long, 0444);
479 module_param(qlowmark, long, 0444);
480 module_param(qovld, long, 0444);
481 
482 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
483 static ulong jiffies_till_next_fqs = ULONG_MAX;
484 static bool rcu_kick_kthreads;
485 static int rcu_divisor = 7;
486 module_param(rcu_divisor, int, 0644);
487 
488 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
489 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
490 module_param(rcu_resched_ns, long, 0644);
491 
492 /*
493  * How long the grace period must be before we start recruiting
494  * quiescent-state help from rcu_note_context_switch().
495  */
496 static ulong jiffies_till_sched_qs = ULONG_MAX;
497 module_param(jiffies_till_sched_qs, ulong, 0444);
498 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
499 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
500 
501 /*
502  * Make sure that we give the grace-period kthread time to detect any
503  * idle CPUs before taking active measures to force quiescent states.
504  * However, don't go below 100 milliseconds, adjusted upwards for really
505  * large systems.
506  */
507 static void adjust_jiffies_till_sched_qs(void)
508 {
509 	unsigned long j;
510 
511 	/* If jiffies_till_sched_qs was specified, respect the request. */
512 	if (jiffies_till_sched_qs != ULONG_MAX) {
513 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
514 		return;
515 	}
516 	/* Otherwise, set to third fqs scan, but bound below on large system. */
517 	j = READ_ONCE(jiffies_till_first_fqs) +
518 		      2 * READ_ONCE(jiffies_till_next_fqs);
519 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
520 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
521 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
522 	WRITE_ONCE(jiffies_to_sched_qs, j);
523 }
524 
525 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
526 {
527 	ulong j;
528 	int ret = kstrtoul(val, 0, &j);
529 
530 	if (!ret) {
531 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
532 		adjust_jiffies_till_sched_qs();
533 	}
534 	return ret;
535 }
536 
537 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
538 {
539 	ulong j;
540 	int ret = kstrtoul(val, 0, &j);
541 
542 	if (!ret) {
543 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
544 		adjust_jiffies_till_sched_qs();
545 	}
546 	return ret;
547 }
548 
549 static const struct kernel_param_ops first_fqs_jiffies_ops = {
550 	.set = param_set_first_fqs_jiffies,
551 	.get = param_get_ulong,
552 };
553 
554 static const struct kernel_param_ops next_fqs_jiffies_ops = {
555 	.set = param_set_next_fqs_jiffies,
556 	.get = param_get_ulong,
557 };
558 
559 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
560 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
561 module_param(rcu_kick_kthreads, bool, 0644);
562 
563 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
564 static int rcu_pending(int user);
565 
566 /*
567  * Return the number of RCU GPs completed thus far for debug & stats.
568  */
569 unsigned long rcu_get_gp_seq(void)
570 {
571 	return READ_ONCE(rcu_state.gp_seq);
572 }
573 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
574 
575 /*
576  * Return the number of RCU expedited batches completed thus far for
577  * debug & stats.  Odd numbers mean that a batch is in progress, even
578  * numbers mean idle.  The value returned will thus be roughly double
579  * the cumulative batches since boot.
580  */
581 unsigned long rcu_exp_batches_completed(void)
582 {
583 	return rcu_state.expedited_sequence;
584 }
585 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
586 
587 /*
588  * Return the root node of the rcu_state structure.
589  */
590 static struct rcu_node *rcu_get_root(void)
591 {
592 	return &rcu_state.node[0];
593 }
594 
595 /*
596  * Send along grace-period-related data for rcutorture diagnostics.
597  */
598 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
599 			    unsigned long *gp_seq)
600 {
601 	switch (test_type) {
602 	case RCU_FLAVOR:
603 		*flags = READ_ONCE(rcu_state.gp_flags);
604 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
605 		break;
606 	default:
607 		break;
608 	}
609 }
610 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
611 
612 /*
613  * Enter an RCU extended quiescent state, which can be either the
614  * idle loop or adaptive-tickless usermode execution.
615  *
616  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
617  * the possibility of usermode upcalls having messed up our count
618  * of interrupt nesting level during the prior busy period.
619  */
620 static noinstr void rcu_eqs_enter(bool user)
621 {
622 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
623 
624 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
625 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
626 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
627 		     rdp->dynticks_nesting == 0);
628 	if (rdp->dynticks_nesting != 1) {
629 		// RCU will still be watching, so just do accounting and leave.
630 		rdp->dynticks_nesting--;
631 		return;
632 	}
633 
634 	lockdep_assert_irqs_disabled();
635 	instrumentation_begin();
636 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
637 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
638 	rcu_preempt_deferred_qs(current);
639 
640 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
641 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
642 
643 	instrumentation_end();
644 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
645 	// RCU is watching here ...
646 	rcu_dynticks_eqs_enter();
647 	// ... but is no longer watching here.
648 	rcu_dynticks_task_enter();
649 }
650 
651 /**
652  * rcu_idle_enter - inform RCU that current CPU is entering idle
653  *
654  * Enter idle mode, in other words, -leave- the mode in which RCU
655  * read-side critical sections can occur.  (Though RCU read-side
656  * critical sections can occur in irq handlers in idle, a possibility
657  * handled by irq_enter() and irq_exit().)
658  *
659  * If you add or remove a call to rcu_idle_enter(), be sure to test with
660  * CONFIG_RCU_EQS_DEBUG=y.
661  */
662 void rcu_idle_enter(void)
663 {
664 	lockdep_assert_irqs_disabled();
665 	rcu_eqs_enter(false);
666 }
667 EXPORT_SYMBOL_GPL(rcu_idle_enter);
668 
669 #ifdef CONFIG_NO_HZ_FULL
670 
671 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
672 /*
673  * An empty function that will trigger a reschedule on
674  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
675  */
676 static void late_wakeup_func(struct irq_work *work)
677 {
678 }
679 
680 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
681 	IRQ_WORK_INIT(late_wakeup_func);
682 
683 /*
684  * If either:
685  *
686  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
687  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
688  *
689  * In these cases the late RCU wake ups aren't supported in the resched loops and our
690  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
691  * get re-enabled again.
692  */
693 noinstr static void rcu_irq_work_resched(void)
694 {
695 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
696 
697 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
698 		return;
699 
700 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
701 		return;
702 
703 	instrumentation_begin();
704 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
705 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
706 	}
707 	instrumentation_end();
708 }
709 
710 #else
711 static inline void rcu_irq_work_resched(void) { }
712 #endif
713 
714 /**
715  * rcu_user_enter - inform RCU that we are resuming userspace.
716  *
717  * Enter RCU idle mode right before resuming userspace.  No use of RCU
718  * is permitted between this call and rcu_user_exit(). This way the
719  * CPU doesn't need to maintain the tick for RCU maintenance purposes
720  * when the CPU runs in userspace.
721  *
722  * If you add or remove a call to rcu_user_enter(), be sure to test with
723  * CONFIG_RCU_EQS_DEBUG=y.
724  */
725 noinstr void rcu_user_enter(void)
726 {
727 	lockdep_assert_irqs_disabled();
728 
729 	/*
730 	 * Other than generic entry implementation, we may be past the last
731 	 * rescheduling opportunity in the entry code. Trigger a self IPI
732 	 * that will fire and reschedule once we resume in user/guest mode.
733 	 */
734 	rcu_irq_work_resched();
735 	rcu_eqs_enter(true);
736 }
737 
738 #endif /* CONFIG_NO_HZ_FULL */
739 
740 /**
741  * rcu_nmi_exit - inform RCU of exit from NMI context
742  *
743  * If we are returning from the outermost NMI handler that interrupted an
744  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
745  * to let the RCU grace-period handling know that the CPU is back to
746  * being RCU-idle.
747  *
748  * If you add or remove a call to rcu_nmi_exit(), be sure to test
749  * with CONFIG_RCU_EQS_DEBUG=y.
750  */
751 noinstr void rcu_nmi_exit(void)
752 {
753 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
754 
755 	instrumentation_begin();
756 	/*
757 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
758 	 * (We are exiting an NMI handler, so RCU better be paying attention
759 	 * to us!)
760 	 */
761 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
762 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
763 
764 	/*
765 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
766 	 * leave it in non-RCU-idle state.
767 	 */
768 	if (rdp->dynticks_nmi_nesting != 1) {
769 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
770 				  atomic_read(&rdp->dynticks));
771 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
772 			   rdp->dynticks_nmi_nesting - 2);
773 		instrumentation_end();
774 		return;
775 	}
776 
777 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
778 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
779 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
780 
781 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
782 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
783 	instrumentation_end();
784 
785 	// RCU is watching here ...
786 	rcu_dynticks_eqs_enter();
787 	// ... but is no longer watching here.
788 
789 	if (!in_nmi())
790 		rcu_dynticks_task_enter();
791 }
792 
793 /**
794  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
795  *
796  * Exit from an interrupt handler, which might possibly result in entering
797  * idle mode, in other words, leaving the mode in which read-side critical
798  * sections can occur.  The caller must have disabled interrupts.
799  *
800  * This code assumes that the idle loop never does anything that might
801  * result in unbalanced calls to irq_enter() and irq_exit().  If your
802  * architecture's idle loop violates this assumption, RCU will give you what
803  * you deserve, good and hard.  But very infrequently and irreproducibly.
804  *
805  * Use things like work queues to work around this limitation.
806  *
807  * You have been warned.
808  *
809  * If you add or remove a call to rcu_irq_exit(), be sure to test with
810  * CONFIG_RCU_EQS_DEBUG=y.
811  */
812 void noinstr rcu_irq_exit(void)
813 {
814 	lockdep_assert_irqs_disabled();
815 	rcu_nmi_exit();
816 }
817 
818 #ifdef CONFIG_PROVE_RCU
819 /**
820  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
821  */
822 void rcu_irq_exit_check_preempt(void)
823 {
824 	lockdep_assert_irqs_disabled();
825 
826 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
827 			 "RCU dynticks_nesting counter underflow/zero!");
828 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
829 			 DYNTICK_IRQ_NONIDLE,
830 			 "Bad RCU  dynticks_nmi_nesting counter\n");
831 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
832 			 "RCU in extended quiescent state!");
833 }
834 #endif /* #ifdef CONFIG_PROVE_RCU */
835 
836 /*
837  * Wrapper for rcu_irq_exit() where interrupts are enabled.
838  *
839  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
840  * with CONFIG_RCU_EQS_DEBUG=y.
841  */
842 void rcu_irq_exit_irqson(void)
843 {
844 	unsigned long flags;
845 
846 	local_irq_save(flags);
847 	rcu_irq_exit();
848 	local_irq_restore(flags);
849 }
850 
851 /*
852  * Exit an RCU extended quiescent state, which can be either the
853  * idle loop or adaptive-tickless usermode execution.
854  *
855  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
856  * allow for the possibility of usermode upcalls messing up our count of
857  * interrupt nesting level during the busy period that is just now starting.
858  */
859 static void noinstr rcu_eqs_exit(bool user)
860 {
861 	struct rcu_data *rdp;
862 	long oldval;
863 
864 	lockdep_assert_irqs_disabled();
865 	rdp = this_cpu_ptr(&rcu_data);
866 	oldval = rdp->dynticks_nesting;
867 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
868 	if (oldval) {
869 		// RCU was already watching, so just do accounting and leave.
870 		rdp->dynticks_nesting++;
871 		return;
872 	}
873 	rcu_dynticks_task_exit();
874 	// RCU is not watching here ...
875 	rcu_dynticks_eqs_exit();
876 	// ... but is watching here.
877 	instrumentation_begin();
878 
879 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
880 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
881 
882 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
883 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
884 	WRITE_ONCE(rdp->dynticks_nesting, 1);
885 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
886 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
887 	instrumentation_end();
888 }
889 
890 /**
891  * rcu_idle_exit - inform RCU that current CPU is leaving idle
892  *
893  * Exit idle mode, in other words, -enter- the mode in which RCU
894  * read-side critical sections can occur.
895  *
896  * If you add or remove a call to rcu_idle_exit(), be sure to test with
897  * CONFIG_RCU_EQS_DEBUG=y.
898  */
899 void rcu_idle_exit(void)
900 {
901 	unsigned long flags;
902 
903 	local_irq_save(flags);
904 	rcu_eqs_exit(false);
905 	local_irq_restore(flags);
906 }
907 EXPORT_SYMBOL_GPL(rcu_idle_exit);
908 
909 #ifdef CONFIG_NO_HZ_FULL
910 /**
911  * rcu_user_exit - inform RCU that we are exiting userspace.
912  *
913  * Exit RCU idle mode while entering the kernel because it can
914  * run a RCU read side critical section anytime.
915  *
916  * If you add or remove a call to rcu_user_exit(), be sure to test with
917  * CONFIG_RCU_EQS_DEBUG=y.
918  */
919 void noinstr rcu_user_exit(void)
920 {
921 	rcu_eqs_exit(true);
922 }
923 
924 /**
925  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
926  *
927  * The scheduler tick is not normally enabled when CPUs enter the kernel
928  * from nohz_full userspace execution.  After all, nohz_full userspace
929  * execution is an RCU quiescent state and the time executing in the kernel
930  * is quite short.  Except of course when it isn't.  And it is not hard to
931  * cause a large system to spend tens of seconds or even minutes looping
932  * in the kernel, which can cause a number of problems, include RCU CPU
933  * stall warnings.
934  *
935  * Therefore, if a nohz_full CPU fails to report a quiescent state
936  * in a timely manner, the RCU grace-period kthread sets that CPU's
937  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
938  * exception will invoke this function, which will turn on the scheduler
939  * tick, which will enable RCU to detect that CPU's quiescent states,
940  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
941  * The tick will be disabled once a quiescent state is reported for
942  * this CPU.
943  *
944  * Of course, in carefully tuned systems, there might never be an
945  * interrupt or exception.  In that case, the RCU grace-period kthread
946  * will eventually cause one to happen.  However, in less carefully
947  * controlled environments, this function allows RCU to get what it
948  * needs without creating otherwise useless interruptions.
949  */
950 void __rcu_irq_enter_check_tick(void)
951 {
952 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
953 
954 	// If we're here from NMI there's nothing to do.
955 	if (in_nmi())
956 		return;
957 
958 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
959 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
960 
961 	if (!tick_nohz_full_cpu(rdp->cpu) ||
962 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
963 	    READ_ONCE(rdp->rcu_forced_tick)) {
964 		// RCU doesn't need nohz_full help from this CPU, or it is
965 		// already getting that help.
966 		return;
967 	}
968 
969 	// We get here only when not in an extended quiescent state and
970 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
971 	// already watching and (2) The fact that we are in an interrupt
972 	// handler and that the rcu_node lock is an irq-disabled lock
973 	// prevents self-deadlock.  So we can safely recheck under the lock.
974 	// Note that the nohz_full state currently cannot change.
975 	raw_spin_lock_rcu_node(rdp->mynode);
976 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
977 		// A nohz_full CPU is in the kernel and RCU needs a
978 		// quiescent state.  Turn on the tick!
979 		WRITE_ONCE(rdp->rcu_forced_tick, true);
980 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
981 	}
982 	raw_spin_unlock_rcu_node(rdp->mynode);
983 }
984 #endif /* CONFIG_NO_HZ_FULL */
985 
986 /**
987  * rcu_nmi_enter - inform RCU of entry to NMI context
988  *
989  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
990  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
991  * that the CPU is active.  This implementation permits nested NMIs, as
992  * long as the nesting level does not overflow an int.  (You will probably
993  * run out of stack space first.)
994  *
995  * If you add or remove a call to rcu_nmi_enter(), be sure to test
996  * with CONFIG_RCU_EQS_DEBUG=y.
997  */
998 noinstr void rcu_nmi_enter(void)
999 {
1000 	long incby = 2;
1001 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1002 
1003 	/* Complain about underflow. */
1004 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1005 
1006 	/*
1007 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1008 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1009 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1010 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1011 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1012 	 * period (observation due to Andy Lutomirski).
1013 	 */
1014 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1015 
1016 		if (!in_nmi())
1017 			rcu_dynticks_task_exit();
1018 
1019 		// RCU is not watching here ...
1020 		rcu_dynticks_eqs_exit();
1021 		// ... but is watching here.
1022 
1023 		instrumentation_begin();
1024 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1025 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1026 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1027 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1028 
1029 		incby = 1;
1030 	} else if (!in_nmi()) {
1031 		instrumentation_begin();
1032 		rcu_irq_enter_check_tick();
1033 	} else  {
1034 		instrumentation_begin();
1035 	}
1036 
1037 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1038 			  rdp->dynticks_nmi_nesting,
1039 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1040 	instrumentation_end();
1041 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1042 		   rdp->dynticks_nmi_nesting + incby);
1043 	barrier();
1044 }
1045 
1046 /**
1047  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1048  *
1049  * Enter an interrupt handler, which might possibly result in exiting
1050  * idle mode, in other words, entering the mode in which read-side critical
1051  * sections can occur.  The caller must have disabled interrupts.
1052  *
1053  * Note that the Linux kernel is fully capable of entering an interrupt
1054  * handler that it never exits, for example when doing upcalls to user mode!
1055  * This code assumes that the idle loop never does upcalls to user mode.
