1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/percpu.h> 45 #include <linux/notifier.h> 46 #include <linux/cpu.h> 47 #include <linux/mutex.h> 48 #include <linux/time.h> 49 #include <linux/kernel_stat.h> 50 #include <linux/wait.h> 51 #include <linux/kthread.h> 52 #include <uapi/linux/sched/types.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/trace_events.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 #ifdef MODULE_PARAM_PREFIX 64 #undef MODULE_PARAM_PREFIX 65 #endif 66 #define MODULE_PARAM_PREFIX "rcutree." 67 68 /* Data structures. */ 69 70 /* 71 * In order to export the rcu_state name to the tracing tools, it 72 * needs to be added in the __tracepoint_string section. 73 * This requires defining a separate variable tp_<sname>_varname 74 * that points to the string being used, and this will allow 75 * the tracing userspace tools to be able to decipher the string 76 * address to the matching string. 77 */ 78 #ifdef CONFIG_TRACING 79 # define DEFINE_RCU_TPS(sname) \ 80 static char sname##_varname[] = #sname; \ 81 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 82 # define RCU_STATE_NAME(sname) sname##_varname 83 #else 84 # define DEFINE_RCU_TPS(sname) 85 # define RCU_STATE_NAME(sname) __stringify(sname) 86 #endif 87 88 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 89 DEFINE_RCU_TPS(sname) \ 90 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 91 struct rcu_state sname##_state = { \ 92 .level = { &sname##_state.node[0] }, \ 93 .rda = &sname##_data, \ 94 .call = cr, \ 95 .gp_state = RCU_GP_IDLE, \ 96 .gpnum = 0UL - 300UL, \ 97 .completed = 0UL - 300UL, \ 98 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 99 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 100 .orphan_donetail = &sname##_state.orphan_donelist, \ 101 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 102 .name = RCU_STATE_NAME(sname), \ 103 .abbr = sabbr, \ 104 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 105 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 106 } 107 108 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 109 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 110 111 static struct rcu_state *const rcu_state_p; 112 LIST_HEAD(rcu_struct_flavors); 113 114 /* Dump rcu_node combining tree at boot to verify correct setup. */ 115 static bool dump_tree; 116 module_param(dump_tree, bool, 0444); 117 /* Control rcu_node-tree auto-balancing at boot time. */ 118 static bool rcu_fanout_exact; 119 module_param(rcu_fanout_exact, bool, 0444); 120 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 121 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 122 module_param(rcu_fanout_leaf, int, 0444); 123 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 124 /* Number of rcu_nodes at specified level. */ 125 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 126 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 127 /* panic() on RCU Stall sysctl. */ 128 int sysctl_panic_on_rcu_stall __read_mostly; 129 130 /* 131 * The rcu_scheduler_active variable is initialized to the value 132 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 133 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 134 * RCU can assume that there is but one task, allowing RCU to (for example) 135 * optimize synchronize_rcu() to a simple barrier(). When this variable 136 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 137 * to detect real grace periods. This variable is also used to suppress 138 * boot-time false positives from lockdep-RCU error checking. Finally, it 139 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 140 * is fully initialized, including all of its kthreads having been spawned. 141 */ 142 int rcu_scheduler_active __read_mostly; 143 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 144 145 /* 146 * The rcu_scheduler_fully_active variable transitions from zero to one 147 * during the early_initcall() processing, which is after the scheduler 148 * is capable of creating new tasks. So RCU processing (for example, 149 * creating tasks for RCU priority boosting) must be delayed until after 150 * rcu_scheduler_fully_active transitions from zero to one. We also 151 * currently delay invocation of any RCU callbacks until after this point. 152 * 153 * It might later prove better for people registering RCU callbacks during 154 * early boot to take responsibility for these callbacks, but one step at 155 * a time. 156 */ 157 static int rcu_scheduler_fully_active __read_mostly; 158 159 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 161 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 162 static void invoke_rcu_core(void); 163 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 164 static void rcu_report_exp_rdp(struct rcu_state *rsp, 165 struct rcu_data *rdp, bool wake); 166 static void sync_sched_exp_online_cleanup(int cpu); 167 168 /* rcuc/rcub kthread realtime priority */ 169 #ifdef CONFIG_RCU_KTHREAD_PRIO 170 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 171 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */ 172 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 173 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */ 174 module_param(kthread_prio, int, 0644); 175 176 /* Delay in jiffies for grace-period initialization delays, debug only. */ 177 178 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT 179 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY; 180 module_param(gp_preinit_delay, int, 0644); 181 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 182 static const int gp_preinit_delay; 183 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 184 185 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 186 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 187 module_param(gp_init_delay, int, 0644); 188 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 189 static const int gp_init_delay; 190 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 191 192 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP 193 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY; 194 module_param(gp_cleanup_delay, int, 0644); 195 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 196 static const int gp_cleanup_delay; 197 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 198 199 /* 200 * Number of grace periods between delays, normalized by the duration of 201 * the delay. The longer the the delay, the more the grace periods between 202 * each delay. The reason for this normalization is that it means that, 203 * for non-zero delays, the overall slowdown of grace periods is constant 204 * regardless of the duration of the delay. This arrangement balances 205 * the need for long delays to increase some race probabilities with the 206 * need for fast grace periods to increase other race probabilities. 207 */ 208 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 209 210 /* 211 * Track the rcutorture test sequence number and the update version 212 * number within a given test. The rcutorture_testseq is incremented 213 * on every rcutorture module load and unload, so has an odd value 214 * when a test is running. The rcutorture_vernum is set to zero 215 * when rcutorture starts and is incremented on each rcutorture update. 216 * These variables enable correlating rcutorture output with the 217 * RCU tracing information. 218 */ 219 unsigned long rcutorture_testseq; 220 unsigned long rcutorture_vernum; 221 222 /* 223 * Compute the mask of online CPUs for the specified rcu_node structure. 224 * This will not be stable unless the rcu_node structure's ->lock is 225 * held, but the bit corresponding to the current CPU will be stable 226 * in most contexts. 227 */ 228 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 229 { 230 return READ_ONCE(rnp->qsmaskinitnext); 231 } 232 233 /* 234 * Return true if an RCU grace period is in progress. The READ_ONCE()s 235 * permit this function to be invoked without holding the root rcu_node 236 * structure's ->lock, but of course results can be subject to change. 237 */ 238 static int rcu_gp_in_progress(struct rcu_state *rsp) 239 { 240 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 241 } 242 243 /* 244 * Note a quiescent state. Because we do not need to know 245 * how many quiescent states passed, just if there was at least 246 * one since the start of the grace period, this just sets a flag. 247 * The caller must have disabled preemption. 248 */ 249 void rcu_sched_qs(void) 250 { 251 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 252 return; 253 trace_rcu_grace_period(TPS("rcu_sched"), 254 __this_cpu_read(rcu_sched_data.gpnum), 255 TPS("cpuqs")); 256 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 257 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 258 return; 259 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 260 rcu_report_exp_rdp(&rcu_sched_state, 261 this_cpu_ptr(&rcu_sched_data), true); 262 } 263 264 void rcu_bh_qs(void) 265 { 266 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 267 trace_rcu_grace_period(TPS("rcu_bh"), 268 __this_cpu_read(rcu_bh_data.gpnum), 269 TPS("cpuqs")); 270 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 271 } 272 } 273 274 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 275 276 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 277 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 278 .dynticks = ATOMIC_INIT(1), 279 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 280 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 281 .dynticks_idle = ATOMIC_INIT(1), 282 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 283 }; 284 285 /* 286 * Record entry into an extended quiescent state. This is only to be 287 * called when not already in an extended quiescent state. 288 */ 289 static void rcu_dynticks_eqs_enter(void) 290 { 291 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 292 int special; 293 294 /* 295 * CPUs seeing atomic_inc_return() must see prior RCU read-side 296 * critical sections, and we also must force ordering with the 297 * next idle sojourn. 298 */ 299 special = atomic_inc_return(&rdtp->dynticks); 300 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1); 301 } 302 303 /* 304 * Record exit from an extended quiescent state. This is only to be 305 * called from an extended quiescent state. 306 */ 307 static void rcu_dynticks_eqs_exit(void) 308 { 309 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 310 int special; 311 312 /* 313 * CPUs seeing atomic_inc_return() must see prior idle sojourns, 314 * and we also must force ordering with the next RCU read-side 315 * critical section. 316 */ 317 special = atomic_inc_return(&rdtp->dynticks); 318 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1)); 319 } 320 321 /* 322 * Reset the current CPU's ->dynticks counter to indicate that the 323 * newly onlined CPU is no longer in an extended quiescent state. 324 * This will either leave the counter unchanged, or increment it 325 * to the next non-quiescent value. 326 * 327 * The non-atomic test/increment sequence works because the upper bits 328 * of the ->dynticks counter are manipulated only by the corresponding CPU, 329 * or when the corresponding CPU is offline. 330 */ 331 static void rcu_dynticks_eqs_online(void) 332 { 333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 334 335 if (atomic_read(&rdtp->dynticks) & 0x1) 336 return; 337 atomic_add(0x1, &rdtp->dynticks); 338 } 339 340 /* 341 * Is the current CPU in an extended quiescent state? 342 * 343 * No ordering, as we are sampling CPU-local information. 344 */ 345 bool rcu_dynticks_curr_cpu_in_eqs(void) 346 { 347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 348 349 return !(atomic_read(&rdtp->dynticks) & 0x1); 350 } 351 352 /* 353 * Snapshot the ->dynticks counter with full ordering so as to allow 354 * stable comparison of this counter with past and future snapshots. 355 */ 356 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 357 { 358 int snap = atomic_add_return(0, &rdtp->dynticks); 359 360 return snap; 361 } 362 363 /* 364 * Return true if the snapshot returned from rcu_dynticks_snap() 365 * indicates that RCU is in an extended quiescent state. 366 */ 367 static bool rcu_dynticks_in_eqs(int snap) 368 { 369 return !(snap & 0x1); 370 } 371 372 /* 373 * Return true if the CPU corresponding to the specified rcu_dynticks 374 * structure has spent some time in an extended quiescent state since 375 * rcu_dynticks_snap() returned the specified snapshot. 376 */ 377 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 378 { 379 return snap != rcu_dynticks_snap(rdtp); 380 } 381 382 /* 383 * Do a double-increment of the ->dynticks counter to emulate a 384 * momentary idle-CPU quiescent state. 385 */ 386 static void rcu_dynticks_momentary_idle(void) 387 { 388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 389 int special = atomic_add_return(2, &rdtp->dynticks); 390 391 /* It is illegal to call this from idle state. */ 392 WARN_ON_ONCE(!(special & 0x1)); 393 } 394 395 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 396 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 397 398 /* 399 * Let the RCU core know that this CPU has gone through the scheduler, 400 * which is a quiescent state. This is called when the need for a 401 * quiescent state is urgent, so we burn an atomic operation and full 402 * memory barriers to let the RCU core know about it, regardless of what 403 * this CPU might (or might not) do in the near future. 404 * 405 * We inform the RCU core by emulating a zero-duration dyntick-idle 406 * period, which we in turn do by incrementing the ->dynticks counter 407 * by two. 408 * 409 * The caller must have disabled interrupts. 410 */ 411 static void rcu_momentary_dyntick_idle(void) 412 { 413 struct rcu_data *rdp; 414 int resched_mask; 415 struct rcu_state *rsp; 416 417 /* 418 * Yes, we can lose flag-setting operations. This is OK, because 419 * the flag will be set again after some delay. 420 */ 421 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 422 raw_cpu_write(rcu_sched_qs_mask, 0); 423 424 /* Find the flavor that needs a quiescent state. */ 425 for_each_rcu_flavor(rsp) { 426 rdp = raw_cpu_ptr(rsp->rda); 427 if (!(resched_mask & rsp->flavor_mask)) 428 continue; 429 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 430 if (READ_ONCE(rdp->mynode->completed) != 431 READ_ONCE(rdp->cond_resched_completed)) 432 continue; 433 434 /* 435 * Pretend to be momentarily idle for the quiescent state. 436 * This allows the grace-period kthread to record the 437 * quiescent state, with no need for this CPU to do anything 438 * further. 439 */ 440 rcu_dynticks_momentary_idle(); 441 break; 442 } 443 } 444 445 /* 446 * Note a context switch. This is a quiescent state for RCU-sched, 447 * and requires special handling for preemptible RCU. 448 * The caller must have disabled interrupts. 449 */ 450 void rcu_note_context_switch(void) 451 { 452 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 453 trace_rcu_utilization(TPS("Start context switch")); 454 rcu_sched_qs(); 455 rcu_preempt_note_context_switch(); 456 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 457 rcu_momentary_dyntick_idle(); 458 trace_rcu_utilization(TPS("End context switch")); 459 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 460 } 461 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 462 463 /* 464 * Register a quiescent state for all RCU flavors. If there is an 465 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 466 * dyntick-idle quiescent state visible to other CPUs (but only for those 467 * RCU flavors in desperate need of a quiescent state, which will normally 468 * be none of them). Either way, do a lightweight quiescent state for 469 * all RCU flavors. 470 * 471 * The barrier() calls are redundant in the common case when this is 472 * called externally, but just in case this is called from within this 473 * file. 474 * 475 */ 476 void rcu_all_qs(void) 477 { 478 unsigned long flags; 479 480 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 481 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) { 482 local_irq_save(flags); 483 rcu_momentary_dyntick_idle(); 484 local_irq_restore(flags); 485 } 486 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) { 487 /* 488 * Yes, we just checked a per-CPU variable with preemption 489 * enabled, so we might be migrated to some other CPU at 490 * this point. That is OK because in that case, the 491 * migration will supply the needed quiescent state. 492 * We might end up needlessly disabling preemption and 493 * invoking rcu_sched_qs() on the destination CPU, but 494 * the probability and cost are both quite low, so this 495 * should not be a problem in practice. 496 */ 497 preempt_disable(); 498 rcu_sched_qs(); 499 preempt_enable(); 500 } 501 this_cpu_inc(rcu_qs_ctr); 502 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 503 } 504 EXPORT_SYMBOL_GPL(rcu_all_qs); 505 506 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 507 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 508 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 509 510 module_param(blimit, long, 0444); 511 module_param(qhimark, long, 0444); 512 module_param(qlowmark, long, 0444); 513 514 static ulong jiffies_till_first_fqs = ULONG_MAX; 515 static ulong jiffies_till_next_fqs = ULONG_MAX; 516 static bool rcu_kick_kthreads; 517 518 module_param(jiffies_till_first_fqs, ulong, 0644); 519 module_param(jiffies_till_next_fqs, ulong, 0644); 520 module_param(rcu_kick_kthreads, bool, 0644); 521 522 /* 523 * How long the grace period must be before we start recruiting 524 * quiescent-state help from rcu_note_context_switch(). 525 */ 526 static ulong jiffies_till_sched_qs = HZ / 20; 527 module_param(jiffies_till_sched_qs, ulong, 0644); 528 529 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 530 struct rcu_data *rdp); 531 static void force_qs_rnp(struct rcu_state *rsp, 532 int (*f)(struct rcu_data *rsp, bool *isidle, 533 unsigned long *maxj), 534 bool *isidle, unsigned long *maxj); 535 static void force_quiescent_state(struct rcu_state *rsp); 536 static int rcu_pending(void); 537 538 /* 539 * Return the number of RCU batches started thus far for debug & stats. 