xref: /linux/kernel/rcu/tree.c (revision 4cf421e55d69016989548e0fb8585e69f54bd283)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <uapi/linux/sched/types.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
59 
60 #include "tree.h"
61 #include "rcu.h"
62 
63 #ifdef MODULE_PARAM_PREFIX
64 #undef MODULE_PARAM_PREFIX
65 #endif
66 #define MODULE_PARAM_PREFIX "rcutree."
67 
68 /* Data structures. */
69 
70 /*
71  * In order to export the rcu_state name to the tracing tools, it
72  * needs to be added in the __tracepoint_string section.
73  * This requires defining a separate variable tp_<sname>_varname
74  * that points to the string being used, and this will allow
75  * the tracing userspace tools to be able to decipher the string
76  * address to the matching string.
77  */
78 #ifdef CONFIG_TRACING
79 # define DEFINE_RCU_TPS(sname) \
80 static char sname##_varname[] = #sname; \
81 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
82 # define RCU_STATE_NAME(sname) sname##_varname
83 #else
84 # define DEFINE_RCU_TPS(sname)
85 # define RCU_STATE_NAME(sname) __stringify(sname)
86 #endif
87 
88 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
89 DEFINE_RCU_TPS(sname) \
90 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
91 struct rcu_state sname##_state = { \
92 	.level = { &sname##_state.node[0] }, \
93 	.rda = &sname##_data, \
94 	.call = cr, \
95 	.gp_state = RCU_GP_IDLE, \
96 	.gpnum = 0UL - 300UL, \
97 	.completed = 0UL - 300UL, \
98 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
99 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
100 	.orphan_donetail = &sname##_state.orphan_donelist, \
101 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
102 	.name = RCU_STATE_NAME(sname), \
103 	.abbr = sabbr, \
104 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
105 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
106 }
107 
108 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
109 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
110 
111 static struct rcu_state *const rcu_state_p;
112 LIST_HEAD(rcu_struct_flavors);
113 
114 /* Dump rcu_node combining tree at boot to verify correct setup. */
115 static bool dump_tree;
116 module_param(dump_tree, bool, 0444);
117 /* Control rcu_node-tree auto-balancing at boot time. */
118 static bool rcu_fanout_exact;
119 module_param(rcu_fanout_exact, bool, 0444);
120 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
121 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
122 module_param(rcu_fanout_leaf, int, 0444);
123 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
124 /* Number of rcu_nodes at specified level. */
125 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
126 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
127 /* panic() on RCU Stall sysctl. */
128 int sysctl_panic_on_rcu_stall __read_mostly;
129 
130 /*
131  * The rcu_scheduler_active variable is initialized to the value
132  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
133  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
134  * RCU can assume that there is but one task, allowing RCU to (for example)
135  * optimize synchronize_rcu() to a simple barrier().  When this variable
136  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
137  * to detect real grace periods.  This variable is also used to suppress
138  * boot-time false positives from lockdep-RCU error checking.  Finally, it
139  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
140  * is fully initialized, including all of its kthreads having been spawned.
141  */
142 int rcu_scheduler_active __read_mostly;
143 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
144 
145 /*
146  * The rcu_scheduler_fully_active variable transitions from zero to one
147  * during the early_initcall() processing, which is after the scheduler
148  * is capable of creating new tasks.  So RCU processing (for example,
149  * creating tasks for RCU priority boosting) must be delayed until after
150  * rcu_scheduler_fully_active transitions from zero to one.  We also
151  * currently delay invocation of any RCU callbacks until after this point.
152  *
153  * It might later prove better for people registering RCU callbacks during
154  * early boot to take responsibility for these callbacks, but one step at
155  * a time.
156  */
157 static int rcu_scheduler_fully_active __read_mostly;
158 
159 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 static void invoke_rcu_core(void);
163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164 static void rcu_report_exp_rdp(struct rcu_state *rsp,
165 			       struct rcu_data *rdp, bool wake);
166 static void sync_sched_exp_online_cleanup(int cpu);
167 
168 /* rcuc/rcub kthread realtime priority */
169 #ifdef CONFIG_RCU_KTHREAD_PRIO
170 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
171 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
172 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
173 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
174 module_param(kthread_prio, int, 0644);
175 
176 /* Delay in jiffies for grace-period initialization delays, debug only. */
177 
178 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
179 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
180 module_param(gp_preinit_delay, int, 0644);
181 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
182 static const int gp_preinit_delay;
183 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184 
185 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
186 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
187 module_param(gp_init_delay, int, 0644);
188 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
189 static const int gp_init_delay;
190 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191 
192 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
193 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
194 module_param(gp_cleanup_delay, int, 0644);
195 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
196 static const int gp_cleanup_delay;
197 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198 
199 /*
200  * Number of grace periods between delays, normalized by the duration of
201  * the delay.  The longer the the delay, the more the grace periods between
202  * each delay.  The reason for this normalization is that it means that,
203  * for non-zero delays, the overall slowdown of grace periods is constant
204  * regardless of the duration of the delay.  This arrangement balances
205  * the need for long delays to increase some race probabilities with the
206  * need for fast grace periods to increase other race probabilities.
207  */
208 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
209 
210 /*
211  * Track the rcutorture test sequence number and the update version
212  * number within a given test.  The rcutorture_testseq is incremented
213  * on every rcutorture module load and unload, so has an odd value
214  * when a test is running.  The rcutorture_vernum is set to zero
215  * when rcutorture starts and is incremented on each rcutorture update.
216  * These variables enable correlating rcutorture output with the
217  * RCU tracing information.
218  */
219 unsigned long rcutorture_testseq;
220 unsigned long rcutorture_vernum;
221 
222 /*
223  * Compute the mask of online CPUs for the specified rcu_node structure.
224  * This will not be stable unless the rcu_node structure's ->lock is
225  * held, but the bit corresponding to the current CPU will be stable
226  * in most contexts.
227  */
228 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
229 {
230 	return READ_ONCE(rnp->qsmaskinitnext);
231 }
232 
233 /*
234  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
235  * permit this function to be invoked without holding the root rcu_node
236  * structure's ->lock, but of course results can be subject to change.
237  */
238 static int rcu_gp_in_progress(struct rcu_state *rsp)
239 {
240 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
241 }
242 
243 /*
244  * Note a quiescent state.  Because we do not need to know
245  * how many quiescent states passed, just if there was at least
246  * one since the start of the grace period, this just sets a flag.
247  * The caller must have disabled preemption.
248  */
249 void rcu_sched_qs(void)
250 {
251 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
252 		return;
253 	trace_rcu_grace_period(TPS("rcu_sched"),
254 			       __this_cpu_read(rcu_sched_data.gpnum),
255 			       TPS("cpuqs"));
256 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
257 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
258 		return;
259 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
260 	rcu_report_exp_rdp(&rcu_sched_state,
261 			   this_cpu_ptr(&rcu_sched_data), true);
262 }
263 
264 void rcu_bh_qs(void)
265 {
266 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
267 		trace_rcu_grace_period(TPS("rcu_bh"),
268 				       __this_cpu_read(rcu_bh_data.gpnum),
269 				       TPS("cpuqs"));
270 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
271 	}
272 }
273 
274 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
275 
276 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
277 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
278 	.dynticks = ATOMIC_INIT(1),
279 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
280 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
281 	.dynticks_idle = ATOMIC_INIT(1),
282 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
283 };
284 
285 /*
286  * Record entry into an extended quiescent state.  This is only to be
287  * called when not already in an extended quiescent state.
288  */
289 static void rcu_dynticks_eqs_enter(void)
290 {
291 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
292 	int special;
293 
294 	/*
295 	 * CPUs seeing atomic_inc_return() must see prior RCU read-side
296 	 * critical sections, and we also must force ordering with the
297 	 * next idle sojourn.
298 	 */
299 	special = atomic_inc_return(&rdtp->dynticks);
300 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1);
301 }
302 
303 /*
304  * Record exit from an extended quiescent state.  This is only to be
305  * called from an extended quiescent state.
306  */
307 static void rcu_dynticks_eqs_exit(void)
308 {
309 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
310 	int special;
311 
312 	/*
313 	 * CPUs seeing atomic_inc_return() must see prior idle sojourns,
314 	 * and we also must force ordering with the next RCU read-side
315 	 * critical section.
316 	 */
317 	special = atomic_inc_return(&rdtp->dynticks);
318 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1));
319 }
320 
321 /*
322  * Reset the current CPU's ->dynticks counter to indicate that the
323  * newly onlined CPU is no longer in an extended quiescent state.
324  * This will either leave the counter unchanged, or increment it
325  * to the next non-quiescent value.
326  *
327  * The non-atomic test/increment sequence works because the upper bits
328  * of the ->dynticks counter are manipulated only by the corresponding CPU,
329  * or when the corresponding CPU is offline.
330  */
331 static void rcu_dynticks_eqs_online(void)
332 {
333 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
334 
335 	if (atomic_read(&rdtp->dynticks) & 0x1)
336 		return;
337 	atomic_add(0x1, &rdtp->dynticks);
338 }
339 
340 /*
341  * Is the current CPU in an extended quiescent state?
342  *
343  * No ordering, as we are sampling CPU-local information.
344  */
345 bool rcu_dynticks_curr_cpu_in_eqs(void)
346 {
347 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
348 
349 	return !(atomic_read(&rdtp->dynticks) & 0x1);
350 }
351 
352 /*
353  * Snapshot the ->dynticks counter with full ordering so as to allow
354  * stable comparison of this counter with past and future snapshots.
355  */
356 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
357 {
358 	int snap = atomic_add_return(0, &rdtp->dynticks);
359 
360 	return snap;
361 }
362 
363 /*
364  * Return true if the snapshot returned from rcu_dynticks_snap()
365  * indicates that RCU is in an extended quiescent state.
366  */
367 static bool rcu_dynticks_in_eqs(int snap)
368 {
369 	return !(snap & 0x1);
370 }
371 
372 /*
373  * Return true if the CPU corresponding to the specified rcu_dynticks
374  * structure has spent some time in an extended quiescent state since
375  * rcu_dynticks_snap() returned the specified snapshot.
376  */
377 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
378 {
379 	return snap != rcu_dynticks_snap(rdtp);
380 }
381 
382 /*
383  * Do a double-increment of the ->dynticks counter to emulate a
384  * momentary idle-CPU quiescent state.
385  */
386 static void rcu_dynticks_momentary_idle(void)
387 {
388 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
389 	int special = atomic_add_return(2, &rdtp->dynticks);
390 
391 	/* It is illegal to call this from idle state. */
392 	WARN_ON_ONCE(!(special & 0x1));
393 }
394 
395 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
396 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
397 
398 /*
399  * Let the RCU core know that this CPU has gone through the scheduler,
400  * which is a quiescent state.  This is called when the need for a
401  * quiescent state is urgent, so we burn an atomic operation and full
402  * memory barriers to let the RCU core know about it, regardless of what
403  * this CPU might (or might not) do in the near future.
404  *
405  * We inform the RCU core by emulating a zero-duration dyntick-idle
406  * period, which we in turn do by incrementing the ->dynticks counter
407  * by two.
408  *
409  * The caller must have disabled interrupts.
410  */
411 static void rcu_momentary_dyntick_idle(void)
412 {
413 	struct rcu_data *rdp;
414 	int resched_mask;
415 	struct rcu_state *rsp;
416 
417 	/*
418 	 * Yes, we can lose flag-setting operations.  This is OK, because
419 	 * the flag will be set again after some delay.
420 	 */
421 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
422 	raw_cpu_write(rcu_sched_qs_mask, 0);
423 
424 	/* Find the flavor that needs a quiescent state. */
425 	for_each_rcu_flavor(rsp) {
426 		rdp = raw_cpu_ptr(rsp->rda);
427 		if (!(resched_mask & rsp->flavor_mask))
428 			continue;
429 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
430 		if (READ_ONCE(rdp->mynode->completed) !=
431 		    READ_ONCE(rdp->cond_resched_completed))
432 			continue;
433 
434 		/*
435 		 * Pretend to be momentarily idle for the quiescent state.
436 		 * This allows the grace-period kthread to record the
437 		 * quiescent state, with no need for this CPU to do anything
438 		 * further.
439 		 */
440 		rcu_dynticks_momentary_idle();
441 		break;
442 	}
443 }
444 
445 /*
446  * Note a context switch.  This is a quiescent state for RCU-sched,
447  * and requires special handling for preemptible RCU.
448  * The caller must have disabled interrupts.
449  */
450 void rcu_note_context_switch(void)
451 {
452 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
453 	trace_rcu_utilization(TPS("Start context switch"));
454 	rcu_sched_qs();
455 	rcu_preempt_note_context_switch();
456 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
457 		rcu_momentary_dyntick_idle();
458 	trace_rcu_utilization(TPS("End context switch"));
459 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
460 }
461 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
462 
463 /*
464  * Register a quiescent state for all RCU flavors.  If there is an
465  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
466  * dyntick-idle quiescent state visible to other CPUs (but only for those
467  * RCU flavors in desperate need of a quiescent state, which will normally
468  * be none of them).  Either way, do a lightweight quiescent state for
469  * all RCU flavors.
470  *
471  * The barrier() calls are redundant in the common case when this is
472  * called externally, but just in case this is called from within this
473  * file.
474  *
475  */
476 void rcu_all_qs(void)
477 {
478 	unsigned long flags;
479 
480 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
481 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
482 		local_irq_save(flags);
483 		rcu_momentary_dyntick_idle();
484 		local_irq_restore(flags);
485 	}
486 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
487 		/*
488 		 * Yes, we just checked a per-CPU variable with preemption
489 		 * enabled, so we might be migrated to some other CPU at
490 		 * this point.  That is OK because in that case, the
491 		 * migration will supply the needed quiescent state.
492 		 * We might end up needlessly disabling preemption and
493 		 * invoking rcu_sched_qs() on the destination CPU, but
494 		 * the probability and cost are both quite low, so this
495 		 * should not be a problem in practice.
496 		 */
497 		preempt_disable();
498 		rcu_sched_qs();
499 		preempt_enable();
500 	}
501 	this_cpu_inc(rcu_qs_ctr);
502 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
503 }
504 EXPORT_SYMBOL_GPL(rcu_all_qs);
505 
506 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
507 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
508 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
509 
510 module_param(blimit, long, 0444);
511 module_param(qhimark, long, 0444);
512 module_param(qlowmark, long, 0444);
513 
514 static ulong jiffies_till_first_fqs = ULONG_MAX;
515 static ulong jiffies_till_next_fqs = ULONG_MAX;
516 static bool rcu_kick_kthreads;
517 
518 module_param(jiffies_till_first_fqs, ulong, 0644);
519 module_param(jiffies_till_next_fqs, ulong, 0644);
520 module_param(rcu_kick_kthreads, bool, 0644);
521 
522 /*
523  * How long the grace period must be before we start recruiting
524  * quiescent-state help from rcu_note_context_switch().
525  */
526 static ulong jiffies_till_sched_qs = HZ / 20;
527 module_param(jiffies_till_sched_qs, ulong, 0644);
528 
529 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
530 				  struct rcu_data *rdp);
531 static void force_qs_rnp(struct rcu_state *rsp,
532 			 int (*f)(struct rcu_data *rsp, bool *isidle,
533 				  unsigned long *maxj),
534 			 bool *isidle, unsigned long *maxj);
535 static void force_quiescent_state(struct rcu_state *rsp);
536 static int rcu_pending(void);
537 
538 /*
539  * Return the number of RCU batches started thus far for debug & stats.
540  */
541 unsigned long rcu_batches_started(void)
542 {
543 	return rcu_state_p->gpnum;
544 }
545 EXPORT_SYMBOL_GPL(rcu_batches_started);
546 
547 /*
548  * Return the number of RCU-sched batches started thus far for debug & stats.
549  */
550 unsigned long rcu_batches_started_sched(void)
551 {
552 	return rcu_sched_state.gpnum;
553 }
554 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
555 
556 /*
557  * Return the number of RCU BH batches started thus far for debug & stats.
558  */
559 unsigned long rcu_batches_started_bh(void)
560 {
561 	return rcu_bh_state.gpnum;
562 }
563 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
564 
565 /*
566  * Return the number of RCU batches completed thus far for debug & stats.
567  */
568 unsigned long rcu_batches_completed(void)
569 {
570 	return rcu_state_p->completed;
571 }
572 EXPORT_SYMBOL_GPL(rcu_batches_completed);
573 
574 /*
575  * Return the number of RCU-sched batches completed thus far for debug & stats.
576  */
577 unsigned long rcu_batches_completed_sched(void)
578 {
579 	return rcu_sched_state.completed;
580 }
581 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
582 
583 /*
584  * Return the number of RCU BH batches completed thus far for debug & stats.
585  */
586 unsigned long rcu_batches_completed_bh(void)
587 {
588 	return rcu_bh_state.completed;
589 }
590 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
591 
592 /*
593  * Return the number of RCU expedited batches completed thus far for
594  * debug & stats.  Odd numbers mean that a batch is in progress, even
595  * numbers mean idle.  The value returned will thus be roughly double
596  * the cumulative batches since boot.