1056  * If your architecture's idle loop does do upcalls to user mode (or does
1057  * anything else that results in unbalanced calls to the irq_enter() and
1058  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1059  * But very infrequently and irreproducibly.
1060  *
1061  * Use things like work queues to work around this limitation.
1062  *
1063  * You have been warned.
1064  *
1065  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1066  * CONFIG_RCU_EQS_DEBUG=y.
1067  */
1068 noinstr void rcu_irq_enter(void)
1069 {
1070 	lockdep_assert_irqs_disabled();
1071 	rcu_nmi_enter();
1072 }
1073 
1074 /*
1075  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1076  *
1077  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1078  * with CONFIG_RCU_EQS_DEBUG=y.
1079  */
1080 void rcu_irq_enter_irqson(void)
1081 {
1082 	unsigned long flags;
1083 
1084 	local_irq_save(flags);
1085 	rcu_irq_enter();
1086 	local_irq_restore(flags);
1087 }
1088 
1089 /*
1090  * Check to see if any future non-offloaded RCU-related work will need
1091  * to be done by the current CPU, even if none need be done immediately,
1092  * returning 1 if so.  This function is part of the RCU implementation;
1093  * it is -not- an exported member of the RCU API.  This is used by
1094  * the idle-entry code to figure out whether it is safe to disable the
1095  * scheduler-clock interrupt.
1096  *
1097  * Just check whether or not this CPU has non-offloaded RCU callbacks
1098  * queued.
1099  */
1100 int rcu_needs_cpu(void)
1101 {
1102 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1103 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
1104 }
1105 
1106 /*
1107  * If any sort of urgency was applied to the current CPU (for example,
1108  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1109  * to get to a quiescent state, disable it.
1110  */
1111 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1112 {
1113 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1114 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1115 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1116 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1117 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1118 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1119 	}
1120 }
1121 
1122 /**
1123  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1124  *
1125  * Return true if RCU is watching the running CPU, which means that this
1126  * CPU can safely enter RCU read-side critical sections.  In other words,
1127  * if the current CPU is not in its idle loop or is in an interrupt or
1128  * NMI handler, return true.
1129  *
1130  * Make notrace because it can be called by the internal functions of
1131  * ftrace, and making this notrace removes unnecessary recursion calls.
1132  */
1133 notrace bool rcu_is_watching(void)
1134 {
1135 	bool ret;
1136 
1137 	preempt_disable_notrace();
1138 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1139 	preempt_enable_notrace();
1140 	return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(rcu_is_watching);
1143 
1144 /*
1145  * If a holdout task is actually running, request an urgent quiescent
1146  * state from its CPU.  This is unsynchronized, so migrations can cause
1147  * the request to go to the wrong CPU.  Which is OK, all that will happen
1148  * is that the CPU's next context switch will be a bit slower and next
1149  * time around this task will generate another request.
1150  */
1151 void rcu_request_urgent_qs_task(struct task_struct *t)
1152 {
1153 	int cpu;
1154 
1155 	barrier();
1156 	cpu = task_cpu(t);
1157 	if (!task_curr(t))
1158 		return; /* This task is not running on that CPU. */
1159 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1160 }
1161 
1162 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1163 
1164 /*
1165  * Is the current CPU online as far as RCU is concerned?
1166  *
1167  * Disable preemption to avoid false positives that could otherwise
1168  * happen due to the current CPU number being sampled, this task being
1169  * preempted, its old CPU being taken offline, resuming on some other CPU,
1170  * then determining that its old CPU is now offline.
1171  *
1172  * Disable checking if in an NMI handler because we cannot safely
1173  * report errors from NMI handlers anyway.  In addition, it is OK to use
1174  * RCU on an offline processor during initial boot, hence the check for
1175  * rcu_scheduler_fully_active.
1176  */
1177 bool rcu_lockdep_current_cpu_online(void)
1178 {
1179 	struct rcu_data *rdp;
1180 	bool ret = false;
1181 
1182 	if (in_nmi() || !rcu_scheduler_fully_active)
1183 		return true;
1184 	preempt_disable_notrace();
1185 	rdp = this_cpu_ptr(&rcu_data);
1186 	/*
1187 	 * Strictly, we care here about the case where the current CPU is
1188 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
1189 	 * not being up to date. So arch_spin_is_locked() might have a
1190 	 * false positive if it's held by some *other* CPU, but that's
1191 	 * OK because that just means a false *negative* on the warning.
1192 	 */
1193 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
1194 		ret = true;
1195 	preempt_enable_notrace();
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1199 
1200 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1201 
1202 /*
1203  * When trying to report a quiescent state on behalf of some other CPU,
1204  * it is our responsibility to check for and handle potential overflow
1205  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1206  * After all, the CPU might be in deep idle state, and thus executing no
1207  * code whatsoever.
1208  */
1209 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1210 {
1211 	raw_lockdep_assert_held_rcu_node(rnp);
1212 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1213 			 rnp->gp_seq))
1214 		WRITE_ONCE(rdp->gpwrap, true);
1215 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1216 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1217 }
1218 
1219 /*
1220  * Snapshot the specified CPU's dynticks counter so that we can later
1221  * credit them with an implicit quiescent state.  Return 1 if this CPU
1222  * is in dynticks idle mode, which is an extended quiescent state.
1223  */
1224 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1225 {
1226 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1227 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1228 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1229 		rcu_gpnum_ovf(rdp->mynode, rdp);
1230 		return 1;
1231 	}
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Return true if the specified CPU has passed through a quiescent
1237  * state by virtue of being in or having passed through an dynticks
1238  * idle state since the last call to dyntick_save_progress_counter()
1239  * for this same CPU, or by virtue of having been offline.
1240  */
1241 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1242 {
1243 	unsigned long jtsq;
1244 	struct rcu_node *rnp = rdp->mynode;
1245 
1246 	/*
1247 	 * If the CPU passed through or entered a dynticks idle phase with
1248 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1249 	 * already acknowledged the request to pass through a quiescent
1250 	 * state.  Either way, that CPU cannot possibly be in an RCU
1251 	 * read-side critical section that started before the beginning
1252 	 * of the current RCU grace period.
1253 	 */
1254 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1255 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1256 		rcu_gpnum_ovf(rnp, rdp);
1257 		return 1;
1258 	}
1259 
1260 	/*
1261 	 * Complain if a CPU that is considered to be offline from RCU's
1262 	 * perspective has not yet reported a quiescent state.  After all,
1263 	 * the offline CPU should have reported a quiescent state during
1264 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1265 	 * if it ran concurrently with either the CPU going offline or the
1266 	 * last task on a leaf rcu_node structure exiting its RCU read-side
1267 	 * critical section while all CPUs corresponding to that structure
1268 	 * are offline.  This added warning detects bugs in any of these
1269 	 * code paths.
1270 	 *
1271 	 * The rcu_node structure's ->lock is held here, which excludes
1272 	 * the relevant portions the CPU-hotplug code, the grace-period
1273 	 * initialization code, and the rcu_read_unlock() code paths.
1274 	 *
1275 	 * For more detail, please refer to the "Hotplug CPU" section
1276 	 * of RCU's Requirements documentation.
1277 	 */
1278 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
1279 		struct rcu_node *rnp1;
1280 
1281 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1282 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1283 			(long)rnp->gp_seq, (long)rnp->completedqs);
1284 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1285 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1286 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1287 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1288 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
1289 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1290 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1291 		return 1; /* Break things loose after complaining. */
1292 	}
1293 
1294 	/*
1295 	 * A CPU running for an extended time within the kernel can
1296 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1297 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1298 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1299 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1300 	 * variable are safe because the assignments are repeated if this
1301 	 * CPU failed to pass through a quiescent state.  This code
1302 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1303 	 * is set way high.
1304 	 */
1305 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1306 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
1307 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1308 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1309 	     rcu_state.cbovld)) {
1310 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
1311 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1312 		smp_store_release(&rdp->rcu_urgent_qs, true);
1313 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1314 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
1315 	}
1316 
1317 	/*
1318 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1319 	 * The above code handles this, but only for straight cond_resched().
1320 	 * And some in-kernel loops check need_resched() before calling
1321 	 * cond_resched(), which defeats the above code for CPUs that are
1322 	 * running in-kernel with scheduling-clock interrupts disabled.
1323 	 * So hit them over the head with the resched_cpu() hammer!
1324 	 */
1325 	if (tick_nohz_full_cpu(rdp->cpu) &&
1326 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1327 	     rcu_state.cbovld)) {
1328 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
1329 		resched_cpu(rdp->cpu);
1330 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1331 	}
1332 
1333 	/*
1334 	 * If more than halfway to RCU CPU stall-warning time, invoke
1335 	 * resched_cpu() more frequently to try to loosen things up a bit.
1336 	 * Also check to see if the CPU is getting hammered with interrupts,
1337 	 * but only once per grace period, just to keep the IPIs down to
1338 	 * a dull roar.
1339 	 */
1340 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1341 		if (time_after(jiffies,
1342 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1343 			resched_cpu(rdp->cpu);
1344 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1345 		}
1346 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1347 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1348 		    (rnp->ffmask & rdp->grpmask)) {
1349 			rdp->rcu_iw_pending = true;
1350 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1351 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1352 		}
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1359 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1360 			      unsigned long gp_seq_req, const char *s)
1361 {
1362 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1363 				      gp_seq_req, rnp->level,
1364 				      rnp->grplo, rnp->grphi, s);
1365 }
1366 
1367 /*
1368  * rcu_start_this_gp - Request the start of a particular grace period
1369  * @rnp_start: The leaf node of the CPU from which to start.
1370  * @rdp: The rcu_data corresponding to the CPU from which to start.
1371  * @gp_seq_req: The gp_seq of the grace period to start.
1372  *
1373  * Start the specified grace period, as needed to handle newly arrived
1374  * callbacks.  The required future grace periods are recorded in each
1375  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1376  * is reason to awaken the grace-period kthread.
1377  *
1378  * The caller must hold the specified rcu_node structure's ->lock, which
1379  * is why the caller is responsible for waking the grace-period kthread.
1380  *
1381  * Returns true if the GP thread needs to be awakened else false.
1382  */
1383 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1384 			      unsigned long gp_seq_req)
1385 {
1386 	bool ret = false;
1387 	struct rcu_node *rnp;
1388 
1389 	/*
1390 	 * Use funnel locking to either acquire the root rcu_node
1391 	 * structure's lock or bail out if the need for this grace period
1392 	 * has already been recorded -- or if that grace period has in
1393 	 * fact already started.  If there is already a grace period in
1394 	 * progress in a non-leaf node, no recording is needed because the
1395 	 * end of the grace period will scan the leaf rcu_node structures.
1396 	 * Note that rnp_start->lock must not be released.
1397 	 */
1398 	raw_lockdep_assert_held_rcu_node(rnp_start);
1399 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1400 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1401 		if (rnp != rnp_start)
1402 			raw_spin_lock_rcu_node(rnp);
1403 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1404 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1405 		    (rnp != rnp_start &&
1406 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1407 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1408 					  TPS("Prestarted"));
1409 			goto unlock_out;
1410 		}
1411 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1412 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1413 			/*
1414 			 * We just marked the leaf or internal node, and a
1415 			 * grace period is in progress, which means that
1416 			 * rcu_gp_cleanup() will see the marking.  Bail to
1417 			 * reduce contention.
1418 			 */
1419 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1420 					  TPS("Startedleaf"));
1421 			goto unlock_out;
1422 		}
1423 		if (rnp != rnp_start && rnp->parent != NULL)
1424 			raw_spin_unlock_rcu_node(rnp);
1425 		if (!rnp->parent)
1426 			break;  /* At root, and perhaps also leaf. */
1427 	}
1428 
1429 	/* If GP already in progress, just leave, otherwise start one. */
1430 	if (rcu_gp_in_progress()) {
1431 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1432 		goto unlock_out;
1433 	}
1434 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1435 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1436 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1437 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1438 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1439 		goto unlock_out;
1440 	}
1441 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1442 	ret = true;  /* Caller must wake GP kthread. */
1443 unlock_out:
1444 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1445 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1446 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1447 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1448 	}
1449 	if (rnp != rnp_start)
1450 		raw_spin_unlock_rcu_node(rnp);
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Clean up any old requests for the just-ended grace period.  Also return
1456  * whether any additional grace periods have been requested.
1457  */
1458 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1459 {
1460 	bool needmore;
1461 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1462 
1463 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1464 	if (!needmore)
1465 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1466 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1467 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1468 	return needmore;
1469 }
1470 
1471 /*
1472  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1473  * interrupt or softirq handler, in which case we just might immediately
1474  * sleep upon return, resulting in a grace-period hang), and don't bother
1475  * awakening when there is nothing for the grace-period kthread to do
1476  * (as in several CPUs raced to awaken, we lost), and finally don't try
1477  * to awaken a kthread that has not yet been created.  If all those checks
1478  * are passed, track some debug information and awaken.
1479  *
1480  * So why do the self-wakeup when in an interrupt or softirq handler
1481  * in the grace-period kthread's context?  Because the kthread might have
1482  * been interrupted just as it was going to sleep, and just after the final
1483  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1484  * is required, and is therefore supplied.
1485  */
1486 static void rcu_gp_kthread_wake(void)
1487 {
1488 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1489 
1490 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1491 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1492 		return;
1493 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1494 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1495 	swake_up_one(&rcu_state.gp_wq);
1496 }
1497 
1498 /*
1499  * If there is room, assign a ->gp_seq number to any callbacks on this
1500  * CPU that have not already been assigned.  Also accelerate any callbacks
1501  * that were previously assigned a ->gp_seq number that has since proven
1502  * to be too conservative, which can happen if callbacks get assigned a
1503  * ->gp_seq number while RCU is idle, but with reference to a non-root
1504  * rcu_node structure.  This function is idempotent, so it does not hurt
1505  * to call it repeatedly.  Returns an flag saying that we should awaken
1506  * the RCU grace-period kthread.
1507  *
1508  * The caller must hold rnp->lock with interrupts disabled.
1509  */
1510 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1511 {
1512 	unsigned long gp_seq_req;
1513 	bool ret = false;
1514 
1515 	rcu_lockdep_assert_cblist_protected(rdp);
1516 	raw_lockdep_assert_held_rcu_node(rnp);
1517 
1518 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1519 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1520 		return false;
1521 
1522 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1523 
1524 	/*
1525 	 * Callbacks are often registered with incomplete grace-period
1526 	 * information.  Something about the fact that getting exact
1527 	 * information requires acquiring a global lock...  RCU therefore
1528 	 * makes a conservative estimate of the grace period number at which
1529 	 * a given callback will become ready to invoke.	The following
1530 	 * code checks this estimate and improves it when possible, thus
1531 	 * accelerating callback invocation to an earlier grace-period
1532 	 * number.
1533 	 */
1534 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1535 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1536 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1537 
1538 	/* Trace depending on how much we were able to accelerate. */
1539 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1540 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1541 	else
1542 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1543 
1544 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1545 
1546 	return ret;
1547 }
1548 
1549 /*
1550  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1551  * rcu_node structure's ->lock be held.  It consults the cached value
1552  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1553  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1554  * while holding the leaf rcu_node structure's ->lock.
1555  */
1556 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1557 					struct rcu_data *rdp)
1558 {
1559 	unsigned long c;
1560 	bool needwake;
1561 
1562 	rcu_lockdep_assert_cblist_protected(rdp);
1563 	c = rcu_seq_snap(&rcu_state.gp_seq);
1564 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1565 		/* Old request still live, so mark recent callbacks. */
1566 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1567 		return;
1568 	}
1569 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1570 	needwake = rcu_accelerate_cbs(rnp, rdp);
1571 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1572 	if (needwake)
1573 		rcu_gp_kthread_wake();
1574 }
1575 
1576 /*
1577  * Move any callbacks whose grace period has completed to the
1578  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1579  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1580  * sublist.  This function is idempotent, so it does not hurt to
1581  * invoke it repeatedly.  As long as it is not invoked -too- often...
1582  * Returns true if the RCU grace-period kthread needs to be awakened.
1583  *
1584  * The caller must hold rnp->lock with interrupts disabled.
1585  */
1586 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1587 {
1588 	rcu_lockdep_assert_cblist_protected(rdp);
1589 	raw_lockdep_assert_held_rcu_node(rnp);
1590 
1591 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1592 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1593 		return false;
1594 
1595 	/*
1596 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1597 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1598 	 */
1599 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1600 
1601 	/* Classify any remaining callbacks. */
1602 	return rcu_accelerate_cbs(rnp, rdp);
1603 }
1604 
1605 /*
1606  * Move and classify callbacks, but only if doing so won't require
1607  * that the RCU grace-period kthread be awakened.
1608  */
1609 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1610 						  struct rcu_data *rdp)
1611 {
1612 	rcu_lockdep_assert_cblist_protected(rdp);
1613 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1614 		return;
1615 	// The grace period cannot end while we hold the rcu_node lock.
1616 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1617 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1618 	raw_spin_unlock_rcu_node(rnp);
1619 }
1620 
1621 /*
1622  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1623  * quiescent state.  This is intended to be invoked when the CPU notices
1624  * a new grace period.