540 */ 541 unsigned long rcu_batches_started(void) 542 { 543 return rcu_state_p->gpnum; 544 } 545 EXPORT_SYMBOL_GPL(rcu_batches_started); 546 547 /* 548 * Return the number of RCU-sched batches started thus far for debug & stats. 549 */ 550 unsigned long rcu_batches_started_sched(void) 551 { 552 return rcu_sched_state.gpnum; 553 } 554 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 555 556 /* 557 * Return the number of RCU BH batches started thus far for debug & stats. 558 */ 559 unsigned long rcu_batches_started_bh(void) 560 { 561 return rcu_bh_state.gpnum; 562 } 563 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 564 565 /* 566 * Return the number of RCU batches completed thus far for debug & stats. 567 */ 568 unsigned long rcu_batches_completed(void) 569 { 570 return rcu_state_p->completed; 571 } 572 EXPORT_SYMBOL_GPL(rcu_batches_completed); 573 574 /* 575 * Return the number of RCU-sched batches completed thus far for debug & stats. 576 */ 577 unsigned long rcu_batches_completed_sched(void) 578 { 579 return rcu_sched_state.completed; 580 } 581 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 582 583 /* 584 * Return the number of RCU BH batches completed thus far for debug & stats. 585 */ 586 unsigned long rcu_batches_completed_bh(void) 587 { 588 return rcu_bh_state.completed; 589 } 590 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 591 592 /* 593 * Return the number of RCU expedited batches completed thus far for 594 * debug & stats. Odd numbers mean that a batch is in progress, even 595 * numbers mean idle. The value returned will thus be roughly double 596 * the cumulative batches since boot. 597 */ 598 unsigned long rcu_exp_batches_completed(void) 599 { 600 return rcu_state_p->expedited_sequence; 601 } 602 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 603 604 /* 605 * Return the number of RCU-sched expedited batches completed thus far 606 * for debug & stats. Similar to rcu_exp_batches_completed(). 607 */ 608 unsigned long rcu_exp_batches_completed_sched(void) 609 { 610 return rcu_sched_state.expedited_sequence; 611 } 612 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 613 614 /* 615 * Force a quiescent state. 616 */ 617 void rcu_force_quiescent_state(void) 618 { 619 force_quiescent_state(rcu_state_p); 620 } 621 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 622 623 /* 624 * Force a quiescent state for RCU BH. 625 */ 626 void rcu_bh_force_quiescent_state(void) 627 { 628 force_quiescent_state(&rcu_bh_state); 629 } 630 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 631 632 /* 633 * Force a quiescent state for RCU-sched. 634 */ 635 void rcu_sched_force_quiescent_state(void) 636 { 637 force_quiescent_state(&rcu_sched_state); 638 } 639 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 640 641 /* 642 * Show the state of the grace-period kthreads. 643 */ 644 void show_rcu_gp_kthreads(void) 645 { 646 struct rcu_state *rsp; 647 648 for_each_rcu_flavor(rsp) { 649 pr_info("%s: wait state: %d ->state: %#lx\n", 650 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 651 /* sched_show_task(rsp->gp_kthread); */ 652 } 653 } 654 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 655 656 /* 657 * Record the number of times rcutorture tests have been initiated and 658 * terminated. This information allows the debugfs tracing stats to be 659 * correlated to the rcutorture messages, even when the rcutorture module 660 * is being repeatedly loaded and unloaded. In other words, we cannot 661 * store this state in rcutorture itself. 662 */ 663 void rcutorture_record_test_transition(void) 664 { 665 rcutorture_testseq++; 666 rcutorture_vernum = 0; 667 } 668 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 669 670 /* 671 * Send along grace-period-related data for rcutorture diagnostics. 672 */ 673 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 674 unsigned long *gpnum, unsigned long *completed) 675 { 676 struct rcu_state *rsp = NULL; 677 678 switch (test_type) { 679 case RCU_FLAVOR: 680 rsp = rcu_state_p; 681 break; 682 case RCU_BH_FLAVOR: 683 rsp = &rcu_bh_state; 684 break; 685 case RCU_SCHED_FLAVOR: 686 rsp = &rcu_sched_state; 687 break; 688 default: 689 break; 690 } 691 if (rsp != NULL) { 692 *flags = READ_ONCE(rsp->gp_flags); 693 *gpnum = READ_ONCE(rsp->gpnum); 694 *completed = READ_ONCE(rsp->completed); 695 return; 696 } 697 *flags = 0; 698 *gpnum = 0; 699 *completed = 0; 700 } 701 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 702 703 /* 704 * Record the number of writer passes through the current rcutorture test. 705 * This is also used to correlate debugfs tracing stats with the rcutorture 706 * messages. 707 */ 708 void rcutorture_record_progress(unsigned long vernum) 709 { 710 rcutorture_vernum++; 711 } 712 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 713 714 /* 715 * Does the CPU have callbacks ready to be invoked? 716 */ 717 static int 718 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 719 { 720 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 721 rdp->nxttail[RCU_NEXT_TAIL] != NULL; 722 } 723 724 /* 725 * Return the root node of the specified rcu_state structure. 726 */ 727 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 728 { 729 return &rsp->node[0]; 730 } 731 732 /* 733 * Is there any need for future grace periods? 734 * Interrupts must be disabled. If the caller does not hold the root 735 * rnp_node structure's ->lock, the results are advisory only. 736 */ 737 static int rcu_future_needs_gp(struct rcu_state *rsp) 738 { 739 struct rcu_node *rnp = rcu_get_root(rsp); 740 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 741 int *fp = &rnp->need_future_gp[idx]; 742 743 return READ_ONCE(*fp); 744 } 745 746 /* 747 * Does the current CPU require a not-yet-started grace period? 748 * The caller must have disabled interrupts to prevent races with 749 * normal callback registry. 750 */ 751 static bool 752 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 753 { 754 int i; 755 756 if (rcu_gp_in_progress(rsp)) 757 return false; /* No, a grace period is already in progress. */ 758 if (rcu_future_needs_gp(rsp)) 759 return true; /* Yes, a no-CBs CPU needs one. */ 760 if (!rdp->nxttail[RCU_NEXT_TAIL]) 761 return false; /* No, this is a no-CBs (or offline) CPU. */ 762 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 763 return true; /* Yes, CPU has newly registered callbacks. */ 764 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 765 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 766 ULONG_CMP_LT(READ_ONCE(rsp->completed), 767 rdp->nxtcompleted[i])) 768 return true; /* Yes, CBs for future grace period. */ 769 return false; /* No grace period needed. */ 770 } 771 772 /* 773 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 774 * 775 * If the new value of the ->dynticks_nesting counter now is zero, 776 * we really have entered idle, and must do the appropriate accounting. 777 * The caller must have disabled interrupts. 778 */ 779 static void rcu_eqs_enter_common(long long oldval, bool user) 780 { 781 struct rcu_state *rsp; 782 struct rcu_data *rdp; 783 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);) 784 785 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 786 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 787 !user && !is_idle_task(current)) { 788 struct task_struct *idle __maybe_unused = 789 idle_task(smp_processor_id()); 790 791 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 792 rcu_ftrace_dump(DUMP_ORIG); 793 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 794 current->pid, current->comm, 795 idle->pid, idle->comm); /* must be idle task! */ 796 } 797 for_each_rcu_flavor(rsp) { 798 rdp = this_cpu_ptr(rsp->rda); 799 do_nocb_deferred_wakeup(rdp); 800 } 801 rcu_prepare_for_idle(); 802 rcu_dynticks_eqs_enter(); 803 rcu_dynticks_task_enter(); 804 805 /* 806 * It is illegal to enter an extended quiescent state while 807 * in an RCU read-side critical section. 808 */ 809 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 810 "Illegal idle entry in RCU read-side critical section."); 811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 812 "Illegal idle entry in RCU-bh read-side critical section."); 813 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 814 "Illegal idle entry in RCU-sched read-side critical section."); 815 } 816 817 /* 818 * Enter an RCU extended quiescent state, which can be either the 819 * idle loop or adaptive-tickless usermode execution. 820 */ 821 static void rcu_eqs_enter(bool user) 822 { 823 long long oldval; 824 struct rcu_dynticks *rdtp; 825 826 rdtp = this_cpu_ptr(&rcu_dynticks); 827 oldval = rdtp->dynticks_nesting; 828 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 829 (oldval & DYNTICK_TASK_NEST_MASK) == 0); 830 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 831 rdtp->dynticks_nesting = 0; 832 rcu_eqs_enter_common(oldval, user); 833 } else { 834 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 835 } 836 } 837 838 /** 839 * rcu_idle_enter - inform RCU that current CPU is entering idle 840 * 841 * Enter idle mode, in other words, -leave- the mode in which RCU 842 * read-side critical sections can occur. (Though RCU read-side 843 * critical sections can occur in irq handlers in idle, a possibility 844 * handled by irq_enter() and irq_exit().) 845 * 846 * We crowbar the ->dynticks_nesting field to zero to allow for 847 * the possibility of usermode upcalls having messed up our count 848 * of interrupt nesting level during the prior busy period. 849 */ 850 void rcu_idle_enter(void) 851 { 852 unsigned long flags; 853 854 local_irq_save(flags); 855 rcu_eqs_enter(false); 856 rcu_sysidle_enter(0); 857 local_irq_restore(flags); 858 } 859 EXPORT_SYMBOL_GPL(rcu_idle_enter); 860 861 #ifdef CONFIG_NO_HZ_FULL 862 /** 863 * rcu_user_enter - inform RCU that we are resuming userspace. 864 * 865 * Enter RCU idle mode right before resuming userspace. No use of RCU 866 * is permitted between this call and rcu_user_exit(). This way the 867 * CPU doesn't need to maintain the tick for RCU maintenance purposes 868 * when the CPU runs in userspace. 869 */ 870 void rcu_user_enter(void) 871 { 872 rcu_eqs_enter(1); 873 } 874 #endif /* CONFIG_NO_HZ_FULL */ 875 876 /** 877 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 878 * 879 * Exit from an interrupt handler, which might possibly result in entering 880 * idle mode, in other words, leaving the mode in which read-side critical 881 * sections can occur. The caller must have disabled interrupts. 882 * 883 * This code assumes that the idle loop never does anything that might 884 * result in unbalanced calls to irq_enter() and irq_exit(). If your 885 * architecture violates this assumption, RCU will give you what you 886 * deserve, good and hard. But very infrequently and irreproducibly. 887 * 888 * Use things like work queues to work around this limitation. 889 * 890 * You have been warned. 891 */ 892 void rcu_irq_exit(void) 893 { 894 long long oldval; 895 struct rcu_dynticks *rdtp; 896 897 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 898 rdtp = this_cpu_ptr(&rcu_dynticks); 899 oldval = rdtp->dynticks_nesting; 900 rdtp->dynticks_nesting--; 901 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 902 rdtp->dynticks_nesting < 0); 903 if (rdtp->dynticks_nesting) 904 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 905 else 906 rcu_eqs_enter_common(oldval, true); 907 rcu_sysidle_enter(1); 908 } 909 910 /* 911 * Wrapper for rcu_irq_exit() where interrupts are enabled. 912 */ 913 void rcu_irq_exit_irqson(void) 914 { 915 unsigned long flags; 916 917 local_irq_save(flags); 918 rcu_irq_exit(); 919 local_irq_restore(flags); 920 } 921 922 /* 923 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 924 * 925 * If the new value of the ->dynticks_nesting counter was previously zero, 926 * we really have exited idle, and must do the appropriate accounting. 927 * The caller must have disabled interrupts. 928 */ 929 static void rcu_eqs_exit_common(long long oldval, int user) 930 { 931 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);) 932 933 rcu_dynticks_task_exit(); 934 rcu_dynticks_eqs_exit(); 935 rcu_cleanup_after_idle(); 936 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 937 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 938 !user && !is_idle_task(current)) { 939 struct task_struct *idle __maybe_unused = 940 idle_task(smp_processor_id()); 941 942 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 943 oldval, rdtp->dynticks_nesting); 944 rcu_ftrace_dump(DUMP_ORIG); 945 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 946 current->pid, current->comm, 947 idle->pid, idle->comm); /* must be idle task! */ 948 } 949 } 950 951 /* 952 * Exit an RCU extended quiescent state, which can be either the 953 * idle loop or adaptive-tickless usermode execution. 954 */ 955 static void rcu_eqs_exit(bool user) 956 { 957 struct rcu_dynticks *rdtp; 958 long long oldval; 959 960 rdtp = this_cpu_ptr(&rcu_dynticks); 961 oldval = rdtp->dynticks_nesting; 962 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 963 if (oldval & DYNTICK_TASK_NEST_MASK) { 964 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 965 } else { 966 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 967 rcu_eqs_exit_common(oldval, user); 968 } 969 } 970 971 /** 972 * rcu_idle_exit - inform RCU that current CPU is leaving idle 973 * 974 * Exit idle mode, in other words, -enter- the mode in which RCU 975 * read-side critical sections can occur. 976 * 977 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 978 * allow for the possibility of usermode upcalls messing up our count 979 * of interrupt nesting level during the busy period that is just 980 * now starting. 981 */ 982 void rcu_idle_exit(void) 983 { 984 unsigned long flags; 985 986 local_irq_save(flags); 987 rcu_eqs_exit(false); 988 rcu_sysidle_exit(0); 989 local_irq_restore(flags); 990 } 991 EXPORT_SYMBOL_GPL(rcu_idle_exit); 992 993 #ifdef CONFIG_NO_HZ_FULL 994 /** 995 * rcu_user_exit - inform RCU that we are exiting userspace. 996 * 997 * Exit RCU idle mode while entering the kernel because it can 998 * run a RCU read side critical section anytime. 999 */ 1000 void rcu_user_exit(void) 1001 { 1002 rcu_eqs_exit(1); 1003 } 1004 #endif /* CONFIG_NO_HZ_FULL */ 1005 1006 /** 1007 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1008 * 1009 * Enter an interrupt handler, which might possibly result in exiting 1010 * idle mode, in other words, entering the mode in which read-side critical 1011 * sections can occur. The caller must have disabled interrupts. 1012 * 1013 * Note that the Linux kernel is fully capable of entering an interrupt 1014 * handler that it never exits, for example when doing upcalls to 1015 * user mode! This code assumes that the idle loop never does upcalls to 1016 * user mode. If your architecture does do upcalls from the idle loop (or 1017 * does anything else that results in unbalanced calls to the irq_enter() 1018 * and irq_exit() functions), RCU will give you what you deserve, good 1019 * and hard. But very infrequently and irreproducibly. 1020 * 1021 * Use things like work queues to work around this limitation. 1022 * 1023 * You have been warned. 1024 */ 1025 void rcu_irq_enter(void) 1026 { 1027 struct rcu_dynticks *rdtp; 1028 long long oldval; 1029 1030 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 1031 rdtp = this_cpu_ptr(&rcu_dynticks); 1032 oldval = rdtp->dynticks_nesting; 1033 rdtp->dynticks_nesting++; 1034 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 1035 rdtp->dynticks_nesting == 0); 1036 if (oldval) 1037 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 1038 else 1039 rcu_eqs_exit_common(oldval, true); 1040 rcu_sysidle_exit(1); 1041 } 1042 1043 /* 1044 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1045 */ 1046 void rcu_irq_enter_irqson(void) 1047 { 1048 unsigned long flags; 1049 1050 local_irq_save(flags); 1051 rcu_irq_enter(); 1052 local_irq_restore(flags); 1053 } 1054 1055 /** 1056 * rcu_nmi_enter - inform RCU of entry to NMI context 1057 * 1058 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 1059 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 1060 * that the CPU is active. This implementation permits nested NMIs, as 1061 * long as the nesting level does not overflow an int. (You will probably 1062 * run out of stack space first.) 1063 */ 1064 void rcu_nmi_enter(void) 1065 { 1066 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1067 int incby = 2; 1068 1069 /* Complain about underflow. */ 1070 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 1071 1072 /* 1073 * If idle from RCU viewpoint, atomically increment ->dynticks 1074 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1075 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1076 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1077 * to be in the outermost NMI handler that interrupted an RCU-idle 1078 * period (observation due to Andy Lutomirski). 1079 */ 1080 if (rcu_dynticks_curr_cpu_in_eqs()) { 1081 rcu_dynticks_eqs_exit(); 1082 incby = 1; 1083 } 1084 rdtp->dynticks_nmi_nesting += incby; 1085 barrier(); 1086 } 1087 1088 /** 1089 * rcu_nmi_exit - inform RCU of exit from NMI context 1090 * 1091 * If we are returning from the outermost NMI handler that interrupted an 1092 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 1093 * to let the RCU grace-period handling know that the CPU is back to 1094 * being RCU-idle. 1095 */ 1096 void rcu_nmi_exit(void) 1097 { 1098 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1099 1100 /* 1101 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1102 * (We are exiting an NMI handler, so RCU better be paying attention 1103 * to us!) 1104 */ 1105 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1106 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 1107 1108 /* 1109 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1110 * leave it in non-RCU-idle state. 