597  */
598 unsigned long rcu_exp_batches_completed(void)
599 {
600 	return rcu_state_p->expedited_sequence;
601 }
602 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
603 
604 /*
605  * Return the number of RCU-sched expedited batches completed thus far
606  * for debug & stats.  Similar to rcu_exp_batches_completed().
607  */
608 unsigned long rcu_exp_batches_completed_sched(void)
609 {
610 	return rcu_sched_state.expedited_sequence;
611 }
612 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
613 
614 /*
615  * Force a quiescent state.
616  */
617 void rcu_force_quiescent_state(void)
618 {
619 	force_quiescent_state(rcu_state_p);
620 }
621 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
622 
623 /*
624  * Force a quiescent state for RCU BH.
625  */
626 void rcu_bh_force_quiescent_state(void)
627 {
628 	force_quiescent_state(&rcu_bh_state);
629 }
630 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
631 
632 /*
633  * Force a quiescent state for RCU-sched.
634  */
635 void rcu_sched_force_quiescent_state(void)
636 {
637 	force_quiescent_state(&rcu_sched_state);
638 }
639 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
640 
641 /*
642  * Show the state of the grace-period kthreads.
643  */
644 void show_rcu_gp_kthreads(void)
645 {
646 	struct rcu_state *rsp;
647 
648 	for_each_rcu_flavor(rsp) {
649 		pr_info("%s: wait state: %d ->state: %#lx\n",
650 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
651 		/* sched_show_task(rsp->gp_kthread); */
652 	}
653 }
654 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
655 
656 /*
657  * Record the number of times rcutorture tests have been initiated and
658  * terminated.  This information allows the debugfs tracing stats to be
659  * correlated to the rcutorture messages, even when the rcutorture module
660  * is being repeatedly loaded and unloaded.  In other words, we cannot
661  * store this state in rcutorture itself.
662  */
663 void rcutorture_record_test_transition(void)
664 {
665 	rcutorture_testseq++;
666 	rcutorture_vernum = 0;
667 }
668 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
669 
670 /*
671  * Send along grace-period-related data for rcutorture diagnostics.
672  */
673 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
674 			    unsigned long *gpnum, unsigned long *completed)
675 {
676 	struct rcu_state *rsp = NULL;
677 
678 	switch (test_type) {
679 	case RCU_FLAVOR:
680 		rsp = rcu_state_p;
681 		break;
682 	case RCU_BH_FLAVOR:
683 		rsp = &rcu_bh_state;
684 		break;
685 	case RCU_SCHED_FLAVOR:
686 		rsp = &rcu_sched_state;
687 		break;
688 	default:
689 		break;
690 	}
691 	if (rsp != NULL) {
692 		*flags = READ_ONCE(rsp->gp_flags);
693 		*gpnum = READ_ONCE(rsp->gpnum);
694 		*completed = READ_ONCE(rsp->completed);
695 		return;
696 	}
697 	*flags = 0;
698 	*gpnum = 0;
699 	*completed = 0;
700 }
701 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
702 
703 /*
704  * Record the number of writer passes through the current rcutorture test.
705  * This is also used to correlate debugfs tracing stats with the rcutorture
706  * messages.
707  */
708 void rcutorture_record_progress(unsigned long vernum)
709 {
710 	rcutorture_vernum++;
711 }
712 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
713 
714 /*
715  * Does the CPU have callbacks ready to be invoked?
716  */
717 static int
718 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
719 {
720 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
721 	       rdp->nxttail[RCU_NEXT_TAIL] != NULL;
722 }
723 
724 /*
725  * Return the root node of the specified rcu_state structure.
726  */
727 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
728 {
729 	return &rsp->node[0];
730 }
731 
732 /*
733  * Is there any need for future grace periods?
734  * Interrupts must be disabled.  If the caller does not hold the root
735  * rnp_node structure's ->lock, the results are advisory only.
736  */
737 static int rcu_future_needs_gp(struct rcu_state *rsp)
738 {
739 	struct rcu_node *rnp = rcu_get_root(rsp);
740 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
741 	int *fp = &rnp->need_future_gp[idx];
742 
743 	return READ_ONCE(*fp);
744 }
745 
746 /*
747  * Does the current CPU require a not-yet-started grace period?
748  * The caller must have disabled interrupts to prevent races with
749  * normal callback registry.
750  */
751 static bool
752 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
753 {
754 	int i;
755 
756 	if (rcu_gp_in_progress(rsp))
757 		return false;  /* No, a grace period is already in progress. */
758 	if (rcu_future_needs_gp(rsp))
759 		return true;  /* Yes, a no-CBs CPU needs one. */
760 	if (!rdp->nxttail[RCU_NEXT_TAIL])
761 		return false;  /* No, this is a no-CBs (or offline) CPU. */
762 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
763 		return true;  /* Yes, CPU has newly registered callbacks. */
764 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
765 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
766 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
767 				 rdp->nxtcompleted[i]))
768 			return true;  /* Yes, CBs for future grace period. */
769 	return false; /* No grace period needed. */
770 }
771 
772 /*
773  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
774  *
775  * If the new value of the ->dynticks_nesting counter now is zero,
776  * we really have entered idle, and must do the appropriate accounting.
777  * The caller must have disabled interrupts.
778  */
779 static void rcu_eqs_enter_common(long long oldval, bool user)
780 {
781 	struct rcu_state *rsp;
782 	struct rcu_data *rdp;
783 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
784 
785 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
786 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
787 	    !user && !is_idle_task(current)) {
788 		struct task_struct *idle __maybe_unused =
789 			idle_task(smp_processor_id());
790 
791 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
792 		rcu_ftrace_dump(DUMP_ORIG);
793 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
794 			  current->pid, current->comm,
795 			  idle->pid, idle->comm); /* must be idle task! */
796 	}
797 	for_each_rcu_flavor(rsp) {
798 		rdp = this_cpu_ptr(rsp->rda);
799 		do_nocb_deferred_wakeup(rdp);
800 	}
801 	rcu_prepare_for_idle();
802 	rcu_dynticks_eqs_enter();
803 	rcu_dynticks_task_enter();
804 
805 	/*
806 	 * It is illegal to enter an extended quiescent state while
807 	 * in an RCU read-side critical section.
808 	 */
809 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
810 			 "Illegal idle entry in RCU read-side critical section.");
811 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
812 			 "Illegal idle entry in RCU-bh read-side critical section.");
813 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
814 			 "Illegal idle entry in RCU-sched read-side critical section.");
815 }
816 
817 /*
818  * Enter an RCU extended quiescent state, which can be either the
819  * idle loop or adaptive-tickless usermode execution.
820  */
821 static void rcu_eqs_enter(bool user)
822 {
823 	long long oldval;
824 	struct rcu_dynticks *rdtp;
825 
826 	rdtp = this_cpu_ptr(&rcu_dynticks);
827 	oldval = rdtp->dynticks_nesting;
828 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
829 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
830 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
831 		rdtp->dynticks_nesting = 0;
832 		rcu_eqs_enter_common(oldval, user);
833 	} else {
834 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
835 	}
836 }
837 
838 /**
839  * rcu_idle_enter - inform RCU that current CPU is entering idle
840  *
841  * Enter idle mode, in other words, -leave- the mode in which RCU
842  * read-side critical sections can occur.  (Though RCU read-side
843  * critical sections can occur in irq handlers in idle, a possibility
844  * handled by irq_enter() and irq_exit().)
845  *
846  * We crowbar the ->dynticks_nesting field to zero to allow for
847  * the possibility of usermode upcalls having messed up our count
848  * of interrupt nesting level during the prior busy period.
849  */
850 void rcu_idle_enter(void)
851 {
852 	unsigned long flags;
853 
854 	local_irq_save(flags);
855 	rcu_eqs_enter(false);
856 	rcu_sysidle_enter(0);
857 	local_irq_restore(flags);
858 }
859 EXPORT_SYMBOL_GPL(rcu_idle_enter);
860 
861 #ifdef CONFIG_NO_HZ_FULL
862 /**
863  * rcu_user_enter - inform RCU that we are resuming userspace.
864  *
865  * Enter RCU idle mode right before resuming userspace.  No use of RCU
866  * is permitted between this call and rcu_user_exit(). This way the
867  * CPU doesn't need to maintain the tick for RCU maintenance purposes
868  * when the CPU runs in userspace.
869  */
870 void rcu_user_enter(void)
871 {
872 	rcu_eqs_enter(1);
873 }
874 #endif /* CONFIG_NO_HZ_FULL */
875 
876 /**
877  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
878  *
879  * Exit from an interrupt handler, which might possibly result in entering
880  * idle mode, in other words, leaving the mode in which read-side critical
881  * sections can occur.  The caller must have disabled interrupts.
882  *
883  * This code assumes that the idle loop never does anything that might
884  * result in unbalanced calls to irq_enter() and irq_exit().  If your
885  * architecture violates this assumption, RCU will give you what you
886  * deserve, good and hard.  But very infrequently and irreproducibly.
887  *
888  * Use things like work queues to work around this limitation.
889  *
890  * You have been warned.
891  */
892 void rcu_irq_exit(void)
893 {
894 	long long oldval;
895 	struct rcu_dynticks *rdtp;
896 
897 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
898 	rdtp = this_cpu_ptr(&rcu_dynticks);
899 	oldval = rdtp->dynticks_nesting;
900 	rdtp->dynticks_nesting--;
901 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
902 		     rdtp->dynticks_nesting < 0);
903 	if (rdtp->dynticks_nesting)
904 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
905 	else
906 		rcu_eqs_enter_common(oldval, true);
907 	rcu_sysidle_enter(1);
908 }
909 
910 /*
911  * Wrapper for rcu_irq_exit() where interrupts are enabled.
912  */
913 void rcu_irq_exit_irqson(void)
914 {
915 	unsigned long flags;
916 
917 	local_irq_save(flags);
918 	rcu_irq_exit();
919 	local_irq_restore(flags);
920 }
921 
922 /*
923  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
924  *
925  * If the new value of the ->dynticks_nesting counter was previously zero,
926  * we really have exited idle, and must do the appropriate accounting.
927  * The caller must have disabled interrupts.
928  */
929 static void rcu_eqs_exit_common(long long oldval, int user)
930 {
931 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
932 
933 	rcu_dynticks_task_exit();
934 	rcu_dynticks_eqs_exit();
935 	rcu_cleanup_after_idle();
936 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
937 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
938 	    !user && !is_idle_task(current)) {
939 		struct task_struct *idle __maybe_unused =
940 			idle_task(smp_processor_id());
941 
942 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
943 				  oldval, rdtp->dynticks_nesting);
944 		rcu_ftrace_dump(DUMP_ORIG);
945 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
946 			  current->pid, current->comm,
947 			  idle->pid, idle->comm); /* must be idle task! */
948 	}
949 }
950 
951 /*
952  * Exit an RCU extended quiescent state, which can be either the
953  * idle loop or adaptive-tickless usermode execution.
954  */
955 static void rcu_eqs_exit(bool user)
956 {
957 	struct rcu_dynticks *rdtp;
958 	long long oldval;
959 
960 	rdtp = this_cpu_ptr(&rcu_dynticks);
961 	oldval = rdtp->dynticks_nesting;
962 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
963 	if (oldval & DYNTICK_TASK_NEST_MASK) {
964 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
965 	} else {
966 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
967 		rcu_eqs_exit_common(oldval, user);
968 	}
969 }
970 
971 /**
972  * rcu_idle_exit - inform RCU that current CPU is leaving idle
973  *
974  * Exit idle mode, in other words, -enter- the mode in which RCU
975  * read-side critical sections can occur.
976  *
977  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
978  * allow for the possibility of usermode upcalls messing up our count
979  * of interrupt nesting level during the busy period that is just
980  * now starting.
981  */
982 void rcu_idle_exit(void)
983 {
984 	unsigned long flags;
985 
986 	local_irq_save(flags);
987 	rcu_eqs_exit(false);
988 	rcu_sysidle_exit(0);
989 	local_irq_restore(flags);
990 }
991 EXPORT_SYMBOL_GPL(rcu_idle_exit);
992 
993 #ifdef CONFIG_NO_HZ_FULL
994 /**
995  * rcu_user_exit - inform RCU that we are exiting userspace.
996  *
997  * Exit RCU idle mode while entering the kernel because it can
998  * run a RCU read side critical section anytime.
999  */
1000 void rcu_user_exit(void)
1001 {
1002 	rcu_eqs_exit(1);
1003 }
1004 #endif /* CONFIG_NO_HZ_FULL */
1005 
1006 /**
1007  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1008  *
1009  * Enter an interrupt handler, which might possibly result in exiting
1010  * idle mode, in other words, entering the mode in which read-side critical
1011  * sections can occur.  The caller must have disabled interrupts.
1012  *
1013  * Note that the Linux kernel is fully capable of entering an interrupt
1014  * handler that it never exits, for example when doing upcalls to
1015  * user mode!  This code assumes that the idle loop never does upcalls to
1016  * user mode.  If your architecture does do upcalls from the idle loop (or
1017  * does anything else that results in unbalanced calls to the irq_enter()
1018  * and irq_exit() functions), RCU will give you what you deserve, good
1019  * and hard.  But very infrequently and irreproducibly.
1020  *
1021  * Use things like work queues to work around this limitation.
1022  *
1023  * You have been warned.
1024  */
1025 void rcu_irq_enter(void)
1026 {
1027 	struct rcu_dynticks *rdtp;
1028 	long long oldval;
1029 
1030 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1031 	rdtp = this_cpu_ptr(&rcu_dynticks);
1032 	oldval = rdtp->dynticks_nesting;
1033 	rdtp->dynticks_nesting++;
1034 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1035 		     rdtp->dynticks_nesting == 0);
1036 	if (oldval)
1037 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1038 	else
1039 		rcu_eqs_exit_common(oldval, true);
1040 	rcu_sysidle_exit(1);
1041 }
1042 
1043 /*
1044  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1045  */
1046 void rcu_irq_enter_irqson(void)
1047 {
1048 	unsigned long flags;
1049 
1050 	local_irq_save(flags);
1051 	rcu_irq_enter();
1052 	local_irq_restore(flags);
1053 }
1054 
1055 /**
1056  * rcu_nmi_enter - inform RCU of entry to NMI context
1057  *
1058  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1059  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1060  * that the CPU is active.  This implementation permits nested NMIs, as
1061  * long as the nesting level does not overflow an int.  (You will probably
1062  * run out of stack space first.)
1063  */
1064 void rcu_nmi_enter(void)
1065 {
1066 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1067 	int incby = 2;
1068 
1069 	/* Complain about underflow. */
1070 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1071 
1072 	/*
1073 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1074 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1075 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1076 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1077 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1078 	 * period (observation due to Andy Lutomirski).
1079 	 */
1080 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1081 		rcu_dynticks_eqs_exit();
1082 		incby = 1;
1083 	}
1084 	rdtp->dynticks_nmi_nesting += incby;
1085 	barrier();
1086 }
1087 
1088 /**
1089  * rcu_nmi_exit - inform RCU of exit from NMI context
1090  *
1091  * If we are returning from the outermost NMI handler that interrupted an
1092  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1093  * to let the RCU grace-period handling know that the CPU is back to
1094  * being RCU-idle.
1095  */
1096 void rcu_nmi_exit(void)
1097 {
1098 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1099 
1100 	/*
1101 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1102 	 * (We are exiting an NMI handler, so RCU better be paying attention
1103 	 * to us!)
1104 	 */
1105 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1106 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1107 
1108 	/*
1109 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1110 	 * leave it in non-RCU-idle state.
1111 	 */
1112 	if (rdtp->dynticks_nmi_nesting != 1) {
1113 		rdtp->dynticks_nmi_nesting -= 2;
1114 		return;
1115 	}
1116 
1117 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1118 	rdtp->dynticks_nmi_nesting = 0;
1119 	rcu_dynticks_eqs_enter();
1120 }
1121 
1122 /**
1123  * __rcu_is_watching - are RCU read-side critical sections safe?
1124  *
1125  * Return true if RCU is watching the running CPU, which means that
1126  * this CPU can safely enter RCU read-side critical sections.  Unlike
1127  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1128  * least disabled preemption.
1129  */
1130 bool notrace __rcu_is_watching(void)
1131 {
1132 	return !rcu_dynticks_curr_cpu_in_eqs();
1133 }
1134 
1135 /**
1136  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1137  *
1138  * If the current CPU is in its idle loop and is neither in an interrupt
1139  * or NMI handler, return true.
1140  */
1141 bool notrace rcu_is_watching(void)
1142 {
1143 	bool ret;
1144 
1145 	preempt_disable_notrace();
1146 	ret = __rcu_is_watching();
1147 	preempt_enable_notrace();
1148 	return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(rcu_is_watching);
1151 
1152 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1153 
1154 /*
1155  * Is the current CPU online?  Disable preemption to avoid false positives
1156  * that could otherwise happen due to the current CPU number being sampled,
1157  * this task being preempted, its old CPU being taken offline, resuming
1158  * on some other CPU, then determining that its old CPU is now offline.
1159  * It is OK to use RCU on an offline processor during initial boot, hence
1160  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1161  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1162  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1163  * offline to continue to use RCU for one jiffy after marking itself
1164  * offline in the cpu_online_mask.  This leniency is necessary given the
1165  * non-atomic nature of the online and offline processing, for example,
1166  * the fact that a CPU enters the scheduler after completing the teardown
1167  * of the CPU.