1625  */
1626 static void rcu_strict_gp_check_qs(void)
1627 {
1628 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1629 		rcu_read_lock();
1630 		rcu_read_unlock();
1631 	}
1632 }
1633 
1634 /*
1635  * Update CPU-local rcu_data state to record the beginnings and ends of
1636  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1637  * structure corresponding to the current CPU, and must have irqs disabled.
1638  * Returns true if the grace-period kthread needs to be awakened.
1639  */
1640 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1641 {
1642 	bool ret = false;
1643 	bool need_qs;
1644 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1645 
1646 	raw_lockdep_assert_held_rcu_node(rnp);
1647 
1648 	if (rdp->gp_seq == rnp->gp_seq)
1649 		return false; /* Nothing to do. */
1650 
1651 	/* Handle the ends of any preceding grace periods first. */
1652 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1653 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1654 		if (!offloaded)
1655 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1656 		rdp->core_needs_qs = false;
1657 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1658 	} else {
1659 		if (!offloaded)
1660 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1661 		if (rdp->core_needs_qs)
1662 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1663 	}
1664 
1665 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1666 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1667 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1668 		/*
1669 		 * If the current grace period is waiting for this CPU,
1670 		 * set up to detect a quiescent state, otherwise don't
1671 		 * go looking for one.
1672 		 */
1673 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1674 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1675 		rdp->cpu_no_qs.b.norm = need_qs;
1676 		rdp->core_needs_qs = need_qs;
1677 		zero_cpu_stall_ticks(rdp);
1678 	}
1679 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1680 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1681 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1682 	WRITE_ONCE(rdp->gpwrap, false);
1683 	rcu_gpnum_ovf(rnp, rdp);
1684 	return ret;
1685 }
1686 
1687 static void note_gp_changes(struct rcu_data *rdp)
1688 {
1689 	unsigned long flags;
1690 	bool needwake;
1691 	struct rcu_node *rnp;
1692 
1693 	local_irq_save(flags);
1694 	rnp = rdp->mynode;
1695 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1696 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1697 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1698 		local_irq_restore(flags);
1699 		return;
1700 	}
1701 	needwake = __note_gp_changes(rnp, rdp);
1702 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1703 	rcu_strict_gp_check_qs();
1704 	if (needwake)
1705 		rcu_gp_kthread_wake();
1706 }
1707 
1708 static void rcu_gp_slow(int delay)
1709 {
1710 	if (delay > 0 &&
1711 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1712 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1713 		schedule_timeout_idle(delay);
1714 }
1715 
1716 static unsigned long sleep_duration;
1717 
1718 /* Allow rcutorture to stall the grace-period kthread. */
1719 void rcu_gp_set_torture_wait(int duration)
1720 {
1721 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1722 		WRITE_ONCE(sleep_duration, duration);
1723 }
1724 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1725 
1726 /* Actually implement the aforementioned wait. */
1727 static void rcu_gp_torture_wait(void)
1728 {
1729 	unsigned long duration;
1730 
1731 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1732 		return;
1733 	duration = xchg(&sleep_duration, 0UL);
1734 	if (duration > 0) {
1735 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1736 		schedule_timeout_idle(duration);
1737 		pr_alert("%s: Wait complete\n", __func__);
1738 	}
1739 }
1740 
1741 /*
1742  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1743  * processing.
1744  */
1745 static void rcu_strict_gp_boundary(void *unused)
1746 {
1747 	invoke_rcu_core();
1748 }
1749 
1750 /*
1751  * Initialize a new grace period.  Return false if no grace period required.
1752  */
1753 static noinline_for_stack bool rcu_gp_init(void)
1754 {
1755 	unsigned long flags;
1756 	unsigned long oldmask;
1757 	unsigned long mask;
1758 	struct rcu_data *rdp;
1759 	struct rcu_node *rnp = rcu_get_root();
1760 
1761 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1762 	raw_spin_lock_irq_rcu_node(rnp);
1763 	if (!READ_ONCE(rcu_state.gp_flags)) {
1764 		/* Spurious wakeup, tell caller to go back to sleep.  */
1765 		raw_spin_unlock_irq_rcu_node(rnp);
1766 		return false;
1767 	}
1768 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1769 
1770 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1771 		/*
1772 		 * Grace period already in progress, don't start another.
1773 		 * Not supposed to be able to happen.
1774 		 */
1775 		raw_spin_unlock_irq_rcu_node(rnp);
1776 		return false;
1777 	}
1778 
1779 	/* Advance to a new grace period and initialize state. */
1780 	record_gp_stall_check_time();
1781 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1782 	rcu_seq_start(&rcu_state.gp_seq);
1783 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1784 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1785 	raw_spin_unlock_irq_rcu_node(rnp);
1786 
1787 	/*
1788 	 * Apply per-leaf buffered online and offline operations to
1789 	 * the rcu_node tree. Note that this new grace period need not
1790 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1791 	 * offlining path, when combined with checks in this function,
1792 	 * will handle CPUs that are currently going offline or that will
1793 	 * go offline later.  Please also refer to "Hotplug CPU" section
1794 	 * of RCU's Requirements documentation.
1795 	 */
1796 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1797 	/* Exclude CPU hotplug operations. */
1798 	rcu_for_each_leaf_node(rnp) {
1799 		local_irq_save(flags);
1800 		arch_spin_lock(&rcu_state.ofl_lock);
1801 		raw_spin_lock_rcu_node(rnp);
1802 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1803 		    !rnp->wait_blkd_tasks) {
1804 			/* Nothing to do on this leaf rcu_node structure. */
1805 			raw_spin_unlock_rcu_node(rnp);
1806 			arch_spin_unlock(&rcu_state.ofl_lock);
1807 			local_irq_restore(flags);
1808 			continue;
1809 		}
1810 
1811 		/* Record old state, apply changes to ->qsmaskinit field. */
1812 		oldmask = rnp->qsmaskinit;
1813 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1814 
1815 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1816 		if (!oldmask != !rnp->qsmaskinit) {
1817 			if (!oldmask) { /* First online CPU for rcu_node. */
1818 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1819 					rcu_init_new_rnp(rnp);
1820 			} else if (rcu_preempt_has_tasks(rnp)) {
1821 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1822 			} else { /* Last offline CPU and can propagate. */
1823 				rcu_cleanup_dead_rnp(rnp);
1824 			}
1825 		}
1826 
1827 		/*
1828 		 * If all waited-on tasks from prior grace period are
1829 		 * done, and if all this rcu_node structure's CPUs are
1830 		 * still offline, propagate up the rcu_node tree and
1831 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1832 		 * rcu_node structure's CPUs has since come back online,
1833 		 * simply clear ->wait_blkd_tasks.
1834 		 */
1835 		if (rnp->wait_blkd_tasks &&
1836 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1837 			rnp->wait_blkd_tasks = false;
1838 			if (!rnp->qsmaskinit)
1839 				rcu_cleanup_dead_rnp(rnp);
1840 		}
1841 
1842 		raw_spin_unlock_rcu_node(rnp);
1843 		arch_spin_unlock(&rcu_state.ofl_lock);
1844 		local_irq_restore(flags);
1845 	}
1846 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1847 
1848 	/*
1849 	 * Set the quiescent-state-needed bits in all the rcu_node
1850 	 * structures for all currently online CPUs in breadth-first
1851 	 * order, starting from the root rcu_node structure, relying on the
1852 	 * layout of the tree within the rcu_state.node[] array.  Note that
1853 	 * other CPUs will access only the leaves of the hierarchy, thus
1854 	 * seeing that no grace period is in progress, at least until the
1855 	 * corresponding leaf node has been initialized.
1856 	 *
1857 	 * The grace period cannot complete until the initialization
1858 	 * process finishes, because this kthread handles both.
1859 	 */
1860 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1861 	rcu_for_each_node_breadth_first(rnp) {
1862 		rcu_gp_slow(gp_init_delay);
1863 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1864 		rdp = this_cpu_ptr(&rcu_data);
1865 		rcu_preempt_check_blocked_tasks(rnp);
1866 		rnp->qsmask = rnp->qsmaskinit;
1867 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1868 		if (rnp == rdp->mynode)
1869 			(void)__note_gp_changes(rnp, rdp);
1870 		rcu_preempt_boost_start_gp(rnp);
1871 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1872 					    rnp->level, rnp->grplo,
1873 					    rnp->grphi, rnp->qsmask);
1874 		/* Quiescent states for tasks on any now-offline CPUs. */
1875 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1876 		rnp->rcu_gp_init_mask = mask;
1877 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1878 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1879 		else
1880 			raw_spin_unlock_irq_rcu_node(rnp);
1881 		cond_resched_tasks_rcu_qs();
1882 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1883 	}
1884 
1885 	// If strict, make all CPUs aware of new grace period.
1886 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1887 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1888 
1889 	return true;
1890 }
1891 
1892 /*
1893  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1894  * time.
1895  */
1896 static bool rcu_gp_fqs_check_wake(int *gfp)
1897 {
1898 	struct rcu_node *rnp = rcu_get_root();
1899 
1900 	// If under overload conditions, force an immediate FQS scan.
1901 	if (*gfp & RCU_GP_FLAG_OVLD)
1902 		return true;
1903 
1904 	// Someone like call_rcu() requested a force-quiescent-state scan.
1905 	*gfp = READ_ONCE(rcu_state.gp_flags);
1906 	if (*gfp & RCU_GP_FLAG_FQS)
1907 		return true;
1908 
1909 	// The current grace period has completed.
1910 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1911 		return true;
1912 
1913 	return false;
1914 }
1915 
1916 /*
1917  * Do one round of quiescent-state forcing.
1918  */
1919 static void rcu_gp_fqs(bool first_time)
1920 {
1921 	struct rcu_node *rnp = rcu_get_root();
1922 
1923 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1924 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1925 	if (first_time) {
1926 		/* Collect dyntick-idle snapshots. */
1927 		force_qs_rnp(dyntick_save_progress_counter);
1928 	} else {
1929 		/* Handle dyntick-idle and offline CPUs. */
1930 		force_qs_rnp(rcu_implicit_dynticks_qs);
1931 	}
1932 	/* Clear flag to prevent immediate re-entry. */
1933 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1934 		raw_spin_lock_irq_rcu_node(rnp);
1935 		WRITE_ONCE(rcu_state.gp_flags,
1936 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1937 		raw_spin_unlock_irq_rcu_node(rnp);
1938 	}
1939 }
1940 
1941 /*
1942  * Loop doing repeated quiescent-state forcing until the grace period ends.
1943  */
1944 static noinline_for_stack void rcu_gp_fqs_loop(void)
1945 {
1946 	bool first_gp_fqs;
1947 	int gf = 0;
1948 	unsigned long j;
1949 	int ret;
1950 	struct rcu_node *rnp = rcu_get_root();
1951 
1952 	first_gp_fqs = true;
1953 	j = READ_ONCE(jiffies_till_first_fqs);
1954 	if (rcu_state.cbovld)
1955 		gf = RCU_GP_FLAG_OVLD;
1956 	ret = 0;
1957 	for (;;) {
1958 		if (!ret) {
1959 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1960 			/*
1961 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1962 			 * update; required for stall checks.
1963 			 */
1964 			smp_wmb();
1965 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1966 				   jiffies + (j ? 3 * j : 2));
1967 		}
1968 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1969 				       TPS("fqswait"));
1970 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1971 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1972 				 rcu_gp_fqs_check_wake(&gf), j);
1973 		rcu_gp_torture_wait();
1974 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1975 		/* Locking provides needed memory barriers. */
1976 		/* If grace period done, leave loop. */
1977 		if (!READ_ONCE(rnp->qsmask) &&
1978 		    !rcu_preempt_blocked_readers_cgp(rnp))
1979 			break;
1980 		/* If time for quiescent-state forcing, do it. */
1981 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1982 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1983 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1984 					       TPS("fqsstart"));
1985 			rcu_gp_fqs(first_gp_fqs);
1986 			gf = 0;
1987 			if (first_gp_fqs) {
1988 				first_gp_fqs = false;
1989 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1990 			}
1991 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1992 					       TPS("fqsend"));
1993 			cond_resched_tasks_rcu_qs();
1994 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1995 			ret = 0; /* Force full wait till next FQS. */
1996 			j = READ_ONCE(jiffies_till_next_fqs);
1997 		} else {
1998 			/* Deal with stray signal. */
1999 			cond_resched_tasks_rcu_qs();
2000 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2001 			WARN_ON(signal_pending(current));
2002 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2003 					       TPS("fqswaitsig"));
2004 			ret = 1; /* Keep old FQS timing. */
2005 			j = jiffies;
2006 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2007 				j = 1;
2008 			else
2009 				j = rcu_state.jiffies_force_qs - j;
2010 			gf = 0;
2011 		}
2012 	}
2013 }
2014 
2015 /*
2016  * Clean up after the old grace period.
2017  */
2018 static noinline void rcu_gp_cleanup(void)
2019 {
2020 	int cpu;
2021 	bool needgp = false;
2022 	unsigned long gp_duration;
2023 	unsigned long new_gp_seq;
2024 	bool offloaded;
2025 	struct rcu_data *rdp;
2026 	struct rcu_node *rnp = rcu_get_root();
2027 	struct swait_queue_head *sq;
2028 
2029 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2030 	raw_spin_lock_irq_rcu_node(rnp);
2031 	rcu_state.gp_end = jiffies;
2032 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2033 	if (gp_duration > rcu_state.gp_max)
2034 		rcu_state.gp_max = gp_duration;
2035 
2036 	/*
2037 	 * We know the grace period is complete, but to everyone else
2038 	 * it appears to still be ongoing.  But it is also the case
2039 	 * that to everyone else it looks like there is nothing that
2040 	 * they can do to advance the grace period.  It is therefore
2041 	 * safe for us to drop the lock in order to mark the grace
2042 	 * period as completed in all of the rcu_node structures.
2043 	 */
2044 	raw_spin_unlock_irq_rcu_node(rnp);
2045 
2046 	/*
2047 	 * Propagate new ->gp_seq value to rcu_node structures so that
2048 	 * other CPUs don't have to wait until the start of the next grace
2049 	 * period to process their callbacks.  This also avoids some nasty
2050 	 * RCU grace-period initialization races by forcing the end of
2051 	 * the current grace period to be completely recorded in all of
2052 	 * the rcu_node structures before the beginning of the next grace
2053 	 * period is recorded in any of the rcu_node structures.
2054 	 */
2055 	new_gp_seq = rcu_state.gp_seq;
2056 	rcu_seq_end(&new_gp_seq);
2057 	rcu_for_each_node_breadth_first(rnp) {
2058 		raw_spin_lock_irq_rcu_node(rnp);
2059 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2060 			dump_blkd_tasks(rnp, 10);
2061 		WARN_ON_ONCE(rnp->qsmask);
2062 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2063 		rdp = this_cpu_ptr(&rcu_data);
2064 		if (rnp == rdp->mynode)
2065 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2066 		/* smp_mb() provided by prior unlock-lock pair. */
2067 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2068 		// Reset overload indication for CPUs no longer overloaded
2069 		if (rcu_is_leaf_node(rnp))
2070 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2071 				rdp = per_cpu_ptr(&rcu_data, cpu);
2072 				check_cb_ovld_locked(rdp, rnp);
2073 			}
2074 		sq = rcu_nocb_gp_get(rnp);
2075 		raw_spin_unlock_irq_rcu_node(rnp);
2076 		rcu_nocb_gp_cleanup(sq);
2077 		cond_resched_tasks_rcu_qs();
2078 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2079 		rcu_gp_slow(gp_cleanup_delay);
2080 	}
2081 	rnp = rcu_get_root();
2082 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2083 
2084 	/* Declare grace period done, trace first to use old GP number. */
2085 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2086 	rcu_seq_end(&rcu_state.gp_seq);
2087 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2088 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2089 	/* Check for GP requests since above loop. */
2090 	rdp = this_cpu_ptr(&rcu_data);
2091 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2092 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2093 				  TPS("CleanupMore"));
2094 		needgp = true;
2095 	}
2096 	/* Advance CBs to reduce false positives below. */
2097 	offloaded = rcu_rdp_is_offloaded(rdp);
2098 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2099 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2100 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2101 		trace_rcu_grace_period(rcu_state.name,
2102 				       rcu_state.gp_seq,
2103 				       TPS("newreq"));
2104 	} else {
2105 		WRITE_ONCE(rcu_state.gp_flags,
2106 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2107 	}
2108 	raw_spin_unlock_irq_rcu_node(rnp);
2109 
2110 	// If strict, make all CPUs aware of the end of the old grace period.
2111 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2112 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2113 }
2114 
2115 /*
2116  * Body of kthread that handles grace periods.