1111 */ 1112 if (rdtp->dynticks_nmi_nesting != 1) { 1113 rdtp->dynticks_nmi_nesting -= 2; 1114 return; 1115 } 1116 1117 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1118 rdtp->dynticks_nmi_nesting = 0; 1119 rcu_dynticks_eqs_enter(); 1120 } 1121 1122 /** 1123 * __rcu_is_watching - are RCU read-side critical sections safe? 1124 * 1125 * Return true if RCU is watching the running CPU, which means that 1126 * this CPU can safely enter RCU read-side critical sections. Unlike 1127 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 1128 * least disabled preemption. 1129 */ 1130 bool notrace __rcu_is_watching(void) 1131 { 1132 return !rcu_dynticks_curr_cpu_in_eqs(); 1133 } 1134 1135 /** 1136 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1137 * 1138 * If the current CPU is in its idle loop and is neither in an interrupt 1139 * or NMI handler, return true. 1140 */ 1141 bool notrace rcu_is_watching(void) 1142 { 1143 bool ret; 1144 1145 preempt_disable_notrace(); 1146 ret = __rcu_is_watching(); 1147 preempt_enable_notrace(); 1148 return ret; 1149 } 1150 EXPORT_SYMBOL_GPL(rcu_is_watching); 1151 1152 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1153 1154 /* 1155 * Is the current CPU online? Disable preemption to avoid false positives 1156 * that could otherwise happen due to the current CPU number being sampled, 1157 * this task being preempted, its old CPU being taken offline, resuming 1158 * on some other CPU, then determining that its old CPU is now offline. 1159 * It is OK to use RCU on an offline processor during initial boot, hence 1160 * the check for rcu_scheduler_fully_active. Note also that it is OK 1161 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1162 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1163 * offline to continue to use RCU for one jiffy after marking itself 1164 * offline in the cpu_online_mask. This leniency is necessary given the 1165 * non-atomic nature of the online and offline processing, for example, 1166 * the fact that a CPU enters the scheduler after completing the teardown 1167 * of the CPU. 1168 * 1169 * This is also why RCU internally marks CPUs online during in the 1170 * preparation phase and offline after the CPU has been taken down. 1171 * 1172 * Disable checking if in an NMI handler because we cannot safely report 1173 * errors from NMI handlers anyway. 1174 */ 1175 bool rcu_lockdep_current_cpu_online(void) 1176 { 1177 struct rcu_data *rdp; 1178 struct rcu_node *rnp; 1179 bool ret; 1180 1181 if (in_nmi()) 1182 return true; 1183 preempt_disable(); 1184 rdp = this_cpu_ptr(&rcu_sched_data); 1185 rnp = rdp->mynode; 1186 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1187 !rcu_scheduler_fully_active; 1188 preempt_enable(); 1189 return ret; 1190 } 1191 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1192 1193 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1194 1195 /** 1196 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1197 * 1198 * If the current CPU is idle or running at a first-level (not nested) 1199 * interrupt from idle, return true. The caller must have at least 1200 * disabled preemption. 1201 */ 1202 static int rcu_is_cpu_rrupt_from_idle(void) 1203 { 1204 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1205 } 1206 1207 /* 1208 * Snapshot the specified CPU's dynticks counter so that we can later 1209 * credit them with an implicit quiescent state. Return 1 if this CPU 1210 * is in dynticks idle mode, which is an extended quiescent state. 1211 */ 1212 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1213 bool *isidle, unsigned long *maxj) 1214 { 1215 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1216 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1217 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1218 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1219 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1220 rdp->mynode->gpnum)) 1221 WRITE_ONCE(rdp->gpwrap, true); 1222 return 1; 1223 } 1224 return 0; 1225 } 1226 1227 /* 1228 * Return true if the specified CPU has passed through a quiescent 1229 * state by virtue of being in or having passed through an dynticks 1230 * idle state since the last call to dyntick_save_progress_counter() 1231 * for this same CPU, or by virtue of having been offline. 1232 */ 1233 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1234 bool *isidle, unsigned long *maxj) 1235 { 1236 unsigned long jtsq; 1237 int *rcrmp; 1238 unsigned long rjtsc; 1239 struct rcu_node *rnp; 1240 1241 /* 1242 * If the CPU passed through or entered a dynticks idle phase with 1243 * no active irq/NMI handlers, then we can safely pretend that the CPU 1244 * already acknowledged the request to pass through a quiescent 1245 * state. Either way, that CPU cannot possibly be in an RCU 1246 * read-side critical section that started before the beginning 1247 * of the current RCU grace period. 1248 */ 1249 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1250 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1251 rdp->dynticks_fqs++; 1252 return 1; 1253 } 1254 1255 /* Compute and saturate jiffies_till_sched_qs. */ 1256 jtsq = jiffies_till_sched_qs; 1257 rjtsc = rcu_jiffies_till_stall_check(); 1258 if (jtsq > rjtsc / 2) { 1259 WRITE_ONCE(jiffies_till_sched_qs, rjtsc); 1260 jtsq = rjtsc / 2; 1261 } else if (jtsq < 1) { 1262 WRITE_ONCE(jiffies_till_sched_qs, 1); 1263 jtsq = 1; 1264 } 1265 1266 /* 1267 * Has this CPU encountered a cond_resched_rcu_qs() since the 1268 * beginning of the grace period? For this to be the case, 1269 * the CPU has to have noticed the current grace period. This 1270 * might not be the case for nohz_full CPUs looping in the kernel. 1271 */ 1272 rnp = rdp->mynode; 1273 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1274 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) && 1275 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) { 1276 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); 1277 return 1; 1278 } 1279 1280 /* Check for the CPU being offline. */ 1281 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { 1282 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1283 rdp->offline_fqs++; 1284 return 1; 1285 } 1286 1287 /* 1288 * A CPU running for an extended time within the kernel can 1289 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1290 * even context-switching back and forth between a pair of 1291 * in-kernel CPU-bound tasks cannot advance grace periods. 1292 * So if the grace period is old enough, make the CPU pay attention. 1293 * Note that the unsynchronized assignments to the per-CPU 1294 * rcu_sched_qs_mask variable are safe. Yes, setting of 1295 * bits can be lost, but they will be set again on the next 1296 * force-quiescent-state pass. So lost bit sets do not result 1297 * in incorrect behavior, merely in a grace period lasting 1298 * a few jiffies longer than it might otherwise. Because 1299 * there are at most four threads involved, and because the 1300 * updates are only once every few jiffies, the probability of 1301 * lossage (and thus of slight grace-period extension) is 1302 * quite low. 1303 * 1304 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1305 * is set too high, we override with half of the RCU CPU stall 1306 * warning delay. 1307 */ 1308 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1309 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1310 time_after(jiffies, rdp->rsp->jiffies_resched)) { 1311 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1312 WRITE_ONCE(rdp->cond_resched_completed, 1313 READ_ONCE(rdp->mynode->completed)); 1314 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1315 WRITE_ONCE(*rcrmp, 1316 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask); 1317 } 1318 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1319 } 1320 1321 /* 1322 * If more than halfway to RCU CPU stall-warning time, do 1323 * a resched_cpu() to try to loosen things up a bit. 1324 */ 1325 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) 1326 resched_cpu(rdp->cpu); 1327 1328 return 0; 1329 } 1330 1331 static void record_gp_stall_check_time(struct rcu_state *rsp) 1332 { 1333 unsigned long j = jiffies; 1334 unsigned long j1; 1335 1336 rsp->gp_start = j; 1337 smp_wmb(); /* Record start time before stall time. */ 1338 j1 = rcu_jiffies_till_stall_check(); 1339 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1340 rsp->jiffies_resched = j + j1 / 2; 1341 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1342 } 1343 1344 /* 1345 * Convert a ->gp_state value to a character string. 1346 */ 1347 static const char *gp_state_getname(short gs) 1348 { 1349 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1350 return "???"; 1351 return gp_state_names[gs]; 1352 } 1353 1354 /* 1355 * Complain about starvation of grace-period kthread. 1356 */ 1357 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1358 { 1359 unsigned long gpa; 1360 unsigned long j; 1361 1362 j = jiffies; 1363 gpa = READ_ONCE(rsp->gp_activity); 1364 if (j - gpa > 2 * HZ) { 1365 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n", 1366 rsp->name, j - gpa, 1367 rsp->gpnum, rsp->completed, 1368 rsp->gp_flags, 1369 gp_state_getname(rsp->gp_state), rsp->gp_state, 1370 rsp->gp_kthread ? rsp->gp_kthread->state : ~0); 1371 if (rsp->gp_kthread) { 1372 sched_show_task(rsp->gp_kthread); 1373 wake_up_process(rsp->gp_kthread); 1374 } 1375 } 1376 } 1377 1378 /* 1379 * Dump stacks of all tasks running on stalled CPUs. First try using 1380 * NMIs, but fall back to manual remote stack tracing on architectures 1381 * that don't support NMI-based stack dumps. The NMI-triggered stack 1382 * traces are more accurate because they are printed by the target CPU. 1383 */ 1384 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1385 { 1386 int cpu; 1387 unsigned long flags; 1388 struct rcu_node *rnp; 1389 1390 rcu_for_each_leaf_node(rsp, rnp) { 1391 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1392 for_each_leaf_node_possible_cpu(rnp, cpu) 1393 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1394 if (!trigger_single_cpu_backtrace(cpu)) 1395 dump_cpu_task(cpu); 1396 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1397 } 1398 } 1399 1400 /* 1401 * If too much time has passed in the current grace period, and if 1402 * so configured, go kick the relevant kthreads. 1403 */ 1404 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1405 { 1406 unsigned long j; 1407 1408 if (!rcu_kick_kthreads) 1409 return; 1410 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1411 if (time_after(jiffies, j) && rsp->gp_kthread && 1412 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1413 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1414 rcu_ftrace_dump(DUMP_ALL); 1415 wake_up_process(rsp->gp_kthread); 1416 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1417 } 1418 } 1419 1420 static inline void panic_on_rcu_stall(void) 1421 { 1422 if (sysctl_panic_on_rcu_stall) 1423 panic("RCU Stall\n"); 1424 } 1425 1426 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1427 { 1428 int cpu; 1429 long delta; 1430 unsigned long flags; 1431 unsigned long gpa; 1432 unsigned long j; 1433 int ndetected = 0; 1434 struct rcu_node *rnp = rcu_get_root(rsp); 1435 long totqlen = 0; 1436 1437 /* Kick and suppress, if so configured. */ 1438 rcu_stall_kick_kthreads(rsp); 1439 if (rcu_cpu_stall_suppress) 1440 return; 1441 1442 /* Only let one CPU complain about others per time interval. */ 1443 1444 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1445 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1446 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1447 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1448 return; 1449 } 1450 WRITE_ONCE(rsp->jiffies_stall, 1451 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1452 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1453 1454 /* 1455 * OK, time to rat on our buddy... 1456 * See Documentation/RCU/stallwarn.txt for info on how to debug 1457 * RCU CPU stall warnings. 1458 */ 1459 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1460 rsp->name); 1461 print_cpu_stall_info_begin(); 1462 rcu_for_each_leaf_node(rsp, rnp) { 1463 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1464 ndetected += rcu_print_task_stall(rnp); 1465 if (rnp->qsmask != 0) { 1466 for_each_leaf_node_possible_cpu(rnp, cpu) 1467 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1468 print_cpu_stall_info(rsp, cpu); 1469 ndetected++; 1470 } 1471 } 1472 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1473 } 1474 1475 print_cpu_stall_info_end(); 1476 for_each_possible_cpu(cpu) 1477 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1478 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1479 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1480 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1481 if (ndetected) { 1482 rcu_dump_cpu_stacks(rsp); 1483 1484 /* Complain about tasks blocking the grace period. */ 1485 rcu_print_detail_task_stall(rsp); 1486 } else { 1487 if (READ_ONCE(rsp->gpnum) != gpnum || 1488 READ_ONCE(rsp->completed) == gpnum) { 1489 pr_err("INFO: Stall ended before state dump start\n"); 1490 } else { 1491 j = jiffies; 1492 gpa = READ_ONCE(rsp->gp_activity); 1493 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1494 rsp->name, j - gpa, j, gpa, 1495 jiffies_till_next_fqs, 1496 rcu_get_root(rsp)->qsmask); 1497 /* In this case, the current CPU might be at fault. */ 1498 sched_show_task(current); 1499 } 1500 } 1501 1502 rcu_check_gp_kthread_starvation(rsp); 1503 1504 panic_on_rcu_stall(); 1505 1506 force_quiescent_state(rsp); /* Kick them all. */ 1507 } 1508 1509 static void print_cpu_stall(struct rcu_state *rsp) 1510 { 1511 int cpu; 1512 unsigned long flags; 1513 struct rcu_node *rnp = rcu_get_root(rsp); 1514 long totqlen = 0; 1515 1516 /* Kick and suppress, if so configured. */ 1517 rcu_stall_kick_kthreads(rsp); 1518 if (rcu_cpu_stall_suppress) 1519 return; 1520 1521 /* 1522 * OK, time to rat on ourselves... 1523 * See Documentation/RCU/stallwarn.txt for info on how to debug 1524 * RCU CPU stall warnings. 1525 */ 1526 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1527 print_cpu_stall_info_begin(); 1528 print_cpu_stall_info(rsp, smp_processor_id()); 1529 print_cpu_stall_info_end(); 1530 for_each_possible_cpu(cpu) 1531 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1532 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1533 jiffies - rsp->gp_start, 1534 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1535 1536 rcu_check_gp_kthread_starvation(rsp); 1537 1538 rcu_dump_cpu_stacks(rsp); 1539 1540 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1541 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1542 WRITE_ONCE(rsp->jiffies_stall, 1543 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1544 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1545 1546 panic_on_rcu_stall(); 1547 1548 /* 1549 * Attempt to revive the RCU machinery by forcing a context switch. 1550 * 1551 * A context switch would normally allow the RCU state machine to make 1552 * progress and it could be we're stuck in kernel space without context 1553 * switches for an entirely unreasonable amount of time. 1554 */ 1555 resched_cpu(smp_processor_id()); 1556 } 1557 1558 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1559 { 1560 unsigned long completed; 1561 unsigned long gpnum; 1562 unsigned long gps; 1563 unsigned long j; 1564 unsigned long js; 1565 struct rcu_node *rnp; 1566 1567 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1568 !rcu_gp_in_progress(rsp)) 1569 return; 1570 rcu_stall_kick_kthreads(rsp); 1571 j = jiffies; 1572 1573 /* 1574 * Lots of memory barriers to reject false positives. 1575 * 1576 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1577 * then rsp->gp_start, and finally rsp->completed. These values 1578 * are updated in the opposite order with memory barriers (or 1579 * equivalent) during grace-period initialization and cleanup. 1580 * Now, a false positive can occur if we get an new value of 1581 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1582 * the memory barriers, the only way that this can happen is if one 1583 * grace period ends and another starts between these two fetches. 1584 * Detect this by comparing rsp->completed with the previous fetch 1585 * from rsp->gpnum. 1586 * 1587 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1588 * and rsp->gp_start suffice to forestall false positives. 1589 */ 1590 gpnum = READ_ONCE(rsp->gpnum); 1591 smp_rmb(); /* Pick up ->gpnum first... */ 1592 js = READ_ONCE(rsp->jiffies_stall); 1593 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1594 gps = READ_ONCE(rsp->gp_start); 1595 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1596 completed = READ_ONCE(rsp->completed); 1597 if (ULONG_CMP_GE(completed, gpnum) || 1598 ULONG_CMP_LT(j, js) || 1599 ULONG_CMP_GE(gps, js)) 1600 return; /* No stall or GP completed since entering function. */ 1601 rnp = rdp->mynode; 1602 if (rcu_gp_in_progress(rsp) && 1603 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1604 1605 /* We haven't checked in, so go dump stack. */ 1606 print_cpu_stall(rsp); 1607 1608 } else if (rcu_gp_in_progress(rsp) && 1609 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1610 1611 /* They had a few time units to dump stack, so complain. */ 1612 print_other_cpu_stall(rsp, gpnum); 1613 } 1614 } 1615 1616 /** 1617 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1618 * 1619 * Set the stall-warning timeout way off into the future, thus preventing 1620 * any RCU CPU stall-warning messages from appearing in the current set of 1621 * RCU grace periods. 1622 * 1623 * The caller must disable hard irqs. 1624 */ 1625 void rcu_cpu_stall_reset(void) 1626 { 1627 struct rcu_state *rsp; 1628 1629 for_each_rcu_flavor(rsp) 1630 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1631 } 1632 1633 /* 1634 * Initialize the specified rcu_data structure's default callback list 1635 * to empty. The default callback list is the one that is not used by 1636 * no-callbacks CPUs. 1637 */ 1638 static void init_default_callback_list(struct rcu_data *rdp) 1639 { 1640 int i; 1641 1642 rdp->nxtlist = NULL; 1643 for (i = 0; i < RCU_NEXT_SIZE; i++) 1644 rdp->nxttail[i] = &rdp->nxtlist; 1645 } 1646 1647 /* 1648 * Initialize the specified rcu_data structure's callback list to empty. 