1168  *
1169  * This is also why RCU internally marks CPUs online during in the
1170  * preparation phase and offline after the CPU has been taken down.
1171  *
1172  * Disable checking if in an NMI handler because we cannot safely report
1173  * errors from NMI handlers anyway.
1174  */
1175 bool rcu_lockdep_current_cpu_online(void)
1176 {
1177 	struct rcu_data *rdp;
1178 	struct rcu_node *rnp;
1179 	bool ret;
1180 
1181 	if (in_nmi())
1182 		return true;
1183 	preempt_disable();
1184 	rdp = this_cpu_ptr(&rcu_sched_data);
1185 	rnp = rdp->mynode;
1186 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1187 	      !rcu_scheduler_fully_active;
1188 	preempt_enable();
1189 	return ret;
1190 }
1191 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1192 
1193 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1194 
1195 /**
1196  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1197  *
1198  * If the current CPU is idle or running at a first-level (not nested)
1199  * interrupt from idle, return true.  The caller must have at least
1200  * disabled preemption.
1201  */
1202 static int rcu_is_cpu_rrupt_from_idle(void)
1203 {
1204 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1205 }
1206 
1207 /*
1208  * Snapshot the specified CPU's dynticks counter so that we can later
1209  * credit them with an implicit quiescent state.  Return 1 if this CPU
1210  * is in dynticks idle mode, which is an extended quiescent state.
1211  */
1212 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1213 					 bool *isidle, unsigned long *maxj)
1214 {
1215 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1216 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1217 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1218 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1219 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1220 				 rdp->mynode->gpnum))
1221 			WRITE_ONCE(rdp->gpwrap, true);
1222 		return 1;
1223 	}
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Return true if the specified CPU has passed through a quiescent
1229  * state by virtue of being in or having passed through an dynticks
1230  * idle state since the last call to dyntick_save_progress_counter()
1231  * for this same CPU, or by virtue of having been offline.
1232  */
1233 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1234 				    bool *isidle, unsigned long *maxj)
1235 {
1236 	unsigned long jtsq;
1237 	int *rcrmp;
1238 	unsigned long rjtsc;
1239 	struct rcu_node *rnp;
1240 
1241 	/*
1242 	 * If the CPU passed through or entered a dynticks idle phase with
1243 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1244 	 * already acknowledged the request to pass through a quiescent
1245 	 * state.  Either way, that CPU cannot possibly be in an RCU
1246 	 * read-side critical section that started before the beginning
1247 	 * of the current RCU grace period.
1248 	 */
1249 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1250 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1251 		rdp->dynticks_fqs++;
1252 		return 1;
1253 	}
1254 
1255 	/* Compute and saturate jiffies_till_sched_qs. */
1256 	jtsq = jiffies_till_sched_qs;
1257 	rjtsc = rcu_jiffies_till_stall_check();
1258 	if (jtsq > rjtsc / 2) {
1259 		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1260 		jtsq = rjtsc / 2;
1261 	} else if (jtsq < 1) {
1262 		WRITE_ONCE(jiffies_till_sched_qs, 1);
1263 		jtsq = 1;
1264 	}
1265 
1266 	/*
1267 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1268 	 * beginning of the grace period?  For this to be the case,
1269 	 * the CPU has to have noticed the current grace period.  This
1270 	 * might not be the case for nohz_full CPUs looping in the kernel.
1271 	 */
1272 	rnp = rdp->mynode;
1273 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1274 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) &&
1275 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1276 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1277 		return 1;
1278 	}
1279 
1280 	/* Check for the CPU being offline. */
1281 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1282 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1283 		rdp->offline_fqs++;
1284 		return 1;
1285 	}
1286 
1287 	/*
1288 	 * A CPU running for an extended time within the kernel can
1289 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1290 	 * even context-switching back and forth between a pair of
1291 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1292 	 * So if the grace period is old enough, make the CPU pay attention.
1293 	 * Note that the unsynchronized assignments to the per-CPU
1294 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1295 	 * bits can be lost, but they will be set again on the next
1296 	 * force-quiescent-state pass.  So lost bit sets do not result
1297 	 * in incorrect behavior, merely in a grace period lasting
1298 	 * a few jiffies longer than it might otherwise.  Because
1299 	 * there are at most four threads involved, and because the
1300 	 * updates are only once every few jiffies, the probability of
1301 	 * lossage (and thus of slight grace-period extension) is
1302 	 * quite low.
1303 	 *
1304 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1305 	 * is set too high, we override with half of the RCU CPU stall
1306 	 * warning delay.
1307 	 */
1308 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1309 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1310 	    time_after(jiffies, rdp->rsp->jiffies_resched)) {
1311 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1312 			WRITE_ONCE(rdp->cond_resched_completed,
1313 				   READ_ONCE(rdp->mynode->completed));
1314 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1315 			WRITE_ONCE(*rcrmp,
1316 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1317 		}
1318 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1319 	}
1320 
1321 	/*
1322 	 * If more than halfway to RCU CPU stall-warning time, do
1323 	 * a resched_cpu() to try to loosen things up a bit.
1324 	 */
1325 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1326 		resched_cpu(rdp->cpu);
1327 
1328 	return 0;
1329 }
1330 
1331 static void record_gp_stall_check_time(struct rcu_state *rsp)
1332 {
1333 	unsigned long j = jiffies;
1334 	unsigned long j1;
1335 
1336 	rsp->gp_start = j;
1337 	smp_wmb(); /* Record start time before stall time. */
1338 	j1 = rcu_jiffies_till_stall_check();
1339 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1340 	rsp->jiffies_resched = j + j1 / 2;
1341 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1342 }
1343 
1344 /*
1345  * Convert a ->gp_state value to a character string.
1346  */
1347 static const char *gp_state_getname(short gs)
1348 {
1349 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1350 		return "???";
1351 	return gp_state_names[gs];
1352 }
1353 
1354 /*
1355  * Complain about starvation of grace-period kthread.
1356  */
1357 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1358 {
1359 	unsigned long gpa;
1360 	unsigned long j;
1361 
1362 	j = jiffies;
1363 	gpa = READ_ONCE(rsp->gp_activity);
1364 	if (j - gpa > 2 * HZ) {
1365 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1366 		       rsp->name, j - gpa,
1367 		       rsp->gpnum, rsp->completed,
1368 		       rsp->gp_flags,
1369 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1370 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1371 		if (rsp->gp_kthread) {
1372 			sched_show_task(rsp->gp_kthread);
1373 			wake_up_process(rsp->gp_kthread);
1374 		}
1375 	}
1376 }
1377 
1378 /*
1379  * Dump stacks of all tasks running on stalled CPUs.  First try using
1380  * NMIs, but fall back to manual remote stack tracing on architectures
1381  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1382  * traces are more accurate because they are printed by the target CPU.
1383  */
1384 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1385 {
1386 	int cpu;
1387 	unsigned long flags;
1388 	struct rcu_node *rnp;
1389 
1390 	rcu_for_each_leaf_node(rsp, rnp) {
1391 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1392 		for_each_leaf_node_possible_cpu(rnp, cpu)
1393 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1394 				if (!trigger_single_cpu_backtrace(cpu))
1395 					dump_cpu_task(cpu);
1396 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1397 	}
1398 }
1399 
1400 /*
1401  * If too much time has passed in the current grace period, and if
1402  * so configured, go kick the relevant kthreads.
1403  */
1404 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1405 {
1406 	unsigned long j;
1407 
1408 	if (!rcu_kick_kthreads)
1409 		return;
1410 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1411 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1412 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1413 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1414 		rcu_ftrace_dump(DUMP_ALL);
1415 		wake_up_process(rsp->gp_kthread);
1416 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1417 	}
1418 }
1419 
1420 static inline void panic_on_rcu_stall(void)
1421 {
1422 	if (sysctl_panic_on_rcu_stall)
1423 		panic("RCU Stall\n");
1424 }
1425 
1426 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1427 {
1428 	int cpu;
1429 	long delta;
1430 	unsigned long flags;
1431 	unsigned long gpa;
1432 	unsigned long j;
1433 	int ndetected = 0;
1434 	struct rcu_node *rnp = rcu_get_root(rsp);
1435 	long totqlen = 0;
1436 
1437 	/* Kick and suppress, if so configured. */
1438 	rcu_stall_kick_kthreads(rsp);
1439 	if (rcu_cpu_stall_suppress)
1440 		return;
1441 
1442 	/* Only let one CPU complain about others per time interval. */
1443 
1444 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1445 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1446 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1447 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1448 		return;
1449 	}
1450 	WRITE_ONCE(rsp->jiffies_stall,
1451 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1452 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1453 
1454 	/*
1455 	 * OK, time to rat on our buddy...
1456 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1457 	 * RCU CPU stall warnings.
1458 	 */
1459 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1460 	       rsp->name);
1461 	print_cpu_stall_info_begin();
1462 	rcu_for_each_leaf_node(rsp, rnp) {
1463 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1464 		ndetected += rcu_print_task_stall(rnp);
1465 		if (rnp->qsmask != 0) {
1466 			for_each_leaf_node_possible_cpu(rnp, cpu)
1467 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1468 					print_cpu_stall_info(rsp, cpu);
1469 					ndetected++;
1470 				}
1471 		}
1472 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1473 	}
1474 
1475 	print_cpu_stall_info_end();
1476 	for_each_possible_cpu(cpu)
1477 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1478 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1479 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1480 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1481 	if (ndetected) {
1482 		rcu_dump_cpu_stacks(rsp);
1483 
1484 		/* Complain about tasks blocking the grace period. */
1485 		rcu_print_detail_task_stall(rsp);
1486 	} else {
1487 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1488 		    READ_ONCE(rsp->completed) == gpnum) {
1489 			pr_err("INFO: Stall ended before state dump start\n");
1490 		} else {
1491 			j = jiffies;
1492 			gpa = READ_ONCE(rsp->gp_activity);
1493 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1494 			       rsp->name, j - gpa, j, gpa,
1495 			       jiffies_till_next_fqs,
1496 			       rcu_get_root(rsp)->qsmask);
1497 			/* In this case, the current CPU might be at fault. */
1498 			sched_show_task(current);
1499 		}
1500 	}
1501 
1502 	rcu_check_gp_kthread_starvation(rsp);
1503 
1504 	panic_on_rcu_stall();
1505 
1506 	force_quiescent_state(rsp);  /* Kick them all. */
1507 }
1508 
1509 static void print_cpu_stall(struct rcu_state *rsp)
1510 {
1511 	int cpu;
1512 	unsigned long flags;
1513 	struct rcu_node *rnp = rcu_get_root(rsp);
1514 	long totqlen = 0;
1515 
1516 	/* Kick and suppress, if so configured. */
1517 	rcu_stall_kick_kthreads(rsp);
1518 	if (rcu_cpu_stall_suppress)
1519 		return;
1520 
1521 	/*
1522 	 * OK, time to rat on ourselves...
1523 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1524 	 * RCU CPU stall warnings.
1525 	 */
1526 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1527 	print_cpu_stall_info_begin();
1528 	print_cpu_stall_info(rsp, smp_processor_id());
1529 	print_cpu_stall_info_end();
1530 	for_each_possible_cpu(cpu)
1531 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1532 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1533 		jiffies - rsp->gp_start,
1534 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1535 
1536 	rcu_check_gp_kthread_starvation(rsp);
1537 
1538 	rcu_dump_cpu_stacks(rsp);
1539 
1540 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1541 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1542 		WRITE_ONCE(rsp->jiffies_stall,
1543 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1544 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1545 
1546 	panic_on_rcu_stall();
1547 
1548 	/*
1549 	 * Attempt to revive the RCU machinery by forcing a context switch.
1550 	 *
1551 	 * A context switch would normally allow the RCU state machine to make
1552 	 * progress and it could be we're stuck in kernel space without context
1553 	 * switches for an entirely unreasonable amount of time.
1554 	 */
1555 	resched_cpu(smp_processor_id());
1556 }
1557 
1558 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1559 {
1560 	unsigned long completed;
1561 	unsigned long gpnum;
1562 	unsigned long gps;
1563 	unsigned long j;
1564 	unsigned long js;
1565 	struct rcu_node *rnp;
1566 
1567 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1568 	    !rcu_gp_in_progress(rsp))
1569 		return;
1570 	rcu_stall_kick_kthreads(rsp);
1571 	j = jiffies;
1572 
1573 	/*
1574 	 * Lots of memory barriers to reject false positives.
1575 	 *
1576 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1577 	 * then rsp->gp_start, and finally rsp->completed.  These values
1578 	 * are updated in the opposite order with memory barriers (or
1579 	 * equivalent) during grace-period initialization and cleanup.
1580 	 * Now, a false positive can occur if we get an new value of
1581 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1582 	 * the memory barriers, the only way that this can happen is if one
1583 	 * grace period ends and another starts between these two fetches.
1584 	 * Detect this by comparing rsp->completed with the previous fetch
1585 	 * from rsp->gpnum.
1586 	 *
1587 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1588 	 * and rsp->gp_start suffice to forestall false positives.
1589 	 */
1590 	gpnum = READ_ONCE(rsp->gpnum);
1591 	smp_rmb(); /* Pick up ->gpnum first... */
1592 	js = READ_ONCE(rsp->jiffies_stall);
1593 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1594 	gps = READ_ONCE(rsp->gp_start);
1595 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1596 	completed = READ_ONCE(rsp->completed);
1597 	if (ULONG_CMP_GE(completed, gpnum) ||
1598 	    ULONG_CMP_LT(j, js) ||
1599 	    ULONG_CMP_GE(gps, js))
1600 		return; /* No stall or GP completed since entering function. */
1601 	rnp = rdp->mynode;
1602 	if (rcu_gp_in_progress(rsp) &&
1603 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1604 
1605 		/* We haven't checked in, so go dump stack. */
1606 		print_cpu_stall(rsp);
1607 
1608 	} else if (rcu_gp_in_progress(rsp) &&
1609 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1610 
1611 		/* They had a few time units to dump stack, so complain. */
1612 		print_other_cpu_stall(rsp, gpnum);
1613 	}
1614 }
1615 
1616 /**
1617  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1618  *
1619  * Set the stall-warning timeout way off into the future, thus preventing
1620  * any RCU CPU stall-warning messages from appearing in the current set of
1621  * RCU grace periods.
1622  *
1623  * The caller must disable hard irqs.
1624  */
1625 void rcu_cpu_stall_reset(void)
1626 {
1627 	struct rcu_state *rsp;
1628 
1629 	for_each_rcu_flavor(rsp)
1630 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1631 }
1632 
1633 /*
1634  * Initialize the specified rcu_data structure's default callback list
1635  * to empty.  The default callback list is the one that is not used by
1636  * no-callbacks CPUs.
1637  */
1638 static void init_default_callback_list(struct rcu_data *rdp)
1639 {
1640 	int i;
1641 
1642 	rdp->nxtlist = NULL;
1643 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1644 		rdp->nxttail[i] = &rdp->nxtlist;
1645 }
1646 
1647 /*
1648  * Initialize the specified rcu_data structure's callback list to empty.
1649  */
1650 static void init_callback_list(struct rcu_data *rdp)
1651 {
1652 	if (init_nocb_callback_list(rdp))
1653 		return;
1654 	init_default_callback_list(rdp);
1655 }
1656 
1657 /*
1658  * Determine the value that ->completed will have at the end of the
1659  * next subsequent grace period.  This is used to tag callbacks so that
1660  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1661  * been dyntick-idle for an extended period with callbacks under the
1662  * influence of RCU_FAST_NO_HZ.
1663  *
1664  * The caller must hold rnp->lock with interrupts disabled.
1665  */
1666 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1667 				       struct rcu_node *rnp)
1668 {
1669 	/*
1670 	 * If RCU is idle, we just wait for the next grace period.
1671 	 * But we can only be sure that RCU is idle if we are looking
1672 	 * at the root rcu_node structure -- otherwise, a new grace
1673 	 * period might have started, but just not yet gotten around
1674 	 * to initializing the current non-root rcu_node structure.
1675 	 */
1676 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1677 		return rnp->completed + 1;
1678 
1679 	/*
1680 	 * Otherwise, wait for a possible partial grace period and
1681 	 * then the subsequent full grace period.
1682 	 */
1683 	return rnp->completed + 2;
1684 }
1685 
1686 /*
1687  * Trace-event helper function for rcu_start_future_gp() and
1688  * rcu_nocb_wait_gp().
1689  */
1690 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1691 				unsigned long c, const char *s)
1692 {
1693 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1694 				      rnp->completed, c, rnp->level,
1695 				      rnp->grplo, rnp->grphi, s);
1696 }
1697 
1698 /*
1699  * Start some future grace period, as needed to handle newly arrived
1700  * callbacks.  The required future grace periods are recorded in each
1701  * rcu_node structure's ->need_future_gp field.  Returns true if there
1702  * is reason to awaken the grace-period kthread.
1703  *
1704  * The caller must hold the specified rcu_node structure's ->lock.