2117  */
2118 static int __noreturn rcu_gp_kthread(void *unused)
2119 {
2120 	rcu_bind_gp_kthread();
2121 	for (;;) {
2122 
2123 		/* Handle grace-period start. */
2124 		for (;;) {
2125 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2126 					       TPS("reqwait"));
2127 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2128 			swait_event_idle_exclusive(rcu_state.gp_wq,
2129 					 READ_ONCE(rcu_state.gp_flags) &
2130 					 RCU_GP_FLAG_INIT);
2131 			rcu_gp_torture_wait();
2132 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2133 			/* Locking provides needed memory barrier. */
2134 			if (rcu_gp_init())
2135 				break;
2136 			cond_resched_tasks_rcu_qs();
2137 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2138 			WARN_ON(signal_pending(current));
2139 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2140 					       TPS("reqwaitsig"));
2141 		}
2142 
2143 		/* Handle quiescent-state forcing. */
2144 		rcu_gp_fqs_loop();
2145 
2146 		/* Handle grace-period end. */
2147 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2148 		rcu_gp_cleanup();
2149 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2150 	}
2151 }
2152 
2153 /*
2154  * Report a full set of quiescent states to the rcu_state data structure.
2155  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2156  * another grace period is required.  Whether we wake the grace-period
2157  * kthread or it awakens itself for the next round of quiescent-state
2158  * forcing, that kthread will clean up after the just-completed grace
2159  * period.  Note that the caller must hold rnp->lock, which is released
2160  * before return.
2161  */
2162 static void rcu_report_qs_rsp(unsigned long flags)
2163 	__releases(rcu_get_root()->lock)
2164 {
2165 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2166 	WARN_ON_ONCE(!rcu_gp_in_progress());
2167 	WRITE_ONCE(rcu_state.gp_flags,
2168 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2169 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2170 	rcu_gp_kthread_wake();
2171 }
2172 
2173 /*
2174  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2175  * Allows quiescent states for a group of CPUs to be reported at one go
2176  * to the specified rcu_node structure, though all the CPUs in the group
2177  * must be represented by the same rcu_node structure (which need not be a
2178  * leaf rcu_node structure, though it often will be).  The gps parameter
2179  * is the grace-period snapshot, which means that the quiescent states
2180  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2181  * must be held upon entry, and it is released before return.
2182  *
2183  * As a special case, if mask is zero, the bit-already-cleared check is
2184  * disabled.  This allows propagating quiescent state due to resumed tasks
2185  * during grace-period initialization.
2186  */
2187 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2188 			      unsigned long gps, unsigned long flags)
2189 	__releases(rnp->lock)
2190 {
2191 	unsigned long oldmask = 0;
2192 	struct rcu_node *rnp_c;
2193 
2194 	raw_lockdep_assert_held_rcu_node(rnp);
2195 
2196 	/* Walk up the rcu_node hierarchy. */
2197 	for (;;) {
2198 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2199 
2200 			/*
2201 			 * Our bit has already been cleared, or the
2202 			 * relevant grace period is already over, so done.
2203 			 */
2204 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2205 			return;
2206 		}
2207 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2208 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2209 			     rcu_preempt_blocked_readers_cgp(rnp));
2210 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2211 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2212 						 mask, rnp->qsmask, rnp->level,
2213 						 rnp->grplo, rnp->grphi,
2214 						 !!rnp->gp_tasks);
2215 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2216 
2217 			/* Other bits still set at this level, so done. */
2218 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2219 			return;
2220 		}
2221 		rnp->completedqs = rnp->gp_seq;
2222 		mask = rnp->grpmask;
2223 		if (rnp->parent == NULL) {
2224 
2225 			/* No more levels.  Exit loop holding root lock. */
2226 
2227 			break;
2228 		}
2229 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2230 		rnp_c = rnp;
2231 		rnp = rnp->parent;
2232 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2233 		oldmask = READ_ONCE(rnp_c->qsmask);
2234 	}
2235 
2236 	/*
2237 	 * Get here if we are the last CPU to pass through a quiescent
2238 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2239 	 * to clean up and start the next grace period if one is needed.
2240 	 */
2241 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2242 }
2243 
2244 /*
2245  * Record a quiescent state for all tasks that were previously queued
2246  * on the specified rcu_node structure and that were blocking the current
2247  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2248  * irqs disabled, and this lock is released upon return, but irqs remain
2249  * disabled.
2250  */
2251 static void __maybe_unused
2252 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2253 	__releases(rnp->lock)
2254 {
2255 	unsigned long gps;
2256 	unsigned long mask;
2257 	struct rcu_node *rnp_p;
2258 
2259 	raw_lockdep_assert_held_rcu_node(rnp);
2260 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2261 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2262 	    rnp->qsmask != 0) {
2263 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2264 		return;  /* Still need more quiescent states! */
2265 	}
2266 
2267 	rnp->completedqs = rnp->gp_seq;
2268 	rnp_p = rnp->parent;
2269 	if (rnp_p == NULL) {
2270 		/*
2271 		 * Only one rcu_node structure in the tree, so don't
2272 		 * try to report up to its nonexistent parent!
2273 		 */
2274 		rcu_report_qs_rsp(flags);
2275 		return;
2276 	}
2277 
2278 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2279 	gps = rnp->gp_seq;
2280 	mask = rnp->grpmask;
2281 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2282 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2283 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2284 }
2285 
2286 /*
2287  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2288  * structure.  This must be called from the specified CPU.
2289  */
2290 static void
2291 rcu_report_qs_rdp(struct rcu_data *rdp)
2292 {
2293 	unsigned long flags;
2294 	unsigned long mask;
2295 	bool needwake = false;
2296 	bool needacc = false;
2297 	struct rcu_node *rnp;
2298 
2299 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2300 	rnp = rdp->mynode;
2301 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2302 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2303 	    rdp->gpwrap) {
2304 
2305 		/*
2306 		 * The grace period in which this quiescent state was
2307 		 * recorded has ended, so don't report it upwards.
2308 		 * We will instead need a new quiescent state that lies
2309 		 * within the current grace period.
2310 		 */
2311 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2312 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2313 		return;
2314 	}
2315 	mask = rdp->grpmask;
2316 	rdp->core_needs_qs = false;
2317 	if ((rnp->qsmask & mask) == 0) {
2318 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2319 	} else {
2320 		/*
2321 		 * This GP can't end until cpu checks in, so all of our
2322 		 * callbacks can be processed during the next GP.
2323 		 *
2324 		 * NOCB kthreads have their own way to deal with that...
2325 		 */
2326 		if (!rcu_rdp_is_offloaded(rdp)) {
2327 			needwake = rcu_accelerate_cbs(rnp, rdp);
2328 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2329 			/*
2330 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2331 			 * if in the middle of a (de-)offloading process.
2332 			 */
2333 			needacc = true;
2334 		}
2335 
2336 		rcu_disable_urgency_upon_qs(rdp);
2337 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2338 		/* ^^^ Released rnp->lock */
2339 		if (needwake)
2340 			rcu_gp_kthread_wake();
2341 
2342 		if (needacc) {
2343 			rcu_nocb_lock_irqsave(rdp, flags);
2344 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2345 			rcu_nocb_unlock_irqrestore(rdp, flags);
2346 		}
2347 	}
2348 }
2349 
2350 /*
2351  * Check to see if there is a new grace period of which this CPU
2352  * is not yet aware, and if so, set up local rcu_data state for it.
2353  * Otherwise, see if this CPU has just passed through its first
2354  * quiescent state for this grace period, and record that fact if so.
2355  */
2356 static void
2357 rcu_check_quiescent_state(struct rcu_data *rdp)
2358 {
2359 	/* Check for grace-period ends and beginnings. */
2360 	note_gp_changes(rdp);
2361 
2362 	/*
2363 	 * Does this CPU still need to do its part for current grace period?
2364 	 * If no, return and let the other CPUs do their part as well.
2365 	 */
2366 	if (!rdp->core_needs_qs)
2367 		return;
2368 
2369 	/*
2370 	 * Was there a quiescent state since the beginning of the grace
2371 	 * period? If no, then exit and wait for the next call.
2372 	 */
2373 	if (rdp->cpu_no_qs.b.norm)
2374 		return;
2375 
2376 	/*
2377 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2378 	 * judge of that).
2379 	 */
2380 	rcu_report_qs_rdp(rdp);
2381 }
2382 
2383 /*
2384  * Near the end of the offline process.  Trace the fact that this CPU
2385  * is going offline.
2386  */
2387 int rcutree_dying_cpu(unsigned int cpu)
2388 {
2389 	bool blkd;
2390 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2391 	struct rcu_node *rnp = rdp->mynode;
2392 
2393 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2394 		return 0;
2395 
2396 	blkd = !!(rnp->qsmask & rdp->grpmask);
2397 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2398 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2399 	return 0;
2400 }
2401 
2402 /*
2403  * All CPUs for the specified rcu_node structure have gone offline,
2404  * and all tasks that were preempted within an RCU read-side critical
2405  * section while running on one of those CPUs have since exited their RCU
2406  * read-side critical section.  Some other CPU is reporting this fact with
2407  * the specified rcu_node structure's ->lock held and interrupts disabled.
2408  * This function therefore goes up the tree of rcu_node structures,
2409  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2410  * the leaf rcu_node structure's ->qsmaskinit field has already been
2411  * updated.
2412  *
2413  * This function does check that the specified rcu_node structure has
2414  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2415  * prematurely.  That said, invoking it after the fact will cost you
2416  * a needless lock acquisition.  So once it has done its work, don't
2417  * invoke it again.
2418  */
2419 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2420 {
2421 	long mask;
2422 	struct rcu_node *rnp = rnp_leaf;
2423 
2424 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2425 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2426 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2427 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2428 		return;
2429 	for (;;) {
2430 		mask = rnp->grpmask;
2431 		rnp = rnp->parent;
2432 		if (!rnp)
2433 			break;
2434 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2435 		rnp->qsmaskinit &= ~mask;
2436 		/* Between grace periods, so better already be zero! */
2437 		WARN_ON_ONCE(rnp->qsmask);
2438 		if (rnp->qsmaskinit) {
2439 			raw_spin_unlock_rcu_node(rnp);
2440 			/* irqs remain disabled. */
2441 			return;
2442 		}
2443 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2444 	}
2445 }
2446 
2447 /*
2448  * The CPU has been completely removed, and some other CPU is reporting
2449  * this fact from process context.  Do the remainder of the cleanup.
2450  * There can only be one CPU hotplug operation at a time, so no need for
2451  * explicit locking.
2452  */
2453 int rcutree_dead_cpu(unsigned int cpu)
2454 {
2455 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2456 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2457 
2458 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2459 		return 0;
2460 
2461 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2462 	/* Adjust any no-longer-needed kthreads. */
2463 	rcu_boost_kthread_setaffinity(rnp, -1);
2464 	// Stop-machine done, so allow nohz_full to disable tick.
2465 	tick_dep_clear(TICK_DEP_BIT_RCU);
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Invoke any RCU callbacks that have made it to the end of their grace
2471  * period.  Throttle as specified by rdp->blimit.
2472  */
2473 static void rcu_do_batch(struct rcu_data *rdp)
2474 {
2475 	int div;
2476 	bool __maybe_unused empty;
2477 	unsigned long flags;
2478 	struct rcu_head *rhp;
2479 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2480 	long bl, count = 0;
2481 	long pending, tlimit = 0;
2482 
2483 	/* If no callbacks are ready, just return. */
2484 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2485 		trace_rcu_batch_start(rcu_state.name,
2486 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2487 		trace_rcu_batch_end(rcu_state.name, 0,
2488 				    !rcu_segcblist_empty(&rdp->cblist),
2489 				    need_resched(), is_idle_task(current),
2490 				    rcu_is_callbacks_kthread());
2491 		return;
2492 	}
2493 
2494 	/*
2495 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2496 	 * races with call_rcu() from interrupt handlers.  Leave the
2497 	 * callback counts, as rcu_barrier() needs to be conservative.
2498 	 */
2499 	rcu_nocb_lock_irqsave(rdp, flags);
2500 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2501 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2502 	div = READ_ONCE(rcu_divisor);
2503 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2504 	bl = max(rdp->blimit, pending >> div);
2505 	if (in_serving_softirq() && unlikely(bl > 100)) {
2506 		long rrn = READ_ONCE(rcu_resched_ns);
2507 
2508 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2509 		tlimit = local_clock() + rrn;
2510 	}
2511 	trace_rcu_batch_start(rcu_state.name,
2512 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2513 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2514 	if (rcu_rdp_is_offloaded(rdp))
2515 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2516 
2517 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2518 	rcu_nocb_unlock_irqrestore(rdp, flags);
2519 
2520 	/* Invoke callbacks. */
2521 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2522 	rhp = rcu_cblist_dequeue(&rcl);
2523 
2524 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2525 		rcu_callback_t f;
2526 
2527 		count++;
2528 		debug_rcu_head_unqueue(rhp);
2529 
2530 		rcu_lock_acquire(&rcu_callback_map);
2531 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2532 
2533 		f = rhp->func;
2534 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2535 		f(rhp);
2536 
2537 		rcu_lock_release(&rcu_callback_map);
2538 
2539 		/*
2540 		 * Stop only if limit reached and CPU has something to do.
2541 		 */
2542 		if (in_serving_softirq()) {
2543 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2544 				break;
2545 			/*
2546 			 * Make sure we don't spend too much time here and deprive other
2547 			 * softirq vectors of CPU cycles.
2548 			 */
2549 			if (unlikely(tlimit)) {
2550 				/* only call local_clock() every 32 callbacks */
2551 				if (likely((count & 31) || local_clock() < tlimit))
2552 					continue;
2553 				/* Exceeded the time limit, so leave. */
2554 				break;
2555 			}
2556 		} else {
2557 			local_bh_enable();
2558 			lockdep_assert_irqs_enabled();
2559 			cond_resched_tasks_rcu_qs();
2560 			lockdep_assert_irqs_enabled();
2561 			local_bh_disable();
2562 		}
2563 	}
2564 
2565 	rcu_nocb_lock_irqsave(rdp, flags);
2566 	rdp->n_cbs_invoked += count;
2567 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2568 			    is_idle_task(current), rcu_is_callbacks_kthread());
2569 
2570 	/* Update counts and requeue any remaining callbacks. */
2571 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2572 	rcu_segcblist_add_len(&rdp->cblist, -count);
2573 
2574 	/* Reinstate batch limit if we have worked down the excess. */
2575 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2576 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2577 		rdp->blimit = blimit;
2578 
2579 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2580 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2581 		rdp->qlen_last_fqs_check = 0;
2582 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2583 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2584 		rdp->qlen_last_fqs_check = count;
2585 
2586 	/*
2587 	 * The following usually indicates a double call_rcu().  To track
2588 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2589 	 */
2590 	empty = rcu_segcblist_empty(&rdp->cblist);
2591 	WARN_ON_ONCE(count == 0 && !empty);
2592 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2593 		     count != 0 && empty);
2594 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2595 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2596 
2597 	rcu_nocb_unlock_irqrestore(rdp, flags);
2598 
2599 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2600 }
2601 
2602 /*
2603  * This function is invoked from each scheduling-clock interrupt,
2604  * and checks to see if this CPU is in a non-context-switch quiescent
2605  * state, for example, user mode or idle loop.  It also schedules RCU
2606  * core processing.  If the current grace period has gone on too long,
2607  * it will ask the scheduler to manufacture a context switch for the sole
2608  * purpose of providing the needed quiescent state.
2609  */
2610 void rcu_sched_clock_irq(int user)
2611 {
2612 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2613 	lockdep_assert_irqs_disabled();
2614 	raw_cpu_inc(rcu_data.ticks_this_gp);
2615 	/* The load-acquire pairs with the store-release setting to true. */
2616 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2617 		/* Idle and userspace execution already are quiescent states. */
2618 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2619 			set_tsk_need_resched(current);
2620 			set_preempt_need_resched();
2621 		}
2622 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2623 	}
2624 	rcu_flavor_sched_clock_irq(user);
2625 	if (rcu_pending(user))
2626 		invoke_rcu_core();
2627 	lockdep_assert_irqs_disabled();
2628 
2629 	trace_rcu_utilization(TPS("End scheduler-tick"));
2630 }
2631 
2632 /*
2633  * Scan the leaf rcu_node structures.  For each structure on which all
2634  * CPUs have reported a quiescent state and on which there are tasks
2635  * blocking the current grace period, initiate RCU priority boosting.
2636  * Otherwise, invoke the specified function to check dyntick state for
2637  * each CPU that has not yet reported a quiescent state.
2638  */
2639 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2640 {
2641 	int cpu;
2642 	unsigned long flags;
2643 	unsigned long mask;
2644 	struct rcu_data *rdp;
2645 	struct rcu_node *rnp;
2646 
2647 	rcu_state.cbovld = rcu_state.cbovldnext;
2648 	rcu_state.cbovldnext = false;
2649 	rcu_for_each_leaf_node(rnp) {
2650 		cond_resched_tasks_rcu_qs();
2651 		mask = 0;
2652 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2653 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2654 		if (rnp->qsmask == 0) {
2655 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2656 				/*
2657 				 * No point in scanning bits because they
2658 				 * are all zero.  But we might need to
2659 				 * priority-boost blocked readers.
2660 				 */
2661 				rcu_initiate_boost(rnp, flags);
2662 				/* rcu_initiate_boost() releases rnp->lock */
2663 				continue;
2664 			}
2665 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2666 			continue;
2667 		}
2668 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2669 			rdp = per_cpu_ptr(&rcu_data, cpu);
2670 			if (f(rdp)) {
2671 				mask |= rdp->grpmask;
2672 				rcu_disable_urgency_upon_qs(rdp);
2673 			}
2674 		}
2675 		if (mask != 0) {
2676 			/* Idle/offline CPUs, report (releases rnp->lock). */
2677 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2678 		} else {
2679 			/* Nothing to do here, so just drop the lock. */
2680 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2681 		}
2682 	}
2683 }
2684 
2685 /*
2686  * Force quiescent states on reluctant CPUs, and also detect which
2687  * CPUs are in dyntick-idle mode.