1649 */ 1650 static void init_callback_list(struct rcu_data *rdp) 1651 { 1652 if (init_nocb_callback_list(rdp)) 1653 return; 1654 init_default_callback_list(rdp); 1655 } 1656 1657 /* 1658 * Determine the value that ->completed will have at the end of the 1659 * next subsequent grace period. This is used to tag callbacks so that 1660 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1661 * been dyntick-idle for an extended period with callbacks under the 1662 * influence of RCU_FAST_NO_HZ. 1663 * 1664 * The caller must hold rnp->lock with interrupts disabled. 1665 */ 1666 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1667 struct rcu_node *rnp) 1668 { 1669 /* 1670 * If RCU is idle, we just wait for the next grace period. 1671 * But we can only be sure that RCU is idle if we are looking 1672 * at the root rcu_node structure -- otherwise, a new grace 1673 * period might have started, but just not yet gotten around 1674 * to initializing the current non-root rcu_node structure. 1675 */ 1676 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1677 return rnp->completed + 1; 1678 1679 /* 1680 * Otherwise, wait for a possible partial grace period and 1681 * then the subsequent full grace period. 1682 */ 1683 return rnp->completed + 2; 1684 } 1685 1686 /* 1687 * Trace-event helper function for rcu_start_future_gp() and 1688 * rcu_nocb_wait_gp(). 1689 */ 1690 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1691 unsigned long c, const char *s) 1692 { 1693 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1694 rnp->completed, c, rnp->level, 1695 rnp->grplo, rnp->grphi, s); 1696 } 1697 1698 /* 1699 * Start some future grace period, as needed to handle newly arrived 1700 * callbacks. The required future grace periods are recorded in each 1701 * rcu_node structure's ->need_future_gp field. Returns true if there 1702 * is reason to awaken the grace-period kthread. 1703 * 1704 * The caller must hold the specified rcu_node structure's ->lock. 1705 */ 1706 static bool __maybe_unused 1707 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1708 unsigned long *c_out) 1709 { 1710 unsigned long c; 1711 int i; 1712 bool ret = false; 1713 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1714 1715 /* 1716 * Pick up grace-period number for new callbacks. If this 1717 * grace period is already marked as needed, return to the caller. 1718 */ 1719 c = rcu_cbs_completed(rdp->rsp, rnp); 1720 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1721 if (rnp->need_future_gp[c & 0x1]) { 1722 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1723 goto out; 1724 } 1725 1726 /* 1727 * If either this rcu_node structure or the root rcu_node structure 1728 * believe that a grace period is in progress, then we must wait 1729 * for the one following, which is in "c". Because our request 1730 * will be noticed at the end of the current grace period, we don't 1731 * need to explicitly start one. We only do the lockless check 1732 * of rnp_root's fields if the current rcu_node structure thinks 1733 * there is no grace period in flight, and because we hold rnp->lock, 1734 * the only possible change is when rnp_root's two fields are 1735 * equal, in which case rnp_root->gpnum might be concurrently 1736 * incremented. But that is OK, as it will just result in our 1737 * doing some extra useless work. 1738 */ 1739 if (rnp->gpnum != rnp->completed || 1740 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1741 rnp->need_future_gp[c & 0x1]++; 1742 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1743 goto out; 1744 } 1745 1746 /* 1747 * There might be no grace period in progress. If we don't already 1748 * hold it, acquire the root rcu_node structure's lock in order to 1749 * start one (if needed). 1750 */ 1751 if (rnp != rnp_root) 1752 raw_spin_lock_rcu_node(rnp_root); 1753 1754 /* 1755 * Get a new grace-period number. If there really is no grace 1756 * period in progress, it will be smaller than the one we obtained 1757 * earlier. Adjust callbacks as needed. Note that even no-CBs 1758 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1759 */ 1760 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1761 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1762 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1763 rdp->nxtcompleted[i] = c; 1764 1765 /* 1766 * If the needed for the required grace period is already 1767 * recorded, trace and leave. 1768 */ 1769 if (rnp_root->need_future_gp[c & 0x1]) { 1770 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1771 goto unlock_out; 1772 } 1773 1774 /* Record the need for the future grace period. */ 1775 rnp_root->need_future_gp[c & 0x1]++; 1776 1777 /* If a grace period is not already in progress, start one. */ 1778 if (rnp_root->gpnum != rnp_root->completed) { 1779 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1780 } else { 1781 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1782 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1783 } 1784 unlock_out: 1785 if (rnp != rnp_root) 1786 raw_spin_unlock_rcu_node(rnp_root); 1787 out: 1788 if (c_out != NULL) 1789 *c_out = c; 1790 return ret; 1791 } 1792 1793 /* 1794 * Clean up any old requests for the just-ended grace period. Also return 1795 * whether any additional grace periods have been requested. Also invoke 1796 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1797 * waiting for this grace period to complete. 1798 */ 1799 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1800 { 1801 int c = rnp->completed; 1802 int needmore; 1803 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1804 1805 rnp->need_future_gp[c & 0x1] = 0; 1806 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1807 trace_rcu_future_gp(rnp, rdp, c, 1808 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1809 return needmore; 1810 } 1811 1812 /* 1813 * Awaken the grace-period kthread for the specified flavor of RCU. 1814 * Don't do a self-awaken, and don't bother awakening when there is 1815 * nothing for the grace-period kthread to do (as in several CPUs 1816 * raced to awaken, and we lost), and finally don't try to awaken 1817 * a kthread that has not yet been created. 1818 */ 1819 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1820 { 1821 if (current == rsp->gp_kthread || 1822 !READ_ONCE(rsp->gp_flags) || 1823 !rsp->gp_kthread) 1824 return; 1825 swake_up(&rsp->gp_wq); 1826 } 1827 1828 /* 1829 * If there is room, assign a ->completed number to any callbacks on 1830 * this CPU that have not already been assigned. Also accelerate any 1831 * callbacks that were previously assigned a ->completed number that has 1832 * since proven to be too conservative, which can happen if callbacks get 1833 * assigned a ->completed number while RCU is idle, but with reference to 1834 * a non-root rcu_node structure. This function is idempotent, so it does 1835 * not hurt to call it repeatedly. Returns an flag saying that we should 1836 * awaken the RCU grace-period kthread. 1837 * 1838 * The caller must hold rnp->lock with interrupts disabled. 1839 */ 1840 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1841 struct rcu_data *rdp) 1842 { 1843 unsigned long c; 1844 int i; 1845 bool ret; 1846 1847 /* If the CPU has no callbacks, nothing to do. */ 1848 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1849 return false; 1850 1851 /* 1852 * Starting from the sublist containing the callbacks most 1853 * recently assigned a ->completed number and working down, find the 1854 * first sublist that is not assignable to an upcoming grace period. 1855 * Such a sublist has something in it (first two tests) and has 1856 * a ->completed number assigned that will complete sooner than 1857 * the ->completed number for newly arrived callbacks (last test). 1858 * 1859 * The key point is that any later sublist can be assigned the 1860 * same ->completed number as the newly arrived callbacks, which 1861 * means that the callbacks in any of these later sublist can be 1862 * grouped into a single sublist, whether or not they have already 1863 * been assigned a ->completed number. 1864 */ 1865 c = rcu_cbs_completed(rsp, rnp); 1866 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1867 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1868 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1869 break; 1870 1871 /* 1872 * If there are no sublist for unassigned callbacks, leave. 1873 * At the same time, advance "i" one sublist, so that "i" will 1874 * index into the sublist where all the remaining callbacks should 1875 * be grouped into. 1876 */ 1877 if (++i >= RCU_NEXT_TAIL) 1878 return false; 1879 1880 /* 1881 * Assign all subsequent callbacks' ->completed number to the next 1882 * full grace period and group them all in the sublist initially 1883 * indexed by "i". 1884 */ 1885 for (; i <= RCU_NEXT_TAIL; i++) { 1886 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1887 rdp->nxtcompleted[i] = c; 1888 } 1889 /* Record any needed additional grace periods. */ 1890 ret = rcu_start_future_gp(rnp, rdp, NULL); 1891 1892 /* Trace depending on how much we were able to accelerate. */ 1893 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1894 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1895 else 1896 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1897 return ret; 1898 } 1899 1900 /* 1901 * Move any callbacks whose grace period has completed to the 1902 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1903 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1904 * sublist. This function is idempotent, so it does not hurt to 1905 * invoke it repeatedly. As long as it is not invoked -too- often... 1906 * Returns true if the RCU grace-period kthread needs to be awakened. 1907 * 1908 * The caller must hold rnp->lock with interrupts disabled. 1909 */ 1910 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1911 struct rcu_data *rdp) 1912 { 1913 int i, j; 1914 1915 /* If the CPU has no callbacks, nothing to do. */ 1916 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1917 return false; 1918 1919 /* 1920 * Find all callbacks whose ->completed numbers indicate that they 1921 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1922 */ 1923 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1924 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1925 break; 1926 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1927 } 1928 /* Clean up any sublist tail pointers that were misordered above. */ 1929 for (j = RCU_WAIT_TAIL; j < i; j++) 1930 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1931 1932 /* Copy down callbacks to fill in empty sublists. */ 1933 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1934 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1935 break; 1936 rdp->nxttail[j] = rdp->nxttail[i]; 1937 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1938 } 1939 1940 /* Classify any remaining callbacks. */ 1941 return rcu_accelerate_cbs(rsp, rnp, rdp); 1942 } 1943 1944 /* 1945 * Update CPU-local rcu_data state to record the beginnings and ends of 1946 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1947 * structure corresponding to the current CPU, and must have irqs disabled. 1948 * Returns true if the grace-period kthread needs to be awakened. 1949 */ 1950 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1951 struct rcu_data *rdp) 1952 { 1953 bool ret; 1954 bool need_gp; 1955 1956 /* Handle the ends of any preceding grace periods first. */ 1957 if (rdp->completed == rnp->completed && 1958 !unlikely(READ_ONCE(rdp->gpwrap))) { 1959 1960 /* No grace period end, so just accelerate recent callbacks. */ 1961 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1962 1963 } else { 1964 1965 /* Advance callbacks. */ 1966 ret = rcu_advance_cbs(rsp, rnp, rdp); 1967 1968 /* Remember that we saw this grace-period completion. */ 1969 rdp->completed = rnp->completed; 1970 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1971 } 1972 1973 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1974 /* 1975 * If the current grace period is waiting for this CPU, 1976 * set up to detect a quiescent state, otherwise don't 1977 * go looking for one. 1978 */ 1979 rdp->gpnum = rnp->gpnum; 1980 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1981 need_gp = !!(rnp->qsmask & rdp->grpmask); 1982 rdp->cpu_no_qs.b.norm = need_gp; 1983 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1984 rdp->core_needs_qs = need_gp; 1985 zero_cpu_stall_ticks(rdp); 1986 WRITE_ONCE(rdp->gpwrap, false); 1987 } 1988 return ret; 1989 } 1990 1991 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1992 { 1993 unsigned long flags; 1994 bool needwake; 1995 struct rcu_node *rnp; 1996 1997 local_irq_save(flags); 1998 rnp = rdp->mynode; 1999 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 2000 rdp->completed == READ_ONCE(rnp->completed) && 2001 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 2002 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 2003 local_irq_restore(flags); 2004 return; 2005 } 2006 needwake = __note_gp_changes(rsp, rnp, rdp); 2007 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2008 if (needwake) 2009 rcu_gp_kthread_wake(rsp); 2010 } 2011 2012 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 2013 { 2014 if (delay > 0 && 2015 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 2016 schedule_timeout_uninterruptible(delay); 2017 } 2018 2019 /* 2020 * Initialize a new grace period. Return false if no grace period required. 2021 */ 2022 static bool rcu_gp_init(struct rcu_state *rsp) 2023 { 2024 unsigned long oldmask; 2025 struct rcu_data *rdp; 2026 struct rcu_node *rnp = rcu_get_root(rsp); 2027 2028 WRITE_ONCE(rsp->gp_activity, jiffies); 2029 raw_spin_lock_irq_rcu_node(rnp); 2030 if (!READ_ONCE(rsp->gp_flags)) { 2031 /* Spurious wakeup, tell caller to go back to sleep. */ 2032 raw_spin_unlock_irq_rcu_node(rnp); 2033 return false; 2034 } 2035 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 2036 2037 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 2038 /* 2039 * Grace period already in progress, don't start another. 2040 * Not supposed to be able to happen. 2041 */ 2042 raw_spin_unlock_irq_rcu_node(rnp); 2043 return false; 2044 } 2045 2046 /* Advance to a new grace period and initialize state. */ 2047 record_gp_stall_check_time(rsp); 2048 /* Record GP times before starting GP, hence smp_store_release(). */ 2049 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 2050 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 2051 raw_spin_unlock_irq_rcu_node(rnp); 2052 2053 /* 2054 * Apply per-leaf buffered online and offline operations to the 2055 * rcu_node tree. Note that this new grace period need not wait 2056 * for subsequent online CPUs, and that quiescent-state forcing 2057 * will handle subsequent offline CPUs. 2058 */ 2059 rcu_for_each_leaf_node(rsp, rnp) { 2060 rcu_gp_slow(rsp, gp_preinit_delay); 2061 raw_spin_lock_irq_rcu_node(rnp); 2062 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 2063 !rnp->wait_blkd_tasks) { 2064 /* Nothing to do on this leaf rcu_node structure. */ 2065 raw_spin_unlock_irq_rcu_node(rnp); 2066 continue; 2067 } 2068 2069 /* Record old state, apply changes to ->qsmaskinit field. */ 2070 oldmask = rnp->qsmaskinit; 2071 rnp->qsmaskinit = rnp->qsmaskinitnext; 2072 2073 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 2074 if (!oldmask != !rnp->qsmaskinit) { 2075 if (!oldmask) /* First online CPU for this rcu_node. */ 2076 rcu_init_new_rnp(rnp); 2077 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 2078 rnp->wait_blkd_tasks = true; 2079 else /* Last offline CPU and can propagate. */ 2080 rcu_cleanup_dead_rnp(rnp); 2081 } 2082 2083 /* 2084 * If all waited-on tasks from prior grace period are 2085 * done, and if all this rcu_node structure's CPUs are 2086 * still offline, propagate up the rcu_node tree and 2087 * clear ->wait_blkd_tasks. Otherwise, if one of this 2088 * rcu_node structure's CPUs has since come back online, 2089 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 2090 * checks for this, so just call it unconditionally). 2091 */ 2092 if (rnp->wait_blkd_tasks && 2093 (!rcu_preempt_has_tasks(rnp) || 2094 rnp->qsmaskinit)) { 2095 rnp->wait_blkd_tasks = false; 2096 rcu_cleanup_dead_rnp(rnp); 2097 } 2098 2099 raw_spin_unlock_irq_rcu_node(rnp); 2100 } 2101 2102 /* 2103 * Set the quiescent-state-needed bits in all the rcu_node 2104 * structures for all currently online CPUs in breadth-first order, 2105 * starting from the root rcu_node structure, relying on the layout 2106 * of the tree within the rsp->node[] array. Note that other CPUs 2107 * will access only the leaves of the hierarchy, thus seeing that no 2108 * grace period is in progress, at least until the corresponding 2109 * leaf node has been initialized. 2110 * 2111 * The grace period cannot complete until the initialization 2112 * process finishes, because this kthread handles both. 2113 */ 2114 rcu_for_each_node_breadth_first(rsp, rnp) { 2115 rcu_gp_slow(rsp, gp_init_delay); 2116 raw_spin_lock_irq_rcu_node(rnp); 2117 rdp = this_cpu_ptr(rsp->rda); 2118 rcu_preempt_check_blocked_tasks(rnp); 2119 rnp->qsmask = rnp->qsmaskinit; 2120 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2121 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2122 WRITE_ONCE(rnp->completed, rsp->completed); 2123 if (rnp == rdp->mynode) 2124 (void)__note_gp_changes(rsp, rnp, rdp); 2125 rcu_preempt_boost_start_gp(rnp); 2126 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2127 rnp->level, rnp->grplo, 2128 rnp->grphi, rnp->qsmask); 2129 raw_spin_unlock_irq_rcu_node(rnp); 2130 cond_resched_rcu_qs(); 2131 WRITE_ONCE(rsp->gp_activity, jiffies); 2132 } 2133 2134 return true; 2135 } 2136 2137 /* 2138 * Helper function for wait_event_interruptible_timeout() wakeup 2139 * at force-quiescent-state time. 2140 */ 2141 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2142 { 2143 struct rcu_node *rnp = rcu_get_root(rsp); 2144 2145 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2146 *gfp = READ_ONCE(rsp->gp_flags); 2147 if (*gfp & RCU_GP_FLAG_FQS) 2148 return true; 2149 2150 /* The current grace period has completed. */ 2151 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2152 return true; 2153 2154 return false; 2155 } 2156 2157 /* 2158 * Do one round of quiescent-state forcing. 