1705  */
1706 static bool __maybe_unused
1707 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1708 		    unsigned long *c_out)
1709 {
1710 	unsigned long c;
1711 	int i;
1712 	bool ret = false;
1713 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1714 
1715 	/*
1716 	 * Pick up grace-period number for new callbacks.  If this
1717 	 * grace period is already marked as needed, return to the caller.
1718 	 */
1719 	c = rcu_cbs_completed(rdp->rsp, rnp);
1720 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1721 	if (rnp->need_future_gp[c & 0x1]) {
1722 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1723 		goto out;
1724 	}
1725 
1726 	/*
1727 	 * If either this rcu_node structure or the root rcu_node structure
1728 	 * believe that a grace period is in progress, then we must wait
1729 	 * for the one following, which is in "c".  Because our request
1730 	 * will be noticed at the end of the current grace period, we don't
1731 	 * need to explicitly start one.  We only do the lockless check
1732 	 * of rnp_root's fields if the current rcu_node structure thinks
1733 	 * there is no grace period in flight, and because we hold rnp->lock,
1734 	 * the only possible change is when rnp_root's two fields are
1735 	 * equal, in which case rnp_root->gpnum might be concurrently
1736 	 * incremented.  But that is OK, as it will just result in our
1737 	 * doing some extra useless work.
1738 	 */
1739 	if (rnp->gpnum != rnp->completed ||
1740 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1741 		rnp->need_future_gp[c & 0x1]++;
1742 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1743 		goto out;
1744 	}
1745 
1746 	/*
1747 	 * There might be no grace period in progress.  If we don't already
1748 	 * hold it, acquire the root rcu_node structure's lock in order to
1749 	 * start one (if needed).
1750 	 */
1751 	if (rnp != rnp_root)
1752 		raw_spin_lock_rcu_node(rnp_root);
1753 
1754 	/*
1755 	 * Get a new grace-period number.  If there really is no grace
1756 	 * period in progress, it will be smaller than the one we obtained
1757 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1758 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1759 	 */
1760 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1761 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1762 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1763 			rdp->nxtcompleted[i] = c;
1764 
1765 	/*
1766 	 * If the needed for the required grace period is already
1767 	 * recorded, trace and leave.
1768 	 */
1769 	if (rnp_root->need_future_gp[c & 0x1]) {
1770 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1771 		goto unlock_out;
1772 	}
1773 
1774 	/* Record the need for the future grace period. */
1775 	rnp_root->need_future_gp[c & 0x1]++;
1776 
1777 	/* If a grace period is not already in progress, start one. */
1778 	if (rnp_root->gpnum != rnp_root->completed) {
1779 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1780 	} else {
1781 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1782 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1783 	}
1784 unlock_out:
1785 	if (rnp != rnp_root)
1786 		raw_spin_unlock_rcu_node(rnp_root);
1787 out:
1788 	if (c_out != NULL)
1789 		*c_out = c;
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Clean up any old requests for the just-ended grace period.  Also return
1795  * whether any additional grace periods have been requested.  Also invoke
1796  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1797  * waiting for this grace period to complete.
1798  */
1799 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1800 {
1801 	int c = rnp->completed;
1802 	int needmore;
1803 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1804 
1805 	rnp->need_future_gp[c & 0x1] = 0;
1806 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1807 	trace_rcu_future_gp(rnp, rdp, c,
1808 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1809 	return needmore;
1810 }
1811 
1812 /*
1813  * Awaken the grace-period kthread for the specified flavor of RCU.
1814  * Don't do a self-awaken, and don't bother awakening when there is
1815  * nothing for the grace-period kthread to do (as in several CPUs
1816  * raced to awaken, and we lost), and finally don't try to awaken
1817  * a kthread that has not yet been created.
1818  */
1819 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1820 {
1821 	if (current == rsp->gp_kthread ||
1822 	    !READ_ONCE(rsp->gp_flags) ||
1823 	    !rsp->gp_kthread)
1824 		return;
1825 	swake_up(&rsp->gp_wq);
1826 }
1827 
1828 /*
1829  * If there is room, assign a ->completed number to any callbacks on
1830  * this CPU that have not already been assigned.  Also accelerate any
1831  * callbacks that were previously assigned a ->completed number that has
1832  * since proven to be too conservative, which can happen if callbacks get
1833  * assigned a ->completed number while RCU is idle, but with reference to
1834  * a non-root rcu_node structure.  This function is idempotent, so it does
1835  * not hurt to call it repeatedly.  Returns an flag saying that we should
1836  * awaken the RCU grace-period kthread.
1837  *
1838  * The caller must hold rnp->lock with interrupts disabled.
1839  */
1840 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1841 			       struct rcu_data *rdp)
1842 {
1843 	unsigned long c;
1844 	int i;
1845 	bool ret;
1846 
1847 	/* If the CPU has no callbacks, nothing to do. */
1848 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1849 		return false;
1850 
1851 	/*
1852 	 * Starting from the sublist containing the callbacks most
1853 	 * recently assigned a ->completed number and working down, find the
1854 	 * first sublist that is not assignable to an upcoming grace period.
1855 	 * Such a sublist has something in it (first two tests) and has
1856 	 * a ->completed number assigned that will complete sooner than
1857 	 * the ->completed number for newly arrived callbacks (last test).
1858 	 *
1859 	 * The key point is that any later sublist can be assigned the
1860 	 * same ->completed number as the newly arrived callbacks, which
1861 	 * means that the callbacks in any of these later sublist can be
1862 	 * grouped into a single sublist, whether or not they have already
1863 	 * been assigned a ->completed number.
1864 	 */
1865 	c = rcu_cbs_completed(rsp, rnp);
1866 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1867 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1868 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1869 			break;
1870 
1871 	/*
1872 	 * If there are no sublist for unassigned callbacks, leave.
1873 	 * At the same time, advance "i" one sublist, so that "i" will
1874 	 * index into the sublist where all the remaining callbacks should
1875 	 * be grouped into.
1876 	 */
1877 	if (++i >= RCU_NEXT_TAIL)
1878 		return false;
1879 
1880 	/*
1881 	 * Assign all subsequent callbacks' ->completed number to the next
1882 	 * full grace period and group them all in the sublist initially
1883 	 * indexed by "i".
1884 	 */
1885 	for (; i <= RCU_NEXT_TAIL; i++) {
1886 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1887 		rdp->nxtcompleted[i] = c;
1888 	}
1889 	/* Record any needed additional grace periods. */
1890 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1891 
1892 	/* Trace depending on how much we were able to accelerate. */
1893 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1894 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1895 	else
1896 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1897 	return ret;
1898 }
1899 
1900 /*
1901  * Move any callbacks whose grace period has completed to the
1902  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1903  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1904  * sublist.  This function is idempotent, so it does not hurt to
1905  * invoke it repeatedly.  As long as it is not invoked -too- often...
1906  * Returns true if the RCU grace-period kthread needs to be awakened.
1907  *
1908  * The caller must hold rnp->lock with interrupts disabled.
1909  */
1910 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1911 			    struct rcu_data *rdp)
1912 {
1913 	int i, j;
1914 
1915 	/* If the CPU has no callbacks, nothing to do. */
1916 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1917 		return false;
1918 
1919 	/*
1920 	 * Find all callbacks whose ->completed numbers indicate that they
1921 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1922 	 */
1923 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1924 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1925 			break;
1926 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1927 	}
1928 	/* Clean up any sublist tail pointers that were misordered above. */
1929 	for (j = RCU_WAIT_TAIL; j < i; j++)
1930 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1931 
1932 	/* Copy down callbacks to fill in empty sublists. */
1933 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1934 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1935 			break;
1936 		rdp->nxttail[j] = rdp->nxttail[i];
1937 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1938 	}
1939 
1940 	/* Classify any remaining callbacks. */
1941 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1942 }
1943 
1944 /*
1945  * Update CPU-local rcu_data state to record the beginnings and ends of
1946  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1947  * structure corresponding to the current CPU, and must have irqs disabled.
1948  * Returns true if the grace-period kthread needs to be awakened.
1949  */
1950 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1951 			      struct rcu_data *rdp)
1952 {
1953 	bool ret;
1954 	bool need_gp;
1955 
1956 	/* Handle the ends of any preceding grace periods first. */
1957 	if (rdp->completed == rnp->completed &&
1958 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1959 
1960 		/* No grace period end, so just accelerate recent callbacks. */
1961 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1962 
1963 	} else {
1964 
1965 		/* Advance callbacks. */
1966 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1967 
1968 		/* Remember that we saw this grace-period completion. */
1969 		rdp->completed = rnp->completed;
1970 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1971 	}
1972 
1973 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1974 		/*
1975 		 * If the current grace period is waiting for this CPU,
1976 		 * set up to detect a quiescent state, otherwise don't
1977 		 * go looking for one.
1978 		 */
1979 		rdp->gpnum = rnp->gpnum;
1980 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1981 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1982 		rdp->cpu_no_qs.b.norm = need_gp;
1983 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1984 		rdp->core_needs_qs = need_gp;
1985 		zero_cpu_stall_ticks(rdp);
1986 		WRITE_ONCE(rdp->gpwrap, false);
1987 	}
1988 	return ret;
1989 }
1990 
1991 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1992 {
1993 	unsigned long flags;
1994 	bool needwake;
1995 	struct rcu_node *rnp;
1996 
1997 	local_irq_save(flags);
1998 	rnp = rdp->mynode;
1999 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
2000 	     rdp->completed == READ_ONCE(rnp->completed) &&
2001 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2002 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2003 		local_irq_restore(flags);
2004 		return;
2005 	}
2006 	needwake = __note_gp_changes(rsp, rnp, rdp);
2007 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2008 	if (needwake)
2009 		rcu_gp_kthread_wake(rsp);
2010 }
2011 
2012 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2013 {
2014 	if (delay > 0 &&
2015 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2016 		schedule_timeout_uninterruptible(delay);
2017 }
2018 
2019 /*
2020  * Initialize a new grace period.  Return false if no grace period required.
2021  */
2022 static bool rcu_gp_init(struct rcu_state *rsp)
2023 {
2024 	unsigned long oldmask;
2025 	struct rcu_data *rdp;
2026 	struct rcu_node *rnp = rcu_get_root(rsp);
2027 
2028 	WRITE_ONCE(rsp->gp_activity, jiffies);
2029 	raw_spin_lock_irq_rcu_node(rnp);
2030 	if (!READ_ONCE(rsp->gp_flags)) {
2031 		/* Spurious wakeup, tell caller to go back to sleep.  */
2032 		raw_spin_unlock_irq_rcu_node(rnp);
2033 		return false;
2034 	}
2035 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2036 
2037 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2038 		/*
2039 		 * Grace period already in progress, don't start another.
2040 		 * Not supposed to be able to happen.
2041 		 */
2042 		raw_spin_unlock_irq_rcu_node(rnp);
2043 		return false;
2044 	}
2045 
2046 	/* Advance to a new grace period and initialize state. */
2047 	record_gp_stall_check_time(rsp);
2048 	/* Record GP times before starting GP, hence smp_store_release(). */
2049 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2050 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2051 	raw_spin_unlock_irq_rcu_node(rnp);
2052 
2053 	/*
2054 	 * Apply per-leaf buffered online and offline operations to the
2055 	 * rcu_node tree.  Note that this new grace period need not wait
2056 	 * for subsequent online CPUs, and that quiescent-state forcing
2057 	 * will handle subsequent offline CPUs.
2058 	 */
2059 	rcu_for_each_leaf_node(rsp, rnp) {
2060 		rcu_gp_slow(rsp, gp_preinit_delay);
2061 		raw_spin_lock_irq_rcu_node(rnp);
2062 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2063 		    !rnp->wait_blkd_tasks) {
2064 			/* Nothing to do on this leaf rcu_node structure. */
2065 			raw_spin_unlock_irq_rcu_node(rnp);
2066 			continue;
2067 		}
2068 
2069 		/* Record old state, apply changes to ->qsmaskinit field. */
2070 		oldmask = rnp->qsmaskinit;
2071 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2072 
2073 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2074 		if (!oldmask != !rnp->qsmaskinit) {
2075 			if (!oldmask) /* First online CPU for this rcu_node. */
2076 				rcu_init_new_rnp(rnp);
2077 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2078 				rnp->wait_blkd_tasks = true;
2079 			else /* Last offline CPU and can propagate. */
2080 				rcu_cleanup_dead_rnp(rnp);
2081 		}
2082 
2083 		/*
2084 		 * If all waited-on tasks from prior grace period are
2085 		 * done, and if all this rcu_node structure's CPUs are
2086 		 * still offline, propagate up the rcu_node tree and
2087 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2088 		 * rcu_node structure's CPUs has since come back online,
2089 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2090 		 * checks for this, so just call it unconditionally).
2091 		 */
2092 		if (rnp->wait_blkd_tasks &&
2093 		    (!rcu_preempt_has_tasks(rnp) ||
2094 		     rnp->qsmaskinit)) {
2095 			rnp->wait_blkd_tasks = false;
2096 			rcu_cleanup_dead_rnp(rnp);
2097 		}
2098 
2099 		raw_spin_unlock_irq_rcu_node(rnp);
2100 	}
2101 
2102 	/*
2103 	 * Set the quiescent-state-needed bits in all the rcu_node
2104 	 * structures for all currently online CPUs in breadth-first order,
2105 	 * starting from the root rcu_node structure, relying on the layout
2106 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2107 	 * will access only the leaves of the hierarchy, thus seeing that no
2108 	 * grace period is in progress, at least until the corresponding
2109 	 * leaf node has been initialized.
2110 	 *
2111 	 * The grace period cannot complete until the initialization
2112 	 * process finishes, because this kthread handles both.
2113 	 */
2114 	rcu_for_each_node_breadth_first(rsp, rnp) {
2115 		rcu_gp_slow(rsp, gp_init_delay);
2116 		raw_spin_lock_irq_rcu_node(rnp);
2117 		rdp = this_cpu_ptr(rsp->rda);
2118 		rcu_preempt_check_blocked_tasks(rnp);
2119 		rnp->qsmask = rnp->qsmaskinit;
2120 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2121 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2122 			WRITE_ONCE(rnp->completed, rsp->completed);
2123 		if (rnp == rdp->mynode)
2124 			(void)__note_gp_changes(rsp, rnp, rdp);
2125 		rcu_preempt_boost_start_gp(rnp);
2126 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2127 					    rnp->level, rnp->grplo,
2128 					    rnp->grphi, rnp->qsmask);
2129 		raw_spin_unlock_irq_rcu_node(rnp);
2130 		cond_resched_rcu_qs();
2131 		WRITE_ONCE(rsp->gp_activity, jiffies);
2132 	}
2133 
2134 	return true;
2135 }
2136 
2137 /*
2138  * Helper function for wait_event_interruptible_timeout() wakeup
2139  * at force-quiescent-state time.
2140  */
2141 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2142 {
2143 	struct rcu_node *rnp = rcu_get_root(rsp);
2144 
2145 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2146 	*gfp = READ_ONCE(rsp->gp_flags);
2147 	if (*gfp & RCU_GP_FLAG_FQS)
2148 		return true;
2149 
2150 	/* The current grace period has completed. */
2151 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2152 		return true;
2153 
2154 	return false;
2155 }
2156 
2157 /*
2158  * Do one round of quiescent-state forcing.
2159  */
2160 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2161 {
2162 	bool isidle = false;
2163 	unsigned long maxj;
2164 	struct rcu_node *rnp = rcu_get_root(rsp);
2165 
2166 	WRITE_ONCE(rsp->gp_activity, jiffies);
2167 	rsp->n_force_qs++;
2168 	if (first_time) {
2169 		/* Collect dyntick-idle snapshots. */
2170 		if (is_sysidle_rcu_state(rsp)) {
2171 			isidle = true;
2172 			maxj = jiffies - ULONG_MAX / 4;
2173 		}
2174 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2175 			     &isidle, &maxj);
2176 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2177 	} else {
2178 		/* Handle dyntick-idle and offline CPUs. */
2179 		isidle = true;
2180 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2181 	}
2182 	/* Clear flag to prevent immediate re-entry. */
2183 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2184 		raw_spin_lock_irq_rcu_node(rnp);
2185 		WRITE_ONCE(rsp->gp_flags,
2186 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2187 		raw_spin_unlock_irq_rcu_node(rnp);
2188 	}
2189 }
2190 
2191 /*
2192  * Clean up after the old grace period.
2193  */
2194 static void rcu_gp_cleanup(struct rcu_state *rsp)
2195 {
2196 	unsigned long gp_duration;
2197 	bool needgp = false;
2198 	int nocb = 0;
2199 	struct rcu_data *rdp;
2200 	struct rcu_node *rnp = rcu_get_root(rsp);
2201 	struct swait_queue_head *sq;
2202 
2203 	WRITE_ONCE(rsp->gp_activity, jiffies);
2204 	raw_spin_lock_irq_rcu_node(rnp);
2205 	gp_duration = jiffies - rsp->gp_start;
2206 	if (gp_duration > rsp->gp_max)
2207 		rsp->gp_max = gp_duration;
2208 
2209 	/*
2210 	 * We know the grace period is complete, but to everyone else
2211 	 * it appears to still be ongoing.  But it is also the case
2212 	 * that to everyone else it looks like there is nothing that
2213 	 * they can do to advance the grace period.  It is therefore
2214 	 * safe for us to drop the lock in order to mark the grace
2215 	 * period as completed in all of the rcu_node structures.