2688  */
2689 void rcu_force_quiescent_state(void)
2690 {
2691 	unsigned long flags;
2692 	bool ret;
2693 	struct rcu_node *rnp;
2694 	struct rcu_node *rnp_old = NULL;
2695 
2696 	/* Funnel through hierarchy to reduce memory contention. */
2697 	rnp = __this_cpu_read(rcu_data.mynode);
2698 	for (; rnp != NULL; rnp = rnp->parent) {
2699 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2700 		       !raw_spin_trylock(&rnp->fqslock);
2701 		if (rnp_old != NULL)
2702 			raw_spin_unlock(&rnp_old->fqslock);
2703 		if (ret)
2704 			return;
2705 		rnp_old = rnp;
2706 	}
2707 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2708 
2709 	/* Reached the root of the rcu_node tree, acquire lock. */
2710 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2711 	raw_spin_unlock(&rnp_old->fqslock);
2712 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2713 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2714 		return;  /* Someone beat us to it. */
2715 	}
2716 	WRITE_ONCE(rcu_state.gp_flags,
2717 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2718 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2719 	rcu_gp_kthread_wake();
2720 }
2721 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2722 
2723 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2724 // grace periods.
2725 static void strict_work_handler(struct work_struct *work)
2726 {
2727 	rcu_read_lock();
2728 	rcu_read_unlock();
2729 }
2730 
2731 /* Perform RCU core processing work for the current CPU.  */
2732 static __latent_entropy void rcu_core(void)
2733 {
2734 	unsigned long flags;
2735 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2736 	struct rcu_node *rnp = rdp->mynode;
2737 	/*
2738 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2739 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2740 	 * on this CPU and the below condition must be considered volatile.
2741 	 * However if we race with:
2742 	 *
2743 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2744 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2745 	 *                 call rcu_nocb_lock() if that happens.
2746 	 *
2747 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2748 	 *                 processing. This is fine because the early stage
2749 	 *                 of deoffloading invokes rcu_core() after setting
2750 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2751 	 *                 what could have been dismissed without the need to wait
2752 	 *                 for the next rcu_pending() check in the next jiffy.
2753 	 */
2754 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2755 
2756 	if (cpu_is_offline(smp_processor_id()))
2757 		return;
2758 	trace_rcu_utilization(TPS("Start RCU core"));
2759 	WARN_ON_ONCE(!rdp->beenonline);
2760 
2761 	/* Report any deferred quiescent states if preemption enabled. */
2762 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2763 		rcu_preempt_deferred_qs(current);
2764 	} else if (rcu_preempt_need_deferred_qs(current)) {
2765 		set_tsk_need_resched(current);
2766 		set_preempt_need_resched();
2767 	}
2768 
2769 	/* Update RCU state based on any recent quiescent states. */
2770 	rcu_check_quiescent_state(rdp);
2771 
2772 	/* No grace period and unregistered callbacks? */
2773 	if (!rcu_gp_in_progress() &&
2774 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2775 		rcu_nocb_lock_irqsave(rdp, flags);
2776 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2777 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2778 		rcu_nocb_unlock_irqrestore(rdp, flags);
2779 	}
2780 
2781 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2782 
2783 	/* If there are callbacks ready, invoke them. */
2784 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2785 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2786 		rcu_do_batch(rdp);
2787 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2788 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2789 			invoke_rcu_core();
2790 	}
2791 
2792 	/* Do any needed deferred wakeups of rcuo kthreads. */
2793 	do_nocb_deferred_wakeup(rdp);
2794 	trace_rcu_utilization(TPS("End RCU core"));
2795 
2796 	// If strict GPs, schedule an RCU reader in a clean environment.
2797 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2798 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2799 }
2800 
2801 static void rcu_core_si(struct softirq_action *h)
2802 {
2803 	rcu_core();
2804 }
2805 
2806 static void rcu_wake_cond(struct task_struct *t, int status)
2807 {
2808 	/*
2809 	 * If the thread is yielding, only wake it when this
2810 	 * is invoked from idle
2811 	 */
2812 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2813 		wake_up_process(t);
2814 }
2815 
2816 static void invoke_rcu_core_kthread(void)
2817 {
2818 	struct task_struct *t;
2819 	unsigned long flags;
2820 
2821 	local_irq_save(flags);
2822 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2823 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2824 	if (t != NULL && t != current)
2825 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2826 	local_irq_restore(flags);
2827 }
2828 
2829 /*
2830  * Wake up this CPU's rcuc kthread to do RCU core processing.
2831  */
2832 static void invoke_rcu_core(void)
2833 {
2834 	if (!cpu_online(smp_processor_id()))
2835 		return;
2836 	if (use_softirq)
2837 		raise_softirq(RCU_SOFTIRQ);
2838 	else
2839 		invoke_rcu_core_kthread();
2840 }
2841 
2842 static void rcu_cpu_kthread_park(unsigned int cpu)
2843 {
2844 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2845 }
2846 
2847 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2848 {
2849 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2850 }
2851 
2852 /*
2853  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2854  * the RCU softirq used in configurations of RCU that do not support RCU
2855  * priority boosting.
2856  */
2857 static void rcu_cpu_kthread(unsigned int cpu)
2858 {
2859 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2860 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2861 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2862 	int spincnt;
2863 
2864 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2865 	for (spincnt = 0; spincnt < 10; spincnt++) {
2866 		WRITE_ONCE(*j, jiffies);
2867 		local_bh_disable();
2868 		*statusp = RCU_KTHREAD_RUNNING;
2869 		local_irq_disable();
2870 		work = *workp;
2871 		*workp = 0;
2872 		local_irq_enable();
2873 		if (work)
2874 			rcu_core();
2875 		local_bh_enable();
2876 		if (*workp == 0) {
2877 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2878 			*statusp = RCU_KTHREAD_WAITING;
2879 			return;
2880 		}
2881 	}
2882 	*statusp = RCU_KTHREAD_YIELDING;
2883 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2884 	schedule_timeout_idle(2);
2885 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2886 	*statusp = RCU_KTHREAD_WAITING;
2887 	WRITE_ONCE(*j, jiffies);
2888 }
2889 
2890 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2891 	.store			= &rcu_data.rcu_cpu_kthread_task,
2892 	.thread_should_run	= rcu_cpu_kthread_should_run,
2893 	.thread_fn		= rcu_cpu_kthread,
2894 	.thread_comm		= "rcuc/%u",
2895 	.setup			= rcu_cpu_kthread_setup,
2896 	.park			= rcu_cpu_kthread_park,
2897 };
2898 
2899 /*
2900  * Spawn per-CPU RCU core processing kthreads.
2901  */
2902 static int __init rcu_spawn_core_kthreads(void)
2903 {
2904 	int cpu;
2905 
2906 	for_each_possible_cpu(cpu)
2907 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2908 	if (use_softirq)
2909 		return 0;
2910 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2911 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2912 	return 0;
2913 }
2914 
2915 /*
2916  * Handle any core-RCU processing required by a call_rcu() invocation.
2917  */
2918 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2919 			    unsigned long flags)
2920 {
2921 	/*
2922 	 * If called from an extended quiescent state, invoke the RCU
2923 	 * core in order to force a re-evaluation of RCU's idleness.
2924 	 */
2925 	if (!rcu_is_watching())
2926 		invoke_rcu_core();
2927 
2928 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2929 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2930 		return;
2931 
2932 	/*
2933 	 * Force the grace period if too many callbacks or too long waiting.
2934 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2935 	 * if some other CPU has recently done so.  Also, don't bother
2936 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2937 	 * is the only one waiting for a grace period to complete.
2938 	 */
2939 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2940 		     rdp->qlen_last_fqs_check + qhimark)) {
2941 
2942 		/* Are we ignoring a completed grace period? */
2943 		note_gp_changes(rdp);
2944 
2945 		/* Start a new grace period if one not already started. */
2946 		if (!rcu_gp_in_progress()) {
2947 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2948 		} else {
2949 			/* Give the grace period a kick. */
2950 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2951 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2952 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2953 				rcu_force_quiescent_state();
2954 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2955 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2956 		}
2957 	}
2958 }
2959 
2960 /*
2961  * RCU callback function to leak a callback.
2962  */
2963 static void rcu_leak_callback(struct rcu_head *rhp)
2964 {
2965 }
2966 
2967 /*
2968  * Check and if necessary update the leaf rcu_node structure's
2969  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2970  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2971  * structure's ->lock.
2972  */
2973 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2974 {
2975 	raw_lockdep_assert_held_rcu_node(rnp);
2976 	if (qovld_calc <= 0)
2977 		return; // Early boot and wildcard value set.
2978 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2979 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2980 	else
2981 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2982 }
2983 
2984 /*
2985  * Check and if necessary update the leaf rcu_node structure's
2986  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2987  * number of queued RCU callbacks.  No locks need be held, but the
2988  * caller must have disabled interrupts.
2989  *
2990  * Note that this function ignores the possibility that there are a lot
2991  * of callbacks all of which have already seen the end of their respective
2992  * grace periods.  This omission is due to the need for no-CBs CPUs to
2993  * be holding ->nocb_lock to do this check, which is too heavy for a
2994  * common-case operation.
2995  */
2996 static void check_cb_ovld(struct rcu_data *rdp)
2997 {
2998 	struct rcu_node *const rnp = rdp->mynode;
2999 
3000 	if (qovld_calc <= 0 ||
3001 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3002 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3003 		return; // Early boot wildcard value or already set correctly.
3004 	raw_spin_lock_rcu_node(rnp);
3005 	check_cb_ovld_locked(rdp, rnp);
3006 	raw_spin_unlock_rcu_node(rnp);
3007 }
3008 
3009 /**
3010  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3011  * @head: structure to be used for queueing the RCU updates.
3012  * @func: actual callback function to be invoked after the grace period
3013  *
3014  * The callback function will be invoked some time after a full grace
3015  * period elapses, in other words after all pre-existing RCU read-side
3016  * critical sections have completed.  However, the callback function
3017  * might well execute concurrently with RCU read-side critical sections
3018  * that started after call_rcu() was invoked.
3019  *
3020  * RCU read-side critical sections are delimited by rcu_read_lock()
3021  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3022  * v5.0 and later, regions of code across which interrupts, preemption,
3023  * or softirqs have been disabled also serve as RCU read-side critical
3024  * sections.  This includes hardware interrupt handlers, softirq handlers,
3025  * and NMI handlers.
3026  *
3027  * Note that all CPUs must agree that the grace period extended beyond
3028  * all pre-existing RCU read-side critical section.  On systems with more
3029  * than one CPU, this means that when "func()" is invoked, each CPU is
3030  * guaranteed to have executed a full memory barrier since the end of its
3031  * last RCU read-side critical section whose beginning preceded the call
3032  * to call_rcu().  It also means that each CPU executing an RCU read-side
3033  * critical section that continues beyond the start of "func()" must have
3034  * executed a memory barrier after the call_rcu() but before the beginning
3035  * of that RCU read-side critical section.  Note that these guarantees
3036  * include CPUs that are offline, idle, or executing in user mode, as
3037  * well as CPUs that are executing in the kernel.
3038  *
3039  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3040  * resulting RCU callback function "func()", then both CPU A and CPU B are
3041  * guaranteed to execute a full memory barrier during the time interval
3042  * between the call to call_rcu() and the invocation of "func()" -- even
3043  * if CPU A and CPU B are the same CPU (but again only if the system has
3044  * more than one CPU).
3045  *
3046  * Implementation of these memory-ordering guarantees is described here:
3047  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3048  */
3049 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3050 {
3051 	static atomic_t doublefrees;
3052 	unsigned long flags;
3053 	struct rcu_data *rdp;
3054 	bool was_alldone;
3055 
3056 	/* Misaligned rcu_head! */
3057 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3058 
3059 	if (debug_rcu_head_queue(head)) {
3060 		/*
3061 		 * Probable double call_rcu(), so leak the callback.
3062 		 * Use rcu:rcu_callback trace event to find the previous
3063 		 * time callback was passed to call_rcu().
3064 		 */
3065 		if (atomic_inc_return(&doublefrees) < 4) {
3066 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3067 			mem_dump_obj(head);
3068 		}
3069 		WRITE_ONCE(head->func, rcu_leak_callback);
3070 		return;
3071 	}
3072 	head->func = func;
3073 	head->next = NULL;
3074 	kasan_record_aux_stack_noalloc(head);
3075 	local_irq_save(flags);
3076 	rdp = this_cpu_ptr(&rcu_data);
3077 
3078 	/* Add the callback to our list. */
3079 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3080 		// This can trigger due to call_rcu() from offline CPU:
3081 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3082 		WARN_ON_ONCE(!rcu_is_watching());
3083 		// Very early boot, before rcu_init().  Initialize if needed
3084 		// and then drop through to queue the callback.
3085 		if (rcu_segcblist_empty(&rdp->cblist))
3086 			rcu_segcblist_init(&rdp->cblist);
3087 	}
3088 
3089 	check_cb_ovld(rdp);
3090 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3091 		return; // Enqueued onto ->nocb_bypass, so just leave.
3092 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3093 	rcu_segcblist_enqueue(&rdp->cblist, head);
3094 	if (__is_kvfree_rcu_offset((unsigned long)func))
3095 		trace_rcu_kvfree_callback(rcu_state.name, head,
3096 					 (unsigned long)func,
3097 					 rcu_segcblist_n_cbs(&rdp->cblist));
3098 	else
3099 		trace_rcu_callback(rcu_state.name, head,
3100 				   rcu_segcblist_n_cbs(&rdp->cblist));
3101 
3102 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3103 
3104 	/* Go handle any RCU core processing required. */
3105 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3106 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3107 	} else {
3108 		__call_rcu_core(rdp, head, flags);
3109 		local_irq_restore(flags);
3110 	}
3111 }
3112 EXPORT_SYMBOL_GPL(call_rcu);
3113 
3114 
3115 /* Maximum number of jiffies to wait before draining a batch. */
3116 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3117 #define KFREE_N_BATCHES 2
3118 #define FREE_N_CHANNELS 2
3119 
3120 /**
3121  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3122  * @nr_records: Number of active pointers in the array
3123  * @next: Next bulk object in the block chain
3124  * @records: Array of the kvfree_rcu() pointers
3125  */
3126 struct kvfree_rcu_bulk_data {
3127 	unsigned long nr_records;
3128 	struct kvfree_rcu_bulk_data *next;
3129 	void *records[];
3130 };
3131 
3132 /*
3133  * This macro defines how many entries the "records" array
3134  * will contain. It is based on the fact that the size of
3135  * kvfree_rcu_bulk_data structure becomes exactly one page.
3136  */
3137 #define KVFREE_BULK_MAX_ENTR \
3138 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3139 
3140 /**
3141  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3142  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3143  * @head_free: List of kfree_rcu() objects waiting for a grace period
3144  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3145  * @krcp: Pointer to @kfree_rcu_cpu structure
3146  */
3147 
3148 struct kfree_rcu_cpu_work {
3149 	struct rcu_work rcu_work;
3150 	struct rcu_head *head_free;
3151 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3152 	struct kfree_rcu_cpu *krcp;
3153 };
3154 
3155 /**
3156  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3157  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3158  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3159  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3160  * @lock: Synchronize access to this structure
3161  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3162  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3163  * @initialized: The @rcu_work fields have been initialized
3164  * @count: Number of objects for which GP not started
3165  * @bkvcache:
3166  *	A simple cache list that contains objects for reuse purpose.
3167  *	In order to save some per-cpu space the list is singular.
3168  *	Even though it is lockless an access has to be protected by the
3169  *	per-cpu lock.
3170  * @page_cache_work: A work to refill the cache when it is empty
3171  * @backoff_page_cache_fill: Delay cache refills
3172  * @work_in_progress: Indicates that page_cache_work is running
3173  * @hrtimer: A hrtimer for scheduling a page_cache_work
3174  * @nr_bkv_objs: number of allocated objects at @bkvcache.
3175  *
3176  * This is a per-CPU structure.  The reason that it is not included in
3177  * the rcu_data structure is to permit this code to be extracted from
3178  * the RCU files.  Such extraction could allow further optimization of
3179  * the interactions with the slab allocators.