2159 */ 2160 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2161 { 2162 bool isidle = false; 2163 unsigned long maxj; 2164 struct rcu_node *rnp = rcu_get_root(rsp); 2165 2166 WRITE_ONCE(rsp->gp_activity, jiffies); 2167 rsp->n_force_qs++; 2168 if (first_time) { 2169 /* Collect dyntick-idle snapshots. */ 2170 if (is_sysidle_rcu_state(rsp)) { 2171 isidle = true; 2172 maxj = jiffies - ULONG_MAX / 4; 2173 } 2174 force_qs_rnp(rsp, dyntick_save_progress_counter, 2175 &isidle, &maxj); 2176 rcu_sysidle_report_gp(rsp, isidle, maxj); 2177 } else { 2178 /* Handle dyntick-idle and offline CPUs. */ 2179 isidle = true; 2180 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 2181 } 2182 /* Clear flag to prevent immediate re-entry. */ 2183 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2184 raw_spin_lock_irq_rcu_node(rnp); 2185 WRITE_ONCE(rsp->gp_flags, 2186 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2187 raw_spin_unlock_irq_rcu_node(rnp); 2188 } 2189 } 2190 2191 /* 2192 * Clean up after the old grace period. 2193 */ 2194 static void rcu_gp_cleanup(struct rcu_state *rsp) 2195 { 2196 unsigned long gp_duration; 2197 bool needgp = false; 2198 int nocb = 0; 2199 struct rcu_data *rdp; 2200 struct rcu_node *rnp = rcu_get_root(rsp); 2201 struct swait_queue_head *sq; 2202 2203 WRITE_ONCE(rsp->gp_activity, jiffies); 2204 raw_spin_lock_irq_rcu_node(rnp); 2205 gp_duration = jiffies - rsp->gp_start; 2206 if (gp_duration > rsp->gp_max) 2207 rsp->gp_max = gp_duration; 2208 2209 /* 2210 * We know the grace period is complete, but to everyone else 2211 * it appears to still be ongoing. But it is also the case 2212 * that to everyone else it looks like there is nothing that 2213 * they can do to advance the grace period. It is therefore 2214 * safe for us to drop the lock in order to mark the grace 2215 * period as completed in all of the rcu_node structures. 2216 */ 2217 raw_spin_unlock_irq_rcu_node(rnp); 2218 2219 /* 2220 * Propagate new ->completed value to rcu_node structures so 2221 * that other CPUs don't have to wait until the start of the next 2222 * grace period to process their callbacks. This also avoids 2223 * some nasty RCU grace-period initialization races by forcing 2224 * the end of the current grace period to be completely recorded in 2225 * all of the rcu_node structures before the beginning of the next 2226 * grace period is recorded in any of the rcu_node structures. 2227 */ 2228 rcu_for_each_node_breadth_first(rsp, rnp) { 2229 raw_spin_lock_irq_rcu_node(rnp); 2230 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2231 WARN_ON_ONCE(rnp->qsmask); 2232 WRITE_ONCE(rnp->completed, rsp->gpnum); 2233 rdp = this_cpu_ptr(rsp->rda); 2234 if (rnp == rdp->mynode) 2235 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2236 /* smp_mb() provided by prior unlock-lock pair. */ 2237 nocb += rcu_future_gp_cleanup(rsp, rnp); 2238 sq = rcu_nocb_gp_get(rnp); 2239 raw_spin_unlock_irq_rcu_node(rnp); 2240 rcu_nocb_gp_cleanup(sq); 2241 cond_resched_rcu_qs(); 2242 WRITE_ONCE(rsp->gp_activity, jiffies); 2243 rcu_gp_slow(rsp, gp_cleanup_delay); 2244 } 2245 rnp = rcu_get_root(rsp); 2246 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2247 rcu_nocb_gp_set(rnp, nocb); 2248 2249 /* Declare grace period done. */ 2250 WRITE_ONCE(rsp->completed, rsp->gpnum); 2251 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2252 rsp->gp_state = RCU_GP_IDLE; 2253 rdp = this_cpu_ptr(rsp->rda); 2254 /* Advance CBs to reduce false positives below. */ 2255 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2256 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2257 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2258 trace_rcu_grace_period(rsp->name, 2259 READ_ONCE(rsp->gpnum), 2260 TPS("newreq")); 2261 } 2262 raw_spin_unlock_irq_rcu_node(rnp); 2263 } 2264 2265 /* 2266 * Body of kthread that handles grace periods. 2267 */ 2268 static int __noreturn rcu_gp_kthread(void *arg) 2269 { 2270 bool first_gp_fqs; 2271 int gf; 2272 unsigned long j; 2273 int ret; 2274 struct rcu_state *rsp = arg; 2275 struct rcu_node *rnp = rcu_get_root(rsp); 2276 2277 rcu_bind_gp_kthread(); 2278 for (;;) { 2279 2280 /* Handle grace-period start. */ 2281 for (;;) { 2282 trace_rcu_grace_period(rsp->name, 2283 READ_ONCE(rsp->gpnum), 2284 TPS("reqwait")); 2285 rsp->gp_state = RCU_GP_WAIT_GPS; 2286 swait_event_interruptible(rsp->gp_wq, 2287 READ_ONCE(rsp->gp_flags) & 2288 RCU_GP_FLAG_INIT); 2289 rsp->gp_state = RCU_GP_DONE_GPS; 2290 /* Locking provides needed memory barrier. */ 2291 if (rcu_gp_init(rsp)) 2292 break; 2293 cond_resched_rcu_qs(); 2294 WRITE_ONCE(rsp->gp_activity, jiffies); 2295 WARN_ON(signal_pending(current)); 2296 trace_rcu_grace_period(rsp->name, 2297 READ_ONCE(rsp->gpnum), 2298 TPS("reqwaitsig")); 2299 } 2300 2301 /* Handle quiescent-state forcing. */ 2302 first_gp_fqs = true; 2303 j = jiffies_till_first_fqs; 2304 if (j > HZ) { 2305 j = HZ; 2306 jiffies_till_first_fqs = HZ; 2307 } 2308 ret = 0; 2309 for (;;) { 2310 if (!ret) { 2311 rsp->jiffies_force_qs = jiffies + j; 2312 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2313 jiffies + 3 * j); 2314 } 2315 trace_rcu_grace_period(rsp->name, 2316 READ_ONCE(rsp->gpnum), 2317 TPS("fqswait")); 2318 rsp->gp_state = RCU_GP_WAIT_FQS; 2319 ret = swait_event_interruptible_timeout(rsp->gp_wq, 2320 rcu_gp_fqs_check_wake(rsp, &gf), j); 2321 rsp->gp_state = RCU_GP_DOING_FQS; 2322 /* Locking provides needed memory barriers. */ 2323 /* If grace period done, leave loop. */ 2324 if (!READ_ONCE(rnp->qsmask) && 2325 !rcu_preempt_blocked_readers_cgp(rnp)) 2326 break; 2327 /* If time for quiescent-state forcing, do it. */ 2328 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2329 (gf & RCU_GP_FLAG_FQS)) { 2330 trace_rcu_grace_period(rsp->name, 2331 READ_ONCE(rsp->gpnum), 2332 TPS("fqsstart")); 2333 rcu_gp_fqs(rsp, first_gp_fqs); 2334 first_gp_fqs = false; 2335 trace_rcu_grace_period(rsp->name, 2336 READ_ONCE(rsp->gpnum), 2337 TPS("fqsend")); 2338 cond_resched_rcu_qs(); 2339 WRITE_ONCE(rsp->gp_activity, jiffies); 2340 ret = 0; /* Force full wait till next FQS. */ 2341 j = jiffies_till_next_fqs; 2342 if (j > HZ) { 2343 j = HZ; 2344 jiffies_till_next_fqs = HZ; 2345 } else if (j < 1) { 2346 j = 1; 2347 jiffies_till_next_fqs = 1; 2348 } 2349 } else { 2350 /* Deal with stray signal. */ 2351 cond_resched_rcu_qs(); 2352 WRITE_ONCE(rsp->gp_activity, jiffies); 2353 WARN_ON(signal_pending(current)); 2354 trace_rcu_grace_period(rsp->name, 2355 READ_ONCE(rsp->gpnum), 2356 TPS("fqswaitsig")); 2357 ret = 1; /* Keep old FQS timing. */ 2358 j = jiffies; 2359 if (time_after(jiffies, rsp->jiffies_force_qs)) 2360 j = 1; 2361 else 2362 j = rsp->jiffies_force_qs - j; 2363 } 2364 } 2365 2366 /* Handle grace-period end. */ 2367 rsp->gp_state = RCU_GP_CLEANUP; 2368 rcu_gp_cleanup(rsp); 2369 rsp->gp_state = RCU_GP_CLEANED; 2370 } 2371 } 2372 2373 /* 2374 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2375 * in preparation for detecting the next grace period. The caller must hold 2376 * the root node's ->lock and hard irqs must be disabled. 2377 * 2378 * Note that it is legal for a dying CPU (which is marked as offline) to 2379 * invoke this function. This can happen when the dying CPU reports its 2380 * quiescent state. 2381 * 2382 * Returns true if the grace-period kthread must be awakened. 2383 */ 2384 static bool 2385 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2386 struct rcu_data *rdp) 2387 { 2388 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2389 /* 2390 * Either we have not yet spawned the grace-period 2391 * task, this CPU does not need another grace period, 2392 * or a grace period is already in progress. 2393 * Either way, don't start a new grace period. 2394 */ 2395 return false; 2396 } 2397 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2398 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2399 TPS("newreq")); 2400 2401 /* 2402 * We can't do wakeups while holding the rnp->lock, as that 2403 * could cause possible deadlocks with the rq->lock. Defer 2404 * the wakeup to our caller. 2405 */ 2406 return true; 2407 } 2408 2409 /* 2410 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2411 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2412 * is invoked indirectly from rcu_advance_cbs(), which would result in 2413 * endless recursion -- or would do so if it wasn't for the self-deadlock 2414 * that is encountered beforehand. 2415 * 2416 * Returns true if the grace-period kthread needs to be awakened. 2417 */ 2418 static bool rcu_start_gp(struct rcu_state *rsp) 2419 { 2420 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2421 struct rcu_node *rnp = rcu_get_root(rsp); 2422 bool ret = false; 2423 2424 /* 2425 * If there is no grace period in progress right now, any 2426 * callbacks we have up to this point will be satisfied by the 2427 * next grace period. Also, advancing the callbacks reduces the 2428 * probability of false positives from cpu_needs_another_gp() 2429 * resulting in pointless grace periods. So, advance callbacks 2430 * then start the grace period! 2431 */ 2432 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2433 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2434 return ret; 2435 } 2436 2437 /* 2438 * Report a full set of quiescent states to the specified rcu_state data 2439 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2440 * kthread if another grace period is required. Whether we wake 2441 * the grace-period kthread or it awakens itself for the next round 2442 * of quiescent-state forcing, that kthread will clean up after the 2443 * just-completed grace period. Note that the caller must hold rnp->lock, 2444 * which is released before return. 2445 */ 2446 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2447 __releases(rcu_get_root(rsp)->lock) 2448 { 2449 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2450 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2451 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2452 rcu_gp_kthread_wake(rsp); 2453 } 2454 2455 /* 2456 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2457 * Allows quiescent states for a group of CPUs to be reported at one go 2458 * to the specified rcu_node structure, though all the CPUs in the group 2459 * must be represented by the same rcu_node structure (which need not be a 2460 * leaf rcu_node structure, though it often will be). The gps parameter 2461 * is the grace-period snapshot, which means that the quiescent states 2462 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2463 * must be held upon entry, and it is released before return. 2464 */ 2465 static void 2466 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2467 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2468 __releases(rnp->lock) 2469 { 2470 unsigned long oldmask = 0; 2471 struct rcu_node *rnp_c; 2472 2473 /* Walk up the rcu_node hierarchy. */ 2474 for (;;) { 2475 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2476 2477 /* 2478 * Our bit has already been cleared, or the 2479 * relevant grace period is already over, so done. 2480 */ 2481 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2482 return; 2483 } 2484 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2485 rnp->qsmask &= ~mask; 2486 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2487 mask, rnp->qsmask, rnp->level, 2488 rnp->grplo, rnp->grphi, 2489 !!rnp->gp_tasks); 2490 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2491 2492 /* Other bits still set at this level, so done. */ 2493 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2494 return; 2495 } 2496 mask = rnp->grpmask; 2497 if (rnp->parent == NULL) { 2498 2499 /* No more levels. Exit loop holding root lock. */ 2500 2501 break; 2502 } 2503 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2504 rnp_c = rnp; 2505 rnp = rnp->parent; 2506 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2507 oldmask = rnp_c->qsmask; 2508 } 2509 2510 /* 2511 * Get here if we are the last CPU to pass through a quiescent 2512 * state for this grace period. Invoke rcu_report_qs_rsp() 2513 * to clean up and start the next grace period if one is needed. 2514 */ 2515 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2516 } 2517 2518 /* 2519 * Record a quiescent state for all tasks that were previously queued 2520 * on the specified rcu_node structure and that were blocking the current 2521 * RCU grace period. The caller must hold the specified rnp->lock with 2522 * irqs disabled, and this lock is released upon return, but irqs remain 2523 * disabled. 2524 */ 2525 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2526 struct rcu_node *rnp, unsigned long flags) 2527 __releases(rnp->lock) 2528 { 2529 unsigned long gps; 2530 unsigned long mask; 2531 struct rcu_node *rnp_p; 2532 2533 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2534 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2535 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2536 return; /* Still need more quiescent states! */ 2537 } 2538 2539 rnp_p = rnp->parent; 2540 if (rnp_p == NULL) { 2541 /* 2542 * Only one rcu_node structure in the tree, so don't 2543 * try to report up to its nonexistent parent! 2544 */ 2545 rcu_report_qs_rsp(rsp, flags); 2546 return; 2547 } 2548 2549 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2550 gps = rnp->gpnum; 2551 mask = rnp->grpmask; 2552 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2553 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2554 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2555 } 2556 2557 /* 2558 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2559 * structure. This must be called from the specified CPU. 2560 */ 2561 static void 2562 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2563 { 2564 unsigned long flags; 2565 unsigned long mask; 2566 bool needwake; 2567 struct rcu_node *rnp; 2568 2569 rnp = rdp->mynode; 2570 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2571 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum || 2572 rnp->completed == rnp->gpnum || rdp->gpwrap) { 2573 2574 /* 2575 * The grace period in which this quiescent state was 2576 * recorded has ended, so don't report it upwards. 2577 * We will instead need a new quiescent state that lies 2578 * within the current grace period. 2579 */ 2580 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2581 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2582 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2583 return; 2584 } 2585 mask = rdp->grpmask; 2586 if ((rnp->qsmask & mask) == 0) { 2587 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2588 } else { 2589 rdp->core_needs_qs = false; 2590 2591 /* 2592 * This GP can't end until cpu checks in, so all of our 2593 * callbacks can be processed during the next GP. 2594 */ 2595 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2596 2597 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2598 /* ^^^ Released rnp->lock */ 2599 if (needwake) 2600 rcu_gp_kthread_wake(rsp); 2601 } 2602 } 2603 2604 /* 2605 * Check to see if there is a new grace period of which this CPU 2606 * is not yet aware, and if so, set up local rcu_data state for it. 2607 * Otherwise, see if this CPU has just passed through its first 2608 * quiescent state for this grace period, and record that fact if so. 2609 */ 2610 static void 2611 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2612 { 2613 /* Check for grace-period ends and beginnings. */ 2614 note_gp_changes(rsp, rdp); 2615 2616 /* 2617 * Does this CPU still need to do its part for current grace period? 2618 * If no, return and let the other CPUs do their part as well. 2619 */ 2620 if (!rdp->core_needs_qs) 2621 return; 2622 2623 /* 2624 * Was there a quiescent state since the beginning of the grace 2625 * period? If no, then exit and wait for the next call. 2626 */ 2627 if (rdp->cpu_no_qs.b.norm) 2628 return; 2629 2630 /* 2631 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2632 * judge of that). 2633 */ 2634 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2635 } 2636 2637 /* 2638 * Send the specified CPU's RCU callbacks to the orphanage. The 2639 * specified CPU must be offline, and the caller must hold the 2640 * ->orphan_lock. 2641 */ 2642 static void 2643 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2644 struct rcu_node *rnp, struct rcu_data *rdp) 2645 { 2646 /* No-CBs CPUs do not have orphanable callbacks. */ 2647 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2648 return; 2649 2650 /* 2651 * Orphan the callbacks. First adjust the counts. This is safe 2652 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2653 * cannot be running now. Thus no memory barrier is required. 2654 */ 2655 if (rdp->nxtlist != NULL) { 2656 rsp->qlen_lazy += rdp->qlen_lazy; 2657 rsp->qlen += rdp->qlen; 2658 rdp->n_cbs_orphaned += rdp->qlen; 2659 rdp->qlen_lazy = 0; 2660 WRITE_ONCE(rdp->qlen, 0); 2661 } 2662 2663 /* 2664 * Next, move those callbacks still needing a grace period to 2665 * the orphanage, where some other CPU will pick them up. 2666 * Some of the callbacks might have gone partway through a grace 2667 * period, but that is too bad. They get to start over because we 2668 * cannot assume that grace periods are synchronized across CPUs. 2669 * We don't bother updating the ->nxttail[] array yet, instead 2670 * we just reset the whole thing later on. 2671 */ 2672 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2673 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2674 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2675 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2676 } 2677 2678 /* 2679 * Then move the ready-to-invoke callbacks to the orphanage, 2680 * where some other CPU will pick them up. These will not be 2681 * required to pass though another grace period: They are done. 2682 */ 2683 if (rdp->nxtlist != NULL) { 2684 *rsp->orphan_donetail = rdp->nxtlist; 2685 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2686 } 2687 2688 /* 2689 * Finally, initialize the rcu_data structure's list to empty and 2690 * disallow further callbacks on this CPU. 2691 */ 2692 init_callback_list(rdp); 2693 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2694 } 2695 2696 /* 2697 * Adopt the RCU callbacks from the specified rcu_state structure's 2698 * orphanage. The caller must hold the ->orphan_lock. 2699 */ 2700 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2701 { 2702 int i; 2703 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2704 2705 /* No-CBs CPUs are handled specially. */ 2706 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2707 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2708 return; 2709 2710 /* Do the accounting first. */ 2711 rdp->qlen_lazy += rsp->qlen_lazy; 2712 rdp->qlen += rsp->qlen; 2713 rdp->n_cbs_adopted += rsp->qlen; 2714 if (rsp->qlen_lazy != rsp->qlen) 2715 rcu_idle_count_callbacks_posted(); 2716 rsp->qlen_lazy = 0; 2717 rsp->qlen = 0; 2718 2719 /* 2720 * We do not need a memory barrier here because the only way we 2721 * can get here if there is an rcu_barrier() in flight is if 2722 * we are the task doing the rcu_barrier(). 