2216 	 */
2217 	raw_spin_unlock_irq_rcu_node(rnp);
2218 
2219 	/*
2220 	 * Propagate new ->completed value to rcu_node structures so
2221 	 * that other CPUs don't have to wait until the start of the next
2222 	 * grace period to process their callbacks.  This also avoids
2223 	 * some nasty RCU grace-period initialization races by forcing
2224 	 * the end of the current grace period to be completely recorded in
2225 	 * all of the rcu_node structures before the beginning of the next
2226 	 * grace period is recorded in any of the rcu_node structures.
2227 	 */
2228 	rcu_for_each_node_breadth_first(rsp, rnp) {
2229 		raw_spin_lock_irq_rcu_node(rnp);
2230 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2231 		WARN_ON_ONCE(rnp->qsmask);
2232 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2233 		rdp = this_cpu_ptr(rsp->rda);
2234 		if (rnp == rdp->mynode)
2235 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2236 		/* smp_mb() provided by prior unlock-lock pair. */
2237 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2238 		sq = rcu_nocb_gp_get(rnp);
2239 		raw_spin_unlock_irq_rcu_node(rnp);
2240 		rcu_nocb_gp_cleanup(sq);
2241 		cond_resched_rcu_qs();
2242 		WRITE_ONCE(rsp->gp_activity, jiffies);
2243 		rcu_gp_slow(rsp, gp_cleanup_delay);
2244 	}
2245 	rnp = rcu_get_root(rsp);
2246 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2247 	rcu_nocb_gp_set(rnp, nocb);
2248 
2249 	/* Declare grace period done. */
2250 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2251 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2252 	rsp->gp_state = RCU_GP_IDLE;
2253 	rdp = this_cpu_ptr(rsp->rda);
2254 	/* Advance CBs to reduce false positives below. */
2255 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2256 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2257 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2258 		trace_rcu_grace_period(rsp->name,
2259 				       READ_ONCE(rsp->gpnum),
2260 				       TPS("newreq"));
2261 	}
2262 	raw_spin_unlock_irq_rcu_node(rnp);
2263 }
2264 
2265 /*
2266  * Body of kthread that handles grace periods.
2267  */
2268 static int __noreturn rcu_gp_kthread(void *arg)
2269 {
2270 	bool first_gp_fqs;
2271 	int gf;
2272 	unsigned long j;
2273 	int ret;
2274 	struct rcu_state *rsp = arg;
2275 	struct rcu_node *rnp = rcu_get_root(rsp);
2276 
2277 	rcu_bind_gp_kthread();
2278 	for (;;) {
2279 
2280 		/* Handle grace-period start. */
2281 		for (;;) {
2282 			trace_rcu_grace_period(rsp->name,
2283 					       READ_ONCE(rsp->gpnum),
2284 					       TPS("reqwait"));
2285 			rsp->gp_state = RCU_GP_WAIT_GPS;
2286 			swait_event_interruptible(rsp->gp_wq,
2287 						 READ_ONCE(rsp->gp_flags) &
2288 						 RCU_GP_FLAG_INIT);
2289 			rsp->gp_state = RCU_GP_DONE_GPS;
2290 			/* Locking provides needed memory barrier. */
2291 			if (rcu_gp_init(rsp))
2292 				break;
2293 			cond_resched_rcu_qs();
2294 			WRITE_ONCE(rsp->gp_activity, jiffies);
2295 			WARN_ON(signal_pending(current));
2296 			trace_rcu_grace_period(rsp->name,
2297 					       READ_ONCE(rsp->gpnum),
2298 					       TPS("reqwaitsig"));
2299 		}
2300 
2301 		/* Handle quiescent-state forcing. */
2302 		first_gp_fqs = true;
2303 		j = jiffies_till_first_fqs;
2304 		if (j > HZ) {
2305 			j = HZ;
2306 			jiffies_till_first_fqs = HZ;
2307 		}
2308 		ret = 0;
2309 		for (;;) {
2310 			if (!ret) {
2311 				rsp->jiffies_force_qs = jiffies + j;
2312 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2313 					   jiffies + 3 * j);
2314 			}
2315 			trace_rcu_grace_period(rsp->name,
2316 					       READ_ONCE(rsp->gpnum),
2317 					       TPS("fqswait"));
2318 			rsp->gp_state = RCU_GP_WAIT_FQS;
2319 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2320 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2321 			rsp->gp_state = RCU_GP_DOING_FQS;
2322 			/* Locking provides needed memory barriers. */
2323 			/* If grace period done, leave loop. */
2324 			if (!READ_ONCE(rnp->qsmask) &&
2325 			    !rcu_preempt_blocked_readers_cgp(rnp))
2326 				break;
2327 			/* If time for quiescent-state forcing, do it. */
2328 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2329 			    (gf & RCU_GP_FLAG_FQS)) {
2330 				trace_rcu_grace_period(rsp->name,
2331 						       READ_ONCE(rsp->gpnum),
2332 						       TPS("fqsstart"));
2333 				rcu_gp_fqs(rsp, first_gp_fqs);
2334 				first_gp_fqs = false;
2335 				trace_rcu_grace_period(rsp->name,
2336 						       READ_ONCE(rsp->gpnum),
2337 						       TPS("fqsend"));
2338 				cond_resched_rcu_qs();
2339 				WRITE_ONCE(rsp->gp_activity, jiffies);
2340 				ret = 0; /* Force full wait till next FQS. */
2341 				j = jiffies_till_next_fqs;
2342 				if (j > HZ) {
2343 					j = HZ;
2344 					jiffies_till_next_fqs = HZ;
2345 				} else if (j < 1) {
2346 					j = 1;
2347 					jiffies_till_next_fqs = 1;
2348 				}
2349 			} else {
2350 				/* Deal with stray signal. */
2351 				cond_resched_rcu_qs();
2352 				WRITE_ONCE(rsp->gp_activity, jiffies);
2353 				WARN_ON(signal_pending(current));
2354 				trace_rcu_grace_period(rsp->name,
2355 						       READ_ONCE(rsp->gpnum),
2356 						       TPS("fqswaitsig"));
2357 				ret = 1; /* Keep old FQS timing. */
2358 				j = jiffies;
2359 				if (time_after(jiffies, rsp->jiffies_force_qs))
2360 					j = 1;
2361 				else
2362 					j = rsp->jiffies_force_qs - j;
2363 			}
2364 		}
2365 
2366 		/* Handle grace-period end. */
2367 		rsp->gp_state = RCU_GP_CLEANUP;
2368 		rcu_gp_cleanup(rsp);
2369 		rsp->gp_state = RCU_GP_CLEANED;
2370 	}
2371 }
2372 
2373 /*
2374  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2375  * in preparation for detecting the next grace period.  The caller must hold
2376  * the root node's ->lock and hard irqs must be disabled.
2377  *
2378  * Note that it is legal for a dying CPU (which is marked as offline) to
2379  * invoke this function.  This can happen when the dying CPU reports its
2380  * quiescent state.
2381  *
2382  * Returns true if the grace-period kthread must be awakened.
2383  */
2384 static bool
2385 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2386 		      struct rcu_data *rdp)
2387 {
2388 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2389 		/*
2390 		 * Either we have not yet spawned the grace-period
2391 		 * task, this CPU does not need another grace period,
2392 		 * or a grace period is already in progress.
2393 		 * Either way, don't start a new grace period.
2394 		 */
2395 		return false;
2396 	}
2397 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2398 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2399 			       TPS("newreq"));
2400 
2401 	/*
2402 	 * We can't do wakeups while holding the rnp->lock, as that
2403 	 * could cause possible deadlocks with the rq->lock. Defer
2404 	 * the wakeup to our caller.
2405 	 */
2406 	return true;
2407 }
2408 
2409 /*
2410  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2411  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2412  * is invoked indirectly from rcu_advance_cbs(), which would result in
2413  * endless recursion -- or would do so if it wasn't for the self-deadlock
2414  * that is encountered beforehand.
2415  *
2416  * Returns true if the grace-period kthread needs to be awakened.
2417  */
2418 static bool rcu_start_gp(struct rcu_state *rsp)
2419 {
2420 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2421 	struct rcu_node *rnp = rcu_get_root(rsp);
2422 	bool ret = false;
2423 
2424 	/*
2425 	 * If there is no grace period in progress right now, any
2426 	 * callbacks we have up to this point will be satisfied by the
2427 	 * next grace period.  Also, advancing the callbacks reduces the
2428 	 * probability of false positives from cpu_needs_another_gp()
2429 	 * resulting in pointless grace periods.  So, advance callbacks
2430 	 * then start the grace period!
2431 	 */
2432 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2433 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2434 	return ret;
2435 }
2436 
2437 /*
2438  * Report a full set of quiescent states to the specified rcu_state data
2439  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2440  * kthread if another grace period is required.  Whether we wake
2441  * the grace-period kthread or it awakens itself for the next round
2442  * of quiescent-state forcing, that kthread will clean up after the
2443  * just-completed grace period.  Note that the caller must hold rnp->lock,
2444  * which is released before return.
2445  */
2446 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2447 	__releases(rcu_get_root(rsp)->lock)
2448 {
2449 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2450 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2451 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2452 	rcu_gp_kthread_wake(rsp);
2453 }
2454 
2455 /*
2456  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2457  * Allows quiescent states for a group of CPUs to be reported at one go
2458  * to the specified rcu_node structure, though all the CPUs in the group
2459  * must be represented by the same rcu_node structure (which need not be a
2460  * leaf rcu_node structure, though it often will be).  The gps parameter
2461  * is the grace-period snapshot, which means that the quiescent states
2462  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2463  * must be held upon entry, and it is released before return.
2464  */
2465 static void
2466 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2467 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2468 	__releases(rnp->lock)
2469 {
2470 	unsigned long oldmask = 0;
2471 	struct rcu_node *rnp_c;
2472 
2473 	/* Walk up the rcu_node hierarchy. */
2474 	for (;;) {
2475 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2476 
2477 			/*
2478 			 * Our bit has already been cleared, or the
2479 			 * relevant grace period is already over, so done.
2480 			 */
2481 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2482 			return;
2483 		}
2484 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2485 		rnp->qsmask &= ~mask;
2486 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2487 						 mask, rnp->qsmask, rnp->level,
2488 						 rnp->grplo, rnp->grphi,
2489 						 !!rnp->gp_tasks);
2490 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2491 
2492 			/* Other bits still set at this level, so done. */
2493 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2494 			return;
2495 		}
2496 		mask = rnp->grpmask;
2497 		if (rnp->parent == NULL) {
2498 
2499 			/* No more levels.  Exit loop holding root lock. */
2500 
2501 			break;
2502 		}
2503 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2504 		rnp_c = rnp;
2505 		rnp = rnp->parent;
2506 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2507 		oldmask = rnp_c->qsmask;
2508 	}
2509 
2510 	/*
2511 	 * Get here if we are the last CPU to pass through a quiescent
2512 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2513 	 * to clean up and start the next grace period if one is needed.
2514 	 */
2515 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2516 }
2517 
2518 /*
2519  * Record a quiescent state for all tasks that were previously queued
2520  * on the specified rcu_node structure and that were blocking the current
2521  * RCU grace period.  The caller must hold the specified rnp->lock with
2522  * irqs disabled, and this lock is released upon return, but irqs remain
2523  * disabled.
2524  */
2525 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2526 				      struct rcu_node *rnp, unsigned long flags)
2527 	__releases(rnp->lock)
2528 {
2529 	unsigned long gps;
2530 	unsigned long mask;
2531 	struct rcu_node *rnp_p;
2532 
2533 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2534 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2535 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2536 		return;  /* Still need more quiescent states! */
2537 	}
2538 
2539 	rnp_p = rnp->parent;
2540 	if (rnp_p == NULL) {
2541 		/*
2542 		 * Only one rcu_node structure in the tree, so don't
2543 		 * try to report up to its nonexistent parent!
2544 		 */
2545 		rcu_report_qs_rsp(rsp, flags);
2546 		return;
2547 	}
2548 
2549 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2550 	gps = rnp->gpnum;
2551 	mask = rnp->grpmask;
2552 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2553 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2554 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2555 }
2556 
2557 /*
2558  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2559  * structure.  This must be called from the specified CPU.
2560  */
2561 static void
2562 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2563 {
2564 	unsigned long flags;
2565 	unsigned long mask;
2566 	bool needwake;
2567 	struct rcu_node *rnp;
2568 
2569 	rnp = rdp->mynode;
2570 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2571 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2572 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2573 
2574 		/*
2575 		 * The grace period in which this quiescent state was
2576 		 * recorded has ended, so don't report it upwards.
2577 		 * We will instead need a new quiescent state that lies
2578 		 * within the current grace period.
2579 		 */
2580 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2581 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2582 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2583 		return;
2584 	}
2585 	mask = rdp->grpmask;
2586 	if ((rnp->qsmask & mask) == 0) {
2587 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2588 	} else {
2589 		rdp->core_needs_qs = false;
2590 
2591 		/*
2592 		 * This GP can't end until cpu checks in, so all of our
2593 		 * callbacks can be processed during the next GP.
2594 		 */
2595 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2596 
2597 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2598 		/* ^^^ Released rnp->lock */
2599 		if (needwake)
2600 			rcu_gp_kthread_wake(rsp);
2601 	}
2602 }
2603 
2604 /*
2605  * Check to see if there is a new grace period of which this CPU
2606  * is not yet aware, and if so, set up local rcu_data state for it.
2607  * Otherwise, see if this CPU has just passed through its first
2608  * quiescent state for this grace period, and record that fact if so.
2609  */
2610 static void
2611 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2612 {
2613 	/* Check for grace-period ends and beginnings. */
2614 	note_gp_changes(rsp, rdp);
2615 
2616 	/*
2617 	 * Does this CPU still need to do its part for current grace period?
2618 	 * If no, return and let the other CPUs do their part as well.
2619 	 */
2620 	if (!rdp->core_needs_qs)
2621 		return;
2622 
2623 	/*
2624 	 * Was there a quiescent state since the beginning of the grace
2625 	 * period? If no, then exit and wait for the next call.
2626 	 */
2627 	if (rdp->cpu_no_qs.b.norm)
2628 		return;
2629 
2630 	/*
2631 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2632 	 * judge of that).
2633 	 */
2634 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2635 }
2636 
2637 /*
2638  * Send the specified CPU's RCU callbacks to the orphanage.  The
2639  * specified CPU must be offline, and the caller must hold the
2640  * ->orphan_lock.
2641  */
2642 static void
2643 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2644 			  struct rcu_node *rnp, struct rcu_data *rdp)
2645 {
2646 	/* No-CBs CPUs do not have orphanable callbacks. */
2647 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2648 		return;
2649 
2650 	/*
2651 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2652 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2653 	 * cannot be running now.  Thus no memory barrier is required.
2654 	 */
2655 	if (rdp->nxtlist != NULL) {
2656 		rsp->qlen_lazy += rdp->qlen_lazy;
2657 		rsp->qlen += rdp->qlen;
2658 		rdp->n_cbs_orphaned += rdp->qlen;
2659 		rdp->qlen_lazy = 0;
2660 		WRITE_ONCE(rdp->qlen, 0);
2661 	}
2662 
2663 	/*
2664 	 * Next, move those callbacks still needing a grace period to
2665 	 * the orphanage, where some other CPU will pick them up.
2666 	 * Some of the callbacks might have gone partway through a grace
2667 	 * period, but that is too bad.  They get to start over because we
2668 	 * cannot assume that grace periods are synchronized across CPUs.
2669 	 * We don't bother updating the ->nxttail[] array yet, instead
2670 	 * we just reset the whole thing later on.
2671 	 */
2672 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2673 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2674 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2675 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2676 	}
2677 
2678 	/*
2679 	 * Then move the ready-to-invoke callbacks to the orphanage,
2680 	 * where some other CPU will pick them up.  These will not be
2681 	 * required to pass though another grace period: They are done.
2682 	 */
2683 	if (rdp->nxtlist != NULL) {
2684 		*rsp->orphan_donetail = rdp->nxtlist;
2685 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2686 	}
2687 
2688 	/*
2689 	 * Finally, initialize the rcu_data structure's list to empty and
2690 	 * disallow further callbacks on this CPU.
2691 	 */
2692 	init_callback_list(rdp);
2693 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2694 }
2695 
2696 /*
2697  * Adopt the RCU callbacks from the specified rcu_state structure's
2698  * orphanage.  The caller must hold the ->orphan_lock.
2699  */
2700 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2701 {
2702 	int i;
2703 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2704 
2705 	/* No-CBs CPUs are handled specially. */
2706 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2707 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2708 		return;
2709 
2710 	/* Do the accounting first. */
2711 	rdp->qlen_lazy += rsp->qlen_lazy;
2712 	rdp->qlen += rsp->qlen;
2713 	rdp->n_cbs_adopted += rsp->qlen;
2714 	if (rsp->qlen_lazy != rsp->qlen)
2715 		rcu_idle_count_callbacks_posted();
2716 	rsp->qlen_lazy = 0;
2717 	rsp->qlen = 0;
2718 
2719 	/*
2720 	 * We do not need a memory barrier here because the only way we
2721 	 * can get here if there is an rcu_barrier() in flight is if
2722 	 * we are the task doing the rcu_barrier().