3180  */
3181 struct kfree_rcu_cpu {
3182 	struct rcu_head *head;
3183 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3184 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3185 	raw_spinlock_t lock;
3186 	struct delayed_work monitor_work;
3187 	bool monitor_todo;
3188 	bool initialized;
3189 	int count;
3190 
3191 	struct delayed_work page_cache_work;
3192 	atomic_t backoff_page_cache_fill;
3193 	atomic_t work_in_progress;
3194 	struct hrtimer hrtimer;
3195 
3196 	struct llist_head bkvcache;
3197 	int nr_bkv_objs;
3198 };
3199 
3200 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3201 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3202 };
3203 
3204 static __always_inline void
3205 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3206 {
3207 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3208 	int i;
3209 
3210 	for (i = 0; i < bhead->nr_records; i++)
3211 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3212 #endif
3213 }
3214 
3215 static inline struct kfree_rcu_cpu *
3216 krc_this_cpu_lock(unsigned long *flags)
3217 {
3218 	struct kfree_rcu_cpu *krcp;
3219 
3220 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3221 	krcp = this_cpu_ptr(&krc);
3222 	raw_spin_lock(&krcp->lock);
3223 
3224 	return krcp;
3225 }
3226 
3227 static inline void
3228 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3229 {
3230 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3231 }
3232 
3233 static inline struct kvfree_rcu_bulk_data *
3234 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3235 {
3236 	if (!krcp->nr_bkv_objs)
3237 		return NULL;
3238 
3239 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3240 	return (struct kvfree_rcu_bulk_data *)
3241 		llist_del_first(&krcp->bkvcache);
3242 }
3243 
3244 static inline bool
3245 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3246 	struct kvfree_rcu_bulk_data *bnode)
3247 {
3248 	// Check the limit.
3249 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3250 		return false;
3251 
3252 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3253 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3254 	return true;
3255 }
3256 
3257 static int
3258 drain_page_cache(struct kfree_rcu_cpu *krcp)
3259 {
3260 	unsigned long flags;
3261 	struct llist_node *page_list, *pos, *n;
3262 	int freed = 0;
3263 
3264 	raw_spin_lock_irqsave(&krcp->lock, flags);
3265 	page_list = llist_del_all(&krcp->bkvcache);
3266 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3267 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3268 
3269 	llist_for_each_safe(pos, n, page_list) {
3270 		free_page((unsigned long)pos);
3271 		freed++;
3272 	}
3273 
3274 	return freed;
3275 }
3276 
3277 /*
3278  * This function is invoked in workqueue context after a grace period.
3279  * It frees all the objects queued on ->bkvhead_free or ->head_free.
3280  */
3281 static void kfree_rcu_work(struct work_struct *work)
3282 {
3283 	unsigned long flags;
3284 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3285 	struct rcu_head *head, *next;
3286 	struct kfree_rcu_cpu *krcp;
3287 	struct kfree_rcu_cpu_work *krwp;
3288 	int i, j;
3289 
3290 	krwp = container_of(to_rcu_work(work),
3291 			    struct kfree_rcu_cpu_work, rcu_work);
3292 	krcp = krwp->krcp;
3293 
3294 	raw_spin_lock_irqsave(&krcp->lock, flags);
3295 	// Channels 1 and 2.
3296 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3297 		bkvhead[i] = krwp->bkvhead_free[i];
3298 		krwp->bkvhead_free[i] = NULL;
3299 	}
3300 
3301 	// Channel 3.
3302 	head = krwp->head_free;
3303 	krwp->head_free = NULL;
3304 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3305 
3306 	// Handle the first two channels.
3307 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3308 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3309 			bnext = bkvhead[i]->next;
3310 			debug_rcu_bhead_unqueue(bkvhead[i]);
3311 
3312 			rcu_lock_acquire(&rcu_callback_map);
3313 			if (i == 0) { // kmalloc() / kfree().
3314 				trace_rcu_invoke_kfree_bulk_callback(
3315 					rcu_state.name, bkvhead[i]->nr_records,
3316 					bkvhead[i]->records);
3317 
3318 				kfree_bulk(bkvhead[i]->nr_records,
3319 					bkvhead[i]->records);
3320 			} else { // vmalloc() / vfree().
3321 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3322 					trace_rcu_invoke_kvfree_callback(
3323 						rcu_state.name,
3324 						bkvhead[i]->records[j], 0);
3325 
3326 					vfree(bkvhead[i]->records[j]);
3327 				}
3328 			}
3329 			rcu_lock_release(&rcu_callback_map);
3330 
3331 			raw_spin_lock_irqsave(&krcp->lock, flags);
3332 			if (put_cached_bnode(krcp, bkvhead[i]))
3333 				bkvhead[i] = NULL;
3334 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3335 
3336 			if (bkvhead[i])
3337 				free_page((unsigned long) bkvhead[i]);
3338 
3339 			cond_resched_tasks_rcu_qs();
3340 		}
3341 	}
3342 
3343 	/*
3344 	 * This is used when the "bulk" path can not be used for the
3345 	 * double-argument of kvfree_rcu().  This happens when the
3346 	 * page-cache is empty, which means that objects are instead
3347 	 * queued on a linked list through their rcu_head structures.
3348 	 * This list is named "Channel 3".
3349 	 */
3350 	for (; head; head = next) {
3351 		unsigned long offset = (unsigned long)head->func;
3352 		void *ptr = (void *)head - offset;
3353 
3354 		next = head->next;
3355 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3356 		rcu_lock_acquire(&rcu_callback_map);
3357 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3358 
3359 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3360 			kvfree(ptr);
3361 
3362 		rcu_lock_release(&rcu_callback_map);
3363 		cond_resched_tasks_rcu_qs();
3364 	}
3365 }
3366 
3367 /*
3368  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3369  */
3370 static void kfree_rcu_monitor(struct work_struct *work)
3371 {
3372 	struct kfree_rcu_cpu *krcp = container_of(work,
3373 		struct kfree_rcu_cpu, monitor_work.work);
3374 	unsigned long flags;
3375 	int i, j;
3376 
3377 	raw_spin_lock_irqsave(&krcp->lock, flags);
3378 
3379 	// Attempt to start a new batch.
3380 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3381 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3382 
3383 		// Try to detach bkvhead or head and attach it over any
3384 		// available corresponding free channel. It can be that
3385 		// a previous RCU batch is in progress, it means that
3386 		// immediately to queue another one is not possible so
3387 		// in that case the monitor work is rearmed.
3388 		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3389 			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3390 				(krcp->head && !krwp->head_free)) {
3391 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3392 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3393 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3394 				if (!krwp->bkvhead_free[j]) {
3395 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3396 					krcp->bkvhead[j] = NULL;
3397 				}
3398 			}
3399 
3400 			// Channel 3 corresponds to both SLAB and vmalloc
3401 			// objects queued on the linked list.
3402 			if (!krwp->head_free) {
3403 				krwp->head_free = krcp->head;
3404 				krcp->head = NULL;
3405 			}
3406 
3407 			WRITE_ONCE(krcp->count, 0);
3408 
3409 			// One work is per one batch, so there are three
3410 			// "free channels", the batch can handle. It can
3411 			// be that the work is in the pending state when
3412 			// channels have been detached following by each
3413 			// other.
3414 			queue_rcu_work(system_wq, &krwp->rcu_work);
3415 		}
3416 	}
3417 
3418 	// If there is nothing to detach, it means that our job is
3419 	// successfully done here. In case of having at least one
3420 	// of the channels that is still busy we should rearm the
3421 	// work to repeat an attempt. Because previous batches are
3422 	// still in progress.
3423 	if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3424 		krcp->monitor_todo = false;
3425 	else
3426 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3427 
3428 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3429 }
3430 
3431 static enum hrtimer_restart
3432 schedule_page_work_fn(struct hrtimer *t)
3433 {
3434 	struct kfree_rcu_cpu *krcp =
3435 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3436 
3437 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3438 	return HRTIMER_NORESTART;
3439 }
3440 
3441 static void fill_page_cache_func(struct work_struct *work)
3442 {
3443 	struct kvfree_rcu_bulk_data *bnode;
3444 	struct kfree_rcu_cpu *krcp =
3445 		container_of(work, struct kfree_rcu_cpu,
3446 			page_cache_work.work);
3447 	unsigned long flags;
3448 	int nr_pages;
3449 	bool pushed;
3450 	int i;
3451 
3452 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3453 		1 : rcu_min_cached_objs;
3454 
3455 	for (i = 0; i < nr_pages; i++) {
3456 		bnode = (struct kvfree_rcu_bulk_data *)
3457 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3458 
3459 		if (bnode) {
3460 			raw_spin_lock_irqsave(&krcp->lock, flags);
3461 			pushed = put_cached_bnode(krcp, bnode);
3462 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3463 
3464 			if (!pushed) {
3465 				free_page((unsigned long) bnode);
3466 				break;
3467 			}
3468 		}
3469 	}
3470 
3471 	atomic_set(&krcp->work_in_progress, 0);
3472 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3473 }
3474 
3475 static void
3476 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3477 {
3478 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3479 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3480 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3481 			queue_delayed_work(system_wq,
3482 				&krcp->page_cache_work,
3483 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3484 		} else {
3485 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3486 			krcp->hrtimer.function = schedule_page_work_fn;
3487 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3488 		}
3489 	}
3490 }
3491 
3492 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3493 // state specified by flags.  If can_alloc is true, the caller must
3494 // be schedulable and not be holding any locks or mutexes that might be
3495 // acquired by the memory allocator or anything that it might invoke.
3496 // Returns true if ptr was successfully recorded, else the caller must
3497 // use a fallback.
3498 static inline bool
3499 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3500 	unsigned long *flags, void *ptr, bool can_alloc)
3501 {
3502 	struct kvfree_rcu_bulk_data *bnode;
3503 	int idx;
3504 
3505 	*krcp = krc_this_cpu_lock(flags);
3506 	if (unlikely(!(*krcp)->initialized))
3507 		return false;
3508 
3509 	idx = !!is_vmalloc_addr(ptr);
3510 
3511 	/* Check if a new block is required. */
3512 	if (!(*krcp)->bkvhead[idx] ||
3513 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3514 		bnode = get_cached_bnode(*krcp);
3515 		if (!bnode && can_alloc) {
3516 			krc_this_cpu_unlock(*krcp, *flags);
3517 
3518 			// __GFP_NORETRY - allows a light-weight direct reclaim
3519 			// what is OK from minimizing of fallback hitting point of
3520 			// view. Apart of that it forbids any OOM invoking what is
3521 			// also beneficial since we are about to release memory soon.
3522 			//
3523 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3524 			// memory reserves. Please note we have a fallback path.
3525 			//
3526 			// __GFP_NOWARN - it is supposed that an allocation can
3527 			// be failed under low memory or high memory pressure
3528 			// scenarios.
3529 			bnode = (struct kvfree_rcu_bulk_data *)
3530 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3531 			*krcp = krc_this_cpu_lock(flags);
3532 		}
3533 
3534 		if (!bnode)
3535 			return false;
3536 
3537 		/* Initialize the new block. */
3538 		bnode->nr_records = 0;
3539 		bnode->next = (*krcp)->bkvhead[idx];
3540 
3541 		/* Attach it to the head. */
3542 		(*krcp)->bkvhead[idx] = bnode;
3543 	}
3544 
3545 	/* Finally insert. */
3546 	(*krcp)->bkvhead[idx]->records
3547 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3548 
3549 	return true;
3550 }
3551 
3552 /*
3553  * Queue a request for lazy invocation of the appropriate free routine
3554  * after a grace period.  Please note that three paths are maintained,
3555  * two for the common case using arrays of pointers and a third one that
3556  * is used only when the main paths cannot be used, for example, due to
3557  * memory pressure.
3558  *
3559  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3560  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3561  * be free'd in workqueue context. This allows us to: batch requests together to
3562  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3563  */
3564 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3565 {
3566 	unsigned long flags;
3567 	struct kfree_rcu_cpu *krcp;
3568 	bool success;
3569 	void *ptr;
3570 
3571 	if (head) {
3572 		ptr = (void *) head - (unsigned long) func;
3573 	} else {
3574 		/*
3575 		 * Please note there is a limitation for the head-less
3576 		 * variant, that is why there is a clear rule for such
3577 		 * objects: it can be used from might_sleep() context
3578 		 * only. For other places please embed an rcu_head to
3579 		 * your data.
3580 		 */
3581 		might_sleep();
3582 		ptr = (unsigned long *) func;
3583 	}
3584 
3585 	// Queue the object but don't yet schedule the batch.
3586 	if (debug_rcu_head_queue(ptr)) {
3587 		// Probable double kfree_rcu(), just leak.
3588 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3589 			  __func__, head);
3590 
3591 		// Mark as success and leave.
3592 		return;
3593 	}
3594 
3595 	kasan_record_aux_stack_noalloc(ptr);
3596 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3597 	if (!success) {
3598 		run_page_cache_worker(krcp);
3599 
3600 		if (head == NULL)
3601 			// Inline if kvfree_rcu(one_arg) call.
3602 			goto unlock_return;
3603 
3604 		head->func = func;
3605 		head->next = krcp->head;
3606 		krcp->head = head;
3607 		success = true;
3608 	}
3609 
3610 	WRITE_ONCE(krcp->count, krcp->count + 1);
3611 
3612 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3613 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3614 	    !krcp->monitor_todo) {
3615 		krcp->monitor_todo = true;
3616 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3617 	}
3618 
3619 unlock_return:
3620 	krc_this_cpu_unlock(krcp, flags);
3621 
3622 	/*
3623 	 * Inline kvfree() after synchronize_rcu(). We can do
3624 	 * it from might_sleep() context only, so the current
3625 	 * CPU can pass the QS state.
3626 	 */
3627 	if (!success) {
3628 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3629 		synchronize_rcu();
3630 		kvfree(ptr);
3631 	}
3632 }
3633 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3634 
3635 static unsigned long
3636 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3637 {
3638 	int cpu;
3639 	unsigned long count = 0;
3640 
3641 	/* Snapshot count of all CPUs */
3642 	for_each_possible_cpu(cpu) {
3643 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3644 
3645 		count += READ_ONCE(krcp->count);
3646 		count += READ_ONCE(krcp->nr_bkv_objs);
3647 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3648 	}
3649 
3650 	return count;
3651 }
3652 
3653 static unsigned long
3654 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3655 {
3656 	int cpu, freed = 0;
3657 
3658 	for_each_possible_cpu(cpu) {
3659 		int count;
3660 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3661 
3662 		count = krcp->count;
3663 		count += drain_page_cache(krcp);
3664 		kfree_rcu_monitor(&krcp->monitor_work.work);
3665 
3666 		sc->nr_to_scan -= count;
3667 		freed += count;
3668 
3669 		if (sc->nr_to_scan <= 0)
3670 			break;
3671 	}
3672 
3673 	return freed == 0 ? SHRINK_STOP : freed;
3674 }
3675 
3676 static struct shrinker kfree_rcu_shrinker = {
3677 	.count_objects = kfree_rcu_shrink_count,
3678 	.scan_objects = kfree_rcu_shrink_scan,
3679 	.batch = 0,
3680 	.seeks = DEFAULT_SEEKS,
3681 };
3682 
3683 void __init kfree_rcu_scheduler_running(void)
3684 {
3685 	int cpu;
3686 	unsigned long flags;
3687 
3688 	for_each_possible_cpu(cpu) {
3689 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3690 
3691 		raw_spin_lock_irqsave(&krcp->lock, flags);
3692 		if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3693 				krcp->monitor_todo) {
3694 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3695 			continue;
3696 		}
3697 		krcp->monitor_todo = true;
3698 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3699 					 KFREE_DRAIN_JIFFIES);
3700 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3701 	}
3702 }
3703 
3704 /*
3705  * During early boot, any blocking grace-period wait automatically
3706  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3707  *
3708  * However, because a context switch is a grace period for !PREEMPTION, any
3709  * blocking grace-period wait automatically implies a grace period if
3710  * there is only one CPU online at any point time during execution of
3711  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3712  * occasionally incorrectly indicate that there are multiple CPUs online
3713  * when there was in fact only one the whole time, as this just adds some
3714  * overhead: RCU still operates correctly.
3715  */
3716 static int rcu_blocking_is_gp(void)
3717 {
3718 	int ret;
3719 
3720 	if (IS_ENABLED(CONFIG_PREEMPTION))
3721 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3722 	might_sleep();  /* Check for RCU read-side critical section. */
3723 	preempt_disable();
3724 	/*
3725 	 * If the rcu_state.n_online_cpus counter is equal to one,
3726 	 * there is only one CPU, and that CPU sees all prior accesses
3727 	 * made by any CPU that was online at the time of its access.
3728 	 * Furthermore, if this counter is equal to one, its value cannot
3729 	 * change until after the preempt_enable() below.
3730 	 *
3731 	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3732 	 * all later CPUs (both this one and any that come online later
3733 	 * on) are guaranteed to see all accesses prior to this point
3734 	 * in the code, without the need for additional memory barriers.
3735 	 * Those memory barriers are provided by CPU-hotplug code.
3736 	 */
3737 	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3738 	preempt_enable();
3739 	return ret;
3740 }
3741 
3742 /**
3743  * synchronize_rcu - wait until a grace period has elapsed.
3744  *
3745  * Control will return to the caller some time after a full grace
3746  * period has elapsed, in other words after all currently executing RCU
3747  * read-side critical sections have completed.  Note, however, that
3748  * upon return from synchronize_rcu(), the caller might well be executing
3749  * concurrently with new RCU read-side critical sections that began while
3750  * synchronize_rcu() was waiting.
3751  *
3752  * RCU read-side critical sections are delimited by rcu_read_lock()
3753  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3754  * v5.0 and later, regions of code across which interrupts, preemption,
3755  * or softirqs have been disabled also serve as RCU read-side critical
3756  * sections.  This includes hardware interrupt handlers, softirq handlers,
3757  * and NMI handlers.