2723 */ 2724 2725 /* First adopt the ready-to-invoke callbacks. */ 2726 if (rsp->orphan_donelist != NULL) { 2727 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2728 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2729 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2730 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2731 rdp->nxttail[i] = rsp->orphan_donetail; 2732 rsp->orphan_donelist = NULL; 2733 rsp->orphan_donetail = &rsp->orphan_donelist; 2734 } 2735 2736 /* And then adopt the callbacks that still need a grace period. */ 2737 if (rsp->orphan_nxtlist != NULL) { 2738 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2739 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2740 rsp->orphan_nxtlist = NULL; 2741 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2742 } 2743 } 2744 2745 /* 2746 * Trace the fact that this CPU is going offline. 2747 */ 2748 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2749 { 2750 RCU_TRACE(unsigned long mask); 2751 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2752 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2753 2754 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2755 return; 2756 2757 RCU_TRACE(mask = rdp->grpmask); 2758 trace_rcu_grace_period(rsp->name, 2759 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2760 TPS("cpuofl")); 2761 } 2762 2763 /* 2764 * All CPUs for the specified rcu_node structure have gone offline, 2765 * and all tasks that were preempted within an RCU read-side critical 2766 * section while running on one of those CPUs have since exited their RCU 2767 * read-side critical section. Some other CPU is reporting this fact with 2768 * the specified rcu_node structure's ->lock held and interrupts disabled. 2769 * This function therefore goes up the tree of rcu_node structures, 2770 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2771 * the leaf rcu_node structure's ->qsmaskinit field has already been 2772 * updated 2773 * 2774 * This function does check that the specified rcu_node structure has 2775 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2776 * prematurely. That said, invoking it after the fact will cost you 2777 * a needless lock acquisition. So once it has done its work, don't 2778 * invoke it again. 2779 */ 2780 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2781 { 2782 long mask; 2783 struct rcu_node *rnp = rnp_leaf; 2784 2785 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2786 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2787 return; 2788 for (;;) { 2789 mask = rnp->grpmask; 2790 rnp = rnp->parent; 2791 if (!rnp) 2792 break; 2793 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2794 rnp->qsmaskinit &= ~mask; 2795 rnp->qsmask &= ~mask; 2796 if (rnp->qsmaskinit) { 2797 raw_spin_unlock_rcu_node(rnp); 2798 /* irqs remain disabled. */ 2799 return; 2800 } 2801 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2802 } 2803 } 2804 2805 /* 2806 * The CPU has been completely removed, and some other CPU is reporting 2807 * this fact from process context. Do the remainder of the cleanup, 2808 * including orphaning the outgoing CPU's RCU callbacks, and also 2809 * adopting them. There can only be one CPU hotplug operation at a time, 2810 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2811 */ 2812 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2813 { 2814 unsigned long flags; 2815 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2816 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2817 2818 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2819 return; 2820 2821 /* Adjust any no-longer-needed kthreads. */ 2822 rcu_boost_kthread_setaffinity(rnp, -1); 2823 2824 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2825 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2826 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2827 rcu_adopt_orphan_cbs(rsp, flags); 2828 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2829 2830 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2831 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2832 cpu, rdp->qlen, rdp->nxtlist); 2833 } 2834 2835 /* 2836 * Invoke any RCU callbacks that have made it to the end of their grace 2837 * period. Thottle as specified by rdp->blimit. 2838 */ 2839 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2840 { 2841 unsigned long flags; 2842 struct rcu_head *next, *list, **tail; 2843 long bl, count, count_lazy; 2844 int i; 2845 2846 /* If no callbacks are ready, just return. */ 2847 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2848 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2849 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist), 2850 need_resched(), is_idle_task(current), 2851 rcu_is_callbacks_kthread()); 2852 return; 2853 } 2854 2855 /* 2856 * Extract the list of ready callbacks, disabling to prevent 2857 * races with call_rcu() from interrupt handlers. 2858 */ 2859 local_irq_save(flags); 2860 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2861 bl = rdp->blimit; 2862 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2863 list = rdp->nxtlist; 2864 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2865 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2866 tail = rdp->nxttail[RCU_DONE_TAIL]; 2867 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2868 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2869 rdp->nxttail[i] = &rdp->nxtlist; 2870 local_irq_restore(flags); 2871 2872 /* Invoke callbacks. */ 2873 count = count_lazy = 0; 2874 while (list) { 2875 next = list->next; 2876 prefetch(next); 2877 debug_rcu_head_unqueue(list); 2878 if (__rcu_reclaim(rsp->name, list)) 2879 count_lazy++; 2880 list = next; 2881 /* Stop only if limit reached and CPU has something to do. */ 2882 if (++count >= bl && 2883 (need_resched() || 2884 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2885 break; 2886 } 2887 2888 local_irq_save(flags); 2889 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2890 is_idle_task(current), 2891 rcu_is_callbacks_kthread()); 2892 2893 /* Update count, and requeue any remaining callbacks. */ 2894 if (list != NULL) { 2895 *tail = rdp->nxtlist; 2896 rdp->nxtlist = list; 2897 for (i = 0; i < RCU_NEXT_SIZE; i++) 2898 if (&rdp->nxtlist == rdp->nxttail[i]) 2899 rdp->nxttail[i] = tail; 2900 else 2901 break; 2902 } 2903 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2904 rdp->qlen_lazy -= count_lazy; 2905 WRITE_ONCE(rdp->qlen, rdp->qlen - count); 2906 rdp->n_cbs_invoked += count; 2907 2908 /* Reinstate batch limit if we have worked down the excess. */ 2909 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2910 rdp->blimit = blimit; 2911 2912 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2913 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2914 rdp->qlen_last_fqs_check = 0; 2915 rdp->n_force_qs_snap = rsp->n_force_qs; 2916 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2917 rdp->qlen_last_fqs_check = rdp->qlen; 2918 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2919 2920 local_irq_restore(flags); 2921 2922 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2923 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2924 invoke_rcu_core(); 2925 } 2926 2927 /* 2928 * Check to see if this CPU is in a non-context-switch quiescent state 2929 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2930 * Also schedule RCU core processing. 2931 * 2932 * This function must be called from hardirq context. It is normally 2933 * invoked from the scheduling-clock interrupt. 2934 */ 2935 void rcu_check_callbacks(int user) 2936 { 2937 trace_rcu_utilization(TPS("Start scheduler-tick")); 2938 increment_cpu_stall_ticks(); 2939 if (user || rcu_is_cpu_rrupt_from_idle()) { 2940 2941 /* 2942 * Get here if this CPU took its interrupt from user 2943 * mode or from the idle loop, and if this is not a 2944 * nested interrupt. In this case, the CPU is in 2945 * a quiescent state, so note it. 2946 * 2947 * No memory barrier is required here because both 2948 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2949 * variables that other CPUs neither access nor modify, 2950 * at least not while the corresponding CPU is online. 2951 */ 2952 2953 rcu_sched_qs(); 2954 rcu_bh_qs(); 2955 2956 } else if (!in_softirq()) { 2957 2958 /* 2959 * Get here if this CPU did not take its interrupt from 2960 * softirq, in other words, if it is not interrupting 2961 * a rcu_bh read-side critical section. This is an _bh 2962 * critical section, so note it. 2963 */ 2964 2965 rcu_bh_qs(); 2966 } 2967 rcu_preempt_check_callbacks(); 2968 if (rcu_pending()) 2969 invoke_rcu_core(); 2970 if (user) 2971 rcu_note_voluntary_context_switch(current); 2972 trace_rcu_utilization(TPS("End scheduler-tick")); 2973 } 2974 2975 /* 2976 * Scan the leaf rcu_node structures, processing dyntick state for any that 2977 * have not yet encountered a quiescent state, using the function specified. 2978 * Also initiate boosting for any threads blocked on the root rcu_node. 2979 * 2980 * The caller must have suppressed start of new grace periods. 2981 */ 2982 static void force_qs_rnp(struct rcu_state *rsp, 2983 int (*f)(struct rcu_data *rsp, bool *isidle, 2984 unsigned long *maxj), 2985 bool *isidle, unsigned long *maxj) 2986 { 2987 int cpu; 2988 unsigned long flags; 2989 unsigned long mask; 2990 struct rcu_node *rnp; 2991 2992 rcu_for_each_leaf_node(rsp, rnp) { 2993 cond_resched_rcu_qs(); 2994 mask = 0; 2995 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2996 if (rnp->qsmask == 0) { 2997 if (rcu_state_p == &rcu_sched_state || 2998 rsp != rcu_state_p || 2999 rcu_preempt_blocked_readers_cgp(rnp)) { 3000 /* 3001 * No point in scanning bits because they 3002 * are all zero. But we might need to 3003 * priority-boost blocked readers. 3004 */ 3005 rcu_initiate_boost(rnp, flags); 3006 /* rcu_initiate_boost() releases rnp->lock */ 3007 continue; 3008 } 3009 if (rnp->parent && 3010 (rnp->parent->qsmask & rnp->grpmask)) { 3011 /* 3012 * Race between grace-period 3013 * initialization and task exiting RCU 3014 * read-side critical section: Report. 3015 */ 3016 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 3017 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 3018 continue; 3019 } 3020 } 3021 for_each_leaf_node_possible_cpu(rnp, cpu) { 3022 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 3023 if ((rnp->qsmask & bit) != 0) { 3024 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 3025 mask |= bit; 3026 } 3027 } 3028 if (mask != 0) { 3029 /* Idle/offline CPUs, report (releases rnp->lock. */ 3030 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 3031 } else { 3032 /* Nothing to do here, so just drop the lock. */ 3033 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3034 } 3035 } 3036 } 3037 3038 /* 3039 * Force quiescent states on reluctant CPUs, and also detect which 3040 * CPUs are in dyntick-idle mode. 3041 */ 3042 static void force_quiescent_state(struct rcu_state *rsp) 3043 { 3044 unsigned long flags; 3045 bool ret; 3046 struct rcu_node *rnp; 3047 struct rcu_node *rnp_old = NULL; 3048 3049 /* Funnel through hierarchy to reduce memory contention. */ 3050 rnp = __this_cpu_read(rsp->rda->mynode); 3051 for (; rnp != NULL; rnp = rnp->parent) { 3052 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 3053 !raw_spin_trylock(&rnp->fqslock); 3054 if (rnp_old != NULL) 3055 raw_spin_unlock(&rnp_old->fqslock); 3056 if (ret) { 3057 rsp->n_force_qs_lh++; 3058 return; 3059 } 3060 rnp_old = rnp; 3061 } 3062 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 3063 3064 /* Reached the root of the rcu_node tree, acquire lock. */ 3065 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 3066 raw_spin_unlock(&rnp_old->fqslock); 3067 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 3068 rsp->n_force_qs_lh++; 3069 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 3070 return; /* Someone beat us to it. */ 3071 } 3072 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 3073 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 3074 rcu_gp_kthread_wake(rsp); 3075 } 3076 3077 /* 3078 * This does the RCU core processing work for the specified rcu_state 3079 * and rcu_data structures. This may be called only from the CPU to 3080 * whom the rdp belongs. 3081 */ 3082 static void 3083 __rcu_process_callbacks(struct rcu_state *rsp) 3084 { 3085 unsigned long flags; 3086 bool needwake; 3087 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3088 3089 WARN_ON_ONCE(rdp->beenonline == 0); 3090 3091 /* Update RCU state based on any recent quiescent states. */ 3092 rcu_check_quiescent_state(rsp, rdp); 3093 3094 /* Does this CPU require a not-yet-started grace period? */ 3095 local_irq_save(flags); 3096 if (cpu_needs_another_gp(rsp, rdp)) { 3097 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 3098 needwake = rcu_start_gp(rsp); 3099 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 3100 if (needwake) 3101 rcu_gp_kthread_wake(rsp); 3102 } else { 3103 local_irq_restore(flags); 3104 } 3105 3106 /* If there are callbacks ready, invoke them. */ 3107 if (cpu_has_callbacks_ready_to_invoke(rdp)) 3108 invoke_rcu_callbacks(rsp, rdp); 3109 3110 /* Do any needed deferred wakeups of rcuo kthreads. */ 3111 do_nocb_deferred_wakeup(rdp); 3112 } 3113 3114 /* 3115 * Do RCU core processing for the current CPU. 3116 */ 3117 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 3118 { 3119 struct rcu_state *rsp; 3120 3121 if (cpu_is_offline(smp_processor_id())) 3122 return; 3123 trace_rcu_utilization(TPS("Start RCU core")); 3124 for_each_rcu_flavor(rsp) 3125 __rcu_process_callbacks(rsp); 3126 trace_rcu_utilization(TPS("End RCU core")); 3127 } 3128 3129 /* 3130 * Schedule RCU callback invocation. If the specified type of RCU 3131 * does not support RCU priority boosting, just do a direct call, 3132 * otherwise wake up the per-CPU kernel kthread. Note that because we 3133 * are running on the current CPU with softirqs disabled, the 3134 * rcu_cpu_kthread_task cannot disappear out from under us. 3135 */ 3136 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 3137 { 3138 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 3139 return; 3140 if (likely(!rsp->boost)) { 3141 rcu_do_batch(rsp, rdp); 3142 return; 3143 } 3144 invoke_rcu_callbacks_kthread(); 3145 } 3146 3147 static void invoke_rcu_core(void) 3148 { 3149 if (cpu_online(smp_processor_id())) 3150 raise_softirq(RCU_SOFTIRQ); 3151 } 3152 3153 /* 3154 * Handle any core-RCU processing required by a call_rcu() invocation. 3155 */ 3156 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 3157 struct rcu_head *head, unsigned long flags) 3158 { 3159 bool needwake; 3160 3161 /* 3162 * If called from an extended quiescent state, invoke the RCU 3163 * core in order to force a re-evaluation of RCU's idleness. 3164 */ 3165 if (!rcu_is_watching()) 3166 invoke_rcu_core(); 3167 3168 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3169 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3170 return; 3171 3172 /* 3173 * Force the grace period if too many callbacks or too long waiting. 3174 * Enforce hysteresis, and don't invoke force_quiescent_state() 3175 * if some other CPU has recently done so. Also, don't bother 3176 * invoking force_quiescent_state() if the newly enqueued callback 3177 * is the only one waiting for a grace period to complete. 3178 */ 3179 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 3180 3181 /* Are we ignoring a completed grace period? */ 3182 note_gp_changes(rsp, rdp); 3183 3184 /* Start a new grace period if one not already started. */ 3185 if (!rcu_gp_in_progress(rsp)) { 3186 struct rcu_node *rnp_root = rcu_get_root(rsp); 3187 3188 raw_spin_lock_rcu_node(rnp_root); 3189 needwake = rcu_start_gp(rsp); 3190 raw_spin_unlock_rcu_node(rnp_root); 3191 if (needwake) 3192 rcu_gp_kthread_wake(rsp); 3193 } else { 3194 /* Give the grace period a kick. */ 3195 rdp->blimit = LONG_MAX; 3196 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3197 *rdp->nxttail[RCU_DONE_TAIL] != head) 3198 force_quiescent_state(rsp); 3199 rdp->n_force_qs_snap = rsp->n_force_qs; 3200 rdp->qlen_last_fqs_check = rdp->qlen; 3201 } 3202 } 3203 } 3204 3205 /* 3206 * RCU callback function to leak a callback. 3207 */ 3208 static void rcu_leak_callback(struct rcu_head *rhp) 3209 { 3210 } 3211 3212 /* 3213 * Helper function for call_rcu() and friends. The cpu argument will 3214 * normally be -1, indicating "currently running CPU". It may specify 3215 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3216 * is expected to specify a CPU. 3217 */ 3218 static void 3219 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3220 struct rcu_state *rsp, int cpu, bool lazy) 3221 { 3222 unsigned long flags; 3223 struct rcu_data *rdp; 3224 3225 /* Misaligned rcu_head! */ 3226 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3227 3228 if (debug_rcu_head_queue(head)) { 3229 /* Probable double call_rcu(), so leak the callback. */ 3230 WRITE_ONCE(head->func, rcu_leak_callback); 3231 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 3232 return; 3233 } 3234 head->func = func; 3235 head->next = NULL; 3236 local_irq_save(flags); 3237 rdp = this_cpu_ptr(rsp->rda); 3238 3239 /* Add the callback to our list. */ 3240 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 3241 int offline; 3242 3243 if (cpu != -1) 3244 rdp = per_cpu_ptr(rsp->rda, cpu); 3245 if (likely(rdp->mynode)) { 3246 /* Post-boot, so this should be for a no-CBs CPU. */ 3247 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3248 WARN_ON_ONCE(offline); 3249 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3250 local_irq_restore(flags); 3251 return; 3252 } 3253 /* 3254 * Very early boot, before rcu_init(). Initialize if needed 3255 * and then drop through to queue the callback. 