2723 	 */
2724 
2725 	/* First adopt the ready-to-invoke callbacks. */
2726 	if (rsp->orphan_donelist != NULL) {
2727 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2728 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2729 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2730 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2731 				rdp->nxttail[i] = rsp->orphan_donetail;
2732 		rsp->orphan_donelist = NULL;
2733 		rsp->orphan_donetail = &rsp->orphan_donelist;
2734 	}
2735 
2736 	/* And then adopt the callbacks that still need a grace period. */
2737 	if (rsp->orphan_nxtlist != NULL) {
2738 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2739 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2740 		rsp->orphan_nxtlist = NULL;
2741 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2742 	}
2743 }
2744 
2745 /*
2746  * Trace the fact that this CPU is going offline.
2747  */
2748 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2749 {
2750 	RCU_TRACE(unsigned long mask);
2751 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2752 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2753 
2754 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2755 		return;
2756 
2757 	RCU_TRACE(mask = rdp->grpmask);
2758 	trace_rcu_grace_period(rsp->name,
2759 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2760 			       TPS("cpuofl"));
2761 }
2762 
2763 /*
2764  * All CPUs for the specified rcu_node structure have gone offline,
2765  * and all tasks that were preempted within an RCU read-side critical
2766  * section while running on one of those CPUs have since exited their RCU
2767  * read-side critical section.  Some other CPU is reporting this fact with
2768  * the specified rcu_node structure's ->lock held and interrupts disabled.
2769  * This function therefore goes up the tree of rcu_node structures,
2770  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2771  * the leaf rcu_node structure's ->qsmaskinit field has already been
2772  * updated
2773  *
2774  * This function does check that the specified rcu_node structure has
2775  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2776  * prematurely.  That said, invoking it after the fact will cost you
2777  * a needless lock acquisition.  So once it has done its work, don't
2778  * invoke it again.
2779  */
2780 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2781 {
2782 	long mask;
2783 	struct rcu_node *rnp = rnp_leaf;
2784 
2785 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2786 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2787 		return;
2788 	for (;;) {
2789 		mask = rnp->grpmask;
2790 		rnp = rnp->parent;
2791 		if (!rnp)
2792 			break;
2793 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2794 		rnp->qsmaskinit &= ~mask;
2795 		rnp->qsmask &= ~mask;
2796 		if (rnp->qsmaskinit) {
2797 			raw_spin_unlock_rcu_node(rnp);
2798 			/* irqs remain disabled. */
2799 			return;
2800 		}
2801 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2802 	}
2803 }
2804 
2805 /*
2806  * The CPU has been completely removed, and some other CPU is reporting
2807  * this fact from process context.  Do the remainder of the cleanup,
2808  * including orphaning the outgoing CPU's RCU callbacks, and also
2809  * adopting them.  There can only be one CPU hotplug operation at a time,
2810  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2811  */
2812 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2813 {
2814 	unsigned long flags;
2815 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2816 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2817 
2818 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2819 		return;
2820 
2821 	/* Adjust any no-longer-needed kthreads. */
2822 	rcu_boost_kthread_setaffinity(rnp, -1);
2823 
2824 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2825 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2826 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2827 	rcu_adopt_orphan_cbs(rsp, flags);
2828 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2829 
2830 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2831 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2832 		  cpu, rdp->qlen, rdp->nxtlist);
2833 }
2834 
2835 /*
2836  * Invoke any RCU callbacks that have made it to the end of their grace
2837  * period.  Thottle as specified by rdp->blimit.
2838  */
2839 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2840 {
2841 	unsigned long flags;
2842 	struct rcu_head *next, *list, **tail;
2843 	long bl, count, count_lazy;
2844 	int i;
2845 
2846 	/* If no callbacks are ready, just return. */
2847 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2848 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2849 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2850 				    need_resched(), is_idle_task(current),
2851 				    rcu_is_callbacks_kthread());
2852 		return;
2853 	}
2854 
2855 	/*
2856 	 * Extract the list of ready callbacks, disabling to prevent
2857 	 * races with call_rcu() from interrupt handlers.
2858 	 */
2859 	local_irq_save(flags);
2860 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2861 	bl = rdp->blimit;
2862 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2863 	list = rdp->nxtlist;
2864 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2865 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2866 	tail = rdp->nxttail[RCU_DONE_TAIL];
2867 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2868 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2869 			rdp->nxttail[i] = &rdp->nxtlist;
2870 	local_irq_restore(flags);
2871 
2872 	/* Invoke callbacks. */
2873 	count = count_lazy = 0;
2874 	while (list) {
2875 		next = list->next;
2876 		prefetch(next);
2877 		debug_rcu_head_unqueue(list);
2878 		if (__rcu_reclaim(rsp->name, list))
2879 			count_lazy++;
2880 		list = next;
2881 		/* Stop only if limit reached and CPU has something to do. */
2882 		if (++count >= bl &&
2883 		    (need_resched() ||
2884 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2885 			break;
2886 	}
2887 
2888 	local_irq_save(flags);
2889 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2890 			    is_idle_task(current),
2891 			    rcu_is_callbacks_kthread());
2892 
2893 	/* Update count, and requeue any remaining callbacks. */
2894 	if (list != NULL) {
2895 		*tail = rdp->nxtlist;
2896 		rdp->nxtlist = list;
2897 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2898 			if (&rdp->nxtlist == rdp->nxttail[i])
2899 				rdp->nxttail[i] = tail;
2900 			else
2901 				break;
2902 	}
2903 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2904 	rdp->qlen_lazy -= count_lazy;
2905 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2906 	rdp->n_cbs_invoked += count;
2907 
2908 	/* Reinstate batch limit if we have worked down the excess. */
2909 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2910 		rdp->blimit = blimit;
2911 
2912 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2913 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2914 		rdp->qlen_last_fqs_check = 0;
2915 		rdp->n_force_qs_snap = rsp->n_force_qs;
2916 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2917 		rdp->qlen_last_fqs_check = rdp->qlen;
2918 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2919 
2920 	local_irq_restore(flags);
2921 
2922 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2923 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2924 		invoke_rcu_core();
2925 }
2926 
2927 /*
2928  * Check to see if this CPU is in a non-context-switch quiescent state
2929  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2930  * Also schedule RCU core processing.
2931  *
2932  * This function must be called from hardirq context.  It is normally
2933  * invoked from the scheduling-clock interrupt.
2934  */
2935 void rcu_check_callbacks(int user)
2936 {
2937 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2938 	increment_cpu_stall_ticks();
2939 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2940 
2941 		/*
2942 		 * Get here if this CPU took its interrupt from user
2943 		 * mode or from the idle loop, and if this is not a
2944 		 * nested interrupt.  In this case, the CPU is in
2945 		 * a quiescent state, so note it.
2946 		 *
2947 		 * No memory barrier is required here because both
2948 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2949 		 * variables that other CPUs neither access nor modify,
2950 		 * at least not while the corresponding CPU is online.
2951 		 */
2952 
2953 		rcu_sched_qs();
2954 		rcu_bh_qs();
2955 
2956 	} else if (!in_softirq()) {
2957 
2958 		/*
2959 		 * Get here if this CPU did not take its interrupt from
2960 		 * softirq, in other words, if it is not interrupting
2961 		 * a rcu_bh read-side critical section.  This is an _bh
2962 		 * critical section, so note it.
2963 		 */
2964 
2965 		rcu_bh_qs();
2966 	}
2967 	rcu_preempt_check_callbacks();
2968 	if (rcu_pending())
2969 		invoke_rcu_core();
2970 	if (user)
2971 		rcu_note_voluntary_context_switch(current);
2972 	trace_rcu_utilization(TPS("End scheduler-tick"));
2973 }
2974 
2975 /*
2976  * Scan the leaf rcu_node structures, processing dyntick state for any that
2977  * have not yet encountered a quiescent state, using the function specified.
2978  * Also initiate boosting for any threads blocked on the root rcu_node.
2979  *
2980  * The caller must have suppressed start of new grace periods.
2981  */
2982 static void force_qs_rnp(struct rcu_state *rsp,
2983 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2984 				  unsigned long *maxj),
2985 			 bool *isidle, unsigned long *maxj)
2986 {
2987 	int cpu;
2988 	unsigned long flags;
2989 	unsigned long mask;
2990 	struct rcu_node *rnp;
2991 
2992 	rcu_for_each_leaf_node(rsp, rnp) {
2993 		cond_resched_rcu_qs();
2994 		mask = 0;
2995 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2996 		if (rnp->qsmask == 0) {
2997 			if (rcu_state_p == &rcu_sched_state ||
2998 			    rsp != rcu_state_p ||
2999 			    rcu_preempt_blocked_readers_cgp(rnp)) {
3000 				/*
3001 				 * No point in scanning bits because they
3002 				 * are all zero.  But we might need to
3003 				 * priority-boost blocked readers.
3004 				 */
3005 				rcu_initiate_boost(rnp, flags);
3006 				/* rcu_initiate_boost() releases rnp->lock */
3007 				continue;
3008 			}
3009 			if (rnp->parent &&
3010 			    (rnp->parent->qsmask & rnp->grpmask)) {
3011 				/*
3012 				 * Race between grace-period
3013 				 * initialization and task exiting RCU
3014 				 * read-side critical section: Report.
3015 				 */
3016 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
3017 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
3018 				continue;
3019 			}
3020 		}
3021 		for_each_leaf_node_possible_cpu(rnp, cpu) {
3022 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
3023 			if ((rnp->qsmask & bit) != 0) {
3024 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
3025 					mask |= bit;
3026 			}
3027 		}
3028 		if (mask != 0) {
3029 			/* Idle/offline CPUs, report (releases rnp->lock. */
3030 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
3031 		} else {
3032 			/* Nothing to do here, so just drop the lock. */
3033 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3034 		}
3035 	}
3036 }
3037 
3038 /*
3039  * Force quiescent states on reluctant CPUs, and also detect which
3040  * CPUs are in dyntick-idle mode.
3041  */
3042 static void force_quiescent_state(struct rcu_state *rsp)
3043 {
3044 	unsigned long flags;
3045 	bool ret;
3046 	struct rcu_node *rnp;
3047 	struct rcu_node *rnp_old = NULL;
3048 
3049 	/* Funnel through hierarchy to reduce memory contention. */
3050 	rnp = __this_cpu_read(rsp->rda->mynode);
3051 	for (; rnp != NULL; rnp = rnp->parent) {
3052 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
3053 		      !raw_spin_trylock(&rnp->fqslock);
3054 		if (rnp_old != NULL)
3055 			raw_spin_unlock(&rnp_old->fqslock);
3056 		if (ret) {
3057 			rsp->n_force_qs_lh++;
3058 			return;
3059 		}
3060 		rnp_old = rnp;
3061 	}
3062 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
3063 
3064 	/* Reached the root of the rcu_node tree, acquire lock. */
3065 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3066 	raw_spin_unlock(&rnp_old->fqslock);
3067 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3068 		rsp->n_force_qs_lh++;
3069 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3070 		return;  /* Someone beat us to it. */
3071 	}
3072 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
3073 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3074 	rcu_gp_kthread_wake(rsp);
3075 }
3076 
3077 /*
3078  * This does the RCU core processing work for the specified rcu_state
3079  * and rcu_data structures.  This may be called only from the CPU to
3080  * whom the rdp belongs.
3081  */
3082 static void
3083 __rcu_process_callbacks(struct rcu_state *rsp)
3084 {
3085 	unsigned long flags;
3086 	bool needwake;
3087 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3088 
3089 	WARN_ON_ONCE(rdp->beenonline == 0);
3090 
3091 	/* Update RCU state based on any recent quiescent states. */
3092 	rcu_check_quiescent_state(rsp, rdp);
3093 
3094 	/* Does this CPU require a not-yet-started grace period? */
3095 	local_irq_save(flags);
3096 	if (cpu_needs_another_gp(rsp, rdp)) {
3097 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3098 		needwake = rcu_start_gp(rsp);
3099 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3100 		if (needwake)
3101 			rcu_gp_kthread_wake(rsp);
3102 	} else {
3103 		local_irq_restore(flags);
3104 	}
3105 
3106 	/* If there are callbacks ready, invoke them. */
3107 	if (cpu_has_callbacks_ready_to_invoke(rdp))
3108 		invoke_rcu_callbacks(rsp, rdp);
3109 
3110 	/* Do any needed deferred wakeups of rcuo kthreads. */
3111 	do_nocb_deferred_wakeup(rdp);
3112 }
3113 
3114 /*
3115  * Do RCU core processing for the current CPU.
3116  */
3117 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3118 {
3119 	struct rcu_state *rsp;
3120 
3121 	if (cpu_is_offline(smp_processor_id()))
3122 		return;
3123 	trace_rcu_utilization(TPS("Start RCU core"));
3124 	for_each_rcu_flavor(rsp)
3125 		__rcu_process_callbacks(rsp);
3126 	trace_rcu_utilization(TPS("End RCU core"));
3127 }
3128 
3129 /*
3130  * Schedule RCU callback invocation.  If the specified type of RCU
3131  * does not support RCU priority boosting, just do a direct call,
3132  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3133  * are running on the current CPU with softirqs disabled, the
3134  * rcu_cpu_kthread_task cannot disappear out from under us.
3135  */
3136 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3137 {
3138 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3139 		return;
3140 	if (likely(!rsp->boost)) {
3141 		rcu_do_batch(rsp, rdp);
3142 		return;
3143 	}
3144 	invoke_rcu_callbacks_kthread();
3145 }
3146 
3147 static void invoke_rcu_core(void)
3148 {
3149 	if (cpu_online(smp_processor_id()))
3150 		raise_softirq(RCU_SOFTIRQ);
3151 }
3152 
3153 /*
3154  * Handle any core-RCU processing required by a call_rcu() invocation.
3155  */
3156 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3157 			    struct rcu_head *head, unsigned long flags)
3158 {
3159 	bool needwake;
3160 
3161 	/*
3162 	 * If called from an extended quiescent state, invoke the RCU
3163 	 * core in order to force a re-evaluation of RCU's idleness.
3164 	 */
3165 	if (!rcu_is_watching())
3166 		invoke_rcu_core();
3167 
3168 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3169 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3170 		return;
3171 
3172 	/*
3173 	 * Force the grace period if too many callbacks or too long waiting.
3174 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3175 	 * if some other CPU has recently done so.  Also, don't bother
3176 	 * invoking force_quiescent_state() if the newly enqueued callback
3177 	 * is the only one waiting for a grace period to complete.
3178 	 */
3179 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3180 
3181 		/* Are we ignoring a completed grace period? */
3182 		note_gp_changes(rsp, rdp);
3183 
3184 		/* Start a new grace period if one not already started. */
3185 		if (!rcu_gp_in_progress(rsp)) {
3186 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3187 
3188 			raw_spin_lock_rcu_node(rnp_root);
3189 			needwake = rcu_start_gp(rsp);
3190 			raw_spin_unlock_rcu_node(rnp_root);
3191 			if (needwake)
3192 				rcu_gp_kthread_wake(rsp);
3193 		} else {
3194 			/* Give the grace period a kick. */
3195 			rdp->blimit = LONG_MAX;
3196 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3197 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3198 				force_quiescent_state(rsp);
3199 			rdp->n_force_qs_snap = rsp->n_force_qs;
3200 			rdp->qlen_last_fqs_check = rdp->qlen;
3201 		}
3202 	}
3203 }
3204 
3205 /*
3206  * RCU callback function to leak a callback.
3207  */
3208 static void rcu_leak_callback(struct rcu_head *rhp)
3209 {
3210 }
3211 
3212 /*
3213  * Helper function for call_rcu() and friends.  The cpu argument will
3214  * normally be -1, indicating "currently running CPU".  It may specify
3215  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3216  * is expected to specify a CPU.
3217  */
3218 static void
3219 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3220 	   struct rcu_state *rsp, int cpu, bool lazy)
3221 {
3222 	unsigned long flags;
3223 	struct rcu_data *rdp;
3224 
3225 	/* Misaligned rcu_head! */
3226 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3227 
3228 	if (debug_rcu_head_queue(head)) {
3229 		/* Probable double call_rcu(), so leak the callback. */
3230 		WRITE_ONCE(head->func, rcu_leak_callback);
3231 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3232 		return;
3233 	}
3234 	head->func = func;
3235 	head->next = NULL;
3236 	local_irq_save(flags);
3237 	rdp = this_cpu_ptr(rsp->rda);
3238 
3239 	/* Add the callback to our list. */
3240 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3241 		int offline;
3242 
3243 		if (cpu != -1)
3244 			rdp = per_cpu_ptr(rsp->rda, cpu);
3245 		if (likely(rdp->mynode)) {
3246 			/* Post-boot, so this should be for a no-CBs CPU. */
3247 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3248 			WARN_ON_ONCE(offline);
3249 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3250 			local_irq_restore(flags);
3251 			return;
3252 		}
3253 		/*
3254 		 * Very early boot, before rcu_init().  Initialize if needed
3255 		 * and then drop through to queue the callback.