3758  *
3759  * Note that this guarantee implies further memory-ordering guarantees.
3760  * On systems with more than one CPU, when synchronize_rcu() returns,
3761  * each CPU is guaranteed to have executed a full memory barrier since
3762  * the end of its last RCU read-side critical section whose beginning
3763  * preceded the call to synchronize_rcu().  In addition, each CPU having
3764  * an RCU read-side critical section that extends beyond the return from
3765  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3766  * after the beginning of synchronize_rcu() and before the beginning of
3767  * that RCU read-side critical section.  Note that these guarantees include
3768  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3769  * that are executing in the kernel.
3770  *
3771  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3772  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3773  * to have executed a full memory barrier during the execution of
3774  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3775  * again only if the system has more than one CPU).
3776  *
3777  * Implementation of these memory-ordering guarantees is described here:
3778  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3779  */
3780 void synchronize_rcu(void)
3781 {
3782 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3783 			 lock_is_held(&rcu_lock_map) ||
3784 			 lock_is_held(&rcu_sched_lock_map),
3785 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3786 	if (rcu_blocking_is_gp())
3787 		return;  // Context allows vacuous grace periods.
3788 	if (rcu_gp_is_expedited())
3789 		synchronize_rcu_expedited();
3790 	else
3791 		wait_rcu_gp(call_rcu);
3792 }
3793 EXPORT_SYMBOL_GPL(synchronize_rcu);
3794 
3795 /**
3796  * get_state_synchronize_rcu - Snapshot current RCU state
3797  *
3798  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3799  * or poll_state_synchronize_rcu() to determine whether or not a full
3800  * grace period has elapsed in the meantime.
3801  */
3802 unsigned long get_state_synchronize_rcu(void)
3803 {
3804 	/*
3805 	 * Any prior manipulation of RCU-protected data must happen
3806 	 * before the load from ->gp_seq.
3807 	 */
3808 	smp_mb();  /* ^^^ */
3809 	return rcu_seq_snap(&rcu_state.gp_seq);
3810 }
3811 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3812 
3813 /**
3814  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3815  *
3816  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3817  * or poll_state_synchronize_rcu() to determine whether or not a full
3818  * grace period has elapsed in the meantime.  If the needed grace period
3819  * is not already slated to start, notifies RCU core of the need for that
3820  * grace period.
3821  *
3822  * Interrupts must be enabled for the case where it is necessary to awaken
3823  * the grace-period kthread.
3824  */
3825 unsigned long start_poll_synchronize_rcu(void)
3826 {
3827 	unsigned long flags;
3828 	unsigned long gp_seq = get_state_synchronize_rcu();
3829 	bool needwake;
3830 	struct rcu_data *rdp;
3831 	struct rcu_node *rnp;
3832 
3833 	lockdep_assert_irqs_enabled();
3834 	local_irq_save(flags);
3835 	rdp = this_cpu_ptr(&rcu_data);
3836 	rnp = rdp->mynode;
3837 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3838 	needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3839 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3840 	if (needwake)
3841 		rcu_gp_kthread_wake();
3842 	return gp_seq;
3843 }
3844 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3845 
3846 /**
3847  * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3848  *
3849  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3850  *
3851  * If a full RCU grace period has elapsed since the earlier call from
3852  * which oldstate was obtained, return @true, otherwise return @false.
3853  * If @false is returned, it is the caller's responsibility to invoke this
3854  * function later on until it does return @true.  Alternatively, the caller
3855  * can explicitly wait for a grace period, for example, by passing @oldstate
3856  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3857  *
3858  * Yes, this function does not take counter wrap into account.
3859  * But counter wrap is harmless.  If the counter wraps, we have waited for
3860  * more than 2 billion grace periods (and way more on a 64-bit system!).
3861  * Those needing to keep oldstate values for very long time periods
3862  * (many hours even on 32-bit systems) should check them occasionally
3863  * and either refresh them or set a flag indicating that the grace period
3864  * has completed.
3865  *
3866  * This function provides the same memory-ordering guarantees that
3867  * would be provided by a synchronize_rcu() that was invoked at the call
3868  * to the function that provided @oldstate, and that returned at the end
3869  * of this function.
3870  */
3871 bool poll_state_synchronize_rcu(unsigned long oldstate)
3872 {
3873 	if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3874 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3875 		return true;
3876 	}
3877 	return false;
3878 }
3879 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3880 
3881 /**
3882  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3883  *
3884  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3885  *
3886  * If a full RCU grace period has elapsed since the earlier call to
3887  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3888  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3889  *
3890  * Yes, this function does not take counter wrap into account.  But
3891  * counter wrap is harmless.  If the counter wraps, we have waited for
3892  * more than 2 billion grace periods (and way more on a 64-bit system!),
3893  * so waiting for one additional grace period should be just fine.
3894  *
3895  * This function provides the same memory-ordering guarantees that
3896  * would be provided by a synchronize_rcu() that was invoked at the call
3897  * to the function that provided @oldstate, and that returned at the end
3898  * of this function.
3899  */
3900 void cond_synchronize_rcu(unsigned long oldstate)
3901 {
3902 	if (!poll_state_synchronize_rcu(oldstate))
3903 		synchronize_rcu();
3904 }
3905 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3906 
3907 /*
3908  * Check to see if there is any immediate RCU-related work to be done by
3909  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3910  * in order of increasing expense: checks that can be carried out against
3911  * CPU-local state are performed first.  However, we must check for CPU
3912  * stalls first, else we might not get a chance.
3913  */
3914 static int rcu_pending(int user)
3915 {
3916 	bool gp_in_progress;
3917 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3918 	struct rcu_node *rnp = rdp->mynode;
3919 
3920 	lockdep_assert_irqs_disabled();
3921 
3922 	/* Check for CPU stalls, if enabled. */
3923 	check_cpu_stall(rdp);
3924 
3925 	/* Does this CPU need a deferred NOCB wakeup? */
3926 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3927 		return 1;
3928 
3929 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3930 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3931 		return 0;
3932 
3933 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3934 	gp_in_progress = rcu_gp_in_progress();
3935 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3936 		return 1;
3937 
3938 	/* Does this CPU have callbacks ready to invoke? */
3939 	if (!rcu_rdp_is_offloaded(rdp) &&
3940 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3941 		return 1;
3942 
3943 	/* Has RCU gone idle with this CPU needing another grace period? */
3944 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3945 	    !rcu_rdp_is_offloaded(rdp) &&
3946 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3947 		return 1;
3948 
3949 	/* Have RCU grace period completed or started?  */
3950 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3951 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3952 		return 1;
3953 
3954 	/* nothing to do */
3955 	return 0;
3956 }
3957 
3958 /*
3959  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3960  * the compiler is expected to optimize this away.
3961  */
3962 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3963 {
3964 	trace_rcu_barrier(rcu_state.name, s, cpu,
3965 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3966 }
3967 
3968 /*
3969  * RCU callback function for rcu_barrier().  If we are last, wake
3970  * up the task executing rcu_barrier().
3971  *
3972  * Note that the value of rcu_state.barrier_sequence must be captured
3973  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3974  * other CPUs might count the value down to zero before this CPU gets
3975  * around to invoking rcu_barrier_trace(), which might result in bogus
3976  * data from the next instance of rcu_barrier().
3977  */
3978 static void rcu_barrier_callback(struct rcu_head *rhp)
3979 {
3980 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3981 
3982 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3983 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3984 		complete(&rcu_state.barrier_completion);
3985 	} else {
3986 		rcu_barrier_trace(TPS("CB"), -1, s);
3987 	}
3988 }
3989 
3990 /*
3991  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3992  */
3993 static void rcu_barrier_entrain(struct rcu_data *rdp)
3994 {
3995 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3996 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3997 
3998 	lockdep_assert_held(&rcu_state.barrier_lock);
3999 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4000 		return;
4001 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4002 	rdp->barrier_head.func = rcu_barrier_callback;
4003 	debug_rcu_head_queue(&rdp->barrier_head);
4004 	rcu_nocb_lock(rdp);
4005 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
4006 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4007 		atomic_inc(&rcu_state.barrier_cpu_count);
4008 	} else {
4009 		debug_rcu_head_unqueue(&rdp->barrier_head);
4010 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4011 	}
4012 	rcu_nocb_unlock(rdp);
4013 	smp_store_release(&rdp->barrier_seq_snap, gseq);
4014 }
4015 
4016 /*
4017  * Called with preemption disabled, and from cross-cpu IRQ context.
4018  */
4019 static void rcu_barrier_handler(void *cpu_in)
4020 {
4021 	uintptr_t cpu = (uintptr_t)cpu_in;
4022 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4023 
4024 	lockdep_assert_irqs_disabled();
4025 	WARN_ON_ONCE(cpu != rdp->cpu);
4026 	WARN_ON_ONCE(cpu != smp_processor_id());
4027 	raw_spin_lock(&rcu_state.barrier_lock);
4028 	rcu_barrier_entrain(rdp);
4029 	raw_spin_unlock(&rcu_state.barrier_lock);
4030 }
4031 
4032 /**
4033  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4034  *
4035  * Note that this primitive does not necessarily wait for an RCU grace period
4036  * to complete.  For example, if there are no RCU callbacks queued anywhere
4037  * in the system, then rcu_barrier() is within its rights to return
4038  * immediately, without waiting for anything, much less an RCU grace period.
4039  */
4040 void rcu_barrier(void)
4041 {
4042 	uintptr_t cpu;
4043 	unsigned long flags;
4044 	unsigned long gseq;
4045 	struct rcu_data *rdp;
4046 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4047 
4048 	rcu_barrier_trace(TPS("Begin"), -1, s);
4049 
4050 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4051 	mutex_lock(&rcu_state.barrier_mutex);
4052 
4053 	/* Did someone else do our work for us? */
4054 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4055 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4056 		smp_mb(); /* caller's subsequent code after above check. */
4057 		mutex_unlock(&rcu_state.barrier_mutex);
4058 		return;
4059 	}
4060 
4061 	/* Mark the start of the barrier operation. */
4062 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4063 	rcu_seq_start(&rcu_state.barrier_sequence);
4064 	gseq = rcu_state.barrier_sequence;
4065 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4066 
4067 	/*
4068 	 * Initialize the count to two rather than to zero in order
4069 	 * to avoid a too-soon return to zero in case of an immediate
4070 	 * invocation of the just-enqueued callback (or preemption of
4071 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4072 	 * offline non-offloaded CPU has callbacks queued.
4073 	 */
4074 	init_completion(&rcu_state.barrier_completion);
4075 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4076 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4077 
4078 	/*
4079 	 * Force each CPU with callbacks to register a new callback.
4080 	 * When that callback is invoked, we will know that all of the
4081 	 * corresponding CPU's preceding callbacks have been invoked.
4082 	 */
4083 	for_each_possible_cpu(cpu) {
4084 		rdp = per_cpu_ptr(&rcu_data, cpu);
4085 retry:
4086 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4087 			continue;
4088 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4089 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4090 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4091 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4092 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4093 			continue;
4094 		}
4095 		if (!rcu_rdp_cpu_online(rdp)) {
4096 			rcu_barrier_entrain(rdp);
4097 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4098 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4099 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4100 			continue;
4101 		}
4102 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4103 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4104 			schedule_timeout_uninterruptible(1);
4105 			goto retry;
4106 		}
4107 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4108 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4109 	}
4110 
4111 	/*
4112 	 * Now that we have an rcu_barrier_callback() callback on each
4113 	 * CPU, and thus each counted, remove the initial count.
4114 	 */
4115 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4116 		complete(&rcu_state.barrier_completion);
4117 
4118 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4119 	wait_for_completion(&rcu_state.barrier_completion);
4120 
4121 	/* Mark the end of the barrier operation. */
4122 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4123 	rcu_seq_end(&rcu_state.barrier_sequence);
4124 	gseq = rcu_state.barrier_sequence;
4125 	for_each_possible_cpu(cpu) {
4126 		rdp = per_cpu_ptr(&rcu_data, cpu);
4127 
4128 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4129 	}
4130 
4131 	/* Other rcu_barrier() invocations can now safely proceed. */
4132 	mutex_unlock(&rcu_state.barrier_mutex);
4133 }
4134 EXPORT_SYMBOL_GPL(rcu_barrier);
4135 
4136 /*
4137  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4138  * first CPU in a given leaf rcu_node structure coming online.  The caller
4139  * must hold the corresponding leaf rcu_node ->lock with interrupts
4140  * disabled.
4141  */
4142 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4143 {
4144 	long mask;
4145 	long oldmask;
4146 	struct rcu_node *rnp = rnp_leaf;
4147 
4148 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4149 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4150 	for (;;) {
4151 		mask = rnp->grpmask;
4152 		rnp = rnp->parent;
4153 		if (rnp == NULL)
4154 			return;
4155 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4156 		oldmask = rnp->qsmaskinit;
4157 		rnp->qsmaskinit |= mask;
4158 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4159 		if (oldmask)
4160 			return;
4161 	}
4162 }
4163 
4164 /*
4165  * Do boot-time initialization of a CPU's per-CPU RCU data.
4166  */
4167 static void __init
4168 rcu_boot_init_percpu_data(int cpu)
4169 {
4170 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4171 
4172 	/* Set up local state, ensuring consistent view of global state. */
4173 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4174 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4175 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4176 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4177 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4178 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4179 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4180 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4181 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4182 	rdp->cpu = cpu;
4183 	rcu_boot_init_nocb_percpu_data(rdp);
4184 }
4185 
4186 /*
4187  * Invoked early in the CPU-online process, when pretty much all services
4188  * are available.  The incoming CPU is not present.
4189  *
4190  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4191  * offline event can be happening at a given time.  Note also that we can
4192  * accept some slop in the rsp->gp_seq access due to the fact that this
4193  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4194  * And any offloaded callbacks are being numbered elsewhere.
4195  */
4196 int rcutree_prepare_cpu(unsigned int cpu)
4197 {
4198 	unsigned long flags;
4199 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4200 	struct rcu_node *rnp = rcu_get_root();
4201 
4202 	/* Set up local state, ensuring consistent view of global state. */
4203 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4204 	rdp->qlen_last_fqs_check = 0;
4205 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4206 	rdp->blimit = blimit;
4207 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4208 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4209 
4210 	/*
4211 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4212 	 * (re-)initialized.
4213 	 */
4214 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4215 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4216 
4217 	/*
4218 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4219 	 * propagation up the rcu_node tree will happen at the beginning
4220 	 * of the next grace period.
4221 	 */
4222 	rnp = rdp->mynode;
4223 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4224 	rdp->beenonline = true;	 /* We have now been online. */
4225 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4226 	rdp->gp_seq_needed = rdp->gp_seq;
4227 	rdp->cpu_no_qs.b.norm = true;
4228 	rdp->core_needs_qs = false;
4229 	rdp->rcu_iw_pending = false;
4230 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4231 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4232 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4233 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4234 	rcu_spawn_one_boost_kthread(rnp);
4235 	rcu_spawn_cpu_nocb_kthread(cpu);
4236 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4237 
4238 	return 0;
4239 }
4240 
4241 /*
4242  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4243  */
4244 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4245 {
4246 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4247 
4248 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4249 }
4250 
4251 /*
4252  * Near the end of the CPU-online process.  Pretty much all services
4253  * enabled, and the CPU is now very much alive.
4254  */
4255 int rcutree_online_cpu(unsigned int cpu)
4256 {
4257 	unsigned long flags;
4258 	struct rcu_data *rdp;
4259 	struct rcu_node *rnp;
4260 
4261 	rdp = per_cpu_ptr(&rcu_data, cpu);
4262 	rnp = rdp->mynode;
4263 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4264 	rnp->ffmask |= rdp->grpmask;
4265 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4266 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4267 		return 0; /* Too early in boot for scheduler work. */
4268 	sync_sched_exp_online_cleanup(cpu);
4269 	rcutree_affinity_setting(cpu, -1);
4270 
4271 	// Stop-machine done, so allow nohz_full to disable tick.
4272 	tick_dep_clear(TICK_DEP_BIT_RCU);
4273 	return 0;
4274 }
4275 
4276 /*
4277  * Near the beginning of the process.  The CPU is still very much alive
4278  * with pretty much all services enabled.
4279  */
4280 int rcutree_offline_cpu(unsigned int cpu)
4281 {
4282 	unsigned long flags;
4283 	struct rcu_data *rdp;
4284 	struct rcu_node *rnp;
4285 
4286 	rdp = per_cpu_ptr(&rcu_data, cpu);
4287 	rnp = rdp->mynode;
4288 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4289 	rnp->ffmask &= ~rdp->grpmask;
4290 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4291 
4292 	rcutree_affinity_setting(cpu, cpu);
4293 
4294 	// nohz_full CPUs need the tick for stop-machine to work quickly
4295 	tick_dep_set(TICK_DEP_BIT_RCU);
4296 	return 0;
4297 }
4298 
4299 /*
4300  * Mark the specified CPU as being online so that subsequent grace periods
4301  * (both expedited and normal) will wait on it.  Note that this means that
4302  * incoming CPUs are not allowed to use RCU read-side critical sections
4303  * until this function is called.  Failing to observe this restriction
4304  * will result in lockdep splats.