3256 */ 3257 BUG_ON(cpu != -1); 3258 WARN_ON_ONCE(!rcu_is_watching()); 3259 if (!likely(rdp->nxtlist)) 3260 init_default_callback_list(rdp); 3261 } 3262 WRITE_ONCE(rdp->qlen, rdp->qlen + 1); 3263 if (lazy) 3264 rdp->qlen_lazy++; 3265 else 3266 rcu_idle_count_callbacks_posted(); 3267 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3268 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3269 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3270 3271 if (__is_kfree_rcu_offset((unsigned long)func)) 3272 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3273 rdp->qlen_lazy, rdp->qlen); 3274 else 3275 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3276 3277 /* Go handle any RCU core processing required. */ 3278 __call_rcu_core(rsp, rdp, head, flags); 3279 local_irq_restore(flags); 3280 } 3281 3282 /* 3283 * Queue an RCU-sched callback for invocation after a grace period. 3284 */ 3285 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3286 { 3287 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3288 } 3289 EXPORT_SYMBOL_GPL(call_rcu_sched); 3290 3291 /* 3292 * Queue an RCU callback for invocation after a quicker grace period. 3293 */ 3294 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3295 { 3296 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3297 } 3298 EXPORT_SYMBOL_GPL(call_rcu_bh); 3299 3300 /* 3301 * Queue an RCU callback for lazy invocation after a grace period. 3302 * This will likely be later named something like "call_rcu_lazy()", 3303 * but this change will require some way of tagging the lazy RCU 3304 * callbacks in the list of pending callbacks. Until then, this 3305 * function may only be called from __kfree_rcu(). 3306 */ 3307 void kfree_call_rcu(struct rcu_head *head, 3308 rcu_callback_t func) 3309 { 3310 __call_rcu(head, func, rcu_state_p, -1, 1); 3311 } 3312 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3313 3314 /* 3315 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3316 * any blocking grace-period wait automatically implies a grace period 3317 * if there is only one CPU online at any point time during execution 3318 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3319 * occasionally incorrectly indicate that there are multiple CPUs online 3320 * when there was in fact only one the whole time, as this just adds 3321 * some overhead: RCU still operates correctly. 3322 */ 3323 static inline int rcu_blocking_is_gp(void) 3324 { 3325 int ret; 3326 3327 might_sleep(); /* Check for RCU read-side critical section. */ 3328 preempt_disable(); 3329 ret = num_online_cpus() <= 1; 3330 preempt_enable(); 3331 return ret; 3332 } 3333 3334 /** 3335 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3336 * 3337 * Control will return to the caller some time after a full rcu-sched 3338 * grace period has elapsed, in other words after all currently executing 3339 * rcu-sched read-side critical sections have completed. These read-side 3340 * critical sections are delimited by rcu_read_lock_sched() and 3341 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3342 * local_irq_disable(), and so on may be used in place of 3343 * rcu_read_lock_sched(). 3344 * 3345 * This means that all preempt_disable code sequences, including NMI and 3346 * non-threaded hardware-interrupt handlers, in progress on entry will 3347 * have completed before this primitive returns. However, this does not 3348 * guarantee that softirq handlers will have completed, since in some 3349 * kernels, these handlers can run in process context, and can block. 3350 * 3351 * Note that this guarantee implies further memory-ordering guarantees. 3352 * On systems with more than one CPU, when synchronize_sched() returns, 3353 * each CPU is guaranteed to have executed a full memory barrier since the 3354 * end of its last RCU-sched read-side critical section whose beginning 3355 * preceded the call to synchronize_sched(). In addition, each CPU having 3356 * an RCU read-side critical section that extends beyond the return from 3357 * synchronize_sched() is guaranteed to have executed a full memory barrier 3358 * after the beginning of synchronize_sched() and before the beginning of 3359 * that RCU read-side critical section. Note that these guarantees include 3360 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3361 * that are executing in the kernel. 3362 * 3363 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3364 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3365 * to have executed a full memory barrier during the execution of 3366 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3367 * again only if the system has more than one CPU). 3368 * 3369 * This primitive provides the guarantees made by the (now removed) 3370 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3371 * guarantees that rcu_read_lock() sections will have completed. 3372 * In "classic RCU", these two guarantees happen to be one and 3373 * the same, but can differ in realtime RCU implementations. 3374 */ 3375 void synchronize_sched(void) 3376 { 3377 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3378 lock_is_held(&rcu_lock_map) || 3379 lock_is_held(&rcu_sched_lock_map), 3380 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3381 if (rcu_blocking_is_gp()) 3382 return; 3383 if (rcu_gp_is_expedited()) 3384 synchronize_sched_expedited(); 3385 else 3386 wait_rcu_gp(call_rcu_sched); 3387 } 3388 EXPORT_SYMBOL_GPL(synchronize_sched); 3389 3390 /** 3391 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3392 * 3393 * Control will return to the caller some time after a full rcu_bh grace 3394 * period has elapsed, in other words after all currently executing rcu_bh 3395 * read-side critical sections have completed. RCU read-side critical 3396 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3397 * and may be nested. 3398 * 3399 * See the description of synchronize_sched() for more detailed information 3400 * on memory ordering guarantees. 3401 */ 3402 void synchronize_rcu_bh(void) 3403 { 3404 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3405 lock_is_held(&rcu_lock_map) || 3406 lock_is_held(&rcu_sched_lock_map), 3407 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3408 if (rcu_blocking_is_gp()) 3409 return; 3410 if (rcu_gp_is_expedited()) 3411 synchronize_rcu_bh_expedited(); 3412 else 3413 wait_rcu_gp(call_rcu_bh); 3414 } 3415 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3416 3417 /** 3418 * get_state_synchronize_rcu - Snapshot current RCU state 3419 * 3420 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3421 * to determine whether or not a full grace period has elapsed in the 3422 * meantime. 3423 */ 3424 unsigned long get_state_synchronize_rcu(void) 3425 { 3426 /* 3427 * Any prior manipulation of RCU-protected data must happen 3428 * before the load from ->gpnum. 3429 */ 3430 smp_mb(); /* ^^^ */ 3431 3432 /* 3433 * Make sure this load happens before the purportedly 3434 * time-consuming work between get_state_synchronize_rcu() 3435 * and cond_synchronize_rcu(). 3436 */ 3437 return smp_load_acquire(&rcu_state_p->gpnum); 3438 } 3439 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3440 3441 /** 3442 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3443 * 3444 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3445 * 3446 * If a full RCU grace period has elapsed since the earlier call to 3447 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3448 * synchronize_rcu() to wait for a full grace period. 3449 * 3450 * Yes, this function does not take counter wrap into account. But 3451 * counter wrap is harmless. If the counter wraps, we have waited for 3452 * more than 2 billion grace periods (and way more on a 64-bit system!), 3453 * so waiting for one additional grace period should be just fine. 3454 */ 3455 void cond_synchronize_rcu(unsigned long oldstate) 3456 { 3457 unsigned long newstate; 3458 3459 /* 3460 * Ensure that this load happens before any RCU-destructive 3461 * actions the caller might carry out after we return. 3462 */ 3463 newstate = smp_load_acquire(&rcu_state_p->completed); 3464 if (ULONG_CMP_GE(oldstate, newstate)) 3465 synchronize_rcu(); 3466 } 3467 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3468 3469 /** 3470 * get_state_synchronize_sched - Snapshot current RCU-sched state 3471 * 3472 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3473 * to determine whether or not a full grace period has elapsed in the 3474 * meantime. 3475 */ 3476 unsigned long get_state_synchronize_sched(void) 3477 { 3478 /* 3479 * Any prior manipulation of RCU-protected data must happen 3480 * before the load from ->gpnum. 3481 */ 3482 smp_mb(); /* ^^^ */ 3483 3484 /* 3485 * Make sure this load happens before the purportedly 3486 * time-consuming work between get_state_synchronize_sched() 3487 * and cond_synchronize_sched(). 3488 */ 3489 return smp_load_acquire(&rcu_sched_state.gpnum); 3490 } 3491 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3492 3493 /** 3494 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3495 * 3496 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3497 * 3498 * If a full RCU-sched grace period has elapsed since the earlier call to 3499 * get_state_synchronize_sched(), just return. Otherwise, invoke 3500 * synchronize_sched() to wait for a full grace period. 3501 * 3502 * Yes, this function does not take counter wrap into account. But 3503 * counter wrap is harmless. If the counter wraps, we have waited for 3504 * more than 2 billion grace periods (and way more on a 64-bit system!), 3505 * so waiting for one additional grace period should be just fine. 3506 */ 3507 void cond_synchronize_sched(unsigned long oldstate) 3508 { 3509 unsigned long newstate; 3510 3511 /* 3512 * Ensure that this load happens before any RCU-destructive 3513 * actions the caller might carry out after we return. 3514 */ 3515 newstate = smp_load_acquire(&rcu_sched_state.completed); 3516 if (ULONG_CMP_GE(oldstate, newstate)) 3517 synchronize_sched(); 3518 } 3519 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3520 3521 /* Adjust sequence number for start of update-side operation. */ 3522 static void rcu_seq_start(unsigned long *sp) 3523 { 3524 WRITE_ONCE(*sp, *sp + 1); 3525 smp_mb(); /* Ensure update-side operation after counter increment. */ 3526 WARN_ON_ONCE(!(*sp & 0x1)); 3527 } 3528 3529 /* Adjust sequence number for end of update-side operation. */ 3530 static void rcu_seq_end(unsigned long *sp) 3531 { 3532 smp_mb(); /* Ensure update-side operation before counter increment. */ 3533 WRITE_ONCE(*sp, *sp + 1); 3534 WARN_ON_ONCE(*sp & 0x1); 3535 } 3536 3537 /* Take a snapshot of the update side's sequence number. */ 3538 static unsigned long rcu_seq_snap(unsigned long *sp) 3539 { 3540 unsigned long s; 3541 3542 s = (READ_ONCE(*sp) + 3) & ~0x1; 3543 smp_mb(); /* Above access must not bleed into critical section. */ 3544 return s; 3545 } 3546 3547 /* 3548 * Given a snapshot from rcu_seq_snap(), determine whether or not a 3549 * full update-side operation has occurred. 3550 */ 3551 static bool rcu_seq_done(unsigned long *sp, unsigned long s) 3552 { 3553 return ULONG_CMP_GE(READ_ONCE(*sp), s); 3554 } 3555 3556 /* 3557 * Check to see if there is any immediate RCU-related work to be done 3558 * by the current CPU, for the specified type of RCU, returning 1 if so. 3559 * The checks are in order of increasing expense: checks that can be 3560 * carried out against CPU-local state are performed first. However, 3561 * we must check for CPU stalls first, else we might not get a chance. 3562 */ 3563 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3564 { 3565 struct rcu_node *rnp = rdp->mynode; 3566 3567 rdp->n_rcu_pending++; 3568 3569 /* Check for CPU stalls, if enabled. */ 3570 check_cpu_stall(rsp, rdp); 3571 3572 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3573 if (rcu_nohz_full_cpu(rsp)) 3574 return 0; 3575 3576 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3577 if (rcu_scheduler_fully_active && 3578 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3579 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3580 rdp->n_rp_core_needs_qs++; 3581 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) { 3582 rdp->n_rp_report_qs++; 3583 return 1; 3584 } 3585 3586 /* Does this CPU have callbacks ready to invoke? */ 3587 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3588 rdp->n_rp_cb_ready++; 3589 return 1; 3590 } 3591 3592 /* Has RCU gone idle with this CPU needing another grace period? */ 3593 if (cpu_needs_another_gp(rsp, rdp)) { 3594 rdp->n_rp_cpu_needs_gp++; 3595 return 1; 3596 } 3597 3598 /* Has another RCU grace period completed? */ 3599 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3600 rdp->n_rp_gp_completed++; 3601 return 1; 3602 } 3603 3604 /* Has a new RCU grace period started? */ 3605 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3606 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3607 rdp->n_rp_gp_started++; 3608 return 1; 3609 } 3610 3611 /* Does this CPU need a deferred NOCB wakeup? */ 3612 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3613 rdp->n_rp_nocb_defer_wakeup++; 3614 return 1; 3615 } 3616 3617 /* nothing to do */ 3618 rdp->n_rp_need_nothing++; 3619 return 0; 3620 } 3621 3622 /* 3623 * Check to see if there is any immediate RCU-related work to be done 3624 * by the current CPU, returning 1 if so. This function is part of the 3625 * RCU implementation; it is -not- an exported member of the RCU API. 3626 */ 3627 static int rcu_pending(void) 3628 { 3629 struct rcu_state *rsp; 3630 3631 for_each_rcu_flavor(rsp) 3632 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3633 return 1; 3634 return 0; 3635 } 3636 3637 /* 3638 * Return true if the specified CPU has any callback. If all_lazy is 3639 * non-NULL, store an indication of whether all callbacks are lazy. 3640 * (If there are no callbacks, all of them are deemed to be lazy.) 3641 */ 3642 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3643 { 3644 bool al = true; 3645 bool hc = false; 3646 struct rcu_data *rdp; 3647 struct rcu_state *rsp; 3648 3649 for_each_rcu_flavor(rsp) { 3650 rdp = this_cpu_ptr(rsp->rda); 3651 if (!rdp->nxtlist) 3652 continue; 3653 hc = true; 3654 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3655 al = false; 3656 break; 3657 } 3658 } 3659 if (all_lazy) 3660 *all_lazy = al; 3661 return hc; 3662 } 3663 3664 /* 3665 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3666 * the compiler is expected to optimize this away. 3667 */ 3668 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3669 int cpu, unsigned long done) 3670 { 3671 trace_rcu_barrier(rsp->name, s, cpu, 3672 atomic_read(&rsp->barrier_cpu_count), done); 3673 } 3674 3675 /* 3676 * RCU callback function for _rcu_barrier(). If we are last, wake 3677 * up the task executing _rcu_barrier(). 3678 */ 3679 static void rcu_barrier_callback(struct rcu_head *rhp) 3680 { 3681 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3682 struct rcu_state *rsp = rdp->rsp; 3683 3684 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3685 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 3686 complete(&rsp->barrier_completion); 3687 } else { 3688 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 3689 } 3690 } 3691 3692 /* 3693 * Called with preemption disabled, and from cross-cpu IRQ context. 3694 */ 3695 static void rcu_barrier_func(void *type) 3696 { 3697 struct rcu_state *rsp = type; 3698 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3699 3700 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 3701 atomic_inc(&rsp->barrier_cpu_count); 3702 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3703 } 3704 3705 /* 3706 * Orchestrate the specified type of RCU barrier, waiting for all 3707 * RCU callbacks of the specified type to complete. 3708 */ 3709 static void _rcu_barrier(struct rcu_state *rsp) 3710 { 3711 int cpu; 3712 struct rcu_data *rdp; 3713 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3714 3715 _rcu_barrier_trace(rsp, "Begin", -1, s); 3716 3717 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3718 mutex_lock(&rsp->barrier_mutex); 3719 3720 /* Did someone else do our work for us? */ 3721 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3722 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 3723 smp_mb(); /* caller's subsequent code after above check. */ 3724 mutex_unlock(&rsp->barrier_mutex); 3725 return; 3726 } 3727 3728 /* Mark the start of the barrier operation. */ 3729 rcu_seq_start(&rsp->barrier_sequence); 3730 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 3731 3732 /* 3733 * Initialize the count to one rather than to zero in order to 3734 * avoid a too-soon return to zero in case of a short grace period 3735 * (or preemption of this task). Exclude CPU-hotplug operations 3736 * to ensure that no offline CPU has callbacks queued. 3737 */ 3738 init_completion(&rsp->barrier_completion); 3739 atomic_set(&rsp->barrier_cpu_count, 1); 3740 get_online_cpus(); 3741 3742 /* 3743 * Force each CPU with callbacks to register a new callback. 3744 * When that callback is invoked, we will know that all of the 3745 * corresponding CPU's preceding callbacks have been invoked. 