3256 		 */
3257 		BUG_ON(cpu != -1);
3258 		WARN_ON_ONCE(!rcu_is_watching());
3259 		if (!likely(rdp->nxtlist))
3260 			init_default_callback_list(rdp);
3261 	}
3262 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3263 	if (lazy)
3264 		rdp->qlen_lazy++;
3265 	else
3266 		rcu_idle_count_callbacks_posted();
3267 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3268 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3269 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3270 
3271 	if (__is_kfree_rcu_offset((unsigned long)func))
3272 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3273 					 rdp->qlen_lazy, rdp->qlen);
3274 	else
3275 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3276 
3277 	/* Go handle any RCU core processing required. */
3278 	__call_rcu_core(rsp, rdp, head, flags);
3279 	local_irq_restore(flags);
3280 }
3281 
3282 /*
3283  * Queue an RCU-sched callback for invocation after a grace period.
3284  */
3285 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3286 {
3287 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3288 }
3289 EXPORT_SYMBOL_GPL(call_rcu_sched);
3290 
3291 /*
3292  * Queue an RCU callback for invocation after a quicker grace period.
3293  */
3294 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3295 {
3296 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3297 }
3298 EXPORT_SYMBOL_GPL(call_rcu_bh);
3299 
3300 /*
3301  * Queue an RCU callback for lazy invocation after a grace period.
3302  * This will likely be later named something like "call_rcu_lazy()",
3303  * but this change will require some way of tagging the lazy RCU
3304  * callbacks in the list of pending callbacks. Until then, this
3305  * function may only be called from __kfree_rcu().
3306  */
3307 void kfree_call_rcu(struct rcu_head *head,
3308 		    rcu_callback_t func)
3309 {
3310 	__call_rcu(head, func, rcu_state_p, -1, 1);
3311 }
3312 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3313 
3314 /*
3315  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3316  * any blocking grace-period wait automatically implies a grace period
3317  * if there is only one CPU online at any point time during execution
3318  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3319  * occasionally incorrectly indicate that there are multiple CPUs online
3320  * when there was in fact only one the whole time, as this just adds
3321  * some overhead: RCU still operates correctly.
3322  */
3323 static inline int rcu_blocking_is_gp(void)
3324 {
3325 	int ret;
3326 
3327 	might_sleep();  /* Check for RCU read-side critical section. */
3328 	preempt_disable();
3329 	ret = num_online_cpus() <= 1;
3330 	preempt_enable();
3331 	return ret;
3332 }
3333 
3334 /**
3335  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3336  *
3337  * Control will return to the caller some time after a full rcu-sched
3338  * grace period has elapsed, in other words after all currently executing
3339  * rcu-sched read-side critical sections have completed.   These read-side
3340  * critical sections are delimited by rcu_read_lock_sched() and
3341  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3342  * local_irq_disable(), and so on may be used in place of
3343  * rcu_read_lock_sched().
3344  *
3345  * This means that all preempt_disable code sequences, including NMI and
3346  * non-threaded hardware-interrupt handlers, in progress on entry will
3347  * have completed before this primitive returns.  However, this does not
3348  * guarantee that softirq handlers will have completed, since in some
3349  * kernels, these handlers can run in process context, and can block.
3350  *
3351  * Note that this guarantee implies further memory-ordering guarantees.
3352  * On systems with more than one CPU, when synchronize_sched() returns,
3353  * each CPU is guaranteed to have executed a full memory barrier since the
3354  * end of its last RCU-sched read-side critical section whose beginning
3355  * preceded the call to synchronize_sched().  In addition, each CPU having
3356  * an RCU read-side critical section that extends beyond the return from
3357  * synchronize_sched() is guaranteed to have executed a full memory barrier
3358  * after the beginning of synchronize_sched() and before the beginning of
3359  * that RCU read-side critical section.  Note that these guarantees include
3360  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3361  * that are executing in the kernel.
3362  *
3363  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3364  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3365  * to have executed a full memory barrier during the execution of
3366  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3367  * again only if the system has more than one CPU).
3368  *
3369  * This primitive provides the guarantees made by the (now removed)
3370  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3371  * guarantees that rcu_read_lock() sections will have completed.
3372  * In "classic RCU", these two guarantees happen to be one and
3373  * the same, but can differ in realtime RCU implementations.
3374  */
3375 void synchronize_sched(void)
3376 {
3377 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3378 			 lock_is_held(&rcu_lock_map) ||
3379 			 lock_is_held(&rcu_sched_lock_map),
3380 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3381 	if (rcu_blocking_is_gp())
3382 		return;
3383 	if (rcu_gp_is_expedited())
3384 		synchronize_sched_expedited();
3385 	else
3386 		wait_rcu_gp(call_rcu_sched);
3387 }
3388 EXPORT_SYMBOL_GPL(synchronize_sched);
3389 
3390 /**
3391  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3392  *
3393  * Control will return to the caller some time after a full rcu_bh grace
3394  * period has elapsed, in other words after all currently executing rcu_bh
3395  * read-side critical sections have completed.  RCU read-side critical
3396  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3397  * and may be nested.
3398  *
3399  * See the description of synchronize_sched() for more detailed information
3400  * on memory ordering guarantees.
3401  */
3402 void synchronize_rcu_bh(void)
3403 {
3404 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3405 			 lock_is_held(&rcu_lock_map) ||
3406 			 lock_is_held(&rcu_sched_lock_map),
3407 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3408 	if (rcu_blocking_is_gp())
3409 		return;
3410 	if (rcu_gp_is_expedited())
3411 		synchronize_rcu_bh_expedited();
3412 	else
3413 		wait_rcu_gp(call_rcu_bh);
3414 }
3415 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3416 
3417 /**
3418  * get_state_synchronize_rcu - Snapshot current RCU state
3419  *
3420  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3421  * to determine whether or not a full grace period has elapsed in the
3422  * meantime.
3423  */
3424 unsigned long get_state_synchronize_rcu(void)
3425 {
3426 	/*
3427 	 * Any prior manipulation of RCU-protected data must happen
3428 	 * before the load from ->gpnum.
3429 	 */
3430 	smp_mb();  /* ^^^ */
3431 
3432 	/*
3433 	 * Make sure this load happens before the purportedly
3434 	 * time-consuming work between get_state_synchronize_rcu()
3435 	 * and cond_synchronize_rcu().
3436 	 */
3437 	return smp_load_acquire(&rcu_state_p->gpnum);
3438 }
3439 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3440 
3441 /**
3442  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3443  *
3444  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3445  *
3446  * If a full RCU grace period has elapsed since the earlier call to
3447  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3448  * synchronize_rcu() to wait for a full grace period.
3449  *
3450  * Yes, this function does not take counter wrap into account.  But
3451  * counter wrap is harmless.  If the counter wraps, we have waited for
3452  * more than 2 billion grace periods (and way more on a 64-bit system!),
3453  * so waiting for one additional grace period should be just fine.
3454  */
3455 void cond_synchronize_rcu(unsigned long oldstate)
3456 {
3457 	unsigned long newstate;
3458 
3459 	/*
3460 	 * Ensure that this load happens before any RCU-destructive
3461 	 * actions the caller might carry out after we return.
3462 	 */
3463 	newstate = smp_load_acquire(&rcu_state_p->completed);
3464 	if (ULONG_CMP_GE(oldstate, newstate))
3465 		synchronize_rcu();
3466 }
3467 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3468 
3469 /**
3470  * get_state_synchronize_sched - Snapshot current RCU-sched state
3471  *
3472  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3473  * to determine whether or not a full grace period has elapsed in the
3474  * meantime.
3475  */
3476 unsigned long get_state_synchronize_sched(void)
3477 {
3478 	/*
3479 	 * Any prior manipulation of RCU-protected data must happen
3480 	 * before the load from ->gpnum.
3481 	 */
3482 	smp_mb();  /* ^^^ */
3483 
3484 	/*
3485 	 * Make sure this load happens before the purportedly
3486 	 * time-consuming work between get_state_synchronize_sched()
3487 	 * and cond_synchronize_sched().
3488 	 */
3489 	return smp_load_acquire(&rcu_sched_state.gpnum);
3490 }
3491 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3492 
3493 /**
3494  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3495  *
3496  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3497  *
3498  * If a full RCU-sched grace period has elapsed since the earlier call to
3499  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3500  * synchronize_sched() to wait for a full grace period.
3501  *
3502  * Yes, this function does not take counter wrap into account.  But
3503  * counter wrap is harmless.  If the counter wraps, we have waited for
3504  * more than 2 billion grace periods (and way more on a 64-bit system!),
3505  * so waiting for one additional grace period should be just fine.
3506  */
3507 void cond_synchronize_sched(unsigned long oldstate)
3508 {
3509 	unsigned long newstate;
3510 
3511 	/*
3512 	 * Ensure that this load happens before any RCU-destructive
3513 	 * actions the caller might carry out after we return.
3514 	 */
3515 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3516 	if (ULONG_CMP_GE(oldstate, newstate))
3517 		synchronize_sched();
3518 }
3519 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3520 
3521 /* Adjust sequence number for start of update-side operation. */
3522 static void rcu_seq_start(unsigned long *sp)
3523 {
3524 	WRITE_ONCE(*sp, *sp + 1);
3525 	smp_mb(); /* Ensure update-side operation after counter increment. */
3526 	WARN_ON_ONCE(!(*sp & 0x1));
3527 }
3528 
3529 /* Adjust sequence number for end of update-side operation. */
3530 static void rcu_seq_end(unsigned long *sp)
3531 {
3532 	smp_mb(); /* Ensure update-side operation before counter increment. */
3533 	WRITE_ONCE(*sp, *sp + 1);
3534 	WARN_ON_ONCE(*sp & 0x1);
3535 }
3536 
3537 /* Take a snapshot of the update side's sequence number. */
3538 static unsigned long rcu_seq_snap(unsigned long *sp)
3539 {
3540 	unsigned long s;
3541 
3542 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3543 	smp_mb(); /* Above access must not bleed into critical section. */
3544 	return s;
3545 }
3546 
3547 /*
3548  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3549  * full update-side operation has occurred.
3550  */
3551 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3552 {
3553 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3554 }
3555 
3556 /*
3557  * Check to see if there is any immediate RCU-related work to be done
3558  * by the current CPU, for the specified type of RCU, returning 1 if so.
3559  * The checks are in order of increasing expense: checks that can be
3560  * carried out against CPU-local state are performed first.  However,
3561  * we must check for CPU stalls first, else we might not get a chance.
3562  */
3563 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3564 {
3565 	struct rcu_node *rnp = rdp->mynode;
3566 
3567 	rdp->n_rcu_pending++;
3568 
3569 	/* Check for CPU stalls, if enabled. */
3570 	check_cpu_stall(rsp, rdp);
3571 
3572 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3573 	if (rcu_nohz_full_cpu(rsp))
3574 		return 0;
3575 
3576 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3577 	if (rcu_scheduler_fully_active &&
3578 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3579 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3580 		rdp->n_rp_core_needs_qs++;
3581 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3582 		rdp->n_rp_report_qs++;
3583 		return 1;
3584 	}
3585 
3586 	/* Does this CPU have callbacks ready to invoke? */
3587 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3588 		rdp->n_rp_cb_ready++;
3589 		return 1;
3590 	}
3591 
3592 	/* Has RCU gone idle with this CPU needing another grace period? */
3593 	if (cpu_needs_another_gp(rsp, rdp)) {
3594 		rdp->n_rp_cpu_needs_gp++;
3595 		return 1;
3596 	}
3597 
3598 	/* Has another RCU grace period completed?  */
3599 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3600 		rdp->n_rp_gp_completed++;
3601 		return 1;
3602 	}
3603 
3604 	/* Has a new RCU grace period started? */
3605 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3606 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3607 		rdp->n_rp_gp_started++;
3608 		return 1;
3609 	}
3610 
3611 	/* Does this CPU need a deferred NOCB wakeup? */
3612 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3613 		rdp->n_rp_nocb_defer_wakeup++;
3614 		return 1;
3615 	}
3616 
3617 	/* nothing to do */
3618 	rdp->n_rp_need_nothing++;
3619 	return 0;
3620 }
3621 
3622 /*
3623  * Check to see if there is any immediate RCU-related work to be done
3624  * by the current CPU, returning 1 if so.  This function is part of the
3625  * RCU implementation; it is -not- an exported member of the RCU API.
3626  */
3627 static int rcu_pending(void)
3628 {
3629 	struct rcu_state *rsp;
3630 
3631 	for_each_rcu_flavor(rsp)
3632 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3633 			return 1;
3634 	return 0;
3635 }
3636 
3637 /*
3638  * Return true if the specified CPU has any callback.  If all_lazy is
3639  * non-NULL, store an indication of whether all callbacks are lazy.
3640  * (If there are no callbacks, all of them are deemed to be lazy.)
3641  */
3642 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3643 {
3644 	bool al = true;
3645 	bool hc = false;
3646 	struct rcu_data *rdp;
3647 	struct rcu_state *rsp;
3648 
3649 	for_each_rcu_flavor(rsp) {
3650 		rdp = this_cpu_ptr(rsp->rda);
3651 		if (!rdp->nxtlist)
3652 			continue;
3653 		hc = true;
3654 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3655 			al = false;
3656 			break;
3657 		}
3658 	}
3659 	if (all_lazy)
3660 		*all_lazy = al;
3661 	return hc;
3662 }
3663 
3664 /*
3665  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3666  * the compiler is expected to optimize this away.
3667  */
3668 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3669 			       int cpu, unsigned long done)
3670 {
3671 	trace_rcu_barrier(rsp->name, s, cpu,
3672 			  atomic_read(&rsp->barrier_cpu_count), done);
3673 }
3674 
3675 /*
3676  * RCU callback function for _rcu_barrier().  If we are last, wake
3677  * up the task executing _rcu_barrier().
3678  */
3679 static void rcu_barrier_callback(struct rcu_head *rhp)
3680 {
3681 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3682 	struct rcu_state *rsp = rdp->rsp;
3683 
3684 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3685 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3686 		complete(&rsp->barrier_completion);
3687 	} else {
3688 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3689 	}
3690 }
3691 
3692 /*
3693  * Called with preemption disabled, and from cross-cpu IRQ context.
3694  */
3695 static void rcu_barrier_func(void *type)
3696 {
3697 	struct rcu_state *rsp = type;
3698 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3699 
3700 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3701 	atomic_inc(&rsp->barrier_cpu_count);
3702 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3703 }
3704 
3705 /*
3706  * Orchestrate the specified type of RCU barrier, waiting for all
3707  * RCU callbacks of the specified type to complete.
3708  */
3709 static void _rcu_barrier(struct rcu_state *rsp)
3710 {
3711 	int cpu;
3712 	struct rcu_data *rdp;
3713 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3714 
3715 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3716 
3717 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3718 	mutex_lock(&rsp->barrier_mutex);
3719 
3720 	/* Did someone else do our work for us? */
3721 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3722 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3723 		smp_mb(); /* caller's subsequent code after above check. */
3724 		mutex_unlock(&rsp->barrier_mutex);
3725 		return;
3726 	}
3727 
3728 	/* Mark the start of the barrier operation. */
3729 	rcu_seq_start(&rsp->barrier_sequence);
3730 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3731 
3732 	/*
3733 	 * Initialize the count to one rather than to zero in order to
3734 	 * avoid a too-soon return to zero in case of a short grace period
3735 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3736 	 * to ensure that no offline CPU has callbacks queued.
3737 	 */
3738 	init_completion(&rsp->barrier_completion);
3739 	atomic_set(&rsp->barrier_cpu_count, 1);
3740 	get_online_cpus();
3741 
3742 	/*
3743 	 * Force each CPU with callbacks to register a new callback.
3744 	 * When that callback is invoked, we will know that all of the
3745 	 * corresponding CPU's preceding callbacks have been invoked.
3746 	 */
3747 	for_each_possible_cpu(cpu) {
3748 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3749 			continue;
3750 		rdp = per_cpu_ptr(rsp->rda, cpu);
3751 		if (rcu_is_nocb_cpu(cpu)) {
3752 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3753 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3754 						   rsp->barrier_sequence);
3755 			} else {
3756 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3757 						   rsp->barrier_sequence);
3758 				smp_mb__before_atomic();
3759 				atomic_inc(&rsp->barrier_cpu_count);
3760 				__call_rcu(&rdp->barrier_head,
3761 					   rcu_barrier_callback, rsp, cpu, 0);
3762 			}
3763 		} else if (READ_ONCE(rdp->qlen)) {
3764 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3765 					   rsp->barrier_sequence);
3766 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3767 		} else {
3768 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3769 					   rsp->barrier_sequence);
3770 		}
3771 	}
3772 	put_online_cpus();
3773 
3774 	/*
3775 	 * Now that we have an rcu_barrier_callback() callback on each
3776 	 * CPU, and thus each counted, remove the initial count.