4305  *
4306  * Note that this function is special in that it is invoked directly
4307  * from the incoming CPU rather than from the cpuhp_step mechanism.
4308  * This is because this function must be invoked at a precise location.
4309  */
4310 void rcu_cpu_starting(unsigned int cpu)
4311 {
4312 	unsigned long flags;
4313 	unsigned long mask;
4314 	struct rcu_data *rdp;
4315 	struct rcu_node *rnp;
4316 	bool newcpu;
4317 
4318 	rdp = per_cpu_ptr(&rcu_data, cpu);
4319 	if (rdp->cpu_started)
4320 		return;
4321 	rdp->cpu_started = true;
4322 
4323 	rnp = rdp->mynode;
4324 	mask = rdp->grpmask;
4325 	local_irq_save(flags);
4326 	arch_spin_lock(&rcu_state.ofl_lock);
4327 	rcu_dynticks_eqs_online();
4328 	raw_spin_lock(&rcu_state.barrier_lock);
4329 	raw_spin_lock_rcu_node(rnp);
4330 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4331 	raw_spin_unlock(&rcu_state.barrier_lock);
4332 	newcpu = !(rnp->expmaskinitnext & mask);
4333 	rnp->expmaskinitnext |= mask;
4334 	/* Allow lockless access for expedited grace periods. */
4335 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4336 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4337 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4338 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4339 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4340 
4341 	/* An incoming CPU should never be blocking a grace period. */
4342 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4343 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4344 		unsigned long flags2;
4345 
4346 		local_irq_save(flags2);
4347 		rcu_disable_urgency_upon_qs(rdp);
4348 		/* Report QS -after- changing ->qsmaskinitnext! */
4349 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4350 	} else {
4351 		raw_spin_unlock_rcu_node(rnp);
4352 	}
4353 	arch_spin_unlock(&rcu_state.ofl_lock);
4354 	local_irq_restore(flags);
4355 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4356 }
4357 
4358 /*
4359  * The outgoing function has no further need of RCU, so remove it from
4360  * the rcu_node tree's ->qsmaskinitnext bit masks.
4361  *
4362  * Note that this function is special in that it is invoked directly
4363  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4364  * This is because this function must be invoked at a precise location.
4365  */
4366 void rcu_report_dead(unsigned int cpu)
4367 {
4368 	unsigned long flags, seq_flags;
4369 	unsigned long mask;
4370 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4371 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4372 
4373 	// Do any dangling deferred wakeups.
4374 	do_nocb_deferred_wakeup(rdp);
4375 
4376 	/* QS for any half-done expedited grace period. */
4377 	rcu_report_exp_rdp(rdp);
4378 	rcu_preempt_deferred_qs(current);
4379 
4380 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4381 	mask = rdp->grpmask;
4382 	local_irq_save(seq_flags);
4383 	arch_spin_lock(&rcu_state.ofl_lock);
4384 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4385 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4386 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4387 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4388 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4389 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4390 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4391 	}
4392 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4393 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4394 	arch_spin_unlock(&rcu_state.ofl_lock);
4395 	local_irq_restore(seq_flags);
4396 
4397 	rdp->cpu_started = false;
4398 }
4399 
4400 #ifdef CONFIG_HOTPLUG_CPU
4401 /*
4402  * The outgoing CPU has just passed through the dying-idle state, and we
4403  * are being invoked from the CPU that was IPIed to continue the offline
4404  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4405  */
4406 void rcutree_migrate_callbacks(int cpu)
4407 {
4408 	unsigned long flags;
4409 	struct rcu_data *my_rdp;
4410 	struct rcu_node *my_rnp;
4411 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4412 	bool needwake;
4413 
4414 	if (rcu_rdp_is_offloaded(rdp) ||
4415 	    rcu_segcblist_empty(&rdp->cblist))
4416 		return;  /* No callbacks to migrate. */
4417 
4418 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4419 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4420 	rcu_barrier_entrain(rdp);
4421 	my_rdp = this_cpu_ptr(&rcu_data);
4422 	my_rnp = my_rdp->mynode;
4423 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4424 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4425 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4426 	/* Leverage recent GPs and set GP for new callbacks. */
4427 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4428 		   rcu_advance_cbs(my_rnp, my_rdp);
4429 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4430 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4431 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4432 	rcu_segcblist_disable(&rdp->cblist);
4433 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4434 	if (rcu_rdp_is_offloaded(my_rdp)) {
4435 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4436 		__call_rcu_nocb_wake(my_rdp, true, flags);
4437 	} else {
4438 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4439 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4440 	}
4441 	if (needwake)
4442 		rcu_gp_kthread_wake();
4443 	lockdep_assert_irqs_enabled();
4444 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4445 		  !rcu_segcblist_empty(&rdp->cblist),
4446 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4447 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4448 		  rcu_segcblist_first_cb(&rdp->cblist));
4449 }
4450 #endif
4451 
4452 /*
4453  * On non-huge systems, use expedited RCU grace periods to make suspend
4454  * and hibernation run faster.
4455  */
4456 static int rcu_pm_notify(struct notifier_block *self,
4457 			 unsigned long action, void *hcpu)
4458 {
4459 	switch (action) {
4460 	case PM_HIBERNATION_PREPARE:
4461 	case PM_SUSPEND_PREPARE:
4462 		rcu_expedite_gp();
4463 		break;
4464 	case PM_POST_HIBERNATION:
4465 	case PM_POST_SUSPEND:
4466 		rcu_unexpedite_gp();
4467 		break;
4468 	default:
4469 		break;
4470 	}
4471 	return NOTIFY_OK;
4472 }
4473 
4474 /*
4475  * Spawn the kthreads that handle RCU's grace periods.
4476  */
4477 static int __init rcu_spawn_gp_kthread(void)
4478 {
4479 	unsigned long flags;
4480 	struct rcu_node *rnp;
4481 	struct sched_param sp;
4482 	struct task_struct *t;
4483 
4484 	rcu_scheduler_fully_active = 1;
4485 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4486 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4487 		return 0;
4488 	if (kthread_prio) {
4489 		sp.sched_priority = kthread_prio;
4490 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4491 	}
4492 	rnp = rcu_get_root();
4493 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4494 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4495 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4496 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4497 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4498 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4499 	wake_up_process(t);
4500 	rcu_spawn_nocb_kthreads();
4501 	rcu_spawn_boost_kthreads();
4502 	rcu_spawn_core_kthreads();
4503 	return 0;
4504 }
4505 early_initcall(rcu_spawn_gp_kthread);
4506 
4507 /*
4508  * This function is invoked towards the end of the scheduler's
4509  * initialization process.  Before this is called, the idle task might
4510  * contain synchronous grace-period primitives (during which time, this idle
4511  * task is booting the system, and such primitives are no-ops).  After this
4512  * function is called, any synchronous grace-period primitives are run as
4513  * expedited, with the requesting task driving the grace period forward.
4514  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4515  * runtime RCU functionality.
4516  */
4517 void rcu_scheduler_starting(void)
4518 {
4519 	WARN_ON(num_online_cpus() != 1);
4520 	WARN_ON(nr_context_switches() > 0);
4521 	rcu_test_sync_prims();
4522 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4523 	rcu_test_sync_prims();
4524 }
4525 
4526 /*
4527  * Helper function for rcu_init() that initializes the rcu_state structure.
4528  */
4529 static void __init rcu_init_one(void)
4530 {
4531 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4532 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4533 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4534 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4535 
4536 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4537 	int cpustride = 1;
4538 	int i;
4539 	int j;
4540 	struct rcu_node *rnp;
4541 
4542 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4543 
4544 	/* Silence gcc 4.8 false positive about array index out of range. */
4545 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4546 		panic("rcu_init_one: rcu_num_lvls out of range");
4547 
4548 	/* Initialize the level-tracking arrays. */
4549 
4550 	for (i = 1; i < rcu_num_lvls; i++)
4551 		rcu_state.level[i] =
4552 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4553 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4554 
4555 	/* Initialize the elements themselves, starting from the leaves. */
4556 
4557 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4558 		cpustride *= levelspread[i];
4559 		rnp = rcu_state.level[i];
4560 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4561 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4562 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4563 						   &rcu_node_class[i], buf[i]);
4564 			raw_spin_lock_init(&rnp->fqslock);
4565 			lockdep_set_class_and_name(&rnp->fqslock,
4566 						   &rcu_fqs_class[i], fqs[i]);
4567 			rnp->gp_seq = rcu_state.gp_seq;
4568 			rnp->gp_seq_needed = rcu_state.gp_seq;
4569 			rnp->completedqs = rcu_state.gp_seq;
4570 			rnp->qsmask = 0;
4571 			rnp->qsmaskinit = 0;
4572 			rnp->grplo = j * cpustride;
4573 			rnp->grphi = (j + 1) * cpustride - 1;
4574 			if (rnp->grphi >= nr_cpu_ids)
4575 				rnp->grphi = nr_cpu_ids - 1;
4576 			if (i == 0) {
4577 				rnp->grpnum = 0;
4578 				rnp->grpmask = 0;
4579 				rnp->parent = NULL;
4580 			} else {
4581 				rnp->grpnum = j % levelspread[i - 1];
4582 				rnp->grpmask = BIT(rnp->grpnum);
4583 				rnp->parent = rcu_state.level[i - 1] +
4584 					      j / levelspread[i - 1];
4585 			}
4586 			rnp->level = i;
4587 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4588 			rcu_init_one_nocb(rnp);
4589 			init_waitqueue_head(&rnp->exp_wq[0]);
4590 			init_waitqueue_head(&rnp->exp_wq[1]);
4591 			init_waitqueue_head(&rnp->exp_wq[2]);
4592 			init_waitqueue_head(&rnp->exp_wq[3]);
4593 			spin_lock_init(&rnp->exp_lock);
4594 			mutex_init(&rnp->boost_kthread_mutex);
4595 		}
4596 	}
4597 
4598 	init_swait_queue_head(&rcu_state.gp_wq);
4599 	init_swait_queue_head(&rcu_state.expedited_wq);
4600 	rnp = rcu_first_leaf_node();
4601 	for_each_possible_cpu(i) {
4602 		while (i > rnp->grphi)
4603 			rnp++;
4604 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4605 		rcu_boot_init_percpu_data(i);
4606 	}
4607 }
4608 
4609 /*
4610  * Force priority from the kernel command-line into range.
4611  */
4612 static void __init sanitize_kthread_prio(void)
4613 {
4614 	int kthread_prio_in = kthread_prio;
4615 
4616 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4617 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4618 		kthread_prio = 2;
4619 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4620 		kthread_prio = 1;
4621 	else if (kthread_prio < 0)
4622 		kthread_prio = 0;
4623 	else if (kthread_prio > 99)
4624 		kthread_prio = 99;
4625 
4626 	if (kthread_prio != kthread_prio_in)
4627 		pr_alert("%s: Limited prio to %d from %d\n",
4628 			 __func__, kthread_prio, kthread_prio_in);
4629 }
4630 
4631 /*
4632  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4633  * replace the definitions in tree.h because those are needed to size
4634  * the ->node array in the rcu_state structure.
4635  */
4636 void rcu_init_geometry(void)
4637 {
4638 	ulong d;
4639 	int i;
4640 	static unsigned long old_nr_cpu_ids;
4641 	int rcu_capacity[RCU_NUM_LVLS];
4642 	static bool initialized;
4643 
4644 	if (initialized) {
4645 		/*
4646 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4647 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4648 		 */
4649 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4650 		return;
4651 	}
4652 
4653 	old_nr_cpu_ids = nr_cpu_ids;
4654 	initialized = true;
4655 
4656 	/*
4657 	 * Initialize any unspecified boot parameters.
4658 	 * The default values of jiffies_till_first_fqs and
4659 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4660 	 * value, which is a function of HZ, then adding one for each
4661 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4662 	 */
4663 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4664 	if (jiffies_till_first_fqs == ULONG_MAX)
4665 		jiffies_till_first_fqs = d;
4666 	if (jiffies_till_next_fqs == ULONG_MAX)
4667 		jiffies_till_next_fqs = d;
4668 	adjust_jiffies_till_sched_qs();
4669 
4670 	/* If the compile-time values are accurate, just leave. */
4671 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4672 	    nr_cpu_ids == NR_CPUS)
4673 		return;
4674 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4675 		rcu_fanout_leaf, nr_cpu_ids);
4676 
4677 	/*
4678 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4679 	 * and cannot exceed the number of bits in the rcu_node masks.
4680 	 * Complain and fall back to the compile-time values if this
4681 	 * limit is exceeded.
4682 	 */
4683 	if (rcu_fanout_leaf < 2 ||
4684 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4685 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4686 		WARN_ON(1);
4687 		return;
4688 	}
4689 
4690 	/*
4691 	 * Compute number of nodes that can be handled an rcu_node tree
4692 	 * with the given number of levels.
4693 	 */
4694 	rcu_capacity[0] = rcu_fanout_leaf;
4695 	for (i = 1; i < RCU_NUM_LVLS; i++)
4696 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4697 
4698 	/*
4699 	 * The tree must be able to accommodate the configured number of CPUs.
4700 	 * If this limit is exceeded, fall back to the compile-time values.
4701 	 */
4702 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4703 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4704 		WARN_ON(1);
4705 		return;
4706 	}
4707 
4708 	/* Calculate the number of levels in the tree. */
4709 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4710 	}
4711 	rcu_num_lvls = i + 1;
4712 
4713 	/* Calculate the number of rcu_nodes at each level of the tree. */
4714 	for (i = 0; i < rcu_num_lvls; i++) {
4715 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4716 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4717 	}
4718 
4719 	/* Calculate the total number of rcu_node structures. */
4720 	rcu_num_nodes = 0;
4721 	for (i = 0; i < rcu_num_lvls; i++)
4722 		rcu_num_nodes += num_rcu_lvl[i];
4723 }
4724 
4725 /*
4726  * Dump out the structure of the rcu_node combining tree associated
4727  * with the rcu_state structure.
4728  */
4729 static void __init rcu_dump_rcu_node_tree(void)
4730 {
4731 	int level = 0;
4732 	struct rcu_node *rnp;
4733 
4734 	pr_info("rcu_node tree layout dump\n");
4735 	pr_info(" ");
4736 	rcu_for_each_node_breadth_first(rnp) {
4737 		if (rnp->level != level) {
4738 			pr_cont("\n");
4739 			pr_info(" ");
4740 			level = rnp->level;
4741 		}
4742 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4743 	}
4744 	pr_cont("\n");
4745 }
4746 
4747 struct workqueue_struct *rcu_gp_wq;
4748 struct workqueue_struct *rcu_par_gp_wq;
4749 
4750 static void __init kfree_rcu_batch_init(void)
4751 {
4752 	int cpu;
4753 	int i;
4754 
4755 	/* Clamp it to [0:100] seconds interval. */
4756 	if (rcu_delay_page_cache_fill_msec < 0 ||
4757 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4758 
4759 		rcu_delay_page_cache_fill_msec =
4760 			clamp(rcu_delay_page_cache_fill_msec, 0,
4761 				(int) (100 * MSEC_PER_SEC));
4762 
4763 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4764 			rcu_delay_page_cache_fill_msec);
4765 	}
4766 
4767 	for_each_possible_cpu(cpu) {
4768 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4769 
4770 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4771 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4772 			krcp->krw_arr[i].krcp = krcp;
4773 		}
4774 
4775 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4776 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4777 		krcp->initialized = true;
4778 	}
4779 	if (register_shrinker(&kfree_rcu_shrinker))
4780 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4781 }
4782 
4783 void __init rcu_init(void)
4784 {
4785 	int cpu;
4786 
4787 	rcu_early_boot_tests();
4788 
4789 	kfree_rcu_batch_init();
4790 	rcu_bootup_announce();
4791 	sanitize_kthread_prio();
4792 	rcu_init_geometry();
4793 	rcu_init_one();
4794 	if (dump_tree)
4795 		rcu_dump_rcu_node_tree();
4796 	if (use_softirq)
4797 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4798 
4799 	/*
4800 	 * We don't need protection against CPU-hotplug here because
4801 	 * this is called early in boot, before either interrupts
4802 	 * or the scheduler are operational.
4803 	 */
4804 	pm_notifier(rcu_pm_notify, 0);
4805 	for_each_online_cpu(cpu) {
4806 		rcutree_prepare_cpu(cpu);
4807 		rcu_cpu_starting(cpu);
4808 		rcutree_online_cpu(cpu);
4809 	}
4810 
4811 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4812 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4813 	WARN_ON(!rcu_gp_wq);
4814 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4815 	WARN_ON(!rcu_par_gp_wq);
4816 
4817 	/* Fill in default value for rcutree.qovld boot parameter. */
4818 	/* -After- the rcu_node ->lock fields are initialized! */
4819 	if (qovld < 0)
4820 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4821 	else
4822 		qovld_calc = qovld;
4823 }
4824 
4825 #include "tree_stall.h"
4826 #include "tree_exp.h"
4827 #include "tree_nocb.h"
4828 #include "tree_plugin.h"
4829