3746 */ 3747 for_each_possible_cpu(cpu) { 3748 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3749 continue; 3750 rdp = per_cpu_ptr(rsp->rda, cpu); 3751 if (rcu_is_nocb_cpu(cpu)) { 3752 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3753 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3754 rsp->barrier_sequence); 3755 } else { 3756 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3757 rsp->barrier_sequence); 3758 smp_mb__before_atomic(); 3759 atomic_inc(&rsp->barrier_cpu_count); 3760 __call_rcu(&rdp->barrier_head, 3761 rcu_barrier_callback, rsp, cpu, 0); 3762 } 3763 } else if (READ_ONCE(rdp->qlen)) { 3764 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3765 rsp->barrier_sequence); 3766 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3767 } else { 3768 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3769 rsp->barrier_sequence); 3770 } 3771 } 3772 put_online_cpus(); 3773 3774 /* 3775 * Now that we have an rcu_barrier_callback() callback on each 3776 * CPU, and thus each counted, remove the initial count. 3777 */ 3778 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3779 complete(&rsp->barrier_completion); 3780 3781 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3782 wait_for_completion(&rsp->barrier_completion); 3783 3784 /* Mark the end of the barrier operation. */ 3785 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 3786 rcu_seq_end(&rsp->barrier_sequence); 3787 3788 /* Other rcu_barrier() invocations can now safely proceed. */ 3789 mutex_unlock(&rsp->barrier_mutex); 3790 } 3791 3792 /** 3793 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3794 */ 3795 void rcu_barrier_bh(void) 3796 { 3797 _rcu_barrier(&rcu_bh_state); 3798 } 3799 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3800 3801 /** 3802 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3803 */ 3804 void rcu_barrier_sched(void) 3805 { 3806 _rcu_barrier(&rcu_sched_state); 3807 } 3808 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3809 3810 /* 3811 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3812 * first CPU in a given leaf rcu_node structure coming online. The caller 3813 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3814 * disabled. 3815 */ 3816 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3817 { 3818 long mask; 3819 struct rcu_node *rnp = rnp_leaf; 3820 3821 for (;;) { 3822 mask = rnp->grpmask; 3823 rnp = rnp->parent; 3824 if (rnp == NULL) 3825 return; 3826 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3827 rnp->qsmaskinit |= mask; 3828 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3829 } 3830 } 3831 3832 /* 3833 * Do boot-time initialization of a CPU's per-CPU RCU data. 3834 */ 3835 static void __init 3836 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3837 { 3838 unsigned long flags; 3839 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3840 struct rcu_node *rnp = rcu_get_root(rsp); 3841 3842 /* Set up local state, ensuring consistent view of global state. */ 3843 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3844 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3845 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3846 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3847 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3848 rdp->cpu = cpu; 3849 rdp->rsp = rsp; 3850 rcu_boot_init_nocb_percpu_data(rdp); 3851 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3852 } 3853 3854 /* 3855 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3856 * offline event can be happening at a given time. Note also that we 3857 * can accept some slop in the rsp->completed access due to the fact 3858 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3859 */ 3860 static void 3861 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3862 { 3863 unsigned long flags; 3864 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3865 struct rcu_node *rnp = rcu_get_root(rsp); 3866 3867 /* Set up local state, ensuring consistent view of global state. */ 3868 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3869 rdp->qlen_last_fqs_check = 0; 3870 rdp->n_force_qs_snap = rsp->n_force_qs; 3871 rdp->blimit = blimit; 3872 if (!rdp->nxtlist) 3873 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3874 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3875 rcu_sysidle_init_percpu_data(rdp->dynticks); 3876 rcu_dynticks_eqs_online(); 3877 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3878 3879 /* 3880 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3881 * propagation up the rcu_node tree will happen at the beginning 3882 * of the next grace period. 3883 */ 3884 rnp = rdp->mynode; 3885 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3886 if (!rdp->beenonline) 3887 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1); 3888 rdp->beenonline = true; /* We have now been online. */ 3889 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3890 rdp->completed = rnp->completed; 3891 rdp->cpu_no_qs.b.norm = true; 3892 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu); 3893 rdp->core_needs_qs = false; 3894 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3895 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3896 } 3897 3898 int rcutree_prepare_cpu(unsigned int cpu) 3899 { 3900 struct rcu_state *rsp; 3901 3902 for_each_rcu_flavor(rsp) 3903 rcu_init_percpu_data(cpu, rsp); 3904 3905 rcu_prepare_kthreads(cpu); 3906 rcu_spawn_all_nocb_kthreads(cpu); 3907 3908 return 0; 3909 } 3910 3911 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3912 { 3913 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3914 3915 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3916 } 3917 3918 int rcutree_online_cpu(unsigned int cpu) 3919 { 3920 sync_sched_exp_online_cleanup(cpu); 3921 rcutree_affinity_setting(cpu, -1); 3922 return 0; 3923 } 3924 3925 int rcutree_offline_cpu(unsigned int cpu) 3926 { 3927 rcutree_affinity_setting(cpu, cpu); 3928 return 0; 3929 } 3930 3931 3932 int rcutree_dying_cpu(unsigned int cpu) 3933 { 3934 struct rcu_state *rsp; 3935 3936 for_each_rcu_flavor(rsp) 3937 rcu_cleanup_dying_cpu(rsp); 3938 return 0; 3939 } 3940 3941 int rcutree_dead_cpu(unsigned int cpu) 3942 { 3943 struct rcu_state *rsp; 3944 3945 for_each_rcu_flavor(rsp) { 3946 rcu_cleanup_dead_cpu(cpu, rsp); 3947 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3948 } 3949 return 0; 3950 } 3951 3952 /* 3953 * Mark the specified CPU as being online so that subsequent grace periods 3954 * (both expedited and normal) will wait on it. Note that this means that 3955 * incoming CPUs are not allowed to use RCU read-side critical sections 3956 * until this function is called. Failing to observe this restriction 3957 * will result in lockdep splats. 3958 */ 3959 void rcu_cpu_starting(unsigned int cpu) 3960 { 3961 unsigned long flags; 3962 unsigned long mask; 3963 struct rcu_data *rdp; 3964 struct rcu_node *rnp; 3965 struct rcu_state *rsp; 3966 3967 for_each_rcu_flavor(rsp) { 3968 rdp = per_cpu_ptr(rsp->rda, cpu); 3969 rnp = rdp->mynode; 3970 mask = rdp->grpmask; 3971 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3972 rnp->qsmaskinitnext |= mask; 3973 rnp->expmaskinitnext |= mask; 3974 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3975 } 3976 } 3977 3978 #ifdef CONFIG_HOTPLUG_CPU 3979 /* 3980 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3981 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3982 * bit masks. 3983 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3984 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3985 * bit masks. 3986 */ 3987 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3988 { 3989 unsigned long flags; 3990 unsigned long mask; 3991 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3992 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3993 3994 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3995 mask = rdp->grpmask; 3996 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3997 rnp->qsmaskinitnext &= ~mask; 3998 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3999 } 4000 4001 void rcu_report_dead(unsigned int cpu) 4002 { 4003 struct rcu_state *rsp; 4004 4005 /* QS for any half-done expedited RCU-sched GP. */ 4006 preempt_disable(); 4007 rcu_report_exp_rdp(&rcu_sched_state, 4008 this_cpu_ptr(rcu_sched_state.rda), true); 4009 preempt_enable(); 4010 for_each_rcu_flavor(rsp) 4011 rcu_cleanup_dying_idle_cpu(cpu, rsp); 4012 } 4013 #endif 4014 4015 static int rcu_pm_notify(struct notifier_block *self, 4016 unsigned long action, void *hcpu) 4017 { 4018 switch (action) { 4019 case PM_HIBERNATION_PREPARE: 4020 case PM_SUSPEND_PREPARE: 4021 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4022 rcu_expedite_gp(); 4023 break; 4024 case PM_POST_HIBERNATION: 4025 case PM_POST_SUSPEND: 4026 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4027 rcu_unexpedite_gp(); 4028 break; 4029 default: 4030 break; 4031 } 4032 return NOTIFY_OK; 4033 } 4034 4035 /* 4036 * Spawn the kthreads that handle each RCU flavor's grace periods. 4037 */ 4038 static int __init rcu_spawn_gp_kthread(void) 4039 { 4040 unsigned long flags; 4041 int kthread_prio_in = kthread_prio; 4042 struct rcu_node *rnp; 4043 struct rcu_state *rsp; 4044 struct sched_param sp; 4045 struct task_struct *t; 4046 4047 /* Force priority into range. */ 4048 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4049 kthread_prio = 1; 4050 else if (kthread_prio < 0) 4051 kthread_prio = 0; 4052 else if (kthread_prio > 99) 4053 kthread_prio = 99; 4054 if (kthread_prio != kthread_prio_in) 4055 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4056 kthread_prio, kthread_prio_in); 4057 4058 rcu_scheduler_fully_active = 1; 4059 for_each_rcu_flavor(rsp) { 4060 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 4061 BUG_ON(IS_ERR(t)); 4062 rnp = rcu_get_root(rsp); 4063 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4064 rsp->gp_kthread = t; 4065 if (kthread_prio) { 4066 sp.sched_priority = kthread_prio; 4067 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4068 } 4069 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4070 wake_up_process(t); 4071 } 4072 rcu_spawn_nocb_kthreads(); 4073 rcu_spawn_boost_kthreads(); 4074 return 0; 4075 } 4076 early_initcall(rcu_spawn_gp_kthread); 4077 4078 /* 4079 * This function is invoked towards the end of the scheduler's 4080 * initialization process. Before this is called, the idle task might 4081 * contain synchronous grace-period primitives (during which time, this idle 4082 * task is booting the system, and such primitives are no-ops). After this 4083 * function is called, any synchronous grace-period primitives are run as 4084 * expedited, with the requesting task driving the grace period forward. 4085 * A later core_initcall() rcu_exp_runtime_mode() will switch to full 4086 * runtime RCU functionality. 4087 */ 4088 void rcu_scheduler_starting(void) 4089 { 4090 WARN_ON(num_online_cpus() != 1); 4091 WARN_ON(nr_context_switches() > 0); 4092 rcu_test_sync_prims(); 4093 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4094 rcu_test_sync_prims(); 4095 } 4096 4097 /* 4098 * Compute the per-level fanout, either using the exact fanout specified 4099 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 4100 */ 4101 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt) 4102 { 4103 int i; 4104 4105 if (rcu_fanout_exact) { 4106 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 4107 for (i = rcu_num_lvls - 2; i >= 0; i--) 4108 levelspread[i] = RCU_FANOUT; 4109 } else { 4110 int ccur; 4111 int cprv; 4112 4113 cprv = nr_cpu_ids; 4114 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4115 ccur = levelcnt[i]; 4116 levelspread[i] = (cprv + ccur - 1) / ccur; 4117 cprv = ccur; 4118 } 4119 } 4120 } 4121 4122 /* 4123 * Helper function for rcu_init() that initializes one rcu_state structure. 4124 */ 4125 static void __init rcu_init_one(struct rcu_state *rsp) 4126 { 4127 static const char * const buf[] = RCU_NODE_NAME_INIT; 4128 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4129 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4130 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4131 static u8 fl_mask = 0x1; 4132 4133 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */ 4134 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4135 int cpustride = 1; 4136 int i; 4137 int j; 4138 struct rcu_node *rnp; 4139 4140 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4141 4142 /* Silence gcc 4.8 false positive about array index out of range. */ 4143 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4144 panic("rcu_init_one: rcu_num_lvls out of range"); 4145 4146 /* Initialize the level-tracking arrays. */ 4147 4148 for (i = 0; i < rcu_num_lvls; i++) 4149 levelcnt[i] = num_rcu_lvl[i]; 4150 for (i = 1; i < rcu_num_lvls; i++) 4151 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1]; 4152 rcu_init_levelspread(levelspread, levelcnt); 4153 rsp->flavor_mask = fl_mask; 4154 fl_mask <<= 1; 4155 4156 /* Initialize the elements themselves, starting from the leaves. */ 4157 4158 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4159 cpustride *= levelspread[i]; 4160 rnp = rsp->level[i]; 4161 for (j = 0; j < levelcnt[i]; j++, rnp++) { 4162 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4163 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4164 &rcu_node_class[i], buf[i]); 4165 raw_spin_lock_init(&rnp->fqslock); 4166 lockdep_set_class_and_name(&rnp->fqslock, 4167 &rcu_fqs_class[i], fqs[i]); 4168 rnp->gpnum = rsp->gpnum; 4169 rnp->completed = rsp->completed; 4170 rnp->qsmask = 0; 4171 rnp->qsmaskinit = 0; 4172 rnp->grplo = j * cpustride; 4173 rnp->grphi = (j + 1) * cpustride - 1; 4174 if (rnp->grphi >= nr_cpu_ids) 4175 rnp->grphi = nr_cpu_ids - 1; 4176 if (i == 0) { 4177 rnp->grpnum = 0; 4178 rnp->grpmask = 0; 4179 rnp->parent = NULL; 4180 } else { 4181 rnp->grpnum = j % levelspread[i - 1]; 4182 rnp->grpmask = 1UL << rnp->grpnum; 4183 rnp->parent = rsp->level[i - 1] + 4184 j / levelspread[i - 1]; 4185 } 4186 rnp->level = i; 4187 INIT_LIST_HEAD(&rnp->blkd_tasks); 4188 rcu_init_one_nocb(rnp); 4189 init_waitqueue_head(&rnp->exp_wq[0]); 4190 init_waitqueue_head(&rnp->exp_wq[1]); 4191 init_waitqueue_head(&rnp->exp_wq[2]); 4192 init_waitqueue_head(&rnp->exp_wq[3]); 4193 spin_lock_init(&rnp->exp_lock); 4194 } 4195 } 4196 4197 init_swait_queue_head(&rsp->gp_wq); 4198 init_swait_queue_head(&rsp->expedited_wq); 4199 rnp = rsp->level[rcu_num_lvls - 1]; 4200 for_each_possible_cpu(i) { 4201 while (i > rnp->grphi) 4202 rnp++; 4203 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4204 rcu_boot_init_percpu_data(i, rsp); 4205 } 4206 list_add(&rsp->flavors, &rcu_struct_flavors); 4207 } 4208 4209 /* 4210 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4211 * replace the definitions in tree.h because those are needed to size 4212 * the ->node array in the rcu_state structure. 4213 */ 4214 static void __init rcu_init_geometry(void) 4215 { 4216 ulong d; 4217 int i; 4218 int rcu_capacity[RCU_NUM_LVLS]; 4219 4220 /* 4221 * Initialize any unspecified boot parameters. 4222 * The default values of jiffies_till_first_fqs and 4223 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4224 * value, which is a function of HZ, then adding one for each 4225 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4226 */ 4227 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4228 if (jiffies_till_first_fqs == ULONG_MAX) 4229 jiffies_till_first_fqs = d; 4230 if (jiffies_till_next_fqs == ULONG_MAX) 4231 jiffies_till_next_fqs = d; 4232 4233 /* If the compile-time values are accurate, just leave. */ 4234 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4235 nr_cpu_ids == NR_CPUS) 4236 return; 4237 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4238 rcu_fanout_leaf, nr_cpu_ids); 4239 4240 /* 4241 * The boot-time rcu_fanout_leaf parameter must be at least two 4242 * and cannot exceed the number of bits in the rcu_node masks. 4243 * Complain and fall back to the compile-time values if this 4244 * limit is exceeded. 4245 */ 4246 if (rcu_fanout_leaf < 2 || 4247 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4248 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4249 WARN_ON(1); 4250 return; 4251 } 4252 4253 /* 4254 * Compute number of nodes that can be handled an rcu_node tree 4255 * with the given number of levels. 4256 */ 4257 rcu_capacity[0] = rcu_fanout_leaf; 4258 for (i = 1; i < RCU_NUM_LVLS; i++) 4259 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4260 4261 /* 4262 * The tree must be able to accommodate the configured number of CPUs. 4263 * If this limit is exceeded, fall back to the compile-time values. 4264 */ 4265 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4266 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4267 WARN_ON(1); 4268 return; 4269 } 4270 4271 /* Calculate the number of levels in the tree. */ 4272 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4273 } 4274 rcu_num_lvls = i + 1; 4275 4276 /* Calculate the number of rcu_nodes at each level of the tree. */ 4277 for (i = 0; i < rcu_num_lvls; i++) { 4278 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4279 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4280 } 4281 4282 /* Calculate the total number of rcu_node structures. */ 4283 rcu_num_nodes = 0; 4284 for (i = 0; i < rcu_num_lvls; i++) 4285 rcu_num_nodes += num_rcu_lvl[i]; 4286 } 4287 4288 /* 4289 * Dump out the structure of the rcu_node combining tree associated 4290 * with the rcu_state structure referenced by rsp. 4291 */ 4292 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4293 { 4294 int level = 0; 4295 struct rcu_node *rnp; 4296 4297 pr_info("rcu_node tree layout dump\n"); 4298 pr_info(" "); 4299 rcu_for_each_node_breadth_first(rsp, rnp) { 4300 if (rnp->level != level) { 4301 pr_cont("\n"); 4302 pr_info(" "); 4303 level = rnp->level; 4304 } 4305 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4306 } 4307 pr_cont("\n"); 4308 } 4309 4310 void __init rcu_init(void) 4311 { 4312 int cpu; 4313 4314 rcu_early_boot_tests(); 4315 4316 rcu_bootup_announce(); 4317 rcu_init_geometry(); 4318 rcu_init_one(&rcu_bh_state); 4319 rcu_init_one(&rcu_sched_state); 4320 if (dump_tree) 4321 rcu_dump_rcu_node_tree(&rcu_sched_state); 4322 __rcu_init_preempt(); 4323 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4324 4325 /* 4326 * We don't need protection against CPU-hotplug here because 4327 * this is called early in boot, before either interrupts 4328 * or the scheduler are operational. 4329 */ 4330 pm_notifier(rcu_pm_notify, 0); 4331 for_each_online_cpu(cpu) { 4332 rcutree_prepare_cpu(cpu); 4333 rcu_cpu_starting(cpu); 4334 } 4335 } 4336 4337 #include "tree_exp.h" 4338 #include "tree_plugin.h" 4339