3777 	 */
3778 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3779 		complete(&rsp->barrier_completion);
3780 
3781 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3782 	wait_for_completion(&rsp->barrier_completion);
3783 
3784 	/* Mark the end of the barrier operation. */
3785 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3786 	rcu_seq_end(&rsp->barrier_sequence);
3787 
3788 	/* Other rcu_barrier() invocations can now safely proceed. */
3789 	mutex_unlock(&rsp->barrier_mutex);
3790 }
3791 
3792 /**
3793  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3794  */
3795 void rcu_barrier_bh(void)
3796 {
3797 	_rcu_barrier(&rcu_bh_state);
3798 }
3799 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3800 
3801 /**
3802  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3803  */
3804 void rcu_barrier_sched(void)
3805 {
3806 	_rcu_barrier(&rcu_sched_state);
3807 }
3808 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3809 
3810 /*
3811  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3812  * first CPU in a given leaf rcu_node structure coming online.  The caller
3813  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3814  * disabled.
3815  */
3816 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3817 {
3818 	long mask;
3819 	struct rcu_node *rnp = rnp_leaf;
3820 
3821 	for (;;) {
3822 		mask = rnp->grpmask;
3823 		rnp = rnp->parent;
3824 		if (rnp == NULL)
3825 			return;
3826 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3827 		rnp->qsmaskinit |= mask;
3828 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3829 	}
3830 }
3831 
3832 /*
3833  * Do boot-time initialization of a CPU's per-CPU RCU data.
3834  */
3835 static void __init
3836 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3837 {
3838 	unsigned long flags;
3839 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3840 	struct rcu_node *rnp = rcu_get_root(rsp);
3841 
3842 	/* Set up local state, ensuring consistent view of global state. */
3843 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3844 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3845 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3846 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3847 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3848 	rdp->cpu = cpu;
3849 	rdp->rsp = rsp;
3850 	rcu_boot_init_nocb_percpu_data(rdp);
3851 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3852 }
3853 
3854 /*
3855  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3856  * offline event can be happening at a given time.  Note also that we
3857  * can accept some slop in the rsp->completed access due to the fact
3858  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3859  */
3860 static void
3861 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3862 {
3863 	unsigned long flags;
3864 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3865 	struct rcu_node *rnp = rcu_get_root(rsp);
3866 
3867 	/* Set up local state, ensuring consistent view of global state. */
3868 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3869 	rdp->qlen_last_fqs_check = 0;
3870 	rdp->n_force_qs_snap = rsp->n_force_qs;
3871 	rdp->blimit = blimit;
3872 	if (!rdp->nxtlist)
3873 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3874 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3875 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3876 	rcu_dynticks_eqs_online();
3877 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3878 
3879 	/*
3880 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3881 	 * propagation up the rcu_node tree will happen at the beginning
3882 	 * of the next grace period.
3883 	 */
3884 	rnp = rdp->mynode;
3885 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3886 	if (!rdp->beenonline)
3887 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3888 	rdp->beenonline = true;	 /* We have now been online. */
3889 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3890 	rdp->completed = rnp->completed;
3891 	rdp->cpu_no_qs.b.norm = true;
3892 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3893 	rdp->core_needs_qs = false;
3894 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3895 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3896 }
3897 
3898 int rcutree_prepare_cpu(unsigned int cpu)
3899 {
3900 	struct rcu_state *rsp;
3901 
3902 	for_each_rcu_flavor(rsp)
3903 		rcu_init_percpu_data(cpu, rsp);
3904 
3905 	rcu_prepare_kthreads(cpu);
3906 	rcu_spawn_all_nocb_kthreads(cpu);
3907 
3908 	return 0;
3909 }
3910 
3911 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3912 {
3913 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3914 
3915 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3916 }
3917 
3918 int rcutree_online_cpu(unsigned int cpu)
3919 {
3920 	sync_sched_exp_online_cleanup(cpu);
3921 	rcutree_affinity_setting(cpu, -1);
3922 	return 0;
3923 }
3924 
3925 int rcutree_offline_cpu(unsigned int cpu)
3926 {
3927 	rcutree_affinity_setting(cpu, cpu);
3928 	return 0;
3929 }
3930 
3931 
3932 int rcutree_dying_cpu(unsigned int cpu)
3933 {
3934 	struct rcu_state *rsp;
3935 
3936 	for_each_rcu_flavor(rsp)
3937 		rcu_cleanup_dying_cpu(rsp);
3938 	return 0;
3939 }
3940 
3941 int rcutree_dead_cpu(unsigned int cpu)
3942 {
3943 	struct rcu_state *rsp;
3944 
3945 	for_each_rcu_flavor(rsp) {
3946 		rcu_cleanup_dead_cpu(cpu, rsp);
3947 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3948 	}
3949 	return 0;
3950 }
3951 
3952 /*
3953  * Mark the specified CPU as being online so that subsequent grace periods
3954  * (both expedited and normal) will wait on it.  Note that this means that
3955  * incoming CPUs are not allowed to use RCU read-side critical sections
3956  * until this function is called.  Failing to observe this restriction
3957  * will result in lockdep splats.
3958  */
3959 void rcu_cpu_starting(unsigned int cpu)
3960 {
3961 	unsigned long flags;
3962 	unsigned long mask;
3963 	struct rcu_data *rdp;
3964 	struct rcu_node *rnp;
3965 	struct rcu_state *rsp;
3966 
3967 	for_each_rcu_flavor(rsp) {
3968 		rdp = per_cpu_ptr(rsp->rda, cpu);
3969 		rnp = rdp->mynode;
3970 		mask = rdp->grpmask;
3971 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3972 		rnp->qsmaskinitnext |= mask;
3973 		rnp->expmaskinitnext |= mask;
3974 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3975 	}
3976 }
3977 
3978 #ifdef CONFIG_HOTPLUG_CPU
3979 /*
3980  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3981  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3982  * bit masks.
3983  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3984  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3985  * bit masks.
3986  */
3987 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3988 {
3989 	unsigned long flags;
3990 	unsigned long mask;
3991 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3992 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3993 
3994 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3995 	mask = rdp->grpmask;
3996 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3997 	rnp->qsmaskinitnext &= ~mask;
3998 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3999 }
4000 
4001 void rcu_report_dead(unsigned int cpu)
4002 {
4003 	struct rcu_state *rsp;
4004 
4005 	/* QS for any half-done expedited RCU-sched GP. */
4006 	preempt_disable();
4007 	rcu_report_exp_rdp(&rcu_sched_state,
4008 			   this_cpu_ptr(rcu_sched_state.rda), true);
4009 	preempt_enable();
4010 	for_each_rcu_flavor(rsp)
4011 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
4012 }
4013 #endif
4014 
4015 static int rcu_pm_notify(struct notifier_block *self,
4016 			 unsigned long action, void *hcpu)
4017 {
4018 	switch (action) {
4019 	case PM_HIBERNATION_PREPARE:
4020 	case PM_SUSPEND_PREPARE:
4021 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4022 			rcu_expedite_gp();
4023 		break;
4024 	case PM_POST_HIBERNATION:
4025 	case PM_POST_SUSPEND:
4026 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4027 			rcu_unexpedite_gp();
4028 		break;
4029 	default:
4030 		break;
4031 	}
4032 	return NOTIFY_OK;
4033 }
4034 
4035 /*
4036  * Spawn the kthreads that handle each RCU flavor's grace periods.
4037  */
4038 static int __init rcu_spawn_gp_kthread(void)
4039 {
4040 	unsigned long flags;
4041 	int kthread_prio_in = kthread_prio;
4042 	struct rcu_node *rnp;
4043 	struct rcu_state *rsp;
4044 	struct sched_param sp;
4045 	struct task_struct *t;
4046 
4047 	/* Force priority into range. */
4048 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4049 		kthread_prio = 1;
4050 	else if (kthread_prio < 0)
4051 		kthread_prio = 0;
4052 	else if (kthread_prio > 99)
4053 		kthread_prio = 99;
4054 	if (kthread_prio != kthread_prio_in)
4055 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4056 			 kthread_prio, kthread_prio_in);
4057 
4058 	rcu_scheduler_fully_active = 1;
4059 	for_each_rcu_flavor(rsp) {
4060 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4061 		BUG_ON(IS_ERR(t));
4062 		rnp = rcu_get_root(rsp);
4063 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4064 		rsp->gp_kthread = t;
4065 		if (kthread_prio) {
4066 			sp.sched_priority = kthread_prio;
4067 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4068 		}
4069 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4070 		wake_up_process(t);
4071 	}
4072 	rcu_spawn_nocb_kthreads();
4073 	rcu_spawn_boost_kthreads();
4074 	return 0;
4075 }
4076 early_initcall(rcu_spawn_gp_kthread);
4077 
4078 /*
4079  * This function is invoked towards the end of the scheduler's
4080  * initialization process.  Before this is called, the idle task might
4081  * contain synchronous grace-period primitives (during which time, this idle
4082  * task is booting the system, and such primitives are no-ops).  After this
4083  * function is called, any synchronous grace-period primitives are run as
4084  * expedited, with the requesting task driving the grace period forward.
4085  * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4086  * runtime RCU functionality.
4087  */
4088 void rcu_scheduler_starting(void)
4089 {
4090 	WARN_ON(num_online_cpus() != 1);
4091 	WARN_ON(nr_context_switches() > 0);
4092 	rcu_test_sync_prims();
4093 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4094 	rcu_test_sync_prims();
4095 }
4096 
4097 /*
4098  * Compute the per-level fanout, either using the exact fanout specified
4099  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4100  */
4101 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4102 {
4103 	int i;
4104 
4105 	if (rcu_fanout_exact) {
4106 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4107 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4108 			levelspread[i] = RCU_FANOUT;
4109 	} else {
4110 		int ccur;
4111 		int cprv;
4112 
4113 		cprv = nr_cpu_ids;
4114 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4115 			ccur = levelcnt[i];
4116 			levelspread[i] = (cprv + ccur - 1) / ccur;
4117 			cprv = ccur;
4118 		}
4119 	}
4120 }
4121 
4122 /*
4123  * Helper function for rcu_init() that initializes one rcu_state structure.
4124  */
4125 static void __init rcu_init_one(struct rcu_state *rsp)
4126 {
4127 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4128 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4129 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4130 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4131 	static u8 fl_mask = 0x1;
4132 
4133 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4134 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4135 	int cpustride = 1;
4136 	int i;
4137 	int j;
4138 	struct rcu_node *rnp;
4139 
4140 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4141 
4142 	/* Silence gcc 4.8 false positive about array index out of range. */
4143 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4144 		panic("rcu_init_one: rcu_num_lvls out of range");
4145 
4146 	/* Initialize the level-tracking arrays. */
4147 
4148 	for (i = 0; i < rcu_num_lvls; i++)
4149 		levelcnt[i] = num_rcu_lvl[i];
4150 	for (i = 1; i < rcu_num_lvls; i++)
4151 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4152 	rcu_init_levelspread(levelspread, levelcnt);
4153 	rsp->flavor_mask = fl_mask;
4154 	fl_mask <<= 1;
4155 
4156 	/* Initialize the elements themselves, starting from the leaves. */
4157 
4158 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4159 		cpustride *= levelspread[i];
4160 		rnp = rsp->level[i];
4161 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4162 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4163 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4164 						   &rcu_node_class[i], buf[i]);
4165 			raw_spin_lock_init(&rnp->fqslock);
4166 			lockdep_set_class_and_name(&rnp->fqslock,
4167 						   &rcu_fqs_class[i], fqs[i]);
4168 			rnp->gpnum = rsp->gpnum;
4169 			rnp->completed = rsp->completed;
4170 			rnp->qsmask = 0;
4171 			rnp->qsmaskinit = 0;
4172 			rnp->grplo = j * cpustride;
4173 			rnp->grphi = (j + 1) * cpustride - 1;
4174 			if (rnp->grphi >= nr_cpu_ids)
4175 				rnp->grphi = nr_cpu_ids - 1;
4176 			if (i == 0) {
4177 				rnp->grpnum = 0;
4178 				rnp->grpmask = 0;
4179 				rnp->parent = NULL;
4180 			} else {
4181 				rnp->grpnum = j % levelspread[i - 1];
4182 				rnp->grpmask = 1UL << rnp->grpnum;
4183 				rnp->parent = rsp->level[i - 1] +
4184 					      j / levelspread[i - 1];
4185 			}
4186 			rnp->level = i;
4187 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4188 			rcu_init_one_nocb(rnp);
4189 			init_waitqueue_head(&rnp->exp_wq[0]);
4190 			init_waitqueue_head(&rnp->exp_wq[1]);
4191 			init_waitqueue_head(&rnp->exp_wq[2]);
4192 			init_waitqueue_head(&rnp->exp_wq[3]);
4193 			spin_lock_init(&rnp->exp_lock);
4194 		}
4195 	}
4196 
4197 	init_swait_queue_head(&rsp->gp_wq);
4198 	init_swait_queue_head(&rsp->expedited_wq);
4199 	rnp = rsp->level[rcu_num_lvls - 1];
4200 	for_each_possible_cpu(i) {
4201 		while (i > rnp->grphi)
4202 			rnp++;
4203 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4204 		rcu_boot_init_percpu_data(i, rsp);
4205 	}
4206 	list_add(&rsp->flavors, &rcu_struct_flavors);
4207 }
4208 
4209 /*
4210  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4211  * replace the definitions in tree.h because those are needed to size
4212  * the ->node array in the rcu_state structure.
4213  */
4214 static void __init rcu_init_geometry(void)
4215 {
4216 	ulong d;
4217 	int i;
4218 	int rcu_capacity[RCU_NUM_LVLS];
4219 
4220 	/*
4221 	 * Initialize any unspecified boot parameters.
4222 	 * The default values of jiffies_till_first_fqs and
4223 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4224 	 * value, which is a function of HZ, then adding one for each
4225 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4226 	 */
4227 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4228 	if (jiffies_till_first_fqs == ULONG_MAX)
4229 		jiffies_till_first_fqs = d;
4230 	if (jiffies_till_next_fqs == ULONG_MAX)
4231 		jiffies_till_next_fqs = d;
4232 
4233 	/* If the compile-time values are accurate, just leave. */
4234 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4235 	    nr_cpu_ids == NR_CPUS)
4236 		return;
4237 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4238 		rcu_fanout_leaf, nr_cpu_ids);
4239 
4240 	/*
4241 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4242 	 * and cannot exceed the number of bits in the rcu_node masks.
4243 	 * Complain and fall back to the compile-time values if this
4244 	 * limit is exceeded.
4245 	 */
4246 	if (rcu_fanout_leaf < 2 ||
4247 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4248 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4249 		WARN_ON(1);
4250 		return;
4251 	}
4252 
4253 	/*
4254 	 * Compute number of nodes that can be handled an rcu_node tree
4255 	 * with the given number of levels.
4256 	 */
4257 	rcu_capacity[0] = rcu_fanout_leaf;
4258 	for (i = 1; i < RCU_NUM_LVLS; i++)
4259 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4260 
4261 	/*
4262 	 * The tree must be able to accommodate the configured number of CPUs.
4263 	 * If this limit is exceeded, fall back to the compile-time values.
4264 	 */
4265 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4266 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4267 		WARN_ON(1);
4268 		return;
4269 	}
4270 
4271 	/* Calculate the number of levels in the tree. */
4272 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4273 	}
4274 	rcu_num_lvls = i + 1;
4275 
4276 	/* Calculate the number of rcu_nodes at each level of the tree. */
4277 	for (i = 0; i < rcu_num_lvls; i++) {
4278 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4279 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4280 	}
4281 
4282 	/* Calculate the total number of rcu_node structures. */
4283 	rcu_num_nodes = 0;
4284 	for (i = 0; i < rcu_num_lvls; i++)
4285 		rcu_num_nodes += num_rcu_lvl[i];
4286 }
4287 
4288 /*
4289  * Dump out the structure of the rcu_node combining tree associated
4290  * with the rcu_state structure referenced by rsp.
4291  */
4292 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4293 {
4294 	int level = 0;
4295 	struct rcu_node *rnp;
4296 
4297 	pr_info("rcu_node tree layout dump\n");
4298 	pr_info(" ");
4299 	rcu_for_each_node_breadth_first(rsp, rnp) {
4300 		if (rnp->level != level) {
4301 			pr_cont("\n");
4302 			pr_info(" ");
4303 			level = rnp->level;
4304 		}
4305 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4306 	}
4307 	pr_cont("\n");
4308 }
4309 
4310 void __init rcu_init(void)
4311 {
4312 	int cpu;
4313 
4314 	rcu_early_boot_tests();
4315 
4316 	rcu_bootup_announce();
4317 	rcu_init_geometry();
4318 	rcu_init_one(&rcu_bh_state);
4319 	rcu_init_one(&rcu_sched_state);
4320 	if (dump_tree)
4321 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4322 	__rcu_init_preempt();
4323 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4324 
4325 	/*
4326 	 * We don't need protection against CPU-hotplug here because
4327 	 * this is called early in boot, before either interrupts
4328 	 * or the scheduler are operational.
4329 	 */
4330 	pm_notifier(rcu_pm_notify, 0);
4331 	for_each_online_cpu(cpu) {
4332 		rcutree_prepare_cpu(cpu);
4333 		rcu_cpu_starting(cpu);
4334 	}
4335 }
4336 
4337 #include "tree_exp.h"
4338 #include "tree_plugin.h"
4339